
1

Quilt: An XML Query Language for Heterogeneous Data Sources
Don Chamberlin

IBM Almaden Research Center
650 Harry Road

San Jose, CA 95120
chamberlin@almaden.ibm.com

Jonathan Robie
Software AG - USA
3207 Gibson Road
Durham, NC 27703

Jonathan.Robie@SoftwareAG-USA.com

Daniela Florescu
INRIA

78153 Le Chesnay cedex
France

Daniela.Florescu@inria.fr

ABSTRACT
The World Wide Web promises to transform human society by
making virtually all types of information instantly available
everywhere. Two prerequisites for this promise to be realized are
a universal markup language and a universal query language. The
power and flexibility of XML make it the leading candidate for a
universal markup language. XML provides a way to label
information from diverse data sources including structured and
semi-structured documents, relational databases, and object
repositories. Several XML-based query languages have been
proposed, each oriented toward a specific category of information.
Quilt is a new proposal that attempts to unify concepts from
several of these query languages, resulting in a new language that
exploits the full versatility of XML. The name Quilt suggests both
the way in which features from several languages were assembled
to make a new query language, and the way in which Quilt queries
can combine information from diverse data sources into a query
result with a new structure of its own.

Keywords
XML, query, language, database, information retrieval.

1. INTRODUCTION
The Extensible Markup Language, XML[1], is having a
profoundly unifying effect on diverse forms of information. For
the first time, XML provides an information interchange format
that is editable, easily parsed, and capable of representing nearly
any kind of structured or semi-structured information.
As an example of the unifying influence of XML, consider the
once-divergent worlds of documents and databases. Documents
have irregular structure, are deeply nested, use relatively simple
datatypes, and place great importance on ordering. Relational
databases, on the other hand, have a very regular structure, are
relatively flat, use complex datatypes, and usually place little
importance on ordering. It is a tribute to the flexibility of XML
that it is pulling together these diverse forms of information to the
extent that the distinction between a document and a database is
quickly vanishing.
In order to realize its potential as a universal format for
information exchange, XML needs a query language that is as
flexible as XML itself. For querying documents, the language
needs to be able to preserve order and hierarchy. For querying
databases, the language needs to provide traditional database
operations such as joins and grouping. The language must be
capable of dealing with all the information structures found in the
XML Schema specification[2], and must able to transform
information from one structure into another.

Our goal is to design a small, implementable language that meets
the requirements identified by the W3C XML Query Working
Group[3]. We want a language in which queries are concise but
readable. We also want a language that is flexible enough to query
a broad spectrum of XML information sources, and we have used
examples from the database and document communities as
representative of these requirements.
Our strategy in designing the language has been to borrow
features from several other languages that seem to have strengths
in specific areas. From XPath[4] and XQL[5] we take a syntax for
navigating in hierarchical documents. From XML-QL[6] we take
the notion of binding variables and then using the bound variables
to create new structures. From SQL[7] we take the idea of a series
of clauses based on keywords that provide a pattern for
restructuring data (the SELECT-FROM-WHERE pattern in SQL).
From OQL[8] we take the notion of a functional language
composed of several different kinds of expressions that can be
nested with full generality. We have also been influenced by
reading about other XML query languages such as Lorel[9] and
YATL[10]. We decided to name our language Quilt because of its
heritage as a patchwork of features from other languages, and also
because of its goal of assembling information from multiple
diverse sources. Quilt has also been described in [11].
The W3C XML Query Working Group has identified a
requirement for both a human-readable query syntax and an
XML-based query syntax. Quilt is designed to meet the first of
these requirements. We recognize that an alternative, XML-based
syntax for the Quilt semantics would be useful for some
applications.

2. THE QUILT LANGUAGE
Like OQL, Quilt is a functional language in which a query is
represented as an expression. Quilt supports several kinds of
expression, and therefore a Quilt query may take several different
forms. The various forms of Quilt expressions can be nested with
full generality, so the notion of a "subquery" is natural to Quilt.
The input and output of a Quilt query are XML documents,
fragments of XML documents, or collections of XML documents.
We can think of these inputs and outputs as instances of a data
model called the XML Query Data Model, which is under
development by the W3C XML Query Working Group. This data
model is a refinement of the data model described in the XPath
specification[4], in which a document is modeled as a tree of
nodes. A fragment of a document, or a collection of documents,
may lack a common root and may therefore be modeled as an
ordered forest of nodes of various types, including element nodes,
attribute nodes, and text nodes, as illustrated in Figure 1.

2

An abbreviated syntax for Quilt is given in the Appendix of this
paper. This syntax is designed primarily to be brief and readable
for the purpose of introducing the language. In order to make the
grammar suitable for use by a parser generator, it would need to
be expanded with additional rules that define the precedence of
the operators. This work is in progress, as is a specification of the
formal semantics of Quilt.
The principal forms of Quilt expressions are the following:
1. Path expressions
2. Element constructors
3. FLWR expressions
4. Expressions involving operators and functions
5. Conditional expressions
6. Quantifiers
7. Variable bindings
Each of these types of expressions is introduced and explained by
a series of examples in the following section. For syntax details,
please refer to the Appendix.

2.1 Path Expressions
Quilt path expressions are based on the abbreviated syntax of
XPath, which provides a way to navigate through a hierarchy of
nodes. The result of a path expression is an ordered forest
consisting of those nodes that satisfy the expression and their
descendants. XPath syntax is used in several XML-related
applications such as XSLT [12] and XPointer [13].
As in XPath, a Quilt path expression consists of a series of steps.
Each step represents movement through a document in a
particular direction, and each step can apply a predicate to
eliminate nodes that fail to satisfy a given condition. The result of
each step is a set of nodes that serves as a starting point for the
next step.

A path expression can begin with an expression that identifies a
specific node, such as the function document(string), which
returns the root node of a named document. A Quilt query can
also contain a path expression beginning with "/" or "//" which
represents an implicit root node, determined by the environment
in which the query is executed.
A complete discussion of Xpath abbreviated syntax can be found
in [4]. Briefly, the following symbols are used:

. denotes the current node
/ denotes children of the current node
// denotes descendants of the current node (closure of /)
@ represents attributes of the current node
[] brackets enclose a Boolean expression that serves as a

predicate for a given step
[n] When a predicate consists of an integer, it serves to

select the element with the given ordinal number from a
list of elements.

The following example uses a path expression consisting of three
steps. The first step locates the root node of a document. The
second step locates the second chapter element that is a child of
the root element. The third step finds figure elements occurring
anywhere within the chapter, but retains only those figure
elements that have a caption with the value "Tree Frogs."
(Q1) In the second chapter of the document named "zoo.xml",
find the figure(s) with caption "Tree Frogs".

document("zoo.xml")/chapter[2]
//figure[caption = "Tree Frogs"]

In addition to the operators of the XPath abbreviated syntax, Quilt
introduces an operator called the dereference operator ("->").
When a dereference operator follows an IDREF-type attribute or a
key, it returns the element(s) that are referenced by the attribute or
key. Dereference operators can be used in the steps of a path
expression. For example, the following query uses a dereference
operator to find the element referenced by the "refid" attribute of a
"figref" element.

(Q2) Find captions of figures that are referenced by "figref"
elements in the chapter of "zoo.xml" with title "Frogs".

document("zoo.xml")/chapter[title = "Frogs"]
//figref/@refid->/caption

The Quilt dereference operator is similar in purpose to the id()
function of XPath. However, the right-arrow notation is intended
to be easier to read, especially in path expressions that involve
multiple dereferences. For example, suppose that a given
document contains a set of <emp> elements, each of which may
contain a "mentor" attribute. The "mentor" attribute is of type
IDREF, and it references another <emp> element that represents
the mentor of the given employee. The name of each employee is
represented by a <name> element nested inside the <emp>
element.
(Q3) Find the name of the mentor of the mentor of the employee
named "Jack".

/emp[name = "Jack"]/@mentor->/@mentor->/name

Figure 1: An Instance of the XML Query Data Model:
An Ordered Forest

E

A

E

E

E E

TT

T

T

T

A

T

A

E denotes element node

denotes attribute node

denotes text node

3

2.2 Element Constructors
An element constructor is used to generate an element node.
Similar constructors exist for other types of nodes such as
comments and processing instructions. An element constructor
consists of a start tag and an end tag, enclosing an optional list of
expressions that provide the content of the element. The start tag
may also specify the values of one or more attributes. The name of
the start tag may be specified either by a constant or a variable, as
illustrated in the following examples.
(Q4) Generate an <emp> element containing an "empid" attribute
and nested <name> and <job> elements. The values of the
attribute and nested elements are specified by variables that are
bound in other parts of the query.

<emp empid = $id>
<name> $n </name> ,
<job> $j </job>

</emp>

In the following example, the name of the generated element is
specified by a variable named $tagname, and the names and
values of its attributes are specified by a string-valued variable
named $attrs. Note that, when a start-tag contains a variable name,
the matching end-tag must contain the same variable name.
(Q5) Generate an element with computed name and attributes,
containing nested elements named <description> and <price>.

<$tagname ATTRIBUTES $attrs>
<description> $d </description> ,
<price> $p </price>

</$tagname>

2.3 FLWR Expressions
A FLWR (pronounced "flower") expression is constructed from
FOR, LET, WHERE, and RETURN clauses. As in an SQL query,
these clauses must appear in a specific order. A FLWR expression
is used whenever it is necessary to iterate over the elements of a
collection.
A FLWR expression begins by binding values to one or more
variables, and then uses these variables to construct a result (in
general, an ordered forest of nodes). The overall flow of data in a
FLWR expression is illustrated in Figure 2.
A FLWR expression begins with a FOR-clause that generates one
or more bindings for one or more variables. Each variable
introduced in the FOR-clause is associated with an expression (for
example, a path expression). In general, each of these expressions
returns a list of nodes. The result of the FOR-clause is a list of
tuples, each of which contains a binding for each of the variables.
The variables are bound to individual nodes returned by their
respective expressions, in such a way that the binding-tuples
represent the cross-product of the node-lists returned by all the
expressions.
The initial FOR-clause in a FLWR expression can be followed by
one or more LET-clauses and additional FOR-clauses, which
provide bindings for additional variables. A LET-clause simply
binds one or more variables to the result of one or more
expressions. Unlike a FOR-clause, which iterates over node-lists
to generate many bindings for each variable, a LET-clause
generates only one binding for each variable. Bindings generated
by a FOR-clause bind each variable to a single node (with its

descendants), whereas a LET-clause may bind a variable to a
forest of nodes.

A FLWR expression may contain several FOR and LET-clauses,
and each of these clauses may contain references to variables
bound in previous clauses. The result of the sequence of FOR and
LET clauses is an ordered list of tuples of bound variables. The
number of tuples generated by a FOR/LET sequence is the
product of the cardinalities of the node-lists returned by the
expressions in the FOR-clauses. The tuples generated by the
FOR/LET sequence have an order that is determined by the order
of their bound elements in the input document, with the first
bound variable taking precedence, followed by the second bound
variable, and so on. However, if some expression used in a FOR-
clause is unordered (for example, because it contains a distinct
function), the tuples generated by the FOR/LET sequence are
unordered.
Each of the binding-tuples generated by the FOR and LET clauses
is subject to further filtering by an optional WHERE-clause. Only
those tuples for which the condition in the WHERE-clause is true
are used to invoke the RETURN clause. The WHERE-clause may
contain several predicates, connected by AND, OR, and NOT.
These predicates usually contain references to the bound
variables. Variables bound by a FOR-clause represent a single
node (with its descendants) and so they are typically used in scalar
predicates such as $p/color = "Red". Variables bound by a LET-
clause, on the other hand, may represent collections of nodes, and
can be used in collection-oriented predicates such as avg($p/price)
> 100. The ordering of the binding-tuples generated by the FOR
and LET clauses is preserved by the WHERE-clause.
The RETURN-clause generates the output of the FLWR
expression, which may be a node, an ordered forest of nodes, or a
primitive value. The RETURN-clause is executed once for each
tuple of bindings that is generated by the FOR and LET-clauses
and satisfies the condition in the WHERE-clause. If an ordering
exists among these tuples, the RETURN-clause is executed on

FOR/LET Clauses

WHERE Clause

RETURN Clause

Figure 2: Flow of data in a FLWR Expression.

Ordered list of tuples
of bound variables:
($x, $y, $z),
($x, $y, $z)

Pruned list of tuples
of bound variables

Instance of XML
Query data model

4

each tuple, in order, and the order of the results is preserved in the
output document. The RETURN-clause contains an expression
that often contains element generators, references to bound
variables, and nested subexpressions.
We will consider some examples of FLWR expressions based on a
document named "bib.xml" that contains a list of <book>
elements. Each <book> element, in turn, contains a <title>
element, one or more <author> elements, a <publisher> element, a
<year> element, and a <price> element. The first example is so
simple that it could have been expressed using a path expression,
but it is perhaps more readable when expressed as a FLWR
expression.
(Q6) List the titles of books published by Morgan Kaufmann in
1998.

FOR $b IN document("bib.xml")//book
WHERE $b/publisher = "Morgan Kaufmann"

AND $b/year = "1998"
RETURN $b/title

The next example uses a LET-clause to bind a variable to the
average price of books published by a given publisher,
represented by another variable bound in the FOR-clause. The
distinct function in the FOR-clause eliminates duplicates from the
list of publishers found in the input document.
(Q7) List each publisher and the average price of its books.

FOR $p IN distinct(document("bib.xml")//publisher)
LET $a := avg(document("bib.xml")

/book[publisher = $p]/price)
RETURN

<publisher>
<name> $p/text() </name> ,
<avgprice> $a </avgprice>

</publisher>

The next example uses a LET-clause to bind a variable to a set of
books, and then uses the WHERE-clause to apply a condition to
the set, retaining only bindings in which $b contains more than
100 elements. This query also illustrates the common practice of
enclosing a FLWR expression inside an element constructor
which provides an enclosing element for the query result.
(Q8) List the publishers who have published more than 100
books.

<big_publishers>
FOR $p IN distinct(document("bib.xml")//publisher)
LET $b := document("bib.xml")/book[publisher = $p]
WHERE count($b) > 100
RETURN $p

</big_publishers>

FLWR expressions are often useful for performing structural
transformations on documents, as illustrated by the next query,
which inverts a hierarchy. This example also illustrates how one
FLWR expression can be nested inside another.
(Q9) Invert the structure of the input document so that, instead of
each book element containing a list of authors, each distinct
author element contains a list of book-titles.

<author_list>
FOR $a IN distinct(document("bib.xml")//author)
RETURN

<author>
<name> $a/text() </name>,
FOR $b IN document("bib.xml")//book

[author = $a]
RETURN $b/title

</author>
</author_list>

It is often important to specify an order for the elements in a query
result, supplementing or superceding the order derived from the
bindings of the variables. If a query result contains several levels
of nested elements, an ordering may be required among the
elements at each level. Quilt provides a SORTBY clause that may
be used after an element constructor or path expression to specify
an ordering among the generated elements. The arguments of the
SORTBY clause are evaluated within the context of the individual
nodes to be sorted, and may be followed by ASCENDING or
DESCENDING to specify the direction of the sort (ASCENDING
is the default.) The use of SORTBY is illustrated by the following
example.
(Q10) Make an alphabetical list of publishers. Within each
publisher, make a list of books, each containing a title and a price,
in descending order by price.

<publisher_list>
FOR $p IN distinct(document("bib.xml")//publisher)
RETURN

<publisher>
<name> $p/text() </name> ,
FOR $b IN document("bib.xml")//book

[publisher = $p]
RETURN

<book>
$b/title ,
$b/price

</book> SORTBY price DESCENDING
</publisher> SORTBY name

</publisher_list>

2.4 Operators in Expressions
Like most languages, Quilt allows expressions to be constructed
using infix and prefix operators, and allows nested expressions
inside parentheses to serve as operands. Quilt supports the usual
set of arithmetic and logical operators, and the collection
operators UNION, INTERSECT, and EXCEPT. The detailed
semantics of these operators, as applied to various kinds of
collections including sets, bags, and lists, is left to a more detailed
language specification.
From XQL, Quilt inherits the infix operators BEFORE and
AFTER, which are useful in searching for information by its
ordinal position. Each instance of the XML Query data model
(regardless of whether it is a complete document, a fragment of a
document, or a list of documents) is a forest that includes a total
ordering, called "document order," among all its nodes. BEFORE
operates on two collections of elements and returns those
elements in the first collection that occur before at least one
element of the second collection in document order (of course,
this is possible only if the two collections are subsets of the same
data model instance.) AFTER is defined in a similar way. Since

5

BEFORE and AFTER are based on global document ordering,
they can compare the positions of elements that do not have the
same parent. The next two examples illustrate the use of BEFORE
and AFTER by retrieving excerpts from a surgical report that
includes <procedure>, <incision>, and <anesthesia> elements.
(Q11) Prepare a "critical sequence" report consisting of all
elements that occur between the first and second incision in the
first procedure.

<critical_sequence>
FOR $p IN //procedure[1],

$e IN //* AFTER ($p//incision)[1]
BEFORE ($p//incision)[2]

RETURN shallow($e)
</critical_sequence>

The "shallow" function strips an element of its subelements.
(Q12) Find procedures in which no anesthesia occurs before the
first incision.

FOR $p in //procedure
WHERE empty($p//anesthesia BEFORE ($p//incision)[1])
RETURN $p

Another important operator introduced by Quilt is the FILTER
operator. The first operand of FILTER is an expression which, in
general, evaluates to an ordered forest of nodes. The second
operand is a path expression. The ordered forest of the first
operand is given a virtual root, and the path expression of the
second operand is evaluated with respect to this root. The result of
FILTER is a new ordered forest consisting of those nodes in the
first operand that satisfy the path expression. FILTER retains only
those nodes that individually satisfy the path expression, and does
not retain their descendant nodes unless these nodes satisfy the
path expression also. However, all the hierarchic and sequential
relationships among the retained nodes are preserved.
The action of a FILTER expression is illustrated by Figures 3a
and 3b. Figure 3a shows an ordered forest that might result from
evaluating the path expression /C. Each tree is rooted in a node of
type C. Figure 3b shows the result when this ordered forest is
filtered by the path expression //A | //B. Only nodes of type A and
B are retained, but where a hierarchic or sequential relationship
exists among these nodes, the relationship is preserved.
FILTER expressions are useful in "projecting" some desired
subset of a document, eliminating undesired parts while retaining
the document structure. The following example illustrates this
process by computing a table of contents for a document that
contains many levels of nested sections. The query filters the
document, retaining only section elements, title elements nested
directly inside section elements, and the text of those title
elements. Other elements, such as paragraphs and figure titles, are
eliminated, leaving only the "skeleton" of the document.
(Q13) Prepare a table of contents for the document named
"cookbook.xml."

<toc>
document("cookbook.xml") FILTER

//section | //section/title | //section/title/text()
</toc>

2.5 Conditional Expressions
Conditional expressions are useful when the structure of the
information to be returned depends on some condition. Of course,
like all Quilt expressions, conditional expressions can be nested.
As an example of a conditional expression, consider a library that
has many holdings, each described by a <holding> element with a
"type" attribute that identifies its type: book, journal, etc. All
holdings have a title and other nested elements that depend on the
type of holding.
(Q14) Make a list of holdings, ordered by title. For journals,
include the editor, and for all other holdings, include the author.

FOR $h IN //holding
RETURN

<holding>
$h/title,
IF $h/@type = "Journal"

THEN $h/editor
ELSE $h/author

</holding> SORTBY (title)

A

A AA

B B B

B B

C C C

C

B

C

A A

AA

B B

B B

Figure 3a: Value of /C

Figure 3b: Value of /C FILTER //A//B

6

2.6 Functions
Quilt provides a library of built-in functions for use in queries.
We have already used some of the Quilt functions, such as
document, which returns the root node of a named document. The
Quilt function library contains all the functions of the XPath core
function library, all the aggregation functions of SQL (avg, sum,
count, max, and min), and a number of other useful functions. For
example, the distinct function eliminates duplicates from a
collection, and the empty function returns True if and only if its
argument is an empty collection.

In addition to the built-in functions, Quilt allows users to define
functions of their own. In general, a Quilt query consists of a set
of function definitions, followed by an expression that can call the
functions that are thus defined. The scope of a function definition
is limited to the query in which it is defined. In another paper, we
expect to define an extensibility mechanism whereby function
definitions with global scope, written in various programming
languages, can be added to the function library.

Some functions take scalar arguments and some take collections
(sets, lists, and bags) as arguments. In general, when a collection
is passed to a function that expects a scalar argument, the function
returns a collection in which each element is the result of applying
the function to one of the elements of the original collection.

A function may be defined recursively—that is, it may be
referenced in its own definition. The next query contains an
example of a recursive function that computes the depth of a node
hierarchy. In its definition, the user-defined function depth calls
the built-in functions empty and max.

(Q15) Using a recursive function, compute the maximum depth of
nested parts in the document named "partlist.xml."

FUNCTION depth($e)
{
IF empty($e/*) THEN 0
ELSE max(depth($e/*)) + 1
}

depth(document("partlist.xml") FILTER //part)

2.7 Quantifiers
Occasionally it is necessary to test for existence of some element
that satisfies a condition, or to determine whether all elements in
some category satisfy a condition. For this purpose, Quilt provides
existential and universal quantifiers. The existential quantifier is
illustrated in Q16, and the universal quantifier is illustrated in
Q17.
(Q16) Find titles of books in which both sailing and windsurfing
are mentioned in the same paragraph.

FOR $b IN //book
WHERE SOME $p IN $b//para SATISFIES

contains($p, "sailing") AND contains($p, "windsurfing")
RETURN $b/title

(Q17) Find titles of books in which sailing is mentioned in every
paragraph.

FOR $b IN //book
WHERE EVERY $p IN $b//para SATISFIES

contains($p, "sailing")
RETURN $b/title

2.8 Variable Bindings
Some queries use the same expression in more than one place. In
such a case, it is sometimes helpful to bind the value of the
expression to a variable so that the definition of the expression
does not need to be repeated. This can be accomplished by a
variable binding, which looks like the LET clause of a FLWR
expression. A variable binding can be used outside a FLWR
expression if it is followed by the word EVAL, which suggests
that, after the variable is bound, the expression that follows the
binding is evaluated. In the following example, the average price
of books is a common subexpression that is bound to variable $a
and then used repeatedly in the body of the query.
(Q18) For each book whose price is greater than the average
price, return the title of the book and the amount by which the
book's price exceeds the average price.

LET $a := avg(//book/price) EVAL
<result>

FOR $b IN /book
WHERE $b/price > $a
RETURN

<expensive_book>
$b/title ,
<price_difference>

$b/price - $a
</price_difference>

</expensive_book>
</result>

3. QUERYING RELATIONAL DATA
Since much of the world's business data is stored in relational
databases, access to relational data is a vitally important
application for an XML query language. In this section, we will
illustrate the use of Quilt to access relational data by a series of
examples based on a schema that is often used in relational
database tutorials, containing descriptions of suppliers and parts.
The schema, shown in Figure 4, consists of three tables. Table S
contains supplier numbers and names; Table P contains part
numbers and descriptions, and Table SP contains the relationship
between suppliers and the parts they supply, including the price.
Figure 4 also shows how this schema might be translated into a
default XML view in which each table appears as a document,
each row of a table appears as an element inside the document,
and each value inside a row appears as a nested element. Other,
more richly structured views can be defined on top of this default
view by means of Quilt queries, as we will illustrate below.

7

SQL[7] is the standard relational database language. In many
cases, SQL queries can be translated into Quilt queries in a
straightforward way be mapping SQL query-blocks into FLWR-
expressions. We illustrate this mapping by the following query:
(Q19) Find part numbers of gears, in numeric order.
SQL version:

SELECT pno
FROM p
WHERE descrip LIKE 'Gear'
ORDER BY pno;

Quilt version:
FOR $p IN document("p.xml")//p_tuple
WHERE contains($p/descrip, "Gear")
RETURN $p/pno SORTBY(.)

In Quilt, the operand of SORTBY is always interpreted within the
context of the element to be sorted. Since the <pno> elements
generated by Q19 have no internal structure, we use the notation
"SORTBY(.)", which causes the <pno> elements to be sorted by
their content.

3.1 Grouping
Many relational queries involve forming data into groups and
applying some aggregation function such as count or average to
each group. In SQL, these queries are expressed using GROUP
BY and HAVING clauses. The following example shows how
such a query might be expressed in Quilt:
(Q20) Find the part number and average price for parts that have
at least 3 suppliers.
SQL version:

SELECT pno, avg(price) AS avgprice
FROM sp
GROUP BY pno
HAVING count(*) >= 3
ORDER BY pno;

Quilt version:
FOR $pn IN distinct(document("sp.xml")//pno)
LET $sp := document("sp.xml")//sp_tuple[pno = $pn]
WHERE count($sp) >= 3
RETURN

<well_supplied_item>
$pn,
<avgprice> avg($sp/price) </avgprice>

</well_supplied_item> SORTBY(pno)

Note that $pn, bound by a FOR-clause, represents an individual
part number, whereas $sp, bound by a LET-clause, represents a
set of sp-tuples. The SQL HAVING clause, which applies a
predicate to a set, is mapped into the Quilt WHERE-clause that
operates on the set-valued variable $sp.

3.2 Joins
Joins, which combine data from multiple sources into a single
query result, are among the most important forms of relational
queries. In this section we will illustrate how several types of joins
can be expressed in Quilt.
A conventional ("inner") join returns information from two or
more related tables, as illustrated by the following example:
(Q21) Return a "flat" list of supplier names and their part
descriptions, in alphabetical order.

FOR $sp IN document("sp.xml")//sp_tuple,
$p IN document("p.xml")//p_tuple[pno = $sp/pno],
$s IN document("s.xml")//s_tuple[sno = $sp/sno]

RETURN
<sp_pair>

$s/sname ,
$p/descrip

</sp_pair> SORTBY (sname, descrip)

A left outer join also returns information from two related tables,
but it preserves information from rows of the left table that have
no matching row in the right table, as show below.
(Q22) Return names of all the suppliers in alphabetic order,
including those that supply no parts; inside each supplier, list the
descriptions of all the parts it supplies, in alphabetic order.

FOR $s IN document("s.xml")//s_tuple
RETURN

<supplier>
$s/sname,
(FOR $sp IN document("sp.xml")//sp_tuple

[sno = $s/sno],
$p IN document("p.xml")//p_tuple

[pno = $sp/pno]
RETURN $p/descrip SORTBY(.)
)

</supplier> SORTBY(sname)

Another type of join that is less frequently used is a "full" outer
join, which returns information from two tables, preserving
information from the rows of both tables that have no matching
rows in the other table. The result of a full outer join might be
structured in any of several ways. The example below uses a
format of parts nested inside suppliers, followed by a list of parts
that have no supplier. This might be thought of as a "supplier-

XML representation:

<p>
<p_tuple>

<pno>
<descrip>

<sp>
<sp_tuple>

<sno>
<pno>
<price>

SNO PNO PRICESP

P PNO DESCRIP

S SNO SNAME

Relational data:

<s>
<s_tuple>

<sno>
<sname>

Figure 4: One Possible XML Representation
of Relational Data

8

centered" full outer join. Other forms of the outer join that are
"part-centered" or "symmetric" can be expressed in similar ways.
(Q23) Return names of suppliers and descriptions and prices of
their parts, including suppliers that supply no parts and parts that
have no suppliers.

<master_list>
FOR $s IN document("s.xml")//s_tuple
RETURN

<supplier>
$s/sname,
(FOR $sp IN document("sp.xml)//sp_tuple

[sno = $s/sno],
$p IN document("p.xml")//p_tuple

[pno = $sp/pno]
RETURN

<part>
 $p/descrip,

$sp/price
</part> SORTBY (descrip)

)
</supplier> SORTBY(sname)

UNION
FOR $p IN document("p.xml")//p_tuple
WHERE empty(document("sp.xml")//sp_tuple

[pno = $p/pno])
RETURN

<orphan_part>
$p/descrip

</orphan_part> SORTBY(descrip)
</master_list>

Q23 uses an element constructor to enclose its output inside a
<master_list> element. The UNION operator, used in Q23 to
combine two ordered lists, returns the first list with the second list
appended at the end. The result is a <master_list> element
containing an ordered list of <supplier> elements followed by an
ordered list of <orphan_part> elements.

3.3 Defining Structured Views
An application might prefer a structured XML view of the
database of parts and suppliers, such as the "master_list"
generated by Q23, rather than a simpler view in which each table
appears as a separate document. If a relational database system
can present simple default XML views of its tables, the job of
constructing more structured views can be left to Quilt. Just as in
SQL, a Quilt query can serve as the definition of a persistent view
of underlying data. For example, by means of suitable data
definition statements, Q23 could be entered into the system
catalogs as the definition of a persistent XML view called
"master_list". Quilt queries against the master_list could then be
automatically merged with the view-definition to form queries
against the underlying tables.

4. CONCLUSION
With the emergence of XML, the distinctions among various
forms of information, such as documents and databases, are
quickly disappearing. Quilt is designed to support queries against
a broad spectrum of information sources by incorporating features
from several languages that were originally designed for diverse
purposes. This paper has illustrated the versatility of Quilt by

using it to express queries against both semi-structured documents
and relational databases. We believe that Quilt represents a
promising approach to a query language that can help to realize
the potential of XML as a universal medium for data interchange.

5. ACKNOWLEDGMENTS
The authors thank Mary Fernandez, Phil Wadler, Jerome Simeon,
and Zack Ives for many helpful discussions during the definition
of the Quilt language.

6. APPENDIX: Quilt Grammar
The following simplified Quilt grammar should be considered a
work in progress. This grammar includes all the forms of Quilt
expressions but does not specify the precedence of various
operators. Suitable precedence rules will be defined as part of a
more complete language specification. The grammar will also be
augmented by a set of typing rules (for example, an expression
used in a predicate must return a Boolean value).
query ::= function-defn* expr

function-defn ::=
'FUNCTION' function-name '(' variable-list ')' '{' expr '}'

function-name ::= QName
variable-list ::=

variable (',' variable)*
expr ::= variable

| constant
| function-name '(' expr-list? ')'
| expr infix-operator expr
| prefix-operator expr
| '(' expr ')'
| FLWR-expr
| node-constructor
| '.'
| quilt-path-expr
| expr '[' expr ']'
| expr 'SORTBY' '(' expr order? (',' expr order?)* ')'
| expr 'FILTER' quilt-path-expr
| LET-clause 'EVAL' expr
| 'IF' expr 'THEN' expr 'ELSE' expr
| quantifier variable 'IN' expr 'SATISFIES' expr
| '[' expr-list ']'

order ::= ASCENDING | DESCENDING
quantifier ::= SOME | EVERY
FLWR-expr ::=

FOR-clause (FOR-clause | LET-clause)*
 WHERE-clause? RETURN-clause

FOR-clause ::= 'FOR' variable 'IN' expr (',' variable 'IN' expr)*
LET-clause ::= 'LET' variable ':=' expr (',' variable ':=' expr)*
WHERE-clause ::= 'WHERE' expr
RETURN-clause ::= 'RETURN' expr
node-constructor ::= element-constructor

| Comment
| PI

9

element-constructor ::= start-tag expr-list? end-tag
start-tag ::= '<' tag-name attributes? '>'
attributes ::= (attr-name '=' expr)+

| 'ATTRIBUTES' expr
tag-name ::= QName | variable
attr-name ::= QName | variable
end-tag ::= '</' tag-name '>'
expr-list ::= expr (',' expr)*
quilt-path-expr ::= step

| '/' step
| '//' step
| quilt-path-expr '/' step
| quilt-path-expr '//' step

step ::= expr
| node-type '(' ')'
| name-test
| '@' name-test
| '..'
| step '->'

name-test ::= '*' | NCName ':' '*' | QName
node-type ::= 'comment'

| 'text'
| 'processing-instruction'
| 'node'

variable ::= '$' NCName
constant ::= Literal | Number
QName ::= (Prefix ':')? LocalPart
Prefix ::= NCName
LocalPart ::= NCName

In the above grammar, the following symbols are defined by
reference to other specifications:

• Literal and Number are defined in [4].

• Comment and PI are defined in [1].

• NCName is defined in [14].
Quilt includes the following infix operators:

+ - * div mod
= < <= > >= !=
|
AND OR
UNION INTERSECT EXCEPT
BEFORE AFTER

Quilt includes the following prefix operators:
+ - NOT

As in XPath, many of the above operators are overloaded and can
be applied to values of various types. For example, A = B where
A and B are sets is true if and only if there exists an element a in
A and an element b in B such that a = b. The detailed semantics of
these operators will be provided as part of a more complete
language specification.

The Quilt core function library includes the following:
1. The functions of the XPath core function library[4]
2. The "aggregation functions" of SQL that operate on a

collection and return a scalar result: sum, count, avg, max,
and min.

3. Additional functions such as the following (partial list):
document(string) returns the root node of a named document
empty(collection) returns True if its argument is empty
distinct(collection) removes duplicates from its argument
name(element) returns the name (generic identifier) of an
element
shallow(element) strips an element of its subelements

7. REFERENCES
[1] World Wide Web Consortium. Extensible Markup Language

(XML) 1.0. W3C Recommendation, Feb. 10, 1998. See
http://www.w3.org/TR/1998/REC-xml-19980210

[2] World Wide Web Consortium. XML Schema, Parts 0, 1, and
2. W3C Working Draft, April 7, 2000. See
http://www.w3.org/TR/xmlschema-0, -1, and -2.

[3] World Wide Web Consortium. XML Query Requirements.
W3C Working Draft, Jan. 31, 2000. See
http://www.w3.org/TR/xmlquery-req

[4] World Wide Web Consortium. XML Path Language (XPath)
Version 1.0. W3C Recommendation, Nov. 16, 1999. See
http://www.w3.org/TR/xpath.html

[5] J. Robie, J. Lapp, D. Schach. XML Query Language (XQL).
See http://www.w3.org/TandS/QL/QL98/pp/xql.html.

[6] Alin Deutsch, Mary Fernandez, Daniela Florescu, Alon
Levy, and Dan Suciu. A Query Language for XML. See
http://www.research.att.com/~mff/files/final.html

[7] International Organization for Standardization (ISO).
Information Technology—Database Language SQL.
Standard No. ISO/IEC 9075:1999. (Available from
American National Standards Institute, New York, NY
10036, (212) 642-4900.)

[8] Rick Cattell et al. The Object Database Standard: ODMG-
93, Release 1.2. Morgan Kaufmann Publishers, San
Francisco, 1996.

[9] Serge Abiteboul, Dallan Quass, Jason McHugh, Jennifer
Widom, and Janet L. Wiener. The Lorel Query Language for
Semistructured Data. International Journal on Digital
Libraries, 1(1):68-88, April 1997. See http://www-
db.stanford.edu/~widom/pubs.html

[10] S. Cluet, S. Jacqmin, and J. Simeon. The New YATL: Design
and Specifications. Technical Report, INRIA, 1999.

[11] Jonathan Robie, Don Chamberlin, and Daniela Florescu.
Quilt: an XML Query Language. Graphic Communications
Association, Proceedings of XML Europe, June 2000.

10

[12] World Wide Web Consortium. XSL Transformations (XSLT).
W3C Recommendation, Nov. 16, 1999. See
http://www.w3.org/TR/xslt.

[13] World Wide Web Consortium. XML Pointer Language
(XPointer). W3C Working Draft, Dec. 6, 1999. See
http://www.w3.org/TR/WD-xptr.

[14] World Wide Web Consortium. Namespaces in XML. W3C
Recommendation, Jan. 14, 1999. See
http://www.w3.org/TR/REC-xml-names.

	INTRODUCTION
	THE QUILT LANGUAGE
	Path Expressions
	Element Constructors
	FLWR Expressions
	Operators in Expressions
	Conditional Expressions
	Functions
	Quantifiers
	Variable Bindings

	QUERYING RELATIONAL DATA
	Grouping
	Joins
	Defining Structured Views

	CONCLUSION
	ACKNOWLEDGMENTS
	APPENDIX: Quilt Grammar
	REFERENCES

