XMLDOM: DOM /ValueMapping
Revised Submission

Submitted by

BEA Systems

Cape Clear Software Ltd
Hewlett-Packard Company
International Business Machines Corporation
|ONA Technologies PLC
Oracle Corporation
PeerLogic, Inc.
Persistence Software
Rogue Wave Software
Unisys Corporation

Supported by
Sun Microsystems

August 21, 2000
OMG Document orbos/2000-08-10

Copyright 2000 BEA Systems

Copyright 2000 Cape Clear Software Ltd
Copyright 2000 Hewlett-Packard Company
Copyright 2000 IBM Corporation
Copyright 2000 IONA Technologies PLC.
Copyright 2000 Oracle Corporation
Copyright 2000 PeerLogic

Copyright 2000 Persistence Software
Copyright 2000 Rogue Wave

Copyright 2000 Unisys Corporation

All rights reserved.

The companies listed above hereby grant to the Object Management Group, Inc. (OMG) and
OMG members, permission to copy this document for the purpose of evaluating the technology
contained herein during the technology selection process by the appropriate OMG task force.
Distribution to anyone not a member of the Object Management Group or for any purpose other
than technology evaluation is prohibited.

The material in this document is submitted to the OMG for evaluation. Submission of this
document does not represent a commitment to implement any portion of this specification in the
products of the submitters.

WHILE THE INFORMATION IN THIS PUBLICATION ISBELIEVED TO BE
ACCURATE,THE COMPANIES LISTED ABOVE MAKE NO WARRANTY OF ANY KIND
WITH REGARD TO THIS MATERIAL INCLUDING BUT NOT LIMITED TO THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. The companies listed above shall not be liable for errors contained herein or for
incidental or consequential damages in connection with the furnishing, performance or use of
this material. The information contained in this document is subject to change without notice.

This document contains information which is protected by copyright. All Rights Reserved.
Except as otherwise provided herein, no part of this work may be reproduced or used in any
form or by any means—graphic, electronic, or mechanical, including photocopying, recording,
taping, or information storage and retrieval systems— without the permission of one of the
copyright owners. All copies of this document must include the copyright and other information
contained on this page.

RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by government is subject to
restrictions as set forth in subdivision (c) (1) (ii) of the Rights in Technical Data and Computer
Software Clause at DFARS 252.227-7013.

XML to Valuetype Mapping

21 Aug 2000

Tableof Contents —

1 Preface. 7
1.1 Cosubmitting CompPanies.o i it 7

1.2 IntrodUuCiONt 7
1.2.1 Dynamic Information Scenario, 8

1.2.2 Static Information Scenariocovii i 9

123 Metadata.o 10

1.3 SUbMISSION CONEACESot e 11

1.4 Statusof thisdocument 13

15 Guideto Submission. 13

2 Proofof Concept i 15
21 Copyright Walver. e 15

2.2 Proof of CONCepL.ot 15

3 ResponsetoRFP Requirements, 17
3.1 Mandatory Requirements.ottt 17

3.2 Optional Requirements.ttt e 18

33 Issuestobediscussed. 18

4 DOM toValuetypemappingoovieiinineennn. 19
41 IntroduCtiono e 19
4.2 DOM Mapping Conventioncuuiii i 19

4.3 DOM Vauetypedeclarations. 20
4.3.1 DOMEXCEPLON . .ottt e e 20

orbos/2000-08-10: XML Valuetype Mapping

432 DOMSIING. « o vt eee et e e e e e e e 21
433 XMLSIING. . oo e 23
434 DOMImplementation.t 23
435 NOGE. . .ot 24
4.3.6 NOCELISt. . ..ot 26
4.3.7 DocumentFragment 27
4.3.8 DOCUMENL.o 27
439 NamedNodeMapt e 30
4310 Element 32
430 AU 34
4312 CharacterData.o 35
4308 TOXt ot 37
4314 COMMENEot 37
4.3.15 CDATASECHON .« ottt e e 37
4.3.16 DoCmentType.ot 37
4307 NOEHON . ..o 38
4318 ENtitY ..ot 38
4319 EntityReference 39
4.3.20 ProcessingInstructiono v vt 39
4.4 Extended DOM Valuetypedeclarations., 40
441 XMLParSer . ..o 40
442 XMLFACIOrY. . . oo 43
443 XMLSerializer ... 43
444 XMLINIt. ..o 43
445 XMLShULAOWN.o e 44
446 Fyweight Metadata 44
447 Element Declarations. 48
448 ContentModel 50

5 DOM Level 2mapping.o 53
5.1 DOM extended declarations., 53
5.1 1 BVENtS. . .o 53
5.1.2 Traversal. . ..o 58
5.1.3 RaANGE . . .o e 61
5.0 VIS . .ot 65

6 ApproachtoStaticMappingccoviiiiiian.. 67
6.1 Mapping Principles. 67
6.1.1 Mapping ConCaPtSo v et e 68

7 StaticMappingfromaDTD i 71

orbos/2000-08-10: XML Valuetype Mapping 21 Aug 2000

7.1 Mapping XML DTDStOIDLo e 71
7.1.1 DOCUMENE SCOPE . . oo e v et et e e e e e e 71
7.1.2 Document SpecificValuetype i 71
713 Element Valuetypes.o 72
7.1.4 Conditional SECHIONSot 73
7.15 Entitiesand References o i 73
716 NOTATION . ..o e e e 73

7.2 MappingElementContent 73
721 ChildElements. 73
7.22 #PCDATAElements 74
723 EMPTY Elementso e 74
7.24 ANY Elements. 74
725 “*7 - ZEIOOIMMOTE. . . .ottt e e e e e 74
7.26 “+7 -0NCOMMOME. . ..ottt e et 75
127 "7 - ZEIOOIN ONE. . .ottt et et e e 76
7.2.8) - SBUENCES. . . . vt i et 77
729 “|"-ChoiCELISISot 78
7.2.10 DuplicateElement Namest 79

7.3 Mapping Attributes. 80
7.3 CDAT A 80
7.3 2 D 81
733 IDREF ... 81
T34 IDREFS 82
7.3 ENTITY o e 83
736 ENTITIES .. o e e 83
7.3.7 NMTOKEN . .. e e e 83
738 NMTOKENS. e 84
739 #HREQUIRED 84
7310 #IMPLIEDo 84
7311 #FIXED ..o 85
7.3.12 ENUMENationSot 85
7.3.13 Default Attributes. 85

7.4 Parameter ENtities. 85

7.5 FaCtOriES . . o 86

7.6 Marshaling Framework 86
7.6.1 MappingExample 87

8 Compliance PoINtS 91

8.1 Mandatory CompliancePoints., 91

8.2 Optional Compliance Points.t e 91

O REfEIENCES i e 93

21 Aug 2000 orbos/2000-08-10: XML Vauetype Mapping
g

orbos/2000-08-10: XML Valuetype Mapping

21 Aug 2000

Preface 1

1.1 Cosubmitting Companies

The following companies are pleased to submit the DOM-based XML/Value Mapping,
hereafter called XMLDOM, in response to the ORBOS RFP - XML/Value Mapping:

® BEA Systems

® Cape Clear Software Ltd

® Hewlett-Packard Company

® International Business Machines Corporation
® |ONA Technologies PLC

® Oracle Corporation

® PeerLogic

® Persistence Software

® Rogue Wave

® Unisys Corporation

The following companies support this submission:

® Sun Microsystems

1.2 Introduction

XML has become an important and widespread standard for representing hierarchical
tagged data. So much so, that it has become a common requirement to pass XML
documents in CORBA interface operations. While it is possible to pass XML
documents as strings, it is cumbersome to do so, and it requires each recipient of the

XML to Valuetype Mapping 1-7

1-8

string to parse its XML content. A better way is to create a data structure representing
the XML document that can be traversed and manipulated in memory, and passed to a
remote context without further processing by the sender or the receiver.

To address this problem, this submission provides a mapping from XML documents to
IDL valuetype hierarchies, based on XML DTDs.

Note — This submission does not contain mappings to XML Schemas since XML
Schemas will not be finalized by the W3C for several months.

This submission provides two essential scenarios for using XML to create IDL
valuetypes. The first scenario, where dynamic information is present, leverages
existing standards to provide access to the full contents of an XML document in terms
of IDL valuetypes.

The second scenario builds upon the first where additional static information is present
from XML DTDs and (in the future) XML Schemas. The DTDs/ Schemas are
metadata used to generate Valuetypes that match the types of information expected to
be present in XML documents. The metadata from the DTDs/ Schemas and
Valuetypes may be imported into CORBA Interface Repositories and the Meta Object
Facility, providing wide metadata distribution through OMG standards.

The dynamic information scenario is the processing of an XML document when the
meaning of the XML elements found in the document is not defined. In this case, only
minimal information is known - what is in the XML document and little else. The
DOM is a standard representation for the complete contents of an XML document.
The DOM satisfies the requirement of the W3C XML Information Set (Infoset) to
provide an access mechanism to the document contents. By expressing the DOM in
terms of IDL valuetypes, a CORBA implementation has practical, standardized, and
direct access the full information in of the XML document.

1.2.1 Dynamic Information Scenario

The RFP requests "a standard way to represent XML values (documents) using OMG
IDL non-object (value) types." This response provides an XML to IDL mapping
leveraging the Document Object Model (DOM) technical recommendation from the
World Wide Web Consortium (W3C). The DOM is an extensively used standard
mechanism for defining access to XML content. The DOM includes a set of interfaces
defined in IDL with mappings to Java and C++.

The purpose here is to enable IDL users to access XML content using IDL valuetypes
while maintaining maximum DOM compatibility. To thisend, DOM level 1 and level
2 interfaces are re-declared as IDL valuetypes instead of the IDL interfaces in the
DOM standard.

The RFP does not request a mapping from IDL to XML. Mapping from IDL to XML
is already accomplished using the MOF and XM OMG standards.

XML to Valuetype Mapping

Dynamic information scenario

parse
XML | > DoMm
serialize

1.2.2 Satic Information Scenario

If more information is known about an XML document it is possible to provide
enhanced value and function from parsing an XML document. The additional
information, in the form of XML DTDs and (in the future) Schemas, explain the
meaning of the XML elements and enables a semantically richer operation. The DTDs
and Schemas are the metadata for XML documents, the data that describes the XML
document data. For clarity, we will consistently use the interchange of objects as
primary example, although non-object information could also be used.

In the Static information scenario, the XML document contains a set of objects that
have been serialized into that document, where the ultimate goal is to restore the
objects as instances of classes. The additional information that enables the static
scenario is some method for describing what the classes from which the objects were
originally instantiated. This additional information is typically expressed in DTDs and
(in the future) XML Schemas. If the DTDs or Schemas were generated from another
source, they do not contain complete information, and additional metadata facilities
such as the MOF provide further means of obtaining relevant metadata.

If the input document isin XMI format, restoring the original objects is
straightforward since the XM| specification ensures that all the information required is
conveniently present, with a consistent look-and-feel for all documents.

The Static information scenario uses the DTDs and (in the future) Schemas to generate
new concrete IDL Valuetypes that match the metadata in the DTDs and Schemas. The
valuetypes contain the same information as the XML elements that match the DTD and
Schema definitions. The generation of the Valuetypes is related to the DOM defined
valuetypes, so that an XML document is processed statically whenever static
valuetypes are present and dynamically when new XML elements are encountered.
This mixed-mode processing handles the especially common case where the XML
DTD and Schema evolves at a different pace than the software deployment cycle. The
flexibility to use both Dynamic and Static scenarios together in this mixed-mode
processing allows the best features of both approaches to be used together.

XML to Valuetype Mapping 1-9

1-10

Static and Dynamic Scenarios

parse
XML
serialize
DTD —*™
generate
Schema

DOM

Valuetypes

Interface
Repository

MOF

1.2.3 Metadata

There are two fundamental sources of information in XML: DTDs and XML

documents.

DTDs provide static information since they define XML elements for a class of XML

documents.

XML documents provide dynamic information:

® The document contents may be instances of DTD declarations.

® The document contents may be instances of new types not declared in aDTD.
® A document may not have aDTD. The DTD may not exist or be referenced.

® The DTD is updated while the deployed software remains at a previous level, so
information which could be available statically in a future software revision must be
treated dynamically in the mean time.

Dynamic information is available through XML Parsing into a DOM tree. Knowing
static information ahead of time supplements the dynamic information. If all the
dynamic information is also available in a previously known DTD, this is the static
scenario. If both static and dynamic information is used, this is the mixed scenario.

XML to Valuetype Mapping

When static information from a DTD is available, the metadata defining XML
documents can be extracted into IDL Valuetypes. The metadata in the valuetypes is
made widely available through the CORBA Interface Repository (IR) and the Meta
Object Facility (MOF).

The Corba Component Model describes the mappings from the valuetype declarations
in the IR to the MOF. This provides a pathway from valuetypes to MOF metamodels.

Mapping from XML documents, DTDs, and XML Schema to the MOF is covered by
the XMI production of XML Schemas RFP.

1.3 Submission Contacts

The following lists contact information for the submitters of this document. All
guestions concerning this submission should be directed to:

Stephen A. Brodsky, Ph.D.

International Business Machines Corporation
555 Bailey Ave., JBRA/F320

San Jose, CA 95141

Phone: +1 408 463 5659

Email: SBrodsky@us.ibm.com

Ed Cobb

BEA Systems

2315 North First St.,

San Jose, CA 95131

Tel: +1 408 570 8264
Email: ed.cobb@beasys.com

Sridhar lyengar

Unisys Corporation

25725 Jeronimo Rd.

Mission Viejo, CA 92691

Phone: +1 949 380 5692

Email: sridhar.iyengar2@unisys.com

Manfred Koethe

IONA Technologies, Inc.

200 West Street

Waltham, MA 02451

phone: +1 781 902 8000

fax: +1 781 902 8001

Email: Manfred.K oethe@iona.com

XML to Valuetype Mapping 1-11

Jeff Mischkinsky

Senior Software Architect
Persistence Software, Inc.
1720 S. Amphlett Blvd.

San Mateo, CA 04402
phone: +1 650 372 3604
fax: +1 650 341 8432
Email: jeff @persistence.com

Jishnu Mukerji
Hewlett-Packard EIAL,

300 Campus Drive, 2E-62,
Florham Park, NJ 07932, USA
Tel: +1 973 443 7528

Fax: +1 973 443 7422

Email: jis@fpk.hp.com

Nick Sharman

Peerlogic

Marlborough Court

Pickford Street

Macclesfield

Cheshire

SK11 6JD

United Kingdom

UK Tel: +44 (0) 161 333 4073
UK Fax: +44 (0) 161 333 4001
Email: nick.sharman@peerlogic.com

Patrick Thompson

Rogue Wave Software

815 NW 9th St

Corvallis, OR 97330

USA

phone: +1 541 754 3189

fax: +1 541 758 4761

Email: thompson@roguewave.com

Jim Trezzo

Oracle Corporation

500 Oracle Parkway

Box 659504

Redwood Shores, CA 94065
Tel: +1 650 506 8240

Email: jtrezzo@us.oracle.com

1-12 XML to Valuetype Mapping

1.4 Satusof thisdocument

This document is an update of the joint submission to the XML/Value RFP. Refer to
the OMG web site, http://www.omg.org for additional information and the status of the
adoption process.

This document has dependencies on DOM Level 2, which is under development at the
W3C as a condidate recommendation. The Finalization Task Force will incorporate
the final recommendations from the W3C for the DOM Level 2 specification. See
http://www.w3c.org for current status of DOM.

1.5 Guideto Submission

This proposal is presented in the following chapters:
1) Preface

Introduces the submission and provides the context for the technology within the OMG
architecture

2) Proof of Concept

Describes proof of concept efforts and results, in demonstration of the proposal's
technical viability.

3) Response to RFP requirements

Identifies the specific RFP requirements and this proposal's response to each
requirement.

4) DOM to Valuetype mapping

Describes how the DOM standard from the W3C is used to provide valuetypes for the
contents of XML documents.

5) DOM Level 2 mapping

Describes the extended DOM Level 2 interfaces.

6) Approach to Static Mapping

Describes how the DTDs are mapped to Valuetypes.
7) Static Mapping from a DTD

Details the DTDs to Valuetype mapping.

XML to Valuetype Mapping 1-13

8) Compliance Points
The compliance points for the submission.
9) References

References to existing and upcoming standards.

1-14 XML to Valuetype Mapping

Proof of Concept 2

2.1 Copyright Waiver

In the event that this specification is adopted by OMG, the cosubmitters grant to the
OMG, a non-exclusive, royalty-free, paid-up, worldwide license to copy and distribute
this specification document and to modify the document and distribute copies of the
modified version. For more detailed information, see the disclaimer on the inside of the
cover page of this submission.

2.2 Proof of Concept

The cosubmitters and supporters have extensive experience in the areas of metadata
repositories, modeling tools, CORBA and the related problems of interchange of
metadata across tools in distributed heterogeneous environments. Representative
portions of their experience are highlighted below:

® IBM has extensive experience in XML, XM, enterprise architectures, Java,
Enterprise Java Beans, CORBA, UML, MOF, IDL, and metadata. The WebSphere
and VisualAge product lines provide sophisticated analysis, design, deployment,
and execution functionality embodying all of the key representative technologies.
AlphaWorks.ibm.com has extensive free XML tools, including a widely used XML
parser.

® Unisys has implemented tools that forward and reverse engineer XML DTDs and
XML Documents from CORBA Interfaces/Value Types and vice versa. Thereverse
engineering of IDL interfacesinto XML is being used in applications that use XML
and XSLT to web enable legacy systems that are CORBA enabled.

XML to Valuetype Mapping 2-15

2-16 XML to Valuetype Mapping

Responseto RFP Requirements 3

This section discusses how this submission addresses the RFP's Mandatory and
Optional requirements.

3.1 Mandatory Requirements

® Proposals shall specify a canonical way to represent XML documents as user-
defined IDL, i.e. primitive types, constructed types, valuetypes, with the following
restrictions:

» Only values shall be used, i.e. no object types.

» Only concrete value types shall be used, i.e. no abstract valuetypes, in order to
ensure “ on the wire” marshaling and interoperability.

The IDL valuetypes defined herein can express all well-formed XML documents based
on the W3C DOM element declarations. Valuetypes are mapped directly from the
W3C DOM. Abstract valuetypes were not used.

® Both DTD and DTDless XML document types shall be supported.

The valuetypes defined herein handle documents specified with and without a DTD.

® Facilities to construct XMLvalues from an XML character-based source
(e.g.files,strings,streams,etc.) shall be specified.

The valuetypes defined herein handle documents specified with and without a DTD.

® Facilitiesto “ walk” an XMLvalue directly (without having to parse it) shall be
specified.
» E.g. look up based upon tag values.

The valuetypes defined herein include a full range of accessor functions. Navigation
of an XMLvalue constructed of nodes is possible. The NamedNodeltem facility has
name-based lookup.

XML to Valuetype Mapping 3-17

3.2 Optional Requirements

3.3

3-18

® Facilities to pattern match on XMLvalues may be specified.

The NamedNodeltem facility has name-based lookup. Otherwise, not adressed.

® Facilities to externalize XMLvalues into an XML character-based sink
(e.g.files,strings,streams,etc.) may be specified.

Addressed by the XML Serializer.

» Note that it is specifically a “ hon-goal” of this RFP to define a mapping from an
arbitrary collection of instances of IDL types to an XML document. |

This “non-goal” is respected.

| ssues to be discussed

® Submissions shall discuss the design choices that are made with respect to if, and
how, the DTD associated with an XML document is made available.

The DTD is is available through the MetaData facility

® Submissions shall discuss the relationship between their proposal and the XML
MetaData Interchange (XMI) specification.

XMI is the OMG standard for the interchange of objects. This submission is focused
on the exchange of data.

® Submissions shall discuss the relationship between their proposal and the ongoing
XML schema work occurring within the W3C.

This proposal provides a mapping based on XML DTDs. We are comfortable that the
approach taken in this mapping will apply to a W3C XML Schema based mapping.
Both mappings are equally important: DTDs because they are already in widespread
use; and W3C XML Schemas because they will be the standard in the future (the W3C
XML Schema specification is still in the working draft stage at the time of this
writing.)

XML to Valuetype Mapping

4.1

I ntroduction

DOM to Val uetype mapping 4

This section describes how the DOM IDL interfaces are mapped to IDL valuetypes. A
valuetype representation of the DOM provides information interoperability for both
local and remote processing of XML documents, since the DOM is also defined as IDL
interfaces for remote execution. Processing of XML documents through the XML
Parser produces a DOM valuetype tree. An implementation uses the XML Factory to
create specific Valuetypes that represent the XML document's contents.

Note — The DOM level 2 declarations are based on the current W3C DOM level 2
candidate recommendation. The declarations will need to be finalized when DOM
level 2 becomes a W3C recommendation.

4.2 DOM Mapping Convention

The mapping from the W3C DOM s designed to provide support for valuetypesin a
specification providing maximum flexibility for implementation. Valuetypes
corresponding to interfaces are declared, with attribute accessor functions and a
representation of state.

The convention for mapping the DOM interfaces to the submission is as follows

W3C DOM specification Submission declarations

interface Node

valuetype Node

attribute DOM String name attribute DOM String name

private DOM String s name

XMLDOM: DOM-based XML/Value Mapping 4-19

4.3 DOM Valuetype declarations

4-20

All the declarations in section 4.3 directly parallel the declarations from the DOM
specification. The complete documentation for DOM declarations is found in the
DOM specification found in the references chapter. This section documents the
additional valuetype expressions and mappings.

The declarations in the submission are described below. The declarations are part of
the XMLDOM module.
/1l File: value_domidl

#i f ndef _VALUE_DOM | DL_
#define _VALUE_DOM | DL_

#pragma prefix "don2. xm val ue. ong. or g"

nmodul e dom

{

/1 Declarations fromthis specification
}; /*! nodule dom */

#endif // _VALUE_DOM I DL_

4.3.1 DOMException

A DOMException wraps the value of one of the exception codes below to indicate a
DOM processing error. These codes do not indicate XML parsing errors.

XMLDOM: DOM-based XML/Value Mapping

/1 DOM Exception type

excepti on DOVException {
unsi gned short

}s

// DOM Level 1

/1

const
const
const
const
const
const
const
const
const
const

/1 Introduced i

11

const
const
const
const
const

4.3.2 DOMSiring

unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned

unsi gned
unsi gned
unsi gned
unsi gned
unsi gned

code;

Excepti on Codes

short
short
short
short
short
short
short
short
short
short

n DOM

short
short
short
short
short

| NDEX_SI ZE_ERR

DOVBTRI NG_SI ZE_ERR

HI ERARCHY_REQUEST ERR

WRONG DOCUMENT _ERR

| NVALI D_CHARACTER ERR
NO_DATA_ALLOWED ERR

NO_MODI FI CATI ON_ALLOWED ERR
NOT_FOUND_ERR
NOT_SUPPORTED_ERR

| NUSE_ATTRI BUTE_ERR

Level 2:

| NVALI D_STATE_ERR
SYNTAX_ERR

| NVALI D_MODI FI CATI ON_ERR
NAMESPACE_ERR

| NVALI D_ACCESS_ERR

e

11;
12;
13;
14,
15;

A DOMSt ri ng wraps DOM string data, providing encapsulation of implementation
and basic string accessibility functions. DOM Level 1 and 2 define DOM String as our
XMLString, however, this does not give us the opportunity to standardize a minimal
subset of operations which should be available on DOM Strings under CORBA in order
to guarantee a minimal level of interoperability.

XMLDOM: DOM-based XML/Value Mapping

4-21

4-22

/ Modified for XMLValues
valuetype DOMString

{
/I Attributes

attribute XMLString data;

Il State
private XMLString s_data;

I/l Operations
void appendData(
in DOMString source

);

void insertData(
in unsigned long pos,
in DOMString source

);

void deleteData(
in unsigned long pos,
in unsigned long count

);

DOMString substringData(
in unsigned long pos,
in unsigned long count

);
DOMString clone();

unsigned short at(
in unsigned long pos

);
unsigned long length();

short compare(
in DOMString other

);

boolean equals(
in DOMString other

);

}; ¥ valuetype DOMString */

XMLDOM: DOM-based XML/Value Mapping

4.3.3 XMLString

A XMLString is a sequence of 16-bit quantities with the UTF-16 encoding following
the same case sensitivity rules as in the DOM specification.

/I Introduced for XMLValues
typedef sequence<unsigned short> XMLString;

4.3.4 DOMImplementation

The DOM Implementation is for operations that are independent of a specific DOM
tree instance, including implementation specific information.

valuetype DOMImplementation

{

// DOM1 State
private sequence<DOMString> s_features;
private sequence<DOMString> s_versions;

// DOM1 Operations
1

boolean hasFeature(
in DOMString feature,
in DOMString version

);

// DOM2 Operations
1

DocumentType createDocumentType(
in DOMString qualifiedName,
in DOMString publicld,
in DOMString systemlid

raises(DOMException);
Document createDocument(
in DOMString namespaceURI,
in DOMString qualifiedName,

in DocumentType doctype

raises(DOMException);

XMLDOM: DOM-based XML/Value Mapping 4-23

4-24

4.3.5 Node

The DOM represents the contents of an XML document as a tree of Nodes. The
meaning of each declaration is identical to the DOM specification. The state
representation is optimized. The Document maintains the cache of metadata used to
look up the complete Node information, such as the Node name field.

The Node valuetype is the base class upon which the entire Document Object Model is
built. The Node provides methods for: location of the nodes parent node, iteration
through a nodes children, addition and removal of nodes, etc. All other XML types
represented in the DOM inherit these common services. Not all nodes, however may
contain child nodes, and different Node types may only allow insertion of a subset of
the full set of Node types.

Node, Element and Attribute valuetypes in this submission minimize the storage of
state of Node, Element and Attribute names by storing the names in the reference
counted Flyweight in the Document node.

XMLDOM: DOM-based XML/Value Mapping

valuetype Node

{

/I XML Node Types

const unsigned short ELEMENT_NODE =1;

const unsigned short ATTRIBUTE_NODE =2;

const unsigned short TEXT_NODE =3;

const unsigned short CDATA_SECTION_NODE =4;
const unsigned short ENTITY_REFERENCE_NODE =5;
const unsigned short ENTITY_NODE = 6;

const unsigned short PROCESSING_INSTRUCTION_NODE = 7;
const unsigned short COMMENT_NODE =8;

const unsigned short DOCUMENT_NODE =9;

const unsigned short DOCUMENT_TYPE_NODE =10;
const unsigned short DOCUMENT_FRAGMENT_NODE =11,
const unsigned short NOTATION_NODE =12;

// DOM1 Attributes
readonly attribute DOMString nodeName,;
attribute DOMString nodeValue;

/I raises(DOMException) on setting

/I raises(DOMException) on retrieval

readonly attribute unsigned short nodeType;
/I NOTE: nodetype computable via repository id

readonly attribute Node parentNode;
readonly attribute NodeList childNodes;
readonly attribute Node firstChild;

readonly attribute Node lastChild;

readonly attribute Node previousSibling;
readonly attribute Node nextSibling;
readonly attribute NamedNodeMap attributes;
readonly attribute Document ownerDocument;

// DOM2 Attributes
readonly attribute DOMString namespaceURI,
attribute DOMString prefix;
/I raises(DOMException) on setting
readonly attribute DOMString localName;

// DOM1 State

private StringKeyType s_nodeName_key;
private DOMString s_nodeValue;

private Node s_parentNode;

private NodeList s_childNodes;

private NamedNodeMap s_attributes;
private Document s_ownerDocument;

/[DOM2 State

private DOMString s_namespaceURI;
private DOMString s_prefix;

XMLDOM: DOM-based XML/Value Mapping 4-25

private DOMString s_localName;

// DOM1 Operations
1

Node insertBefore(
in Node newChild,
in Node refChild

raises(DOMException);

Node replaceChild(
in Node newChild,
in Node oldChild

raises(DOMException);

Node removeChild(
in Node oldChild

)
raises(DOMException);

Node appendChild(
in Node newChild

)
raises(DOMException);

boolean hasChildNodes();

Node cloneNode(
in boolean deep

);

// DOM2 Operations
1

void normalize();
boolean _supports(

in DOMString feature,
in DOMString version

);

}; *! valuetype Node */

4.3.6 NodeList

The NodelList valuetype provides the abstraction of an ordered collection of nodes.
The meaning of each declaration is found in the DOM specification.

4-26 XMLDOM: DOM-based XML/Value Mapping

valuetype NodelList

{
/l DOM1 Attributes

readonly attribute unsigned long length;

// DOM1 State
private sequence<Node> s_nodes;

// DOM1 Operations
1

Node item(
in unsigned long index

);
b

4.3.7 DocumentFragment

DocumentFragment is a "lightweight" or "minimal" Document object.
valuetype DocumentFragment : Node

{

/l Empty

|3

4.3.8 Document

The Document valuetype represents the entire document. The document also contains
the optimization and metadata references. The Factory controls the actual
optimizations used.

The Document valuetype represents the 'top level' interface for manipulating parsed
XML documents. A Document must contain one root element in order to be well-
formed. The Document also contains factory methods for creating most of the other
Node types available in the DOM. Each created Node is owned by the Document
instance which created it.

The Document node caches Element, Node and Attribute Name state in a reference
counted state member in this submission. Where the DOM is being used in the static
mapping, however, this Metadata is not stored. Alternatively a means to retrieve the
metadata if necessary is provided. Whether or not a document contains metadata or a
callback object can be determined through a state variable.

There are two main reasons for optimizing data storage in CORBA based XML
documents:

» Transport size is reduced overall.

* In the case of static mapped document types inheriting from the DOM base, the
metadata is never used (cf: XML DTD mapping) and the callback not invoked.

XMLDOM: DOM-based XML/Value Mapping 4-27

valuetype Document : Node

{

// DOM1 Attributes

readonly attribute DocumentType doctype;

readonly attribute DOMImplementation implementation;
readonly attribute Element documentElement;

/I Introduced XMLValue Attributes
readonly attribute DocumentOptimizationType xv_docOptimizationType;
readonly attribute DocumentMetadata DocMetadata,;

// DOML1 State

private DocumentType s_doctype;

private DOMImplementation s_implementation;
private Element s_documentElement;

/I Introduced XMLValue State
private DocumentOptimizationType docOptimizationType;

/l Document Metadata
private MetadataSwitch s_docMetadata;

// DOM1 operations
1

Element createElement(
in DOMString tagName

)
raises(DOMException);

DocumentFragment createDocumentFragment();

Text createTextNode(
in DOMString data

);

Comment createComment(
in DOMString data

);

CDATASection createCDATASection(
in DOMString data

)
raises(DOMException);

Processinglnstruction createProcessinginstruction(
in DOMString target,
in DOMString data

)
raises(DOMException);

4-28 XMLDOM: DOM-based XML/Value Mapping

Attr createAttribute(
in DOMString name

)
raises(DOMException);

EntityReference createEntityReference(
in DOMString name

)
raises(DOMException);

NodelList getElementsByTagName(
in DOMString tagname

);

// DOM2 operations
1

Node importNode(
in Node importedNode,
in boolean deep

)
raises(DOMException);

Element createElementNS(
in DOMString namespaceURI,
in DOMString qualifiedName

raises(DOMException);

Attr createAttributeNS(
in DOMString namespaceURI,
in DOMString qualifiedName

)
raises(DOMException);

NodelList getElementsByTagNameNS(
in DOMString namespaceURI,
in DOMString localName

);

Element getElementByld(
in DOMString elementld

);

}; I*! valuetype Document */

XMLDOM: DOM-based XML/Value Mapping 4-29

4.3.9 NamedNodeMap

Objects implementing the NamedN odeM ap valuetype are used to represent collections
of nodes that can be accessed by name.

4-30 XMLDOM: DOM-based XML/Value Mapping

valuetype NamedNodeMap

{
/l DOM1 Attributes

readonly attribute unsigned long

// DOM1 State
private sequence<Node> s_nodes;

// DOM1 Operations

1

Node getNamedltem(
in DOMString name

);

Node setNamedltem(
in Node arg

)
raises(DOMException);

Node removeNamedItem(
in DOMString name

)
raises(DOMException);

Node item(
in unsigned long index

);

// DOM2 Operations
1

Node getNamedltemNS(
in DOMString namespaceURI,
in DOMString localName

);

Node setNamedltemNS(
in Node arg

)
raises(DOMException);

Node removeNamedIltemNS(
in DOMString namespaceURI,
in DOMString localName

raises(DOMException);

XMLDOM: DOM-based XML/Value Mapping

4-31

4.3.10 Element

Elements correspond to XML elements.

4-32 XMLDOM: DOM-based XML/Value Mapping

valuetype Element : Node

{
/l DOM1 Attributes

readonly attribute DOMString

/[DOM1 State

private StringKeyType s_tagName_key;

// DOM1 Operations
1

DOMString getAttribute(
in DOMString name

);

void setAttribute(
in DOMString name,
in DOMString value

)
raises(DOMException);

void removeAttribute(
in DOMString name

)
raises(DOMException);

Attr getAttributeNode(
in DOMString name

);

Attr setAttributeNode(
in Attr newAttr

)
raises(DOMException);

Attr removeAttributeNode(
in Attr oldAttr

)
raises(DOMException);

NodelList getElementsByTagName(

in DOMString name
);

// DOM2 Operations
1

DOMString getAttributeNS(

in DOMString namespaceURI,
in DOMString localName

XMLDOM: DOM-based XML/Value Mapping

4-33

void setAttributeNS(
in DOMString namespaceURI,
in DOMString qualifiedName,
in DOMString value

raises(DOMException);

void removeAttributeNS(
in DOMString namespaceURI,
in DOMString localName

raises(DOMException);

Attr getAttributeNodeNS(
in DOMString namespaceURI,
in DOMString localName

);

Attr setAttributeNodeNS(
in Attr newAttr

)
raises(DOMException);

NodelList getElementsByTagNameNS(
in DOMString namespaceURI,
in DOMString localName

);

boolean hasAttribute(
in DOMString name

);
boolean hasAttributeNS(

in DOMString namespaceURI,
in DOMString localName

);

}; *! valuetype Element */

4.3.11 Attr

Attrs correspond to attributes of XML elements.

4-34 XMLDOM: DOM-based XML/Value Mapping

valuetype Attr : Node

{
/l DOM1 Attributes

readonly attribute DOMString

readonly attribute boolean specified;

attribute DOMString value;

/I raises(DOMException) on setting
readonly attribute Element ownerElement;

/[DOM1 State

private StringKeyType s_name_key;

private boolean s_specified;
private DOMString s_value;

/[DOM2 State

private Element s_ownerElement;

b

4.3.12 CharacterData

The CharacterData valuetype extends Node with a set of attributes and methods for

accessing character data in the DOM.

XMLDOM: DOM-based XML/Value Mapping

4-35

valuetype CharacterData : Node

{
/l DOM1 Attributes

attribute DOMString data;
/I raises(DOMException) on setting
/I raises(DOMException) on retrieval
readonly attribute unsigned long length;

// DOML1 State
private DOMString s_data;

// DOM1 Operations
1

DOMString substringData(
in unsigned long offset,
in unsigned long count

raises(DOMException);

void appendData(
in DOMString arg

)
raises(DOMException);
void insertData(
in unsigned long offset,
in DOMString arg
raises(DOMException);
void deleteData(
in unsigned long offset,
in unsigned long count
raises(DOMException);
void replaceData(
in unsigned long offset,
in unsigned long count,
in DOMString arg
raises(DOMException);

}; I*! valuetype CharacterData */

4-36 XMLDOM: DOM-based XML/Value Mapping

4.3.13 Text

Text corresponds to content of XML elements and attributes.

valuetype Text : CharacterData

{
// DOM1 Operations

1

Text splitText(
in unsigned long offset

)
raises(DOMException);

b

4.3.14 Comment

The Comment represents the contents of XML comment elements.

valuetype Comment : CharacterData

{
/l Empty

b

4.3.15 CDATASection

CDATA sections represent escape blocks of characters that may otherwise appear as
XML markup.

valuetype CDATASection : Text

{
/l Empty

b

4.3.16 DocmentType

Each Document has a doctype attribute whose value is either null or a DocumentType
object.

XMLDOM: DOM-based XML/Value Mapping 4-37

valuetype DocumentType : Node

{
/l DOM1 Attributes

readonly attribute DOMString name;
readonly attribute NamedNodeMap entities;
readonly attribute NamedNodeMap notations;

// DOM2 Attributes

readonly attribute DOMString publicld;
readonly attribute DOMString systemid;
readonly attribute DOMString internalSubset;

// DOML1 State

private DOMString s_name,;

private NamedNodeMap s_entities;
private NamedNodeMap s_notations;

// DOM2 State

private DOMString s_publicld;
private DOMString s_systemld;
private DOMString s_internalSubset;

b

4.3.17 Notation

Notation represents a notation declaration from a DTD.

valuetype Notation : Node

{
/I Attributes

readonly attribute DOMString publicld;
readonly attribute DOMString systemld;

/] State

private DOMString s_publicld;
private DOMString s_systemld;

b

4.3.18 Entity

Entity represents the use of an XML entity, as opposed to the definition.

4-38 XMLDOM: DOM-based XML/Value Mapping

valuetype Entity : Node

{
/I Attributes

readonly attribute DOMString publicld;
readonly attribute DOMString systemld;
readonly attribute DOMString notationName;

Il State

private DOMString s_publicld;
private DOMString s_systemld;
private DOMString s_notationName,;

b

4.3.19 EntityReference

A reference to an Entity for use during Entity substitution.

valuetype EntityReference : Node

{
/l Empty

b

4.3.20 Processinglnstruction

Processing Instructions are processor-specific information defined in XML.

XMLDOM: DOM-based XML/Value Mapping 4-39

valuetype Processinglnstruction : Node

{

Il Attributes
readonly attribute DOMString target;
attribute DOMString data;

I/l raises(DOMException) on setting

Il State
private DOMString s_target;
private DOMString s_data;

}; I*! valuetype Processinglinstruction */

4.4 Extended DOM Valuetype declarations

This section describes the functions that are extensions beyond the DOM specification.
The functions are interfaces for the XML Parser and XML Serializer that parse and
write an XML document to/from Valuetypes. The XML Factory determines exactly
which Valuetypes are created when parsing a document, and selects between the
dynamic and static mapping case by the implementation of the factory. The Init and
Shutdown interfaces are hooks for implementations to handle implementation-specific
issues such as resource allocation. The flyweight metadata describes the mechanism
for handling metadata efficiently for both the dynamic and static cases.

441 XMLParser

XMLParser represents an XML parser that converts an XML stream into a document.
In the first form, the parse() operation will return anew DOM tree using DOM nodes.
In the second form, the parse() operation will call the XM LFactory to create each node
in the DOM tree.

This declaration is an extension to the DOM.

4-40 XMLDOM: DOM-based XML/Value Mapping

local interface XMLParser {
Document parse(in DOMString XML Stream)
raises(XMLException);
Document parse(in DOMString XMLStream,
in XMLFactory selectedFactory)
raises(XMLException);

The XML Exception codes indicate error codes that may occur during the parsing of a
document. An implementation may produce a subset of these codes. Codes above
1000 are considered implementation-specific errors.

XMLDOM: DOM-based XML/Value Mapping 4-41

4-42

/I XML Exceptions
exception XMLException {
unsigned short code;

b

/I XML Exception Codes

const short NO_ERROR =0,

const short ALREADY_EXISTS =2,

const short ENCODING_ERROR =3,

const short CONTENT_MODEL_ERROR =4,
const short INDEX_ BOUNDS_ERROR =5,

const short NODE_UNEXPECTED_ERROR =6,
const short INVALID_DECLARATION =7,

const short ATTR_LIST_ERROR =8,

const short UNSUPPORTED_ENCODING =9,
const short MISSING_XML_DECLARATION =10,
const short MARKUP_SYNTAX_ERROR =11,
const short INVALID_DOCUMENT_STRUCTURE =12,
const short UNSUPPORTED_XML_PARSER =13,

const short INVALID_CHARACTER =14,
const short UNEXPECTED_NAME =15,
const short UNEXPECTED_VALUE =16,
const short INVALID_AFTER_CONTENT =17,
const short EXPECTED_WHITESPACE =18,
const short NOT_LEGAL_HERE =19,
const short ENTITY_NOT_FOUND =20,

const short ENTITY_RECURSION_ERROR =21,
const short EXPECTED_CONTENT_MODEL =22,
const short EXPECTED_OPEN_PAREN =23,

const short EXPECTED_CLOSE_PAREN =24,
const short UNEXPECTED_CLOSE_PAREN = 25,
const short EXPECTED_OCCURANCE_CHARACTER
const short EXPECTED_SEPARATOR =27,
const short UNBALANCED_TAGS_IN_MARKUP =28,
const short ILLEGAL_REFERENCE_ERROR = 29,
const short UNEXPECTED_END_OF_ELEMENT = 30,

const short EXPECTED_SQUARE_OPEN =31,
const short UNEXPETED_SQUARE_OPEN = 32,
const short EXPECTED_SQUARE_CLOSE = 33,

const short INVALID_XML_DECLARATION =34,
const short AMBIGUOUS CONTENT_MODEL =35,

const short NESTED_CDATA = 36,
const short INVALID_PI =37,

const short SYSTEM_EXCEPTION =38,
const short UNEXPECTED_EOF =39

b

XMLDOM: DOM-based XML/Value Mapping

26,

4.4.2 XMLFactory

The XMLFactory is a design pattern for producing concrete IDL subtypes of the DOM
types. When a document is prepared for parsing, an implementation may select a
specific factory to instantiate specific Node subtypes based on criteria such as the kind
of DTD. For example, given an XML document and a Car DTD, a Factory may be
selected that would return a Car valuetype when an element named "Car" is found in
the document. If there is no user-defined type, the factory should return one of the
DOM types.

The Factory can control the optimization style by returning a new Document with the
desired optimization options set.

This declaration is an extension to the DOM.

/I XML Node Factory
local interface XMLFactory {
Node createType(in DOMString type);

X

4.4.3 XMLSerializer

XML Serializer represents an XML serializer that converts a Document tree of Nodes
to an XML stream. This function is the reverse of the XML Parser.

This declaration is an extension to the DOM.

local interface XML Serializer {
DOMString serialize(in Document theDocument);

b

4.4.4 XMLInit

This function is called to initialize XML processing. It should be called before other
operations defined in this specification to allow implementations to perform
initialization. Implementations may use this call to allocate resources.

XMLDOM: DOM-based XML/Value Mapping 4-43

4-44

local interface XMLInit{
static void init();

b

4.45 XMLShutdown

Thisinterface is used to terminate XML valuetype processing. It should be called after
all other operations are called. Implementations may use this call to deallocate
resources.

This declaration is an extension to the DOM.

local interface XMLShutdown{
static void shutdown();

b

4.4.6 Flyweight Metadata

The metadata for the document structure is kept in optimized data structures for
reducing transmission and memory requirements. The strings for element and attribute
names are managed using the flyweight design pattern. Nodes contain keys
corresponding to the full string names maintained in the metadata so that only the keys
need be present in the document nodes. |f metadata is needed, it may be obtained via
the MetadataCallback interface. An implementation may have the flyweight pattern
enabled or disabled.

This submission optimizes state stored in parsed XML Document heirarchies by
storing Element, Attribute and Node names in reference counted Flyweights. This
reduces the transport overhead when sending DOM based XML document between
DOM based XMLV alue systems. In the case of the static mapping, rather than storing
this metadata, which can be hardcoded in the static mapped documents, a query object
which returns document metadata is provided as an alternative (through utilizing a
union switching on a boolean) to switch in the metadata or the metadatacallback
object.

In this way transport optimizations can be further improved in the static mapping,and
systems sending XML documents exclusively to static systems can store data using
mapped CORBA types. This increases both the transport and processing efficiency of
the static mappings whilst preserving interoperability with DOM based systems
through the provision of the metadata callback object.

The metadata for the document structure is stored in optimized data structures in order
to a) reduce transmission and memory requirements, b) enable static mappings to
disable components of the metadata in favour of caching metadata knowledge at

XMLDOM: DOM-based XML/Value Mapping

4

compile time, c¢) reducing runtime overhead, and d) allowing validation or exposing
methods preservant of content model semantics manipulating underlying DOM data
structures.

The DOM Strings for element/attribute names and values are managed using the
flyweight design pattern. Nodes contain keys corresponding to the full string names
maintained in the metadata so that only the keys need be present in the document
nodes. For example, for all element nodes named ‘foobar' each node instance contains
a copy of the key. The element/attribute names and attribute values are stored
efficiently in the flyweight reducing the amount of duplicated information stored (and
hence transmitted) in the node instances.

The flyweight also provides a callback facility, allowing metadata to be retrieved by
valuetypes that utilize caching, where the orginating system has the flyweight disabled.
Usage of the callback facility is transparent to endpoint developers and designed for
use by XML/Valuetype implementations.

In the case of static mappings, rather than storing all metadata, typically metadata
should be hardcoded at compile-time. When a static mapped document is received by a
DOM based XML/Vauetype system, however, a mechanism to retrieve the metadata
must be provided. The callback query object provides this functionality through
utilizing a boolean discriminated union metadata switch. Effectively, an
XML/Valuetype instance contains either @) no metadata or b) a means by which to
retrieve metadata if required. This mechanism further reduces communication by
sending metadata only when necessary.

The flyweight metadata store and metadata callback query objects increase both the
transport and processing efficiency of XML/valuetypes whilst preserving full
interoperability between dynamic DOM based and static document preservant
XML/Valuetype systems.

This feature is a CORBA-specific optimization introduced for the efficient transport
and processing of XML documents in distributed environments. The facilities provided
by the solution are designed for utilization by XML/V aluetypes implementations, and
places no restrictions or variation on document processing, manipulation or transport
onto XML/Vauetype developers.

This declaration is an extension to the DOM.

XMLDOM: DOM-based XML/Value Mapping 4-45

/I Introduced for XMLValues
exception KeyNotExist {};
exception NonZeroReferenceCount {};
exception FlyweightDisabled {};

/I Introduced for XMLValues - for efficient storage
/I Element/Attribute string names. First 1000 key
/I names are reserved and can only be assigned by
/I the OMG for identifying 'anonymous' nodes such as
/l #cdata-section, #comment etc...
1
typedef
union SKT switch(boolean)
{
case TRUE: unsigned long key;
case FALSE: DOMString name,;
} StringKeyType;

valuetype StringFlyweight
{
/l Declarations
typedef
struct SRT
{
DOMString data;
unsigned long ref_count;
StringKeyType key;
} StringRegistryType;

union optimized_registry switch(boolean)
{
case TRUE: sequence<StringRegistryType> registry;

b

Il State
private optimized_registry store;

/I Operations

unsigned long get_key_by name(
in DOMString query

) raises(FlyweightDisabled);

DOMString get_string_by_key(
in unsigned long key
) raises(FlyweightDisabled);

DOMString get_builtin_name_by_nodeType(
in unsigned short type

)
raises(KeyNotExist);

4-46 XMLDOM: DOM-based XML/Value Mapping

unsigned long register(
in DOMString candidate
) raises(FlyweightDisabled);

DOMString unregister(
in unsigned long key,
in boolean force

)

raises(NonZeroReferenceCount,FlyweightDisabled);
|3

/I Introduced in DOM2
typedef unsigned long long DOMTimeStamp;

/I Introduced for XMLValues

enum DocumentOptimizationType
{

FLYWEIGHT_ENABLED,
FLYWEIGHT_DISABLED

b

struct DocumentMetadata

{

StringFlyweight element_name_map;
StringFlyweight attr_name_map;
StringFlyweight node_name_map;

b

struct MetadataProxyDetails

{

MetadataCallback metadata_query_object;
DOMString docld;

b

union MetadataSwitch switch(boolean)

{

case TRUE: DocumentMetadata docMetadata;
case FALSE: MetadataProxyDetails docProxyinfo;

b

interface MetadataCallback

{

DocumentMetadata get_metadata(
in DOMString document_id
);
|3

XMLDOM: DOM-based XML/Value Mapping 4-47

4.4.7 Element Declarations:

Arbitrary Element declarations are supported by the following IDL constructs.

4-48 XMLDOM: DOM-based XML/Value Mapping

1
/I Element Content
1

/ Element Types

1

enum ElementType
{

EMPTY,

PCDATA,

ANY

b

/I Occurences of Any, Choice or Sequence Elements
/[l may occur multiply

1

enum ElementOccurenceType

{

SIMPLE, // One ie: Empty / PCDATA
ZERO_OR_ONE,

ZERO_OR_MANY,

ONE_OR_MANY

b

/l Element Content Descriptor

struct ElementDeclaration

{

DOMString name,;

ElementType type;
sequence<ElementDeclaration> children;
/l Length == 0 for SIMPLE

/l Length <=1 for ZERO_OR_ONE

/l Length >=0 for ZERO_OR_MANY

/l Length >=1 for ONE_OR_MANY

/I ...determined by occurences
ElementOccuranceType occurences;
sequence<AttrDeclaration> attributes;
unsigned long duplicates; // Handles duplicate Element instances

b

1
/I Content Model Representation
1

enum DeclarationType

{
ELEMENTDECL,

NOTATIONDECL,

XMLDOM: DOM-based XML/Value Mapping 4-49

PARAMENTITYDECL,
ATTRDECL
I etc..

|3
typedef unsigned long Declarationindex;

struct DeclarationinstanceType

{
DeclarationType decltype;

DeclarationIndex index;

b

4.4.8 Content Model

The ContentModel struct represents the DTD tree which defines structure of an XML
document. Currently, only Element and Attribute Declarations are supported.

4-50 XMLDOM: DOM-based XML/Value Mapping

typedef sequence <DeclarationinstanceType> ContentModelindex;

struct ContentModelBase

{

ElementDeclaration rootElement;
I etc..

b

struct ContentModel

{

ContentModelBase internal_subset;
ContentModelBase external_subset;

b

1
/ Node Types supporting arbitrary Content Models
1

/l Forward Declarations
valuetype ElementBase;

// IDElementMap - maps id's to idrefs as per roguewave 4.1.6
struct IDtoElement

{
DOMString id;
ElementBase element_instance;

b

valuetype IDElementMap

{
/] State

private sequence<IDtoElement> map;
/I Operations
ElementBase getElement(in string id);

void setElement(in string id, in ElementBase element_instance);

b

// Base for Content Model Enhanced Attributes
valuetype AttrBase : truncatable DOM_Value::Attr

{
/] State

private AttrType attr_type;
private DeclarationinstanceType decl_instance;
/I Operations

AttrType getAttributeType();

XMLDOM: DOM-based XML/Value Mapping 4-51

boolean maylnsertAttribute(in AttrBase candidate);
boolean isValid();

AttrDeclaration getAttributeDeclaration();

b

// Base for Content Model Enhanced Elements
valuetype ElementBase : truncatable DOM_Value::Element

{
/] State

private ElementType element_type;

private DeclarationinstanceType decl_instance;

/I Operations

ElementType getElementType();

boolean maylinsertElement(in ElementBase candidate);
boolean maylnsertAttribute(in AttrBase candidate);

boolean isValid();

ElementDeclaration getElementDeclaration();

b

// Base for Content Model Enhanced Documents
valuetype DocumentBase : truncatable DOM_Value::Document

{
/] State

private IDElementMap id_element_map;
private ContentModellndex doc_index;
private ContentModelBase internal_subset;
/I Operations

IDElementMap getIDElementMap();
ContentModel getContentModel();
ContentModellndex getContentModelindex();

boolean validate();

b

4-52 XMLDOM: DOM-based XML/Value Mapping

DOM Level 2 mapping)

5.1 DOM extended declarations

Note — This chapter is based on the current draft of the W3C DOM level 2. Updates
will be made when the final DOM Level 2 specification is completed.

The DOM Level 2 consists of both the core declarations in Chapter 4 and the Chapter
5 optional declarations for processing additional XML-style information sources. The
following mappings are for Events, Traversal, Range, and Views. The other optional
components HTML (HyperText Markup Language), StyleSheets, and CSS (Cascading
Style Sheets) are not mapped.

5.1.1 Events

The DOM Level 2 Event Model is a generic event system which allows registration of
event handlers, describes event flow through a tree structure, and provides basic
contextual information for each event.

XML to Valuetype Mapping 5-53

/I File: value_events.idl

#ifndef VALUE_EVENTS_
#define VALUE_EVENTS_

#include "value_dom.idl"
#include "value_views.idl"

#pragma prefix "dom2.xmlvalue.omg.org"

/I The Events module was introduced in DOM Level 2
/[as an optional module
module events

{

/I Conveniance Declarations
typedef dom::DOMString DOMString;
typedef dom::Node Node;

valuetype EventListener;
valuetype Event;

exception EventException

{
b

unsigned short code;

/ EventExceptionCode
const unsigned short UNSPECIFIED_EVENT_TYPE_ERR = 0;

valuetype EventTarget

void addEventListener(

in DOMString type,
in EventListener listener,
in boolean useCapture

void removeEventListener(
in DOMString type,
in EventListener listener,
in boolean useCapture

);

boolean dispatchEvent(
in Event evt

5-54 XML to Valuetype Mapping

raises(EventException);

b

valuetype EventListener
{

void handleEvent(

in Event evt

);
b

valuetype Event

{
/l PhaseType
const unsigned short CAPTURING_PHASE = 1;
const unsigned short AT_TARGET =2;
const unsigned short BUBBLING_PHASE = 3;

Il State
private DOMString type;
private EventTarget target;

private Node currentNode;
private unsigned short eventPhase;
private boolean bubbles;
private boolean cancelable;

/I Operations
DOMString getType();

EventTarget getTarget();

Node getCurrentNode();
unsigned short getEventPhase();
boolean getBubbles();

boolean getCancelable();

void stopPropagation();

void preventDefault();

void initEvent(

in DOMString eventTypeArg,

in boolean canBubbleArg,
in boolean cancelableArg

);
b

valuetype DocumentEvent

{

XML to Valuetype Mapping 5-55

Event createEvent(
in DOMString eventType

)
b

raises(dom::DOMException);

valuetype UlEvent : Event

{

Il State

private views::AbstractView view;
private long detail;

/I Operations
views::AbstractView getView();

long getDetail();

void initUIEvent(
in DOMString typeArg,
in boolean canBubbleArg,
in boolean cancelableArg,
in views::AbstractView viewArg,
in long detailArg
);
|3

valuetype MouseEvent : UIEvent
{

Il State

private long screenX;

private long screenY;

private long clientX;

private long clientY;

private boolean ctriKey;
private boolean shiftKey;
private boolean altKey;
private boolean metaKey;
private unsigned short button;
private Node relatedNode;

/I Operations
long getScreenX();

long getScreenY();
long getClientX();
long getClientY();

boolean getCtriKey();

5-56 XML to Valuetype Mapping

boolean getShiftKey();
boolean getAltKey();
boolean getMetaKey();
unsigned short getButton();
Node getRelatedNode();
void initMouseEvent(

in DOMString typeArg,

in boolean canBubbleArg,
in boolean cancelableArg,

in views::AbstractView viewArg,
in unsigned short detailArg,

in long screenXArg,

in long screenYArg,

in long clientXArg,

in long clientYArg,

in boolean ctrlKeyArg,
in boolean altKeyArg,

in boolean shiftKeyArg,
in boolean metaKeyArg,

in unsigned short buttonArg,

in Node relatedNodeArg
);
|3

valuetype MutationEvent : Event

{
/] State

private Node relatedNode;

private DOMString prevValue;
private DOMString newValue;
private DOMString attrName;

/I Operations
Node getRelatedNode();

DOMString getPrevValue();
DOMString getNewValue();
DOMString getAttrName();
void initMutationEvent(
in DOMString typeArg,

in boolean canBubbleArg,
in boolean cancelableArg,

XML to Valuetype Mapping

5-57

in Node relatedNodeArg,

in DOMString prevValueArg,
in DOMString newValueArg,
in DOMString attrNameArg

}; ' module events */

#endif // _VALUE_EVENTS_
}

5.1.2 Traversal

The optional TreeWalker, Nodelterator, and Filter interfaces for traversing DOM Node
trees are described.

5-58 XML to Valuetype Mapping

/I File: value_traversal.idl

#ifndef VALUE_TRAVERSAL _
#define VALUE_TRAVERSAL _

#include "value_dom.idl"

#pragma prefix "dom2.xmlvalue.omg.org"

/I The traversal module was Introduced in DOM Level 2
/[as an optional module

module traversal

{

/I Conveniance Declarations
typedef dom::Node Node;

interface NodeFilter;

valuetype Nodelterator

{
/| State

private long whatToShow;
private NodeFilter filter;
private boolean expandEntityReferences;

/I Operations
long getWhatToShow();

NodeFilter getFilter();
boolean getExpandEntityReferences();

Node nextNode()
raises(dom::DOMException);

Node previousNode()
raises(dom::DOMException);

void detach();
|3

valuetype NodeFilter

{

/I Constants returned by acceptNode
const short FILTER_ACCEPT =1;

XML to Valuetype Mapping 5-59

const short FILTER_REJECT =2;
const short FILTER_SKIP =3;

/I Constants for whatToShow

const unsigned long SHOW_ALL = Ox0000FFFF;

const unsigned long SHOW_ELEMENT = 0x00000001;

const unsigned long SHOW_ATTRIBUTE = 0x00000002;

const unsigned long SHOW_TEXT = 0x00000004;

const unsigned long SHOW_CDATA_SECTION = 0x00000008;

const unsigned long SHOW_ENTITY_REFERENCE = 0x00000010;

const unsigned long SHOW_ENTITY = 0x00000020;

const unsigned long SHOW_PROCESSING_INSTRUCTION =
0x00000040;

const unsigned long SHOW_COMMENT = 0x00000080;

const unsigned long SHOW_DOCUMENT = 0x00000100;

const unsigned long SHOW_DOCUMENT_TYPE = 0x00000200;

const unsigned long SHOW_DOCUMENT_FRAGMENT = 0x00000400;

const unsigned long SHOW_NOTATION = 0x00000800;

/I Operations
short acceptNode(
in Node n

);
b

valuetype TreeWalker

{
/] State

private long whatToShow;

private NodeFilter filter;

private boolean expandEntityReferences;
private Node currentNode;

/I Operations
long getWhatToShow();

NodeFilter getFilter();
boolean getExpandEntityReferences();
Node getCurrentNode();

void setCurrentNode(
in Node currentNode

raises(dom::DOMException);
Node parentNode();

Node firstChild();

5-60 XML to Valuetype Mapping

Node lastChild();

Node previousSibling();
Node nextSibling();
Node previousNode();

Node nextNode();

|3
valuetype DocumentTraversal
{
Nodelterator createNodelterator(
in Node root,
in long whatToShow,
in NodeFilter filter,
in boolean entityReferenceExpansion
);

TreeWalker createTreeWalker(
in Node root,
in long whatToShow,
in NodeFilter filter,
in boolean entityReferenceExpansion

)
b

raises(dom::DOMException);

}; ' module traversal */

#endif //_VALUE_TRAVERSAL _

5.1.3 Range

A Range identifies a range of content in a Document, DocumentFragment or Attr. It is
contiguous in the sense that it can be characterized as selecting all of the content
between a pair of boundary-points.

XML to Valuetype Mapping 5-61

/I File: value_range.idl

#ifndef VALUE_RANGE_
#define _VALUE_RANGE_

#include "value_dom.idl"

#pragma prefix "dom2.xmlvalue.omg.org"

/I Range module introduced in DOM Level 2 as
/I an optional module

module ranges

{

/l Conveniance Declarations

typedef dom::Node Node;

typedef dom::DocumentFragment DocumentFragment;
typedef dom::DOMString DOMString;

exception RangeException

{

unsigned short code;

b

/l RangeExceptionCode
const unsigned short BAD_BOUNDARYPOINTS_ERR =1;
const unsigned short INVALID_NODE_TYPE_ERR = 2;

valuetype Range
{
/I State
1
private Node startContainer;
private long startOffset;
private Node endContainer;
private long endOffset;
private boolean isCollapsed;
private Node commonAncestorContainer;

Node getStartContainer()
raises(dom::DOMException);

long getStartOffset()

5-62 XML to Valuetype Mapping

raises(dom::DOMException);

Node getEndContainer()
raises(dom::DOMException);

long getEndOffset()
raises(dom::DOMException);

boolean getisCollapsed()
raises(dom::DOMException);

Node getCommonAncestorContainer()
raises(dom::DOMException);

void setStart(
in Node refNode,
in long offset

)

raises(RangeException, dom::DOMException);

void setEnd(
in Node refNode,
in long offset

)

raises(RangeException, dom::DOMException);

void setStartBefore(
in Node refNode

)

raises(RangeException, dom::DOMException);

void setStartAfter(
in Node refNode

)

raises(RangeException, dom::DOMException);

void setEndBefore(
in Node refNode

)

raises(RangeException, dom::DOMException);

void setEndAfter(
in Node refNode

)

raises(RangeException, dom::DOMException);

void collapse(
in boolean toStart

)

raises(dom::DOMException);

XML to Valuetype Mapping 5-63

void selectNode(
in Node refNode

)

raises(RangeException, dom::DOMException);

void selectNodeContents(
in Node refNode

)

raises(RangeException, dom::DOMException);

typedef enum CompareHow_ {
StartToStart,
StartToEnd,
EndToEnd,
EndToStart
} CompareHow;

short ompareBoundaryPoints(
in CompareHow how,
in Range sourceRange

)

raises(dom::DOMException);

void deleteContents()
raises(dom::DOMException);

DocumentFragment extractContents()
raises(dom::DOMException);

DocumentFragment cloneContents()
raises(dom::DOMException);

void insertNode(
in Node newNode

)

raises(dom::DOMException, RangeException);

void surroundContents(
in Node newParent

)

raises(dom::DOMException, RangeException);

Range cloneRange()
raises(dom::DOMException);

DOMString toString()
raises(dom::DOMException);

void detach()
raises(dom::DOMException);

5-64 XML to Valuetype Mapping

valuetype DocumentRange

{
b
b

#endif // _VALUE_RANGE_

Range createRange();

5.1.4 Views

Views are introduced in DOM Level 2 as a means for representations of documents
after transformations are applied.

/I File: value_views.idl

#ifndef VALUE_VIEWS_
#define VALUE_VIEWS_

#include "value_dom.idl"

#pragma prefix "dom2.xmlvalue.w3c.org"

/I The Views module was introduced in DOM
/I Level 2 as an optional module
module views

{

/l Forward Declarations
valuetype DocumentView;

valuetype AbstractView

{
/] State

private DocumentView document;

/I Operations
DocumentView getDocument();

b

valuetype DocumentView

{
/| State

private AbstractView defaultView;

XML to Valuetype Mapping 5-65

/I Operations
AbstractView getDefaultView();

X

}; I*! module views */

#endif // _VALUE_VIEWS_

5-66 XML to Valuetype Mapping

Approachto Static Mapping 6

The static mapping of XML to IDL valuetypes creates a hierarchical set of types that
directly reflect the document structure. The mapping is driven by a document DTD
definition which describes the structure of a class of documents. The static mapping
provides a document specific set of abstractions. In contrast, the dynamic mapping
provides a generic hierarchy of nodes that can be used to represent any XML
document. In general, the static mapping is easier to use than the dynamic mapping,
however it is less flexible.

The static mapping of XML to IDL valuetypes is driven by a document DTD. A
document DTD defines the format of a document: what set of XML elements and
attributes make up a valid document, and the ordering of elements that constitute valid
document content. Defining a mapping based on DTDs allows us to define a mapping
that closely reflects the document content model.

The balance of this chapter discusses the general approach taken in statically mapping
XML documents to valuetypes based on DTD information.

6.1 Mapping Principles

The format of an XML document is represented by a DTD. A DTD specifies a
vocabulary for a class of documents. XML document instances which follow the DTD
are said to be valid with respect to the DTD.

XML documents and IDL valuetypes are similar in that each have a sort of “class”
definitions and instances. An XML DTD represents a class of documents, as an IDL
valuetype definition represents a class of valuetype. XML documents are instances of
XML DTDs as valuetype instances are instances of valuetype interface definitions. In
mapping XML to valuetypes, we map XML DTDs to Valuetype IDL, and XML
document instances to valuetype instances. The generated valuetype IDL and its
implementation provides a hierarchical structure of valuetypes that parallels the
hierarchical structure of the XML document structure.

XML to Valuetype Mapping 6-67

6-68

Along with the valuetype definition and implementation, a marshalling framework is
generated. The marshalling framework provides a mechanism by which documents can
be read into a valuetype hierarchy and written out again. Documents may be created
from scratch in memory or read in from an external source. Before a document is
written out, or at anytime, the validity of the document in memory can be verified.

follows

Vendor supplied
XML DTD XML.toVaIuetype
Mapping Tool
N XML Valuetype IDL
B
implements
End user code
xml valuetype XML Va uetype Impl
unmarshal uses
———| —
¢ marshal E

XML Document

Figure6-1 High level perspective of XML to Valuetype static mapping

6.1.1 Mapping Concepts

The static mapping creates a hierarchical set of valuetypes which parallels the
document’ s hierarchical element hierarchy. As elements can contain attributes and
other elements, corresponding element valuetypes may contain attributes and other
element valuetypes. The element valuetypes are derived from the dynamic element
type described by the dynamic mapping; all element state is stored in the dynamic
element base valuetype.

Note — Storing state in the dynamic base elements allows for the static document to be
passed to context that does not know about the static structure, allowing the document
to be traversed using the dynamic mapping.

If an element contains other elements then the valuetypes representing those elements
may be accessed through operations on the containing element valuetype.

All static XML valuetype declarations are scoped by a module that corresponds to the
name of the document’s DTD.

XML to Valuetype Mapping

6

Elements are represented as IDL valuetypes. All element valuetypes inherit from the
dom::Element valuetype described in the dynamic mapping portion of this
submission.

Embedded elements and attributes are stored in the dom::Element base valuetype and
accessed via get and set operations. The names of the get and set operations are
determined by the name of the element or attribute.

Element lists are represented as a sequence and a set of access operations.

Choice or alternate lists are represented as a sequence of a contrived type, where the
contrived type represents the choice or alternate statement.

Document structures represented as valuetypes may be navigated from parent elements
to child elements through element valuetype operations. As primitive element content
and attributes are represented as private state of the element’s base type, XML
valuetype documents can be marshalled by the ORB, like any other valuetype.

XML to Valuetype Mapping 6-69

6-70 XML to Valuetype Mapping

Static MappingfromaDTD 4

This section describes a static mapping of XML documents to valuetypes based on
XML DTDs. The mapping defines a hierarchy of valuetypes that mirror an XML
document’s structure. Specific valuetypes are used to represent elements that may
themselves contain other elements.

Valuetypes representing document elements inherit from generic valuetypes defined in
the DOM module.

7.1 Mapping XML DTDsto IDL

7.1.1 Document Scope

A DTD maps to an IDL module scope. The module is named after the DTD. The
contents of the DTD map to IDL declarations in the module scope corresponding to the
DTD.

For example, a DTD named “Inventory.dtd” would map to an IDL module named
“Inventory”.

7.1.2 Document Specific Valuetype

Associated with each document mapping is a document specific valuetype, which
inherits from the generic dom::Document. The document specific valuetype has a
type specific operation to return the document root element and a set of factory
operations for each element type defined in the document.

The name of the document specific valuetype is the name of the document
concatenated with “Doc” .

The name of the type specific document root accessor operation is
get<DocumentName>Root().

XML to Valuetype Mapping 7-71

7-72

The name of the type specific document root accessor operation is
get<DocumentName>Root().

The element factory operations names are patterned as:
create<ElementName>Element().

For example in mapping a DTD named Personnel.dtd with aroot element called HR, a
module named Personnel would be created with a valuetype definition called
PersonnelDoc, as such:
module Personnel {
valuetype PersonnelDoc : truncatable dom::Document {
HR getPersonnelRoot();
void setPersonnelRoot(in HR docRoot);
HR createHRElement();
Employee createEmployeeElement();

7.1.2.1 get<RootElementName>Root

Returns the type specific root of the document.

7.1.2.2 setDocRoot

Sets the document root element.

7.1.3 Element Valuetypes

Each XML element in a document maps to an IDL valuetype. The valuetype is named
after the element from which it is derived and it is defined in the scope of the module
corresponding to the DTD. All element valuetypes inherit from dom::Element.

For example, the element Employee defined in Personnel.dtd:
<! ELEMENT Enpl oyee (...) >

would map to:
module Personnel {
valuetype Employee : truncatable dom::Element {

-
}

Element valuetypes provide type specific operations for accessing the XML element’s
attributes and content. Content can be either character data or child elements. The set
of valuetypes corresponding to a document form a hierarchy matching the document
structure. Operations on each valuetype allows attribute and element content to be
retrieved and set.

XML to Valuetype Mapping

Note — An element valuetype manages the elements and attributes that it contains.
When the element valuetype is destroyed the contained element valuetypes and
attributes are also destroyed.

7.1.4 Conditional Sections

It is assumed that conditional sections will be resolved before the mapping to
valuetypes takes place.

7.1.5 Entities and References

Note — See dynamic mapping.

7.1.6 NOTATION

Note — See dynamic mapping.

7.2 Mapping Element Content

This section describes in detail how element definitions are mapped to valuetype
definitions.

7.2.1 Child Elements

A mandatory child element maps to get and set operations on the mapped XML
valuetype. Note that the child element state is stored in the dom::Element base class.

An element defined as:
<! ELEMENT Parent (Child) >

would map to:

valuetype Parent : truncatable dom::Element {
Child getChild();
void setChild(in Child arg0);

}

7.2.1.1 get<ElementName>

Returns the child element. If there is no child element defined then it returns null.

7.2.1.2 set<ElementName>

Sets the child element.

XML to Valuetype Mapping 7-73

7-74

7.2.2 #PCDATA Elements

Character data content is mapped to an element that inherits from the dom:Text
valuetype.

An element defined as:
<! ELEMENT Name (#PCDATA) >

would map to:
valuetype Name : truncatable dom::Text {}

7.2.3 EMPTY Elements

Elements with an EMPTY content specification map to a valuetype which inherits
from the dom::Element valuetype.

An element defined as:
<! ELEMENT HR EMPTY >

would map to:
valuetype HR : truncatable dom::Element {}

7.2.4 ANY Elements

725 “*”

Elements with an ANY content model map to a valuetype which inherits from the
dom::Element valuetype.

An element defined as:
<! ELEMENT AnyAndAll ANY >

would map to:
valuetype AnyAndAll : truncatable dom::Element {}

- ZerYo or more

The * character following an element, sequence, or choice indicates that it occurs zero
or more times. That piece of the content specification maps to an IDL sequence within
the mapped XML valuetype. Operations are defined to access get, set, and manipulate
the elements in the sequence.

For example:
<! ELEMENT CardShelf (Card*) >

would map to:

XML to Valuetype Mapping

typedef sequence<Card> CardSeq;
valuetype CardShelf : truncatable dom::Element {

/[Element access operations
CardSeq getCardSeq();
Card getCardSegAt(in long index);
long getCardSeqSize();
void setCardSeq(in CardSeq arg0);
void replaceCardSeqgAt(in Card arg0,
in long index);
void appendCardSeq(in Card argO0);
void insertCardSeqAt(in Card arg0,
in long index);
void removeFromCardSeq(in Card arg0);
void removeFromCardSegAt(long index);
void clearCardSeq();

7.26 “+" -oneor more

The + character following an element, sequence, or choice indicates that it occurs one
or more times. That piece of the content specification maps to an IDL sequence within
the mapped XML valuetype. Operations are defined to access get, set, and manipulate
the elements in the sequence. The mapping is the same as the mapping for “*” | the
exception being that the isValid() operation will test that there is at least one element
defined in the sequence.

For example:
<! ELEMENT Enpl oyees (Enpl oyee+) >

would map to:

XML to Valuetype Mapping 7-75

typedef sequence<Employee> EmployeeSeq;
valuetype EmployeeShelf : truncatable dom::Element {

/[Element access operations

EmployeeSeq getEmployeeSeq();

Employee getEmployeeSegAt(in long index);

long getEmployeeSeqSize();

void setEmployeeSeq(in EmployeeSeq arg0);

void replaceEmployeeSeqAt(in Employee arg0,
in long index);

void appendEmployeeSeq(in Employee argO0);

void insertEmployeeSeqAt(in Employee arg0,
in long index);

void removeFromEmployeeSeq(in Employee arg0);

void removeFromEmployeeSeqgAt(long index);

void clearEmployeeSeq();

7.2.7 *“7?" - zero or one

The *? character following an element, sequence, or choice indicates that it occurs
zero or one time. That piece of the content specification maps to operations to get, set,
and remove the item.

An element defined as:
<l ELEMENT ABC (XYZ?) >

would map to:
valuetype ABC : truncatable dom::Element {
XYX getXYZ();

void setXYZ(in XYZ argO0);
void removeXYZ();

}

7.2.7.1 get<ElementName>

Returns the child element. If there is no child element defined then it returns null.

7.2.7.2 set<ElementName>

Sets the child element.

7.2.7.3 remove< ElementName>

Removes the child element if one is set.

7-76 XML to Valuetype Mapping

7.2.8

Sequences

A seguence is an ordered group of content particles. A content particle can be an
element, a sequence list, or a choice list. The content particles in a sequence are
separated by commas. For example the following is a sequence of child elements:
<ELEMENT Date (Day, Mnth, Year)>

For the purposes of this mapping we will characterize sequences as being either simple
or complex. A simple sequence list is as shown in the Date element above. A complex
sequence is a simple sequence that is followed by a“*”,a“+",ora“?".

7.2.8.1 Smple SequencelLists

A simple sequence maps to a valuetype with operations to get and set the individual
elements or content particles. The operations and isValid constraints are as defined in
section 7.2.1.

For example, the Date element above would map to:
valuetype Date : truncatable dom::Element {
Day getDay();
void setDay(in Day arg0);

Month getMonth();
void setMonth(in Month argO0);

Year getYear();
void setYear(in Year arg0);

7.2.8.2 Complex Sequence Lists

In mapping complex sequences we must contrive an element valuetype that represents
the sequence. Then the mapping for “*”, “+", or “?' is applied to that contrived
element valuetype.

The name of the contrived valuetype is constructed from the names of the content
particles separated by “And”.

For example the element:
<! ELEMENT Conpl exSeq (One, Two)* >

would map to the following:

XML to Valuetype Mapping 7-77

7-78

valuetype OneAndTwo : truncatable dom::Element {
One getOne();
void setOne(in One argO0);

Two getTwo();
void setTwo(in Two arg0);

}

typedef sequence<OneAndTwo> OneAndTwoSeq;
valuetype ComplexSeq : truncatable dom::Element {
/[Element access operations
OneAndTwoSeq getOneAndTwoSeq();
OneAndTwo getOneAndTwoSeqgAt(in long index);
long getOneAndTwoSeqSize();
void setOneAndTwoSeq(in OneAndTwoSeq arg0);
void replaceOneAndTwoSegAt(in OneAndTwo argO,
in long index);
void appendOneAndTwoSeq(in OneAndTwo arg0);
void insertOneAndTwoSegAt(in OneAndTwo argO,
in long index);
void removeFromOneAndTwoSeq(in OneAndTwo argO0);
void removeFromOneAndTwoSegAt(long index);
void clearOneAndTwoSeq();

7.2.9 “|" - Choice Lists

A choice list is a set of alternates from a group of content particles. A content particle
can be an element, a sequence list, or a choice list. The content particles in a choice list
are separated by the “|” character. For example the following is a choice list of child
elements:

<ELEMENT ChoicelList (One | Two | Three)>

As with sequences, we characterize choice lists as being either simple or complex. A
simple sequence list is as shown in the ChoicelL ist element above. A complex choice
list is a simple choice list that is followed by a“*”,a“+",0ora"“?".

7.2.9.1 SmpleChoicelists

A simple choice list maps to operations to get and set the individual elements or
content particles. The operations are as defined in section 7.2.1, with the exception that
a set overrides any previous set. Previously set choices will be set to null when a new
choice is set. The isValid operation implementation ensures that a choice is set.

For example, the ChoiceList element above would map to:

XML to Valuetype Mapping

valuetype ChoicelList : truncatable dom::Element {
One getOne();
void setOne(in One arg0);

Two getTwo();
void setTwo(in Two argO0);

Three getThree();
void setThree(in Three arg0);

7.2.9.2 Complex Choicelists

In mapping complex choice lists (as with complex sequence lists) we must contrive an
element valuetype that represents the choice lists. Then the mapping for “*”,“+" | or
“?" is applied to that contrived element valuetype.

The name of the contrived valuetype is constructed from the names of the content
particles separated by “Or”.

For example the element:
<! ELEMENT Conpl exChoice (One | Two)? >

would map to the following:

valuetype OneOrTwo : truncatable dom::Element {
One getOne();
void setOne(in One arg0);

Two getTwo();
void setTwo(in Two argO0);

}

valuetype ComplexChoice : dom::Element {
OneOrTwo getOneOrTwo();
void setOneOrTwo(in OneOrTwo arg0);
void removeOneOrTwo();

}

7.2.10 Duplicate Element Names

If the same element type is used in a sequence or choice list then these elements must
be differentiated in the generated element valuetype operations. The elements are
differentiated by appending a number to the generated valuetype get and set operation
names. The numbering is sequential starting from 1.

For example:

XML to Valuetype Mapping 7-79

<! El ement Duplicates (One, Two, One> >

would map to:

valuetype Duplicates : truncatable dom::Element {
One getOnel();
void setOnel(in One arg0);

Two getTwo();
void setTwo(in Two arg0);

One getOne2();
void setOne2(in One arg0);

7.3 Mapping Attributes

Element attributes map to state in the base element valuetype and get and set
operations on the element specific valuetype.

7.3.1 CDATA

An attribute of type CDATA maps to a string state member and get and set operations
on the element in which it is contained.

An element defined as:
<! ELEMENT OS EMPTY >
<! ATTLI ST OS
Name CDATA #REQUI RED>

would map to:

valuetype OS : truncatable dom::Element {
dom::DOMString getName();
void setName(in dom::DOMString argO0);

}

7.3.1.1 get<AttributeName>

Returns the attribute as a DOM string. If there is no attribute set, null is returned.

7.3.1.2 set<AttributeName>

Sets the attribute to the given DOM String parameter.

7-80 XML to Valuetype Mapping

732 1D

An ID attribute maps to a string state member and operations to get and set the ID.
When the ID is set, the ID and the element that it is associated with are added to the
document’ s IDElementM ap.
<! ELEMENT Enpl oyee (...) >
<I ATTLI ST Enpl oyee

EnmpNunmber | D #REQUI RED>

would map to:
valuetype Employee : truncatable dom::Element {
dom::DOMString getEmpName();
void setEmpName(in dom::DOMString arg0)
raises(dom::XMLException);

7.3.2.1 get<AttributeName>

Returns the string value box 1D attribute. If thereisno ID attribute set, null is returned.

7.3.2.2 set<AttributeName>

Sets the ID attribute to the string parameter and associates the id with its associated
element in the document’s IDElementMap.

Raises an XML exception if ID value is not unique in the scope of the document.

7.3.3 |IDREF

An IDREF attribute maps to an attribute state member, operations to get and set the
IDREF, and an operation to set and get the element that it pointsto. This attribute adds
the constraint to document validation that the IDREF must point to a valid element.
That is, there must be an ID entry in the document associated with the IDREF.
<! ELEMENT Manager (...) >
<I ATTLI ST Manager

EnpNunber | DREF #REQUI RED>

would map to:
valuetype Manager : truncatable dom::Element {
dom::DOMString getEmpNumber();
dom::Element getEmpNumberElement();
void setEmpNumber(in dom::DOMString argO0);
void setEmpNumberElement(in dom::Element argO0);

7.3.3.1 get<AttributeName>

Returns the string value box IDREF attribute. If there is no IDREF attribute set, null is
returned.

XML to Valuetype Mapping 7-81

7-82

7.3.3.2 get<AttributeName> Element

Returns the element to which the IDREF refers. Returns null if not found.

7.3.3.3 set<AttributeName>

Sets the IDREF attribute to the given string parameter. The IDREF must refer to an
element valuetype in the document with an ID matching IDREF in order for the
document to be valid.

7.3.3.4 set<AttributeName> Element

Sets the Element associated with the IDREF.

7.3.4 IDREFS

Like IDREF, except can set and get a sequences of IDREFs and the elements that they
point to. The same constraints apply: all IDREFs must be valid for isValid() to return
true. Maps to a sequence of strings, operations to get and set the IDREFs sequence,
and operations to get and set the sequence of the elements to which the IDREFs refer.
<! ELEMENT WorkGroup (...) >
<I ATTLI ST Wor kGr oup

EnmpNunber s | DREFS #REQUI RED>

would map to:
valuetype WorkGroup : dom::Element {

sequence<string> getEmpNumbersSeq();
sequence<Element> getEmpNumbersElementSeq();

void setEmpNumbersSeq(in sequence<string> arg0);
void setEmpNumbersElementSeq(in sequence<string> arg0);

7.3.4.1 get<AttributeName>Seq

Returns the sequence of IDREFS.

7.3.4.2 get<AttributeName> ElementSeq

Returns a sequence of the elements to which the IDREFS refer.

7.3.4.3 set<AttributeName> Seq

Sets the private state member holding the sequence of IDREF strings to the given
sequence of strings. All IDREFs in the given sequence must refer to elements in the
document with an associated unique ID.

XML to Valuetype Mapping

7.3.4.4 set<AttributeName> ElementSeq

Sets the attribute state member holding the sequence of elements associated with the
IDREFs in the IDREF sequence.

7.3.5 ENTITY

Note — See dynamic mapping.

7.3.6 ENTITIES

Note — See dynamic mapping.

7.3.7 NMTOKEN

An attribute of type NMTOKEN maps to a private string value box attribute and get
and set operations on the element in which it is contained. The name of the private
string value member is the name of the attribute. The value of the attribute must
conform to the Nmtoken production in the XML 1.0 specification.

An element defined as:
<! ELEMENT OS EMPTY >
<! ATTLI ST OS
Name NMTOKEN #REQUI RED>

would map to:
valuetype OS : truncatable dom::Element {
dom::DOMString getName();
void setName(in dom::DOMString arg0)
raises(dom::XMLException);

7.3.7.1 get<AttributeName>

Returns the string value box attribute. If there is no attribute set, null is returned.

7.3.7.2 set<AttributeName>

Sets the attribute to the given string value box parameter.

Raises XML exception if not conforming NMTOKEN.

XML to Valuetype Mapping 7-83

7.3.8 NMTOKENS

Like NMTOKEN, except can set and get a sequence of NMTOKENS. The same
constraints apply: all NMTOKENs must be valid for isValid() to return true. Mapsto a
seguence of strings and operations to get and set the NMTOKEN sequence.
<! ELEMENT Name (...) >
<! ATTLI ST Name

Al'i ases NMIOKENS #REQUI RED>

would map to:
valuetype Name : truncatable dom::Element {
sequence<dom::DOMString> getAliasesSeq();
void setAliases(in dom::DOMString arg0)
raises(dom::XMLException);
void setAliasesSeq(in sequence<dom::DOMString> arg0)
raises(dom::XMLException);

7.3.8.1 get<AttributeName>Seq

Returns the sequence of strings that represents the NMTOKENS attribute.

7.3.8.2 set<AttributeName>

Adds an NMTOKEN string attribute to the NMTOKEN sequence. The given
NMTOKEN must refer to be a valid NMTOKEN according to the XML 1.0
specification.

Raises exception if not conforming NMTOKEN.

7.3.8.3 set<AttributeName> Seq

Sets the base valuetype state member holding the sequence of NMTOKEN strings to
the given sequence of strings. All NMTOKENS in the given sequence must be valid
NMTOKEN strings as specified in the XML 1.0 specification.

Raises exception if not conforming NMTOKEN.

7.3.9 #REQUIRED

If an attribute is annotated as “#REQUIRED” then document validation must validate
that the attribute has been set.

7.3.10 #IMPLIED

If an attribute is annotated as “#IMPLIED” then its presence, or lack thereof, has no
bearing on the validity of the element in which it is contained.

7-84 XML to Valuetype Mapping

7.3.11 #FIXED

If the attribute is annotated as “#FIXED” then the attribute maps to “get” operations
only. No “set operations are generated. The mapped get operation is hardcoded to
return the fixed attribute value.

7.3.12 Enumerations

An enumerated attribute maps to an attribute stored in the element base valuetype and
get and set operations on the element in which it is contained. If an attempt is made to
set the attribute with a value that is not in the enumeration then an exception will be
thrown. The default value is set in the element’s initializer.

An element defined as:
<I'ELEMENT CD (...) >
<! ATTLI ST CD
Style (Jazz | Rock | Classical | Folk) “Jazz">

would map to:
valuetype CD : truncatable dom::Element {
dom::DOMString getStyle();
void setStyle(in dom::DOMString arg0)
raises(dom::XMLException);

7.3.12.1 get<AttributeName>

Returns the string value box attribute.

7.3.12.2 set<AttributeName>

Sets the attribute to the given string parameter. If the given value is not in the attribute
enumeration specification then an exception is thrown.

Raises XML exception if enum string is invalid.

7.3.13 Default Attributes

If a default argument is specified then the initializer of the element will initialize the
attribute to the default value.

7.4 Parameter Entities

Note — See dynamic mapping.

XML to Valuetype Mapping 7-85

7.5 Factories

Individual type specific nodes are created using the create<ElementTag> operations
defined on the document valuetype. See Section 7.1.2 and 7.6.

7.6 Marshaling Framework

Documents are read into memory, into a valuetype representation, using a parser and
written out using a serializer. For each document type, concrete parsers and serializers
are defined which inherit from the more general dom::X ML Parser and

dom:: XML Serializer defined earlier in this document. A customized factory extending
the dom::XMLFactory creates instances of the specific generated valuetypes.

For a document named Invoice the following interfaces would be generated within the
scope of the generated document module.

local interface InvoiceParser : dom::XMLParser {
InvoiceDoc parselnvoice(in dom::DOMString XML Stream)
raises(dom::XMLException);
InvoiceDoc parselnvoice(in dom::DOMString XML Stream,
in InvoiceFactory)
raises(dom::XMLException);

}

local interface InvoiceSerializer : dom:: XML Serializer {
dom::DOMString serializelnvoice(in InvoiceDoc doc)
raises(dom::XMLException);

}

local interface InvoiceFactory : dom::XMLFactory {
Node createType(in DOMString type);

}

7-86 XML to Valuetype Mapping

7.6.1 Mapping Example

Consider the following XML document.
<CDCat al og>
<CD Di scl D="00756BF6" >
<Artist>Lee Konitz</Artist>
<Ti tl e>Anot her Shade of Blue</Titl e
<TrackTi t| e>Anot her Shade O Bl ue</TrackTitle>
<TrackLengt h>10: 50</ Tr ackLengt h>
<TrackTi t| e>Everyt hi ng Happens To Me</TrackTitl e>
<TrackLengt h>12: 15</ Tr ackLengt h>
<TrackTitl e>What’'s New</ TrackTitl e>
<TrackLengt h>15: 49</ Tr ackLengt h>
</ CD>
<CD Di scl D="007F93CC" >
<Artist>Keith Jarrett</Artist>
<Titl e>Standards, Vol. 2</Titl e
<TrackTitl e>So Tender</TrackTitl e>
<TrackLengt h>7: 15</ Tr ackLengt h>
<TrackTitl e>Mbon And Sand</ TrackTitl e>
<TrackLengt h>8: 54</ Tr ackLengt h>
<TrackTitle>In Love In Vain</TrackTitle>
<TrackLengt h>7: 06</ Tr ackLengt h>
</ CD>
</ CDCat al og>

It's metadata, as represented by a DTD, might look like the following:

<! ELEMENT Artist (#PCDATA) >
<IELEMENT Title (#PCDATA) >

<! ELEMENT TrackLength (#PCDATA) >
< ELEMENT TrackTitle (#PCDATA) >

<! ELEMENT CDCatalog (CD*) >

<! ELEMENT CD
(Artist
, Title
, (TrackTitle, TrackLength)+
) >
<! ATTLI ST CD Di skl D CDATA #REQUI RED>

The IDL produced by a mapping tool, would look like:

XML to Valuetype Mapping 7-87

module cdcatalog {
valuetype CDCatalogDoc : truncatable dom::Document {

CDCatalog getCDCatalogRoot();
void setCDCatalogRoot(in CDCatalog docRoot);
CDCatalog createCDCatalogElement();
CD createCDElement();
Artist createArtistElement();
Title createTitleElement();
TrackTitle createTrackTitleElement();
TrackLength createTrankLengthElement();

}

local interface CDCatalogParser : dom::XMLParser {
CDCatalogDoc parseCDCatalog(in dom::DOMString XML Stream)
raises(dom::XMLException);

}

local interface CDCatalogSerializer : dom:: XML Serializer {
dom::DOMString serializeCDCatalog(in CDCatalogDoc doc)
raises(dom::XMLException);

}

typedef sequence<CD> CDSeq;
typedef sequence<TrackTitleAndTrackLength>
TrackTitleAndTrackLengthSeq;

valuetype Artist : truncatable dom::Text {};
valuetype Title : truncatable dom::Text {};
valuetype TrackLength : truncatable dom::Text {};
valuetype TrackTitle : truncatable dom::Text {};

valuetype CDCatalog : truncatable dom::Element {
/I State declaration
private CDSeq theCDSeq;

/[Element access operations

CDSeq getCDSeq();

CD getCDSegAt(in long index);

long getCDSeqSize();

void setCDSeq(in CDSeq arg0);

void replaceCDSegAt(in CD arg0, in long index);
void appendCDSeq(in CD argO0);

void insertCDSegAt(in CD arg0, in long index);
void removeFromCDSeq(in CD argO0);

void removeFromCDSegAt(long arg0);

void clearCDSeq();

}

valuetype TrackTitleAndTrackLength : truncatable dom::Element {
TrackTitle getTrackTitle();
void setTrackTitle(in TrackTitle arg0);

7-88 XML to Valuetype Mapping

TrackLength getTrackLength();
void setTrackLength(in TrackLength arg0);

X

valuetype CD : truncatable dom::Element {
/I Attribute access operations
dom::DOMString getDiskID();
void setDiskID(in dom::DOMString arg0);

/l Element access operations
Artist getArtist();
void setArtist(in Artist arg0);

Title getTitle();
void setTitle(in Title arg0);

TrackTitleAndTrackLengthSeq getTrackTitleAndTrackLengthSeq();
TrackTitleAndTrackLength getTrackTitleAndTrackLengthSeqAt(
in long index);
long getTrackTitleAndTrackLengthSeqSize();
void setTrackTitleAndTrackLengthSeq(
in TrackTitleAndTrackLengthSeq arg0);
void replaceTrackTitleAndTrackLengthSeqAt(
in TrackTitleAndTrackLength argO,
in long index);
void appendTrackTitleAndTrackLengthSeq(
in TrackTitleAndTrackLength argO0);
void insertTrackTitleAndTrackLengthSeqAt(
in TrackTitleAndTrackLength argO,
in long index);
void removeFromTrackTitleAndTrackLengthSeq(
in TrackTitleAndTrackLength argO0);
void removeFromTrackTitleAndTrackLengthSeqAt(long arg0);
void clearTrackTitleAndTrackLengthSeq();

}
}

XML to Valuetype Mapping 7-89

7-90 XML to Valuetype Mapping

CompliancePoints 8

This section describes the compliance points for the submission.

8.1 Mandatory Compliance Points

® An implementation may be compliant with either of the two DOM Level
compliance points:

» The IDL declarations for interfaces and valuetypes for DOM Level 1
functionality described in Chapter 4.3.

» The IDL declarations for interfaces and valuetypes for both DOM Level 1 and
Level 2 functionality described in Chapter 4.3 and Chapter 5. DOM Level 2 isa
superset of DOM Level 1.

® The DOM extensions described in Chapter 4.4 and 4.5.
® The static mapping declarations described in Chapter 7.

8.2 Optional Compliance Points

None.

XML to Valuetype Mapping 8-91

8-92 XML to Valuetype Mapping

References 9

[CORBA] CORBA OMG standard. http://www.omg.org

[CORBA COMPONENT MODEL] Corba specification in the finalization task force.
OMG document Orbos/99-07-02. Section 2.4.1.7 contains the Valuetypes M OF
metamodel.

[DOM 1] Document Object Model Level 1 W3C recommendation.
http://lwww.w3.0rg/TR/REC-DOM-Level-1. See also the errata
http://www.w3.org/DOM/updatesyREC-DOM-L evel-1-19981001-errata

[DOM 2] Document Object Model Level 2 W3C candidate recommendation.
http://www.w3.org/TR/DOM-Level-2/

[MOF] Meta Object Framework OMG standard.
http://cgi.omg.org/techprocess/meetings/schedul e/tech2a.html#mod

[XMI] XML Metadata Interchange OMG standard.
http://cgi.omg.org/techprocess/meetings/schedul e/tech2a.html#mod

[XML Vaue RFP] OMG RFP orbos/99-08-20.
[XMI production of XML Schema RFP] OMG RFP ad/00-01-04.

[Schema] XML Schema working drafts:

® Part O (primer) http://www.w3.org/TR/xmlschema-0/

® Part 1 (structures) http://www.w3.org/TR/xmlschema-1/
® Part 2 (data types) http://www.w3.org/TR/xmlschema-2/

XML to Valuetype Mapping 9-93

9-94 XML to Valuetype Mapping

