
Transformation of Documents and Schemas by

Patterns and Contextual Conditions

Makoto Murata1

Fuji Xerox Information Systems, Co., Ltd.,

KSP 9A7, 2-1 Sakado 3-chome, Takatsu-ku, Kawasaki-shi, Kanagawa 213, Japan

Abstract. On the basis of the tree-regular language theory, we study

document transformation and schema transformation. A document is

represented by a tree t, and a schema is represented by a tree-regular

language L. Document transformation is de�ned as a composition of a

marking function mP
C and a linear tree homomorphism h, where P is

a pattern and C is a contextual condition. Pattern P is a tree-regular

language, and contextual condition C is a pointed tree representation.

Marking function mP
C marks a node if the subtree rooted by this node

matches P and the envelope (the rest of the tree) satis�es C. Linear

tree homomorphism h then rewrites the tree, for example, by deleting or

renaming marked nodes. Schema transformation is de�ned by naturally

extending document transformation; that is, the result of transforming

a schema L, denoted h(mP

C (L)), is fh(m
P

C (t)) j t 2 Lg. Given a tree

automaton that accepts L, we can e�ectively construct a tree automaton

that accepts h(mP

C (L)). This observation provides a theoretical basis for

document transformation engines and document database systems.

1 Introduction

In this paper we study tree transformations for document information. Such
tree transformations require more powerful patterns and contextual conditions
than do tree transformations for programs (see Wilhelm [13]). Furthermore, tree
transformations for document information must accompany transformations of
tree schemas.

In preparation, we give general background on documents. Many document
models, most notably SGML [9], introduce tree structures to documents. Docu-
ment processing, such as the generation of new documents by assembling com-
ponents of existing documents, can thus be computerized by writing tree trans-
formation programs. Furthermore, some document models, including SGML,
introduce schemas of documents. Schemas describe which types of nodes may
appear in documents and which hierarchical relationships such nodes may have.
Such described information helps programmers to write tree transformation pro-
grams. A schema is typically represented by an extended context-free grammar.
A tree is permitted by this schema if it is a parse tree of that grammar. It is
important that schemas be extended context-free grammars rather than sim-
ple context-free grammars; that is, we can specify that a section may have an
arbitrary number of �gures and paragraphs.

2

Let us consider three challenges in tree transformations for document pro-
cessing (Figure 1). First, we need powerful patterns so as to specify relevant
nodes in trees. As an example, assume that, given PODP'96 papers, we want
to retrieve sections containing the word \preliminaries" in their titles. Among
the subordinates of a section node, only the section title node is signi�cant, and
the type and number of the other subordinates are irrelevant. What is needed
here is a powerful pattern that allows the section to have an arbitrary number of
other subordinates of any type. As a result, the pattern cannot be a single tree
with don't-care-characters [8]. Rather, it must be a speci�cation of an in�nite
number of trees with any number of subordinates.

input document

document

transformation

?

�
�
�

permit
�

output document

(pattern, contextual condition)

input schema

schema

transformation

?

@
@
@

permit
� output schema

Fig. 1. Document transformation and schema transformation

Second, we need to introduce conditions on contexts, where the context of a
node is its superior nodes, sibling nodes, and subordinates of these sibling nodes.
For instance, assume that in the previous example we are interested only in those
sections of automaton papers. Then, we want to introduce a contextual condition:
the section node must be directly or indirectly subordinate to a paper root node

such that its title node or its summary node contains the word \automaton". This
contextual condition concerns a node (the section node), a directly or indirectly
superior node (the paper root node), and subordinate nodes of this superior node
(the paper title node and the summary node).

Third, we need to transform schemas as well as trees. That is, given schemas
for input documents and a tree transformation program, we must be able to
create a schema for output documents. A document is permitted by this output
schema if and only if that document can be generated by transforming some
documents that are permitted by the input schemas. The creation of the out-
put schema is crucial, as the output schema again helps programmers to write
programs for further transformations. For example, Boeing wants to create doc-
uments for Boeing 747 maintenance by assembling those documents written by
Boeing with those written by GE (an engine maker), and so on. These assem-

3

bled documents must be accompanied by schemas, since a purchasing airline
such as Northwest wants to further update those documents by incorporating
information speci�c to Northwest.

Researchers have made a number of attempts to overcome these challenges
(see a survey [2]). Among such attempts are programming languages for docu-
ments [1] and data models for documents [3,4,6,7]. Even commercial products
(OmniMark, etc.) and a standard (DSSSL [10]) have been developed. However,
to the best of our knowledge, no attempt has ful�lled all three of the require-
ments (powerful patterns, powerful contextual conditions, and transformation
of schemas). Some [1,6] completely ignore the schema transformation. Others
[4,7] provide the schema transformation, but allow very weak patterns and no
contextual conditions.

Why is it di�cult to ful�ll the three requirements simultaneously? One reason
is that some contextual conditions lead to schemas that cannot be expressed by
extended context-free grammars. For example, suppose that we want to delete all
footnote nodes below appendix nodes, where \below appdendix nodes" is a con-
textual condition. After such deletion, paragraph nodes below appendix nodes
do not have subordinate footnotes, but those below other sections do. However,
no extended context-free grammar can capture such context dependencies. An-

other reason is that the class of local sets is mathematically intractable. (A set
of trees is local if it is the set of parse trees of some extended context-free gram-
mar.) If boolean operators are applied to local sets, the result is not always local.
Moreover, some �nite sets are not local.

To overcome these problems, we formalize a schema as a tree-regular lan-
guage [5] rather than an extended context-free grammar. We believe that this
approach is more appropriate for the following reasons. First, any schema in ex-
isting document models can be represented, since every local set is tree-regular.
Second, any tree-regular language can be localized; that is, for every tree-regular
language L, we can construct a unique minimum local set that includes L. Third,
a pattern can also be formalized as a tree-regular language. Fourth, since the
class of tree-regular languages forms a boolean algebra, we can apply boolean
operators to both schemas and patterns. In particular, we can construct the in-
tersection automaton of a schema automaton and a deterministic tree automaton
genereated from a pattern, thus identifying where pattern matches occur.

Recent research on pointed trees [11,12] provides a very good basis for the
study of contextual conditions. We represent a contextual condition with a
pointed tree representation.We then construct an unambiguous non-deterministic
tree automaton from that representation. Again, by automaton intersection, we
can identify where the contextual condition is satis�ed.

Key contributions of this paper are as follows:

{ a powerful class of patterns,

{ a powerful class of contextual conditions and an algorithm for testing them
in a time linear to the size of a tree, and

{ the construction of a minimally su�cient output schema.

4

The third contribution is probably the most signi�cant. It provides a theoretical
basis for document transformation engines and document database systems.

The remainder of this paper is organized as follows. In Section 2, we limit our
concerns to strings rather than trees. After introducing preliminaries, we �rst
formalize patterns, contextual conditions, and transformation rules. We then
introduce algorithms for pattern matching and contextual condition checking.
Finally, we show the construction of output schemas. In Section 3, we extend
our observations from Section 2 for binary trees. Extension for general trees does
not require any new ideas and is left to the reader.

2 Transformations of Strings

2.1 Preliminaries

A string over a �nite alphabet � is an element of the free monoid ��. The
addresses of a string s are 1; 2; : : : ; n, where n is the length of s. The character
at an address i is denoted by s[i]. The pre�x of s at i, denoted s#i, is a string
s[1]s[2] : : : s[i� 1]s[i]. The su�x of s at i, denoted s"i, is s[i+1] : : : s[n� 1]s[n].

The mirror image of s, namely s[n]s[n� 1] : : : s[2]s[1], is denoted by sr.

A deterministic string automaton (DSA) is a 5-tuple <Q;�; �; q0; Qf>, where
Q is a �nite set of states, � is a function from Q � � to Q, q0 (initial state) is
an element of Q, and Qf (�nal states) is a subset of Q.

For a string s of length n and a DSAM = <Q;�; �; q0; Qf>, the computation

of s by M , denoted Mks, is a string over Q such that the length of Mks is
n + 1, (Mks)[1] = q0, and (Mks)[i + 1] = �((Mks)[i]; s[i]) (1 � i � n). If
(Mks)[n+ 1] 2 Qf, this computation is successful and s is accepted by M . The
set of strings accepted by M is denoted by L(M). If a language L (a set of
strings) is accepted by some DSA M , L is string-regular.

A non-deterministic string automaton (NSA) is a 5-tuple <Q;�; �;Q0; Qf>,
where Q and Qf are as above, � is a relation from Q�� to Q, and Q0 (initial
states) is a subset of Q.

For a string s of length n and a NSA M = <Q;�; �;Q0; Qf>, a computation

of s by M is a string ŝ over Q such that the length of ŝ is n, ŝ[1] 2 Q0, and
�(ŝ[i]; s[i]; ŝ[i+1]) (1 � i � n). If ŝ[n+1] 2 Qf, this computation is successful. If
there is at least one successful computation, s is accepted byM . It is well known
that a language is string-regular if and only if it is accepted by some NSA. If

every string has at most one successful computation, M is unambiguous. If an
unambiguous NSA M accepts s, we denote the successful computation of s by
Mks.

2.2 Transformation Rules

We �rst de�ne marking functions and linear string homomorphisms, and then
de�ne transformation rules.

5

Marking Functions. A pattern P is a string-regular language. Given a string
s, the pre�x of s at an address i matches P if s#i 2 P . A contextual condition

C is also a string-regular language. The su�x of s at i satis�es C if s"i 2 C.
For each symbol x 2 �, we introduce a marked symbol x. A marked alphabet

� is de�ned as fx j x 2 �g.
A marking function mP

C
is a mapping from �� to (� [�)�. Intuitively, mP

C

marks the symbol at i for every address i such that the pre�x of s at i matches
P , and the su�x of s at i satis�es C. Formally, mP

C
is de�ned as below:

mP

C
(s[1]s[2] : : : s[k � 1]s[k]) = (s[1])0(s[2])0 : : : (s[k � 1])0(s[k])0; (1)

where

(s[i])0 =

(
s[i] (s#i 2 P ; s"i 2 C)

s[i] (otherwise) :
(2)

Linear String Homomorphisms. A replacement string s0 over � is a string
over � [fzg (z =2 �) such that z either does not occur in s0 or occurs as the
�rst symbol. The result of replacing z with a string s is denoted s0(z s).

Let h
�
be a function from � to the set of replacement strings over �. The

linear string homomorphism h determined by h
�
is the function from (� [�)�

to �� de�ned as below:

h(s) =

(
h(s#(n� 1)) s[n] (s[n] 2 �;n is the length of s)

h
�
(s[n])(z h(s#(n� 1))) (s[n] 2 �;n is the length of s) :

(3)

Transformation Rules. A transformation rule is a triplet <P ; C; h>, where P
is a pattern, C is a contextual condition, and h is a linear string homomorphism.
The result of applying this rule to a string s is de�ned as h(mP

C
(s)).

2.3 Applying Transformation Rules to Strings

To implement transformation rules, we need algorithms for pattern matching
and contextual condition testing. Given a pattern P , a contextual condition C,
and a string s, how do we �nd all i's such that s#i 2 P and s"i 2 C?

It is simple to �nd all i's such that s#i 2 P . Let

PM = <P;�; �; p0; Pf> (4)

be a DSA that accepts P . Then, by executing PM for s, we obtain a computation
PMks. s#i 2 p if and only if the (i + 1)-th state of this computation is a �nal
state, namely (PMks)[i+ 1] 2 Pf.

We can also use a DSA to �nd all i's such that s"i 2 C. Let

CM = <C;�; �; c0; Cf> (5)

6

be a DSA that accepts the mirror image of C; that is, CM accepts a string s if and
only if sr 2 C. Then, by executing CM for sr (in other words, for s from its tail to
its head), we obtain a computation CMksr. s " i 2 C if and only if the (n�i+1)-th
character of this computation is a �nite state, namely (CMksr)[n� i+ 1] 2 Cf.

Now that we have algorithms for pattern matching and contextual condi-
tion testing, it is a simple matter to write a computer program that applies a
transformation rule to a string. The marking function mC

P
can easily be derived

from our algorithms, and the linear string homomorphism h is a simple recursive
program.

2.4 Schema Transformation

Now, we can formally state the schema-transformation problem. We want to
prove the following theorem.

Theorem 1. The image of a string-regular language L over � by a transfor-

mation rule <P ; C; h> is string-regular over �.

This theorem directly follows from Lemmas 2 and 3.

Lemma 2. The image of L by mC

P
is string-regular over � [�.

This lemma implies that after constructing the image of L by mC

P
, we no

longer need the original language L, the pattern P , and the contextual condition
C. We only have to consider the constructed image.

Lemma 3. The image of a string-regular language L0 over �[� by h is string-

regular over �.

Lemma 3 is a special case of Theorem 4.16 (linear tree homomorphism) in
G�ecseg and Steinby [5]. Thus, we will not prove this lemma in this paper.

Proof (Lemma 2). We e�ectively construct an NSA that accepts the image as
depicted by Figure 2. The key idea is the construction of a match-identifying

NSA that identi�es matches at the schema-level while accepting L.

Recall that DSA PM = <P;�; �; p0; Pf> accepts P . By allowing any state
as a �nal state, we obtain a DSA

PI = <P;�; �; p0; P > : (6)

Obviously, PI accepts any string. Furthermore, for any string s,

(PIks)[i+ 1] 2 Pf , s#i 2 P : (7)

Likewise, recall that DSA CM = <C;�; �; c0; Cf> accepts fsr j s 2 Cg. The
DSA obtained by allowing any state as a �nal state, namely <C;�; �; c0; C>,

7

pattern P

?

DSA PM

?

DSA PI

contextual condition C

?

NSA CM

?

unambiguous NSA CI

?

input schema DSA M

match-identifying NSA M(P; C)

?

output schema NSA M(P; C)

Fig. 2. Constructing the image of L by mC
P (string case)

accepts any string. We introduce an NSA CI that simulates this DSA in the
reverse order (from the tail to the head). Formally,

CI = <C;�; �0; C; fc0g>; (8)

where �0 is de�ned as

�0(c1; x; c2), �(c2; x) = c1 : (9)

It can be easily seen that every string s has one and only one successful com-
putation by CI, namely the mirror image of the computation of sr by CM. That
is,

CIks = (CMksr)r : (10)

Furthermore,

s"i 2 C , (CIks)[i+ 1] 2 Cf; (11)

since

s"i 2 C , (CMksr)[n� i+ 1] 2 Cf : (12)

Suppose that L is accepted by a DSA

M = <Q;�; �; q0; Qf> : (13)

Let us de�ne a match-identifying NSA M(P ; C) by augmenting M with PI and
CI. First, we de�ne a state set R, initial state set R0, and �nal state set Rf.

R = Q� P � C R0 = fq0g � fp0g � C Rf = Qf � P � fc0g : (14)

8

Second, we de�ne a transition relation � that simulates �, �, and �0.

�((q1; p1; c1); x; (q2; p2; c2)) , �(q1; x) = q2; �(p1; x) = p2; �
0(c1; x; c2) : (15)

Now, we can de�ne a match-identifying NSAM(P ; C) and a marked state set

Rm as follows:

M(P ; C) = <R;�; �;R0; Rf>; (16)

Rm = Q� Pf � Cf : (17)

Obviously,M(P ; C) is unambiguous and accepts L. Furthermore, Rm identi-

�es matches; that is,

(M(P ; C)ks)[i+ 1] 2 Rm , s#i 2 P ; s"i 2 C : (18)

Now, we are ready to construct an NSA M(P ; C) that accepts the image.
We �rst extend the alphabet from � to � [�. Second, we de�ne a transition
relation �0 from R � (� [�) to R; intuitively speaking, we mark the labels of
those transitions in � which lead to marked states. Formally,M(P ; C) is de�ned
as follows:

M(P ; C) = <R;� [�; �0; R0; Rf>; (19)

where

�0(r1; x; r2),

(
�(r1; x; r2); r2 =2 Rm (x 2 �)

�(r1; y; r2); r2 2 Rm; x = y (x 2 �) :
(20)

It can be easily seen that

M(P ; C) k s =M(P ; C) kmP

C
(s) : (21)

Therefore, M(P ; C) accepts fmC

P
(s) j s 2 Lg. ut

3 Transformations of Binary Trees

In this section we extend our observations for the binary tree case. Hereafter,
we do not say \binary trees" but rather simply say \trees".

3.1 Preliminaries

A tree over a �nite alphabet � is � (the null tree) or ahu vi, where a is a symbol
in �, and u and v are trees. We assume that a(2 �) and ah� �i are identical.
The set of trees is denoted by �#. We assign to each t(2 �#), a set of addresses
D(t)(� f1; 2g�) such that

D(t) =

(
; (t = �);

f�g [f1d j d 2 D(u)g [f2d j d 2 D(v)g (t = ahu vi) :
(22)

9

For example, D(ahbhc �idi) = f�; 1; 11; 2g. An address d in D(t) is a leaf address

if d1 =2 D(t) and d2 =2 D(t). For example, 2 is a leaf address of ahbhc �idi, but 1
is not.

The symbol at an address d 2 D(t) is denoted by t[d]. That is, if t = ahu vi,
then t[1] = a; t[1d] = u[d], and t[2d0] = v[d0] (d 2 D(u); d0 2 D(v)). For example,
ahbhc �idi[1] = b. A subtree of t at an address d, denoted t#d, is

t[d]ht[d1]ht[d11]h: : :it[d12]h: : :iit[d2]ht[d21]h: : :it[d22]h: : :iii : (23)

For example, ahbhc �idi#1 = bhc �i.
A deterministic tree automaton (DTA) is a 5-tuple <Q;�; �; q0; Qf>, where

Q is a �nite set of states, � is a function from Q�Q�� to Q, q0 (initial state)
is an element of Q, and Qf (�nal state set) is a subset of Q.

For a tree t and a DTA M = <Q;�; �; q0; Qf>, the computation of t by M ,
denoted Mkt, is a tree over Q such that

Mkt =

(
q0 (t = �);

�((Mku)[�]; (Mkv)[�]; a)hMku Mkvi (t = ahu vi) :
(24)

If (Mkt)[�] 2 Qf, this computation is successful and t is accepted by M . The set
of trees accepted by M is denoted by L(M). If a language L (a set of trees) is
accepted by some DSA M , L is tree-regular.

A non-deterministic tree automaton (NTA) is a 5-tuple <Q;�; �;Q0; Qf>,
where Q and Qf are as above, � is a relation from Q � Q � � to Q, and Q0

(initial state set) is a subset of Q.
For a tree t and an NTA M = <Q;�; �;Q0; Qf>, a computation of t by M

is a tree t̂ over Q such that

t̂ 2 Q0 (t = �); (25)

t̂ = �(û[�]; v̂[�]; a)hû v̂i (t = ahu vi) : (26)

where û and v̂ are computations of u and v, respectively. If t̂[�] 2 Qf, this
computation is successful. If there is at least one successful computation, t is
accepted by M . It is well known that a language is tree-regular if and only if it
is accepted by some NTA. If every tree has at most one successful computation,
M is unambiguous. Furthermore, if an unambiguous NTA M accepts tree t, we
denote the successful computation of t by Mkt.

The rest is borrowed from Nivat and Podelski [11,12]. A pointed tree over a
�nite alphabet � is a tree t over � [f&g (& =2 �) such that & occurs in t once
and only once and the only occurrence is as a leaf. The set of pointed trees over
� is denoted by �(#). The result of replacing & with another pointed tree t0 is
denoted by t0 � t. For example, bh& �i � ah& �i = ahbh& �i�i. Obviously, (�(#); �; &)
is a monoid.

An envelope of a tree t at an address d, denoted t " d, is a pointed tree
obtained from t by replacing t#d with & . For example, ahbhc �idi"1 = ah& di.

A pointed-base tree is a pointed tree of the form ah& ti or aht &i. Any pointed
tree t uniquely decomposes into a sequence of pointed-base trees t1; t2; : : : ; tk

10

such that t = t1�t2�� � ��tk (k � 0). For example, ahbh&�i�i uniquely decomposes
into bh&�i; ah&�i.

A pointed-base tree representation is either a triplet <a; &;S> or a triplet
<a;S; &>, where a 2 �, and S is a tree-regular language over�. The represented
language is de�ned as below:

L(<a; &;S>) = fah& ti j t 2 Sg; (27)

L(<a;S; &>) = faht &i j t 2 Sg : (28)

For example, L(<a; &; fbhc �ig>) = fah&bhc �iig.

A pointed tree representation is a pair < ; E>, where is a bijection from
a �nite alphabet to a �nite set of pointed-base tree representations, and E is
a string-regular language over the domain of . The represented language is
de�ned as below:

L(< ; E>) = ft1 � t2 � � � � � tk j ti 2 L((ei)) for some e1e2 : : : ek 2 Eg : (29)

For example, if dom() = f!g, (!) = <a; &; fbhc �ig>, and E = f!!g, then
L(< ; E>) = fah&bhc �ii � ah&bhc �iig = fahah&bhc �iibhc �iig.

3.2 Transformation Rules

We �rst de�ne marking functions and linear tree homomorphisms, and then
de�ne transformation rules.

Marking Functions. A pattern P is a tree-regular language. Given a tree t,
the subtree of t at an address d matches P if t#d 2 P . A contextual condition C

is a language represented by a pointed tree representation < ; E>. The envelope
of t at d satis�es C if t"d 2 C.

For each symbol x 2 �, we introduce a marked symbol x. A marked alphabet
� is de�ned as fx j x 2 �g.

A marking function mP

C
is a mapping from �# to (� [�)#. Intuitively,

mP

C
replaces t[d] with t[d] for every address d such that t#d 2 P and t"d 2 C.

Formally, mP

C
is de�ned as follows:

mP

C
(t[�]ht[1]ht[11]h: : :i t[12]h: : :ii t[2]ht[21]h: : :i t[22]h: : :iii)

= (t[�])0h(t[1])0h(t[11])0h: : :i (t[12])0h: : :ii

(t[2])0h(t[21])0h: : :i (t[22])0h: : :iii; (30)

where

(t[d])0 =

(
t[d] (t#d 2 P ; t"d 2 C)

t[d] (otherwise) :
(31)

11

Linear Tree Homomorphisms. A replacement tree t0 over � is a tree over
� [fz1; z2g (z1; z2 =2 �) such that 1) z1 and z2 occur in t

0 only as leaf nodes, 2)
z1 occurs at most once, and 3) z2 occurs at most once. For example, ahbhz1 �iz2i
and ahbhz1 �i�i are replacement trees over fa; bg, but ahz1hb �iz2i is not. The
result of replacing z1 and z2 with trees t1 and t2 respectively, is denoted t

0(z1
t1; z2 t2).

Let h
�

be a function from � to the set of replacement trees over �. The
linear tree homomorphism h determined by h

�
is the function from (� [�)#

to �# de�ned as below:

h(t) =

8><
>:
� (t = �);

t[�]hh(t#1)h(t#2)i (t[�] 2 �);

h
�
(t[�])(z1 h(t#1); z2 h(t#2)) (t[�] 2 �) :

(32)

For example, if � = fa; bg, h
�
(a) = ahbhz1 �iz2i, and h

�
(b) = bhz1 z2i, then

h(ahb ai) = ahbhb �iai.

Transformation Rules. A transformation rule is a triplet <P ; C; h>, where
P is a pattern, C is a contextual condition, and h is a linear tree homomorphism.
The result of applying this rule to a tree t is de�ned as h(mP

C
(t)).

3.3 Applying Transformation Rules to Trees

To implement transformation rules, we need an algorithm for pattern matching
and contextual condition testing. As in the string case, the rest is straightfor-
ward.

It is simple to �nd all d's such that t#d 2 P . Let

PM = <P;�; �; p0; Pf> (33)

be a DTA that accepts P . Then, by executing PM for t, we obtain a computation
PMks. s#d 2 P if and only if (PMks)[d] 2 Qf.

Unlike the string case, it is more complicated (but still e�cient) to �nd all d's
such that t"d 2 P . In preparation we �rst introduce some de�nitions and then
introduce a lemma that provides an algorithm for contextual condition testing.

A pseudo-DTA is a 4-tuple <S;�; �; s0>, where S is a �nite set of states,
� is a function from S � S � � to S, and s0 (initial state) is an element of S.
The only di�erence from DTA's is that a pseudo-DTA does not have a �nal set
state. The computation of a pseudo-DTA is de�ned similarly to that of a DTA.

Given a pseudo-DTA N = <S;�; �; s0> and a function � from ��S�f1; 2g
to some �nite alphabet �, we de�ne a function ��N from �(#) to � as below:

(� �N)(t) = t1
0t2

0 : : : tk
0; (34)

where t1; t2; : : : ; tk is the decomposition of t and

ti
0 =

(
�(a; (Nku)[�]; 1) (ti = ah& ui);

�(a; (Nku)[�]; 2) (ti = ahu &i) :
(35)

12

Lemma 4. There exist a pseudo-DTA N = <S;�; �; s0>, a function � from

� � S � f1; 2g to some �nite alphabet �, and a string-regular language F over

� such that t 2 C if and only if (� �N)(t) 2 F .

Proof. We e�ectively construct N; �;F , and leave the rest of the proof to the
reader. The key idea is to make a pseudo-DTA that \accepts" every tree-regular
language that appears as a constituent of some pointed-base tree representation
in range().

By enumerating those constituent tree-regular languages, we obtain a se-
quence S1, S2; : : : , Sn; that is,

fS1;S2; : : : ;Sng = fS j <a; &; S> 2 range() or <a; S; &> 2 range()g: (36)

For a vector x = (x1; x2; : : : ; xn) in f�1; 1g
n, we introduce B(x) (a subset of

�#) as below:

B(x) = Y1 \ Y2 \ � � � \ Yn; (37)

where

Yi =

(
Si (xi = 1);

�# � Si (xi = �1) :
(38)

Obviously, if x 6= y, then B(x) and B(y) are disjoint. Furthermore,[
x2f�1;1gm

B(x) = �# : (39)

Given a DTA

Mi = <Si; �; �i; s
0
i
; Sf

i
> (40)

that accepts Si (1 � i � n), let us de�ne a pseudo-DTA N . First, we de�ne a
state set S and an initial state s0.

S = S1 � S2 � � � � � Sn s0 = (s01; s
0
2; : : : ; s

0
n
) (41)

Second, we de�ne a transition function �.

�((s1; s2; : : : ; sn); (s
0

1; s
0

2; : : : ; s
0

n
); x) = (�1(s1; s

0

1; x); �2(s2; s
0

2; x); : : : ;

�n(sn; s
0

n
; x)) : (42)

Now, we can de�ne N as below:

N = <S;�; �; s0> : (43)

For each vector x = (x1; x2; : : : ; xn) in f�1; 1g
n, we introduce S(x) (a subset

of Sn) as below:

S(x) = Z1 \ Z2 \ � � � \ Zn; (44)

13

where

Zi =

(
S1 � � � � � Si�1 � S

f
i
� Si+1 � � � � � Sn (xi = 1);

S1 � � � � � Si�1 � (Si � S
f
i
)� Si+1 � � � � � Sn (xi = �1) :

(45)

Obviously, if x 6= y, then S(x) and S(y) are disjoint. Furthermore, the DTA
created by adding S(x) to N as a �nal state set accepts B(x); that is,

L(<S;�; �; s0; S(x)>) = B(x) : (46)

Next, we construct a function � from ��S�f1; 2g to �, where � is a �nite
set as below:

� = f<a; &;B(x)>;<a;B(x); &> j a 2 �;x 2 f�1; 1gmg : (47)

Observe that for any s 2 S, there exists one and only one x such that
s 2 S(x). So, the following is a sound de�nition.

�(a; s; 1) = <a; &;B(x)>; where x 2 f�1; 1gm such that s 2 S(x); (48)

�(a; s; 2) = <a;B(x); &>; where x 2 f�1; 1gm such that s 2 S(x) : (49)

Finally, we de�ne a string-regular language F over �. Let � be a substitution

function from the domain of to the powerset of � as below:

�(!) =

(
f<a; &;B(x)> j x 2 f�1; 1gm; xi = 1g ((!) = <a; &;Si>)

f<a;B(x); &> j x 2 f�1; 1gm; xi = 1g ((!) = <a;Si; &>) :
(50)

Language F is de�ned as the image of E by �; that is

F = ff1f2 : : : fi j e1e2 : : : ei 2 E ; fj 2 �(ej); 1 � j � ig : (51)

ut

Lemma 4 yields the following algorithm for contextual condition testing.

Initialization: We �rst construct N; �;F of Lemma 4 as shown in the proof
above, and then construct a DSA FM = <F;�; �; f0; Ff> that accepts the
mirror image of F .

Evaluation of N : By evaluating N for a given tree t, we construct a compu-
tation Nkt.

Evaluation of �: By evaluating � at each address d, we construct a tree u over
� (D(u) = D(t)). If d = d01, then u[d] is �(t[d]; (PMkt)[d2]; 1); if d = d02,

then u[d] is �(t[d]; (Nkt)[d1]; 2). The value at � can be anything, as it is not
important.

Evaluation of FM: By evaluating FM from the root to the leaf nodes, we
construct another tree v over F (D(v) = D(t)) such that (1) if d = �, then
v[d] is f0, and (2) if d = d01 or d02, then v[d] is �(v[d0]; u[d]). Then, t"d 2 C
if and only if v[d] 2 Ff.

The initialization does not depend on t. The other steps only require time
linear to the size of t, as we only have to evaluate �; �, and � for each node.
Thus, this algorithm is linear-time.

14

3.4 Schema Transformation

Theorem 5. The image of a tree-regular language L over � by a transformation

rule <P ; C; h> is tree-regular over �.

This theorem directly follows from Lemmas 6 and 7.

Lemma 6. The image of L by mC

P
is tree-regular over � [�.

Lemma 7. The image of a tree-regular language L0 over � [� by h is tree-

regular over �.

Again, we will not prove Lemma 7 as it is a special case of Theorem 4.16
(linear tree homomorphism) in G�ecseg and Steinby [5].

Proof (Lemma 6). We e�ectively construct an NSA that accepts the image as
depicted by Figure 3. As in the proof of Theorem 1, the key idea is the construc-
tion of a match-identifying NTA.

pattern P

?

PM

?

PI

contextual condition C

? ? ?

N �

?

F

?

FM

?

FI

CI

?

input schema DSA M

match-identifying NSA M(P; C)

?

output schema NSA M(P; C)

Fig. 3. Constructing the image of L by mC

P (tree case)

Recall that DTA PM = <P;�; �; p0; Pf> accepts P . By allowing any state
as a �nal state, we obtain a DTA

PI = <P;�; �; p0; P > : (52)

Obviously, PI accepts any tree. Furthermore, for any tree t,

(PIkt)[d] 2 Qf , s#d 2 P : (53)

15

We suppose an unambiguous NTA

CI = <C;�; �; C0; Cf> (54)

and a subset Cm of C such that (1) CI accepts any tree t, and (2) (CIkt)[d] 2 Cm
if and only if t"d 2 C. We later construct CI and Cm from N = <S;�; �; s0>; �,
and F of Lemma 4.

Suppose that L is accepted by a DTA

M = <Q;�; �; q0; Qf> : (55)

Let us de�ne a match-identifying NTA M(P ; C) by augmenting M with PI and
CI. First, we de�ne a state set R, initial state set R0, and �nal state set Rf.

R = Q� P � C R0 = fq0g � fp0g � C0 Rf = Qf � P � Cf : (56)

Second, we de�ne a transition relation � that simulates �, �, and �0.

�((q1; p1; c1); (q2; p2; c2); x; (q3; p3; c3)) , �(q1; q2; x) = q3; �(p1; p2; x) = p3;

�(c1; c2; x; c3) : (57)

Now, we can de�ne a match-identifying NTA M(P ; C) and a marked state

set Rm as follows:

M(P ; C) = <R;�; �;R0; Rf>; (58)

Rm = Q� Pf � Cm : (59)

Obviously,M(P ; C) is unambiguous and accepts L. Furthermore, Rm identi-

�es matches; that is,

(M(P ; C)kt)[d] 2 Rm , t#d 2 P ; t"d 2 C : (60)

Now, we are ready to construct an NTA M(P ; C) that accepts the image.
We �rst extend the alphabet from � to � [�. Second, we de�ne a transition
relation �0 from R�R�(�[�) to R; intuitively speaking, we mark the labels of
those transitions in � which lead to marked states. Formally,M(P ; C) is de�ned
as follows:

M(P ; C) = <R;� [�; �0; R0; Rf>; (61)

where

�0(r1; r2; x; r3),

(
�(r1; r2; x; r3); r3 =2 Rm (x 2 �);

�(r1; r2; y; r3); r3 2 Rm; x = y (x 2 �) :
(62)

It can be easily seen that

M(P ; C) k t =M(P ; C) kmP

C
(t) : (63)

16

Therefore, M(P ; C) accepts fmC

P
(t) j t 2 Lg.

It remains to show the construction of an NTA

CI = <C;�; �; C0; Cf> (64)

and a subset Cm of C from N = <S;�; �; s0>; �, and F of Lemma 4. The
�rst idea is, as in Section 2, to construct an unambiguous NSA F I from FM =
<F;�; �; f0; Ff>. Formally,

F I = <F;�; �0; F; ff0g>; (65)

where �0 is de�ned as

�0(f1; x; f2), �(f2; x) = f1 : (66)

The second idea is to simulate the execution of N and F I from every leaf d
to the root. A state of CI is thus a pair of s 2 S and f 2 F ; that is,

C = S � F : (67)

The �rst constituent s simulates N . The second constituent f simulates F I for
every path. Notice that we do not need more than one state of F I since all paths
should merge. If not, we make this NTA fail.

An initial state is a pair of the initial state of N and an initial state of F I;
that is,

C0 = fs0g � F : (68)

A �nal state is a pair of any state of N and the �nal state of F I; that is,

Cf = S � ff0g : (69)

A marked state is a pair of any state of N and a �nal state f of FM; that is,

Cm = S � Ff : (70)

Finally, we de�ne transition relation � as

�((s1; f1); (s2; f2); x; (s3; f3)), s3 = �(s1; s2; x); �
0(�(x; s2; 1); f1; f3);

�0(�(x; s1; 2); f2; f3) : (71)

The proof that CI satis�es our assumptions is left to the reader. ut

17

References

1. Arnon, D.: Scrimshaw: A language for document queries and transformations. Elec-

tronic Publishing { Origination, Dissemination, and Design 6 (1993) 385{396

2. Baeza-Yates, R., Navarro, G.: Integrating contents and structure in text retrieval.

SIGMOD Record, 25(1):(1996) 67{79

3. Christophidese, V., Abiteboul, S., Cluet, S., Scoll, M.: From structured documents

to novel query facilities. In SIGMOD 1994, (1994) 313{324

4. Colby, L., Saxton, L., Van Gucht, D.: Concepts for modeling and querying list-

structured data. Information Processing and Management. 30(5): (1994) 687{709

5. G�ecseg, F., and Steinby, M.: Tree automata. Akad�emiai Kiadd�a, Budapest, Hungary,

1984.

6. Gonnet, G., and Tompa, F.: Mind your grammar { a new approach to modelling

text. In Proceedings of VLDB'87, (1987) 339{346

7. Gyssens, M., Paredaens, J., and Van Gucht, D.: A grammar-based approach towards

unifying hierarchical data models. SIAM Journal on Computing, 23, (1994) 1093{

1097

8. Ho�mann, C., and O'Donnell, M.: Pattern matching in trees. Journal of the ACM.

29(1):(1982) 68{95

9. International Organization for Standardization. Information Processing { Text and

O�ce Systems { Standard Generalized Markup Language (SGML), 1986.

10. International Organization for Standardization. Information Technology { Text

and O�ce Systems { Document Style Semantics and Speci�cation Language

(DSSSL), 1994.

11. Nivat, M. and Podelski, A.: Another variation on the common subexpression prob-

lem. Theoretical Computer Science, 114, (1993) 11-11

12. Podelski, A.: A monoid approach to tree automata. In Nivat and Podelski, edi-

tors, Tree Automata and Languages, Studies in Computer Science and Arti�cial

Intelligence 10. North-Holland, (1992) 11-11

13. Wilhelm, R.: Tree transformations, functional languages, and attribute grammars.

In Pierre Deransart and Martin Jourdan, editors, Attribute grammars and their

applications, Springer-Verlag 461, (1990) 116{129

