
Adding Semantics to SGML Databases

Subhasish Mazumdar1, Gary Yuan1, Weifeng Bao1, and Jonathan Price2

1 Department of Computer Science
2 Technical Communication Program

New Mexico Institute of Mining and Technology
Socorro, NM 87801. USA.

Abstract. Huge collections of linked documents can now be e�ciently
stored. However, full online access and electronic publishing through re-
use of document parts require sophistication and precision in queries.
Such a query facility is only possible through the inclusion of appropri-
ate semantic information. Manually adding such information to multi-
gigabyte document sources is daunting for technical writers. Our ap-
proach aims at making this task feasible by exploiting a conceptual
schema of the enterprise. The result is an integrated schema | one that
covers the traditional information system of the enterprise as well as the
information that exists solely in the world of documents.

1 Introduction

We can now store electronically every document ever published by an organiza-
tion, including data sheets, manuals, memos, and reports, and so we can make
them available for online access. Hypertext has made it possible to link these
documents and modern Database Management Systems (DBMSs) have enabled
their e�cient storage and retrieval in parts or as a whole; sound bites, images,
and video clips can now supplement text. These advances have raised the expec-
tation that an online search for information will extract documents and parts
thereof with pinpoint precision, but this expectation has not been realized.

The notion of document itself has begun to degenerate because we can reuse
the material in bits and pieces. Writers are expected to create a new \docu-
ment" quickly by selecting pieces of existing ones and stitching them together.
However, writers attempting such reuse have discovered that a loose, intuitive
organization, tolerable in books, causes major problems in the online world [14].

A step in the right direction towards organization of document collections was
taken through the adoption of SGML (Standard Generalized Markup Language)
[8, 16], as an international standard [11] for document representation. SGML lets
us capture the structure of a class of documents (e.g., memos) by de�ning their
type through a DTD (Document Type De�nition) containing precise grammar
rules about how and where the logical components (e.g., sections, paragraphs,
overviews) can and should occur. All legal document instances (e.g., correctly
structured memos) must conform to that type.

SGML allows a separation of the document structure from its presentation
promoting document reuse and interchange. The power of word search provided

by traditional Information Retrieval Systems is now augmented by the ability to
restrict the search to speci�ed SGML components. In order to get the procedure
for painting hulls of ships of class Container, we can pose the query, Return all
procedures in the manuals on ships of class \Container" that contain the words
'Painting' and 'Hull'.

Unfortunately, even this query capability may not be precise enough. First,
consider a case where a procedure on painting a hull is about painting its com-
ponents and the word hull does not appear inside the procedure | it appears at
a higher structural level such as the enclosing section. Such a situation occurs
frequently in books, because the writers assume the reader has moved through
the chapter title, chapter introduction, title for the group of procedures, and in-
troduction to the group before actually reading the individual procedure; hence
the writers see no need to repeat an \obvious" topic, such as hull. Second, con-
sider the case when ship documentation is not organized by classes of ships but
by individual ships. In this case, the query needs to replace ships of class \Con-
tainer" with a list of the speci�c ship names that belong to the class. This list
is hard to locate among documents but can easily be found elsewhere: the ship-
yard's corporate database. Third, consider a rather subtle case when the hull's
propeller needs special attention while painting and this fact is mentioned only
in the segment of the manual dealing with propellers. This crucial fact would
not be returned and the consequences could be costly. We will return to this
example later. In all these three cases, powerful word search engines are of little
use; consequently, the document databases are unable to extract the relevant
information with precision.

What is lacking is a fuller articulation of what the document pieces are about,
i.e., the associated semantics. In addition to the SGML capability, we need to
pose and answer the query, Return information pertaining to painting of hulls
of ships of class \Container", which is no longer restricted to individual words
and structural elements, but relies more strongly on semantic notions such as
painting (a process), hull (a ship component), and Container (a product line).

How can appropriate semantics be included? One possibility is to extend
the DTD by adding new structural elements re
ecting semantic categories. For
example, a writer may take the structural element procedure and create new
elements procedure for the hull and procedure for the cabin. This causes several
problems. First, the option of making ad-hoc changes to the DTD is not wel-
comed by writers because the process is so di�cult and error-prone. Also, such
a strategy raises the question whether or not such a change is benign to older
documents. Further, the proliferation of elements becomes counterproductive
because writers can no longer remember their intent. We therefore need a way
of adding semantic information without unbounded changes in the DTD.

Any scheme for adding semantic information must face two problems. First,
it is simply infeasible for writers to add lists of semantic notions for every struc-
tural unit (such as paragraphs) of huge documents. Second, unless there is some
correspondence between semantic notions that are likely to be queried and those
that writers feel are appropriate, this becomes a futile exercise. Therefore, we

need a methodology for adding semantic information to documents that ad-
dresses these concerns; only then can we achieve a powerful document query
facility.

In this paper, we outline such a methodology. In the process, we achieve a
happier result: an integrated conceptual schema for the entire company. While
our approach is especially suitable for medium to large-sized companies, small
units following our approach will get increasing bene�ts as they grow.

In summary, our approach consists of the following six steps:

{ The given DTD is modi�ed to allow semantic information to be added.
{ From the DTD, an object-oriented document database is created and all
existing documents are inserted into it; we refer to this database as DOCDB.

{ We work with an integrated conceptual schema S containing two parts: C,
covering the traditional activity of the corporation or enterprise and D, the
world of documents, i.e., S = (C;D). If the corporate database, to which we
refer as CORPDB, exists, it conforms to C.

{ Writers study S and add semantics to document components in DOCDB.
{ C and D are modi�ed to track changes in the enterprise and in documents.

{ Users query the document database using S, i.e., both C and D.

The paper is structured as follows. We discuss the above steps in the following
six sections. Next, we review related work, then state our general conclusions.

2 Modi�cation of the DTD

In order to add semantic information to document components, the DTD needs
to be modi�ed. Seven \semantic" attributes are automatically added to each
component: $creation date (the date of creation of the element), $modi�cation date

(date of last modi�cation), $author (a reference to a person in the enterprise),
$owner (a reference to a department), $status (the current status of this docu-
ment element, e.g., draft, ready, obsolete, con�dential, �nal), $comments (notes
by the author to other authors), and $subject (a list of one or more elements of
the schema S). These attributes are made optional so that the changed DTD
will accommodate all existing unmarked older documents. Also, it is easy to take
our marked document, strip it of these semantic attributes and ship it to other
enterprises who use the original DTD.

While the �rst three of the attributes can be �lled in by the system automat-
ically, $owner may have to be occasionally overridden by the writer. Often, the
DTD will contain attributes very similar to $creation date, $modi�cation date,
$status, or $comments; such redundancy results in a waste of space but results
in a simpler implementation with no loss in query power.

The last attribute, $subject, is the crucial one for us. It is a list of references
to elements in the schema S and to actual database instances; such semantic
information allows a user to query a concept or fact based on S and �nd relevant
document components.

3 Conceptual Schema

A conceptual schema is a (software-independent) high-level description of the
structure of the enterprise (or its working database). A conceptual model is
a language used to specify this schema | typically making use of the ab-
straction mechanisms classi�cation, aggregation, and generalization. The Entity-
Relationship (ER) model has emerged as the leading conceptual model [2]. It
uses the concepts of entity (a class of real world objects), relationships (aggrega-
tion of one or more entities), and attributes (elementary properties of entities or
relationships). Recently, it has been augmented with generalization hierarchies
and composite attributes, forming the Extended ER (EER) model [2].

society

price

name

delivery date

capacity

ship

hull

cabin

navigation

main engine

horse power

cylinders

components d

target of

process

employee department

d

outfitting

painting

reparing

designing

testing

installing

purchasing

name

name

of

inspected by

name

components

components

purchased

ownerowned by

shipyard-built

C

assigned to handled by

C

bow

d

d

flag country

arrival dateprice

constructing

pipeline

person

 idmake

class

classification

ssn#

works_for

equipment

 id

serial#

mid-body

propeller

stern

Fig. 1. A fragment of a shipyard EER model. Each instance of the entity ship has �ve
attributes of which name serves as a unique identi�er; the relationship of indicates that
each ship is of a certain class; the set of employees is a subset of the set of persons; the
set of shipyard-built components have disjoint subsets hull, pipeline, and cabin; each
hull has four important components, bow, mid-body, stern, and propeller.

For example, Figure 1 shows a fragment of an EER schema of a shipyard
manufacturing ships. Entities are denoted by rectangles with attributes in ovals;
unique ones are underlined. Diamonds denote relationships between/among en-
tities. A circled-'d' indicates disjointness of specialized classes, while a circled-'o'
indicates overlap. A circled-'c' denotes the relationship is-component-of, which
is very useful in engineering applications and is part of certain object-oriented
models, e.g., ORION [12].

We study the company and its operations and look for a conceptual schema
C to capture it; we will assume without loss of generality that C will use an EER
model. Typically, we �nd the use of a DBMS for routine transactions for which
a high-level conceptual schema may well be available. Otherwise, we construct
one by reverse engineering [2].

There may be situations when a document component describes an object,
concept, or activity that has not been described in S. The writer then requests
the DBA (DataBase Administrator) 1 to extend S through the addition of one or
more elements so that writers in future may use them as $subject entries. When
the DBA grants the request, these elements get added to S within its D-part. In
fact, S follows an exclusively writer-initiated development having only a D-part
if C is initially empty, as would be the case if the reverse engineering mentioned
earlier is impossible.

4 The Document Database

The modi�ed DTD is translated into an object-oriented schema and implemented
as an object-oriented database on an object-oriented database management sys-
tem (OODBMS). We refer to this database as DOCDB, the document database.
A method for performing this step appears in [5]. Basically, a class is de�ned for
every structural element with an instance variable for each of its attributes. In
order to capture various directives of the DTD, e.g., the title is mandatory but
the acknowledgment is optional, some integrity constraints are added.

Once DOCDB has been created and existing SGML documents are inserted
into it by storing each component as an object in its appropriate class, the
writer starts interacting with the OODBMS using its sophisticated tools. From
this point onwards, each SGML document becomes a virtual one since it is more
e�cient to generate it by assembling its components; also, it is then guaranteed
to conform to the DTD.

Figure 2 shows a part of the architecture of DOCDB: the instance table and
index help speed up search. The instance table contains entity and/or attribute
instances used as $subject entries. The index contains maps of the form x! d,
where x is an entry in an instance table or an element of S and d is a pointer to
a DOCDB object whose $subject entry includes x.

Not shown in the �gure are two archives: the C- and the D-archives. When
we no longer anticipate any more queries on a deleted entity, we may, in the

1 We assume that the schema would be maintained by a DBA, who would have to
sanction all changes to it: a human operation meant to be slow and deliberate.

class name

main_engine make

LGC

Mitsubishi

LGC

Mitsubishi o2

o1
...

...

...

...

...

...

...

attribute valueentity

Instance Table

Index

To

schema
conceptual

main_engine o1

... LGC, main_engine, ...
... Mitsubishi ...

$subject

o2
o1

$subject
We have examined

Mitsubishi engines
are designedship engines and ...

the basic needs of

for low noise; we ...

Fig. 2. The DOCDB. Objects o1 and o2 are document components. Object o1's $sub-
ject includes LGC, an instance of the attribute name of entity class, hence also an
instance of that entity since name uniquely identi�es each instance. It also includes a
reference to the entity main engine itself; this is recorded in the index but not in the
instance table. Object o2's $subject includes Mitsubishi, an instance of the (inherited)
attribute make of entity main engine.

interest of future research, archive the �nal values of instances of that entity
as it existed prior to deletion. These are listed in tabular form (a column for
every useful attribute) in an an ASCII �le and stored in the C-archive. The
instance table is periodically checked for instances that have been deleted; once
a DOCDB object is found having $subject entries consisting solely of deleted
instances, it is automatically added to a D-archive for manual inspection and
possible re-classi�cation. Also not shown is the schema S itself which is accessed
by both writers and users.

5 The Writer's Role

We assume for simplicity that the writer is either reading an existing document
or creating a new one focusing on one section at a time. We also assume that
the writer is familiar with the language of the conceptual model. The system
presents a graphical display of S and optionally the elements of S as a menu.

The writer begins by adding semantic information to the higher-level docu-
ment component such as manual, chapter, or section, by appending to its $sub-
ject list one or more references to elements in S or to actual instances of an entity
or attribute of S (the writer selects the values from a displayed list). For exam-
ple, suppose the writer indicates that a given subsection is about ships of class
Lique�ed Gas Container (LGC) and it also discusses main engines in general.
The system would assign to the semantic attribute $subject of that subsection
object a list of two references: the �rst to an actual instance of the entity class
with attribute name being LGC, and the second to an entity main engine.

Through the hierarchy of document components, the lower ones inherit these
attributes (they are �lled in automatically by the system). For example, on �lling
in the value hull under $subject for a section of a manual, paragraphs objects
inside this section object all inherit this attribute automatically. Queries can
now locate such a paragraph as one about hull even though the word `hull' never
occurs inside it.

Of course, writers sometimes violate their own plan, including materials that
are irrelevant, or, at best, distantly related to the main topic. A subcomponent
could also be much more specialized than the topic de�ned in the section title, or
it could focus on a completely di�erent topic, for instance, to provide historical
or conceptual background for what follows. In such situations, the writer will
have to override the inherited attribute by adding to the $subject attribute,
or modifying it. Because such pinpointing of a particular paragraph does not
involve inserting huge lists of semantic attributes, the writer can focus on the
few topics that di�er from the general ones for the section or chapter.

Writers may also demand changes to the conceptual model. For example,
the design history of a certain class of ships may be extremely interesting and
there may be a great deal of information on that subject in documents; however,
since it is not involved in the daily activities of the company, it neither occurs in
CORPDB nor in C. In this case, the writer asks for the addition of an attribute
design history 2 to the entity ship. This attribute becomes a part of D.

Clearly the semantic information added depends on the diligence of the writ-
ers. But de�ning the topics to be covered in each component already makes
up an important part of the work of the document design, before any writing
or editing begins, and writers routinely devote a lot of thought to the question:
what is this section going to be about? Writers will need to �ll in a form de�ning
$subject attributes for major sections, but after that, the writers may rely on the
attributes trickling down in most cases; for instance, a chapter subject applies
to all the large sections within that chapter, unless speci�cally turned o�, added
to, or modi�ed. So the system does most of the work, and writers need only
make a late-draft pass through identifying unusual or exceptional components.
In addition, an editor could run a cursory check on the list of $subject entries
for a portion of the document to ensure adequate breadth of coverage.

6 Coping with Changes

A very important real-world problem is that the enterprise changes a great deal.
Changes occur as personnel come and go, processes become obsolete, and the
corporation is reorganized. Such changes may make searches problematic. Our
documents preserve semantic information about the enterprise, but the enter-
prise itself must discard concepts as they are outgrown, cancelled, or retired.
Some documents, then, contain passages that describe concepts or properties

2 This should not be confused with the history of the document, i.e., version control;
that issue has been extensively studied by database researchers.

that no longer exist in the enterprise schema. Hence, a person who queries using
only the current enterprise schema as criteria could return empty handed.

We cope with such inevitable change by allowing C and D to be modi�ed
according to an algorithm which, for shortage of space, we outline very brie
y
below. We use the shorthand RID(x) to mean x is Referred In Document, i.e., a
writer has assigned x as $subject of a document component.

For C, nothing needs to be done when it grows. However, when deleting a
RID item, we must ensure that queries on such items are still viable: a deleted
entity or attribute may still be queried for relevant documents. So we delete it
from C and insert it into D. Deletion of relationships have no e�ect.
Delete Attribute a: If RID(a) then move a from C to D.
Delete Entity e: If e may be used in queries, move e from C to D. Further, if
e has been superseded3, then create a mapping table for e
else if e should be archived, then create an e-table in the C-archive.

For D, the addition of new entities or attributes needs no work. If they are
moving from C then their instance table entries already exist. Deletions from D

of RID items are forbidden | writers are asked to reclassify all references to
them before they can claim that the item is obsolete.
Insert Attribute a: Okay.
Insert Entity e: Okay.
Delete Attribute a: If a is being moved from D to C, then okay.
Else if RID(a) then abort; else, clear its instance table (and index) entries.
Delete Entity e: Similar to Delete attribute.

7 Query Processing

Here we outline queries that can be processed using our approach. We state four
queries in English and their translations in an MSQL-like syntax4. The �rst two
queries rely on CORPDB while the last two rely on the schema S. None of these
can be processed by word search alone. The last one especially shows o� the
advantage of the use of a conceptual schema.

Q1 Return section elements and included elements about ships built before 1980.
The information about delivery dates of ships are given precisely in COR-
PDB; hence a subquery o� this database returns a list of ship names which
can be used in DOCDB. Having obtained the relevant document elements,
the OODB is exploited in �nding enclosing section elements.

select section from DOCDB.D
where (D.component.$subject) matches

(select name from CORPDB.ship
where ship.delivery date < 1980 and component � section)

3 An example is the case where departments are reorganized into divisions; queries on
departments need to be re-mapped as queries on divisions.

4 Users need not learn this syntax; they can use a more friendly Query By Example

[19] interface.

Q2 Return information about the design history of ships with Mitsubishi engines.
This query also needs to get the information about which ships are �tted
with Mitsubishi engines o� CORPDB. This is then plugged in to DOCDB.
Here, we assume that design history is in D, and further that the query does
not care which structural element gets returned so long as its $subject refers
to design history and the relevant ships.

select * from DOCDB.D where (D.*.$subject) matches

'design history' and
(select name from CORPDB.ship where ship contains c and c in

(select id from main engine where make='Mitsubishi'))

Q3 Return information about the design history of the ship `Wanda'.
This is a subquery of the previous one. It is based on the integrated schema
which includes a design history attribute for entity ship. This query does not
need any information from CORPDB. It can be processed by looking up the
index for references to design history and the ship named Wanda.

Q4 Return information on painting of hulls of ships of class `LGC'.
For this query, we will outline how the problem indicated in the introduction
can be addressed. The query does not need any information from CORPDB.
However, looking up S, it is clear that hull has a number of subcompo-
nents. It is also apparent from the index of the OODB that at least one
of the other parameters (painting) is relevant to one of the subcomponents
(propeller). This leads to the query processor asking the user if information
about painting of subcomponents of hulls is useful (in the case of general-
ization/specialization hierarchies, this user interaction can be skipped). On
an a�rmative answer, the crucial information about the propeller would be
retrieved. This shows the power of the conceptual model per se.

8 Related Work

Modeling of document databases has long been studied by researchers [6], [9],
[10], who have mainly explored the hierarchical nature of the structure of docu-
ments. Extending the relational database model by augmenting SQL with data
types was suggested by [3]. The appropriateness of the object-oriented model for
SGML has been demonstrated; [5] mapped an SGML DTD into class de�nitions.
Our work can be viewed as an extension of theirs: we add semantics.

It has been recognized that SGML is
exible | enhancing the functionality
of SGML can enhance the functionality of the �nal product [18]. Hence there
have been e�orts to add enhancements to SGML documents augmenting the
scope of queries; three approaches are important. In the �rst [7], an ER schema is
presumed to exist and relevant instances of entities and relationships are included
in documents using special tags. The resulting documents are said to form a
lightweight database because database-like searches are possible on them. We
prefer a stronger insulation between the fast-changing enterprise database and
the more gradually evolving collection of documents. In the second approach

[18], reference links are added from SGML documents to an existing database.
When a document is looked up, certain character strings get translated into
values from the database. They neither deal with semantics, nor with changes in
the enterprise. Our work is orthogonal to theirs: we do not alter the document
content. The last one [15] builds an outlining tool for technical documentation
by adding semantic text as we do. However, they avoid semantic models and are
consequently very restricted in their domain of applicability.

The need for semantics of documents has also been recognized by researchers
in information retrieval [17]. The MIRACLE system [13], based on the INQUERY
engine [4] exploits conceptual models. However, its primary means of document
retrieval remains probabilistic based on occurrences of certain words and phrases.
Moreover, use of the conceptual model is primarily geared towards expansion of
user queries. While this allows more freedom to the user, the queries still need
disambiguation because it is simply impossible to connect all possible user terms
with all corresponding phrases occurring in documents. In our approach, the
conceptual model is the fundamental infrastructure for both writers and users
and is visible to both. In a sense, we place more faith in the user to exploit a
conceptual model and pose queries and modify them according to their responses.

The GRAM system [1] attaches semantics to linked hypertext documents by
placing each document in a class speci�ed by a few attributes. These classes are
nodes in a graph with edges providing the meaning of links between such doc-
uments. A path represents navigation traversing links; a path algebra provides
a query language to users. While this approach provides clarity to hypertext
browsing, it is not adequate for huge detailed collections of documents such as
the suite of manuals for a ship. GRAM can be a good front-end for a hypertext
version of the documents in our DOCDB.

9 Conclusion

There are several advantages of our approach:

{ Our approach scores over automatic indexing and probabilistic search [20]
(note that we do not outlaw such searches, but augment these methods)
because we empower a human writer to clearly de�ne the semantics of docu-
ment pieces instead of relying only on probabilistic word or phrase matching.

{ Our approach is viable and useful for writers. First, it does not require them
to make ad-hoc manual changes to a DTD (in our approach, the DTD is
changed uniformly and automatically). Second, they are not asked to asso-
ciate semantics with every low level structural element of documents such as
paragraphs | a massive and unrealistic task; instead, we exploit the natural
inheritance accompanying the document's structural hierarchy. Third, they
can make sequential read-throughs of documents; reused document portions
reuse the semantic attributes labeled earlier. Fourth, the semantic attributes
are helpful in validating links to portions of other documents.

{ The conceptual schema is a bridge between the writer and the user; it guides
the writer away from arbitrary phrases or codes towards terms whose rele-
vance and meaning the user is fully aware of. The user's awareness of the
concepts and conceptualization is key to the viability of any information
system.

{ Enhanced query support arises from the semantic information added, the
power of the conceptual model used, and use of the information in the enter-
prise database. The absence of any of these elements merely detracts from
the full power but does not invalidate the method. In the worst case, when
none of these are available, our approach degenerates into the word based
search systems.

{ In most enterprises, the world of documents remains divorced from routine
database operations. As a result, users have to anticipate the source of infor-
mation of a given query; for example, while a university's student database
typically contains the schedule of courses to be o�ered in the next semester,
the syllabi of those courses are kept elsewhere. A single integrated schema
for the entire enterprise would be very desirable because of the powerful
and comprehensive queries that it would enable. This is exactly what our
approach achieves while avoiding the pitfalls of post-hoc schema integration
where one creates a separate schema from a new document database and
attempts merger with that of the enterprise.

Our approach faces a problem in very large corporations with heterogeneous
databases where it is very hard to arrive at a single conceptual schema C. Of
course, this is a hurdle faced by any information system trying to span the whole
organization. Typically, the separate autonomous databases belong to di�erent
groups and each group has its own world of documents; thus our approach works
with the individual groups. When company-wide documents need to be created
by Headquarters, each group can export a small part of their schema; our ap-
proach then works for Headquarters' document database using the collection of
these exported schemas.

To summarize, we have outlined a methodology for writers to add semantic
information to a document database which gets integrated with the traditional
conceptual schema of the enterprise, thus creating an information space of the
entire organization, over which powerful queries are enabled. We have imple-
mented parts of this approach using the ObjectStore OODBMS; a complete
working tool is ongoing work.

Acknowledgments We are indebted to anonymous referees for comments and
questions that have helped to improve the paper. Partial support has been pro-
vided to the �rst two authors by the National Science Foundation under contract
IRI-9509789 and to the �rst and third by Sandia National Laboratories.

References

1. B. Amann and M. Scholl. GRAM: A Graph Data Model and Query Language.

In Proceedings of the Fourth European Conference on Hypertext and Hypermedia

ECHT'92., pages 201{211, 1992.
2. C. Batini, S. Ceri, and S. Navathe. Conceptual Database Design. Ben-

jamin/Cummings, 1992.
3. G. Blake, M. Consens, P. Kilpel�aeinen, P.-�A. Larson, T. Snider, and F. Tompa.

Text/Relational Database Management Systems: Harmonizing SQL and SGML.
In W. Litwin and T. Risch, editors, Applications of Databases, Proceedings of the
First International Conference ADB-94, pages 267{280. Springer-Verlag, 1994.

4. J. Callan, B. Croft, and S. Harding. The INQUERY Retrieval System. In Pro-

ceedings of the Third International Conference on Database and Expert Systems

Application, pages 78{83, 1992.
5. V. Christophides, S. Abiteboul, S. Cluet, and M. Scholl. From Structured Docu-

ments to Novel Query Facilities. In Proceedings of the ACM-SIGMOD International

Conference on Management of Data, Minneapolis, Minnesota, pages 313{324, 1994.
6. W. B. Croft and D. W. Stemple. Supporting O�ce Document Architectures with

Constrained Types. In Proceedings of the ACM-SIGMOD International Conference

on Management of Data, San Francisco, California, pages 504{509, 1987.
7. S. Dobson and V. Burrill. Lightweight Databases. In Proceedings of the Third

International World Wide Web Conference, 1995.
8. C. Goldfarb. The SGML Handbook. Clarendon Press, Oxford, 1990.
9. R. H. Guting, R. Zicari, and D. Choy. An Algebra for Structured O�ce Documents.

ACM Transactions on O�ce Information Systems, 7(4):123{157, April 1989.
10. M. Gyssens, J. Paredaens, and D. Van Gucht. A Grammar-based Approach to-

wards Unifying Hierarchical Data Models. In Proceedings of the ACM-SIGMOD

International Conference on Management of Data, Portland, Oregon, pages 263{
272, 1989.

11. ISO8879:1986. Information Processing | Text and O�ce System { Standard
Generalized Markup Language (SGML), 1986.

12. W. Kim, H. Chou, and J. Banerjee. Operations and Implementation of Complex
Objects. In Proceedings of the IEEE Third International Conference on Data

Engineering, 1987.
13. A. M�uller and U. Thiel. Query Expansion in an Abductive Information Retrieval

System. In Proceedings of the RIAO'94. New York., pages 461{480, 1994.
14. J. Price. Introduction: Special Issue on Structuring Complex Information for Elec-

tronic Publication. IEEE Transactions on Professional Communication, 40(2):1{9,
June 1997.

15. C. Tattersall and A. Cole. Modelling the Content of Technical Documentation. In
Proceedings of Electronic Publishing EP-92, pages 223{232, 1992.

16. E. van Herwijnen. Practical SGML. Kluwer Academic, 1994.
17. C. van Rijsbergen. Towards an Information Logic. In Proceedings of the Twelfth

Annual International ACM SIGIR Conference on Research and Development in

Information Retrieval, 1989.
18. M. Yoshikawa, O. Ichikawa, and S. Uemura. Amalgamating SGML Documents

and Databases. In Proceedings of the 5th International Conference on Extending

Database Technology, pages 259{274, 1996.
19. M. Zloof. Query By Example: a Data Base Language. IBM Systems Journal,

16(4):324{343, 1977.
20. J. Zobel, A. Mo�at, and R. Sacks-Davis. An E�cient Indexing Technique for Full

Text Databases. In Proceedings of the Eighteenth International Conference on Very
Large Databases, pages 352{362, 1992.

