
Markup Languages: Theory & Practice 1.1 (1999): 47–74

1998 by Richard W. Matzen

Article

A new generation of tools for
SGML
R. W. Matzen
Oklahoma State University
Department of Computer Science

EMAIL rmatzen@acm.org

Exceptions are used in many standard DTDs, including HTML, because they add
expressive power for DTD authors. However, there is a tradeoff: although they are useful,
exceptions add significantly to the complexity of DTDs. Authoring DTDs is a difficult task,
and existing tools are of limited use because of the lack of a suitable formal model for
exceptions. This paper describes methods for constructing a static model that completely
and precisely describes DTDs with exceptions. A software tool has been written to
implement the methods and to demonstrate some practical applications. Examples are
shown of how the tool is used for DTD authoring, and some useful extensions of the tool
are described. For one example DTD, the output of the tool is converted into a regular
expression grammar. Preliminary studies indicate that general case algorithms can be
developed for this conversion. This would allow existing theory for the context free
languages to be used in developing SGML applications. Statistical results are shown from
running the software tool on a number of industry and government DTDs and for three
successive versions of HTML. The results illustrate that the complexity of DTDs in practice
is approaching, or has exceeded, manageable limits with existing tools. The formal model
and its applications are needed for SGML and continued development of these methods
may impact the evolution of HTML, XML, and related web publishing standards. Some
specific projects are proposed, where continued development of the model can result in
more powerful tools and new kinds of applications for SGML.

Introduction

Exceptions have a dual personality; they are a powerful tool, but they also cause
problems. They are used in many DTDs, including HTML, because they are
useful for DTD authors: 1. They add to the expressive power of SGML by
providing a concise representation for complex content models; 2. They provide a
method for controlling recursion introduced by model groups; and 3. They add to
the language power of SGML; there are document types defined by DTDs with
exceptions that cannot be defined by a DTD without exceptions.

Although exceptions are useful for DTD authors, there is a tradeoff; they add
significantly to the complexity of DTDs. As the use of exceptions increases, it

48 R.W. Matzen

Markup Languages: Theory & Practice | Volume 1 No 1

becomes more difficult to understand the DTD. In practice, DTDs can be so
complex that even the DTD author(s) do not fully understand them; they may
contain errors and/or be limited in scope. This complexity also implies higher
costs for DTD design and subsequent document processing. These problems are
primarily due to a lack of a suitable static model for DTDs with exceptions. In
ISO 8879 the effect of exceptions is defined on the model groups associated with
elements in particular contexts in document instances. This operational definition
is easy to implement at run time; SGML parsers maintain a stack of currently
applicable exceptions while parsing the document instances. However, this is not
a complete static model and therefore is of limited use for reasoning about DTDs.

This paper provides a formal foundation for a new generation of tools for
SGML: a static formal model that provides a complete and precise view of DTDs
with exceptions. A prototype software tool has been developed to implement the
model and to illustrate its potential. The output of the software tool is extended
in several ways to provide information for understanding (viewing) DTDs with
exceptions and for detecting and correcting errors caused by exceptions. One
form of the output is converted into a regular expression grammar for a DTD.
Preliminary studies indicate that a general case algorithm can be developed for
this conversion. This would allow the existing theory of the context free
languages to be applied to SGML. Even without a general case solution the model
supports new kinds of applications for SGML.

This paper assumes that the reader has the necessary background in SGML:
an understanding of DTDs and exceptions. In the next section, “Definitions”,
new terms are defined that illustrate the properties of exceptions and that support
the methods that follow; these definitions are consistent with the standard [ISO,
“SGML”]. The “Methods” section describes a static formal model of DTDs with
exceptions and a prototype software tool that constructs this model. Examples in
“New tools for DTD design and analysis” show how to use and extend the
output of the software tool. “Extending the model” shows an example of
converting a DTD with exceptions into two important forms: a pseudo-equivalent
DTD without exceptions and an equivalent regular expression grammar. Related
work on formal language models for DTDs with exceptions is also described. The
“Results” section shows the results from applying the software tool to some
industry and government DTDs and to HTML. These results illustrate the
complexity of DTDs with exceptions and demonstrate the need for new, more
powerful tools for SGML. The results also show that the model and the software
tool work for large DTDs currently in use. “Publishing on the World Wide Web”
discusses current alternatives for web based publishing, and it describes how the
methods shown in the previous sections can be useful in each of these scenarios.
The final two sections state the conclusions of this paper, and describe specific

A new generation of tools for SGML 49

Winter 1999 | Markup Languages: Theory & Practice

directions for continued work, where the results could significantly reduce the
costs of implementing SGML.

Definitions

The definitions in this section illustrate the properties of exceptions and provide a
foundation for the remainder of the paper. They are consistent with the
definitions in the standard [ISO, “SGML”]. Example 1, a simple DTD and
document instance, are used to illustrate the definitions.

Example 1. A DTD with exceptions and a corresponding document instance.

<!DOCTYPE book [
<!ELEMENT book (header,(chapter)+) +(pagebrk)>
<!ELEMENT chapter (header?,(para)+) >
<!ELEMENT header (#PCDATA) -(pagebrk) +(bold) >
<!ELEMENT para (para | #PCDATA)* +(bold) >
<!ELEMENT bold (#PCDATA) -(bold) >
<!ELEMENT pagebrk EMPTY >
]>

A document instance for the DTD (the indentation is for illustration only):

<book>
 <header>A <bold>Really</bold> Good Book</header>
 <chapter>
 <header>Chapter 1<header>
 <para>It was a <bold>dark and stormy<bold> night</para>
 </chapter>
</book>

Definition 1. Declared exceptions. The declared exceptions for an element A
in some document instance are the exceptions declared in the content model of A.
The declared exceptions consist of two sets: the declared inclusions and the
declared exclusions. Either set (or both) may be empty. The declared exceptions
are denoted by +() and -().

In the DTD in Example 1 the declared inclusions for book are +(pagebrk)
and the declared exclusions are -(), the empty set. The declared exceptions for
chapter are +() and -(), both empty sets. The declared exceptions for header are
+(bold), -(pagebrk), for para they are +(bold), -(), and for bold they are +(),
-(bold). Element type pagebrk has declared content; element types with declared
content can contain no subelements, and thus can have no declared exceptions,
which also is denoted as: +(), -().

50 R.W. Matzen

Markup Languages: Theory & Practice | Volume 1 No 1

Definition 2. Inherited exceptions. The inherited inclusions of an element A
occurring in a document instance, are the union of the declared inclusions of all
ancestors of this occurrence of A. The inherited exclusions of A are the union of
the declared exclusions of all ancestors of A. The notation used for inherited
exceptions is the same as that used for declared exceptions.

The inherited exceptions for a particular element depend on the context in
which the element occurs. In the following description of inherited exceptions we
refer to particular elements in Example 1. The same statements apply to any
element of the same type that occurs in the same context (same ancestors) in any
document instance. The inherited exceptions for the book element are empty,
because it has no ancestors. The inherited exceptions for the header immediately
within the book are +(pagebrk), -(), and the inherited exceptions for the bold
within the para within the chapter within the book are +(pagebrk, bold), -().

Definition 3. Applicable exceptions. The applicable exceptions of an element
A in a document instance are the inherited exceptions of A unioned with the
declared exceptions of A:

applicable exclusions = inherited exclusions ∪ declared exclusions
applicable inclusions = inherited inclusions ∪ declared inclusions

The definition of applicable exceptions does not consider the precedence of
exclusions over inclusions. This is given in Definition 4. For the document
instance in Example 1, the applicable exceptions for the book element are
+(pagebrk), -(). The applicable exceptions for the book level header are
+(pagebrk, bold), -(pagebrk), and for the bold within the para within the chapter
within the book are +(pagebrk, bold), -(bold).

Definition 4. Net exceptions. The net exceptions are the exceptions that are
active for a particular element in a particular context. They are the same as the
applicable exceptions, except that exclusions (either declared or inherited)
override inclusions (either declared or inherited). The net exceptions of an
element are defined by:

net exclusions = inherited exclusions ∪ declared exclusions
 = applicable exclusions
net inclusions = (inherited inclusions ∪ declared inclusions)
 − (inherited exclusions ∪ declared exclusions)
 = applicable inclusions − applicable exclusions

The notation used for net exceptions is curly braces, +{} and -{}. The net
exclusions for all elements are the same as the applicable exclusions. For the DTD
and document instance in Example 1, the net inclusions for the book element are
unchanged because there is no intersection between the applicable inclusions and

A new generation of tools for SGML 51

Winter 1999 | Markup Languages: Theory & Practice

the applicable exclusions. The net inclusions for the book level header are +{bold}
and for the bold within the within the book are +{pagebrk}.

SGML parsers are two-stage parsers; they parse an input DTD and then
construct a parser for the valid document instances. While parsing the document
instance they dynamically compute the net exceptions using a run time stack. The
net exceptions for an element may be calculated in two ways: direct from the
equations shown above or by :

net exclusions = net exclusions of parent ∪ declared exclusions
net inclusions = (net inclusions of parent ∪ declared inclusions)
 − net exclusions

This second method is more efficient because the intermediate inclusion sets are
usually smaller: the net inclusions of an element’s parent will always be a subset
of the inherited inclusions of the element. Equivalence between these two sets of
equations can be shown by simple proofs using the definitions of exceptions and
some elementary properties of sets.

For elements with content models, the content of the element in some context
in a document is defined by the model group and the net exceptions. Definitions 5
and 6 describe this property of document instances in terms of DTDs.

Definition 5. Dynamic content model. For a DTD, D, a dynamic content
model (DCM) for an element type A defined in D, is the model group for A and a
set of net exceptions that apply to some occurrence of an A element in some
document instance defined by D. For each context in which an element can occur,
the DCM (the model group and the net exceptions) completely defines the
allowed content of the element. For the purposes of this definition, all element
types are assumed to be defined by a content model: for element types with
declared content of CDATA or RCDATA the model group is equivalent to
(#PCDATA), and the model group for element types with declared content of
“EMPTY” is NULL. Because exceptions do not apply to elements with declared
content, the net exceptions for all DCMs with declared content are empty.
Therefore, element types with declared content have exactly one DCM.

Each element in a DTD has a finite number of DCMs. Let I be the set of all
possible sets of inclusions for a DTD and let E be the set of all possible sets of
exclusions; then I and E are both the power set of the set of elements defined in
the DTD. Therefore they must be finite sets, and (I × E), the possible pairs of
inclusions and exclusions, is also a finite set. Then, since each element type
defined in the DTD has a finite number of DCMs, the number of DCMs for the
DTD is finite. The DCMs for an element type are distinguished from each other
by their respective sets of net exceptions. A unique version number (index) is
assigned to each DCM to distinguish it from other DCMs of the same element

52 R.W. Matzen

Markup Languages: Theory & Practice | Volume 1 No 1

type (Example 2, Table 1). Definition 6 illustrates how each DCM occurs in
specific context with other DCMs.

Example 2. Dynamic content models (DCMs). The DCMs for the following
DTD are shown in Table 1.

<!DOCTYPE A [
<!ELEMENT A (B | C) >
<!ELEMENT B (C) +(X) >
<!ELEMENT C (#PCDATA) >
<!ELEMENT X (#PCDATA) -(X) >
]>

Table 1 Dynamic content models for Example 2.

element.
version

model
group

net
inclusions

net
exclusions

A.1 (B | C) {} {}
B.1 (C) {X} {}
C.1 (#PCDATA) {} {}
C.2 (#PCDATA) {X} {}
X.1 (#PCDATA) {} {X}

Definition 6 DCM tree. A DCM tree for a DTD is a tree in which each node
represents a DCM of the DTD. The root node is the DCM for the document level
(top) occurrence of the DOCTYPE element. The children DCMs (nodes) are
derived from the parent as follows: a. The element types of the children are
determined by the model group and the net exceptions of the parent DCM. b.
Each child’s net exceptions are determined by the exceptions inherited from the
parent and from the child’s declared exceptions.

A DCM tree shows the context in which each DCM can occur in relation to
other DCMs of the DTD. The name of each node in the tree is the element name
plus a version number for the DCM; each node also has labels (attributes) for the
net inclusions and the net exclusions. Note that the version numbers of each node
will vary depending on the traversal order. The leaf nodes of a DCM tree are
DCMs that have no children. This can occur in one of the following ways:

1. The element type has declared content.
2. The element type has a model group that contains no element names, and

there are no net inclusions.
3. All elements in the model group of the element and any included elements are

excluded by net exclusions. A DCM tree for the DTD in Example 2 is shown
in Figure 1. This tree was constructed in breadth first order. A depth first
construction results in exactly the same tree except that the version numbers of
the two C nodes are reversed.

A new generation of tools for SGML 53

Winter 1999 | Markup Languages: Theory & Practice

Figure 1 A DCM tree for the DTD in Example 2.

Recursion can be introduced into DTDs by model groups and also by inclu-
sions; at least some paths of DCM trees for recursive DTDs are nonterminating.
For the DTD in Example 2, the inclusion of X for B naturally introduces
recursion (Xs within Xs), but the exclusion of X for X nullifies it. Because there is
no recursion, all paths of the DCM tree for this DTD terminate with leaf nodes
that have no children.

Methods

All DCM trees have abbreviated representations in which all paths terminate.
This is accomplished by terminating a path whenever a DCM occurs that has
already occurred somewhere else in the tree. All paths are guaranteed to
terminate because there are a finite number of DCMs (shown in the previous
section). Terminating paths by this method implies that there is some order for
constructing the abbreviated tree. A depth first construction will result in a
different abbreviated tree than a breadth first construction. The version numbers
associated with nodes will be different as illustrated in Figure 1; in a depth first
construction the version numbers for C.1 and C.2 would be reversed. Also, for
abbreviated trees that terminate some paths using the second occurrence rule, the
node configurations of the tree will be different. In either case, the core DCMs
(elements, model groups, net exceptions) contained in the tree will be the same.

An abbreviated DCM tree for the DTD in Example 1 (constructed in breadth
first order) is shown in Figure 2. ‘*’ denotes a DCM that has already occurred in
the construction. DC denotes a leaf node that has declared content, and thus can

54 R.W. Matzen

Markup Languages: Theory & Practice | Volume 1 No 1

have no children. Any leaf node that is not marked by DC or * has no children
for reasons 2 or 3 in Definition 6.

Abbreviated DCM trees have the following properties:

1. The abbreviated tree shows the correct context for each DCM that appears in
the tree. This is direct from the construction, which applies the SGML
definitions for determining the content of an element.

2. All DCMs of the DTD will be in the abbreviated tree. This is direct from the
definitions of SGML and from the rules for terminating paths.

3. There are a finite number of nodes in the abbreviated DCM tree (all paths
terminate).

4. The abbreviated tree completely represents the entire (unabbreviated) DCM
tree. A simple proof shows that the subtree of a DCM node must be the same
as the subtree of any other node of the same DCM.

A software tool has been developed to construct abbreviated DCM trees and
output them in list form. The output for the DTD in Example 1 is shown in Table
2. The algorithm for constructing the tree is straightforward, given the definition
of DCM trees and the rules for abbreviating paths. The software tool implements
a breadth first construction. This has a distinct advantages over a depth first
construction: it results in a tree that is wide rather than deep and in practice this
has been shown to be more effective for viewing the results.

Table 2 Output DCM tree (list form) with input DTD from Example 1.

element.
version

model group net exceptions children

book.1 (header, (chapter)+) +{pagebrk} -{} header.1, chapter.1,
pagebrk.1

header.1 (#PCDATA) +{bold} -{pagebrk} bold.1
chapter.1 (header?, (para)+) +{pagebrk} -{} header.1, para.1,

pagebrk.1
pagebrk.1 EMPTY +{} -{}
bold.1 (#PCDATA) +{} -{pagebrk, bold}
para.1 (para | #PCDATA)* +{pagebrk, bold} -{} para.1, pagebrk.1,

bold.2
bold.2 (#PCDATA) +{pagebrk} -{bold} pagebrk.1

The software tool has been modified to annotate the names of the model
group elements and the net inclusions with their DCM version numbers as
follows. For each DCM encountered in the traversal of the tree there is an
element name and an associated version number. The children of each DCM are
derived from the model group elements plus the net inclusions minus the net
exclusions. Therefore, for each DCM there is a version number associated with
each model group element and with each element in the net inclusions (The net

A new generation of tools for SGML 55

Winter 1999 | Markup Languages: Theory & Practice

Figure 2 An abbreviated DCM tree for the DTD in Example 1.

exclusions have no associated version number because they are not children of
the DCM). This gives a complete description of the DCM tree in a more concise
format than in Table 2 or in a graphic representation of the tree. This format is
called an expanded DTD and is shown in Table 3. Applications for expanded
DTDs are described in “Extending the model”.

Table 3 Expanded DTD for the input DTD from Example 1.

element.
version

annotated
model group

annotated
net exceptions

book.1 (header.1, (chapter.1)+) +{pagebrk.1} -{}
header.1 (#PCDATA) +{bold.1} -{pagebrk}
chapter.1 (header.1?, (para.1)+) +{pagebrk.1} -{}
pagebrk.1 EMPTY
bold.1 (#PCDATA) +{} -{pagebrk, bold}
para.1 (para.1 | #PCDATA)* +{pagebrk.1,bold.2} -{}
bold.2 (#PCDATA) +{pagebrk.1} -{bold}

56 R.W. Matzen

Markup Languages: Theory & Practice | Volume 1 No 1

New tools for DTD design and analysis

DTD design is a complex, expensive, and error prone process. Exceptions are a
big part of the complexity problem, but they are used in many DTDs because
they add significant expressive power for DTD authors. The software tool
described in the previous section constructs abbreviated DCM trees. Some
features have been added to the tool to support DTD design and analysis; these
and other proposed extensions to the tool are described in this section. The
output for all of the examples in this paper was generated by the software tool,
except for formatting and where otherwise noted. This is the first tool to provide
a complete and precise view of DTDs with exceptions. Other available tools for
DTD design typically provide a method of viewing parent/child relationships
between elements via a tree or some other graphic method [Pepper, “Whirlwind
Guide”]. However, these trees are not abbreviated (finite) and their utility in
reasoning about DTDs is limited.

Example 1 is a simple DTD with limited use of exceptions, and the results
shown could be derived manually. However, most practical DTDs are much
larger, and there are no previously existing algorithms to derive the abbreviated
DCM trees. The statistics in the “Results” section illustrate that without effective
automated tools it is very difficult to understand the scope of typical DTDs with
exceptions or to determine if the use of exceptions has caused errors. In
particular, it is difficult to determine if the DTD actually defines the desired
document type: Are any elements included in contexts in which they are not
intended? Are any elements excluded from, or not included in, contexts in which
they are intended? Several extensions to the output of the software tool are
shown in this section to help answer these questions.

The DTD in Example 3 illustrates how exceptions can cause errors; we
assume that author of this DTD intended to implement the following: Revision
elements (rev) are used to mark sections of a document that have been revised.
Revisions can occur directly within chapters and/or paragraphs (para); nested
revisions (revisions within revisions at any level of nesting) are not allowed.
Nested lists and nested paras are also not allowed. Paras are allowed within items
within lists, but any other nesting of paras with lists is not allowed. The exclusion
of para from para was used to implement this restriction on mutual nesting of
paras and lists (unfortunately it has an undesirable side effect). Bold elements are
allowed as immediate subelements of either paras or revs nested within paras, but
not in any other context, including nested bolds.

The abbreviated DCM tree for the DTD in Example 3 is shown in list form
in Table 4. The DCMs for each element type are listed together, rather than in
order of occurrence in the traversal; this makes it easier to view all DCMs for one
element type. Figure 3 shows a graphic version of the abbreviated DCM tree (for
brevity, it does not show the exceptions for each DCM). Both forms of the tree

A new generation of tools for SGML 57

Winter 1999 | Markup Languages: Theory & Practice

are useful for viewing the DTD, and for detecting elements included in contexts
not intended and detecting elements excluded from contexts in which they are
intended. Both of these types of errors occur in Example 3: 1. Bold elements can
occur in contexts not intended, as immediate subelements of lists (list.3) and
items (item.2). 2. Paras are excluded from a context in which they are intended; a
side effect of excluding paras from paras is that some items (item.2) cannot
contain any paras.

Example 3. A DTD with exceptions.

<!DOCTYPE book [
<!ELEMENT book (chapter+) >
<!ELEMENT chapter (rev | para | list)+ >
<!ELEMENT para (rev | #PCDATA)* -(para) +(bold)>
<!ELEMENT list (item+) -(list)>
<!ELEMENT item (para*) >
<!ELEMENT rev (para | list | #PCDATA)* -(rev) >
<!ELEMENT bold (#PCDATA) -(bold) >
]>

Table 4 Element ordered abbreviated DCM tree (list form) for the DTD in
Example 3.

Element.
version

model group net exceptions children

book.1 (chapter+) +{} -{} chapter.1
chapter.1 (rev | para | list)+ +{} -{} rev.1,para.1,list.1
para.1 (rev | #PCDATA)* +{bold} -{para} rev.2, bold.3
para.2 (rev | #PCDATA)* +{bold} -{rev, para} bold.1
para.3 (rev | #PCDATA)* +{bold} -{rev, para, list} bold.2
para.4 (rev | #PCDATA)* +{bold} -{para, list} bold.4, rev.3
list.1 (item+) +{} -{list} item.3
list.2 (item+) +{} -{rev, list} item.1
list.3 (item+) +{bold} -{rev, para, list} bold.2, item.2
item.1 (para*) +{} -{rev, list} para.3
item.2 (para*) +{bold} -{rev, para, list} bold.2
item.3 (para*) +{} -{list} para.4
rev.1 (para | list | #PCDATA)* +{} -{rev} para.2, list.2
rev.2 (para | list | #PCDATA)* +{bold} -{rev, para} bold.1, list.3
rev.3 (para | list | #PCDATA)* +{bold} -{rev, para, list} bold.2
bold.1 (#PCDATA) +{} -{rev, para, bold}
bold.2 (#PCDATA) +{} -{rev, para, list, bold}
bold.3 (#PCDATA) +{} -{para, bold}

bold.4
(#PCDATA) +{} -{para, list, bold}

58 R.W. Matzen

Markup Languages: Theory & Practice | Volume 1 No 1

Table 4 provides a useful reordering of the DCM list for the particular
problems of determining inclusion/ exclusion correctness. However, the output is
still too verbose for some kinds of DTD analysis. In particular, many of the net
exclusions have no effect on the model group. For example, all of the net
exclusions for all DCMs of the bold element type have no direct effect on the
model group; there are no model group elements to exclude. This is an important
concept for analyzing DTDs with exceptions, and it is formalized in Definition 7.

Definition 7. The local effective exceptions are the net exceptions that have
some effect on the model group of an element in context, but not necessarily on
its subelements. Most inclusions are locally effective; even if an element occurs in
the model group, including the element will usually extend the context in which it
can occur in the containing element. Many exclusions are not locally effective;
they have no effect on the model group of the element, even though they may
affect the content of subelements within it. A net exclusion is effective if and only
if the excluded element is in the model group. Local effective exceptions are
denoted by +[] and -[]. Note that most of the net exceptions shown in Table 4
are not effective; they simply “pass through” elements without effecting their
model groups, such as -{para} for all the para DCMs. In some cases such as
bold.1–bold.4, the net exceptions also happen to have no affect on any children.
Thus, the effective exceptions are a much more accurate measure of how
exceptions actually affect the DTD. This property is used in the next section as a
metric for DTD complexity.

Table 5 DCMs with local effective exceptions.

Element
version

model group local effective
exceptions

para (rev | #PCDATA)*
para.1 +[bold] -[]
para.2 +[bold] -[rev]
para.3 +[bold] -[rev]
para.4 +[bold] -[]
list (item+)
list.3 +[bold] -[]
item (para*)
item.2 +[bold] -[para]
rev (para | list | #PCDATA)*
rev.2 +[bold] -[para]
rev.3 +[bold] -[para,list]

Table 5 shows the DCM tree from Table 4 in a reduced form, with only the
local effective exceptions listed; the output is now focused on the exceptions that
immediately affect the content of the elements, not necessarily their subelements.

A new generation of tools for SGML 59

Winter 1999 | Markup Languages: Theory & Practice

The output is reduced further by listing the model groups only once. With these
reductions there is much less output to examine to answer the questions about
correctness: Are any elements included in contexts not intended? Are any
elements excluded from contexts in which they are intended?

The output in Table 5 is useful, but for large DTDs it is still too verbose for
some purposes (for the HTML 4.0 DTD there are 2,481 DCMs with effective
exceptions). In Table 6, the local effective exceptions of all DCMs for each
particular element type are unioned together. This format is the most effective for
detecting the two errors in the DTD of Example 3 because it reduces the
information to a minimum: the bold elements are included in some contexts not
intended (items and lists) and the para elements are excluded from a context in
which they are intended (some item). Note that some information is lost in this
format, and it is not suitable for certain types of questions. For example, it can
not be used to answer the question: is the para element excluded from all
intended contexts? This would require the information given in Table 5, or Figure
3. The para element should be excluded from rev.2 and rev.3, but not from rev.1.

Figure 3 Abbreviated DCM tree for DTD in Example 3.

60 R.W. Matzen

Markup Languages: Theory & Practice | Volume 1 No 1

Table 6 Local effective exceptions: unioned together for each element.

element model group all local effective exceptions
para (rev | #PCDATA)* +[bold] -[rev]
list (item+) +[bold] -[]
item (para*) +[bold] -[para]
rev (para | list | #PCDATA)* +[bold] -[para,list]

Other useful DTD analysis features can be implemented by extending or
modifying the software tool:

1. The abbreviated DCM tree for the DTD in Example 3 has only 23 nodes, but
the number of nodes for HTML 4.0 exceeds 80,000 (see Table 9). Clearly, the
batch format output of the software tool is not suitable for large DCM trees;
interactive access to the results is important to continued development.
Traversing a graphic version of the abbreviated DCM tree would be very
useful for general purpose DTD analysis with some limitations imposed by the
size of typical abbreviated trees; the user should be able to focus the traversals
based on particular exceptions, particular element types, and other criteria.
Also, it would be useful to annotate the nodes with the declared and effective
exceptions, in addition to the net exceptions, and allow the user to view any of
these on request.

2. Determine if infinite recursion exists in the DTD and show where it occurs;
infinite recursion occurs at each leaf node that is a repeated DCM and that
also has children. Some DTDs are designed to allow infinite recursion even
though this generally causes confusion for applications that process SGML
documents. This formal specification for the recursion in DTDs provides a
foundation for resolving this confusion.

3. For each element type, construct parent/child lists: complete listings of all
parents and all children of the element in all its possible contexts. This is
typically done manually for DTD analysis and documentation purposes; for
large DTDs with exceptions it is difficult and is likely to result in errors. A
useful extension of this feature would be to output complete ancestor and
descendant lists, which is not feasible to do manually.

4. Detect DTDs that allow exclusion errors, rather than detecting actual
occurrences of these errors while parsing document instances. This is an
important feature that can eliminate serious problems, since detecting exclu-
sion errors while parsing documents is analogous to detecting bugs in a
software program after it has been released for use.

5. Detect inaccessible element types: those elements that cannot occur in any
document, because they do not occur in a model group, or because they have
been excluded in all possible contexts. These are currently detected by the
software tool; if there is no DCM for the element type, then it is inaccessible.

A new generation of tools for SGML 61

Winter 1999 | Markup Languages: Theory & Practice

Extending the model

Expanded DTDs are a compact list form of abbreviated DCM trees (Table 3). In
an expanded DTD each DCM has its own modified element declaration; the
element type for each declaration is the element name plus the version number. In
Table 7, the expanded DTD for Example 3 is shown in a slightly modified form
that is output by the software tool; the exceptions for each modified element
declaration are the local effective exceptions of the DCM, rather than the net
exceptions. The model group elements and the inclusions for each modified
element declaration are annotated with their respective version numbers (directly
from the DCM tree). The model group elements marked with an ‘X’ for a version
are those that have an effective exclusion and cannot be children. The first
subsection of this section shows how expanded DTDs can be used to convert
DTDs with exceptions into pseudo-equivalent DTDs without exceptions, and the
second shows how to derive a context free specification for a DTD with
exceptions.

Table 7 Expanded DTD for Example 3.

element.
version

annotated model group local effective exceptions

book.1 (chapter.1+)
chapter.1 (rev.1 | para.1 | list.1)+
rev.1 (para.2 | list.2 | #PCDATA)*
para.1 (rev.2 | #PCDATA)* +[bold.3]
list.1 (item.3+)
para.2 (rev.X | #PCDATA)* -[rev] +[bold.1]
list.2 (item.1+)
bold.1 (#PCDATA)
item.1 (para.3*)
para.3 (rev.X | #PCDATA)* -[rev] +[bold.2]
bold.2 (#PCDATA)
rev.2 (para.X | list.3 | #PCDATA)* -[para] +[bold.1]
bold.3 (#PCDATA)
list.3 (item.2+) +[bold.2]
item.2 (para.X*) -[para] +[bold.2]
item.3 (para.4*)
para.4 (rev.3 | #PCDATA)* +[bold.4]
rev.3 (para.X | list.X | #PCDATA)* -[para,list] +[bold.2]
bold.4 (#PCDATA)

Removing exceptions from DTDs
For the general case, it is not possible to convert a DTD with exceptions into an
exactly equivalent DTD without exceptions. However, it is possible to convert

62 R.W. Matzen

Markup Languages: Theory & Practice | Volume 1 No 1

DTDs with exceptions into useful, pseudo-equivalent DTDs without exceptions.
In a pseudo-equivalent DTD, the different DCMs for an element type each have
their own element declaration as shown in Table 8. The most difficult part of this
conversion is already accomplished by the software tool (Table 7); methods for
the remainder of the conversion are described below.

In expanded DTDs the exceptions affect only the model group of the element
types (DCMs) to which they apply. Thus, the exceptions can be merged into
(applied to) the model groups. The result is an expanded DTD without
exceptions, that is pseudo-equivalent to the original DTD. For each modified
element declaration, perform the following steps:

1. Modify the model group to reflect the effect of any exclusions.
2. Determine if there are any required elements in the model group for which

there are corresponding effective exclusions; these are precisely the situations
where exclusion errors can occur in document instances of the original (non-
expanded) DTD. For the normal case when there are no exclusion errors
proceed with Steps 3–4.

3. Modify the model group to reflect the effect of any inclusions.
4. Simplify the model groups (if necessary) so that they are not ambiguous as

defined and prohibited by the standard [ISO, “SGML”]. This definition of
ambiguity is generally equivalent to nondeterminism in regular expressions
[Brüggemann-Klein and Wood, “Validation”].

For many cases Steps 1–4 can be performed with little effort and with no
special handling. For example, the DTD in Table 8 was derived from Table 7 by
heuristically applying Steps 1–4. It is equivalent to the DTD in Table 7, and it is
pseudo-equivalent to the original DTD in Example 3. The heuristic approach is
useful because it allows the user to view the original DTD at a level of detail not
previously available and provides opportunities to correct errors and delete
unnecessary declarations. For example, the logical errors in the DTD from
Example 3 can be corrected by changing the model group for the list.3
production in Table 8 to (item.2)+, and the model group for item.2 to (para.2*).
These changes prevent bolds from occurring in contexts not intended (lists and
items) and allow paras where needed (item.2).

These error corrections can alternatively be accomplished by simply changing
the list.3 model group to (item.1)+ and then removing the useless declaration for
item.2. In general, the expanded DTDs are not optimized; they may contain
unnecessary element declarations. For example, in Table 8 the productions for
the bold DCMs all have the same model group, (#PCDATA). If all occurrences of
the bold.2–bold.4 DCM names in model groups are replaced with bold.1, then
the

A new generation of tools for SGML 63

Winter 1999 | Markup Languages: Theory & Practice

Table 8 An equivalent expanded DTD without exceptions.

element.
version

annotated model group
(with exceptions applied)

book.1 (chapter.1+)
chapter.1 (rev.1 | para.1 | list.1)+
rev.1 (para.2 | list.2 | #PCDATA)*
para.1 (rev.2 | #PCDATA | bold.3)*
list.1 (item.3+)
para.2 (#PCDATA | bold.1)*
list.2 (item.1+)
bold.1 (#PCDATA)
item.1 (para.3*)
para.3 (#PCDATA | bold.2)*
bold.2 (#PCDATA)
rev.2 (bold.1 | list.3 | #PCDATA)*
bold.3 (#PCDATA)
list.3 (bold.2*, (item.2, bold.2*)+)
item.2 (bold.2*)
item.3 (para.4*)
para.4 (rev.3 | #PCDATA | bold.4)*
rev.3 (#PCDATA | bold.2)*
bold.4 (#PCDATA)

declarations for bold.2–bold.4 can be removed. Future work should include
developing an efficient algorithm to minimize the number of element declarations
in an expanded DTD.

The pseudo-equivalent DTDs are a useful form. As described above, they
allow authors to design DTDs using the expressive power of exceptions while
managing their undesirable side-effects. They can also be used to replace an
existing DTD; tools can be developed that map the base element names in the
document instances to their appropriate DCM versions. This process could
support conversion to XML, an SGML based processing standard for the web
that does not allow exceptions (see “Publishing on the World Wide Web”).
[Maler, “Exceptions”] describes some heuristic techniques for removing
exceptions from DTDs. The expanded DTDs (Table 7) can be a useful tool in this
approach.

There is previous work on applying exceptions to model groups (Steps 1 and
3 above) and detecting exclusion errors (Step 2). The results are mostly
theoretical and omit some details ([Matzen, “Model”]; [Kilpeläinen and Wood,
“SGML and Exceptions”]). Previous work, special cases, and remaining open
problems are described below.

64 R.W. Matzen

Markup Languages: Theory & Practice | Volume 1 No 1

Step 1: Applying effective exclusions to model groups cannot be accom-
plished by simply removing the elements and their associated operators. For the
modified element declaration:

 <!ELEMENT A.1 (B | (C, D)) -[C] >

this approach would result in the model group (B | D), which is incorrect because
a single D element is not valid content for A.1. Because C is a required element in
the subgroup (C, D), the entire subgroup must be excluded. In [Kilpeläinen and
Wood, “SGML and Exceptions”] a direct approach is given for applying
exclusions to model groups: convert the model group to a regular expression,
then replace all occurrences of the excluded element in the expression with ∅, the
empty set. The resulting expression defines the model group as affected by the
exclusions. Although no implementation details are given, this approach appears
to be correct if algorithms are implemented to reduce the resulting expressions
using basic properties of regular expressions given in (Aho and Ullman, 1972).
Another method for applying exclusions to model groups is described in [Matzen,
“Model”]: the model group is converted to a finite state automata (FSA), then all
transitions on excluded elements are removed from the FSA.

Regardless of which method is used a problem can occur. Consider the
modified element declaration:

 <!ELEMENT A.1 (B?) -[B] >

The result of applying the exclusion is (B?) = (B | ε) = (∅ | ε) = (ε), the
empty string, which is not a valid model group, and thus cannot be used in an
element declaration. However, no exclusion error occurs because B is an optional
element.

Empty content is allowed as the result of applying an exclusion at run time,
even though it is not allowed as a model group (empty content in element
declarations is expressed as declared content of EMPTY). Changing the content
model of A.1 to declared content of EMPTY is not a good solution, because the
old document instances will contain end tags, and elements declared as EMPTY
cannot have end tags. [Kilpeläinen and Wood, “SGML and Exceptions”] propose
interpreting/modifying the standard so that a result of (ε) is an exclusion error.
Although this may be a reasonable interpretation, it implies compatibility
problems with existing SGML parsers. There is an ad hoc method of handling
this case that does not require this modification to the data or changing the
standard: define a dummy (unused) element type, D, and use the model group,
(Dε) instead of () in the element declaration of A.1.

A new generation of tools for SGML 65

Winter 1999 | Markup Languages: Theory & Practice

Step 2: There are two considerations for exclusion errors: how to detect them
and what to do when they are detected. The standard gives guidelines for
identifying required elements, but it does not require SGML parsers to detect and
report exclusion errors (attempts to exclude required elements). Some parsers
report them at run time while parsing document instances, but it has not been
shown that their implementations are complete and correct. The algorithms
described above for applying exclusions can directly be used to detect exclusion
errors; they occur anytime that the model group defines no content, ∅, after the
exclusions are applied. For example, in the modified declaration

 <!ELEMENT A (B, C) -[B] >

the model group defines the content of an A as a B followed by C. If all content
containing a B is excluded, the resulting model group defines no content, (B, C) =
(∅, C) = (∅). Thus, an exclusion error will occur in a document instance. There is
an important distinction between no content, ∅, and the set containing only the
empty string, {ε}. Note that the original model group does not allow the empty
string, and therefore will still not allow it when all strings containing B are
excluded.

When exclusion errors are detected, the standard specifically states that there
is no defined action: the document instances may be processed by ignoring the
exclusion, they may be rejected as invalid documents, or some other action may
be taken. One primary reason that the standard allows DTDs that cause exclu-
sion errors is that there previously has been no method for detecting them in the
DTD. However, given the results here, the most reasonable way to handle these
errors is to detect and reject DTDs that allow them to occur rather than detecting
them while parsing document instances, which is analogous to detecting program
errors when they occur on certain input values. Also, the lack of defined actions
complicates run time detection by encouraging nonstandard implementations.

For the cases where a DTD cannot be rejected, Step 1 can be modified so that
the resulting expanded DTD defines the correct document type for the two cases:
either accepting or rejecting the document instances that cause the exclusion
errors. To accept them simply do not apply the exclusion that causes the error.
To reject them remove the offending modified element declaration, then remove
any references to it. For example, if the element declaration for some DCM A.1
has an exclusion error, remove the declaration for A.1, then apply an exclusion of
A.1 to all element declarations with A.1 in the model group. If applying these
exclusions causes further exclusion errors, then continue this process recursively
until done. The resulting DTD defines all document instances defined by the
original DTD, except those that contain the original excluded element(s) in the
contexts that cause exclusion errors.

66 R.W. Matzen

Markup Languages: Theory & Practice | Volume 1 No 1

Step 3: A method for applying inclusions to model groups is outlined in
Section 11.2.5.1 of the standard: for a model group M, for all applicable
inclusions, (R1, R2, ...RN), for M, for all QX, where Q is either a parenthesized
subgroup of M or a token A in M (an element or #PCDATA), and for all
occurrence indicators, X (*, ?, +, or null), replace QX with the expression,

 (R1 | R2 | ... | RN)*, (Q, (R1 | R2 | ... | RN)*)X

This approach redundantly applies the inclusions to the parenthesized subgroups
of M; they need only be applied to the tokens. [Kilpeläinen and Wood, “SGML
and Exceptions”] show a modified approach that eliminates this redundancy. For
each token A in the model group, replace A with:

 (R1 | R2, ... | RN)*, A, (R1 | R2 | ... RN)*

Both versions omit an outermost set of parenthesis that can result in a model
group containing more than one kind of connector (|, &, or comma), which is a
syntax error. The second version omits the parenthesis binding an occurrence
indicator X of A to its new operand “A, (R1 | R2 | ... | RN)”. This can
cause problems, as illustrated by the modified element declaration:

 <!ELEMENT A (B+) +[C] >

the result of applying the inclusion of C using the second version is:

 <!ELEMENT A ((C)*, B, (C)*+) >

which will not parse because of adjacent occurrence indicators. Resolving this by
ordinary operator precedence results in

 <!ELEMENT A ((C)*, B, ((C)*)+) >

which allows C to occur anywhere as intended, but only allows one occurrence of
B, which is an error. Adding the parenthesis resolves this problem: for each
element A and occurrence indicator X, replace AX with:

 ((R1 | R2 | ... | RN)*, (A, (R1 | R2 | ... | RN)*)X)

Do the same for A = #PCDATA, but add an explicit * occurrence indicator for X
when X is null. Although proof of correctness is not given, this appears to be a
solution except for the special case described below. Comments and observations

A new generation of tools for SGML 67

Winter 1999 | Markup Languages: Theory & Practice

are invited. [Matzen, “Model”] gives an algorithm for applying inclusions to
FSAs constructed from model groups.

[Kilpeläinen and Wood, “SGML and Exceptions”] observe a special case that
must be handled, regardless of which method is used: the standard specifies that
if an element in a document instance can match both a model group element and
an inclusion, it is matched to the model group element. For the declaration:

 <!ELEMENT top (a | b) +[a] >

the revised method for applying inclusions results in:

 <!ELEMENT top ((a*, (a, a*)) | (a*, (b, a*))) >

which is incorrect: any string aibak, for i > 0, is not valid content for top, because
by this special rule, the first a in the string matches the a from the original model
group. This eliminates any possible string match with the b. The revised method
described above for applying inclusions can be modified to handle these cases.
Index the symbols in the model group: ((a1*, (a2, a3*)) | (a4*, (b5, a6*))). Then
using the methods described in [Brüggemann-Klein and Wood, “Validation”],
determine if any symbol in any input string can match two indexed symbols, ai

and aj, where one is from the original model group and the other is an included
element. For each such case, remove the ai* for the included element from the
expression. For the above example, the first a in a string can match the model
group element a2 as well as two included elements a1 and a4. Removing the a1*
and a4* results in ((a2, a3*) | (b5, a6*)) = ((a, a*) | (b, a*)) which is correct.

Step 4: Maintaining unambiguity after inclusions are applied is a more
difficult problem; more is required than is shown in Step 3 above. [Kilpeläinen
and Wood, “SGML and Exceptions”] state that methods exist that preserve
unambiguity of the original content model, but details of implementation are not
given for the general case. Heuristic approaches can be useful, as illustrated by
Table 8.

Context-free specifications for DTDs with exceptions
The methods described above can be modified to obtain an important general
result. For each DTD with exceptions there is an equivalent regular expression
grammar; regular expression grammars are equivalent to the context free
grammars [Woods, “Augmented transition networks”]. A regular expression
grammar is a set of productions: the left side of each production is a nonterminal
symbol, the right side is a regular expression over the terminal symbols (tokens)
and the nonterminals, and one nonterminal is the start symbol.

A DTD with exceptions can be converted to a regular expression grammar as
follows. First construct the expanded DTD with effective exceptions (Table 7).
Then perform Steps 1–3 above to derive the expanded DTD without exceptions

68 R.W. Matzen

Markup Languages: Theory & Practice | Volume 1 No 1

(Table 8). Maintaining unambiguity (Step 4) may be desirable, but is not required
for this result. Also, the requirements for Steps 2 and 3 are relaxed; they need
only to derive a regular expression, not a valid model group. After performing
Steps 1–3, modify the resulting regular expressions as follows: prepend a begin
tag and append an end tag, but use the original element names in the tags, rather
than the annotated element names (DCMs). Thus, the modified element
declaration

 <!ELEMENT para.1 (rev.2 | #PCDATA | bold.3)* >

becomes the production

 para.1 → <para>, (rev.2 | #PCDATA | bold.3)*, </para>

For clarity, the SGML operators are used here rather than their equivalent regular
expression operators. The DCM names are the nonterminals, and the begin tags,
end tags, and data characters in #PCDATA are the terminal symbols. The para
elements are defined by all of the productions for para DCMs, each providing the
correct content definition for para elements in the particular context. The result
of applying this step to each modified element declaration is a regular expression
grammar that is equivalent to the original DTD with exceptions (Example 3).

There is previous work on context free models of DTDs with exceptions, but
the primary focus has been theoretical. In [Matzen, “Model”] methods are out-
lined for constructing systems of finite automata from DTDs with exceptions and
the OMITTAG feature. Systems of finite automata are a context free class of
recognizers that are equivalent to regular expression grammars [Woods,
“Augmented transition networks”] In [Kilpeläinen and Wood, “SGML and Ex-
ceptions”] an algorithm is outlined for converting DTDs with exceptions into
structurally equivalent extended context free grammars.

Results

The DTD in Example 3 is a simple DTD; the errors in it could be detected easily
by anyone competent in DTD design. However, in practice, DTDs are much
larger and more complex. The results shown in this section illustrate the com-
plexity of DTDs currently in use, and they show the need for new tools to assist
in DTD design and other SGML applications. The software tool to implement
Algorithm 1 was run on seven DTDs:

1. The DTD from Example 3.

A new generation of tools for SGML 69

Winter 1999 | Markup Languages: Theory & Practice

2. HTML 2.0. The first version of HTML to be formally defined by an SGML
DTD [Connolly, “HTML”].

3. HTML 3.2. The last W3 recommendation for HTML ([Raggett, “HTML
3.2”].

4. Both HTML 2.0 and 3.2 have optional elements. The choices made for this
paper did not affect the results in Table 9 significantly (± 5%).

5. HTML 4.0. An early version of HTML 4.0 ([Raggett, “HTML 4.0 (WD)”].
Results for the current W3 recommendation, “frameset” version of HTML 4.0
[Raggett et al., “HTML 4.0”] will be available on the Markup Languages Web
site.

6. CALS 38784C. The baseline DTD for the Department of Defense Continuous
Acquisition and Lifecycle Support initiative [Department of Defense, “MIL-M-
38784C”].

7. J2008. The automobile and truck industry DTD for emission related automo-
tive service information [SAE, “J2008”].

8. RIF-EPC. Railroad Industry Forum Electronics Parts Catalogue [Railroad
Industry Forum, “Electronic Parts Catalog DTD”].

No attempts were made to determine the correctness of the above DTDs. This is
best answered by the respective DTD authors; it requires understanding the
semantic specifications for each DTD, as well as the authors’ intents and limita-
tions. Instead, statistics were compiled for each DTD; the results are shown in
Table 9. The first three rows reflect the size of the DTD and the use of excep-
tions. The values in rows 4–6 provide a rough measure of the overall complexity
of the DTD and the effects of exceptions on it, and they are proportional to the
complexity of the DTD. Rows 4 and 5 are rough measures and in some cases
grossly overstate complexity. Row 6 is the most accurate of these values for
measuring DTD complexity caused by exceptions.

Table 9 Statistics/Results for DTDs.

Example 3 HTML
2.0

HTML
3.2

HTML
4.0

CALS RIF-EPC J2008

Number of element
types in the DTD

7 46 67 89 146 99 130

Element types with
declared exceptions

4 8 7 10 18 17 27

Total number of
declared exceptions

5 35 44 75 33 39 165

Number of DCMs in
the DTD

19 148 282 2887 1037 495 729

Nodes in the abbre-
viated DCM tree

23 1759 5902 82,236 9909 1102 4242

DCMs with local
effective exceptions

8 86 130 2481 1020 76 493

70 R.W. Matzen

Markup Languages: Theory & Practice | Volume 1 No 1

The results in Table 9 clearly show that DTDs currently in use are complex.
Implementing SGML applications is expensive, and the cost is proportional to the
complexity of the DTD. Future work should include a study of refining the
methods shown in Table 9 to provide more accurate metrics for DTD complexity.
This would be useful for minimizing the impact of exceptions on DTD complex-
ity and also for estimating costs for SGML applications.

Publishing on the World Wide Web

The growth in the HTML DTD shown in Table 9 has been necessary to support
the increased demand for processing by the various parties publishing on the web:
more sophisticated formatting (style/presentation), interactive forms, applets, etc.
Because these new features require increased representation of structure in the
HTML DTD, its complexity is approaching manageable limits with existing
tools. There are currently two distinct paths in the evolution of web based
publishing:

1. Continue expanding the HTML DTD in response to demands for new
processing ([Press, “Not TV”]; [Raggett, “HTML 4.0 WD”]; [Raggett et al.,
“HTML 4.0”]). Given the rapid growth, this scenario requires the
development of new tools for understanding and processing HTML. Without
these tools the HTML DTD will become unmanageable in the near future. The
methods in this paper can help to extend the lifetime of this single DTD
approach.

2. There have been proposals to adopt generalized SGML as a publishing
standard for the web ([Press, “Not TV”]; [Sperberg-McQueen and Goldstein,
“HTML to the Max”]). These have evolved into the Extensible Markup
Language (XML), a new standard for web publishing that is a subset of SGML
[Cover, “SGML/XML Web Page”]; it maintains the meta-language capabilities
of arbitrary DTDs, but it eliminates many features of SGML that contribute to
its complexity. It eliminates exceptions because of the problems with under-
standing their effects on DTDs and related complexity in processing. The
methods in this paper provide an alternate solution to this problem; they are a
strong argument for keeping the expressive power of exceptions in XML, and
this in turn may contribute to its success. In the event that exceptions are not
added to XML the model and tool are still applicable to XML, for modeling
DTDs with recursion.

The methods described for converting DTDs with exceptions into pseudo-
equivalent DTDs without exceptions can be used for SGML DTD to XML
DTD conversions. However, it is not clear that these conversions will be
widely used, because a processing standard called Extensible Style Language

A new generation of tools for SGML 71

Winter 1999 | Markup Languages: Theory & Practice

(XSL) [Cover, “SGML/XML Web Page”] is being developed that does not
need DTDs to publish (view) the document instances. In XSL, processing
instructions are defined for elements in particular contexts, and these can be
identified when parsing the document instances. However, there are currently
no tools to provide a finite representation of all possible elements in context,
particularly for DTDs with exceptions; this makes it difficult to determine if a
set of processing specifications is complete and correct. The construction of
abbreviated DCM trees can be modified to provide this finite representation,
and this will be useful for developing complete XSL specifications when
publishing SGML data in an XML/XSL environment.

Conclusions

The results in Table 9 illustrate the complexity of DTDs with exceptions, which
in turn implies high costs for DTD design and corresponding problems with
quality. These results also show that the complexity of some DTDs is approach-
ing (or has exceeded) manageable limits given existing tools for designing and
understanding them. There is clearly a need for more powerful tools for DTD
design and analysis and for subsequent SGML processing. The software tool
described in this paper is useful for understanding (viewing) DTDs with excep-
tions and for detecting errors caused by the incorrect use of exceptions. Several
practical extensions of the tool are described that provide other new capabilities
for DTD analysis. Because exceptions are an integral part of SGML, any general-
ized SGML tool must support them. There are previous theoretical results for
formal language models of DTDs with exceptions ([Matzen, “Model”];
[Kilpeläinen and Wood, “SGML and Exceptions”]). However, this is the first
description of an implementation, and thus it provides a foundation for a new
generation of applications and tools. Some of these are discussed in the section on
“Future work”.

SGML is used to define the syntax (structure) of documents. It does not di-
rectly address the semantics (processing), but it does provide a structural founda-
tion for attaching processing specifications. Standards for processing SGML have
not been widely accepted because they are complex and difficult to implement;
one of their primary limitations is the lack of a complete static view of SGML
structure. The model in this paper provides this view; it will be useful in imple-
menting existing processing standards and important for developing new, more
robust approaches to SGML processing.

The expanded DTDs output by the software tool are a powerful extension of
the model; these can be used to construct DTDs without exceptions that are
pseudo-equivalent to the original DTDs with exceptions. This allows authors to

72 R.W. Matzen

Markup Languages: Theory & Practice | Volume 1 No 1

design DTDs using the expressive power of exceptions while managing their side-
effects. Also, the methods shown for converting DTDs with exceptions to regular
expression grammars provides a powerful formal foundation, the existing theory
for the context free languages, to be used in developing new kinds of SGML
applications. The continued development of the methods and tools described in
this paper can be a significant factor in the future success of SGML, and they
could affect the evolution of HTML, XML, and other standards for the World
Wide Web.

Future work

There are specific areas where continued work could result in new tools for
existing applications such as DTD design, and also for new kinds of applications.
Developing these tools could significantly reduce the costs of implementing
SGML.

1. Develop a complete DTD design and analysis tool based on the methods and
the software tool described in this paper. Include interactive focused traversals
of abbreviated DCM trees, query based features such as examining recursion,
and automatic features such as detection of DTDs that allow exclusion errors.
Also, add other features based on an extended study of the practical problems
encountered in DTD design and analysis.

2. Extend the model to provide a finite representation of all possible contexts for
elements, which are the basic units that may have different processing re-
quirements. This can be accomplished by minor modifications to abbreviated
DCM trees. This extended model will be generally useful for formally commu-
nicating processing specifications for DTDs, and it will be directly applicable
to developing XSL processing instructions for XML. Also, this extended model
will be useful for studying comprehensive new approaches to SGML process-
ing.

3. Refine the methods presented in “Results”, to develop more precise metrics for
the structural complexity of DTDs. This will be useful in determining feasibil-
ity and for estimating costs for SGML projects.

4. Given the algorithms shown here for constructing context free specifications
for DTDs with exceptions, it may be possible to develop a solution to the DTD
subset problem: are the documents defined by one DTD a subset of those de-
fined by another. Then, version compatibility could be automatically con-
firmed. For example, are all HTML 3.2 documents valid under HTML 4.0.
Even though the subset problem is not solvable for the general case of the con-
text free languages, begin and end tags may make this a solvable problem for
SGML [Sperberg-McQueen, “Complexity”].

A new generation of tools for SGML 73

Winter 1999 | Markup Languages: Theory & Practice

Received 22 June 1998
Revised 31 July 1998

Acknowledgments

I would like to acknowledge the contributions to this work by Dr. G. E. Hedrick
and Dr. K. M. George of Oklahoma State University, and I wish to express my
deep appreciation for their steadfast support.

References

Brüggemann-Klein, A., and D. Wood. “The
Validation of SGML Content Models”. Mathe-
matical and Computer Modeling 25:4 (1997):
73–84.

Connolly, D., and T. Berners-Lee, eds.
“Hypertext Markup Language — 2.0”. RFC
1866. [Cambridge, Mass.]: MIT/W3C,
September 22, 1995. The DTD itself (dated
June 6, 1995) is at http://www.w3.org/
MarkUp/html-spec/html-s.dtd.

Cover, R., SGML/XML Web Page,
http://www.sil.org/sgml/, Dec. 1997.

Hopcroft, J. E., and J. D. Ullman. Introduction to
Automata Theory, Languages, and
Computation. Reading: Addison Wesley,
1979, pp. 29–35.

ISO (International Organization for
Standardization). International Standard ISO
8879 Information Processing — Text and
office systems — Standard Generalized
Markup Language (SGML). [Geneva]: ISO,
1986.

Kilpeläinen, P., and D. Wood. “SGML and
Exceptions”. In D. Wood and C. Nicholas,
eds. PODP 96: Proceedings of the Third
International Workshop on Principles of
Document Processing (Palo Alto, California,
Sept. 1996) pp. 39–48. Springer-Verlag,
Berlin, October, 1997, Lecture Notes in
Computer Science, Volume 1293.

Maler, E. “SGML Exceptions and XML”.
ArborText white paper, 1998.
http://www.arbortext.com/sgmlexpt.html.

Matzen, R. W. “A Formal Language Model for
Detecting Ambiguity in SGML”. Diss.
Oklahoma State University, 1993.

Matzen R. W. “Unraveling Exceptions”. In
Conference Proceedings: SGML/XML 97.
Washington, D.C.: Graphics Communication
Association, December, 1997, pp. 289–295.

Matzen, R. W., K. M. George, and G. E. Hedrick.
“A Model for Studying Ambiguity in SGML
Element Declarations”. In Proceedings of the
1993 ACM / SIGAPP Symposium on Applied
Computing (February 14–16, Indianapolis,
Indiana). New York: ACM, 1993, pp. 668–
676.

Pepper, S. “The Whirlwind Guide to SGML Tools
and Vendors”. Oslo: Falch, 1997.
http://www.falch.no/people/pepper/
sgmltool.

Press, L. “The Internet is Not TV: Web
Publishing”. Communications of the ACM 38.3
(March 1995): 17–23.

Raggett, D., HTML 3.2. http://www.w3.org/
MarkUp/Wilbur/html32.dtd, January 14,
1997.

Raggett, D., HTML 4.0.
http://www.w3.org/TR/WD-html40/
sgml/html4.dtd, July 8, 1997.

Raggett, D., Le Hors, A., and Jacobs, I. HTML
4.0 http://www.w3.org/TR/REC-html40/
frameset.dtd, April 24, 1998.

Railroad Industry Forum, Railroad Industry Forum
— Electronic Parts Catalogue DTD, 1996,
http://www.eccnet.com/rif/rif-epc.dtd,
February 13, 1996

SAE (Society of Automotive Engineers). “J2008
DTD for Interactive technical Manuals”. 1993.
http://www.sil.org/sgml/gov-
apps.html#j2008.

Sperberg-McQueen, C. M., and R. F. Goldstein.
“HTML to the max: A manifesto for adding
SGML intelligence to the world wide web”. In
Proceedings of the Second Web Conference
(Chicago, Oct. 1994).
http://www.ncsa.uiuc.edu/SDG/IT94.

74 R.W. Matzen

Markup Languages: Theory & Practice | Volume 1 No 1

Sperberg-McQueen, C. M. “Re: Measuring the
complexity of DTDs” post to newsgroup:
comp.text.sgml, article # 6469, May 12,
1997.

United States Department of Defense, MIL-M-
38784C,ftp://ftp.fedworld.gov/pub/
cals/cals.htm (38784C.ent) May, 1991.

Woods, W. A. Augmented Transition Networks for
Natural Language Analysis. Report No. CS–1,
The Aiken Computation Laboratory, Harvard
University, Dec. 1969, pp. 60–99.

