
S P E C I A L F E A T U R E

78

1089-7801/ 97/$10.00 ©1997 IEEE IEEE INTERNET COMPUTING

XML:
A Door to
Automated Web
Applications
ROHIT KHARE

MCI Internet Architecture
ADAM RIFKIN

California Institute of Technology

In Japanese culture, your meishi conveys your place in the compa-
ny, even in society, as well as your name, phone number, and e-
mail address. That is to say, in Japan, business cards matter. They

convey complex metadata about the people who carry them.
Like people, Web pages come in an abundance of shapes and sizes

(and sounds). What makes them machine interpretable—and there-
fore a new medium for communicating information globally—is
Hypertext Markup Language. HTML allows the structural markup
of Web documents, distinguishing the elements of a page with tags
and declaring the physical relationships among the various document
elements (for example, “this is a new paragraph” or “this is empha-
sized from its surrounding text”). This organizes the display of infor-
mation and allows humans to read and use it.

To give machines this capability, however, requires semantic
markup, identifying what each particular element means on its own
(for example, “this is a home street address” or “this is an e-mail
address”). Semantic markup would change what is now simply dis-
played content to machine-readable, structured content.

The eXtensible Markup Language (XML) specification, first
released as two working drafts in Spring 1997 by the World Wide Web
Consortium (see the sidebar, XML Timeline), makes it dramatically
easier to develop and deploy domain- and mission-specific Web pages.
In this article, we describe the evolution of the Web’s data representa-
tion from display formats to structural markup to semantic markup.

THE DEVELOPMENT OF MARKUP LANGUAGES
The idea that structured documents could be exchanged and manip-
ulated if published in a standard, open format dates back to work
done in the 1960s. In one endeavor, a committee of the Graphic
Communications Association (GCA) created GenCode to develop
generic formatting codes for clients who wanted to send the same data

HTML allows the

structural markup of

Web documents. XML

takes document markup

to the next level, with

machine-readable

semantic organization

of networked data.

..

X M L

79

IEEE INTERNET COMPUTING h t tp ://computer.org/ in te rne t/ JULY • AUGUST 1997

.

The World Wide Web Consortium (W3C) is a vendor-neutral
international industry consortium founded in 1994 to develop
common protocol specifications for the evolving WWW. When
an important new issue relevant to the Web arises W3C team
members organize a workshop to collect information, opin-
ions, and ideas. This leads to the formation of a working group
with specific short-term goals, watched over by an editorial
review board of experts elected by W3C members.

W3C results may enter the IETF standards track. For exam-
ple, W3C and the IETF are currently in partnership on the
development of HTTP 1.1 and Distributed Authoring and
Versioning.

The W3C SGML working group was chartered for a single
year from July 1996–1997 with Jon Bosak of Sun Microsystems
as chair, and Dan Connolly as the W3C staff contact person.
Table A presents some of the milestones in the XML effort.

Table A. Milestones in the XML specification development.

Month Activity

July 1996 W3C work on SGML officially began. Initial XML draft charter can be viewed at
(http://www.w3.org/pub/WWW/MarkUp/SGML/Group/”#charter).

September 1996 Report on the Generic SGML activity at the Seybold Conference, San Francisco, Calif.

November 1996 Bert Bos’ presentation at the SGML 96 Conference, Boston, Mass., (http://www.w3.org/TR/WD-
xml-961114.html).

January 1997 Peter Flynn began the FAQ “Commonly Asked Questions about XML” (http://www.ucc.ie/xml/).

February 1997 Imperial College, London, formed (and continues to host) the “xml-dev” mailing list for XML
developers (http://www.lists.ic.ac.uk/hypermail/xml-dev/).

March 1997 First XML Conference in San Diego, Calif., by the Graphic Communications Association.
Revised XML Syntax Working Draft (http://www.w3.org/TR/WD-xml-lang-970331.html).

April 1997 Initial XML Linking Working Draft (http://www.w3.org/TR/WD-xml-link-970406.html).

XML was formally presented by the W3C at the Sixth International World Wide Web Conference,
Santa Clara, Calif. (http://www.w3.org/pub/WWW/Conferences/WWW6/).

May 1997 Approval of a technical corrigendum to ISO 8879:1986 to align features of XML with the SGML
standard at the May 1997 meeting of ISO/IEC JTC1/SC18/WG8, Barcelona
(http://www.sgmlsource.com/8879rev/n1929.htm).

June 1997 New versions of the XML Syntax and Linking Working Drafts available.

December 1997 SGML/XML 97 Conference, Washington, D.C., will see the release of near-final specifications and
the initial edition of a standard style sheet language for XML publishing applications based on
DSSSL (ISO/IEC 10179), along with the public text and extensions Web browsers will need to
implement it.

XML TIMELINE

from different typesetters to different vendors. GenCode
allowed them to maintain an integrated set of archives
despite the records being set in multiple types.

In another effort, IBM developed the Generalized
Markup Language for its internal publications, in part to
assist with the management of documents of all types, from
manuals and press releases to legal contracts and project
specifications. GML was designed to be reusable for batch
processors so that books, reports, and electronic editions
could be produced from the same source file(s).

GML had a “simple” input syntax for typists, including the
tags we recognize today denoted by <> and </>. Of course,
GML also permitted lots of “cheating”: Typists avoided
markup with tags wherever they could. As a result, markup
minimization erred on the side of making these documents
easier for humans to type and read than for general-purpose
processing by computer applications. In fact, so few docu-
ment types were interchanged at that time that people wrote
special compilers bound to each particular kind of document
to handle the inputting of the appropriate data formats.

As more document types emerged (each requiring spe-
cially suited tagsets), so did the need for a standard way to
publish and manipulate what we later learned to call the
Document Type Definition. (DTD is the definition of a
document type in SGML, consisting of a set of markup tags
and their interpretation. HTML, for example, is defined by
its own DTD.) Representatives of both the GenCode and
GML communities joined in the early 1980s to form the
American National Standards Institute committee on
Computer Languages for the Processing of Text. The com-
mittee’s goal was to standardize the ways of specifying, defin-
ing, and using markup in documents.

The Standard Generalized Markup Language was pub-
lished as ISO standard 8879:1986.1 It was designed to be
formal enough to allow proofs of document validity, struc-
tured enough to handle complex documents, and extensi-
ble enough to support management of large information
repositories. The two key elements of SGML were its syn-
tax (which evolved from IBM’s GML) and its semantics
(which came from the typesetters through the GCA).

Although suffering from some of the problems attendant
to “design by committee,” SGML was nonetheless success-
ful in furnishing an interchange language that could be used
to manipulate and exchange text documents. By the late
1980s, organizations such as CERN (the European
Laboratory for Particle Physics in Switzerland) had adopt-
ed it. It was in a CERN laboratory that Tim Berners-Lee
borrowed the funny-looking idiom for his then-new hyper-
text application. Indeed, the inventor of the World Wide
Web picked a very small set of SGML’s structural markup
concepts for his Hypertext Markup Language in 1990 to
complement the style sheets he had designed so that his Web
browser could understand typesetting hints.

By the time Mosaic took off worldwide in 1993, people
were using HTML as a hammer and seeing nails everywhere.
However, HTML only furnishes an elegant but nonetheless
small tagset (even as of HTML 4.0,2 released in July 1997),
and no single tagset will suffice for all of the kinds of informa-
tion on the Web. Two of the people involved in early HTML
specification, Dan Connolly and Dave Raggett, believed that
to help solve this problem HTML should be formalized to rig-
orously use generic SGML, and began work toward this goal in
the mid-1990s. Although to date most of the HTML files on
the Web are not absolutely conformant to SGML, this initia-
tive had the significant effects of involving the SGML com-
munity with the Web, and shifting the agendas of some com-
panies to unite SGML with Web technologies.3

It is fair to say, however, that the ISO 8879:1986 SGML
standard was a large, cumbersome specification designed as
though the PC revolution had never happened. In fact, the
specification ignored the most basic results in machine pars-
ing from the computer science compiler studies in the
1960s. Not only was the long specification difficult for peo-
ple to read and understand, but it was also hard for com-
puters to process and manipulate. By 1996, SGML was still
not ready for interactive parsing, authoring, or (thanks to its
batch heritage!) incremental display.

However, SGML offers some attractive functionalities
not available in HTML. The most important of these are:

■ Extensibility: Authors can define new tag names and
attribute names for documents by specifying their syn-
tax and semantics.

■ Structure. Documents can be containers for other docu-
ments, with arbitrary nesting. This allows complex doc-
uments to be constructed from simpler documents.

■ Validation. If desired, any SGML document can refer-
ence a description of its grammar so applications can val-
idate that the document conforms to its specified struc-
ture. Furthermore, this process of validation can be
automated.

WHY XML?
In 1996, a new team backed by the World Wide Web
Consortium worked to realize these benefits for the Web in
a format more usable—both by humans and computers—
than SGML.

XML4 is a simplified (but strict) subset of SGML that
maintains SGML’s features of extensibility, structure, and
validation. XML is a standardized text format designed
specifically for transmitting structured data to Web applica-
tions. In addition, because it is the goal of XML to be easi-
er to learn, use, and implement than full SGML, it will be
easier to define and validate document types, to author and
manage SGML-defined documents, and to transmit and
share such documents across the Web.

S P E C I A L F E A T U R E

80

JULY • AUGUST 1997 h t tp ://computer.org/ in te rne t/ IEEE INTERNET COMPUTING

.

The new subset, like SGML, is a metalanguage for describ-
ing the markup of different types of documents. However, its
specification is 26 pages—versus 500 for SGML. It is there-
fore a practical solution to the Gordian knot of being precise
and extensible without sacrificing simplicity.

XML is not a replacement for SGML. In fact, many fea-
tures of SGML were left out to keep XML simple. XML
therefore does not support several standard (but complex)
features of SGML: It does not allow markup minimization,
for example, and it requires that empty elements be self-
identifying.

However, the real strength of XML for the Web is that it
was designed with network delivery concerns in mind.
Current SGML users could therefore choose XML for data
exchange over a network. A well-formed XML document is
unambiguous, so a general-purpose SGML browser or edi-
tor could read the tags and create a tree of the hierarchical
structure without having to read its DTD. Since XML is a
valid subset of SGML, the translation from SGML to XML
is straightforward.

Another powerful feature of XML is the way in which it
changes the linking model by allowing authors to specify
different types of document relationships. New linking tech-
nology allows the management of bidirectional and multi-
way links, as well as links to a span of text (within the same
or other documents) as a supplement to the single-point
linking afforded by HTML’s existing HREF-style anchors.

With XML’s syntax for both linking and defining tagsets
simplified over SGML, any parser can handle any document.
As a result, anyone can issue a DTD specialized to particu-
lar data needs. Furthermore, as with SGML, XML DTDs
can be composed together to create more complex, validat-
able new document types from simpler, validated DTDs. In
addition, authors can stylize how the document’s appearance
is formatted in a browser or other Web-compliant applica-
tion using Cascading Style Sheets (CSS) or the Document
Style, Semantic, and Specification Language (DSSSL).

The working draft for XML 1.0* provides a complete
specification in two parts: the extensible markup language
itself,5 and methods for associating hypertext linking and
style sheet mechanisms with XML.6 Although XML is not
backward-compatible with existing HTML documents,
since it modifies the syntax and semantics of document tag
annotations, HTML 4.0-compliant documents can easily
be converted to XML.

A BRIEF INTRODUCTION
Recall that SGML is an internationally standardized lan-
guage for defining sets of tags. HTML represents just one
of the element type tagsets that can be created using SGML.
The complete specification of HTML 3.2 as an SGML
DTD means that documents can be verified to be HTML
3.2-compliant.

As with SGML documents, XML documents are com-
posed of entities, which are storage units containing text
and/or binary data.7 Text is composed of character streams
that form both the document’s character data content and
the document’s metadata markup. Markup describes the
document’s storage layout and logical structure. XML also
provides a markup mechanism to impose constraints on the
storage layout and logical structure of documents,8 and it
provides mechanisms that can be used for strong typing.9

In style and structure, XML documents look quite simi-
lar to HTML documents. However, when Web servers with
XML content prepare data for transmission, they typically
must generate a context wrapper with each XML fragment,
including pointers to an associated DTD and one or more
style sheets for formatting. Web clients that process XML
must be able to unpack the content fragment, parse it in
context according to the DTD (if needed), render it (if need-
ed) in accordance with the specified style sheet guidelines,
and correctly interpret the hypertext semantics (such as
links) associated with each of the different document tags.

Note that a DTD is not required for an XML document.
Instead, an author can simply use an application-specific
tagset. However, a DTD is useful because it allows applica-
tions to validate the tagset for proper usage. A DTD speci-
fies the set of required and optional elements (and their
attributes) for documents to conform to that type. In addi-
tion, the DTD specifies the names of the tags and the rela-
tionships among elements in a document (for instance, nest-
ing of elements).

Two examples of “electronic business card” (bCard) doc-
uments illustrate the power and simplicity of XML. In the
first example, the DTD is given as part of the XML docu-
ment. In the second example, the DTD is not given, but it
exists in an externally defined document.

Example 1: Annotated Attribute-Value Pairs
Let’s write a simple XML document that only contains tags
annotated with attribute-value pairs; that is, there will be no
content in the document other than the tags themselves. These
tags can then be parsed and processed by software programs.

Our simple example is a document for maintaining a list of
people’s electronic business cards. Suppose, then, we want each
“bCard list tag” to contain five attributes: a person’s first name,
surname, company, e-mail address, and Web page address.

We can specify default values to attributes to guarantee
that every tag has the same number of attribute-value pairs
(although some values may be null). The declaration of
default attributes is lexically scoped by the bCard element
(although in this case it has no effect, since none of the ele-
ments omit an attribute).

<!DOCTYPE bCard
“http://www.cs.caltech.edu/~adam/schemes/bCard”>

X M L

81

IEEE INTERNET COMPUTING h t tp ://computer.org/ in te rne t/ JULY • AUGUST 1997

.

<?xml default bCard
firstname = “ “
lastname = “ “
company = “ “
email = “ “
webpage = “ “

?>
<bCard

firstname = “Rohit”
lastname = “Khare”
company = “MCI Internet Architecture”
email = “khare@mci.net”
webpage = “http://pest.w3.org/”

/>

<bCard
firstname = “Adam”
lastname = “Rifkin”
company = “Caltech Infospheres Project”
email = “adam@cs.caltech.edu”
webpage = “http://www.cs.caltech.edu/~adam/”

/>
</bCard>

Note how XML’s formatting is readable by both humans and
machine: Empty lines immediately following a “>” or imme-
diately preceding a “<” in the document are ignored by the
parser, and white space inside tags is ignored (which is not
true for HTML).

Example 2: Embeddable Tags
As a text-based format, XML is designed for storing and
transmitting data. This can be done either through arbitrary
attribute-value pairs, as demonstrated in the first example,
or by strategically embedding tags around content to give
that content more meaning.

For example, consider the following XML snippet:

<!doctype html>
<html version=”-//W3C//DTD HTML Experimental
970324//EN”>
<head>
<title> Adam’s bCard List </title>
</head>
<body>

<h1> Adam’s bCard List </h1>

<bCard MONTH=7 YEAR=1997>
<FIRSTNAME> Adam </FIRSTNAME>
<LASTNAME> Rifkin </LASTNAME>
<COMPANY> Caltech Infospheres Project </COMPANY>
<EMAIL> adam@cs.caltech.edu </EMAIL>

<WEBPAGE> http://www.cs.caltech.edu/~adam/
</WEBPAGE>
</bCard>

<bCard MONTH=8 YEAR=1997>
<FIRSTNAME> Rohit </FIRSTNAME>
<LASTNAME> Khare </LASTNAME>
<COMPANY> MCI Internet Architecture </COMPANY>
<EMAIL> khare@mci.net </EMAIL>
</bCard>

<hr/>
<address>
Adam Rifkin </address>
<!— Created: Wed Jul 16 12:22:32 MET DST 1997 —>
<!— hhmts start —>
Last modified: Wed Jul 16 22:32:42 MET DST
<!— hhmts end —>
</body>
</html>
<!— Keep this comment at the end of the file
Local variables:
mode: sgml
sgml-declaration:”~/SGML/html.decl”
sgml-default-doctype-name:”html”
sgml-minimize-attributes:t
sgml-nofill-elements:(“pre” “style” “br”)
sgml-live-element-indicator:t
End:
—>

Note that the DTD is not embedded in the document. We
could specify it elsewhere if we need to validate the tagset
and content data structures, or we could omit the DTD.

By binding a meaning to the XML tag <bCard>, we
understand what is contained in that element: the start tag,
the end tag, and the contents in between those tags. In this
case, the bCard element has two attributes, MONTH and
YEAR, the values of which correspond to the month and year
that bCard entry was added to the document. However, the
DTD might specify that the bCard element must contain
the FIRSTNAME, LASTNAME, COMPANY, and EMAIL elements,
and might contain a WEBPAGE element as well. Additionally,
the DTD might specify that any WEBPAGE element that does
appear in a valid electronic business card document must be
nested within a bCard element.

Once a document type’s elements have been specified in
a DTD, style sheets, scripts, and programs can be associated
with any element in that document type. For example, a cus-
tom script might execute when someone clicks on that busi-
ness card entry, opening up a separate window that displays
the entry in a particular font, color, and arrangement. Or, a
style sheet associated with business cards might display all

S P E C I A L F E A T U R E

82

JULY • AUGUST 1997 h t tp ://computer.org/ in te rne t/ IEEE INTERNET COMPUTING

.

entries of MCI employees with the MCI logo stamped
across the middle of the card.

The forms of metadata provided in example 1 (attribute-
value pairs) and example 2 (start-end tags) demonstrate the
different ways that document content can be marked up
with metadata to allow that content to be searched,
retrieved, or filtered. Metadata spans a wealth of informa-
tion, from digital signatures and authentication seals, to
prices and timestamps, to links to related information.

To summarize, XML allows authors to specify their own
document syntax, hypertext link semantics, and presenta-
tion style. Once we can create new tags and elements with
new attribute-value metadata, we can reencode any system-
atic, structured document format using XML.

Integrating XML Content with HTML
HTML, with its millions of users and billions of documents,
will not be lost in the transition to XML. Even in an XML-
centric world, most documents will use the idioms of para-
graphs, headings, and lists—and Web page authors will use
<P>, <H1>, and tags just as they do today. Newfangled
XML markup will emerge around new, semantically signifi-
cant data structures. We can expect to integrate XML busi-
ness cards in the middle of an HTML home page with minor
disruption—or, similarly, digitally sign or encrypt individ-
ual portions of a document. Client software and network
tools will evolve gracefully alongside these changes. Because
today’s tools can cope reasonably well with unrecognized tags
and today’s HTTP 1.1 can compress slightly more verbose
XML, there won’t be a need for wholesale changes.

XML APPLICATIONS
Some of the first “generic” applications of XML,10 which
should begin appearing this year, will be able to

• use Web clients (browsers and other Web-compliant user
programs) to mediate between multiple heterogeneous
databases;

• distribute some of the processing load from Web servers
to Web clients;

• use Web clients to present different views of the same
data to different users; and

• employ agents to tailor information discovery and fil-
tering to the customized needs of individual users.

The following examples give an idea of the broad range of
applications of XML now in development.

XML for Scientific Applications
Many communities have struggled to codify tacit knowledge
of how their data is structured and manipulated into com-
mon file formats. Many have even adopted SGML, realiz-
ing the value of textual, standardized interchange formats

for long-term stability. However, user organizations often
borrowed the SGML committee design mentality as well,
laboring over a single, “big bang” DTD release for their
domain. After going down this path, the chemistry com-
munity recently adopted XML as a more flexible base for its
evolving Chemical Markup Language (CML).

CML11 will use XML to manage molecular information.
Although CML was originally developed against SGML,
there are compelling reasons to base it on XML as well.
CML documents can hold extremely complex information
structures, acting either as an interchange or archival mech-
anism, and interface easily with modern relational and
object-oriented database architectures.

CML takes advantage of the fact that XML documents
need not be valid and can simply be well formed. Essentially,
this means that although a document is syntactically correct
(for example, the start and end tags balance, ATTRIBUTEs
are quoted, and so on), the document itself might not be
valid (for example, it might contain an unknown tag).
Therefore XML is better suited than SGML to situations in
which documents have already been validated (for example,
because the authoring software is authenticated, or because
the documents have already passed through a validating
parser) and you may simply want to manipulate them. Thus,
although all CML documents must be validatable against
the CML DTD, it is possible to manipulate them even with-
out the DTD or, indeed, any knowledge of chemistry at all.

When the XML specification is complete, XML will
allow new markup tagsets to evolve out of rapid experi-
mentation by a community that needs the DTDs. For exam-
ple, XML fragments have evolved over the past year (con-
currently with the XML effort) with the explicit goal of
supporting mathematics in documents. Note that because
XML DTDs are composable, defining a document type for
mathematical formulas will allow any author to include
equations by composing its DTD with the mathematics
DTD.

Mathematical Markup Language (MathML)12 is an XML
application for describing the structure and content of math-
ematical expressions. It allows the markup of complex for-
mulas, something that has been needed by mathematicians
and computer scientists since the earliest days of HTML.

Sophisticated mathematical notation is highly symbolic,
and the relation between meaning and notation is often sub-
tle. This has ramifications for the say what you mean aspect of
semantic markup. To keep in line with the philosophy
behind mathematical expressions, MathML describes
expression structure together with its mathematical context.
About two dozen MathML tags describe abstract notation-
al structures, and another four dozen provide a way of
unambiguously specifying the intended meaning of an
expression. MathML content and presentation tags can
interact to capture the nuances of meaning in traditional

X M L

83

IEEE INTERNET COMPUTING h t tp ://computer.org/ in te rne t/ JULY • AUGUST 1997

.

equations. The MathML working draft also discusses how
renderers might be implemented and how they should inter-
act with browsers.

XML for Automated Distribution
Recent efforts led by Microsoft and Netscape demonstrate
the efficacy of XML for pushing and pulling information
over the Web.

Microsoft’s proposed Channel Definition Format
(CDF)13 lets a Web site use XML to publish existing HTML
content in a channel for desktop CDF-compliant “push”
client browsers (from vendors such as Microsoft, PointCast,
AirMedia, and BackWeb). XML also provides a way to
embed arbitrary data and annotations within the broadcast
HTML for use with scripts. CDF permits a Web publisher
to offer frequent updates of information from any Web serv-
er for automatic delivery to compatible receiver programs
on PCs or other information appliances.

As an XML application, the CDF specification allows
Web publishers to push information by allowing them to
specify the channels, the content available, the update sched-
ule, and other information such as a delay period between
when the data is received and when it is browsable (to syn-
chronize readers in multiple distributed locations, for
instance). CDF overcomes a serious problem with the push
platforms of today (by vendors such as PointCast, Backweb,
Microsoft, and Marimba) in that the publisher and the sub-
scriber must use the same technology. If content providers
push their information as CDF documents and data streams,
then any user with a CDF-compliant client browser can read
that information. This open standard puts flexibility in the
hands of the user, who can now pick a custom client appli-
cation for reading, and makes wider audiences available to
the content providers as well.

Netscape is using XML for a different style of applica-
tion: “pulling” metadata and other information. Called Meta
Content Framework (MCF),14 it provides the specification
for a data model to describe the information organization
structures (meta content) for collections of networked infor-
mation, using XML syntax to represent instances of this data
model.

Handheld Device Markup Language
Handheld Device Markup Language (HDML)15 addresses
the constraints of pocket-size devices: a few lines of display,
a limited keypad, tens of kilobytes of memory, and a wire-
less connection to the Internet. HDML, like HTML, is an
information publishing and interaction description lan-
guage, but it extended HTML with new tags, the semantics
of which were unfortunately clear only to Unwired Planet.*
Although HDML was designed before XML was available,
Unwired Planet is presently looking into revising HDML
to be based on XML—a solution that would let them use

device-specific cascading style sheets and preloaded binary
compression dictionaries to separately settle the “pocket-size”
constraints issue across platforms.

WEB AUTOMATION
The applications of XML we have explored so far allow
authors to design custom tagsets. As an author, you can
define a DTD to precisely say what you mean about the
information content of a document by using the tags for
interpreting and supplementing that content. However,
XML is useful for another, entirely different reason: Because
it honors machine-readability (one of the basic tenets of the
Web), it opens up new application areas for automation.

Automated Interpretation
Put simply, XML automates the extraction of data. For
example, “electronic business cards” embedded in Web
home pages could automatically offer information in the
same commonly understood format to a variety of programs,
Web forms, and scripts. As another example, a flight check-
er could extract the airline flight status reports from several
different Web content provider services, and collate them
into a single page formatted according to the readers’
requirements.

To perform such automation tasks, Web programmers
could use operational hacks such as scripts—which leave
room for plenty of errors and manageability problems. The
alternative that XML suggests, as exemplified by the airline
flight example, would allow the evolution of an airline com-
munity ontology for flight data.

There are alternative approaches to imbuing a document
with a structured ontology. At one extreme, the meaning of
a document could be represented by its behavior alone; that
is, its meaning is reflected only by what happens when it’s
processed. W3C’s Document Object Model follows this
route by systematically binding programs to parts of an
HTML document, animating it like a puppet on a string
(this approach is also marketed as “dynamic HTML”).

A more robust approach may be to declare, determinis-
tically, what parts of a document mean and what behaviors
those parts have. The Web Interface Definition Language
(WIDL) was developed by webMethods* specifically to
describe the inputs and outputs of programs on the Web.16

WIDL captures the meaning of a document by extracting
relevant output fields and mapping inputs onto Web forms.

WIDL is a metadata syntax implemented in XML that
defines APIs to Web data and services, enabling automatic
and structured Web access by compatible client programs,
including mainstream business applications, desktop appli-
cations, applets, Web agents, and server-side Web programs.

WIDL provides well-defined “machine-readable hooks”
into Web data and services on the Internet. Most important,
WIDL can describe interfaces for Web sites that are not con-

S P E C I A L F E A T U R E

84

JULY • AUGUST 1997 h t tp ://computer.org/ in te rne t/ IEEE INTERNET COMPUTING

.

trolled by calling programs. WIDL files can reside on the
client or server, or they can be centrally managed by third-
party naming services.

This simple example demonstrates how a package track-
ing service might be described in WIDL:

<WIDL NAME=”PackageTracking”>

<SERVICE NAME=TrackPackage
INPUT=InputData OUTPUT=OutputData METHOD=POST
URL=”http://www.packages_r_us.com/cgi-
bin/AirbillTrace” />

<BINDING NAME=InputData>
<VAR NAME=trackNum />
</BINDING>

<BINDING NAME=OutputData>
<CONDITION TYPE=”success” MATCH=”*Airbill
Number:*”
REF=doc.title />

<CONDITION TYPE=”failure” MATCH=”*Blank Airbill*”
REF=doc.p[0].value REASONTEXT=”Please provide an

Airbill Number” />
<CONDITION TYPE=”failure” MATCH=”*should be*”
REF=doc.p[0].value REASONREF=doc.p[0].value />

<CONDITION TYPE=”failure”
MATCH=”*No information available*”
REF=doc.p[0].value REASONREF=doc.p[0].value />

<CONDITION TYPE=”failure”
MATCH=”*is not a valid*”
REF=doc.p[0].value REASONREF=doc.p[0].value />

<VAR NAME=package
REF=doc.tables[1].tr[0].td[0].value />

<VAR NAME=deliveredOn
REF=doc.tables[2].tr[3].td[1].value />
<VAR NAME=signedForBy
REF=doc.tables[3].tr[2].td[1].value />
</BINDING>

</WIDL>

Bindings between HTML and XML document elements
and program variables can be defined using DOM refer-
ences. Condition statements provide fault tolerance and can
initiate alternate binding attempts and other WIDL-defined
service invocations. These features provide enhanced fault
tolerance and the capability to return meaningful error mes-
sages to calling programs.

WIDL provides abstract definitions for services that can
be implemented in any language. WebMethods WIDL-
based tools generate application-level function calls in
C/C++, Java, Javascript, Visual Basic, and ActiveX directly

from WIDL files.
Because WIDL is dynamically interpreted at runtime,

client applications are insulated from changes in service loca-
tions and document structure. Transparency is achieved by
changing document object references and service URLs
without regenerating client code.

Taken together, these facilities make WIDL arguably
analagous to the Interface Definition Languages (IDLs) of
the Common Object Request Broker Architecture
(CORBA) and the Distributed Computing Environment
(DCE). WIDL can define the name, inputs, outputs, data
types, and exceptions for any “function” on the Web.

Consider a simple customer-service function already on
the Web: tracking the status of a package with an overnight
courier service. One webMethods customer wrote an
abstract interface to a long list of delivery companies’ trac-
ing forms, then collated it into a single “metatracer” that
could simultaneously check on the status of several packages
at several companies every time the report page is reloaded.
Another developer put together a similar demo, which com-
pares current RAM prices from several online vendors.

In summary, there are two aspects of automatable data
mining using XML. One is as a metadata file describing
interfaces to other files. In this case, converting to XML is
a format nicety for handling arbitrary new interface descrip-
tion files. The other aspect is as metadata for adding XML
markup to the actual output information, for direct manip-
ulation by an author or program.

Automated Publication
XML can also automate the generation of data from data-
bases and other data stores in a wide variety of publication
formats. XML makes it easy to translate a new data schema
into a document format for storing it. For example, with a
bCard type in hand, we can store entire rolodexes in XML
files, extract new records from old HTML home pages, SQL
databases from personnel, or inscrutable X.509 certificates.
Furthermore, we can compose bCard data with other kinds
of structures. A bCard embedded within a link or a page
with active content could answer the questions “Who owns
this link?” or “Who wrote this applet?” Even beyond the
realm of human-readable data, XML could be an ideal way
to hold the state of any attribute-value data in a distributed
system, because it is trivial to substitute object references
with URLs.

Automated Processing
Bosak10 has demonstrated how XML can enable advanced
Web applications, allowing Java applets to embed powerful,
automatable data manipulation facilities directly into Web
clients. XML may be adopted for the automated conversion
of data because it respects the adhoc social agreements
behind community ontologies in a way that the creation by

X M L

85

IEEE INTERNET COMPUTING h t tp ://computer.org/ in te rne t/ JULY • AUGUST 1997

.

committee of universal data dictionaries cannot.
These next few years will give rise to many such inter-

preters and translators akin to the combinatorial explosion of
graphics-format converters.17 There is a virtuous cycle to cre-
ating a new data type, publishing its syntax freely, and giving
away some of the tools that manipulate it. One need only
contemplate the positive-feedback growth of RealAudio
streams and RealAudio players—and to consider how much
further the community could have gone without proprietary
audio encodings.

THE EVOLUTION OF THE WEB
The World Wide Web Consortium, the driving force behind
XML, sees its mission as leading the evolution of the Web.
Given the competitive market of Internet technologies, it is
important to consider just how quickly the Web has
absorbed competing protocols. Though it shared several
adaptations common to Internet protocols (“free software
spreads faster,” “ASCII systems spread faster than binary
ones,” and “bad protocols imitate; great protocols steal”) it
leveraged one unique strategy: self-description. The Web, as
we are now beginning to realize, can be built upon itself.
Universal resource locators, machine-readable data formats,
and machine-readable specifications can be knit together
into an extensible system that assimilates any competitors.

The Web stole content-neutrality from MIME: It learned
how to adapt to any document type equally. On the other
hand, some types were more equal than others: The Web
prefers HTML over Portable Document Format (PDF),
Microsoft Word, and myriad other formats. That’s because
of a general trend over the past seven years of Web history
from formatting to structural to semantic markup. Each step
up in the ascent of formats—from PostScript (opaque, oper-
ational, formatting); to troff (readable, operational format-
ting); to Rich Text Format (RTF) (readable, extensible, for-
matting); to classic HTML (readable, declarative structure);
to HTML 1.x (readable, limited declarative semantics like
<ADDRESS>); to XML; and on to intelligent metadata like
Platform for Internet Content Selection (PICS) labels and
Knowledge Interchange Format (KIF)—adds momentum
to Web applications.

As such, the Web is becoming a kind of cyborg intelli-
gence: man and machine, harnessed together to generate and
manipulate information. If automatability is to be a human
right, then the drudge work involved in exchanging and
manipulating knowledge must be eliminated by machine
assistance (see the discussion by MIT Laboratory for
Computer Science Director Michael Dertouzos in his book
What Will Be18).

In short, the shift from structural HTML markup to
semantic XML markup is a critical phase in the struggle to
transform the Web from a universal information space into
a knowledge network. ■

REFERENCES
1. C.F. Goldfarb, The SGML Handbook, Y. Rubinsky, ed. Oxford Univ.

Press, 1990. (This volume contains the full annotated text of ISO 8879

(with amendments)).

2. D. Raggett, A. Le Hors, and I. Jacobs, “HTML 4.0 Specification,”

World Wide Web Consortium Working Draft (Work in Progress), July

1997, http://www.w3.org/TR/WD-html40/.

3. Y. Rubinsky and M. Maloney, SGML and the Web: Small Steps Beyond

HTML, C.F. Goldfarb series on Open Information Management,

Prentice-Hall, Upper Saddle River, N.J., 1997. (An ideal introduction

to SGML for HTML users.)

4. D. Connolly and J. Bosak, “Extensible Markup Language (XML),”

1997, http://www.w3.org/XML/.

5. T. Bray and C.M. Sperberg-McQueen, “Extensible Markup Language

(XML): Part I. Syntax,” World Wide Web Consortium Working Draft

(Work in Progress), Mar. 1997, http://www.w3.org/TR/WD-xml-

lang.html.

6. T. Bray and S. DeRose, “Extensible Markup Language (XML): Part

II. Linking,” World Wide Web Consortium Working Draft (Work in

Progress), Apr. 1997, http://www.w3.org/TR/WD-xml-link.html.

7. B. Box, “The XML Data Model,” 1997, http://www.w3.org/XML/

Datamodel.html.

8. B. Bos, “XML Representation of a Relational Database,” 1997,

http://www.w3.org/XML/RDB.html.

9. T. Bray, “Adding Strong Data Typing to SGML and XML,” May 1997,

http://www.textuality.com/xml/typing.html.

10. J. Bosak, “XML, Java, and the Future of the Web,“ http://

sunsite.unc.edu/pub/sun-info/standards/xml/why/xmlapps.htm, 1997.

11. P. Murray-Rust, “Chemical Markup Language (CML),” Version 1.0,

Jan. 1997, http://www.venus.co.uk/omf/cml/.

12. P. Ion and R. Miner, “Mathematical Markup Language,” W3C Working

Draft, May 1997. http://www.w3.org/pub/WWW/TR/WD-math.

13. C. Ellerman, “Channel Definition Format,” W3C submission,

Mar.1997, http://www.w3.org/TR/NOTE-CDFsubmit.html.

14. R.V. Guha and T. Bray, “Meta Content Framework Using XML,” June

1997, http://www.w3.org/TR/NOTE-MCF-XML/.

15. Unwired Planet, “Proposal for a Handheld Device Markup Language,”

Working Draft, Version 2.0, May 1997, http://www.uplanet.com/

pub/hdml_w3c/hdml_proposal.html.

16. webMethods, “Web Interface Description Language Specification,“

1997, http://www.webmethods.com/technology/widl.html.

17. J.D.Murray and W. vanRyper, Encyclopedia of Graphics File Formats,

O’Reilly & Associates, Sebastapol, Calif., 1996.

18. M. Dertouzos, What Will Be, HarperEdge, New York, 1997.

Rohit Khare (http://xent.w3.org/) is a member of the MCI Internet

Architecture staff in Boston. He was previously on the technical

staff of the World Wide Web Consortium at MIT, where he

focused on security and electronic commerce issues. He has been

involved in the development of cryptographic software tools and

Web-related standards development. Khare received a BS in engi-

neering and applied science and in economics from the California

S P E C I A L F E A T U R E

86

JULY • AUGUST 1997 h t tp ://computer.org/ in te rne t/ IEEE INTERNET COMPUTING

.

Institute of Technology in 1995. He expects to join the PhD pro-

gram in computer science at the University of California, Irvine,

in Fall 1997.

Adam Rifkin (http://www.cs.caltech.edu/~adam/) is pursuing a PhD in

computer science at the California Institute of Technology, where

he works with the Caltech Infospheres Project (http://www.infos-

pheres.caltech.edu/) on the composition of distributed active

objects. He received BS and MS degrees in computer science from

the College of William and Mary. He has done Internet consult-

ing and performed research with several organizations, including

Canon, Hewlett-Packard, Griffiss Air Force Base, and the NASA-

Langley Research Center.

Readers may contact Khare at khare@alumni.caltech.edu and Rifkin at

adam@cs.caltech.edu.

X M L

87

IEEE INTERNET COMPUTING h t tp ://computer.org/ in te rne t/ JULY • AUGUST 1997

.

URLs FOR THIS ARTICLE
*XML 1.0 working draf t www.tex tual i ty.com/sgml-
erb/WD-xml .h tml
*Unwired P lanet www.up lane t .com/
*webMethods www.webmethods .com/home.h tml

Other Useful Links
An Initial Investigation of XML

www.cs.caltech.edu/~adam/local/xml.html
World Wide Web Consortium HTML Page

www.w3.org/MarkUp/Wilbur
SGML Page at the Summer Institute of Linguistics (SIL)

www.sil.org/sgml
World Wide Web Consortium SGML Activity Page

www.w3.org/MarkUp/SGML/Activity

Order Today!
Call toll-free:

+1.800.CS.BOOKS
or +1.714.821.8380

CORBA
Design
Patterns
by Thomas J. Mowbray and
Raphael C. Malveau

Programmers and system
developers have taken to the
CORBA standard because it is
powerful enough for developing
applications enterprise-wide. Plus,
design patterns are one of the hottest new trends in the programming
world. This book provides essential information on building CORBA-
based applications using the "interface design language" (IDL).
Includes a CD-ROM.

Contents: CORBA and Design Patterns • Application Design
Patterns • System Design Patterns • Enterprise Design Patterns •
Global Design Patterns

416 pages. 7" x 10" Softcover. December 1996. ISBN 0-471-15882-8.
Catalog # RS00129 — $47.95 Members / $49.95 List

Java™
Programming
with CORBA
by Andreas Vogel and

Keith Duddy

This book introduces you to a bold
new generation of Java
programming. With the advent of
Java ORBs, it is now easier than
ever for Java programmers to build
sophisticated, CORBA-based, object-oriented applications that
interact with CORBA objects anywhere on a network, regardless of
differences in operating systems or languages. The first practical guide
to this important new type of Java programming, Java programming
with CORBA shows you how.

Contents: Foreword • Benefits of Java Programming with CORBA •
CORBA Overview • Java Overview • Overview of Java ORBs •
Building a First Java ORB Application • OMG IDL to Java Mapping •
ORB Run-Time System • Discovering Services • Building Applications
• Advanced Features • Appendixes

448 pages. 7" x 10" Softcover. March 1997. ISBN 0-471-17986-8.
Catalog # RS00149 — $27.99 Members / $29.99 List

Check Out the Online Bookstore!
The complete 1997 Publications Catalog

can now be accessed on the Web

http://computer.org

