
1

Conceptual Knowledge Markup Language: The Central Core

Robert E. Kent
TOC (The Ontology Consortium)

550 Staley Dr.
Pullman, WA 99163, USA

rekent@ontologos.org

ABSTRACT
The conceptual knowledge framework OML/CKML needs several components for a
successful design (Kent, 1999). One important, but previously overlooked, component is
the central core of OML/CKML. The central core provides a theoretical link between the
ontological specification in OML and the conceptual knowledge representation in
CKML. This paper discusses the formal semantics and syntactic styles of the central core,
and also the important role it plays in defining interoperability between OML/CKML,
RDF/S and Ontolingua.

OVERVIEW
The OML/CKML pair of languages is in various
senses both description logic based and frame based.
A bird’s eye view of the architectural structure of
OML/CKML is visualized in Figure 1.

• CKML: This language provides a conceptual
knowledge framework for the representation of
distributed information. Earlier versions of
CKML followed rather exclusively the
philosophy of Conceptual Knowledge Processing
(CKP) (Wille, 1982; Ganter and Wille, 1989), a
principled approach to knowledge representation
and data analysis that “advocates methods and
instruments of conceptual knowledge processing
which support people in their rational thinking, judgment and acting and promote
critical discussion.” The new version of CKML continues to follow this approach, but
also incorporates various principles, insights and techniques from Information Flow
(IF), the logical design of distributed systems (Barwise and Seligman, 1997). This
allows diverse communities of discourse to compare their own information structures,
as coded in ontologies, logical theories and theory interpretations, with that of other
communities that share a common terminology and semantics.

Beyond the elements of OML, CKML also includes the basic elements of information
flow: classifications, infomorphisms, theories, interpretations, and local logics. The
latter elements are discussed in detail in a future paper in preparation on the CKML

Figure 1: OML/CKML at a glance

CKML

OML

Simple OML

⊢⊢⊢⊢ ⊢⊢⊢⊢

∂∂∂∂

∂∂∂∂

⊨⊨⊨⊨ ⊨⊨⊨⊨

2

knowledge model. Being based upon conceptual graphs, formal concept analysis, and
information flow, CKML is closely related to a description logic based approach for
modeling ontologies. Conceptual scaling and concept lattice algorithms correspond to
subsumption.

• OML: This language represents ontological and schematic structure. Ontological
structure includes classes, relationships, objects and constraints. How and how well a
knowledge representation language expresses constraints is a very important issue.
OML has three levels for constraint expression:

o top – sequents
o intermediate – calculus of binary relations
o bottom – logical expressions

The top level models the theory constraints of information flow, the middle level
arises both from the practical importance of binary relation constraints and the
category theoretic orientation of the classification-projection semantics in the central
core, and the bottom level corresponds to the conceptual graphs knowledge model
with assertions (closed expressions) in exact correspondence with conceptual graphs.

• Simple OML: This language is intended for interoperability. Simple OML was
designed to provide the closest approach within OML to RDF/S, while still remaining
in harmony with the underlying principles of CKML. In addition to the central core of
CKML, Simple OML represents functions, reification, cardinality constraints, inverse
relations, and collections. This paper shows how the first-order form of Simple OML
is closely related to the Resource Description Framework with Schemas (RDF/S), and
how the higher-order form of Simple OML is intimately related to XOL (XML-Based
Ontology Exchange Language), an XML expression of Ontolingua with the
knowledge model of Open Knowledge Base Connectivity (OKBC).

• The Central Core: This is based upon the fundamental classification-projection
semantics illustrated in Figure 2. The expression of types and instances in the central
core is very frame-like. In contrast to the practical bridge of the conceptual scaling
process, the central core provides a theoretical bridge between OML and CKML.

〈 type(BinaryRelation), ⊢⊢⊢⊢〉 〈 type(Entity), ⊢⊢⊢⊢〉

instance(BinaryRelation) instance(Entity)

⊨⊨⊨⊨Entity

instance(source)
∂∂∂∂0

∂∂∂∂1
instance(target)

type(source)
∂∂∂∂0

∂∂∂∂1
type(target)

⊨⊨⊨⊨BinaryRelation

Figure 2: Classification Projection Diagram

http://www.w3.org/TR/REC-rdf-syntax/
http://www.w3.org/TR/PR-rdf-schema/
ftp://smi.stanford.edu/pub/bio-ontology/xol.doc
ftp://smi.stanford.edu/pub/bio-ontology/xol.doc
http://www-ksl-svc.stanford.edu:5915/&service=frame-editor
http://www.ai.sri.com/~okbc/spec/okbc2/okbc2.html

3

SEMANTICS
Classification-Projection Diagram
In this section we define formal semantics for the fundamental classification-projection
diagram illustrated by Figure 2. Figure 2 has two dimensions, the instance versus type
distinction and the entity versus binary relation distinction. There are no subtype or
disjointness constraints along either dimension. In Figure 2, arrows denote projection
functions, lines denote classification relations, and type names denote higher order types
(meta-types). Not visible in Figure 2 are the two entity types Object and Date. Object
is the metaclass for all object types, whereas Data is the metaclass for all datatypes either
primitive (such as strings, numbers, dates, etc.) or defined (such as enumerations). The
Entity type is partitioned as a disjoint union or type sum, Entity = Object ++++ Data, of
the Object type and the Data type. So data values are on a par with object instances,
although of course less complex.

The top subdiagram of Figure 2 owes much to category theory and type theory. A
category is defined to be a collection of objects and a collection of morphisms (arrows),
which are connected by two functions called source (domain) and target (codomain). To
complete the picture, the composition and identity operators need to be added, along with
suitable axioms. Also of interest are the various operators from the calculus of binary
relations (Pratt, 1992), such as residuation. The partial orders on objects and arrows
represent the type order on entities and binary relations. The bottom subdiagram gives a
pointed version of category theory, a subject closely related to elementary topos theory.
The classification relation connects the bottom subdiagram (instances) to the top
subdiagram (types), and represents the classification relation of Barwise's Information
Flow (Barwise and Seligman, 1997).

Core Constraints

Associated with the classification-projection diagram
in Figure 2 are the following axiomatic properties. In
the discussion below let r be a relation instance having
source entity a and target entity b, let ρ be a relation
type having source type α and target type β, and let σ
be a relation type having source type γ and target type
δ. This is symbolized in Table 1.

• preservation of classification:

r ⊨ ρ implies (a ⊨ α and b ⊨ β)
In words, if r is an instance of (classified as) type ρ, then entity a is an instance of
type α and entity b is an instance of type β. As an example, the citizenship relation is
from the type Person to the type Country. If c is an instance of citizenship, and c
relates p to n, then p is an instance of type Person and n is an instance of type
Country.

symbol meaning
ρ : α → β ∂0(ρ) = α, ∂1(ρ) = β

σ : γ → δ ∂0(σ) = γ, ∂1(σ) = δ

r = (a, b) ∂0(r) = a, ∂1(r) = b

r = ρ(a, b) ∂0(r) = a, ∂1(r) = b, r ⊨ ρ

Table 1: Relational types

4

• preservation of entailment:

σ ⊢ ρ implies (γ ⊢α and δ ⊢ β)
The authorship binary relation from type Person to type Book is a subtype of the
creatorship binary relation from type Agent to type Work. If a man m is an author of a
book b, then the agent m is a creator of the work b. The facts that type Person is a
subtype of type Agent and type Book is a subtype of type Work may be necessary
conditions for the subtype relation.

• inclusion implies subtype:

σ ≤ ρ implies σ ⊢ ρ
The motherhood binary relation on the type Person is a subtype of the parenthood
binary relation on the type Person. If the woman w is the mother of a boy b, then w is
a parent of b.

• creation of incompatible types:

(α, γ ⊢ or β, δ ⊢) implies ρ, σ ⊢

The sibling relation on type Person is disjoint from the employment relation from
type Person to type Organization. This is implied by the fact that type Person is
disjoint from type Organization. This seems to be true in general, both for the source
and target projections.

• creation of incoherent type:

(α ⊢ or β ⊢) implies ρ ⊢
If a relation type is specified to have a source (or target) entity type that is later found
to be incoherent, then the relation type is also incoherent.

Core Type Hierarchy
The elaboration of the classification-projection diagram as depicted in Figure 3 illustrates
the concepts (basic types) in the central core knowledge model. This model renders more
explicitly the connections found in the Core Grammar. As a rule of thumb, XML
elements become entity types in the core knowledge model, and attributes and content
nonterminals (child embeddings) of XML elements become functions and binary
relations. In Figure 3 a type is depicted by a rectangle and an instance is depicted by a
bullet. The generic classification and subtype hierarchies have not been included as types
(rectangles), since their instances are not needed until the full CKML is specified. When
more than one subrectangle (subtype) is present, the subtypes partition the supertype.
Instances of core relations and functions are listed and grouped within their appropriate
types. The signatures and constraints for the core binary relations and functions are listed
in Table 2.

5

Binary Relations
classification : Instance → Type
 = classification.BinaryRelation + classification.Entity
classification.BinaryRelation : Instance.BinaryRelation → Type.BinaryRelation
classification.Entity : Instance.Entity → Type.Entity
 = classification.Object + classification.Data
classification.Object : Instance.Object → Type.Object
subtype : Type → Type
 = subtype.BinaryRelation + subtype.Entity

Thing

Type

Type.BinaryRelation

● classification
○ classification.BinaryRelation
○ classification.Entity

• classification.Object
● subtype
○ subtype.BinaryRelation
○ subtype.Entity

Type.Function
● source.Type
● target.Type
● source.Instance
● target.Instance
● name
● id

Type.Entity

Type.Object
● Thing
● Type
● Type.BinaryRelation
● Type.Function
● Type.Entity
● Type.Object
● Type.Data
● Instance
● Instanced.BinaryRelation
● Instance.Function
● Instance.Entity
● Instance.Object
● Instance.Data

Type.Data

● String
● Integer
● Real
● DateTime

Instance

Instance.BinaryRelation

Instance.Function

Instance.Entity

Instance.Object

Instance.Data

Figure 3: Core Type Hierarchy

6

subtype.BinaryRelation : Type.BinaryRelation → Type.BinaryRelation
subtype.Entity : Type.Entity → Type.Entity
comment : Thing → String

Functions
source.Type : Type.BinaryRelation → Type.Entity
target.Type : Type.BinaryRelation → Type.Entity
source.Instance : Instance.BinaryRelation → Instance.Entity
target.Instance : Instance.BinaryRelation → Instance.Entity
name : Type → String
id : Instance → String

Table 2: Core Signatures and Constraints

Core Grammar
Below we list a grammar for the central core that is relation-centric on types and object-
centric on instances. Except for the inclusion of function types and instances, this
grammar closely models the classification-projection diagram in Figure 2.
oml bracket rule

 [1] oml ::= ‘<OML>’ ontology | collection ‘</OML>’

ontology type rules
 [2] ontology ::= ‘<Ontology>’ (ext | typ | axm)* ‘</Ontology>’
 [3] ext ::= ‘<extends’ ontologyAttr prefixAttr ‘/>’
 [4] typ ::= objType | binrelType | fnType
 [5] objType ::= ‘<Type.Object’ declTypeAttr ‘/>’
 [6] binrelType ::= ‘<Type.BinaryRelation’ declTypeAttr srcTypeAttr tgtTypeAttr ‘/>’
 [7] fnType ::= `<Type.Function’ declTypeAttr srcTypeAttr tgtTypeAttr '/>'
 [8] axm ::= ‘<subtype’ specificAttr genericAttr? ‘/>’

collection instance rules
 [9] collection ::= ‘<Collection’ idAttr? ontologyAttr? ‘>’ inst* ‘</Collection>’
[10] inst ::= objInst | binrelInst | fnInst
[11] objInst ::= ‘<Instance.Object’ idAttr? aboutAttr? ‘/>’
 (classInst | binrelInst | fnInst)*
 ‘</Instance.Object>’
[12] binrelInst ::= ‘<Instance.BinaryRelation’ typAttr tgtInstAttr ‘/>’
[13] fnInst ::= ‘<Instance.Function’ typAttr tgtInstAttr ‘/>’
[14] classInst ::= ‘<classification’ typAttr ‘/>’

attribute rules
[15] ontologyAttr ::= ‘ontology = "’ URI-reference ‘"’
[16] prefixAttr ::= ‘prefix = "’ name ‘"’
[17] declTypeAttr ::= ‘name = "’ name ‘"’
[18] srcTypeAttr ::= ‘source.Type = "’ typeNSname ‘"’
[19] tgtTypeAttr ::= ‘target.Type = "’ typeNSname ‘"’
[20] specificAttr ::= ‘specific = "’ typeNSname ‘"’
[21] genericAttr ::= ‘generic = "’ typeNSname ‘"’
[22] typAttr ::= ‘type = "’ typeNSname ‘"’
[23] tgtInstAttr ::= ‘target.Instance = "’ instanceNSname ‘"’
[24] idAttr ::= ‘id = "’ name ‘"’
[25] aboutAttr ::= ‘about = "’ URI-reference ‘"’

basic XML rules
[26] typeNSname ::= [name ':'] name
[27] instanceNSname ::= [typeNSname '#'] name
[28] URI-reference ::= string, interpreted per [URI]
[29] name ::= (any legal XML name symbol)
[30] string ::= (any XML text, with "<", ">", and "&" escaped)

7

As indicated in the XML specification document an attribute name must be of the
following form. In particular, the ‘.’ is appropriate inside attribute names.

NameChar ::= Letter | Digit | ‘.’ | ‘-‘ | ‘_’ | ‘:’ | CombiningChar | Extender
Name ::= (Letter | ‘_’ | ‘:’) (NameChar)*

Core DTD
The elements, attributes and entities in the Core DTD below are tightly connected with
the nonterminals and rules of the Core Grammar. The type elements are relation-centric
(with respect to the subtype relation), whereas the instance elements are object-centric
(with respect to the classification relation). The parameter entities OML:Type,
OML:Axiom and OML:Instance represent in the DTD the “things” in the Core Type
Hierarchy and Classification-Projection Diagram that are not represented by an XML tag.
Parameter Entity Declarations

<!-- rule [4] of the grammar -->
<!ENTITY % OML:Type
 “(OML:Type.Object
 | OML:Type.BinaryRelation
 | OML:Type.Function)”>

<!-- rule [8] of the grammar -->
<!ENTITY % OML:Axiom
 “(OML:subtype)”>

<!-- rule [10] of the grammar -->
<!ENTITY % OML:Instance
 “(OML:Instance.Object
 | OML:Instance.BinaryRelation
 | OML:Instance.Function)”>

Element Type Declarations
oml bracket element

<!-- rule [1] of the grammar -->
<!ELEMENT OML:OML (OML:Ontology | OML:Collection)>

central core ontology dtd
<!-- rule [2] of the grammar -->
<!ELEMENT OML:Ontology (OML:Extends | &OML:Type; | &OML:Axiom;)*>

<!-- rules [3], [15], [16] of the grammar -->
<!ELEMENT OML:extends EMPTY>
<!ATTLIST OML:extends
 ontology CDATA #REQUIRED
 prefix CDATA #IMPLIED>

<!-- rules [5], [17] of the grammar -->
<!ELEMENT OML:Type.Object EMPTY>
<!ATTLIST OML:Type.Object
 name CDATA #REQUIRED>

<!-- rules [6], [17], [18], [19] of the grammar -->
<!ELEMENT OML:Type.BinaryRelation EMPTY>
<!ATTLIST OML:Type.BinaryRelation
 name CDATA #REQUIRED
 source.Type CDATA #REQUIRED
 target.Type CDATA #REQUIRED>

http://www.w3.org/TR/REC-xml

8

<!-- rules [7], [17], [18], [19] of the grammar -->
<!ELEMENT OML:Type.Function EMPTY>
<!ATTLIST OML:Type.Function
 name CDATA #REQUIRED
 source.Type CDATA #REQUIRED
 target.Type CDATA #REQUIRED>

<!-- rules [8], [20], [21] of the grammar -->
<!ELEMENT OML:subtype EMPTY>
<!ATTLIST OML:subtype
 specific CDATA #REQUIRED
 generic CDATA #IMPLIED>

central core collection dtd
<!-- rule [9], [24], [15] of the grammar -->
<!ELEMENT OML:Collection (&OML:Instance;)*>
<!ATTLIST OML:Collection
 id CDATA #IMPLIED
 ontology CDATA #IMPLIED>

<!-- rules [11], [24], [25] of the grammar -->
<!ELEMENT OML:Instance.Object
 (OML:classification | OML:Instance.BinaryRelation | OML:Instance.Function)*
>
<!ATTLIST OML:Instance.Object
 id CDATA #IMPLIED
 about CDATA #IMPLIED>

<!-- rules [12], [22], [23] of the grammar -->
<!ELEMENT OML:Instance.BinaryRelation EMPTY>
<!ATTLIST OML:Instance.BinaryRelation
 type CDATA #REQUIRED
 target.Instance CDATA #REQUIRED>

<!-- rules [13], [22], [23] of the grammar -->
<!ELEMENT OML:Instance.Function EMPTY>
<!ATTLIST OML:Instance.Function
 type CDATA #REQUIRED
 target.Instance CDATA #REQUIRED>

<!-- rules [14], [22] of the grammar -->
<!ELEMENT OML:classification EMPTY>
<!ATTLIST OML:classification
 type CDATA #REQUIRED>

Higher-Order Entity Types
A first-order ontology is an ontology without higher-order types. In a first-order ontology
the notions of instances and individuals coincide. Higher-order types are types that have
other types as their instances. This means that instances can be either individuals or types.
Individuals are instances that are not types. With higher-order types the classification
relation extends to types on its source, and the source and target projection functions for
individual relations also extended to types. Color is an example of a second-order type

Color = { Red, Orange, Yellow, Green, Blue, Indigo, Violet }

which has first-order color types, such as Red, as
instances. The conceptual graph in Figure 4, an
example from (Sowa, 1999), represents the English
phrase a red ball. Here the characteristic relation (chrc)
links the concept of a ball to the concept of the red
color [Color: Red] whose type label is the second-order type Color and whose referent is
the first-order type Red. The conceptual graph maps to the following logical formula.

Ball Color: Red chrc

Figure 4: higher-order type example

9

(∃ x:Ball)(color(Red) ∧ chrc(x,Red)).

In the central core this can be represented as follows.

<Ontology>
 • • •
 <Type.Object name=“Color”/>
 <Type.Object name=“Red”/>
 • • •
 <classification instance=“Red” type=“Color”/>
 • • •
 <Type.Object name=“Ball”/>
 <Type.BinaryRelation name=“chrc” source.Type=“Ball” target.Type=“Color”/>
</Ontology>

/* specific style */
<Collection>
 • • •
 <Ball>
 <chrc target.Instance=“Red”/>
 </Ball>
 • • •
</Collection>

There are three things that are new here. An instance of the classification relation has
been placed inside an ontology. The instance attribute of this classification refers to a
type. The target attribute of the individual characteristic relation refers to a type.

We may also be interested in representing various relationships between types. For
example, an “argument” relation (own slot) is from an object type to a multivalent
relation type having that object as one of its arguments. In particular, the “Cast” ternary
relation type in a Movie ontology has the “Movie” object type as one of its arguments.

<Ontology>
 • • •
 <Type.BinaryRelation name=“argument”
 source.Type=“Type.Object” target.Type=“Type.Relation”/>
 • • •
 /* specific style */
 <argument source.Instance=“Movie” target.Instance=“Cast”/>
 • • •
</Ontology>

There is one thing that is new here. An instance of the argument relation has been placed
inside an ontology. Both the source and target attributes refer to types.

Figure 4 indicates how to extend the first-order classification-projection diagram of
Figure 2 to higher-order entity types. The metatypes Entity and BinaryRelation are
type sums (disjoint unions) of their type and individual parts. These are where instances
reside.

Entity = type(Entity) ++++ individual(Entity)

BinaryRelation = type(BinaryRelation) ++++ individual(BinaryRelation)

As in the first-order case of Figure 2, the instance(BinaryRelation) metatype is the
same as individual(BinaryRelation). However, the instance(Entity) metatype has
changed to the sum Entity metatype, since object instances can be either individuals or
types. The entity classification relation has been extended to include types for its source.

10

This means that we can classify types with other higher-order types, ad infinitem. The
source and target of individual binary relations have also been extended to include types.
Note that the individual(BinaryRelation) metatype, along with its projection functions,
correspond to frame-based own slots, whereas the type(BinaryRelation) metatype,
along with its projection functions, correspond to frame-based template slots (see the
With Ontolingua subsection below).

Higher-Order Relation Types
Figure 5 displays the classification-projection diagam for higher-order types, not only for
entities but also for relations. This is a further extension of, and very similar to, the first-
order classification-projection diagram of Figure 2. Here the instance(BinaryRelation)
metatype has changed to the sum BinaryRelation metatype, since relation instances can
be either individuals or types. Since the BinaryRelation metatype is a type sum, the
source and target functions are defined as copairings with the following definitions.

source = [type(source) ◦ incl, individual(source)]

target = [type(target) ◦ incl, individual(target)]

In addition, some explanation should be given for the definition of the classification
relation for binary relations, that has now been lifted to types. This relation is the
copairing of the following two binary relations.

⊨BinaryRelation ׃ type(BinaryRelation) → type(BinaryRelation)

⊨BinaryRelation ׃ individual(BinaryRelation) → type(BinaryRelation)
The first classification relation between relational types is new. The second is the usual
first-order classification relation, where we identify individuals with instances (in that
case).

BinaryRelation Entity

〈 type(BinaryRelation), ⊢⊢⊢⊢〉 〈 type(Entity), ⊢⊢⊢⊢〉

individual(BinaryRelation) individual(Entity)

⊨⊨⊨⊨Entity

instance(source)
∂0

∂1
instance(target)

type(source)
∂0

∂1
type(target)

⊆ ⊆⊆⊆

⊆⊆⊆ ⊆

⊆⊆⊆ ⊆

⊆ ⊆⊆⊆

⊨⊨⊨⊨BinaryRelation

Figure 4: Classification-Projection Diagram: Higher-Ordered Object Types

11

One possible axiom for higher-order relation classification is the following.

• preservation of classification:

σ ⊨ ρ implies (γ ⊨ α and δ ⊨ β)
Suppose that relational type σ is an instance of relational type ρ. If σ has source type
γ and target type δ and ρ has source type α and target type β, then γ is an instance of
α and δ is an instance of β. As an example how this might occur, let entity types α
and β be any two second level types, and define a second-level binary relation ρ
between α and β to be those first-level binary relations between first-level entity type
instances of α and β.

SERIALIZATION SYNTAX
The National Center for Supercomputing Applications (NCSA) uses a search tool called
Emerge that links multiple databases for a specialized community. Each community uses
its own specialized markup language (XML application) for interchange of their
particular information; for example, the astronomy community uses a special
Astronomical Markup Language (AML). On the other hand, OML/CKML is a generic
framework for describing information of any kind. What is the difference between a
specialized markup language such as AML and a generic markup language (or
framework) such as OML/CKML and how are these related? The answer involves coding
and parsing styles.

The generic markup language XOL (see the section on interoperability) advocates a
generic approach for the specification of ontologies. The generic approach means that all
ontologically-structured information is specified by a single set of XOL tags (defined by
the single XOL DTD). The generic approach is modeled in OML/CKML by the generic
style discussed below. In contrast, the Conceptual Graph Interchange Form (CGIF)
represents information in a specific style. The primary advantage for the generic
approach is simplicity in language processing. The primary disadvantage is lack of a

〈 type(BinaryRelation), ⊢⊢⊢⊢〉 〈 type(Entity), ⊢⊢⊢⊢〉

BinaryRelation Entity

⊨⊨⊨⊨Entity

source
∂∂∂∂0

∂∂∂∂1
target

type(source)
∂∂∂∂0

∂∂∂∂1
type(target)

⊨⊨⊨⊨BinaryRelation

Figure 5: Classification Projection Diagram: Higher-Ordered Types

http://www.ncsa.uiuc.edu/
http://www.ncsa.uiuc.edu/People/futrelle/index.html
http://pioneer.gsfc.nasa.gov/public/xml/
ftp://smi.stanford.edu/pub/bio-ontology/xol.doc
http://www.bestweb.net/~sowa/cg/cgdpansw.htm

12

means for type-checking the semantic constraints specified in the ontology. As discussed
in this section, OML/CKML offers an approach that subsumes both the generic and the
specific approaches for coding ontologies and ontologically-structured information. In a
nutshell, we want to investigate whether the equivalence of Figure 6 has any meaning,
validity and importance. In fact, we believe it has central
importance in processing ontologies and XML.

Abbreviation Styles
OML/CKML abbreviation styles are equivalent formalizations
that have either the advantage of simpler processing (generic style) or the advantages of
greater code simplicity and better type-checking (specific style). They are closely tied to
the OML/CKML parsing methodology. There are two primary abbreviation styles:
generic and specific. Any other style might be termed intermediate. The generic and
specific styles are polar opposites, while an intermediate style is a mixture of the two.
The generic style (no abbreviation) provides a syntax for a single universal grammar or
DTD that is independent of domain and ontology. Each specific OML/CKML ontology
can be automatically translated into a specific domain-dependent grammar or DTD. The
specific style (full abbreviation) is an instance of that domain-specific ontology, and is
parseable with that domain-specific grammar or DTD.

The OML/CKML abbreviation styles are based upon the two OML/CKML abbreviation
forms; an object-tag form and a function-attribute form. These loosely follow two of the
three RDF abbreviation forms – the object-tag form is essentially the third RDF
abbreviation form with the RDF Description tag corresponding to the OML/CKML
Instance.Object tag; the function-attribute form is essentially the first RDF
abbreviation form restricted to OML/CKML functions. The object-tag abbreviation form
in OML/CKML preceded the RDF version by several years, providing the syntax for
OML/CKML version 1.5. The generic style must use neither of these abbreviations,
whereas the specific style must use both of them.

In order to illustrate OML/CKML abbreviation styles, we consider the example of the
Movie instance Casablanca (1942). In the reduced representation below there is an object
type for movies with metadata for year of appearance and genre. There is also a
multivalent (n-ary) relation that links movies, cast members and the character that they
played. The central core does not have a separate metatype for these (that comes in full
OML), and so these are reified and represented as objects. The full Movie ontology can
be automatically translated to the domain-specific movie DTD. Obviously, the specific
style for Movie instance collections is much simpler code than the generic style.
Movie Ontology

<Type.Entity name=“Movie”>
 <Type.Function name=“year” target.Type=“Natno”/>
 <Type.BinaryRelation name=“genre” target.Type=“Genre”/>
</Type.Entity>

<Type.Entity name=“Cast”>
 <Type.Function name=“movie” target.Type=“Movie”/>
 <Type.Function name=“member” target.Type=“Person”/>
 <Type.Function name=“character” target.Type=“String”/>
</Type.Entity>

Ontology ≡ DTD

Figure 6: Equivalence

http://www.w3.org/TR/REC-rdf-syntax/#basic
http://wave.eecs.wsu.edu/WAVE/Ontologies/OML/OML15.html
http://wave.eecs.wsu.edu/WAVE/Ontologies/Movie/Casablanca+(1942).html

13

Domain-Specific Movie DTD

<!ELEMENT Movie (genre)*>
<!ATTLIST Movie
 id ID #REQUIRED
 year NUMBER #IMPLIED>

<!ELEMENT genre EMPTY>
<!ATTLIST genre
 target.Instance CDATA #REQUIRED>

<!ELEMENT Cast EMPTY>
<!ATTLIST Cast
 movie CDATA #IMPLIED
 member CDATA #IMPLIED
 character CDATA #IMPLIED>

The Specific Style Collection

<Movie id=“Casablanca_1942” year=“1942”/>
 <genre target.Instance=“Drama”/>
 <genre target.Instance=“Romance”/>
</Movie>

<Cast
 movie=“Casablanca_1942”
 member=“Humphrey_Bogart”
 character=“Rich Blaine”/>

The Generic Style Collection

<Instance.Entity id=“Casablanca_1942”>
 <classification type=“Movie”/>
</Instance.Entity>

<Instance.Function
 source.Instance=“Casablanca_1942”
 target.Instance=“1942”>
 <classification type=“year”/>
</Instance.Function>

<Instance.BinaryRelation
 source.Instance=“Casablanca_1942”
 target.Instance=“Drama”>
 <classification type=“genre”/>
</Instance.BinaryRelation>

<Instance.BinaryRelation
 source.Instance=“Casablanca_1942”
 target.Instance=“Romance”>
 <classification type=“genre”/>
</Instance.BinaryRelation>

<Instance.Entity id=“cast1”>
 <classification type=“Cast”/>
</Instance.Entity>

<Instance.Function
 source.Instance=“cast1”
 target.Instance=“Casablanca_1942”>
 <classification type=“movie”/>
</Instance.Function>

<Instance.Function
 source.Instance=“cast1”
 target.Instance=“Humphrey_Bogart”>
 <classification type=“member”/>

http://wave.eecs.wsu.edu/Biopolymer/Ontology.html
http://204.112.55.140/BIOML/index.html
http://204.112.55.140/BIOML/bioml.dtd

14

</Instance.Function>

<Instance.Function
 source.Instance=“cast1”
 target.Instance=“Rich Blaine”>
 <classification type=“character”/>
</Instance.Function>

The XML tags for both the ontology and the generic style instance collection use the
generic names for types and instances in the central Core Type Hierarchy of Figure 3.
These are listed in Table 3. The subtype and classification relations are special.
The subtype relation needs the two additional specific and generic attributes,
and the classification relation (since it links instances and types) needs the two
additional instance and type attributes.

central core type generic kind XML use
Type.BinaryRelation object tag
Type.Function object tag
Type.Entity object tag
subtype binary relation tag
name binary relation attribute
source.Type binary relation attribute
target.Type binary relation attribute
Instance.BinaryRelation object tag
Instance.Function object tag
Instance.Entity object tag
classification binary relation tag
id binary relation attribute
source.Instance binary relation attribute
target.Instance binary relation attribute

Table 3: The central core names for types and instances

Parsing
Translation software can be developed that realizes the equivalence of Figure 6. There are
two translational directions. The translational direction from DTDs to ontologies is
exemplified by the Biopolymer ontology that was manually created from the intuitive
semantics for the specific markup language BIOML, but not directly from its DTD. This
direction is not intended to be an automatic translation, but instead requires domain
expertise. Other examples such as this exist. The translational direction from ontologies
to DTDs is straight-forward and automatic. Translation software can also be developed
that translates between generic and specific style instance collections, using suitable
collection DTDs. The processes involved in all of these translations are graphically
illustrated in Figure 7. We discuss the first process in detail, but give the other two only a
cursory glance.

Ontology to Domain-Specific DTD Translation
This is indicated as process [1] in Figure 7. Since all abbreviation styles and forms apply
to instances only, the representation for an ontology is independent of the abbreviation
styles. Since an ontology specified using the central core of OML/CKML must not use

15

abbreviations, it must only use the generic type tags in Table 3. As a result, such an
ontology can be automatically translated to a domain-specific DTD. The ontology
serialization can be parsed with the central core ontology grammar or DTD, creating an
internal representation for the ontology. The translation works on this internal ontology
representation, producing a domain-specific DTD. The rules for translating from the
internal representation for an OML/CKML ontology to a domain-specific DTD are as
follows. This addresses one half of the equivalence in Figure 6. To follow this, use the
Movie ontology as an example.
• Objects (entities) are represented as XML elements (tags).

○ Objects have element content. The content model consists of a repeatable choice of the
binary relation elements that have the object as their first argument.

○ There is a required id attribute.
• Functions are represented as XML attributes.

○ Functions, as XML attributes, are all implied, since functions are partial and the central
core does not have cardinality constraints (these occur first in Simple OML).

• Binary relations are represented as XML elements (tags).
○ Binary relations have empty content.
○ There is a required target.Instance attribute.

parser

central core
ontology dtd

ontology
serialization

internal
ontology

representation

domain-specific
dtd

1

other
ontology

applications

parser

domain-specific
dtd

specific style
collection

serialization

parser

central core
collection dtd

generic style
collection

serialization

2

3

internal
collection

representation

other
collection

applications

Figure 7: Parsing Styles

16

Generic to Specific Instance Collection Translation
This is indicated as process [2] in Figure 7. To reiterate, abbreviation styles only apply to
instance collections. The generic style collection serialization can be parsed with the
central core collection grammar or DTD, creating an internal representation for the
collection. The translation works on this internal collection representation, producing a
specific style collection serialization. The specific style is characterized by the fact that
all tags are non-generic, specific tags; that is, that none come from the central core
instance names listed in Table 3. Also, all functions should be abbreviated as attributes.

Specific to Generic Instance Collection Translation
This is indicated as process [3] in Figure 7. The specific style collection serialization can
be parsed with the domain-specific DTD obtained from the first process [1], creating an
internal representation for the collection. The translation works on this internal collection
representation, producing a generic style collection serialization. The generic style is
characterized by the fact that all tags come from the central core instance names listed in
Table 3. The function-attribute abbreviation is inoperative here.

Higher-Order Entity Types
In order to allow for the specification of higher-order entity types in the central core, the
following changes must be made to the Core Grammar. Corresponding changes must also
be made to the Core DTD.

1. Change the instance notation to individual.

2. Introduce Entity, the type sum of Type.Entity and Individual.Entity.
3. Allow classification instances to be specified in an ontology. This requires addition to

the axiom production rule, and introduction of a new rule for instance attributes.
ontology type rules

axm ::= ‘<subtype’ specificAttr genericAttr? ‘/>’
 | ‘<classification’ instAttr typeAttr ‘/>’

instAttr ::= ‘instance = "’ typeNSname ‘"’

4. In individuals change the target instance metatype from Instance.Entity to Entity.
To accomplish this, do not change the target instance attribute to individual, but leave
as instance. In addition, introduce an instance namespace name rule.
attribute rules

tgtInstAttr ::= ‘target.Instance = "’ instanceNSname ‘"’
instanceNSname ::= typeNSname | individualNSname

5. An instance of a binary relation between types corresponds to the frame-based notion
of an own slot in a class. This can be handled by adding further to the axiom rule.
ontology type rules

axm ::= ‘<subtype’ specificAttr genericAttr? ‘/>’
 | ‘<classification’ instAttr typeAttr ‘/>’
 | ‘<Instance.BinaryRelation’ typAttr srcTypeAttr tgtTypeAttr ‘/>’

17

INTEROPERABILITY
Interoperability is very important for a language whose goal is to represent distributed
information in a conceptual framework. The discussion in this section demonstrates how
CKML is interoperable with two important frame-based systems: Resource Description
Framework with Schemas (RDF/S), and XOL, the XML expression of Ontolingua. Each
of these is discussed in the following subsections.

With RDF/S
RDF/Schemas has the structure of a semantic network. It corresponds to simple
conceptual graphs (Sowa, 1999), which are conceptual graphs without negations,
universal quantifiers and nested conceptual contexts. The first-order classification-
projection diagram in Figure 2 corresponds to RDF with type specification capabilities
(RDF with Schemas). Elements of this correspondence are listed in Table 4. The question
mark in Table 4 reflects the current undeveloped state of RDF/S data types. These are
being developed by the XML Schema working group of the W3C, and will be
incorporated into CKML when finalized.

RDF/S notion central core notion central core formalism
class object type type(Object)

???? data type type(Data)

property binary relation type type(BinaryRelation)

subClassOf subtype on objects ⊢Entity

subPropertyOf subtype on binary relations ⊢BinaryRelation

domain type source type(source) = ∂0

range type target type(target) = ∂1

resource object instance instance(Object)

literal data type value instance(Data)

statement binary relation instance instance(BinaryRelation)

subject instance source instance(source) = ∂0

object instance target instance(target) = ∂1

predicate, type classification ⊨BinaryRelation, ⊨Entity

Table 4: RDF/S and Simple OML Correspondences

The fact that the first-order central core corresponds closely to the core structure of
RDF/S (RDF/S without collections), illustrates why the core part of the RDF/S syntax is
embeddable into the Simple OML syntax. The Simple OML serialization syntax is the
closest approach to the RDF/S serialization syntax. The most obvious difference is the
lack of types in basic RDF - these are to be modeled with schemas. Types are not
considered as essential in RDF as they are in OML/CKML, since schema classes are just
special kinds of RDF resources. This is reasonable and is close to the frame system
approach, but it is different from the conceptual framework of OML/CKML, which is
based on the theory of information flow (Barwise and Seligman, 1997). Although RDF
Schema classes are normally modeled as types, in order to model the RDF semantics that
“properties are resources,” they could be modeled in OML/CKML as special objects,

http://www.w3.org/XML/Activity#schema-wg

18

with explicit models for the subclass partial order relation between classes, the
classification relation between resources and classes, the domain and range functions, etc.

The OML namespace mechanism is a bit different from the RDF namespace mechanism.
Any real-world object is represented by an OML object (surrogate) with a link to the real-
world object and OML references to the real-world object are made through this
surrogate, whereas web resources may be referenced in RDF without being described
(represented). The complete references for an OML object (instance) has the 3-fold
syntax ontology:type#identifier, an extension of the XML namespace mechanism.

With Ontolingua
XOL (XML Ontology Exchange Language) is a frame-based language with an XML
syntax that is currently being designed for the exchange of ontologies for molecular
biology. XOL produces an XML expression for Ontolingua through the OKBC
application programming interface (API). In this section we show how the frame-based
language XOL can be modeled by the central core of OML/CKML with higher-order
entity types, the version of the classification-projection diagram as illustrated in Figure 4.

Figure 8 illustrates the type hierarchy for XOL. This corresponds to part of the core type
hierarchy of Figure 3. The XOL types in Figure 8 originate in four ways. The three types
class, slot and individual are the standard frame types. The two types datatype and
literal have been added for completeness. The type slot-values is a reified type. Finally,
the four types

xol-thing = module ++++ xol-entity
xol-entity = entitytype ++++ slot ++++ entity ++++ slot-values
entitytype = class ++++ datatype

entity = individual ++++ literal
have been defined in order to organize the other types.

xol-thing

xol-entity module

slot slot-values entitytype

class

datatype

entity

literal

individual

Figure 8: XOL Type Hierarchy

http://www.w3.org/TR/REC-xml-names/
ftp://smi.stanford.edu/pub/bio-ontology/xol.doc
http://www-ksl-svc.stanford.edu:5915/&service=frame-editor
http://www.ai.sri.com/~okbc/spec/okbc2/okbc2.html

19

Binary Relations
subclass-of : class →→→→ class
instance-of : [class ++++] individual →→→→ class
slot-values : [class ++++ slot ++++] individual →→→→ slot ×××× (individual ++++ literal)

Functions

domain : slot →→→→ class
slot-value-type : slot →→→→ class ++++ datatype

Table 5: XOL Mathematical Model

Table 5 gives the mathematical model for the XOL DTD. The bracketed types correspond
to the higher-order nature of XOL. The slot type within the bracket in the domain of the
slot-values relation requires the reification of slots.

XOL notion central core notion
module, ontology, kb, database, dataset elements ontology, collection elements
class element Type.Object element
name element (within class) name attribute of object type
subclass-of element subtype element
datatype (added type) Type.Data element
class ++++ datatype Type.Entity element
slot element Type.BinaryRelation element
name element (within slot) name attribute of binary relation type
domain element source.Type attribute of binary relation type
slot-value-type element target.Type attribute of binary relation type
individual element Individual.Object element
name element (within individual) id attribute of object instance
instance-of element classification element
literal (added type) Individual.Data element
individual ++++ literal Individual.Entity element
slot-values element Individual.BinaryRelation element
name element (within slot-values) type name for binary relation or function
value target.Instance attribute of binary relation instance
slot-inverse element transpose element
documentation element comment element

Table 6: Correspondences between XOL and Simple OML

The correspondences between XOL elements/attributes and the central core with higher-
order types are shown in Table 6.

Figures 9 represents interoperability between XOL modules and OML/CKML ontologies
and collections in generic style. For interoperability with specific style collections see the
discussion on Parsing. The output from the internal representations, and the internal
representations themselves, require suitable APIs for XOL and OML.

20

Figure 9: Interoperability between XOL and Simple OML

REFERENCES
Barwise, K. J., and Seligman, J. (1997). Information Flow: The Logic of Distributed
Systems, Cambridge University Press.

Ganter, B., and Wille, R. (1989). Conceptual scaling, in F. Roberts (Ed.) Applications of
Combinatorics and Graph Theory in the Biological and Social Sciences, Springer-Verlag.

Kent, R.E. (1999). Conceptual Knowledge Markup Language: An Introduction, in Fawzi
Daoud (Ed.), Netnomics: Economic research and electronic networking, Special Issue on
Information and Communication Middleware.

Pratt, V.R. (1992). Origins of the Calculus of Binary Relations, Proceedings of the 7th
Annual IEEE Symposium on Logic in Computer Science.

Sowa, J. F. (1999). Knowledge Representation: Logical, Philosophical, and
Computational Foundations, Brooks Cole Publishing Co.

Wille, R. (1982). Restructuring lattice theory: An approach based on hierarchies of
concepts, in I. Rival (Ed.), Ordered Sets, Reidel.

Woods, W.A. (1991). Understanding subsumption and taxonomy: A framework for
progress, in J. Sowa (Ed.), Principles of Semantic Networks: Explorations in the
Representation of Knowledge, Morgan Kaufmann.

parser

XOL
(module)

dtd

Simple OML
ontology

serial izat ion

generic sty le
S imple OML

col lect ion
serial izat ion

XOL
module

serial izat ion

internal
XOL

module
representat ion

parser

Simple OML
ontology

dtd

Simple OML
ontology

serial izat ion

parser

Simple OML
col lect ion

dtd

generic sty le
S imple OML

col lect ion
serial izat ion

XOL
module

serial izat ion

 internal
S imple OML

ontology
representat ion

internal
S imple OML

col lect ion
representat ion

	ABSTRACT
	OVERVIEW
	SEMANTICS
	Classification-Projection Diagram
	Core Constraints
	Core DTD
	
	central core ontology dtd

	Higher-Order Entity Types
	Higher-Order Relation Types

	SERIALIZATION SYNTAX
	Abbreviation Styles
	Parsing
	Ontology to Domain-Specific DTD Translation
	Generic to Specific Instance Collection Translation
	Specific to Generic Instance Collection Translation

	Higher-Order Entity Types

	INTEROPERABILITY
	With RDF/S
	With Ontolingua

	REFERENCES

