
HITIS Correlation and Interface

 Specification

Draft Standard

April 14, 2000

American Hotel & Motel Association
1201 New York Avenue

Suite 600
Washington, DC 20005

Copyright � 2000 � American Hotel and Motel Association
No Part of this document may be reproduced in any way

without the prior agreement and written permission of the AH&MA.

Prepared by:

American Hotel & Motel Association
1201 New York Avenue

Suite 600
Washington, DC 20005

www.ahma.com
www.hitis.org

http://www.ahma.com/
http://www.hitis.org/

HITIS CORRELATION AND INTERFACE STANDARD

Table of Contents American Hotel & Motel Association Page 3
April 14, 2000

Table of Contents

INTERFACE STANDARD .. 5

GLOSSARY OF TERMINOLOGY.. 41

HITIS CORRELATION AND INTERFACE STANDARD

HITIS Correlation and Interface Specification

Interface Standard

HITIS CORRELATION AND INTERFACE STANDARD

HITIS

Correlation and Interface Specification

XML Interface Mapping

Draft Version 1.0

April 14, 2000

HITIS CORRELATION AND INTERFACE STANDARD

HITIS Interface Specifications American Hotel & Motel Association Page 7
April 14, 2000

TABLE OF CONTENTS
INTERFACE STANDARD.. 5

1.0 INTRODUCTION.. 9

1.1 OBJECTS AND XML... 9
1.2 THE USE OF XML SCHEMA... 10
1.3 INFRASTRUCTURE ISSUES .. 11

2.0 SUMMARY.. 12

3.0 DATA TYPES.. 12

3.1 INTEGER AND UNSIGNED INTEGER .. 12
3.2 LONG AND UNSIGNED LONG ... 14
3.3 STRING .. 14
3.4 DATETIME... 15
3.5 CURRENCY .. 16
3.6 PERCENT ... 17
3.7 BYTE ARRAY... 18
3.8 BOOLEAN .. 20
3.9 DAYOFWEEK (DOWPATTERN) .. 20
3.10 DATETIMESPAN ... 21

4.0 SESSION OBJECT ... 23

4.1 VERSIONING .. 23
4.2 OPERATIONS.. 23

5.0 HITIS HEADER.. 25

5.1 ROUTING ELEMENTS ... 25
5.2 MESSAGE IDS.. 25
5.3 TOKEN... 26

6.0 HITIS REGISTER .. 26

6.1 LANGUAGE ID... 26
6.2 VERSION.. 26
6.3 AUTHENTICATION ... 26
6.4 ROLE ... 27
6.5 TRANSPORT PROTOCOL ... 27
6.6 TOKEN... 27
6.7 HITIS UNREGISTER .. 28

7.0 HITIS SUBSCRIBE .. 28

8.0 HITIS MESSAGE ... 29

9.0 RETURN VALUES... 31

9.1 SYSTEM LEVEL ERRORS .. 31
9.2 HITIS RETURN VALUES.. 31
9.3 ERROR NAMING CONVENTIONS... 32
9.4 RANGE OF RETURN VALUES.. 32
9.5 VENDOR-SPECIFIC RETURN VALUES ... 33

10.0 COLLECTION OBJECT (GENERALIZED CLASS / TEMPLATE) .. 33

10.1 ATTRIBUTES ... 33
10.2 OPERATIONS ... 33
10.3 COLLECTION OBJECT (INSTANTIATED CLASS).. 34

HITIS CORRELATION AND INTERFACE STANDARD

HITIS Interface Specifications American Hotel & Motel Association Page 8
April 14, 2000

11.0 ATTRIBUTE (PROPERTY) NAMING ... 35

11.1 ID ... 35
11.2 NUMBER ... 35
11.3 CODE .. 35
11.4 TYPE... 35
11.5 COLLECTIONS ... 36
11.6 BUILT-IN VS. USER-GENERATED DATATYPES ... 36

12.0 OPERATION (METHOD) NAMING .. 36

12.1 CREATE .. 36
12.2 UPDATE .. 37
12.3 QUERY.. 37

13.0 NAMESPACES... 37

14.0 REFERENCES ... 39

..

HITIS CORRELATION AND INTERFACE STANDARD

HITIS Interface Specifications American Hotel & Motel Association Page 9
April 14, 2000

1.0 INTRODUCTION

1.1 Objects and XML
For the duration of the HITIS project, the sole mechanism for implementing the standards has
been the use of Object Technology. Unfortunately, the use of the word �Objects� means different
things to different people.

Perhaps the best way to communicate the concepts associated with the use of objects is to define
some of the common terms in the Object environment.

The general understanding of those who deal with object technology is that everything is an
object. The object can be either physical, such as a chair or a table, or virtual, such as a group of
data that represents something. Objects, both real and virtual, can be categorized into classes.
For the purposes of understanding the use of objects in the HITIS project, it is important to
understand what is meant by the term �class� as it pertains to the object world.

Looking at furniture as an example, there are categories of furniture. Some furniture is made for
sitting, some for sleeping, some for storage. The category of furniture could be called a class.
You could have a class called �Chair� with all the furniture designed for sitting included. An
instance of this class �Chair� might be an �Easy Chair� or �Stool�. The specific chair is an
object. The class is the category in which the chair fits.

In the case of data, a class is a definition of the data elements (known also as attributes or fields)
which are part of a message. When data fills the data elements within that class, the result is an
object. Systems in the past have taken these objects and placed the data into tables that are
defined by the relationships among the data. This is known as a �Relational Database�. In order
to store the object, the data is broken into logical records (known as rows in a table) and stored
with like rows. Each row is identified by some value that may be used to retrieve that row when
the object is required. The separation of the storage schema and the object is the goal of object
technology. Rather than pass data across processes, only pointers to the data are passed. This
allows a system to maintain only one copy of the data, with multiple processes allowed access to
the object through these pointers.

The elusive target for distributed computing has been that of distributed objects. Much discussion
in the IT community has centered around the practicality of having disparate systems using
remote operations. Remote systems performing operations on an object are given pointers to the
object, or the object is encapsulated allowing no direct updating to the data. The inherent
problem with this arrangement is that it requires a lot of data interchange when a remote system is
performing operations on the object. This is not a problem in a Local Area Network (LAN)
where the bandwidth is quite wide.

The attempts to implement HITIS standards using the Remote Object Invocation methodology
within a Wide Area Network (WAN) uncovered what has been an ongoing flaw in this concept.
Unless the data is actually transmitted, the network traffic required to resolve the data creates an
unnecessary bottleneck. Passing the data in a packet can solve this problem. To do so, however,
requires what is known as �serialization� of the object, that is, creating a packet that includes all
the data. The class could be considered as the template for the packet, and that class or template
filled with all the data becomes the object.

XML presents a simple way to represent the object in serialized form. By establishing the XML
message format (effectively a class), the object can be formed into a packet and passed over

HITIS CORRELATION AND INTERFACE STANDARD

HITIS Interface Specifications American Hotel & Motel Association Page 10
April 14, 2000

communication lines as an XML Document. There is no remote operation necessary, and the data
has been passed from one system to another.

In the pure object environment, this would not be a desirable situation as it creates two versions of
the data, and synchronization cannot easily be maintained. Within HITIS, however, this is not a
problem as each document represents a transaction. Each transaction is purely a snapshot of the
data (object). The transaction is sent from one system to another as a request for current data or
to initiate an update of data on the remote system. In fact, one of the major aspects of an object
oriented system is that updates are not done directly to data, but rather the data is encapsulated
and transactions are sent to the system which houses the data, requesting the update to that data.
The remote system does not do the updating, it only sends the data necessary to perform the
update to the system housing the data.

Other transactions in the HITIS environment request status or a snapshot of the data as it exists at
the moment the request is made. There is no reason for the separate systems to have access to the
dynamic data. In fact, when communicating between systems in an object environment, it is
usually necessary for the system that houses the object to make a copy of that object for the use of
the remote system. If this is not done, the data may change while the remote system is
referencing that data, and as a result, pointers would change.

The net result of implementation under XML is that the HITIS standards that once consisted of
operations have been reformatted into messages rather than object-based operations. The
parameters of the operations were transformed into the data of the message, and most operations
resulted in a pair of messages. One message initiates a request, with a corresponding message
responding. The initiating system may be sending a request to update data on the remote system,
with the remote system responding with the status of that transaction. In another scenario, the
initiating system may be requesting data, with the responding system returning the data.

1.2 The Use of XML Schema
A considerable amount of work within the HITIS committees went in to the identification and
standardization of data types for use within the HITIS standards.

Because of the differences in the way various operating systems handle dates, time, and floating
point data, it was determined that there should be a clearly defined set of data types which would
be used consistently within all standards. Some of these data types are native to all systems, such
as integers, while others are derived from more basic data types.

An example of the derived data type would be a �datetime�, where the Year, Month, Day, Hour,
Minute, Seconds, and offset from UTC (also known as GMT) are used to represent a specific
time. Each of the sub-elements consists of integers, with all but the offset specified as positive
(unsigned) integers only. The offset may be a negative number, therefore it must be a signed
integer.

XML presents an additional issue, in that the data within an XML document can only be string
data. With an XML implementation it is necessary to agree on the format in which anything other
than a string would be represented in the string only data. The World Wide Web Consortium
(W3C) recommendation for XML utilizes Document Type Definitions (DTD's) as a way of
identifying the data element names that are permitted within a document, but not in identifying
the data types of those elements.

One of the emerging XML standards resolves this issue by using a standardized format for all
non-string data and by allowing each data element to be identified as to the type of data which is

HITIS CORRELATION AND INTERFACE STANDARD

HITIS Interface Specifications American Hotel & Motel Association Page 11
April 14, 2000

represented. This mechanism is known as XML Schema. While the specification of the W3C
has not been finalized, there is a great deal of momentum behind this initiative, and, although
there is more than one organization involved in the definition of XML Schema, there is much
commonality in what is being proposed. As the issues are resolved, there is no doubt that XML
Schema will replace the Document Type Definition as the validation mechanism for an XML
document.

One of the strong points of XML Schema is that the schema document is actually an XML
document, unlike a DTD, which has its own format. XML Schema also allows the specification of
a data type for an element or attribute. Data types specify the format of the data, provide for
validation of the type by the XML parser, and enable data-type-specific processing. IBM,
Microsoft, and Sun Microsystems all endorse the proposed XML Schema recommendation.
There would be little risk in using the XML Schema method as the single way of documenting the
HITIS message format.

1.3 Infrastructure issues
While the task of HITIS is to define the message sets which are to be used to transfer data from
one system to another, there is a higher level of infrastructure which must be addressed.
Specifically, the issues of identifying the sender, the receiver, the message type, and other non
message specific data should not be the problem of the HITIS technical committees.

Among the industry standard initiatives that have the responsibility to create a common
infrastructure, one is XML.org, an open group to which IBM, Sun, and Microsoft all subscribe.
This organization has the capability to become the repository for the XML Schema or DTD and
the keeper of the infrastructure.

The other initiative sponsored by Microsoft is known as BizTalk. BizTalk creates an
infrastructure within which an XML Document can be enclosed, and which takes care of all the
identification and security issues. BizTalk also provides a repository in which DTDs or XML
Schema documents may be posted on behalf of an organization presenting standards to its
industry.

The HITIS standards may be enabled for posting at both BizTalk and XML.org sites. The BizTalk
environment requires that a document begin with the <BizTalk> tag and end with the </BizTalk>
tag. If these can be optional, then any vendor wishing to use BizTalk (most likely in Microsoft
development tools) could do so with no problems. Those not using BizTalk would have to
resolve the infrastructure issues amongst themselves.

It is the intent of HITIS that an XML message instance could be passed and validated to a
BizTalk schema and to an XML.org (W3C) schema. This would require using XML-Data data
types or declaring any HITIS-defined data types in the schema definition. Irrespective of the
process of validation, it is unclear whether using the same implied tags provided by BizTalk
would allow a system using BizTalk and one using XML.org infrastructure to interoperate.

HITIS CORRELATION AND INTERFACE STANDARD

HITIS Interface Specifications American Hotel & Motel Association Page 12
April 14, 2000

2.0 SUMMARY

This document describes the conventions used in the HITIS object specifications and in the XML
interface protocol. Specifically, it defines the fundamental data types and maps them to the XML
Schema Definition Language as proposed by the W3C. The object data types, including the
ranges of values, and the objects and attributes common to all HITIS interfaces are described
along with their correlating representation in eXtensible Markup Language, XML. In addition, the
conventions for mapping all HITIS object operations to message sets are described, including
rules for naming certain corresponding elements and attributes in XML.

3.0 DATA TYPES

3.1 Integer and Unsigned Integer
Object Value:
Signed Integers (Integers) and Unsigned Integers (UInts) are 32-bit numeric non-fractional
values. Integers range from �2^31 to 2^31-1, or approx. -2 billion to +2 billion. Unsigned
Integers range from 0 to 2^32-1 or 0 to approx. 4 billion. (U.S. billions--1,000,000,000 -- not
U.K. billions.)

XML Representation:
XML representation of the Signed Integer and Unsigned Integer (Uint) data types would use the
same data type(s) as defined by the emerging W3C specification, with the unsigned Integer using
the non- positive / negative integer values as defined below:

[W3C Definition - W3C Working Draft 25 February 2000]

The integer datatype derived from decimal by fixing the value of scale to be 0. This results in the
standard mathematical concept of the integer numbers. The value space of the integer datatype is the
infinite set {...,-2,-1,0,1,2,...} The basetype of integer is decimal.

 Integer has the following constraining facets:

 maxInclusive
 maxExclusive
 minInclusive
 minExclusive
 integer has the following subtypes:

 non-negative-integer
 non-positive-integer
Lexical representation

Integer values have a single, standard lexical representation. This consists of a string of digits with an
optional leading sign. If the sign is omitted, "+" is assumed. For example: -1, 0, 12678967543233,
+100000.

non-negative-integer
 [Definition:] The non-negative-integer datatype is the standard mathematical concept of the non-
negative integers. The value space of the non-negative-integer datatype is the infinite set
{0,1,2,...,∞} although computer implementations restrict this to a finite set. The basetype of
integer is integer.

HITIS CORRELATION AND INTERFACE STANDARD

HITIS Interface Specifications American Hotel & Motel Association Page 13
April 14, 2000

 non-negative-integer has the following constraining facets:

 maxInclusive
 maxExclusive
 minInclusive
 minExclusive
 non-negative-integer has the following subtypes:

 positive-integer

Lexical representation

Non-negative-integer values have a single, standard lexical representation. This consists of a string of
digits with an optional leading "+" sign. If the sign is omitted, "+" is assumed. For example: 1, 0,
12678967543233, +100000.

positive-integer
 [Definition:] The positive-integer datatype is the standard mathematical concept of the positive
integers. The value space of the positive-integer datatype is the infinite set {1,2,...,∞} although
computer implementations restrict this to a finite set. The basetype of integer is non-negative-integer.

 positive-integer has the following constraining facets:

 maxInclusive
 maxExclusive
 minInclusive
 minExclusive
 Lexical representation

positive-integer values have a single, standard lexical representation. This consists of a string of digits
with an optional leading "+" sign. For example: 1, 12678967543233, +100000.

non-positive-integer
 [Definition:] The non-positive-integer datatype is the standard mathematical concept of the non-
positive integers. The value space of the non-positive-integer datatype is the infinite set {-∞,...,-
2,-1,0} although computer implementations restrict this to a finite set. The basetype of integer is
integer.

 non-positive-integer has the following constraining facets:

 maxInclusive
 maxExclusive
 minInclusive
 minExclusive
 non-positive-integer has the following subtypes:

 negative-integer

Lexical representation

Non-positive-integer values have a single, standard lexical representation. This consists of a string of
digits with a leading "-" sign. For example: -1, 0, -12678967543233, -100000.

negative-integer
[Definition:] The negative-integer datatype is the standard mathematical concept of the negative
integers. The value space of the negative-integer datatype is the infinite set {-∞,...,-2,-1}

HITIS CORRELATION AND INTERFACE STANDARD

HITIS Interface Specifications American Hotel & Motel Association Page 14
April 14, 2000

although computer implementations restrict this to a finite set. The basetype of integer is non-positive-
integer.

 negative-integer has the following constraining facets:

 maxInclusive
 maxExclusive
 minInclusive
 minExclusive
Lexical representation

negative-integer values have a single, standard lexical representation. This consists of a string of digits
with a leading "-" sign. For example: -1, -12678967543233, -100000.

3.2 Long and Unsigned Long
Object Value:
Signed Longs (Longs) and Unsigned Longs (Ulongs) are 64-bit numeric non-fractional values.
Longs range from �2^63 to 2^63-1, or approx. -9 quintillion to +9 quintillion. Unsigned Longs
range from 0 to 2^64-1, or approx. 18 quintillion. (U.S. value, not U.K.)

XML Representation:
XML representation of the Signed Long and Unsigned Long data types would use the same data
type(s) as used for (2.1) Integer and Unsigned Integer, with the unsigned Long using the positive /
non-negative integer values as defined above.

3.3 String
Object Value:
Strings are a UNICODE collection of characters and have no maximum length. HITIS specifies
the length of a string that is the minimum length required for persistence that each compliant
system must be capable of saving. The type of strings used are mapped to the specific platform,
and it is assumed that the underlying object architecture or the implementation, if required,
somehow tags strings with their length before attempting to pass them across process boundaries.
If a greater length than the minimum required for persistence is used, there is no guarantee that
the other system will save the greater length, therefore, truncation of extra characters by the
receiving system (e.g., when storing the string in a database) is not an error. A string is Immutable
once the data has been passed to the receiving system, as the character collection is considered a
snapshot from the sending system.

XML Representation:
XML representation of the string data type would be the same data type defined by the emerging
W3C specification, with the constraints as defined below:

[W3C Definition - W3C Working Draft 25 February 2000]

The string datatype represents character strings in XML. The value space of the string datatype is the
set of finite sequences of UCS characters ([ISO10646] and [Unicode]). A UCS character (character,
for short) is an atomic unit of communication; it is not further specified except to note that every UCS
character has a corresponding UCS code point, which is an integer. The ordered property of string is
the [Unicode] character number sequence.

HITIS CORRELATION AND INTERFACE STANDARD

HITIS Interface Specifications American Hotel & Motel Association Page 15
April 14, 2000

The string datatype has an optional constraining facet called pattern. The value of this facet is a
regular expression. A regular expression is an alphanumeric string consisting of character symbols.
Each symbol, which is usually one character but may be two characters, is a placeholder that stands for
a set of characters. If this facet is not present, there is no restriction on the lexical representation.

The string datatype has an optional constraining facet called length. For the string datatype, length
specifies the number of allowable characters in the string. If length is specified, the data type is a fixed
length character string, where length is measured in the number of characters in the string. If length is
not specified, it is a variable length character string. The value of the length facet must be a positive
integer.

The string datatype has an optional constraining facet called maximum length. If maxlength is
specified for a variable length string it represents an upper bound of the length of the string. The value
of the maxlength facet must be a positive integer. Both length and maximum length cannot be
specified for the same datatype. The absolute maximum length of variable length character strings
depends on the XML parser implementation.

Maximum and Minimum Values - The string datatype also has the following constraining facets:
 maxInclusive
 maxExclusive
 minInclusive
 minExclusive

Clearly, the effect of these constraining facets depends on the collating sequence used to define the
order property for strings. A value space, and hence a datatype, is said to be ordered if there exists an
order relation defined for that value space. Order relations have the following rules:

 for every pair (a, b) from the value space, either a ≤ b or b ≤ a, or a = b;
 for every triple (a, b, c) from the value space, if a ≤ b and b ≤ c, then a ≤ c.

There may exist several possible order relations for a given value space. Additionally, there may exist
multiple datatypes with the same value space. In such cases, each datatype will define a different order
relation on the value space.

There is no XML representation for the minimum length and an unlimited maximum of a string,
therefore, HITIS cannot require a length for persistence, but suggests that the minimum length
recommended in the object specifications be able to be reconstituted for passing the data on to
another system.

3.4 DateTime
Object Value:
Datetime values are derived data types using unsigned integers. DateTime is defined as eight (8)
parts: Year, Month, Day, Hour, Minute, Second, TimeZone and TimeType. (NOTE: COM
implements DateTime using 2 Longs. COM dates have a resolution of approx. 1 millisecond and
range from January 1, 100, to December 31, 9999.) The domain of year = 4 digits numeric.

TimeZone (GMT or UTC) is a separate attribute that modifies DateTime. TimeZone is a signed
attribute, defined as indicating +- 12 hours from GMT, and has a domain of values.

TimeType is a HITIS enumerated type with the values: 1 = time relevant, 2 = timeNOT relevant,
3 = local time.

XML Representation:
The emerging W3C specification defines an XML representation of the dateTime data type as a
timeInstant with the following constraints:

HITIS CORRELATION AND INTERFACE STANDARD

HITIS Interface Specifications American Hotel & Motel Association Page 16
April 14, 2000

[W3C Definition - W3C Working Draft 25 February 2000]

The timeInstant datatype represents a combination of date and time values representing a single
instant of time. The value spaceof timeInstant is the space of Gregorian dates and legal time values as
defined by [ISO 8601].

A single lexical representation, which is a subset of the lexical representations allowed by ISO 8601 is
allowed for timeInstant. This lexical representation is the ISO 8601 extended format CCYY-MM-
DDThh:mm:ss.sss where "CC" represents the century, "YY" the year, "MM" the month and "DD" the
day, preceded by an optional leading sign to indicate a negative number. If the sign is omitted, "+" is
assumed. The letter "T" is the date/time separator and "hh", "mm", "ss.sss" represent hour, minute and
second respectively. Additional digits can be used to increase the precision of fractional seconds if
desired. To accommodate year values greater than 9999 additional digits can be added to the left of
this representation.

This representation can be immediately followed by a "Z" to indicate Coordinated Universal Time. To
indicate the time zone, i.e. the difference between the local time and Coordinated Universal Time, the
difference immediately follows the time and consists of a sign, + or -, followed by hhmm.

For example, to indicate 1:20 pm on May the 31st, 1999 for Eastern Standard Time which is 5 hours
behind Coordinated Universal Time, one would write: 1999-05-31T13:20:00-05:00.

Variations in the use of the ISO 8601 allow for a date, time, and time.tz, as well as dateTime
and dateTime.tz data types that can be read and understood by XML parsers. It can be assumed
that if a date is used without a time in a message, that the time is NOT relevant, and that if a full
dateTime value is sent, that time is relevant.

The inclusion of the time zone indicates a value of time in relation to UTC, but the absence of the
time zone portion can be assumed to be local time. This assumption allows for elimination of the
TimeType attribute in the XML mapping. In most cases, the HITIS data types for an attribute
designate the DateTime data type, but certain instances may find it appropriate to use any of the
following allowable combinations. e.g.: the PostingDate attribute which is a hotel fiscal date and
does not require a time.

date Date in a subset ISO 8601 format, without the time data. For example: "1994-11-05".

dateTime Date in a subset of ISO 8601 format, with optional time and no optional zone. Fractional
seconds can be as precise as nanoseconds. For example, "1988-04-07T18:39:09".

dateTime.tz Date in a subset ISO 8601 format, with optional time and optional zone. Fractional
seconds can be as precise as nanoseconds. For example: "1988-04-07T18:39:09-08:00".

time Time in a subset ISO 8601 format, with no date and no time zone. For example:
"08:15:27".

time.tz Time in a subset ISO 8601 format, with no date but optional time zone. For example:
"08:1527-05:00".

3.5 Currency
Object Value:
Currency (money value) is an object with two attributes: CurrencyCode, a 3-character string
indicating the ISO currency code (e.g., �USD�, �CAD�, etc.) and Amount, which is derived from
the Long data type. Amount values are scaled by 1 million to accommodate the current European
Union standard. The currency data type has a range of (minus) -2^63/1000000 to +(2^63-
1)/1000000, or approximately -9 trillion to +9 trillion (U.S. trillions, not U.K.). The currency code
is ISO standard # 4217 (1995). See References.

HITIS CORRELATION AND INTERFACE STANDARD

HITIS Interface Specifications American Hotel & Motel Association Page 17
April 14, 2000

XML Representation:
HITIS maps the Currency object value to XML by adhering to the two (2) attributes of the object
model. Any element that is designated with the Currency data type will have a CurrencyCode
attribute, and an Amount sub-element whose data type is a decimal.

The HITIS Currency data type is expressed in the following example of a FolioBalance:

<FolioBalance CurrencyCode="USD">
<Amount>14.32</Amount>

</FolioBalance>

The DTD for an element using the HITIS Currency data type is:

<!ELEMENT Currency (Amount)>
<!ATTLIST Currency CurrencyCode CDATA #REQUIRED>
<!ELEMENT Amount (#PCDATA)>
<!ATTLIST Amount e-dtype NMTOKEN #FIXED 'decimal'>

The XML Schema definition is:

<!-- Conforms to w3c http://www.w3.org/TR/xmlschema-1/-->
<schema targetNamespace="Currency.dtd" xmlns="http://www.w3.org/1999/05/06-xmlschema-1/structures.xsd">

<element name="Currency">
<type content="elementOnly">

<group order="seq">
<element ref="Amount"/>

</group>
<attribute name="CurrencyCode" minOccurs="1" type="string"/>

</type>
</element>
<element name="Amount" type="decimal"/>

</schema>

NOTE:
A common alternative representation of the currency data type is a fixed decimal 14.4.

fixed.14.4 Same as "number" but no more than 14 digits to the left of the decimal point, and no
more than 4 to the right.

The fixed 14.4 currency data type is not used in the HITIS specifications.
Exception: If the fixed 14.4 Currency data type is adopted as part of a future W3C specification,
HITIS will defer to this standards body definition.

3.6 Percent
Object Value:
Percent is a data type derived from the Long data type (Signed Long). Percent data can represent
positive or negative fractional (less than 1) values. Values are scaled by 1 million to
accommodate 4 decimal places, plus the two for the percentage. (For example, 10% would be
expressed as 100000; 0.5% would be expressed as 5000.) Thus, the percentage data type has a
range of -2^63/10000 to +(2^63-1)/10000, or approximately -900 trillion percent to +900 trillion
percent. (U.S. trillions, not U.K.)

XML Representation:

HITIS CORRELATION AND INTERFACE STANDARD

HITIS Interface Specifications American Hotel & Motel Association Page 18
April 14, 2000

There is no direct XML equivalent of percent. It is necessary to use a data type from the existing
base data type of integer (a decimal). A decimal is expressed as a true percentage in lexical
representation; e.g.: 1% is expressed as 0.01, and 10% is expressed as 0.10, reflecting its actual
decimal value.

The emerging W3C specification defines an XML representation of a built-in generated data type
of the decimal data type as follows:

[W3C Definition - W3C Working Draft 25 February 2000]

decimal represents arbitrary precision decimal numbers. The value space of decimal consists of the
values i × 10^n, where i and n are integers, with n being known as the scale of the value space.

decimal has a single standard lexical representation. This consists of a finite sequence of decimal
digits separated by a period as a decimal indicator, in accordance with the scale and precision facets,
with an optional leading sign. If the sign is omitted, "+" is assumed. Leading and trailing zeroes are
optional. For example: -1.23, 12678967.543233, +100000.00.

Decimal has the following constraining facets:
 precision
 scale
 pattern
 enumeration

maxInclusive
 maxExclusive
 minInclusive
 minExclusive

decimal has the following built-in datatypes:
 integer

Decimal values have a single standard lexical representation. This consists of a string of digits separated
by a period as a decimal indicator, in accordance with the scale and precision facets, with an optional
leading sign to indicate a negative number. If the sign is omitted, "+" is assumed. Leading and trailing
zeroes are optional. For example: -1.23, 12678967.543233, 100000.00.

The DTD and XML-Schema definition for elements using the data type decimal is:
<!ELEMENT CommissionPercent (#PCDATA)>
<!ATTLIST CommissionPercent e-dtype NMTOKEN #FIXED 'decimal' >

<schema xmlns="http://www.w3.org/1999/05/06-xmlschema-1/structures.xsd">
<element name="CommissionPercent" type="decimal"/>

</schema>

3.7 Byte Array
Object Value:
A Byte Array is an array of bytes (8-bit unsigned numeric non-fractional value), and is used for
vendor-specific extensions (i.e., additions) of complex data to certain objects. For example, a
guest profile may include a bitmap image of a photograph. A byte array is immutable, as the data
cannot be appended once it is sent to the other system. The data passed is considered a snapshot
from the sending system. Byte arrays are implemented however the underlying object architecture
implements them, and a system that does not accommodate the data format received is tasked
with mapping the raw binary data to a data type that the system uses.

HITIS CORRELATION AND INTERFACE STANDARD

HITIS Interface Specifications American Hotel & Motel Association Page 19
April 14, 2000

XML Representation (W3C):
The emerging W3C specification defines an XML representation of a primitive data type, binary,
as follows:

[W3C Definition - W3C Working Draft 25 February 2000]

binary represents arbitrary binary data. The value space of binary is the set of finite sequences of
binary octets.
Constraint: encoding required for binary
It is an error for binary to be used directly in a schema. Only datatypes that are derived from binary
by specifying a value for encoding can be used in a schema.
binary has the following constraining facets:

encoding
length
minlength
maxlength
pattern
enumeration

If the length is not specified, a datatype with variable length is specified. In this case, the optional
maximum length facet specifies the maximum length of the data in bits. If the maximum length is not
specified the default is unlimited length. The optional "encoding" facet specifies the encoding which
may be "hex" for hexadecimal digits or "base64" for MIME style Base64 data.

The HITIS DTD and XML-Schema definition files will indicate a bin.base64 datatype for
elements designated as a Byte Array in the object model. In order to enable a programmer to
parse out all CDATA without validation and map the raw binary data format received in way that
their individual system can accommodate it, these variables may be included as CDATA in an
XML message instance.

NOTE
XML schema generation tools provide for a bin.base64, or bin.hex data type that corresponds to
the binary data type in the specification above. The HITIS standards have designated use of the
bin.base64 data type for representing binary data passed in conjunction with an XML message
assuming XML processors support conversions between these types.
bin.base64 MIME-style Base64 encoded binary BLOB.
bin.hex Hexadecimal digits representing octets.

The following example shows the use of the binary data type in the ContentData element (a part
of the Extension object):

<Extension>
<ContentData>3456.jpg</ContentData>

</Extension>
The DTD and XML-Schema definition for elements using the data type bin.base64 is:

<!ELEMENT ContentData (#PCDATA)>
<!ATTLIST ContentData e-dtype NMTOKEN #FIXED 'bin.base64'>

<schema xmlns="http://www.w3.org/1999/05/06-xmlschema-1/structures.xsd">
<element name="Extension">

<type content="elementOnly">
<element ref="ContentData"/>

</type>

HITIS CORRELATION AND INTERFACE STANDARD

HITIS Interface Specifications American Hotel & Motel Association Page 20
April 14, 2000

</element>
<element name="ContentData" type="bin.base64"/>

</schema>

3.8 Boolean
Object Value:
Boolean is a binary value with a domain of zero (0) or one (1). Allowable values are 0, which
indicates False or No, and 1, which indicates True or Yes. A Boolean value will be mapped to the
environment and implemented however the underlying architecture defines it. A bridge may be
required to map data type discrepancies between platforms.

XML Representation (W3C):
The emerging W3C specification defines an XML representation of a primitive data type,
boolean, as follows:

[W3C Definition - W3C Working Draft 25 February 2000]

boolean has the value space required to support the mathematical concept of binary-valued logic:
{true, false}.

An instance of a datatype that is defined as boolean can have the following legal lexical values {true,
1, false, 0} with '1' being the same as 'true' and '0' being the same as 'false'.

boolean has the following constraining facets:
pattern

The HITIS standards use the boolean data type that corresponds to the W3C XML specification.
boolean 0 or 1, where 0 == "false" and 1 =="true".

An example of the use of the boolean data type in the IsCredit element (part of the
QueryFolioRequest message) is as follows:

<IsCredit>true</IsCredit>

The DTD for this element would be:

<!ELEMENT IsCredit (#PCDATA)>
<!ATTLIST IsCredit e-dtype NMTOKEN #FIXED 'boolean'>

The XML-schema definition for this element would be:

<Schema name="QueryFolioRequest.dtd" >
<ElementType name="IsCredit" content="textOnly" dt:type="boolean"/>

</Schema>

3.9 DayOfWeek (DOWPattern)
Object Value:
The Day of Week data type (DOWPattern) is an object with 7 Boolean attributes. i.e.: Sunday,
Yes/No; Monday, Yes/No; Tuesday, Wednesday, Thursday, Friday, and Saturday, etc.

XML Representation:
There is no XML equivalent for this HITIS-defined data type. An XML mapping is created from
the existing base data type of boolean.

HITIS CORRELATION AND INTERFACE STANDARD

HITIS Interface Specifications American Hotel & Motel Association Page 21
April 14, 2000

Mapping the HITIS object value to XML following strict adherence to the seven (7) attributes of
the object model results in a DOWPattern value as follows: [a sample use of DOWPattern in a
DaysOfWeek element (part of the RateAmount object)]

<DaysOfWeek>
<DOWPattern>

<Monday>true</Monday>
<Tuesday>true</Tuesday>
<Wednesday>true</Wednesday>
<Thursday>true</Thursday>
<Friday>false</Friday>
<Saturday>false</Saturday>
<Sunday>false</Sunday>

</DOWPattern>
</DaysOfWeek>

The DTD for the DOW Pattern is:

<!ELEMENT DOWPattern (Monday , Tuesday , Wednesday , Thursday , Friday , Saturday , Sunday , DaysOfWeek)>
<!ELEMENT Monday (#PCDATA)>
<!ATTLIST Monday e-dtype NMTOKEN #FIXED 'boolean'>
<!ELEMENT Tuesday (#PCDATA)>
<!ATTLIST Tuesday e-dtype NMTOKEN #FIXED 'boolean'>
<!ELEMENT Wednesday (#PCDATA)>
<!ATTLIST Wednesday e-dtype NMTOKEN #FIXED 'boolean'>
<!ELEMENT Thursday (#PCDATA)>
<!ATTLIST Thursday e-dtype NMTOKEN #FIXED 'boolean'>
<!ELEMENT Friday (#PCDATA)>
<!ATTLIST Friday e-dtype NMTOKEN #FIXED 'boolean'>
<!ELEMENT Saturday (#PCDATA)>
<!ATTLIST Saturday e-dtype NMTOKEN #FIXED 'boolean'>
<!ELEMENT Sunday (#PCDATA)>
<!ATTLIST Sunday e-dtype NMTOKEN #FIXED 'boolean'>

The XML-Schema definition for the DOW Pattern is:

<schema targetNamespace="DOWPattern.xsd" xmlns="http://www.w3.org/1999/05/06-xmlschema-1/structures.xsd">
<element name="DOWPattern">

<type content="elementOnly">
<group order="seq">

<element ref="Monday"/>
<element ref="Tuesday"/>
<element ref="Wednesday"/>
<element ref="Thursday"/>
<element ref="Friday"/>
<element ref="Saturday"/>
<element ref="Sunday"/>

</group>
</type>

</element>
<element name="Monday" type="boolean"/>
<element name="Tuesday" type="boolean"/>
<element name="Wednesday" type="boolean"/>
<element name="Thursday" type="boolean"/>
<element name="Friday" type="boolean"/>
<element name="Saturday" type="boolean"/>
<element name="Sunday" type="boolean"/>

</schema>

3.10 DateTimeSpan
Object Value:

HITIS CORRELATION AND INTERFACE STANDARD

HITIS Interface Specifications American Hotel & Motel Association Page 22
April 14, 2000

The DateTimeSpan data type is an object with 3 attributes: StartTime1: DateTime, TimeUnit:
TimeUnitType, and NumberOfTimeUnits: Integer.

XML Representation:
There is no XML equivalent of DateTimeSpan. A HITIS data type is created from the existing
base data type of timeDuration.

[Definition:] The timeDuration datatype represents a combination of year, month, day and time
values representing a single duration of time, encoded as a single string. A single lexical
representation, which is a subset of the lexical representations allowed by [ISO 8601], is allowed for
timeDuration.

Lexical Representation

The lexical representation for timeDuration is the [ISO 8601] representation
CCYYMMDDThhmmss.sss, preceded by an optional sign (+ or -), where "CC" represents the number
of centuries, "YY" the number of years, "MM" the number of months and "DD" the number of days.
The letter "T" is the date/time separator and "hh", "mm", "ss.sss" represent number of hours, minutes
and seconds respectively. Note that this representation allows for fractional seconds.

For example, to indicate a duration of 1 year, 2 months, 3 days, 10 hours, and 30 minutes, one would
write: 00010203T103000.

Time periods, i.e. specific durations of time, can be represented by supplying two items of
information: a start instant and a duration or a start instant and an end instant or an end instant and a
duration.

The HITIS standards use the XML mapping that provides for two elements to represent the
specific period of time; a startInstant and a duration. The lexical representation of the dateTime
data type defined by [ISO 8601] is used in both elements to build the DateTimeSpan data type.

The following is an example of the XML mapping of a DateTimeSpan:

<DateTimeSpan>
<startInstant>1999-05-31T13:20:00</startInstant>
<duration>+00000002T474000</duration>

</DateTimeSpan>

The DTD for the HITIS DateTimeSpan is:

<!ELEMENT DateTimeSpan (startInstant , duration)>
<!ELEMENT startInstant (#PCDATA)>
<!ATTLIST startInstant e-dtype NMTOKEN #FIXED timeInstant>
<!ELEMENT duration (#PCDATA)>
<!ATTLIST duration e-dtype NMTOKEN #FIXED timeInstant >

The XML-schema definition for the HITIS DateTimeSpan is:

<schema targetNamespace="DateTimeSpan.dtd" xmlns="http://www.w3.org/1999/xmlschema/datatypes">
<element name="DateTimeSpan">

<type content="elementOnly">
<group order="seq">

<element ref="startInstant"/>
<element ref="duration"/>

</group>
</type>

</element>
<element name="startInstant" type="timeInstant"/>

1 The attribute Start was renamed StartTime to avoid conflicts with the word Start, which is reserved in some programming
languages.

HITIS CORRELATION AND INTERFACE STANDARD

HITIS Interface Specifications American Hotel & Motel Association Page 23
April 14, 2000

<element name="duration" type="timeInstant"/>
</schema>

4.0 SESSION OBJECT
Object Values:
The Session object represents the connection to a server. Note that this object is the only one
directly creatable (i.e., instantiable) by a client application. All other objects in a HITIS interface
are created via object operations (or accessed via object attributes). Therefore, besides the
standard attributes and operations described below, the Session object for each HITIS interface
may have additional attributes and/or operations to access or create other objects.

XML Representation
In converting the UML model to a messaging format, the object-based operations were removed,
converting the business functionality they represented into request/response pairs. A Request
message contains the input parameters of the object-based operation, and a Response message
contains the return or [Out] parameter(s), if any, and the HITIS Code attribute that indicates the
status of the processing of the message by the receiving system, or an error condition, if one
exists.

4.1 Versioning
Object Values:
The session object for each interface should be named �xSession�, where "x" indicates the name
of the interface, e.g., �SecuritySession� for the Security interface�s session object. The following
attributes are included in every Session object:

4.1.1 VersionMajor (Integer)
Defines the Major version of the HITIS interface, indicated in decimal notation by the
integer preceding the decimal. e.g.:: Version 1.1

4.1.2 VersionMinor (Integer)
Defines the Minor version of the HITIS interface, indicated in decimal notation by the
integer following the decimal. eg: Version 1.1

XML Representation
The version numbering scheme remains the same in XML, combining both major and minor
version in the element tag <Version>. The data type will be a string, thus allowing the use of
letters in combination with whole integers for interim sub-versions, e.g.: 1.1c.

4.2 Operations
Object Values:
The following operations are included in every Session object:

4.2.1 Authenticate (UserName : String, Password : String) : Integer
The Authenticate operation is used to log in to the server and authenticates the user. The location
of the object is determined outside the operation when the application originally creates the
Session object.

Exception - The Authenticate operation in the Event Notification object is different from the other
standards because it defines an asynchronous event and contains an additional parameter for the
event's Sequence Number.
Authenticate (UserName : String, Password : String, ServerSequenceNumber : Integer) : Integer

HITIS CORRELATION AND INTERFACE STANDARD

HITIS Interface Specifications American Hotel & Motel Association Page 24
April 14, 2000

4.2.2 GetErrorString
The GetErrorString operation is a response to an error condition that has occurred in the interface
object. The operation provides a text description of the error associated with the ErrorNumber and
may supply that text in a selected language, if that is an available feature of the application.
GetErrorString (ErrorNumber : Integer, LanguageID : String, ErrorString : String) : Integer

Vendors can map to HITIS string definitions or override them with their own string as vendors
are responsible for having a string that describes each error number returned. There is no length
restriction on error strings, and error stings are read-only.

4.2.3 LanguageID
Object Values:
The default language for HITIS-defined error strings is English, but the error text may be supplied
in a selected language, if that is an available feature of the application processing the messages. If
a translation is provided for the string, the LanguageID element is filled out to specify the
language of translation. If a match is not found for the error number in the LanguageID requested,
then the default LanguageID (English) is returned.

The LanguageID attribute is a combination of two strings; Language and CountryCode. The 1st

string designates the Language, the 2nd string is the CountryCode; the delimiter is an underscore.
For example, en_UK, (English, United Kingdom). The ISO standard for Language is 639:1988
and the ISO standard for Country Codes is 3166-1:1997. See References.
XML Representation
NOTE* - The revised, February 25, 2000, W3C specification defines a derived datatype,
language, as follows:

 [Definition:] language represents natural language identifiers as defined by[RFC 1766]. The value
space of language is the set of all strings that match the LanguageID production in [XML 1.0
Recommendation]. The lexical space of language is the set of all strings that match the LanguageID
production in [XML 1.0 Recommendation]. The base type of language is string.

H. Alvestrand, ed. RFC 1766: Tags for the Identification of Languages 1995. Available at:
http://www.ietf.org/rfc/rfc1766.txt

XML Representation
The Authenticate and GetErrorString operations of the Session object are replaced by the XML
messaging paradigm, allowing for three distinct message types, in a specific request/response
message pair that defines how the exchange of messages will take place.

The HITIS standards define three types of messages that a system can perform at the
infrastructure level, and are separate from the business context.
1. Register/UnRegister - Initial agreement to decide how to exchange data
2. Subscribe/ UnSubcribe - Request to receive all published events of a certain type
3. HITIS Message - Initiation of all business messages (Request and Response)

HITIS message types contain a Header and a Body. The Header is identical in all message types.
The LanguageID that determines the administration and error string language is used in the
HITISRegister message.

http://www.ietf.org/rfc/rfc1766.txt

HITIS CORRELATION AND INTERFACE STANDARD

HITIS Interface Specifications American Hotel & Motel Association Page 25
April 14, 2000

5.0 HITIS HEADER
A HITIS XML document should be able to be routed through a system and traceable by a logfile.
The HITIS Header section is designed to provide sufficient information to correlate a request/
response to the message and to enable settlement between business partners. The HITIS message
may be encapsulated in a wrapper that handles the routing in the infrastructure, but if a document
becomes separated, the Header is designed to allow the transport protocol to route the message
appropriately.

The Header has two attributes:
• Original Body Requested - a True/False Boolean that indicates "Echo reply". Some systems save the

content of the original message, but other systems cannot process the response unless the original
request is also returned. If OriginalBodyRequested = true, the requestor should put the whole XML
request and reply together in the DOM to return them in the response message. Returning the original
body is optional in the HITIS standards and depends on the requesting system.

• ImmediateResponseRequired - a True/False Boolean that indicates a synchronous message. This
communicates the necessity to hold the thread open at the switch for the response to be returned along
with the acknowledgement in http. In the absence of using http, use of this attribute indicates whether
a thread is blocking or non-blocking despite the underlying protocol.

5.1 Routing Elements
The FromURI, and ToURI elements are system addresses that identify the origin and destination
of the message. These elements record the systems (business partners) that a message passes
through on its way to the system that will process the request. Whenever a HITIS message is
forwarded to another system, the new path is appended by the router. The "To" replaces the
"From" and adds a new destination. The ReplyToURI is the final location address that
anticipates the business response.

The "To" and "From" URIs are business entities that a message passes through and are recorded
in the Routing Hops element for reservation transactions, and persisted in the Reservation record.
The Routing Hops are used as a reference to handle the ownership of business rules and
determine the business agreement or permissions allowed between trading partners. Routing
hops may also affect booking rules, such as accepting a reservation under certain conditions that
are different from accepting that reservation from another system. If a reservation changes they
are used to synchronize all systems that need to be notified. They are also used to avoid circular
references.

The transmission path of a message is not necessarily relevant to the business context of a
message. A message may be routed by a switch that determines the most efficient path for
delivery, and the physical routing is handled by the transport layer.

5.2 Message IDs
A Message ID is created by the source and is used to identify the original message. The Message
ID defines the message set of a request and response pair. A message may be queued,
asynchronous of the context of the message, and systems can use the MessageID to match up the
result with the request. If a message needs to be re-posted, a Message ID is also used in the re-
post.

HITIS CORRELATION AND INTERFACE STANDARD

HITIS Interface Specifications American Hotel & Motel Association Page 26
April 14, 2000

A MessageID is filled in by each sender (the <FromURI>). The <Original Message ID > is a
means by which to identify the original message. The originator of the message populates both
fields, the MessageID and the Original MessageID.

5.3 Token
A <Token> is the "cookie" that gives authorization to the system, or permission to send the
message. The <Token> is originally returned by the server in response to the HITISRegister
message.

The following is an example of a HITIS Header::
<HITISMessage xmlns=" http://www.w3.org/1999/XMLSchema/datatypes " Version="1.0">

<Header OriginalBodyRequested="false" ImmediateResponseRequired="true">
<FromURI>http://www.pos.com/HITISInterface</FromURI>
<ToURI>http://www.pms.com/HITISInterface</ToURI>
<ReplyToURI>http://www.pos.com/HITISInterface</ReplyToURI>
<MessageID>1234567890</MessageID>
<OriginalMessageID>1234567890</OriginalMessageID>
<TimeStamp>1999-11-10T10:23:44</TimeStamp>
<Token>1234-567-8901</Token>
<!--Token to be assigned in response to HITISRegister-->

</Header>

6.0 HITIS REGISTER
The HITIS Register message is the first message sent to a system upon connection. It is the
message that starts the initial discussion for authentication and negotiation to decide how the two
systems intend to exchange messages. The HITIS Register message allows systems to define such
items as the version, protocol, role, password, and language.

6.1 Language ID
The LanguageID element determines the administrative and error string language
(individual messages can use different languages). The default language is English, but if
another language is preferred, it would be negotiated upon registration.

6.2 Version
The Version element uses the HTML/XML convention of a string, combining both major
and minor version in the element tag <Version> for example Version = 1.0. Letters may
be used in combination with whole integers for interim sub-versions, e.g.: 1.1c.

6.3 Authentication
The Authentication element provides the verification of a system's identity and
authorization to define the security of a connection for the exchange of messages. The
Authentications (plural) element accommodates more than one security method, if such is
required. The AuthenticationType attribute is a string that identifies the type of security to
be applied to a session connection between parties. It is not an enumerated type, however,
several types are suggested, such as x509 certificates, a Password, or a PGP digital
signature, etc.

When Authentication is made the responding system returns a token. That token acts as a
cookie and is used to identify the system the next time it logs on.

Depending upon the type of authentication chosen, the sub-elements<Value> and
<Name>are used. If the AuthenticationType is x509 certificates, the <Value> would be a

HITIS CORRELATION AND INTERFACE STANDARD

HITIS Interface Specifications American Hotel & Motel Association Page 27
April 14, 2000

url, and the <Name> would be the issuing authority of the certificate. If the
AuthenticationType is PGP, then the <Value> would be a digital signature.

If, by contrast, two systems are on a secure local area network connection, the
AuthenticationType is a Password, and the elements <Login> and <Password> would be
used instead of the name/value pair.

6.4 Role
The Role element defines the permissions given to the connecting system, which may
include user-defined business restrictions or privileges.

6.5 Transport Protocol
The TransportProtocol element allows two systems to define the protocol to be used to
exchange messages. HITIS-compliant systems should be able to support http, but there is
no requirement to use this transport, and the parties could agree to switch to msnq, https,
SMTP, or another protocol as an alternative connection.

The originating system sends the HITIS Register message with the preferred type of
protocol listed in the ProtocolType attribute. If the initial Register message is sent in http,
and the receiving system is willing to communicate in that protocol; the responding
system sends an acknowledgment in http and returns the HITIS Register message with the
ProtocolType element and its associated <Name> and <Value> pair filled in. Once this is
accomplished, the exchange of HITIS messages can begin.

If the responding system wishes to change to another transport protocol, then the
information in the <TransportProtocol> element is replaced with an identification of the
appropriate alternative protocol, along with the associated information in the sub-
elements.

The ContactLocation element is a string used to identify a URI, a port number, or an e-
mail address to which subsequent messages should be directed.

6.6 Token
The response to a HITIS Register message is another HITIS Register message returned
with the Token information added in the Body. When the initial message is sent, the
Token is empty. This is not necessarily a synchronous message, but the originator is not
able to send any other messages until the reply is received.

Some systems may add an expiration time/date of the token, filling in the TokenExpires or
the TokenCount element to indicate that the token is valid for a certain number of
messages or for a certain time duration.

If a token is returned that is good for only one message, then the originating system is
tasked to register again for each message, and should be efficient enough to avoid sending
a message with the previous token, handling an error message, and sending a re-try. The
burden lies with the client returning the token, and systems should handle this on a server
request basis.

The following is an example of a HITIS Register message:
<HITISRegister xmlns="">

<Header OriginalBodyRequested="false" ImmediateResponseRequired="true">

HITIS CORRELATION AND INTERFACE STANDARD

HITIS Interface Specifications American Hotel & Motel Association Page 28
April 14, 2000

<FromURI>http://www.pos.com/HITISInterface</FromURI>
<ToURI>http://www.pms.com/HITISInterface</ToURI>
<ReplyToURI>http://www.pos.com/HITISInterface</ReplyToURI>
<MessageID>1234567890</MessageID>
<OriginalMessageID>1234567890</OriginalMessageID>
<TimeStamp>1999-11-10T10:23:44</TimeStamp>
<Token/>
<!--Token to be assigned in response to HITISRegister-->

</Header>
<Body>

<LanguageID>en_US</LanguageID>
<Version>1.0</Version>
<Authentications>

<Authentication AuthenticationType="Password">
<Value/>
<Name/>
<Login>UserID0123</Login>
<Password>xxxooo</Password>

</Authentication>
<Role>D706YX</Role>
<TransportProtocol ProtocolType="http">

<Property>
<Name/>
<Value/>

</Property>
<ContactLocation>http://www.pms.com/HITISInterface</ContactLocation>

</TransportProtocol>
<Token TokenType="HostAssigned"/>
<TokenExpires>1999-11-10T24-00-000</TokenExpires>
<TokenCount>3</TokenCount>

</Authentications>
</Body>

</HITISRegister>

6.7 HITIS UnRegister
A HITIS Unregister message notifies a system that the Token is being released along with
any known information that was negotiated through the HITIS Register process. A HITIS
Unregister message has no Body in the message, only the Token in the Header.

The following is an example of a HITIS UnRegister message:

<HITISUnRegister xmlns="" Version="1.0">
<Header OriginalBodyRequested="false" ImmediateResponseRequired="false">

<FromURI>http://www.pos.com/HITISInterface</FromURI>
<ToURI>http://www.pms.com/HITISInterface</ToURI>
<ReplyToURI>http://www.pos.com/HITISInterface</ReplyToURI>
<MessageID>1234567890</MessageID>
<OriginalMessageID>1234567890</OriginalMessageID>
<TimeStamp>1999-11-10T10:23:44</TimeStamp>
<Token>d29jtu799874903.78024.xyz</Token>
<!--Token no longer valid upon receipt of this message-->

</Header>
</HITISUnRegister>

7.0 HITIS SUBSCRIBE
The HITIS Subscribe message allows a system to subscribe to certain events, and allows the
publisher of an event to handle channel definitions. The initiation of a HITIS Subscribe message
is a request to receive all of the events of a type that are published. When a system registers to be
a recipient of events, it subscribes to all or nothing.

HITIS CORRELATION AND INTERFACE STANDARD

HITIS Interface Specifications American Hotel & Motel Association Page 29
April 14, 2000

Since publishing is generally done through agreements negotiated beforehand with events sent to
a subscriber list, the HITIS Subscribe/ Unsubscribe messages are used to determine who has
subscribed to certain events. The server keeps track of who is subscribing and what events (items)
each system wishes to receive. The EventName defines what event has been subscribed to.

If a system subscribes to multiple events, there may be different servers handling the different
types of events. The subscribing system sends an identification of the event it wishes to subscribe
to, as it may not want to receive events for all broadcasts. Alternatively, a system may prefer to
issue separate HITIS Subscribe messages in order to have the ability to subscribe to certain event
types only. Subscribe messages are asynchronous and do not anticipate an immediate response.

The following is an example of a HITIS Subscribe message:
<HITISSubscribe xmlns="" Version="">

<Header OriginalBodyRequested="false" ImmediateResponseRequired="false">
<FromURI>http://www.pos.com/HITISInterface</FromURI>
<ToURI>http://www.pms.com/HITISInterface</ToURI>
<ReplyToURI>http://www.pos.com/HITISInterface</ReplyToURI>
<MessageID>1234567890</MessageID>
<OriginalMessageID>1234567890</OriginalMessageID>
<TimeStamp>1999-11-10T10:23:44</TimeStamp>
<Token>1234.567.8901xyzddd2i</Token>
<!--Token assigned in response to HITISRegister-->

</Header>
<Body>

<Events>
<Event>

<ReplyToURI/>
<!--Address to send events when they are published-->
<EventName/>
<!--Identifies the type of event being subscribed to-->
<Scope/>
<!--Distribution channel - could include a hotel reference, a group of hotels on a campus,
 or individual sub-systems on a property, such as the electronic lock system, PBX, etc. -->

</Event>
</Events>

</Body>
</HITISSubscribe>

8.0 HITIS MESSAGE
A HITISMessage is a request and a response message pair. A "Request" message is the http Post
that represents the function call of a HITIS operation to perform a query or to send data to another
system. The "Response" message is an http Post Response that returns the out parameters of the
operation, a return code integer value, and the error string(s) in the case of an error.

The content model of a HITISMessage consists of a Header and a Body. The first element of the
Body is the HITISOperation which contains an OperationName= attribute that defines the context
of the message. The string in the OperationName attribute determines what operation is to be
performed. This is used by the parser to determine where to send the message for processing,
instantiating the appropriate handler to perform the business functionality of the request.

The syntax of the (OperationName =) string is derived from the name of the operation, combined
with the name of the class (if necessary to differentiate from other operations of the same name),
followed by a Request or Response. The name of the DTD and XML-Schema definition files uses
the OperationName string, as in the following examples:

OperationName = QueryFolioRequest returns OperationName =QueryFolioResponse, Operation
Name = ReservationNotificationUpdateRequest

returns Operation Name = ReservationNotificationResponse.

HITIS CORRELATION AND INTERFACE STANDARD

HITIS Interface Specifications American Hotel & Motel Association Page 30
April 14, 2000

Several operations from the object model were combined into one Request message if the return
value was the same, resulting in the multiple input parameters in a request. Where that is the case,
elements of the request message are optional, and the requestor completes only the appropriate
elements needed to fulfill the request. If more than one element is filled in, the query assumes an
implicit "AND" condition for the elements included.

The basic structure of a HITISMessageRequest XML document is as follows:
<HITISMessage xmlns=" http://www.w3.org/1999/XMLSchema/datatypes " Version="1.0">

<Header OriginalBodyRequested="false" ImmediateResponseRequired="true">
<FromURI>http://www.pos.com/HITISInterface</FromURI>
<ToURI>http://www.pms.com/HITISInterface</ToURI>
<ReplyToURI>http://www.pos.com/HITISInterface</ReplyToURI>
<MessageID>1234567890</MessageID>
<OriginalMessageID>1234567890</OriginalMessageID>
<TimeStamp>1999-11-10T10:23:44</TimeStamp>
<Token>1234-567-8901</Token>
<!--Token to be assigned in response to HITISRegister-->

</Header>
<Body>

<HITISOperation OperationName="QueryFolioRequest">
<!--Input parameters of request message inserted here.-->

</HITISOperation>
</Body>

</HITISMessage>

The basic structure of a HITISMessage Response XML document is as follows:
<HITISMessage xmlns="http://www.w3.org/1999/XMLSchema/datatypes" Version="1.0">

<Header OriginalBodyRequested="false" ImmediateResponseRequired="true">
<FromURI>http://www.pms.com/HITISInterface</FromURI>
<ToURI>http://www.pos.com/HITISInterface</ToURI>
<ReplyToURI>http://www.pms.com/HITISInterface</ReplyToURI>
<MessageID>1234567890</MessageID>
<OriginalMessageID>1234567890</OriginalMessageID>
<TimeStamp>1999-11-10T10:23:44</TimeStamp>
<Token>1234-567-8901</Token>
<!--Token to be assigned in response to HITISRegister-->

</Header>
<Body>

<HITISOperation OperationName="QueryFolioResponse" HITISCode="0">
<!--Out parameters of response message inserted here-->

</HITISOperation>
</Body>
<OriginalBody>Same as Body of original request message
</OriginalBody>

</HITISMessage>

The <OriginalBody> tag included in the Response Message schema is an optional element to be
used if the attribute OriginalBodyRequested = true. The data type for the OriginalBody element is
CDATA.

The sample response message instance above includes the HITIS Code integer value of (0),
indicating Success. If the integer value is other than zero (0), the response message would include
a one or more Error elements that may indicate an additional error code (hex value) and a string
with the text description of the error, as in the following sample:

<Body>
<HITISOperation OperationName="QueryFolioResponse" HITISCode="0x0B2F">

<Errors>
<Error HITISCode="0x22">BAD_FOLIO_ID</Error>

</Errors>
</HITISOperation>

HITIS CORRELATION AND INTERFACE STANDARD

HITIS Interface Specifications American Hotel & Motel Association Page 31
April 14, 2000

</Body>

9.0 RETURN VALUES
Return values may be one of two types; 1) System errors, and 2) HITIS and Vendor-specific
return values, depending upon the level of the error encountered.

The error return values are handled as follows:

9.1 System Level Errors
A system generated error value is returned by whatever mechanism the underlying system uses to
return errors. e.g.: The system error handler or catch for error trapping, dependent upon how the
environment handles global system errors.

9.2 HITIS Return Values
Object Values:
All HITIS operations return an integer as the final parameter. The HITIS return values are used
for functional errors related to the operation. (Exception - See Collection Object)

A range of values is assigned for HITIS errors by Functionally Organized Object, using
hexadecimal notation, as follows:

0 to 3FF = Generic HITIS error codes.

Generic HITIS errors exist in almost all objects, and provide a commonality across the standards.
An example in the Session Authenticate operation would be Invalid_UserName, or
Invalid_Password.

Then every 400 block:

400 - 7FF HITIS_POST_X (400 = HITIS_POST_BASE)
800 – BFF
C00 – FFF
…
4000 - 43FF

Up to FFFF is reserved for HITIS returns via the integer error value in the range as defined
above. This allows for growth of the HITIS specifications so that other standards can be added
with space available for their error definitions. (See chart at the end of this Section)

XML Representation:
The XML response messages return an integer to indicate success of the operation, or a HITIS or
vendor-specific error condition. If a response message returns an error condition that has occurred
in the processing of the Request, an integer other than zero (0) is indicated in the HITISCode
attribute. Systems should independently maintain an external table for reference to the text
description of the error associated with the integer.

If the response message contains data other than the HITISCode integer, those elements that
contain the return data are nested inside the HITIS Operation, as in this example.

<Body>
<HITISOperation OperationName="ReservationNotificationResponse" HITISCode="0">

HITIS CORRELATION AND INTERFACE STANDARD

HITIS Interface Specifications American Hotel & Motel Association Page 32
April 14, 2000

<ReservationID 6123456</ReservationID>
</HITISOperation>

</Body>

If the HITISCode is anything other than a Zero (0) value, then an Errors element will be sent that
may contain 1 to many Error elements with more detailed error information. Errors are not sent
through a ReturnValues section itself in order to isolate the business contents from the
infrastructure information.

<Body>
<HITISOperation OperationName="ReservationNotificationResponse" HITISCode="0x2F01">

<Errors>
<Error HITISCode="0x20">Can't process this reservation</Error>
<Error HITISCode="0x25">No Credit Card Information</Error>

</Errors>
</HITISOperation>

</Body>

This is HITIS Return Code 0x2407 from the published table.

0x2407 - HITIS_RESERVATION_BADHOTELID
This example assumes that the HITISCode will be interpreted as a hex value if it starts with a
"0x". Otherwise, the equivalent decimal value is sent, e.g.: 9223.

9.3 Error Naming Conventions
The HITIS naming convention for error constants is as follows:

HITIS_FOO(SESSION)NAME_ERRORSPECIFICNAME

[Begins with HITIS; followed by an underscore; then the name of the object Session (The word
Session does not have to be a part of it); underscore; then the error-specific name].

9.4 Range of Return Values
The range of HITIS error code returns specifically assigned to each standard are as follows: The
range of vendor-specific return values would remain the same in an XML interface.

TC Standard Name Starting Value Ending Value
Posting Devices Folio Posting 0400 07FF
Posting Devices Folio Query 0800 0BFF
Posting Devices Room Status 0C00 0FFF
Posting Devices Guest Messages 1000 13FF

Posting Devices Event Notification 1400 17FF

Remote Devices Check-In Initiation 1800 1BFF

Remote Devices Check-Out Initiation 1C00 1FFF
Remote Devices Security 2000 23FF
CRS Reservation Synchronization 2400 27FF

CRS Profile Synchronization 2800 2BFF

HITIS CORRELATION AND INTERFACE STANDARD

HITIS Interface Specifications American Hotel & Motel Association Page 33
April 14, 2000

CRS Guest Stay Information 2C00 2FFF

CRS Statistics 3000 33FF

CRS Agent Commissions 3400 37FF

CRS Availability, Rate & Inventory 3800 3BFF

CRS Availability Query & Booking
Request

3C00 3FFF

4000 43FF
etc.

9.5 Vendor-Specific Return Values
A vendor-specific return value should return an integer as the final parameter. Any error return
integer after 10000 hex is vendor-defined. It is recommended that the description for each
operation should list the possible errors that could be returned.

Error Value Description
VENDORSPECIFIC_START (value in excess of 10000 hex)

VENDORSPECIFIC_END (value not limited by HITIS)

The range of vendor-specific return values would remain the same in an XML interface.

10.0 COLLECTION OBJECT (Generalized Class / Template)
Object Values:
A Collection object provides a consistent way to contain multiple like objects within another
object. An example is the collection of guests associated with a reservation, or a collection of
rooms associated with a room stay. This type of object is used throughout the HITIS interfaces.

Since the Collection class is use is often repeated within an object, it is advantageous to define a
Generalized class that acts as a template for code generation. The generalized class is assigned a
specific name when the instance of that collection is instantiated, which is named with the plural
form of the singular object that it collects.

10.1 Attributes
6.1.1 Count : Unsigned Integer
A read only attribute that returns the number of items in the collection. A Count is a value from 1
to N. (not zero to N). When an object is added to a collection, it adds it to the end of the index of
the collection, and changes the Count of the total collection.

10.2 Operations
6.1.2 Item (Index : Unsigned Integer) : Object

HITIS CORRELATION AND INTERFACE STANDARD

HITIS Interface Specifications American Hotel & Motel Association Page 34
April 14, 2000

The Item operation is a read only operation that retrieves a specific item from the collection, and
implies that a collection can be ordered. All collections are 1 based (not zero-based) for the index.

6.2.2 Add (NewItem : Object)
The Add operation inserts a new item into the collection. It defines the operation necessary for the
local interface to add an object to the "empty bucket" of the collection. Each collection only
accepts objects of a certain type; that is, each specific collection class derived from this parent
template will have its own Add operation that only accepts the appropriate type of object.
(Similarly, each will have its own Item operation that only returns the appropriate type of object.)
This provides a consistent way to fill an empty collection.

When collections are created by the client system, they are read/write, but at the point at which
they are passed across the wire the data is considered a snapshot of the client system and they
become read-only. Only the Count attribute and Item operation of the Collection class are sent to
the receiving system, as the receiver would not be able to Add to the collection. Collection objects
are an exception to the normal convention that every operation returns an integer. There is no
Remove operation in the collection class.

10.3 Collection Object (Instantiated Class)
The operations of the Collection object are repeated in the instantiated collection subclass with
the name of the objects to be collected replacing the generic "Object". The named subclass
inherits the attributes and operations of the Collection object. When the Item operation is repeated
in the named collection class, it constrains or narrows the object to be returned to the specific
object of that collection, and the specific name overrides the generic Object.

For example, the Profiles collection would contain the following operations:
Item (Index : UInt) : Profile
Add (New Item : Profile)

6.3.1 Item (Index :Unsigned Integer) : [ObjectName]
The Item operation is a read /write operation that retrieves a specific item from the
collection, and returns the object. The Index operation implies that a collection can be
ordered. All collections are 1 based (not zero-based) for the index. The Index argument
can remove the object if the value is NULL at the index.

6.3.2 Add (NewItem : [ObjectName])
The Add operation is a read/write operation that inserts a new item to the collection, and
defines the operation necessary for the local interface to add the specific object to be
collected into the collection.

The results of the generic Collection class operations and specific named class operations are the
same, but the specifications are written with the operations in both classes so that the option of
binding can be done either at compile time or late binding at runtime.

The initialized, named Collection class assumes that the collection is accessed one at a time, and
that it is accessible by index. The named Collection class is a snapshot of the data collected. It is

HITIS CORRELATION AND INTERFACE STANDARD

HITIS Interface Specifications American Hotel & Motel Association Page 35
April 14, 2000

read/write when it is in the local environment, it becomes read-only when the Collection is passed
in the interface.

XML Representation:
A collection class does not exist, per se, in the XML messaging model; that is, no separate class
containing operations or attributes is defined in UML. However, the consistent naming
convention is used throughout HITIS interfaces for containing multiple like elements within a
single element. The collection class is the plural form of the singular object that it collects. e.g.:
FolioDetails : FolioDetail.

The content model of the plural element will have zero or more sub-elements of the singular
name.

11.0 ATTRIBUTE (PROPERTY) NAMING
Object Values:
Note that the term �entity� is used in this section instead of �object� (hopefully to reduce
confusion), as some attributes may refer to something that has no corresponding HITIS object.
For example the GuestMembership interface class in the Profile Synchronization object has an
�AccountID� attribute that is the guest�s account number (alphanumeric) in the particular frequent
guest program. This attribute performs the task of uniquely identifying something (the account),
but that something is not a HITIS object.

11.1 ID
Any alphanumeric (string) attribute that uniquely identifies some entity should be named �xID�,
where �x� is the entity being referenced. For example, a room �number� in a hotel would
properly be termed �RoomID� (since not all room numbers are strictly numeric).

11.2 Number
Any numeric (Integer or Ulong) attribute that uniquely identifies some entity should be named
�xNumber�, where �x� is the entity being referenced. For example, the attribute correlating
RoomStays to Guests in the RoomStay object is called GuestNumbers.

11.3 Code
Any alphanumeric (string) attribute that is a mnemonic abbreviation of some sort, or a value that
is translated between systems should be named �xCode�, where �x� is the entity being referenced.
For example, the state and country portions of a mailing address are properly termed �StateCode�
and �CountryCode�, with the understanding that the commonly used abbreviations are what they
contain. For example, a rate plan reference (which must be translated between systems, and
refers to a rate table) is named �RatePlanCode�.

11.4 Type
Any numeric attribute whose value is one of an enumerated list of HITIS defined values is named
�xType�, where �x� is the entity being referenced. For any �type� attribute, the interface
specification defines a UInt-derived datatype that limits the allowable values. The sequence of
allowable values is 1-based, with zero (0) being reserved for the value of NULL, Does Not Apply,
etc.

It is likely that HITIS will continue to add types to an enumerated list, and that vendors will also
have types unique to their own implementation. The HITIS standards reserve the numbers

HITIS CORRELATION AND INTERFACE STANDARD

HITIS Interface Specifications American Hotel & Motel Association Page 36
April 14, 2000

through 999 for HITIS-defined types, with integers beginning with 1000 designated for vendor-
specific types.

11.5 Collections
Any object that is a collection of like objects is named the plural of the object in the collection.
For example, the �Guests� object in Reservation Notification is a collection of Guest objects.

XML Representation:
The HITIS messaging model in UML has retained the names of the class attributes and they were
mapped to element names in XML. All 'xType' attributes were mapped to attributes` instead
of elements with the data type of enumeration. The constraints of the enumeration are the HITIS-
defined 'xType' values.

ATTRIBUTE TYPES - XML STRINGS
The World Wide Web Consortium (W3C) also defines enumerated types (notations and
enumerations) and a set of tokenized types (for example, ID, IDREF, and NMTOKEN).

entity Represents the XML ENTITY type.
entities Represents the XML ENTITIES type.
enumeration Represents an enumerated type (supported on attributes only).
id Represents the XML ID type.
idref Represents the XML IDREF type.
idrefs Represents the XML IDREFS type.
nmtoken Represents the XML NMTOKEN type.
nmtokens Represents the XML NMTOKENS type.
notation Represents a NOTATION type.
string Represents a string type.

11.6 Built-in vs. user-generated datatypes
Built-in datatypes are those which are entirely defined by the W3C specification, and may be
either primitive or generated; User-generated datatypes are those generated datatypes that are
defined by individual schema such as HITIS by giving values to constraining facets.

Conceptually there is no difference between the built-in generated datatypes included in the W3C
specification and user-generated datatypes created by individual schema designs. The built-in
generated datatypes are those that are common to many schemas and are designed so that systems
other than the XML Schema Definition Language may access them.

12.0 OPERATION (METHOD) NAMING
Object Values:
For operations defined in the HITIS standards, the parameters (arguments, message signatures)
are not optional. However, a value is optional and can be left open with a placeholder. For
example, an empty string or null value, etc.

12.1 Create
Any operation that creates (i.e., instantiates) a new local (usually empty) container and returns
it to the client application should be named �CreateX�, where "x" is the name of the type of

HITIS CORRELATION AND INTERFACE STANDARD

HITIS Interface Specifications American Hotel & Motel Association Page 37
April 14, 2000

object being returned. Objects that contain operations have explicit Create functions provided
in their containing object. All objects that are exclusively data collectors are directly
creatable by client applications. Create operations are local operations. Although they may
exist in the underlying architecture, they are publicly exposed in the HITIS standards to
provide a clearer understanding of the hierarchy of the object design and consistency for
mapping.

12.2 Update
Any operation named "Update" is one that commits a change in the data of the object and
sends the new or modified object to the destination system (server). A single update is an
operation of the object being updated, not an operation of the Session object. A batch update
is an operation of the containing object.

12.3 Query
Any operation named "Query" is one that requests information from the system and returns an
integer that indicates success or a HITIS / vendor-specific error.

XML Representation:
The HITIS messaging model in UML retained the names of the class operations when they were
mapped to message names in XML. The Update operations have been named from the class they
originated from, e.g.: a CommissionEventUpdateRequest message, which returns a
CommissionEventUpdateResponse message. The Query operations became Query message pairs,
e.g.: QueryProfileRequest, which returns a QueryProfileResponse. This same naming convention
was used with "Get" operations, e.g.: GetProfileRequest which returns a GetProfileResponse.

The Create operation is no longer needed in the XML mapping as it was used to instantiate an
object on a remote system.

13.0 NAMESPACES
NOTE* - The revised, February 25, 2000, W3C specification, Section 3.1 defines Namespace
considerations as follows:

3.1 Namespace considerations
The built-in datatypes defined by this specification are designed so that systems other than the XML
Schema Definition Language may use them. To facilitate such usage the built-in datatypes in this
specification have the namespace URI:

• http://www.w3.org/1999/XMLSchema/datatypes
This applies to both built-in primitive and built-in derived datatypes.
Each user-generated datatype is also associated with a unique namespace. However, user-generated
datatypes do not come from the XML Datatype Language namespace; rather, they come from the
namespace of the schema in which they are defined.
Each user-derived datatype must be defined in terms of another datatype in one of two ways: 1) by
assigning constraining facets which serve to restrict the value space of the user-derived datatype to a
subset of the base type: 2) by creating a list datatype whose value space consists of finite-length
sequences of values of the base type.

Note that associating a namespace with a user-generated datatype is not a general purpose
extensibility mechanism and does not apply to primitive datatypes. Schema processors may not
understand a user-generated datatype simply by defining the datatype and associating a unique

HITIS CORRELATION AND INTERFACE STANDARD

HITIS Interface Specifications American Hotel & Motel Association Page 38
April 14, 2000

namespace with them. However, all schema processors are required to be able to validate
datatypes defined by subsetting the value space of a "built-in" datatype.

The unique HITIS datatypes defined in this document are individually defined in each HITIS
DTD and XML-schema definition file, instead of referring to a namespace to define a HITIS
metadata type.

HITIS CORRELATION AND INTERFACE STANDARD

HITIS Interface Specifications American Hotel & Motel Association Page 39
April 14, 2000

14.0 REFERENCES

ISO 4217:1995 - Codes for the representation of currencies and funds
Maintenance Agency
c/o British Standards Institution
389 Chiswick High Road
London W4 4AL
United Kingdom
Telephone: + 44 181 996 9000
Telefax: + 44 181 996 7400
Telex: 82 57 77 bsi mk g

ISO 639:1988 - Code for the representation of names of languages
Registration Authority
International Information Centre for Terminology
(INFOTERM)
Simmeringer Hauptstrasse 24
A-1110 Wien
Austria
Telephone: + 43 1 740 4 0 441
Telefax: + 43 1 740 40 740

ISO 3166-1:1997 - Codes for the representation of names of countries and their subdivisions
 Part 1: Country codes

ISO 3166 Maintenance Agency
c/o DIN Deutsches Institut für Normung
Burggrafenstrasse 6
D-10772 Berlin
Germany
Telephone: + 49 30 2601 2791
Telefax: + 49 30 2601 1231
e-mail: lechner@nabd.din.de

XML Schema Part 2: Datatypes
 W3C Working Draft 25 February 2000

W3C Office at RAL
Rutherford Appleton Laboratory
Chilton, Didcot
Oxfordshire OX11 0QX
United Kingdom
Telephone: +44 1235 446822
Telefax: +44 1235 445385
e-mail: w3c-ral@inf.rl.ac.uk
Online: http://www.w3.org/TR/xmlschema-2

mailto:w3c-ral@inf.rl.ac.uk
http://www.w3.org/TR/xmlschema-2

HITIS CORRELATION AND INTERFACE STANDARD

HITIS Interface Specifications American Hotel & Motel Association Page 40
April 14, 2000

HITIS Interface Standard

Glossary of Terminology

HITIS CORRELATION AND INTERFACE STANDARD

HITIS Interface Specifications American Hotel & Motel Association Page 43
April 14, 2000

Glossary of Terminology

Abstract Class A specialized class used solely for subtyping. It defines a common set of
behaviors to be inherited by its subtypes. It has no instances. (Synonymous
with Virtual Class in C++).

Account A record of transactions entered as credits and debits under a particular
name, such as a hotel guest.

API Application Programming Interface, through which an application
communicates with some underlying resource on a computer system. The
underlying resource can be either hardware or software.

Application One or more programs or associated data running on a computer system to
facilitate user requirements. In the hospitality environment, these would
include Property Management System applications and Central Reservation
System applications.

Architecture A high-level description of the organization of functional responsibilities
within a system. Many different levels of architectures are involved in
developing software systems, from physical hardware architecture through
the logical architecture of an application framework.

Association Meaningful links between objects. A person associated with a company
creates the concept of employment.

Attribute An identifiable association between an object and a value. An attribute A is
made visible to clients as a pair of operations: get_A and set_A. Read only
attributes only generate a get operation. [OMG] A characteristic or property
of an object. Usually implemented as a simple data member or as an
association with another object or group of objects.

Bandwidth The theoretical speed at which data can be transmitted over some media.
The actual throughput may be lower due to factors such as network
contentions.

Base Class A class that has one or more derived classes that inherits its attributes and
methods. (Synonymous with Superclass).

Behavior The behavior of a request is the observable effects of performing the
requested service (including its results).

Binding The selection of the method to perform a requested service and of the data
to be accessed by that method.

Blind Post Post without a query.

HITIS CORRELATION AND INTERFACE STANDARD

HITIS Interface Specifications American Hotel & Motel Association Page 44
April 14, 2000

Browser A software application (utilizing HTML) that enables a user to connect to
the Internet to gain access to the vast stores of information on the World
Wide Web. Whether a user searches for information or having it delivered
to their computer, it enables the user to make it easy to browse the Internet.
There are also browsers for using the other languages within SGML.

CDATA See Non-Parsed Character Data.

Class An implementation that can be instantiated to create multiple objects with
the same behavior. An object is an instance of a class. Types classify
objects according to a common interface; classes classify objects according
to a common implementation.

Class Attribute A characteristic or property that is the same for all instances of a class. This
information is usually stored in the class type definition.

Class Hierarchy Embodies the inheritance relationships between classes.

Class Inheritance The construction of a class by incremental modification of other classes.

Class Member A method or an attribute of a class.

Class Method A class method defines the behavior of the class. Such a method performs
tasks that cannot or should not be done at the instance level, such as
providing access to class attributes or tracking class usage metrics.

Class Object An object that serves as a class. A class object serves as a factory.

Client An intelligent workstation, typically a Personal Computer, running front-
end applications in a client/server environment. This object may request a
service from a server object in a client/server relationship. The code or
process that invokes an operation on an object

Client/Server A relationship between a client that requests services and servers that
provide services. This relationship is paralleled in an Object Oriented (OO)
environment by message senders and receivers.

Code Instructions that guide the tasks performed via a computer program.

Collaboration Two or more objects that participate in a client/server relationship in order
to provide a service.

COM Component Object Model. The object model, which defines the
relationships between the various components that make up an interface. A
binary specification that enables software suppliers to package functions
into resusable software components in a fashion similar to the integrated
circuit.

Component A conceptual notion. A reusable piece of software in binary form that can

HITIS CORRELATION AND INTERFACE STANDARD

HITIS Interface Specifications American Hotel & Motel Association Page 45
April 14, 2000

be plugged into other components from other vendors with relatively little
effort. Classes, systems or subsystems that can be designed as reusable
pieces. These pieces can then be assembled to create various new
applications.

Configuration
Management

The discipline of identifying a system and its component parts at discrete
points in time. Monitoring throughout versions and revisions enables CM to
systematically control changes to maintain integrity and traceability of the
system throughout a product's lifecycle. This includes hardware,
environment, code, documents and objects.

Container Class A class designed to hold and manipulate a collection of objects.

Data Model A collection of entities, operators and consistency rules.

Data Type A categorization of values, operations and arguments, typically covering
both behavior and representation (e.g., the traditional non-OO programming
language notion of type).

DCD The Document Content Description a structural schema facility, for
specifying rules covering the structure and content of XML documents.
DCD is intended to define document constraints in XML syntax; these
constraints may be used in the same fashion as traditional XML DTDs.
DCD also provides additional properties, such as basic datatypes.

Default Value used if nothing is chosen.

Derived Class The class created through inheritance. A derived class inherits the methods
and attributes of its superclass(es) and usually adds its own to distinguish its
capabilities or services.

DOM The Document Object Model provides an abstract API for constructing,
accessing, and manipulating XML and HTML documents. A �binding� of
the DOM to a particular programming language provides a concrete API.

Domain A formal boundary that defines a particular subject or area of interest.

DTD A Document Type Definition is a file (or several files to be used together),
written in XML, which contains a formal definition of a particular type of
document. It sets out what names can be used for element types, where they
may occur, and how they all fit together.

Dynamic Link
Library

A dynamically loaded run-time library.

EDI Electronic Data Interchange has been used in e-commerce for many years to
exchange documents between commercial partners to a transaction. It has
required special proprietary software, but there are now moves to enable
EDI data to travel inside XML.

HITIS CORRELATION AND INTERFACE STANDARD

HITIS Interface Specifications American Hotel & Motel Association Page 46
April 14, 2000

Element Any container in an XML document. Elements may contain other
Elements, processing instructions, and DTD characters.

Element Tree This is a collection of Elements contained in an XML document.

EPOS Electronic Point Of Sale.

Encapsulation The technique used to hide the implementation details of an object. The
services provided by an object are defined and accessible as stated in the
object contract.

Encryption A process for scrambling access codes to computer programs to prevent
illicit entry into and control of the system.

Enterprise
Modeling

A technique for modeling an entire business enterprise from the business
manager's point of view. An enterprise model is composed of the objects,
events and business rules that describe the enterprise. Separate but related
business systems can be built from this model to enhance the efficiency and
consistency of the operation of the enterprise.

Error String Test of an error message indicating the nature of the error.

Event Something that takes place asynchronously, such as the pressing of a
computer key or clicking of a mouse.

Event A significant change in the environment or the state of an object that is of
interest to another object or system.

Failure When a program or piece of software fails to reach some desired result. In
some cases, this will generate an error string.

Firewall A computer system that sits between a host system and user system, and
protects the host from unauthorized access to protected data and
applications.

FMS Food Management System. The software that focuses on the food
production cycle from ordering to production to accounting.

Folio A ledger page detailing charges to an account.

FOO Functionally Organized Object. The sets of data and message handling
between two systems that need to communicate. An interface could be one
FOO or several. Likewise, a FOO could be used in several interfaces (e.g.,
Folio Posting).

Formal
Parameter

A named local object used as an argument to an operation. The value of the
object (actual parameter) is assigned by the client who runs the method.

Generalization The inverse of the specialization relation.

HITIS CORRELATION AND INTERFACE STANDARD

HITIS Interface Specifications American Hotel & Motel Association Page 47
April 14, 2000

Graphical User
Interface (GUI)

A graphical way of displaying data, as opposed to text-based programs, that
users can access through simple point and click mouse routines. Any
interface that communicates with the user, primarily through graphical
icons.

HTML This is the HyperText Markup Lanaguage, a specific application of the
SGML. A predefined markup language like HTML defines a way to
describe information in one specific class of documents. It defines a
simple, fixed type of document with markup designed for a common class
of office or technical report, with headings, paragraphs, lists, illustrations,
etc, and some provision for hypertext and multimedia.

Implementation A definition that provides the information needed to create an object and
allow the object to participate in providing an appropriate set of services.
An implementation typically includes a description of the data structure
used to represent the core state associated with an object, as well as
definitions of the methods that access that data structure. It will also
typically include information about the intended interface of the object.

Import Creating an object based on a description of an object transmitted from an
external entity.

Inheritance The construction of a definition by incremental modification of other
definitions. (See also Implementation Inheritance)

Initialization Setting the initial attribute values of a new object.

Input Data going into a computer system.

Instance An object created by instantiating a class. An object is an instance of a
class.

Instance Variable A variable that contains a value specific to an object instance.

Instantiation Object creation.

Interface A description of a set of possible uses of an object. Specifically, an interface
describes a set of potential requests in which an object can meaningfully
participate.

Interface
Description
Language (IDL)

Interface description language describing the interfaces of an object. From
the IDL, a compiler can generate header files for programming languages so
that applications can use that interface, create proxy and stub objects to
provide for remote procedures calls, and create the output necessary to
enable RPC (Remote Procedure Calls) across a network. When used in
conjunction with an ORB, IDL statements describe the properties and
operations of an object.

Interface Type A type that is satisfied by any object (literally, by any value that identifies

HITIS CORRELATION AND INTERFACE STANDARD

HITIS Interface Specifications American Hotel & Motel Association Page 48
April 14, 2000

an object) that satisfies a particular interface.

ISO 9000
Certification/Sta
ndards

The International Organization for Standardization (ISO) issues the ISO-
9000 guidelines for the selection and use of the series of standards on
quality systems.

Java Programming language designed to work in a distributed environment.

Launch To begin execution of a software application and/or program.

Legacy System An older computer system based on previous generation hardware and
software. Typically, these systems are mainframe-based or mini-computer
systems.

Link Relation between two objects (a concept).

Literal A value that identifies an entity that is not an object.

Login Procedure used to authenticate a user and to enable the user to access a
network.

Macintosh A personal computer designed and marketed by Apple Computer (which
pioneered the GUI (Graphical User Interface)-based operating system).

Mapping A rule or process, the O-O equivalent of a mathematical function. Given an
object of one set, a mapping applies its associative rules to return another
set of objects. Member Function (See Method)

Message The mechanism by which objects communicate. A message is sent by a
client object to request the service provided by the server object.

Meta-Model A model that defines other models.

Method Code that can be executed to perform a requested service. Methods
associated with an object are structured into one or more programs.

Non-Parsed
Character Data

(CDATA). The content or attribute value of an Element that consists of text
that should be processed by the parser.

Object A combination of a state and a set of methods that explicitly embodies an
abstraction characterized by the behavior or relevant requests. An object is
an instance of a class. An object models a real world entity and is
implemented as a computational entity that encapsulates state and
operations (internally implemented as data and methods) and responds to
requests for services. [OMG] An object is a self-contained software package
consisting of its own private information (data), its own private procedures
(private methods), which manipulate the object's private data, and a public
interface (public methods) for communicating with other objects.

Object Creation An event that causes an object to exist that is distinct from any other object.

HITIS CORRELATION AND INTERFACE STANDARD

HITIS Interface Specifications American Hotel & Motel Association Page 49
April 14, 2000

Object Interface A description of a set of possible uses of an object. Specifically, an interface
describes a set of potential requests in which an object can meaningfully
participate as a parameter. It is the union of the object's type interfaces.

Object Model Conceptual model for describing how components interact on a computer
system. (See Component Object Model.)

Object Name A value that identifies an object. (See Handle)

Object Reference A value that precisely identifies an object. Object references are never
reused to identify another object.

Object State The current information about an object that determines its behavior.

Object Wrapper The result of encapsulating a set of services provided by a non O-O
application or program interface in order to treat the encapsulated
application or interface as an object.

Object-Oriented Any language, tool or method that focuses on modeling real-world systems
using the three major components of objects � encapsulation, inheritance
and polymorphism.

Object-Oriented
Design

The process of developing an implementation specification that
incorporates the use of classes and objects. It encourages modeling the real
world environment in terms of its entities and their interactions.

Operation A service that can be requested. An operation has an associated signature,
which may restrict which actual parameters are possible in a meaningful
request.

Operation name A name used in a request to identify an operation.

Output Data produced by a computer system. It may be contained in several forms
(e.g., report, file, etc.).

Paradigm A broad framework for thinking about and perceiving reality. A theoretical,
philosophical model composed of identifiable theories, laws and
generalizations used in defining and solving problems.

Parameter A value passed to a program or function via an operation/method.

Parameterized
Class

A class that allows users to declare member functions and data members of
"Some Type," which can be used as a template for declaring specialized
subclasses that supply the "Missing" types.

Parsed Character
Data

(#PCDATA). Element content that consists of text that the parser processes
aside from all other markup text and non-parsed data.

Parser A parser is a software application that processes languages (using specific

HITIS CORRELATION AND INTERFACE STANDARD

HITIS Interface Specifications American Hotel & Motel Association Page 50
April 14, 2000

rules) and creates machine-readable code that may be executed by another
application. In XML, it also determines whether the XML code is �valid� or
�well-formed�, and passes the set of correct XML code to a downstream
application.

Plain Text Usually refers to unformatted text on a computer system supporting a GUI.
Can also refer to similar text printed out on paper, usually of a fixed pitch
and print size.

PMS A Property Management System is a set of software application(s) used to
help managing a facility (e.g., hotel property).

Polymorphism The concept that two or more types of objects can respond to the same
request in different ways.

Post To apply a value or transaction to a particular account.

Property A conceptual notion. An attribute, the value of which can be changed.

Protocol Mutually agreed upon rules by which two systems communicate with one
another.

Public A scoping mechanism used to make member access available to other
objects.

Query A request for information contained in a database.

Relation An object type that associates two or more object types. A relation is how
associations are formed between two or more objects.

Repository Usually a central location used to store and organize software components
and related definitions, rules, etc.

Request An event consisting of an operation and zero or more actual parameters. A
client issues a request to cause a service to be performed. Also associated
with a request are the results that can be returned to the client. A message
can be used to implement (carry) a request and/ or a result.

Requirements A document describing what a software system does from a user's point of
view. This document is input into the object-oriented analysis process,
where it will be transformed into a much more precise description.

Result The information returned to the client, which can include values as well as
status information, indicating that exceptional conditions were raised in
attempting to perform the requested service.

Reuse Reuse is the process of locating, understanding and incorporating existing
knowledge, design and components into a new system. Reuse should occur
at all levels of system development analysis, design, implementation,
testing, documentation and user training.

HITIS CORRELATION AND INTERFACE STANDARD

HITIS Interface Specifications American Hotel & Motel Association Page 51
April 14, 2000

Role A sequence of activities performed by an agent.

Rule Rules exist in two types: constraints and generic functions.

Scalability The ability of a system to grow without sacrificing performance.

Server A shared computer in a networked client-server environment that can
provide application services to many �client� users simultaneously.

Service A computation that can be performed in response to a request.

SGML This is the Standard Generalized Markup Language, the international
standard for defining descriptions of the structure and content of different
types of electronic document. SGML is the `mother tongue', used for
describing thousands of different document types in many fields of human
activity.

Signature Defines the parameters of a given operation including their number order,
data types and passing mode; the results, if any; and the possible outcomes
(normal vs. exceptional) that might occur.

State The information about the history of previous requests needed to determine
the behavior of future requests.

Strongly Typing A language characteristic that requires an explicit type declaration for every
value or expression. Strong typing makes static binding feasible.

Stub (Code) A local procedure corresponding to a single operation that invokes that
operation when called.

Superclass A class that provides its methods and attributes to another class derived
from it via inheritance.

System The computer hardware-software and network configuration that enables a
user to perform some tasks.

Target Object An object that receives a request. (Synonymous with Server Object)

Transaction An event, as in a purchase, initiated through a POS system (generally
involving the purchase of goods and/or services).

Trigger Rule A cause-and-effect relationship. When a certain event type occurs, a
specific operation will be performed.

Type A predicate (Boolean function) defined over values that can be used in a
signature to restrict a possible parameter or characterize a possible result.
Types classify objects according to a common interface; classes classify
objects according to a common implementation.

HITIS CORRELATION AND INTERFACE STANDARD

HITIS Interface Specifications American Hotel & Motel Association Page 52
April 14, 2000

Unicode The Unicode Worldwide Character Standard is a character coding system
designed to support the interchange, processing, and display of written texts
of the diverse languages of the modern world. Unicode also supports
classical and historical texts of many written languages. In its current
version (2.0), the Unicode standard contains 38,885 distinct coded
characters derived from 25 supported scripts. These characters cover the
principal written languages of the Americas, Europe, the Middle East, India,
Asia and Pacifica.

UNIX A multi-tasking, 32-bit operating system with roots in Bell Labs. Today,
various flavors of UNIX run on a variety of hardware platforms.

Use Case/
Scenario

A description of the sequence of actions that occurs when a user participates
in a dialogue with a system. It describes the behavior that is invoked by a
system function.

UserID Information entered into a system (i.e., a logon) needed to identify and
begin a user session.

Valid An XML document is said to be valid if its structure and element content is
formally declared in a DTD.

VBA Visual Basic for Applications.

Verify To check that the result of an operation is what was expected.

Visual Basic A graphical design tool used to generate software applications. Can also
refer to the programming language used by that tool.

Well formed An XML document is said to be well formed if its structure and element
content does not require a DTD.

Windows A multi-tasking, 32-bit, GUI-based operating system developed by
Microsoft in the early 1990s.

XML The eXtensible Markup Language (XML) is a data format for structured
document interchange on the Web (Internet). It is extensible because it is
not a single, fixed format, predefined markup language like HTML. XML
is a metalanguage � a language for describing other languages, which lets
you design your own markup. It is a subset language of SGML.

XML
Namespaces

XML namespaces provide a simple method for qualifying element and
attribute names used in Extensible Markup Language documents by
associating them with namespaces identified by URI references.

Copyright � 2000 � American Hotel and Motel Association
No Part of this document may be reproduced in any way

without the prior agreement and written permission of the AH&MA.

	Interface Standard
	1.0 INTRODUCTION
	1.1	Objects and XML
	1.2 	The Use of XML Schema
	1.3	Infrastructure issues

	SUMMARY
	DATA TYPES
	Integer and Unsigned Integer
	Long and Unsigned Long
	String
	DateTime
	Currency
	Percent
	Byte Array
	Boolean
	DayOfWeek (DOWPattern)
	DateTimeSpan

	SESSION OBJECT
	Versioning
	VersionMajor (Integer)
	VersionMinor (Integer)

	Operations
	Authenticate (UserName : String, Password : String) : Integer
	GetErrorString
	LanguageID

	HITIS HEADER
	Routing Elements
	Message IDs
	Token

	HITIS REGISTER
	Language ID
	Version
	Authentication
	Role
	Transport Protocol
	Token
	HITIS UnRegister

	HITIS SUBSCRIBE
	HITIS MESSAGE
	RETURN VALUES
	System Level Errors
	HITIS Return Values
	Error Naming Conventions
	Range of Return Values
	Vendor-Specific Return Values

	COLLECTION OBJECT (Generalized Class / Template)
	Attributes
	Count : Unsigned Integer

	Operations
	Item (Index : Unsigned Integer) : Object
	Add (NewItem : Object)

	Collection Object (Instantiated Class)
	6.3.1	Item (Index :Unsigned Integer) : [ObjectName]
	6.3.2	Add (NewItem : [ObjectName])

	ATTRIBUTE (PROPERTY) NAMING
	ID
	Number
	Code
	Type
	Collections
	Built-in vs. user-generated datatypes

	OPERATION (METHOD) NAMING
	Create
	Update
	Query

	NAMESPACES
	REFERENCES
	Glossary of Terminology

