EasySAX: Sax Made
Pythonic

|
a» Data ;

About M

Paul Prescod

SOGEN Consulting Engineer

Professional Services Arm of DataChannell
Co-author, XML Handbook?

Laying the foundations

a» Data

Overview

EasySAX merges ideas from
SAX3
DOM*
XSLT
DSSSL

Probably most similar to "saxon" in Java world.

|
a» Data ;

What is Python?

A high-level, object oriented, dynamically typed
programming language>.

Can be used for scripting, conversions,
abstraction-building.

A merge of the best ideas of Smalltalk, Perl and
Java?

What does it mean to be Pythonic?

a» Data ;

Meditate on this

An object is Pythonic if it has the Python nature.
nere Is no rule of thumb.

nere is no motto.

nere Is no overriding design goal.

nere Is only the oneness with the problems you are
trying to solve and the way you think about it.

o4 o4 o

a» Data

But master....

How do we design things that are Pythonic?
Aristotle's golden mean

Make them simple, but not too simple to get the job
done.

Elegant, but not in a cutesy way.
Flexible, but not at the expense of clarity.

Dynamic, but not at the expense of maintainabillity.
Dictionaries are KUEL. Use them alot.

a» Data ;

Reflect on this

At runtime it is possible to ask questions about
objects.

Reflection is a powerful tool.
It can be used in diabolical ways

When used virtuously it eases readability and
maintenance

This is Pythonic.

Reflecting on SAX

a» Data ;

What is SAX?

SAX is a low-level API to XML

Performance is a key consideration

t Is simple, but not easy.

ncreasingly, it is no longer simple.

t is relatively, but not completely, complete.

a» Data

Does SAX have the Python Nature?

Complexity is Pythonic if it is hidden.
Good performance Is Pythonic.
Standards conformance is Pythonic.
Re-inventing wheels is not Pythonic.
Therefore we must use SAX, but hide it.

a» Data ;

What must be hidden?

SAX character handling is inelegant.
SAX gives you a pointer into a buffer.

def characters(self,ch,start, length):
print ch[start:start+length]

Pythonistas would just expect a string object.

def characters(self, chars):
print chars

|
a» Data ;

Event Dispatching

SAX requires you to dispatch your own element
events:
class MyHandler(SaxHandler):
def startElement(self,typename,attrs):
1T typename==""html"":
handleHTML(attrs)
elit typename==""title":
handleTitle(attrs)

Large switch statements do not have the Python
nature.

a» Data

Context

SAX requires application programmer to take care of
context.
class MyHandler(SaxHandler):
def startElement(self, typename, attrs):
1T typename==""html"":
handleHTML(attrs)
eli1t typename==""title":
titleMode=1

def characters(self,chars,start, length):
1T titleMode:
print chars|start:length]

a» Data

SAX and Namespaces

Namespaces are the ultimate koan.
Do we keep prefixes?

How do we keep them?

How do we do comparisons?
How do we keep this all efficient?

a» Data

Do SAX events suck?

No, they merely have not achieved enlightenment.

Through a series of reincarnations we can move
them towards enlightenment.

At the end, Is what is left still SAX?
Ponder.

a» Data ;

Does the DOM suck?

Design elegance aside ... the DOM is useful
Nevertheless, it's major weakness is not a design
flaw:

tree models are inherently weak at handling very
large documents

this can be mitigated with an object database like
Z0ODB

but you still need a lot of disk space

A Pythonic SAX must have minimal memory
requirements

Towards a Pythonic SAX

a» Data

First Principle

Do not reinvent the wheel.
Parsers can still "speak” SAX
Applications can use something more Pythonic

Raw SAX is still available for speed-critical M2M
B2B XML EDI on WInCE HPCs

a» Data ;

Second Principle

Let's steal ideas wherever we can.
XSLT
DSSSL
DOM
Omnimark
Balise

a» Data

Stealing from the DOM

It takes humility to steal ideas from the DOM.
Therefore it is a productive exercise.
DOM 2 has a way of handling nhamespaces.

The DOM is really good at handling context:
node.parentNode
node.childNodes
node.childNodes|[0]
node.attributes
node.getAttribute("abc")
node.parentNode.getAttribute("abc")

a» Data ;

SAX, meet DOM

Instead of dispatching strings and integers, we can dispatch
nodes:
def startElement(self, elementNode):

def endElement(self, elementNode):
def text(self, textNode):
def processinglinstruction(self, piNode):

def comment(self, commentNode):

This gives us a way to navigate around.

a» Data

Leveraging context

Given that we have context...let's flaunt it!
def handle spam(self, textNode):
"“figure/title/text()"
print "Figure title:'+ textNode"

def handle dead parrot(self,textNode):
"section/title/text()"
print "Section title:'"+ textNode"
print textNode.parentNode.\
attributes|[''type"]}

a» Data

Let's not get crazy

There are some rules...
Not all of the DOM is available (see next slide)
Handlers must be named handle _something

"something" is a symbolic label, not a “tagname”
Particular nodes are matched against the XPath

a» Data

How much DOM can we afford?

The "right" amount of DOM varies from application
to application.

In processing techdocs it is really useful to be able
to have a complete DOM for (e.g.) tables and
figures.

Parent context is almost always useful and
relatively cheap.

Therefore: always remember parents.

Otherwise, only build subtrees for regions of the
document.

a» Data

Selective Domination

def handle applets(self,elementNode):

""applet as tree"
for node 1In elementNode.childNodes:

print node

def handle tables(self, elementNode):
"table as tree"

do something
self.processChildren(elementNode)

do something else

a» Data

ProcessChildren

Recursively invoke handler on children
_Ike DSSSL function of same name

Ke XSLT apply-templates

_Ike Omnimark %c

Coming soon...processMatchingChildren

|
a» Data ;

Other DOM costs

The DOM is large and getting larger.

It is complicated and redundant.

Most parsers don't generate most node types.
Most apps are read-only

It probably would not pass the Guido test.
Let's just make a subset: "minidom".

a» Data

Namespaces

Namespaces can be registered before you start parsing.
You can fiddle with the namespace list while parsing (but
would you?)
You use prefixes in XPaths, just as in XSLT:
class MyHandler(EasySAXHandler):
def __Init_ (self):
self.registerNamespace("'Xhtml",
"“"http://www._microsoft.com”™)

def handle_ tables(self, elementNode):
“"xhtml:table as tree"

do something
self._processChildren(elementNode)

do something else

a» Data

Garbage Collection

Children know about their parents.

By default, parents do NOT know about their
children.

When you build a tree, the parents do know about
children.

The references from parents to children are
destroyed when handler completes.

"Weak references" would help here.

a» Data

Credit where Due

| wrote "minidom"
James Clark wrote Expat

Dr. Dieter Maurer <dieter@handshake.de> wrote
the biggest component: the XPath® parser

Thanks to his good design, | could adapt it without
any help from him.

XMetalL’ wrote these slides.

a» Data

Todo...

Documentation, documentation, documentation.
Tree pruning?

User defined functions.

XSLT "modes"?

Other DOM facilities.

Python "xml library"?

|
a» Data ;

Referenced URLS

Lhttp://www.datachannel.com
2www.xmlbooks.com
Swww.megginson.com
“http://www.w3c.org/TR
Shttp://www.python.org

Shttp://www.dieter.handshake.de/pyprojects/pyxpath.
html

"http://www.xmetal.com

