
EasySAX: Sax Made
Pythonic

About Me

� Paul Prescod
� ISOGEN Consulting Engineer
� Professional Services Arm of DataChannel1

� Co-author, XML Handbook2

Laying the foundations

Overview

� EasySAX merges ideas from
u SAX3

u DOM4

u XSLT
u DSSSL

� Probably most similar to "saxon" in Java world.

What is Python?

� A high-level, object oriented, dynamically typed
programming language5.
� Can be used for scripting, conversions,

abstraction-building.
� A merge of the best ideas of Smalltalk, Perl and

Java?
� What does it mean to be Pythonic?

Meditate on this

� An object is Pythonic if it has the Python nature.
u There is no rule of thumb.

u There is no motto.
u There is no overriding design goal.
u There is only the oneness with the problems you are

trying to solve and the way you think about it.

But master....

� How do we design things that are Pythonic?
u Aristotle's golden mean

u Make them simple, but not too simple to get the job
done.

u Elegant, but not in a cutesy way.
u Flexible, but not at the expense of clarity.

u Dynamic, but not at the expense of maintainability.
u Dictionaries are KUEL. Use them alot.

Reflect on this

� At runtime it is possible to ask questions about
objects.
� Reflection is a powerful tool.
� It can be used in diabolical ways
� When used virtuously it eases readability and

maintenance
� This is Pythonic.

Reflecting on SAX

What is SAX?

� SAX is a low-level API to XML
� Performance is a key consideration
� It is simple, but not easy.
� Increasingly, it is no longer simple.
� It is relatively, but not completely, complete.

Does SAX have the Python Nature?

� Complexity is Pythonic if it is hidden.
� Good performance is Pythonic.
� Standards conformance is Pythonic.
� Re-inventing wheels is not Pythonic.
� Therefore we must use SAX, but hide it.

What must be hidden?

� SAX character handling is inelegant.

� SAX gives you a pointer into a buffer.

def characters(self,ch,start,length):
print ch[start:start+length]

� Pythonistas would just expect a string object.

def characters(self, chars):
print chars

Event Dispatching

� SAX requires you to dispatch your own element
events:

class MyHandler(SaxHandler):
def startElement(self,typename,attrs):

if typename=="html":
handleHTML(attrs)

elif typename=="title":
handleTitle(attrs)

...

� Large switch statements do not have the Python
nature.

Context

� SAX requires application programmer to take care of
context.

class MyHandler(SaxHandler):
def startElement(self, typename, attrs):

if typename=="html":
handleHTML(attrs)

elif typename=="title":
titleMode=1

...
def characters(self,chars,start,length):

if titleMode:
print chars[start:length]

SAX and Namespaces

� Namespaces are the ultimate koan.
� Do we keep prefixes?
� How do we keep them?
� How do we do comparisons?
� How do we keep this all efficient?

Do SAX events suck?

� No, they merely have not achieved enlightenment.
� Through a series of reincarnations we can move

them towards enlightenment.
� At the end, is what is left still SAX?
� Ponder.

Does the DOM suck?

� Design elegance aside … the DOM is useful
� Nevertheless, it's major weakness is not a design

flaw:
u tree models are inherently weak at handling very

large documents
u this can be mitigated with an object database like

ZODB

u but you still need a lot of disk space

� A Pythonic SAX must have minimal memory
requirements

Towards a Pythonic SAX

First Principle

� Do not reinvent the wheel.
� Parsers can still "speak" SAX
� Applications can use something more Pythonic
� Raw SAX is still available for speed-critical M2M

B2B XML EDI on WinCE HPCs

Second Principle

� Let's steal ideas wherever we can.
u XSLT

u DSSSL
u DOM
u Omnimark
u Balise

u ...

Stealing from the DOM

� It takes humility to steal ideas from the DOM.
� Therefore it is a productive exercise.
� DOM 2 has a way of handling namespaces.
� The DOM is really good at handling context:

u node.parentNode
u node.childNodes

u node.childNodes[0]
u node.attributes
u node.getAttribute("abc")
u node.parentNode.getAttribute("abc")

SAX, meet DOM

� Instead of dispatching strings and integers, we can dispatch
nodes:

def startElement(self, elementNode):
...

def endElement(self, elementNode):
...

def text(self, textNode):
...

def processingInstruction(self, piNode):
...

def comment(self, commentNode):
....

� This gives us a way to navigate around.

Leveraging context

� Given that we have context...let's flaunt it!
def handle_spam(self, textNode):

"figure/title/text()"
print "Figure title:"+`textNode`

def handle_dead_parrot(self,textNode):
"section/title/text()"
print "Section title:"+`textNode`
print textNode.parentNode.\

attributes["type"]

Let's not get crazy

� There are some rules...
� Not all of the DOM is available (see next slide)
� Handlers must be named handle_something
� "something" is a symbolic label, not a “tagname”
� Particular nodes are matched against the XPath

How much DOM can we afford?

� The "right" amount of DOM varies from application
to application.
� In processing techdocs it is really useful to be able

to have a complete DOM for (e.g.) tables and
figures.
� Parent context is almost always useful and

relatively cheap.
� Therefore: always remember parents.
� Otherwise, only build subtrees for regions of the

document.

Selective Domination

def handle_applets(self,elementNode):
"applet as tree"
for node in elementNode.childNodes:

print node

def handle_tables(self, elementNode):
"table as tree"
do something
self.processChildren(elementNode)
do something else

ProcessChildren

� Recursively invoke handler on children
� Like DSSSL function of same name
� Like XSLT apply-templates
� Like Omnimark %c
� Coming soon...processMatchingChildren

Other DOM costs

� The DOM is large and getting larger.
� It is complicated and redundant.
� Most parsers don't generate most node types.
� Most apps are read-only
� It probably would not pass the Guido test.
� Let's just make a subset: "minidom".

Namespaces

� Namespaces can be registered before you start parsing.
� You can fiddle with the namespace list while parsing (but

would you?)
� You use prefixes in XPaths, just as in XSLT:
class MyHandler(EasySAXHandler):

def __init__(self):
self.registerNamespace("xhtml",

"http://www.microsoft.com")

def handle_tables(self, elementNode):
"xhtml:table as tree"
do something
self.processChildren(elementNode)
do something else

Garbage Collection

� Children know about their parents.
� By default, parents do NOT know about their

children.
� When you build a tree, the parents do know about

children.
� The references from parents to children are

destroyed when handler completes.
� "Weak references" would help here.

Credit where Due

� I wrote "minidom"
� James Clark wrote Expat
� Dr. Dieter Maurer <dieter@handshake.de> wrote

the biggest component: the XPath6 parser
� Thanks to his good design, I could adapt it without

any help from him.
� XMetaL7 wrote these slides.

Todo...

� Documentation, documentation, documentation.
� Tree pruning?
� User defined functions.
� XSLT "modes"?
� Other DOM facilities.
� Python "xml library"?

Referenced URLs

1http://www.datachannel.com
2www.xmlbooks.com
3www.megginson.com
4http://www.w3c.org/TR
5http://www.python.org
6http://www.dieter.handshake.de/pyprojects/pyxpath.

html
7http://www.xmetal.com

