
XML Support to Design for Testability

Daniel Deveaux1, Guy St.Denis2, and Rudolf K.Keller2

1 Lab. VALORIA (AGLAE) � Université de Bretagne Sud
VANNES FRANCE � Tel: (33) 297 463 175

Daniel.Deveaux@univ-ubs.fr
2 Lab. GELO � Université de Montréal

MONTREAL CANADA � Tel : (1-514) 343 7474
g.stdenis@computer.org - keller@iro.umontreal.ca

Abstract. The sophisticated document management needs of present
and future Web-based environments have spawned the XML speci�cation
as well as a host of related technologies. In software engineering, XML to
date has mostly been used to support three sub-activities: documenta-
tion management, data interchange and lightweight data storage. In this
position paper, we propose using XML technology as the infrastructure for
the integrated management of all core software development information.
For several years now we have been developing the concept of design for
testability based on a self-documented and self-testable class model. The
aim of this paper is to propose a master document type that captures
all relevant information for a class, i.e. documentation, contracts, tests,
and so on. This document is de�ned by an XML DTD and we have ten-
tatively named the resulting markup language OOPML: Object-Oriented
Programming Markup Language.
After presenting our DTD prototype and describing the dedicated soft-
ware development framework that we are currently building, we explore
the enhanced work and control activities made possible by XML technol-
ogy. Related software project activities (design with UML, documentation,
project management) are also explored.
Keywords: object-oriented development, docware approach, XML, SE

tools achitecture

1 Introduction

The emergence of the XML (Extensible Markup Language) standard, recom-
mended in the fall of 1998 by the W3C (World Wide Web Consortium) and
supported by the majority of document producers and consumers, has cast many
application domains in a new light. Because XML technology facilitates the pro-
duction, management and exchange of all structured documents, it is natural to
exploit its strengths within software project management where most if not all
artifacts are documents (textual or other). At the time of this writing, several
software engineering projects that employ XML are under development and they
can be classi�ed into three general categories: documentation support, data in-
terchange and lightweight data storage. We discuss these applications in section
5.

In this position paper, we propose applying XML technology to software de-
velopment in a manner akin to the basic philosophy of the literate-programming
community [Coa98,Cov98]; essentially, XML provides the technical infrastructure
to enable the integrated management of all core software development informa-
tion. Our approach relies on the observation that the majority of forward and
reverse-engineering software tools are built around a similar internal model: a
more or less sophisticated abstract syntax tree with various representations (e.g.,
serialized as tuples, semantic nets, trees of objects, and so on). Unfortunately, the
proprietary and incompatible nature of these representations is a major obstacle
to tool interoperability. In particular, a considerable gap exists between analysis
and design tools which are increasingly UML-based, and code management tools
which rely on source code parsing.

For CASE tool developers, this state of a�airs results in a disproportionate
amount of time and energy being spent managing a given tool's basic technical
infrastructure rather than enhancing the functional capabilities that will distin-
guish it from competing products. For software developers, the incompatibility
of software system representations inhibits CASE tool interoperability (e.g., be-
cause of time-wasting and error-prone data imports and exports via non-standard
exchange formats) and constitutes a limiting factor in the evolution of funda-
mental areas such as traceability.

In this proposal, we draw upon our teams' combined experiences in this
domain: the LSDoc tool of the AGLAE project [Dev99a] uses an SGML engine (recall
that XML is a simpli�ed version of SGML), and the SPOOL framework developed
by the GELO lab [KSRP99] now uses an XML-based data interchange format
[SSK00].

Following a brief overview of XML, we present the details of our exploration.
We then develop a few examples illustrating the usefulness of XML technology
and examine related works. We conclude with an outline of an architectural
framework for software engineering.

2 XML: an overview

The unprecedented success of the World Wide Web has provided the incentive to
de�ne a Web-enabled document management infrastructure: the resulting XML

metalanguage speci�cation [W3C98,Mic99a,St.98,Meg98] retains the extensibil-
ity of SGML but is considerably simpler to handle. The arrival of this exciting
technology prompted the question: "Can XML technology and its related tools be
used to support object-oriented software development and maintenance?". In our
view, there is a considerable advantage in adapting existing solutions provided
by document management specialists to serve the needs of software engineers
rather than developing from scratch and maintaining parallel technologies and
tools.

The underlying principles of modern document management systems con-
sist in separating content from presentation and storing information in plain
text documents. These objectives are ful�lled by marking up documents with

meaningful tags that delimit and identify the data elements that they comprise.
A given set of tags and their allowable arrangements constitute a markup lan-
guage. XML is a markup metalanguage speci�cation that is used to de�ne concrete
markup languages. These markup languages in turn de�ne the structure and con-
tent of a class of documents, either through the use of the DTD (Document Type
De�nition) or the XML Schema mechanisms. An example of a marked-up Java

source code fragment is given in �gure 1

<Method id="meth.item"> | <ReturnType>Object</ReturnType>
<Ident> | </MethSign>

<Name id="item"> item </Name> | <BlocCode plang="java"
<Role> | visibility="priv">
get the value on top of the stack | <Comment>

</Role> | the top of the stack is the last
</Ident> | element of the Vector
<Description> | </Comment>

<Para> | <Code>

De�ne abstract method | <![CDATA[

inherited from Container | st().pro�le() ;
(contracts already de�ned) | return (coll.lastElement()) ;
</Para> |]]>

</Description> | </Code>

<MethSign> | </BlocCode>

<Visibility> public </Visibility> | </Method>

Fig. 1. XML sample: a Java method marked-up with OOPML

The W3C is currently in the process of standardizing numerous related tech-
nologies that extend and enhance the usefulness of XML:

� XPath (XML Path Language), XPointer (XML Pointer Language) and XLink

(XML Linking Language) [W3C99d,TEI99,McG98] make it possible to de�ne,
manage and exploit advanced hyperlinks

� XSL (Extensible Stylesheet Language) and XSLT (XSL Transformations)
[W3C99b] are complementary technologies that de�ne stylesheets and a
transformation language respectively. The style-sheets are used to specify
how a given XML document should be presented in a particular context,
and the transformation language is used to transform one XML document
into another.

� To facilitate the automated machine-processing of data contained in XML

documents, the W3C has de�ned the RDF (Resource Description Framework)
speci�cation [W3C99c,OCL99,Bra98] which provides a meta-data de�nition
and processing framework. RDF makes it possible to de�ne domain-speci�c
vocabularies that describe resources of interest for a given community.

� Finally, there are currently two APIs that de�ne how applications access and
manipulate XML documents: DOM (Document Object Model) is a tree-based
data model [W3C99a] whereas SAX (Simple API for XML) is an event-based
interface. The existence of these standard APIs encourage the construction of
generic tool-building libraries and components that XML-based applications
can reuse, giving them immediate access to XML documents. Many useful
tools in use today (e.g., parsers, editors, ...) are built from such libraries.

The rapid success of XML has resulted in a �ood of speci�cations, documen-
tation and tools which can easily overwhelm an unsuspecting newcomer. To
alleviate the information overload, we have summarized our �rst bibliographic
study and related tool exploration in an "XML world map" which is available at
the XML4SE Web site (XML for Software Engineering1).

3 The Object-Oriented Programming Markup Language

project

Our team has been collaborating for several years with IRISA's Pampa Project
(see acknowledgements) to develop a class design methodology, called design

for testability [DFF+00], that integrates documentation, contracts and tests to
improve the trustability of software components. This approach is based on a self-
documented and self-testable class model that has been implemented in several
object-oriented languages (Eiffel, Java, Perl) [DJ99,TDJ99]. This model has
been used for several years now for teaching purposes [DFF99] and experiments
are currently under way to use it in professional developments. These products
are freely available from the Web and are distributed under the GNU General
Public License under the names STclass2 and LSDoc3.

As a �rst exploration of XML support for software engineering, we have stud-
ied the feasibility of implementing our self-documented and self-testable class
model as an XML document. We were able to formalize an in-memory DOM that
captures all class-related information (e.g., source code, contracts, many levels
of documentation, test suite, etc.) upon which it is possible to apply editing
and/or validating operations. This DOM can be built from an existing XML docu-
ment or from a source code �le in a given programming language documented
with LSDoc or another similar documentation tool, and it can subsequently be
saved as an XML document. Additionally, we can extract from this DOM compilable
source code and various documentation views.

The DOM structure is de�ned by the DTD for our proposed Object-Oriented
ProgrammingMarkup Language, or OOPML. Our initial framework prototype sup-
ports Java-based source code, but we stress the fact that OOPML is independent
of any programming language 4. Likewise, our framework is extensible to handle

1 URL: http://www.iro.umontreal.ca/labs/gelo/xml4se
2 URL: http://ww.iu-vannes.fr/docinfo/STclass
3 URL: http://ww.iu-vannes.fr/docinfo/LSDoc
4 In fact, an OOPML structure can simultaneously accommodate implementations of a
given class in di�erent programming languages.

other programming languages as well. Our XML-Java framework is depicted in
�gure 2.

javadoc
parser

lsd2
XML

XSL
engine

xx.xml

xx.xml

parser
validating

OOPML.dtd xx.cla

O
D M

static
analysers

visual
editor

transf.
tools

xml2java
XSL

engine

xx.java

xx.java

xx.java xx.html xx.pdf

rev-engineering

validation

formaters

m
o

d
ifi

e
rs

Fig. 2. A framework to develop Java code with XML

In this framework, the primary storage unit for classes are *.cla �les which
are in fact XML documents, not Java �les; the Java to XML conversion (top of
the �gure) is a reverse engineering operation. In a typical software development
process, the classes are created with a visual editor or are extracted from XMI

documents.

As mentioned by G. J. Badros [Bad00], all modi�cation and veri�cation tools
operate on the Abstract Syntax Tree (or the DOM in our case) because they can
e�ciently exploit a well-de�ned and well-understood structure. Although our
framework tolerates incompleteness and modi�cations to the DOM, we can rest
assured that the resulting AST remains valid at all times by using a DOM vali-
dating parser.

The bottom right branch of the �gure shows the code generation and docu-
mentation processes that are based on an XSL engine. The left branch, xml2java,
corresponds to our initial attempt to extract Java code from the DOM using a
Perl script: this path has been abandoned. This portion of the �gure clearly
shows how the source code has become a by-product of our proposed develop-
ment process, much in the same way as technical documentation is extracted
from source code in typical development processes today.

In the �gure, the steps shown in solid lines have been carried out using tool
prototypes, which we will describe shortly. The rest of the process appearing in
dashed lines constitutes current or future work. The development of tool proto-
types relied on several XML 'accessories' that are freely available on the Web. The
majority of components were libxml-perl [DMPW99] and IBM-Alphaworks
[IBM99] products: XML4J parser, Xeena editor, LotusXSL transformer.

Our �rst step was to produce a non validated XML instance of one of our Java
classes (Stack.java); this was achieved by extending our LSDoc translation tool,
lsd2, with a new formatting XML option. From this instance we constructed the
OOPML DTD which we designed to leverage XML's new capabilities, and we recast
the Stack class based on this new document type. The DTD OOPML.dtd and
the XML form of the class (Stack.cla) were then validated with IBM's Xeena
validating editor. For the �nal extractions we initially developed a Perl script
(xml2java.pl) to extract a compilable Java source �le from the XML document.
Afterwards, we used an XSL engine (LotusXSL) and developed XSL scripts to
extract Java code and technical documentation (in HTML and Postscript) with
various views. All of this material is readily downloadable from our oopml5 Web
page.

At present, several tasks are under way:

� validate the OOPML DTD with many applications,
� make use of intermediate DTDs and XSLT to transform non valid XML class
material (from javadoc or LSDoc) to valid OOPML documents,

� make use of XLink to improve intra and inter-class browsing and to manage
class hierarchies,

� develop a dedicated editor, based on the DOM, to create and edit classes,
features and tests.

Our goal is to build a framework that supports the development and testing
process of self-documented and self-testable classes with enhanced automatic
validation and control possibilities. This framework should allow the develop-
ment of new classes as well as the integration of existing classes through reverse-
engineering operations. The functional prototypes that we have developed clearly
indicate the feasibility of such a project.

4 Improved quality control with XML

XML provides several mechanisms that can improve the software development
process:

5 URL: http://www.iro.umontreal.ca/labs/gelo/xml4se/oopml/

� The robust de�nition of well-structured documents by DTD or XML Schema

enable structure validations on all documents during the design process.
� XSL de�nes a generic transformation engine that can drive the overall doc-
ument production for the project, including activities such as converting a
model to code or extracting a documentation view. .

� XLink de�nes very advanced linking techniques that can be used to manage
inheritance and implement traceability and consistency control.

� Meta-data support through RDF should facilitate information interchange
between project, versioning and process management.

The interest in XML as a support for software engineering environments isn't
limited to its e�cient and portable data structures managed by standard and
available tools. As a matter of fact, an XML environment o�ers in�nitely more
document structuring possibilities than those available from the source code of
current programming languages. In this section we will show, for illustration
purposes, two situations where XML technology provides elegant and easily im-
plemented solutions to problems that current tools don't handle very well.

4.1 XLink applications

One of the interesting possibilities provided by the XLink speci�cation consists
in using extended out-of-line links to dynamically create relationships between
resources without having to modify the actual resources themselves. We describe
in the following text the linkbase concept and afterwards present a usage exam-
ple.

E

D C

B

A

E

D C

B

A
B1

E

D C

B

A
B1

B2

Visible linksLinkbasesVisibles linksLinkbasesVisibles linksLinkbases

Fig. 3. Visible links in a browser after reading of linkbases

A linkbase can be implemented using an ordinary database that feeds link
information to an XML browser's dedicated link engine. A simpler alternative
however involves encoding the linkbase as an XML document that contains a list
of extended links; these links de�ne a relationship network between arbitrary
resources. Such a document is called a "hub" because it serves as a starting
point for a browsing session. Figure 3 shows how a linkbase can be used. Images

represent a browser's successive depictions of the link network between resources
A through E. This example illustrates the great �exibility of XLink technology
and the possibility of creating particular views of a resource set. Because the
link management takes place independently of the linked resources, the stabil-
ity of the resources is maintained and the reuse and adaptability potential is
considerable.

Within a software engineering context, XLink facilitates the automated man-
agement of vital link information between a system's components, such as class
hierarchies, interface inheritance, and client-supplier relationships. Let's explore
the simple class hierarchy relationship to see how automated link management
can take place. The OOPML DTD contains an extended link element called Inherit

which is used to specify a given class' superclasses. When an XML browser and its
link engine process a class document, the link information between this subclass
and its parents, as well as the links �owing in the opposite direction, will become
visible to the user. However, it would be interesting (and useful) to be able to
navigate from a superclass to all of its descendants without having to preload
all the class documents de�ning the subclasses.

Without XLink, this type of navigation would have required modifying the
superclass document in order to add references to all of its children. This ap-
proach is error-prone because it relies on manual intervention. With XLink, a
more practical solution consists in creating "structural" hubs, that is, linkbases
which contain structural information about a software system. The hub is cre-
ated and maintained automatically by parsing new or edited class documents,
extracting the appropriate link information (�gure 3), and updating a linkbase

(which is independent of the class documents) that contains up-to-date relation-
ship information between the superclasses and their dependent subclasses. This
scenario e�ectively eliminates the need for laborious and error-prone manual up-
dates. Afterwards, we can immediately view all inheritance information for any
class in the hierarchy by loading the single linkbase in the browser. Naturally,
this example may be applied to any type of relationship: containment and class
collaborations are two additional examples.

By generalizing the structural hub idea even further, we can envision the
existence of linkbases o�ering custom views of a system adapted to the docu-
mentation needs of the user.

We'll round out this section on XLink with a �nal example. The possibility
o�ered by XLink to navigate to several destinations from a single starting point
o�ers interesting solutions for a source code browser. Let's consider the case
where a developer wishes to obtain information for a given class member, say, a
method. Using XLink technology, the developer can click on the member's name
and then be presented a menu of possible destinations: typical choices include
the member's de�nition, its declaration, all references made to it, and so on.
In fact, any number of links can be easily provided because a class document
is never edited as such; all that is required is to create appropriate linkbases

de�ning the desired views and to selectively load them into the browser based
on the type of information that is required.

4.2 Towards progressive validation

In the current state of software development practices the documented class
structure (i.e., our OOPML DTD) described previously remains inapplicable for the
most part: few development processes preserve as much information in the source
code. Moreover, there are real-life cases where this abundance of information
is unjusti�ed: educational situations and throw-away programming for proto-
typing are two such cases. Furthermore, in maintenance or reverse-engineering
situations, we are required to work with the software as it currently exists.

These observations underline the fact that software engineering tools must
be able to handle project documents regardless of their quality level and their
completeness with respect to an ideal model. The handling of incomplete models
is in reality a constant need: when new components are being developed, every
related document is incomplete because it is still being drawn up.

Luckily, XML accepts a document which is simply well-formed (i.e., it is syn-
tactically correct as per the XML speci�cation, but its structure does not conform
to a known DTD). In this context, it is possible to convert any structured docu-
ment to an equivalent XML version and to load it into a DOM repository, whether
the document's structure was or wasn't de�ned in a DTD. XML tools (e.g., �lters,
editors, etc.) can analyze and edit the document, and at any moment, validate
it against a model by activating a DOM parser. This approach is particularly well
suited in teaching situations, where a model's detail level can adapt rapidly be
adapted to suit evolving student skills.

In our teaching environment, we require that students use the self-documented
and self-testable classes model [Dev99b,DFF99]. During the initial phases, im-
posing the complete model at once is obviously out of the question. In fact,
over the two year initiation period, our students are exposed to four successive
versions of the model (code names are in parentheses):

1. (ini) Initially, the only requirement is a compilable and operating program.
The use of adequate and well-placed comments is explained and recom-
mended, but not imposed.

2. (jdb) In the second phase, the javadoc documentation is introduced and
the distinction between interface and implementation views is explained. At
this point, javadoc comments become mandatory.

3. (jdc) Then, contracts are added.

4. (full) Finally, the whole model comprising contracts, testing facilities and
multiple documentation views in LSDoc is put into action [Dev99a].

In fact, each of the �rst three cases corresponds to an increasingly reduced
subset of the full model and can therefore be placed in a document structure in
which certain elements are simply absent; we can easily add them afterwards,
thereby improving the quality of our document.

Using simple constructs (a description follows), XML allows us to decide
whether to consider or ignore certain elements of a DTD (e.g., ignore the 'Test'

*

?

Method

?

?

?

+

Method

?

?

*
+

?

Method

?
?

?

*
+

?

& jdc)

(jdb) (ini)

(full
Comment

Code
Ident

Type

Qualifier

Visibility

ReturnType

Arguments

Arg

Role
Ident

Description

MethSign

Contracts

BlocCode

Ident

Type
Arg

Role

Name
Ident

MethSign

BlocCode

Arguments

ReturnType

Comment

CodeCode
Ident

Type
Arg

Role

Name
Ident

Description

MethSign

BlocCode

ReturnType

Visibility

Arguments

Comment

Name

Fig. 4. Creating DTD levels through tree pruning and constraint relaxation

element and its descendants) and to activate or deactivate the mandatory na-
ture of any element . Figure 4 illustrates this level creation mechanism for the
'Method' substructure in the OOPML DTD.

Thus, using parameterized DTDs, it is possible to validate arbitrary pro-
gram documents of varying levels of quality and/or completeness. In reverse-
engineering activities, this progressive validation may also be used as a mea-

sure (e.g., the amount of reverse-engineering e�ort required); the software under
study would be loaded without validation in a DOM repository and then validated
against models of increasing completeness levels.

XML's INCLUDE/IGNORE mechanism ([Mic99a] p.75) allows us to control the
visibility and the constraints over the document through the de�nition of entities.
The selection of the desired validation level is determined with a switch inserted
(automatically, eventually) at the top of the source �le to be processed.

Moreover, our initial attempts have shown that it is possible to exploit the
structural constraints imposed by a DTD. For example, we can verify and en-
force programming style guidelines such as nesting limits in alternative or it-
erative structures, and forbidding multiple 'return's within a method. We are
convinced that by de�ning su�ciently detailed DTDs a large percentage of the
checks currently (not) carried out by cross-validation or reviews could be made
automatically by a validating XML parser.

The enhanced functionality described above should be considered as a free
side e�ect of XML use. It can moreover be particularly useful in teaching or
reverse-engineering situations.

5 Related work

Documentation support � Over the years, the SGML community has pro-
posed standards such as DocBook [WM99] for the structure and presenta-
tion.of technical documentation for software. The Linux system documenta-
tion (LinuxDoc) uses a similar standard.

Because of SGML's complexity, these projects proposed a single yet rather
complicated DTD that could manage every possible document type. Such
an approach assumes that the DTD is a standard (thus implying a slow
evolution), and it imposes relatively heavyweight tools for document man-
agement.

XML's big advantage over SGML is that it permits small DTDs that are dedicated
to one particular purpose. We believe that document interchange support
cannot be obtained using a single worldwide monolithic structure; rather,
document translations will be achieved using XSL transformations in col-
laboration with appropriate vocabularies de�ned with RDF. Moreover, many
document structures proposed in these smaller DTDs are highly interesting.

An XML DocBook DTD6 has been available since 1999. In order to ease the
transformation to and from DocBook, we have chosen to align element names
in OOPML with the corresponding elements in DocBook.

Recently, several projects (e.g., Apache Cocoon [Apa99], JDox7) have used
XML documents as the target for javadoc extracted class documentation. A
javadoc DTD is de�ned and doclets are developed to produce valid XML

documents. Afterwards, XSLT scripts are used to generate �nal presentations
on Web or paper.

The Apache project includes another noteworthy item: it aims to de�ne a
Web server that stores all of its information in XML format and dynamically
extracts views in XML, HTML, or PDF for Web clients. Such a server can play a
central role in the construction of software design team support, particularly
if it is associated to a WebDAV8 application.

Data interchange � This facet has been explored mainly by the UML (Uni-
�ed Modeling Language) community which has proposed several data inter-
change formats such as XMI [OMG98], Microsoft's XIF [Mic99b], and UXF9.

The standardization of interchange formats in software engineering (SE-EDI)
is certainly necessary but we contend that these interchange documents can-
not contain all the information required for validation or process control,
unless all participants use the same methods and tools, which is rather un-
likely in reality. Instead, in order to meet a developers' needs, an interchange
format should be handled by the development tool at hand by standard input
parsing and output �ltering techniques.

6 URL: http://www.nwalsh.com/docbook/xml/
7 URL: http://www.componentregistry.com/javadox/
8 URL: http://www.webdav.org/
9 URL: http://www.yy.cs.keio.ac.jp/~suzuki/project/uxf/uxf.html

Lightweight data storage � An XML document is a suitable candidate to store
working data for many applications. In software engineering, a common ac-
tivity is UI generation. In an XML context, an interactive tool is �rst used to
construct the interface and to save its de�nition in an XML con�guration �le.
Filters are then used to generate application classes for di�erent program-
ming languages (Proto10, Glade11). Similarly, XML lies at the heart of the
Open source Gnome12 project. And �nally, an emerging application domain
for XML is beans construction, as evidenced by the BML13 = Bean Markup

Language from IBM-Alphaworks, and Koala14 from INRIA.

With respect to the literate programming with XML approach [Coa98,Cov98],
our goal is more ambitious: we wish to formalize all project information (textual
documents, models, code) as XML documents. Standard XML tools will support
the design evolution and transformation process and will allow quality control
throughout. However, we have not adopted the literate programming paradigm
because it requires a radical change in point-of-view with respect to the design
activity. We believe that the next step is to propose a model and a development
process that permits a gradual re-engineering of existing source code.

Besides, we believe that it is important to have di�erent document structures
to store classes, design models, textual reports and project management data.
Each level has to manage its own information: for example, implementation
description and veri�cation is strictly local to each class and should never appear
in conceptual models. In that way, OOPML representation of software application
is complementary to the UML model: it is possible to generate OOPML from an UML

case tool and research is under way to implement backward traceability from
class to UML models. This traceability should leverage XLink's capabilities.

Recently, two works closely-related to OOPML have been published: G. J.
Badros' JavaML [Bad00] and the SDS open development initiative [Fou00]. OOPML
and these works complement each other. In OOPML, the emphasis is placed upon
generic class structure and documentation support, whereas in the other projects
the central goal is to capture all code structure; the source code �le remains the
central code storage mechanism. The SDS platform can be adapted to a large
collection of programming languages, whereas JavaML is dedicated to Java. The
greatest shortcoming of these proposals however is the poor handling of com-
ments (e.g., javadoc) in the sources; it should be possible to drastically improve
information content by including comment analysis during the parsing of source
code.

Email discussions are currently under way with G. J. Badros: we have pro-
posed using JavaML (extended with javadoc comments manipulation) as an in-
termediate step between an OOPML representation of a class and Java compilable
source code. The resulting schema is displayed in Figure 5.

10 URL: http://www.pierlou.com/prototype/
11 URL: http://glade.pn.org/
12 URL: http://www.gnome.org/
13 URL: http://www.alphaworks.ibm.com/formula/bml
14 URL: http://www.inria.fr/koala/kbml/

General analysis
and design

Source engineering
Language independant
Validations and controls

Java specific controls
and transformations

Class Design Model

UML Models

Java Meta Language

Java Code Level

XSLT

XSLT

XSLT

XSLT

XSL

JavaCC

XMI dtd

OOPML dtd

JavaML dtd

reverse engineering path

development path

Fig. 5. DTD levels in Java development process

With these two levels of representation, it is possible to develop Java-speci�c
tools for the JavaML model and generic, reusable for other languages, tools at
the OOPML level. Nevertheless, a question remains unanswered: should we use
a speci�c, slightly modi�ed DTD for each language, or a generic model like CSF

in the SDS project? Actually, we favor the former approach because it simpli�es
translation tools such as the language parser used in the �rst reverse engineering
step.

6 Conclusion and outlook

Towards an XML-based architecture: The schema in Figure 6 illustrates the
kind of framework organization that we intend to construct.

This �gure presents four families of tools built around a data core which is
based on the DOM API; the actual data may reside in live memory or o�-line
in some type of database. The typography of �gure 6 distinguishes the general
tools (described in the preceding paragraphs) from the tools that must be de-
veloped speci�cally for software engineering. The proposed architecture is not
in itself revolutionary: several software engineering frameworks, including SPOOL

and LSDoc, rely on a common data representation at their core. However, we
believe that the proposed framework contains a few new twists and deserves a
closer look. Firstly, the framework's core is based on the recognized DOM API for
which several proven and robust browsers can be readily obtained, often at mini-
mal or no cost. Additionally, several of the suggested tools in �gure 6 (in the sans
serif font) already exist or are presently being developed by electronic document
specialists: software engineering tool developers are thus free to concentrate their
e�orts on their own specialized applications. Finally, and of greater importance
than the preceding considerations which are, after all, only of a material na-

O
D M

validation tools
Semantic

tools
Metrology

documentation
extractors

code
generators

XML

Code
Texts Models

Documents
XML Compilable sources

PARSERS MODIFIERS

FORMATTERS

VALIDATION
TOOLS

RDF

DTD

SGML

C++
..... UML

Java LSDoc

DOM/XMLto...
Navigators

XML filters
Generators

Browsers

Structured editors
XML editors

Fig. 6. XML-based software engineering environment

ture, XML o�ers a new and fundamental paradigm: the uni�ed management of
all project documents (requirements speci�cations, design models, source code,
tracking logs or maintenance reports). This last point is crucial and constitutes
a basic requirement towards greater coherency and traceability in the software
development activity.

Figure 6 de�nes a general architectural schema. We believe it is important,
in this schema, to carefully distinguish the four families of applications: parsers,
validators, editors and formatters. This distinction assures maximal �exibility
and adaptability and allows for the reuse of tools which haven't been designed
explicitly for software engineering.

Moreover, the biggest di�culty at this time with XML and its related tools
is to sort through all of them in order to understand which needs are best
ful�lled by each one. After having analyzed numerous articles and proposals,
we suggest the layered organization shown in Figure 7 for data structures and
their related processing by various XML tools. We have associated each of the
four layers with XML speci�cations or tools that appear best suited to provide
the required solutions to the challenges that are stated.

In conclusion: the DTD and tools that we have implemented, the scenarios
that we have developed to manage traceability and to exploit progressive valida-
tions are all prototypes; nevertheless, our results allow us to claim that we must
seriously consider XML as a fundamental technology in the design of software
engineering applications. Firstly, signi�cant time and e�ort savings are possible

O
D M

DOM-API / XML format

DTD/Schemas-XSL-XLINK

RDF (vocabularies) - XLINK

no-DOM

In memory or DBS

Implementation

Syntax control, find, diff
versionning, import, export

Exchange

Structural control, points of view, edit,
Document
doc extraction, code generation

Model
Semantic controls, consistency,
tracability, development process

Fig. 7. Use of XML technologies in software engineering tools

thanks to the tool reuse that XML allows. Secondly, XML provides original and
innovative solutions to recurring problems in our discipline.

Based on the results of this preliminary study, we will attempt to build
stable document models for the whole spectrum of project-related information
and study more thoroughly the use of XLink technology to manage a project's
traceability and to provide browsing solutions for interactive tools.

Acknowledgements: The design for testability approach and self-testable class
concept have been developed in "the trusted components initiative"15 in col-
laboration with Jean-Marc Jézéquel and Yves Le Traon from IRISA's Pampa

project16. Thanks also to Patrice Frison and Régis Fleurquin from the AGLAE
team for their help in developing the OOPML speci�cation.

References

[Apa99] Apache. Cocoon. 'http://java.apache.org/cocoon/', November 1999. World
Wide Web site - Java Apache Project.

[Bad00] Greg J. Badros. Javaml: a markup language for java source code. In
WWW9, Ninth International World Wide Web Conference, Amsterdam,
May 2000.

[Bra98] Tim Bray. Rdf and metadata. http://www.xml.com/xml/pub/98/06/rdf.html,
June 98. World-Wide Web document.

[Coa98] Anthony B. Coates. XML and literate programming.
'http://www.ems.uq.edu.au/Seminars/XML_LitProg/', 1998. World-
Wide Web document.

[Cov98] Robin Cover. SGML/XML and literate programming.
'http://www.sil.org/sgml/xmlLitProg.html', 1998. This document

15 URL: http://www.trusted-components.org/
16 URL: http://www.irisa.fr/pampa/

includes links to other literate-programming-in-SGML documents and
software packages.

[Dev99a] Daniel Deveaux. Distribution de LSDoc-4.6 sur internet. 'www.iu-
vannes.fr/docinfo/LSDoc', December 1999.

[Dev99b] Daniel Deveaux. Distribution de STclass sur internet. 'www.iu-
vannes.fr/docinfo/STclass', June 1999.

[DFF99] Daniel Deveaux, Régis Fleurquin, and Patrice Frison. Software engineering
teaching: a 'docware' approach. In ACM, editor, ITiCSE'99, Cracow, June
1999. ACM - ITiCSE'99 Symposium.

[DFF+00] Daniel Deveaux, Régis Fleurquin, Patrice Frison, Jean-Marc Jézéquel, and
Yves Le Traon. Composants objet �ables : une approche pragmatique.
L'Objet, April 2000.

[DJ99] Daniel Deveaux and Jean-Marc Jézéquel. Des classes auto-testables. In
Jacques Malenfant and Roger Rousseau, editors, LMO'99 : langages et
modèles à objets. Hermes, January 1999.

[DMPW99] Eduard Derksen, Ken MacLeod, Eric Prud'hommeaux, and Larry Wall.
libxml-perl. 'http://bitsko.slc.ut.us/libxml-perl/', August 1999. World
Wide Web download.

[Fou00] Software Development Foundation. Sds. 'http://sds.yi.org/', February
2000. World Wide Web site - Open source project.

[IBM99] IBM. alphaworks. xml parser for java, version 1.1.9.
http://www.alphaworks.ibm.com/tech/xml, April 1999. Web site.

[KSRP99] Rudolf K. Keller, Reinhard Schauer, Sébastien Robitaille, and Patrick
Pagé. Pattern-based reverse engineering of design components. In Proc.
Twenty-First Conference on Software Engineering (ICSE'99), pages 226�
235, Los Angeles, CA, May 1999. IEEE.

[McG98] Sean McGrath. XLink: The XML linking language. Dr. Dobb's Journal of
Software Tools, 23(12):94�101, December 1998.

[Meg98] David Megginson. Structuring XML documents. The Charles F. Goldfarb
series on open information management. Prentice-Hall, Englewood Cli�s,
NJ 07632, USA, 1998.

[Mic99a] Alain Michard. XML : langage et applications. Eyrolles, Paris, 1999.
[Mic99b] Microsoft. Xml interchange format (xif) now available.

http://msdn.microsoft.com/repository/technical/xif.asp, may 1999.
Web based article.

[OCL99] OCLC. Metadata. http://purl.oclc.org/metadata/dublin_core, June 1999.
[OMG98] OMG. Xml metadata interchange (xmi.

ftp://ftp.omg.org/pub/docs/ad/98-10-05.pdf, October 1998. Document
ad/98-10-05.

[SSK00] Guy Saint-Denis, Reinhard Schauer, and Rudolf K. Keller. Selecting a
model interchange format. the SPOOL case study. In Proceedings of the
Thirty-Third Annual Hawaii International Conference on System Sciences,
Maui, HI, January 2000. to be published.

[St.98] Simon St.Laurent. XML a primer. MIS:Press - IDG Books, Foster City -
CANADA, 1998.

[TDJ99] Yves Le Traon, Daniel Deveaux, and Jean-Marc Jézéquel. Self-testable
components: from pragmatic tests to a design-for-testability methodology.
In Proc. of TOOLS-Europe'99. TOOLS, June 1999.

[TEI99] TEI. Tei extended pointer notation. 'http://etext.virginia.edu/bin/tei-
tocs?dib=DIV2;id=SAXR', June 1999.

[W3C98] W3C. Extensible markup language (xml) 1.0.
http://www.w3.org/TR/1998/REC-xml-19980210, February 1998. W3C
Recommendation.

[W3C99a] W3C. Document object model (dom). http://www.w3.org/TR/PR-DOM-
Level-1, June 1999. W3C Recommendation.

[W3C99b] W3C. Extensible style language (xsl). http://www.w3.org/TR/WD-xsl,
June 1999. W3C Recommendation.

[W3C99c] W3C. Resource description framework (rdf): Schema speci�ca-
tion. http://www.w3.org/TR/1999/REC-rdf-syntax-19990222, March
1999. Proposed recommendation.

[W3C99d] W3C. Xml linking speci�cation (xlink). http://www.w3.org/TR/WD-
xlink, June 1999. W3C Recommendation.

[WM99] Norman Walsh and Leonard Muellner. DocBook: The De�nitive Guide.
O'Reilly & Associates, Inc., 1999.

A OOPML DTD a quick tour

To present the OOPML structure in a concise way, we have chosen to use screen
shots of an XMLviewer window. This choice does not provide an exhaustive view
of a DTD but instead facilitates overall comprehension.

As displayed in the �rst tree (left �gure), an OOPML document contains a
general project document structure with a meta-data element (MetaData) which
comprises the usual identi�cation elements (title, author, summary, history, legal
notes, ...) and a processing directives element (TrtCommands) that we will return
to later.

The class description itself is contained within the two elements ClsPackage
and Class. Note that it is not possible to de�ne the package, container of classes,
within a class structure. After an identi�cation �eld, the class is organized in
chapters:

� general textual documentation of the interface (ClsGenDoc);
� class signature (ClsSign);
� textual documentation of the implementation (ImplDesc);
� class links , inheritance and clients (ClsLinks);
� several Features chapters, which group primitives (variables and methods);
� �nally, a Test chapter.

Links (e.g., XLinks) may be used within textual documentation zones and
the ClsLinks element to point to the �nal design documents or to other classes,
thereby ensuring information unicity and the ascending traceability. This envis-
aged functionality was not formalized nor tested yet because we do not have an
XLink processor.

The ClsSign element leads us to a more technical description of the class:
a Qualifier element (non visible here) makes it possible to manage the Java

quali�ers such as static or final. It is expected that this class model can si-
multaneously manage several programming languages (see below): consequently,
the PLangList element manages the declaration of the supported languages.

Fig. 8. OOPML snapshot

The implementation documentation element (ImplDesc) holds a description
of the general philosophy behind an implementation; it has a priv visibility by
default.

The ClsLinks element contains all external relations involving the class, in-
cluding clients and class (and interface) inheritance. Each block is optional; how-
ever, it must have content if it is de�ned. These three blocks use XML links which
provide the fundamental navigation mechanism in the technical documentation
of classes.

In the next zone (see the middle tree), the class primitives (i.e., methods,
variables, constants) are contained in Features elements (which were inspired
by the Eiffel language). These sections enable the logical grouping of primitives
based on their role, their visibility or the nature of the methods. Methods and
variables can be combined arbitrarily. Some attributes have a particular role:

category in Feature makes it possible to have several
views of the interface

visibility idem as above (pub, pack, child, priv)
family method family (constructor, modifier,

accessor or services)

The variable and method elements are similarly structured with an identity,
a description, a signature and contracts. The code consists of a BlocCode(s) �le,
each one comprising a comment block and a code zone. For example, in Java:

/*

* this is the comment block for the code below

*/

has = 5;

In a code block, the plang attribute de�nes the programming

language used for the code. If it is not de�ned, it takes the de-

fault value de�ned in the mandatory default parameter of the

PLangList element.

This strategy allows implementations expressed in di�erent pro-

gramming languages to coexist within the same class document.

The Features element cardinality is unconstrained: it is also possible to
express the multiple interface views concept (once again, as in the Eiffel lan-
guage) and/or to group the functionalities according to logical design criteria
(e.g., the components of a design pattern).

The Test block which appears in the right hand tree is optional since it is only
pertinent to self-testable classes. It comprises two sections: the �rst is manda-
tory (TestUnits), the second (TestLaunch) is not, because abstract classes and
interfaces cannot have launch tests.

A.1 General comments

This proposal is a feasibility prototype, not a �nal standard. Indeed, the ini-
tial version of our OOPML DTD had a strong bias towards the use of element at-
tributes rather elements. However, after revising the DTD production rules stated
by A.Michard ("XML Language et Applications" p45 to 52), with a particular
attention paid to rule 4 on semantic marking and to rule 5 on the correct use of
attributes, we believe that the current version of the DTD exhibits an improved
balance in this area. The basic rule that we currently follow is:

To reserve attributes for information normally hidden when using text data in
a normal fashion.

A.2 Naming and attributes

We chose to name the elements " à la Java" (i.e., each word in a string is
capitalized, without separators) and to name the attributes in lowercase letters.

Elements which have semantic equivalents in the DocBook-V3.1 DTD were named
identically, whereas every other element name was chosen to avoid clashing with
a name de�ned in the DocBook standard.

Some attributes are generic and can be explained immediately:

name(ID) name of the element, declared like XML identi�er, the ele-
ment thus marked can be a target for a link.

id(ID)? optional identi�er to de�ne whether this element should be
a target for a link

role element role = short description (less than one line)
visibilitymarks the structural visibility of an element, can be pub

(public), pack (visible of the package), child (visible to
the children = protected), priv (private)

plang indicates the programming language target, mandatory in
Class, optional in Code where it is implied by the value
de�ned in class.

edstat edition status, can be empty (stable), new (recently cre-
ated), modif (recently modi�ed) or obs (obsolete)

A.3 Some feature choices

The TrtCommands element contains Exec elements that de�ne commands which
can be applied to the class to carry out various development operations. The
options of Exec (in particular require and target) make it possible to document
the dependencies between classes:

Eventually, a specialized XML processor will be able to automatically invoke or
run these commands in the manner of make, but by using information distributed
within the various classes themselves.

Moreover, it is expected that the client and inheritance relationships will be
established with the help of extended XLink links. This provision should make
it possible to create sophisticated hyperlink-based navigation systems.

The inheritance description elements, in association with a document inher-
itance engine should allow the constitution of �at documents that describe all
of the primitives (local and inherited) of a class.

