
DBTeXMath

Allin Cottrell
Wake Forest University

Department of Economics
November 19, 2001

Table of Contents
Executive Summary... 1

Rationale... 1

Implementation .. 2

The files .. 2

Usage ... 3

Samples... 3

Technical details .. 4

Executive Summary
If you write SGML documents using the DocBook DTD, the files offered here let you embed
TeX equations directly in your SGML source files, and arrange for the mathematical notation
to be fed directly to TeX on output — hence avoiding both (a) the need to code mathematics
in MathML on the input side, and (b) the need to rely upon experimental and unfinished
dsssl-based mathematical typesetting code. Provision is made for substituting graphical
variants of mathematical formulae in the case of output to HTML.

Rationale
SGML, using the DocBook DTD, provides an excellent canonical format for storing complex
documents (e.g. the manual for the econometrics program gretl, which I maintain), espe-
cially if one wants to be able to produce both printable (e.g. PDF) and web-viewable (HTML)
versions of these documents on demand.

If these documents contain a significant amount of mathematical notation, however, one is
likely to run into problems. There is a means of dealing with mathematics in the context of
(semi-)standard DocBook — namely, using MathML mark-up — but this approach has two
big problems.

§ MathML mark-up is extremely verbose. It is impossible to write and edit MathML by hand,
other than as an “exercise,” or for very simple mathematical expressions.

§ Even if you can get your math into MathML notation, somehow or other, you then face
serious problems in getting it properly typeset in the printable output.

I will expand on each of these problems in turn.

Producing MathML: The inordinate difficulty of writing in MathML directly means that for
even moderately complex expressions one is forced to use a GUI equation editor of some
sort. But this in turn has two drawbacks, from my point of view. First, in the realm of free,
open-source software, such editors are hard to come by. The experimental Amaya is, to my
knowledge, the only such open-source tool available. Second, even if a suitable equation
editor is available, writing mathematics in this way does not sit well with my preferred

1

DBTeXMath

mode of document preparation, namely WYSIWYW or “What You See Is What You Wrote,”
for example editing the SGML source in emacs with the help of a suitable mode.

Typesetting from MathML: A dsssl engine such as openjade can turn the MathML into TeX
for you but the results are likely to be disappointing, particularly if you are used to type-
setting mathematics using TeX itself. TeX’s native mathematical typesetting is near-perfect,
only occasionally requiring manual tweaking to achieve optimal results; it is also rather
comprehensive, with the aid of the AMS (American Mathematical Society) extensions if need
be. But if you take the route of MathML to TeX via dsssl and jade, the specifics of the math
typesetting must be handled by the dsssl stylesheet. David Carlisle put some work into this
a few years back (for which we can be grateful), but he didn’t finish the job and nobody else
has done so since. Thus if you send MathML through jade to TeX you are likely to find (a)
that those elements that are recognized by the stylesheets are typeset less adeptly than by
TeX itself (with clumsy-looking spacing), while (b) various important elements may not be
recognized at all. For example in my field of statistics the overbar (denoting the arithmetic
mean) is a common modifier, but it is simply ignored. Other formulations common in sta-
tistics are also ignored, or are not dealt with properly, so this route is not really usable for
me.

Implementation
“DBTeXMath” is implemented via (a) a minor hack to the DocBook dsssl stylesheets as
offered by Norman Walsh, and (b) a couple of perl scripts, one to “unescape” TeX math
passed through jade and one to generate graphical versions of TeX math for use in making
HTML.1

The idea is that TeX math is written into the <alt> element within equations. The stylesheet
hacks produce the effect that (a) the literal TeX math gets passed through when producing
PDF or postscript, while (b) it gets ignored (in favor of a PNG rendition of the math) when
producing HTML.

Using perl to post-process the output of a dsssl engine is truly an ugly hack, but I think
I can rationalize it! While a “cleaner” solution would be to modify openjade (adding an ap-
propriate switch) there are a couple of things against this: one, I’m no C++ jockey and I
simply don’t have time to learn how to hack on openjade effectively; and two, by offering
“DBTeXMath” as a small package of scripts rather than as a patch to openjade of question-
able acceptability I’m (hopefully) making it easier for others to try it out and see if it works
for them.

The files
The package consists of the following files:

TeXMath.dsl

dsssl stylesheet fragment for use in producing TeX output (for further processing by
jadetex in order to make PDF or postscript).

HTMLMath.dsl

dsssl stylesheet fragment for use in producing HTML output. There are some config-
urable options in here, governing the appearance of the equation bitmaps.

1. I’m grateful to Jirka Kosek for pointing out that an additional element included in the original version of this package
— namely a modification to the DocBook DTD — was not in fact necessary.

2

DBTeXMath

sample-both.dsl

skeleton dsssl stylesheet that calls TeXMath.dsl or HTMLMath.dsl depending on whether
TeX or HTML output is required. I have kept this very simple; you can add your own
stylistic customizations, or use it as a model for including the dsssl math fragments in
your own stylesheet.

sampler.sgml

sample SGML source file showing the use of the alt element for math.

unescape_math.pl

perl script to be run after running jade but before running jadetex.

texmath2png.pl

perl script to generate on the fly PNG images of equations in the SGML source file.
Requires latex, dvips and the ImageMagick convert program.

jadetex.cfg

sample configuration file for pdfjadetex.

Makefile

used to compile the sample document; shows the intended order of events and depen-
dencies when using this approach.

about.pdf

this explanatory document in PDF format.

dbtexmath-0.2.tar.gz

gzipped archive containing current versions of all of the above files.

Usage
To try out the package you should first explode the tar.gz file in a suitable location (it will
create a subdirectory named dbtexmath-0.2). Then check the Makefile for compatibility with
your system, and check the local paths to the DocBook stylesheets in sample-both.dsl. You
may then compile the sample document with make pdf (PDF output) or make html (HTML
output to the subdirectory html_out). To compile your own SGML document using this
system, copy the Makefile and edit it appropriately, copy your document into the dbtexmath
directory, and compile it.

Samples
Here is a little bit of inline math: C = α + βY γ + ε. It is embedded in the text. The SGML
source looks like this:

<para>Here is a little bit of inline math:
<inlineequation>
<alt>$C = \alpha + \beta Y^{\gamma} + \epsilon$</alt>
<graphic align="center" fileref="figures/cfunc.png"/>

</inlineequation>.
It is embedded in the text.

</para>

3

DBTeXMath

The align="center" attribute here has the effect of centering the graphic vertically; without
this an equation is likely to sit above the baseline in the HTML output. Getting a graphic
centered horizontally on the HTML “page” (not relevant for inline math, but it would be
nice for displayed equations) is more difficult. If anyone knows how to do this, please let
me know!

Now here is a bit of displayed math

F2,T−k =
(ESSr − ESSu)/2
ESSu/(T − k)

Note that for this sort of display you get excessive vertical spacing if you bracket the math
with double dollar signs, $$. The spacing is better if you use \[and \] instead. The source
is:

<para>Now here is a bit of displayed math
<informalequation>
<alt>

\[F_{2,T-k}=\frac{(ESS_r-ESS_u)/2}{ESS_u/(T-k)}\]
</alt>
<graphic fileref="figures/fstat.png"/>

</informalequation>
Note that for this sort of display you get excessive...

Now here is a slightly more complex piece of displayed math, for which we adjust the
spacing using

\renewcommand{\arraystretch}{1.3}
\setlength{\arraycolsep}{.05in}

within the alt element: L̇
Ċ

 = 1
−α

 af bfh
1 b(fh− k)

 L
C

− 1
α

 afh 0

h α

 ṁ
rw

Finally we try using the formal <equation> tag with a title:

Equation 1. Test equation

β̂ =
∑n
t=1 xtyt − ȳ

∑n
t=1 xt∑n

t=1 x
2
t − x̄

∑n
t=1 xt

In all cases the graphic is ignored if you’re using jade’s TeX back-end, while the alt is
ignored and the graphic used when producing HTML. This document (as you might have
guessed) was produced using this system.

Technical details
Just in case you’re interested — or want to try to improve the system.

The TeX math dsssl fragment contains the following instructions for processing the equa-
tion element (and similar instructions for informalequation and inlineequation).

(element (equation graphic) (empty-sosofo))
(element (equation alt)

4

DBTeXMath

(make display-group
(literal "BEGINTEXMATH")
(literal (data (current-node)))
(literal "ENDTEXMATH")))

The (literal (data (current-node))) command asks jade to dump the math within the
alt element directly into the tex output file. By itself, however, this does not do what we
want: jade “escapes” the TeX string (for instance, turning a backslash into \char92{} and
a caret into \char94{}), so that unless we take special measures we will end up with a
typeset version of the source for the equation rather than the typeset equation. The script
unescape_math.pl is used to undo this escaping; the markers BEGINTEXMATH and ENDTEXMATH
are written into the output file so that the perl script can easily locate the strings to be
treated in this way.

The HTML math dsssl fragment arranges for jade to make two passes through the SGML
document — one to output the HTML itself and a second to output a listing of the equations
found in the document:

(root
(make sequence

(process-children)
(process-math)))

The second pass results in the writing of an auxiliary file, equation-list.sgml, containing
various parameters governing the conversion of the equations into PNG images along with
a listing of the equations, giving for each one the filename to use for the graphic and the
TeX math content. This auxiliary file is itself an SGML document, which should validate
against the following DTD:

<!DOCTYPE equation-set [
<!ELEMENT equation-set - - (texequation+)>
<!ATTLIST equation-set

latexopt CDATA #IMPLIED
density CDATA #IMPLIED
usepackage CDATA #IMPLIED>

<!ELEMENT texequation - - (#PCDATA)>
<!ATTLIST texequation fileref CDATA #REQUIRED>
]>

Below is a simple example of equation-list.sgml as produced by jade. Note that the ini-
tial parameters to the equation-set, namely latexopt, density and usepackage, are set in
HTMLMath.dsl. The default values are "12pt", "96x96" and the empty string "" respectively.

<equation-set
latexopt="12pt"
density="96x96"
usepackage="mathtime"
><texequation
fileref="figures/fstat.png"
> \[F_{2,T-k}=\frac{(ESS_r-ESS_u)/2}{ESS_u/(T-k)}\]

</texequation
></equation-set
>

The perl script texmath2png.pl is used to parse this listing. For each texequation found,
the script does the following:

5

DBTeXMath

—writes out a tex file;

—runs latex on this file;

—runs dvips on the resulting dvi file, using the -E flag to produce encapsulated postscript;

—runs convert (which is part of ImageMagick) to turn the postscript into PNG; and

—cleans up the temporary files generated in the previous steps.

6

	Table of Contents
	Executive Summary
	Rationale
	Implementation
	The files
	Usage
	Samples
	Technical details

