
WAP Architecture Draft Version 0.9 (1997-09)

Wireless Application Protocol
Architecture Specification

Disclaimer:

This document is a preliminary draft document of a Wireless Application
Protocol (WAP) architecture specification. It is subject to change. The
document is being published to solicit feedback from interested parties on
the current state of a proposed WAP architecture specification.

This document does not necessarily reflect any specification that will become
a published WAP standard.

WAP Architecture Draft Version 0.9 (1997-09) Page 2 (22)

PRELIMINARY DRAFT FOR REVIEW -- NOT A WAP STANDARD.

Contents

1. Scope .. 3
2. Goals and requirements.. 3
3. Architecture Overview... 4
3.1 The WAP Architecture ... 4
3.2 WAP Compliant systems.. 4
4. Components.. 5
4.1 Application Layer .. 5

4.1.1 Goals..5
4.1.2 Requirements ...6
4.1.3 Component Architecture Overview ...6

4.1.3.1 Introduction to World-Wide-Web Programming Model...6
4.1.3.2 WAE Application Programming Model...7
4.1.3.3 Components of the WAE architecture..8

4.1.4 Benefits ..8
4.1.5 Features and Characteristics...9

4.1.5.1 WML (Wireless Markup Language) ..9
4.1.5.2 WML-Script Interpreter .. 10
4.1.5.3 TeleVAS ... 11
4.1.5.4 Common Application Services .. 13
4.1.5.5 Device Capabilities.. 13
4.1.5.6 Other Content Formats.. 13

4.1.6 Component Roadmap...14
4.2 Session Layer... 14

4.2.1 Goals..14
4.2.2 Requirements ...14
4.2.3 Component Architecture Overview ...15
4.2.4 Benefits ..16
4.2.5 Features and Characteristics...16
4.2.6 Component Roadmap...17

4.3 Transport Layer ... 17
4.3.1 Goals..18
4.3.2 Requirements ...18

4.3.2.1 WTP Common Requirements .. 18
4.3.2.2 WTP/C specific Requirements... 18
4.3.2.3 Long-term Requirements... 19

4.3.3 Component Architecture Overview ...19
4.3.4 Benefits ..20
4.3.5 Features and Characteristics...20

4.3.5.1 Features .. 20
4.3.5.2 Characteristics .. 21

4.3.6 Component Roadmap...21

5. Technical Roadmap.. 21
Appendix A: Contact Information ... 21
Appendix B: Version History... 22

WAP Architecture Draft Version 0.9 (1997-09) Page 3 (22)

PRELIMINARY DRAFT FOR REVIEW -- NOT A WAP STANDARD.

1. Scope

Wireless Application Protocol (WAP) is a result of continuous work to define an industry wide standard for
developing applications over wireless communication networks. The scope for the WAP working group is to
define a set of standards to be used by service applications. The wireless market is growing very quickly, and
reaching new customers and services. To enable operators and manufacturers to meet the challenges in advanced
services, differentiation and fast/flexible service creation WAP defines a set of protocols in transport, session and
application layers.

The upper layers of WAP will be independent of the underlying wireless network, while the transport layer might
be adapted to specific features of underlying bearers. However, by keeping the transport layer interface, as well as
the basic features, consistent global interoperability can be achieved using mediating gateways.

Scaleability is one of the most important issues in the WAP work. This includes both device scaleability as well
as network scaleability. The framework (and applications) is suitable for both one-line display phones as well as
advanced PDA devices. It fits very slow bearers as well as medium bandwidth bearers.

The WAP architecture is designed to be extensible and future proof. New bearers, like packet radio, can be added
when available, and the applications can automatically benefit from this new environment. The layered
architecture allows for future enhancements in each individual layer, with non or small changes to adjacent
layers. Thus WAP will protect investments in servers and application software, and provide a stable protocol for
ever better and more efficient applications.

2. Goals and requirements

The goals and requirements of the Wireless Application Protocol (WAP) can be summarized as follows:

• WAP should provide access to Internet, Intranet, and operator services. It should be leveraged on
existing standards where possible.

• Access to local handset functionality must be available.
• The architecture must be layered, scaleable and extensible.
• The Man Machine Interface (MMI) must provide maximum flexibility and be vendor controlled.
• Optimized for narrow-band bearers with potentially high latency.
• Optimized for efficient use of device resources (low memory/CPU usage)
• Support for layered security is strongly desired.
• Architecture must support several types of wireless networks.
• To facilitate network-operator and 3rd party service provision to wireless devices.
• To define a general purpose application programming model to deliver services to wireless devices, such

as phones.
• To define an architecture to support multi-vendor interoperability, defining the optional and mandatory

components.

WAP Architecture Draft Version 0.9 (1997-09) Page 4 (22)

PRELIMINARY DRAFT FOR REVIEW -- NOT A WAP STANDARD.

3. Architecture Overview

Figure 1: The WAP Architecture and External Interfaces

3.1 The WAP Architecture

The WAP architecture provides a scaleable and extensible environment for application development for mobile
communication devices. This is achieved through a layered design of the network to application communication
protocol stack. Each of the layers of the architecture are accessible by the layers above, as well as, by other
service and applications

The WAP architecture enables any number of services and applications to utilize the features of the WAP stack.
The applications specified in the WAP framework may utilize the common services layer internal to the
application layer, while external applications may access the session and transport layers directly. Direct access
from external applications to the security layer is currently optional.

3.2 WAP Compliant systems

The mandatory architectural components required in a WAP compliant system are highlighted (grayed) in the
diagram (Figure 1). These include:

1. WML (Wireless Mark-up Language) Browser
2. WMLScript Interpreter
3. TeleVAS features
4. The Session Protocol Layer (WSP)
5. A Security Protocol Layer
6. The Transport Protocol Layer (WTP)
7. Content Formats

The scope of the WAP compliancy covers the layers from transport layer to application layer of the WAP stack.

Other Wireless Systems

Network
Data Bearer
Service

. . . GPRS Circuit-Switched
Data

Cell Broadcast USSD SMS

GSM

Transport Layer

Security Layer

Session Layer

Common Services

WML WMLS TeleVAS
Other Services and
Applications

WAP Architecture Draft Version 0.9 (1997-09) Page 5 (22)

PRELIMINARY DRAFT FOR REVIEW -- NOT A WAP STANDARD.

The availability of certain wireless systems, or the availability of certain network data bearer service is out of the
scope of WAP compliancy. This means that a system supporting only Unstructured Supplementary Services
(USSD) of GSM is WAP compliant if it otherwise supports all the protocols required.

Also, the MMI (Man-Machine Interface) of the WAP compliant system is out of the scope of compliancy. Some
low-end systems might provide access to all information in the handset through a browser, while others have the
browser as one of several applications available to the end user.

4. Components

4.1 Application Layer

The Wireless Application Environment (WAE) architecture specifies a general-purpose application framework
for wireless devices, e.g., phones and PDA’s. The Wireless Application Environment (WAE) specifies an
application framework which extends and leverages the other WAP technologies, including WTP and WSP.

4.1.1 Goals

The following list summarizes the goals of the Wireless Applications Environment (WAE):

• To define a general-purpose application programming model:
• for delivering interactive applications on wireless devices such as cellular phones.
• which follows the Internet World-Wide-Web programming model, and which includes both browsing

and scripting services.
• To define a general purpose Telephony Value-Added Service (TeleVAS) framework within the context of the

WAE application execution model., which enables Network Operators the means to enhance and extend
advanced Network Services to the end user.

• To define a TeleVAS Services interface which includes application access control, TeleVAS Services API
with access to mobile device functions like Phonebook, Messaging and Call Control.

• To define an application model, which:
• is suitable for building interactive applications which function well with narrow band bearers (with 300

bits/s or more), medium-to-high latency networks (1s to 15 second round trip).
• is suitable for building interactive applications in limited function devices. This includes limited

memory, small screen size, limited battery life and restricted input mechanisms.
• has good access control, and is suitable for devices which execute anonymous applications.
• leverages existing and ad-hoc standards, with emphasis on those technologies which will make it simpler

and cheaper for third-party developers to create and deploy applications.
• is global in nature, both in the reliance on underlying technologies, and in the assumptions about

application user interface (e.g. native language and locale).
• To clearly define the optional and mandatory components of the application model, and to provide a

architecture supporting multi-vendor interoperability.

WAP Architecture Draft Version 0.9 (1997-09) Page 6 (22)

PRELIMINARY DRAFT FOR REVIEW -- NOT A WAP STANDARD.

4.1.2 Requirements

The following list summarizes the requirements of the Wireless Application Environment (WAE):

• Network services will be based on Wireless Transport Protocol (WTP) and Wireless Session Protocol
(WSP).

• General Application Framework – the browser is not the only application. Other applications will exist
in the device, and should integrate well with the browser. In addition, those other applications should
be able to use the WAE functionality.

• The foremost requirement to WAE is to provide a simple yet powerful application development
environment.

• Device Capabilities – the application model needs a capability mechanism, providing applications with a
means to determine device characteristics.

• Memory consumption – the application model must have a small memory footprint, suitable for
implementing on the current generation of wireless devices.

• CPU consumption – the application model must function well with a limited amount of computational
power.

• TeleVAS – the application model must include a means for call control and messaging, as well as
enabling a standard set of value added call and feature control capabilities.

• International Support – the application model must be capable of supporting global applications, and
must support Unicode character encodings.

• Access Control – the application model must be secure when executing anonymous applications or
content.

• Statement of Compliance – the WAP specification must clearly delineate required and optional
components of the application model.

• Vendor-controlled MMI - End users shall be presented with a consistent and vendor controlled
application MMI.

4.1.3 Component Architecture Overview

The WAP application architecture is defined primarily in terms of networking protocols and content formats and
shared services. Vendor specific programming interfaces and API are not standardized, and are specific to an
individual implementation. This approach leads to a very flexible architecture, which can be implemented in a
variety of ways, but which also provides good interoperability and portability at the network interfaces.

This approach works particularly well with a browser model, such as that used in the World-Wide-Web (WWW).
The Internet and the WWW are the inspiration and motivation behind significant parts of the WAP specification,
and consequently, a similar approach to specification is used within WAP.

Standards and specifications are provided for the transport protocols, content exchange formats, and for the
semantics of content. The initial version of the WAP application architecture will not specify the WAP
programming interfaces or API, but it is possible that this will change in the future.

4.1.3.1 Introduction to World-Wide-Web Programming Model

The Internet World-Wide-Web (WWW) provides a very flexible and powerful programming model.
Applications and content are presented in a set of standard data formats, and are browsed by applications known
as Web Browsers. The Web Browser is a networked application – it sends requests for named data objects to a
network server, and the network server responds with the data encoded in one of the standard formats.

The WWW standards include all of the mechanisms necessary to build a general-purpose environment:

WAP Architecture Draft Version 0.9 (1997-09) Page 7 (22)

PRELIMINARY DRAFT FOR REVIEW -- NOT A WAP STANDARD.

• Naming – all servers and content on the WWW are named with a Internet-standard Uniform Resource
Locator (URL).

• Typed data – all data on the WWW is given a specific type, allowing the Web Browser to correctly
display it.

• Standard content formats – there are a variety of standard content formats supported by all browsers.
These include the HyperText Markup Language (HTML) display language, the JavaScript scripting
language, and a large number of other formats.

• Standard Protocols – standard networking protocols allowing any web browser to communicate with any
web server. The most commonly used protocol on the WWW is the HyperText Transport Protocol
(HTTP).

 This standard infrastructure allows users to easily reach a large number of third-party applications, and allows
application developers to easily program to a large community of clients (e.g. Netscape Navigator ™, Microsoft
Internet Explorer ™ .

Wireless
Network

Web
Server

Web
Server

WAP
Proxy

WAP
Proxy

WAP ProxyWAP Proxy
TeleVAS

Server

TeleVAS
Server

WML

WML

WML

WML

WML

Figure 2: Standard Infrastructure

4.1.3.2 WAE Application Programming Model

 The programming model of the Wireless Application Environment (WAE) closely follows the WWW
programming model. All content is specified in formats which are similar to the standard Internet formats, and
is transported using standard protocols on the WWW, while using an optimized HTTP-like protocol in the
wireless domain. WAE has borrowed from WWW standards and programming semantics wherever possible.
Where existing standards were not appropriate due to the unique requirements of small wireless devices, WAE
has modified the standards , without loosing the benefits of Internet technology.

 The WAE architecture is built on the concept of content interpreters and a shared service layer containing
common features like location independent addressing (URLs and URL registry), event handling and TeleVAS
services. The WAP Execution environment provides the device with a general-purpose WML browser, a WML
scripting engine.

WAP Architecture Draft Version 0.9 (1997-09) Page 8 (22)

PRELIMINARY DRAFT FOR REVIEW -- NOT A WAP STANDARD.

 The WAE architecture allows all content and applications to be hosted on standard Web servers, and developed
using proven technologies such as CGI and Java. All content is located using WWW-standard URLs (Uniform
Resource Locators).

 WAE enhances the WWW standards in ways that reflect the device and network characteristics. Extensions are
added to support Mobile Network Services such as Call Control and Messaging. Careful attention is paid to the
memory and CPU processing constraints that are found in mobile terminals. And, support for low bandwidth,
high latency networks is included.

4.1.3.3 Components of the WAE architecture

 The application architecture includes a variety of components.

• Content Interpreters and Applications –in-device software that provides specific functionality to the end-
user, and which is integrated into the WAP architecture. It is expected that all applications and content-
interpreters will be accessible via URLs, or will interpret network content that is named by a URL.
WAE will include interpreters for the two standard contents: the WML and WML-Script.

• Network-based content generators – network servers (Web servers) that generate standard content
formats in response to requests from the mobile terminal. WAE does not specify any standard content
generators, but expects that there will be a great variety available.

• Telephony Value-Added Services (TeleVAS) – a collection of call control and feature control
mechanisms. The intent is to make advanced Mobile Network Services available to end users.

• Common Application Services – a variety of in-device services that are available to applications and
browsable content. These include such services as a TeleVAS, URL registry, event distribution and
device capability provision.

• Standard Content Encodings – a set of well-defined content encodings, allowing a WAP application
(e.g. the browser) to conveniently navigate web content. These include compressed encodings for WML
and bytecode encodings WML-Script, standard image formats and a multi-part container format.

Figure 3: In-Device Architecture

4.1.4 Benefits

• Leverage the Internet – take advantage of standards, technology and infrastructure developed for the
Internet.

• Thin-client Architecture – application deployment has significantly lower cost per device. This is due to
the device independent nature of WAE, and the centralized management of the application.

• Leverage availability for end user to advanced Mobile Network Services through Network Operator
controlled TeleVAS applications.

• Provides the means for vendors to build user friendly devices that can take advantage of WWW and
Mobile Network Services.

• Provides an open, extensible and future proof framework for wireless applications.

Services

Content
Interpreters
& Apps.

WML
Client

WML
Script

TeleVAS SMS
Reader

Phone-
book Etc.

TeleVAS
URL

Registry Events

WML
Client

WML
Script

TeleVAS Other Content
Formats

WAP Architecture Draft Version 0.9 (1997-09) Page 9 (22)

PRELIMINARY DRAFT FOR REVIEW -- NOT A WAP STANDARD.

4.1.5 Features and Characteristics

4.1.5.1 WML (Wireless Markup Language)

WML is a tag-based document language. WML shares a heritage with the World-Wide-Web’s Hypertext
Markup Language (HTML), and like HTML, WML is specified as an SGML document type. WML is optimized
for specifying presentation and user interface on small screen, narrow-band devices such as phones and other
wireless mobile terminals. WML can be stored in ‘static’ files on a Web server, or can be dynamically generated
by an application.

WML contains constructs allowing the application to specify documents made up of multiple cards. An interaction
with the user is described as a series of cards, which can be grouped together into a deck. Logically, a user navigates through a
series of WML cards, reviews the contents of each, enters requested information, makes choices, and moves on to another card.
Decks are fetched from the server as needed.

Each card contains a specification for a particular user interaction. As with the HTML document language,
WML is specified in a way that allows for presentation on a wide variety of devices yet allowing for vendor-
controlled MMIs. WML also specifies requests for user input in a very abstract manner, which is feasible for a
wide variety of input devices and mechanisms.

WML has a wide variety of features, including:

• Text and Images – WML provides the application with a means to specify text and images to present to
the user. This may include layout and presentation hints. As with other markup languages, WML
requires that the application programmer specify the presentation in very general terms, and gives the
browser a great deal of freedom to determine exactly how the information is displayed.

• User Input – WML supports application requests for user input. This may take the form of a menu, a
free-form text or number entry field, or a multi-field form. All requests for user input are also made in
abstract terms, allowing the browser the freedom to optimize for the particular device.

• Navigation – WML allows several for several navigation mechanisms, all specified using URLs.
Navigation includes HTML-style hyperlinks, as well as inter-card navigation tags.

• International Support – the WML document character set is Unicode, enabling the presentation of most
languages and dialects.

• Vendor controlled MMI – WMLs abstract specification of layout and presentation enables a vendor-
controlled MMI design.

• Narrow-band Optimization – WML includes a variety of technologies to optimize presentation on a
narrow-band device. This includes the ability to specify multiple user interface screens (cards) in one
network transfer (a deck). It also includes a variety of state management capabilities (e.g. variables)
which remove the need for network server requests.

The reference WML architecture requires both a WML browser and a Web (HTTP) server. When the WML
browser requires an additional deck (identified by a URL), it fetches that resource via a WSP request. The
response contains WML, which is in turn presented to the user.

A WML browser reference processing model is therefore:

1. Display current card.
2. Wait for user input, indicating the new URL to navigate to.
3. Send a WSP request to the appropriate Web server, requesting the resource named by the URL.
4. Wait for the response
5. Go to step #1.

WAP Architecture Draft Version 0.9 (1997-09) Page 10 (22)

PRELIMINARY DRAFT FOR REVIEW -- NOT A WAP STANDARD.

WSP Request {URL}

WSP Response {WML}

Web Server
(HTTP)

WML

Figure 4

4.1.5.2 WML-Script Interpreter

WML-Script is a lightweight procedural scripting language. It enhances the standard browsing and presentation
facilities of WML with behavioral capabilities, supports more advanced UI behavior, provides a convenient
mechanism to access the device and its peripherals, and reduces the need for round-trips to the network server.

WML-Script is based on a subset of the JavaScript™ WWW scripting language. JavaScript is widely deployed in
all major HTML browsers, and forms a standard means for adding procedural logic to HTML web pages. WML-
Script refines JavaScript for the narrowband device, integrates it with the WML browser and provides hooks for
integrating in-device applications (e.g. for accessing TeleVAS services).

WML-Script provides the application programmer with a wide variety of interesting capabilities:

• The ability to check the validity of user input before it is sent to the network server.
• The ability to conveniently access device facilities and peripherals.
• The ability to interact with the user without a round-trip to the network server (e.g. display an error

message).

4.1.5.2.1 WML-Script Features

WML-Script has the following features:

• JavaScript-based scripting language – WML-Script starts with an industry standard solution, and adapts
it to the narrowband environment. This will make WML-Script very easy for a Web developer to learn
and use.

• Procedural Logic – WML-Script adds the power of procedural logic to the WAP application
environment.

• Event-based – WML-Script may be invoked in response to certain user or environmental events.
• Interacts with WML – WML-Script is fully integrated with the WML browser. This allows an

application programmer the ability to construct their application using both technologies, using the
solution that is most appropriate for the task at hand.

• Efficient extensible library support – WML-Script can be used to expose and extend device functionality
without changes to the device software.

WAP Architecture Draft Version 0.9 (1997-09) Page 11 (22)

PRELIMINARY DRAFT FOR REVIEW -- NOT A WAP STANDARD.

4.1.5.2.2 WML-Script Integration

WML-Script is fully integrated into the WAP application framework. WML-Script has access to the WML state
model, and can set and get WML variables. This enables a wide variety of functionality (e.g. validation of user
input collected by a WML card).

4.1.5.3 TeleVAS

This chapter outlines the Telephony Value Added Services (TeleVAS). It also includes a discussion of the
context for executing TeleVAS functions from the WML browser environment and also briefly discusses how the
TeleVAS functions tie into the WML-Script constructs.

TeleVAS is fully integrated with the WAP application framework and provides an efficient and secure way to
access local functions like Call Control, Phonebook, Messaging etc. The TeleVAS functions specify a device
independent interface to the underlying vendor specific operating system and telephony subsystem. TeleVAS
functionality does not rely on network specific functionality, and will be equally applicable to GSM, CDMA or
any PCS type of network.

The WAP TeleVAS services make it possible to create applications that enhance and extend services available in
today’s advanced Mobile Networks. Services in the network can be made more accessible to the end user through
user friendly menus and TeleVAS applications that hide many of the complicated call control features.

Existing third party IVR solutions built on touch-tones can also benefit using a TeleVAS application wrapper
that presents the user with a scrollable menu sending touch tones without the user having to manually enter each
keypress. Thus, operators seamlessly integrate WWW and telephony applications.

The TeleVAS application is built using standard WML cards and WML scripts/libraries downloaded through the
WAP URL services. TeleVAS applications make it possible for the operator to tailor existing network services
and make new features available to the end user. The available network transports can be used more efficiently
with smart applications using script and cards that persist in the local device memory for quick access. The WAP
content/application download makes it possible to keep the users handset updated with customized TeleVAS
applications as soon as the network services change.

TeleVAS provides controlled Network access and enforces user control and privacy to Mobile Services. The
URL registry provides seamless access to remote/local TeleVAS functions.

TeleVAS will provide access control to local functions, and is expected to restrict access to a well-known carrier-
operated TeleVAS server.

TeleVAS functions can be invoked from any type of WML card/script. It will be the decision of the application
currently running as to whether the events and return codes are ignored or passed to the user. The WAP
application will have the choice of ignoring events during critical parts of the execution cycle, such as during
transactions. For example the application could refuse incoming phone calls during a banking transaction.

As the TeleVAS functions are invoked, for example by an incoming voice call, the application can decide to
accept the call using a local URL. In case of error a specific exception event will be generated. The handling of
this "error/network" event is specified using service layer primitives. It will be at the discretion of the
manufacturers as to the implementation of TeleVAS Functions, whether they are in assembly, C, Java or other
scripting languages.

WAP Architecture Draft Version 0.9 (1997-09) Page 12 (22)

PRELIMINARY DRAFT FOR REVIEW -- NOT A WAP STANDARD.

4.1.5.3.1 Local And Remote TeleVAS URLs

A significant feature of TeleVAS is the location independence of the implementation. In other words, a handset
or a server can be used to implement a specific feature, and the location does not change the programming
interface or user interface. All TeleVAS URLs use a local URL alias, e.g., device://file/function.

TeleVAS content providers may wish to implement some functions via a remote URL. For example, an extensive
directory lookup service might be easier to implement if a remote TeleVAS URL on a server was invoked. These
services can be accessed through the URL http://televas.domain/file/function. Typically the remote call will
take the form of an http address. For example, the case of an application such as voice mail, a combination of
device and remotedevice URLs would be specified.

TeleVAS supports functions defined within the MS, as well as application dependent functions supported
remotely by the Network Operator. The Local TeleVAS section of this document outlines some of the functions
that must be supported by a handset.

URLs that calls remote functions will be defined in WML. Implementation of remote TeleVAS functions will be
specific for the Network or TeleVAS Content Provider. For local TeleVAS functions, a default time-out
parameter assures that network failures can be handled properly by the application in the MS.

The function calls, local and remote, is based on the Internet CGI concept (Common Gateway Interface). Using a
CGI with an URL indicates to the Web server that the requested file is in fact an application that should be
executed, prior to returning the new content/variables. If not specified the Web server instead returns the
indicated WML content to the browser.

4.1.5.3.2 TeleVAS Functions

Call control is an example of local TeleVAS functions that are proposed for the first WAP version. The local
functions also include associated events to provide feedback from the outcome of a function call.

Call Control

The TeleVAS Call Control Services include functions to set up call, call management and touch tone commands.
For example:

• Accept Incoming Call
• Set Up Mobile Originated Call
• Disconnect Call
• Multi Party Call
• Call Transfer
• Send DTMF
• Set DTMF Mode
• Call Forwarding

4.1.5.3.3 TeleVAS Events

TeleVAS will define a set of events relating to the call and feature control. For example:

• Incoming Call Indication – An incoming call is detected.
• Call Waiting Indication – A new incoming call is detected while a call already is in progress.
• Disconnect Indication – signals that a call has been disconnected.

WAP Architecture Draft Version 0.9 (1997-09) Page 13 (22)

PRELIMINARY DRAFT FOR REVIEW -- NOT A WAP STANDARD.

4.1.5.4 Common Application Services

 Common Services are architectural elements that manifest themselves through WML or WML-Script. These
services provide a general framework for handling user input, integrating applications, etc. Common services
may include:

• Motivation: shared basic services
• Events: Sync & Async. - Provides common semantics for handling of user input as well as application

specific events, generated by the server.
• URL-based registry naming model and registry – provides a standard naming and rendezvous model for

applications and content.
• TeleVAS functionality – exposes an interface to advanced Mobile Services.
• Others added necessary

 WAE intends to expand this area as needed to achieve a consistent and useful application framework.

4.1.5.5 Device Capabilities

 Device capabilities are a mechanism that allows the application to determine characteristics of the mobile
terminal device. It is expected that the session layer protocols (WSP) will include a mechanism for exchanging
and caching capabilities. WAE will define a set of application-level capabilities that will be exchanged using the
WSP mechanism. These capabilities will include such global device characteristics as:

• WML and WML-Script version supported by the device.
• Support for different image formats.
• Etc.

4.1.5.6 Other Content Formats

4.1.5.6.1 Images

WAE will define a common image format suitable for transmission to a mobile terminal. The primary
requirements for the image format will include:

• Support for multiple pixel depths.
• Support for colorspace tables.
• Very small encoding

 Very low CPU and RAM requirements for decoding and presentation

4.1.5.6.2 Multipart messages

 WAE will include a well-defined multipart encoding specification, suitable for exchanging multiple typed entities
over WSP. This will be based on the Internet MIME specification, but will be tuned and optimized for the
narrowband environment

4.1.5.6.3 Compiled WML encoding and WMLScript bytecode

WAE will define binary (compiled) encodings for WML and WML-Script. These encodings will make
transmission of WML and WML-Script more efficient.

WAP Architecture Draft Version 0.9 (1997-09) Page 14 (22)

PRELIMINARY DRAFT FOR REVIEW -- NOT A WAP STANDARD.

4.1.5.6.4 Additional Content Formats

WAE will define additional content formats for the purposes of exchange of data between applications
 and devices. These content formats will focus on data and applications commonly found in intelligent
 devices.

 Examples of content formats could be:

• Business Cards (phone book data)
• Calendar items
• Mail headers

4.1.6 Component Roadmap

The following areas are currently undergoing work in the WAE:

• Extensions to WAP TeleVAS Services with support for state of the art Telephony Devices with advanced
local functions for GSM SIM card access, enhanced messaging and user customizable TeleVAS menus.

• Secure third party access to selected local functions using the WAP Access Control features
• Generic access to customized local Applications. (Calendar, Business cards etc).
• Network-Specific API – e.g., GSM SIM apidevice.
• Additional Content Encodings – WAE considers specification or adoption of standard content encodings

in a variety of other areas (e.g. sound, etc.).

4.2 Session Layer

The WAP Session Layer provides efficient and compact mechanisms for exchanging typed data between WAP
applications in a secure fashion.

4.2.1 Goals

The WAP Session Layer builds upon the bearer-independent, scaleable WAP Transport Layer to provide
communication services useful to many applications. One of these services is a general mechanism for securely
exchanging typed data between the client and server, including support for server-initiated transfers (‘push’).
In WAP, the session concept covers both a security association and the idea of a relatively long-lived application
association between a client and a server. The application session allows the optimization of communication by
exchanging a certain set of static information during session creation eliminating the need to explicitly exchange
it on each subsequent communication.

4.2.2 Requirements

The following requirements apply to the WAP Session Layer architecture:

• Lightweight session establishment and termination
• Multiple simultaneous sessions
• Typed data transfer
• An abstract service interface
• Provide security facilities for encryption, strong authentication, integrity, and key management
• Compliance with regulations on the use of cryptographic algorithms and key lengths in different countries
• Transport service will be based on WTP and compatible with TCP/IP, UDP transport service
• Simple mapping to the Internet architecture and Internet protocols
• Support WAP sessions in parallel with voice or data connections

WAP Architecture Draft Version 0.9 (1997-09) Page 15 (22)

PRELIMINARY DRAFT FOR REVIEW -- NOT A WAP STANDARD.

• A layered architecture which can be extended with additional protocols when needed
• Common facility for push
• Support for capability negotiation
• Support for content negotiation
• Extensible to support QoS-based service models
• Efficient bandwidth utilization
• Small memory footprint
• Realistic processing power requirements

4.2.3 Component Architecture Overview

 The requirements of potential WAP applications are different, so it may not be feasible to define a single session
layer protocol that fits all needs. As a result, the WAP session layer defines a common security protocol layer on
which more specialized session protocols can be layered. A WAP session layer protocol will provide an access
point to upper level protocols. The security protocol layer may optionally provide its own access point, or it may
be accessed through the session layer access point.

 The session layer protocols use services provided by the transport layer abstract service interface. This provides
for the possibility of using the session layer protocols on a transport different from the current WAP transport
layer, as long as it provides similar characteristics. The session layer protocols do not duplicate functionality
provided by the transport layer.

 The considered session layer protocol candidates strive for the simplest possible client implementation by using
an asymmetric client-server model in which complicated functions are handled by the server whenever possible.
However, this does not prevent mobile stations from communicating with each other, as long as one of the mobile
stations has sufficient resources to act as a server.

 The architecture of the session layer is outlined in figure 5.

Figure 5: The Session Layer Architecture

Application Layer

Session Layer Protocols

A Security Layer

Wireless Transport Layer

Bearers

Interface to session layer

Interface to transport layer

WAP Architecture Draft Version 0.9 (1997-09) Page 16 (22)

PRELIMINARY DRAFT FOR REVIEW -- NOT A WAP STANDARD.

4.2.4 Benefits

 The major benefits are:

• Provides a simple but versatile communication model for applications
• Session concept allows applications to optimize communications by establishing shared state between

client and server
• Leveraging standards allows easy interoperability and the reuse of Internet software infrastructure
• Capability negotiation allows applications to adjust to a wide range of devices
• Common push model for applications
• Single general security solution makes implementation of secure applications simpler, smaller and faster
• Asymmetric client/server architecture enable very thin clients/handsets/devices
• Specified key exchange protocol and algorithm negotiations allow better interoperability
• Compatibility with TCP/IP, UDP transport provide implementation flexibility.

4.2.5 Features and Characteristics

• Session management, including capability negotiation
The session layer protocols will support the session models required by the application layer. This includes
session establishment and termination using mechanisms provided by the transport layer protocols. Also,
device capability negotiation will be provided, so that applications may adapt their usage of device
resources like display size, input mechanisms etc. This will provide applications with a possibility to scale
across a range of devices, without the need to have separate implementations for each device.

• Multiple simultaneous sessions
The session layer protocols will provide support for multiple simultaneous sessions. This will enable
devices to run several applications at a time, and will support applications requiring multiple connections.

• Sessions concurrent with voice or data connections if supported by bearer network
A WAP session may be established at any time the network is available. This includes the possibility to
establish a WAP session while a voice or data call is active, or vice versa. The WAP session(s) and voice
or data call will be handled as completely independent of each other.

• Provides both push and pull data transfer
Different models of data transfer will be supported by the session layer protocols. This will ensure that
service providers can build flexible information services, adapted to market requirements. The session
layer protocols will map all data transfer models to the basic request-response session model, using
additional protocol elements where applicable.

• Strong authentication and encryption, which may be adapted to suit different legislation and requirements
in different markets
The security part of the session layer will incorporate different encryption and authentication mechanisms
in order to cope with different legislation and requirements in different markets. Thus, products with
different levels of security functionality will be able to negotiate a set of common capabilities.

• Specified key management enables establishment of authenticated and secure communications between
two peers without a priori knowledge
Mechanisms for establishing authenticated and secure communications shall be comparable and provide
the same level of security as current Internet protocols. In the WAP scenario, emphasis has been put on
finding algorithms that are as little processor- and memory intensive as possible, while still retaining
strong security and ease of use.

• Typed data transfer, including composite objects
The session layer protocols provide typed data transfer for the application layer, comparable to that of
HTTP 1.1.

• Extensible system for data typing
The session layer protocol will support extensible data typing for future proof solutions. Emerging data
types and file formats will be supported in order to keep a strong coupling to the Internet community, and
to allow for new, WAP-specific applications and data types.

WAP Architecture Draft Version 0.9 (1997-09) Page 17 (22)

PRELIMINARY DRAFT FOR REVIEW -- NOT A WAP STANDARD.

• Content type negotiation
The session layer protocol will support content type negotiation, allowing a server application to decide
whether a client can support a certain type of content. This will ensure that applications and users will not
have to handle content that is not suitable for the actual device (e.g. a voice mail message on a device that
does not support playback from a data file). The mechanisms for content type negotiation will be
comparable to that of HTTP 1.1.

• Supports both datagram and connection-oriented applications
In order to support maximum flexibility and extensibility, both datagram and connection-oriented
transport protocols and applications are supported by the session layer protocols.

• Modular, layered, flexible architecture
The entire WAP protocol stack is designed for leveraging current and future Internet protocols. This
requires the architecture to be modular and layered in order to cope with potential new protocols to be
included in the WAP framework, and in order to provide access points for applications not using the
entire WAP protocol stack

• Scaleable in terms of features and resource requirements
A key feature of the WAP protocol stack is that applications should be able to run on a wide range of
devices, while utilizing each separate device to the maximum of its’ capabilities. This leaves room for
optimized implementations of the protocol stack, while retaining interoperability with a wide range of
applications and devices.

• Efficient use of air-time
In a wireless environment, air-time is a precious resource. The session layer protocols are therefore
optimized for efficient use of air-time, both from a cost perspective and a service perspective.

• Small memory footprint
The session layer protocols are designed to have a small memory footprint in an actual implementation, in
order to be implementable in a large range of device classes.

4.2.6 Component Roadmap

Initially the session layer specifications will cover a layered security solution and at least a session layer protocol
addressing the needs of interactive browsing applications. This protocol will be an HTTP 1.1 derivative,
augmented with push functionality and a compact binary header encoding.

Future work items under consideration are a protocol for large object transfer, a protocol for one-way information
delivery, suitable also for multicast and broadcast transmission. More optimal methods for mobile-to-mobile
communication may also be considered in the future.

4.3 Transport Layer

The Transport layer protocol family in the WAP architecture is Wireless Transport Protocol, WTP. The WTP
layer operates above the data capable bearer services supported by multiple network types. In the initial phase,
bearers from the GSM network will be used. WTP will offer a consistent service to the upper layer protocol
(Session and Security) of WAP and communicate transparently over one of the available bearer services.

The Wireless Transport Protocols consists of a connection oriented protocol (WTP/C) and a datagram oriented
protocol (WTP/D). The Protocols in the WTP family are optimized for very slow bearers in telecommunications.

WTP/D is a simple transport protocol. The WTP/D protocol is relayed transparently on the underlying bearers,
i.e. the datagram information is moved unchanged from client to server and as well as from server to client. Any
application layer protocol is relayed transparently on the WTP/D transport mechanism.

WTP/C is a connection oriented transport protocol. The WTP/C is optimized for low bandwidth wireless bearers.
WTP/C is more efficient on request-reply applications than traditional connection oriented protocols.

WAP Architecture Draft Version 0.9 (1997-09) Page 18 (22)

PRELIMINARY DRAFT FOR REVIEW -- NOT A WAP STANDARD.

4.3.1 Goals

The following list summarizes the goals for the Wireless Transport Protocol Group:

• to act as a common interface to physical transport mechanisms across multiple wireless network
types and multiple bandwidth and latency options within a single network type. Network type
includes full duplex, half duplex and simplex technologies.

• to provide a clear, port-based abstract interface to upper layer protocols in a manner that enables
the session layer to implement scaleability for applications across transport and device types.

• to eliminate the need for applications to be designed for specific available underlying bearers.
• to be extensible to a variety of digital wireless networks and future transport options.
• to support both connection-oriented and connectionless modes.
• to optimize for narrow to medium bandwidth channels.
• to clearly specify the mandatory and optional features of the protocol to ensure multi-vendor

interoperability.
• to allow peer-to-peer and client/server applications to operate over different transport within a

single network type.
• to be capable of implementation in a low memory footprint, suitable for “standard” or “low-IQ”

handsets.

4.3.2 Requirements

The following is a list of requirements for the Wireless Transport Protocol Group:

4.3.2.1 WTP Common Requirements

• Light Weight: The protocol must be suitable for narrow-band channels and should be feasible to
implement it with low memory foot-prints and low computational needs.

• Wireless Network Support: The following networks must be supported: Phase 1 SMS, Phase 2 SMS, Phase
1 USSD, Phase 2 USSD, cell broadcast, and Phase 1 GPRS; circuit switched data. For the near term,
Phase 2 SMS and Phase 2 USSD must be supported.

• Protocol Specification: Abstract Service Primitives will be defined. Application Programming Interfaces
(API’s) will not be specified.

• Selection of underlying bearer: Abstract Service Primitives must be provided which support the selection
of an underlying bearer.

• Intimate Knowledge of Available Transports: The need for applications to be aware of the specifics of the
available transports must be eliminated.

• Port Numbers: Port numbers must be supported and implemented at the protocol level.
• Efficiency:

• Concatenation (Segmentation and Reassembly) must be supported where applicable. This could be a
datagram implementation.

• • Header Compression should be supported.

4.3.2.2 WTP/C specific Requirements

• Reliability: WTP/C must provide reliability at the protocol level so that the applications that use WTP/C
do not have to program reliability into them. Reliability must be provided across the connection.

• Negotiate Window Size: Sender must control the size of the window, but the receiver must be able to
request changes in the window size on a per connection basis.

• Efficiency:

WAP Architecture Draft Version 0.9 (1997-09) Page 19 (22)

PRELIMINARY DRAFT FOR REVIEW -- NOT A WAP STANDARD.

• • Connection Setup and Teardown: The protocol must be efficient in setting up and tearing down
connections, including carrying data at the same time.

4.3.2.3 Long-term Requirements

• Support for additional wireless networks: Additional support for non-GSM (e.g. CDMA, US-TDMA and
CDPD) must be specified.

4.3.3 Component Architecture Overview

Figure 6: Wireless Transport Protocol Architecture

The varying heights of each of the bearer services shown in Figure 6 is used to illustrate the difference in
functions provided by the bearers and thus the difference in WTP protocol necessary to operate over those
bearers.

GSM Other Systems e.g. CDPD, D-AMPS, etc.

USSD SMS

Circuit
Switched

Data GPRS Future Bearers

Transport Service Access Point (TSAP)
through port numbers

WAP Architecture Draft Version 0.9 (1997-09) Page 20 (22)

PRELIMINARY DRAFT FOR REVIEW -- NOT A WAP STANDARD.

Figure 7: The WTP/C is an end to end reliable, connection oriented, transport protocol between
communicating devices.

In order to provide an end to end reliable transport service the WTP/C is using different underlying bearers in the
wireline and the wireless segment of the transport. The relay acts as a bearer conversion gateway, using the
available network as efficiently as possible.

In Figure 7, the WTP/C uses SMS or USSD as an underlying bearer in the wireless segment to reach the relay.
From the relay, the WTP/C could use any wireline transport protocol (ex. some Internet bearer protocol) to reach
the server.

Communications between layers are accomplished by means of service primitives. Service primitives represent,
in an abstract way, the logical exchange of information and control between the transport layer and adjacent
layers.

4.3.4 Benefits

• Provides a simple yet reliable communication model for applications and other layers to use
• QoS reporting permits the applications to optimize for the underlying network bearer
• Eliminates the need for upper layers to be designed for specific available underlying bearers
• Supports segmentation and reassembly
• The definition of the protocol allows multi-vendor interoperability between mobile phones and servers yet

allowing mobile hone manufacturers to continue to run their own proprietary environments inside the
phones.

4.3.5 Features and Characteristics

4.3.5.1 Features

• Supports both datagram and connection-oriented transports
• Optimized for narrow to medium bandwidth channels
• Allows negotiation of window size on a per connection basis

SMS/USSDSMS/USSD

WTP/CWTP/C WTP/CWTP/C
RelayRelaySecurity LayerSecurity Layer Security LayerSecurity Layer

WTP/CWTP/C

Application
Browser

Application
Server

WSP WSP

SMS/USSD Internet
Internet

Mobile Server

WAP Architecture Draft Version 0.9 (1997-09) Page 21 (22)

PRELIMINARY DRAFT FOR REVIEW -- NOT A WAP STANDARD.

4.3.5.2 Characteristics

• Modular, layered, flexible architecture
• Scaleable in terms of network types
• Efficient use of underlying bearers
• Small memory footprint
• Support for port numbers implemented at protocol level

4.3.6 Component Roadmap

Initially the transport layer specifications will cover datagram oriented and connection oriented transport
protocols for GSM network types: Phase 2 SMS and Phase 2 USSD.

Future work items under consideration are protocol definitions for Phase 1 GPRS and Circuit Switched Data.
Other non-GSM network types will also be considered in the future. In the near term, its a goal to allow peer-to-
peer and client/server applications to operate over different transport within a single network type. In the future
this will be expanded to cover one-to-many applications to operate over different transport within a single
network type. It should be noted that one-to-many means broadcast and unacknowledged multicast only.

Application Programming Interfaces (APIs) will be developed in the future modeled after existing transport
interfaces.

5. Technical Roadmap

The intent for the WAP workgroups is to develop the WAP standard for the following wireless network
standards; GSM 900, GSM 1800, GSM 1900, PDC, CDMA, US-TDMA, IS-95, USDC(IS-136), iDEN(ESMR),
DataTAC and Mobitex. The initial environment for the WAP workgroups is the GSM network with SMS (Short
Messaging Service), USSD(Unstructured Supplementary Services Data), CSD(Circuit Switched Data) and
GPRS(Global Packet Radio System) bearers. A consistent and parallel step is to adapt WAP to the other network
standards previously identified. The standardization process of the protocols will also be opened to a larger
community as processes and rules have been agreed. Eventually each protocol or layer is to be handed over to
appropriate standards bodies. As the WAP work spans over a large field the maintenance of the standards will be
divided between multiplestandards bodies.

Appendix A: Contact Information

Contacts
WAP Internet: www.xwap.com

Ericsson Tel: +46 8 757 2159 Internet: www.ericsson.se

Motorola Tel: +44 1256 790122 Internet: www.motorola.com

Nokia Tel: +358 10 5051 Internet: www.nokia.com

Unwired Planet Tel: +1 415 596 5251 Internet: www.uplanet.com

WAP Architecture Draft Version 0.9 (1997-09) Page 22 (22)

PRELIMINARY DRAFT FOR REVIEW -- NOT A WAP STANDARD.

Appendix B: Version History

Document history

Date Status Comment

15-Sep-97 Version 0.9 Final draft for publication at www.xwap.com

This document is written in Microsoft Word for Windows 95 and saved as MS Word Version 6.0
The document was then converted using Adobe Acrobat 3.01 to Portable Document Format (PDF)

Microsoft and Windows are registered trademarks of Microsoft Corporation.
Adobe and Acrobat are trademarks of Adobe Systems, Inc.
Java is a trademark of Sun Microsystems, Inc.
JavaScript is a trademark of Netscape Communications.

