o O A W N P

10
11
12
13

14
15
16
17
18
19
20
21
22

23

24

25

26

27
28

Meta Data Coalition
Open Information Model

Version 1.1 (Proposal)

August, 1999

ML

© 00 N o 0o B~ W N PP

el e e e I i < e
o N o o M W DN R O

WWWNDNNDNNNNNDNDN P
NPFRPOOO~NOUIARWNEFEOO

w
w

LEHR

w
[{e]

B bS D
NP O

Meta Data Coalition Open Information Model

Copyright Microsoft Corporation, 1996 - 2000.

Microsoft agrees to grant, and does grant to the Meta Data Coalition ("MDC"), a perpetual, nonexclusive,
royalty-free, world-wide right and license under any Microsoft copyrightsin this contribution to copy,
publish and distribute the contribution, aswell as aright and license of the same scope to any derivative
works prepared by MDC and based on, or incorporating all or part of the contribution. Microsoft further
agrees that, upon adoption of this contribution asa MDC Standard, any party will be able to obtain a
royalty-free license under applicable Microsoft rights to implement and use the technol ogy described in this
contribution for the purpose of supporting the MDC Standard by entering into an agreement to be
negotiated with Microsoft. One condition of this license shall be the party's agreement not to assert patent
rights against Microsoft and other companies for their implementation of the MDC Standard. Microsoft
expressly reserves all other rightsit may havein the material and subject matter of this contribution.
Microsoft expresdy disclaims any and all warranties regarding this contribution including any warranty
that (&) this contribution does not violate the rights of others, (b) the owners, if any, of other rightsin this
contribution have been informed of the rights and permissions granted to MDC herein or (c) any required
authorizations from such owners have been obtained.

Thisisa preliminary document and may be changed substantially prior to final release. THIS
DOCUMENT IS PROVIDED FOR EVALUATION PURPOSES ONLY AND THE META DATA
COALITION (MDC) MAKES NO WARRANTIES, EITHER EXPRESS OR IMPLIED, IN THIS
DOCUMENT. THE ENTIRE RISK OF THE USE OR THE RESULTS OF THE USE OF THIS
DOCUMENT REMAINS WITH THE USER.

Companies, names, and data used in examples herein are fictitious unless otherwise noted. No part of this
document may be reproduced or transmitted in any form or by any means, € ectronic or mechanical, for any
purpose, without the express written permission of the Meta Data Coalition (MDC).

N

©O© 00N U~ W

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

25
26
27
28

29
30
31
32
33

35
36
37

38
39
40
41
42

Open Information Model Meta Data Coalition

Table of Contents

1

OVERVIEW ...ttt et e et e e e et e e e et e e e e st e e e e e eateeeestaeeeesataeeesasbeneeanns 1
Lol WWHAT IS IMET A DA T A 2 oottt et e e e e e s et e e e e e e e s s eaaeraeeeaeeessaantaeeeeeaeessnnnnraneens 1
1.2 SITUATION ANALY SIS, iiiiiiiiiittieeeeeeeesieutteeeeeaeessaustaeeeaaeessaasstaaeeaeeeesaannssaeeeaasssaasstssseeeeeesanssrenees 1
G T O T = N SRR 2
1.4 THEMETA DATA COALITION . uttttttteeiiiiiutttteeeeeesisisteeeeeaessssassssseesaesssaassseeeeaessssasssssseesessssnssseseees 3
1.5 DEVELOPMENT HISTORY ...iiiiiiiiiiiiee i i iiititeee e e e e e s st e e e e e e e s st aa e e e e e e s s snntsaeeeaaeessnnssaeeeeaeesannnnreneeas 4
1.6 ACKNOWLEDGMENTS . cittieeiiiittteteeeeeessaiutteeeesaeesiassssaeeeaaesasaassrseeeaaesssaassseneseessssasssssseeseesssnsssseneees 6
INTRODUGCTION .ottt e ettt e e e st e e e e st e e e s aab e e e e sbaeeeeaabeeeessteeessnbaeeeesbeeessseneens 7
2.1 (GOALSAND SCOPEutttiiiieeiieittteeeee e e s isittaeeeeaeessaastaeeeaaeesaassaaeeeaeeeasastaaeeeaeeesaansseseeeaessanssrannns 7
2.2 OVERVIEW AND PACKAGE STRUCTUREutttiitieeiiiiittteeeeeeessssstaeeseesssssssssssesasssssssssssssssssssnnssssseens 7
2.3 EXTENSIBILITY IMODEL ooiiiiiiiiiiieiet e e e s sttt e e e e e s sttt e e e e e s st tae e e e e e e s santaa e e e e e e e s nnnnssaeeeaeeesnnnnreneeas 9
A S o= N7 11 1 T SRR 9
2.5 META DATA SPECIFICATION WITH UML ...eviiiiiiii ittt e e e e e e 10

251 The Unified Modeling Language (UML) Standard...........ccocceveirieniineniene e 10

2.5.2 MOAEiNG CONCEDESceiveiiiieiiiiiiee ettt sttt ettt sb ettt sbe et ebeebe e b e eneennes 11
2.8 SUBMODELS. . ueitiieiiiiuttieeeeeeesssestteeeeaessssasstsaeeaaaessaassssaeesaeeesaassssaeeaaessssaasssaneeeeesssasssssnesaessssnnnnes 13

2.6.1 Analysisand DeSigNn MOcociiiiiiiiiiiie et 13

2.6.2 Database and Warehousing MOGE]cocoiiiiiiiiiiie e 13

2.6.3 Object and Component MOcocuiieiiiiiiiriee e 13

2.6.4 Knowledge Management MOGE............ooeiiiiiiiiieie e 14

2.6.5 BusSINess ENGINEering MOGE!cocuiiiiiiiiiiiii ittt 14
2.7 COMPATIBILITY tiieiiiietttteeteeeessettteeeeaeeessasteaeeeaaessaasssaaeeeaaeesaassssaeeaaeseasansssneeaasessannsannenaeessannnnes 14
ANALYSISAND DESIGN: UNIFIED MODELING LANGUAGE (UML) c..oovcviiieiie e, 16
G T A O 1V Y PRt 16
3.2 SEMANTICS . utttiiie et et ittt e e e e e et sttt eeeeae e et saasteaeeeaaeesaasaseaeeeaeeesaasssseeeaaeeeasanseeneeaeeesaannssaneeaeeesannnes 16
3.3 CLASSREFERENCEuttttiiieiiiiittteeteae e st s ettaaeeeaaeessaattaeeaaeeesaassssaeeeaeeesaasssseeeaeesssasssanesaeesssnnnnes 18
ANALYSISAND DESIGN: UML EXTENSIONSooiii ettt 20
4.1 OVERVIEW . .uuiittieeetee e e e ietttee e e e e e e e seat b ae e e e e e e s saaataeeeeaeeasaanstaeeeeaaeesanseeeeeeaeeesasseeaneeeaeesaannstaneeeeeanan 20
S - N 2= TSRS 20
4.3 CLASSREFERENCEciicttttettte e e s ieittte et e e e e s s st te e e e e e e e s st b e e e eeaaeessasttaeeaaeeessassasaeeeaaeessannstaneeaeeeaan 21
4.4 OIM 1.0 COMPATIBILITY tttttteeeeeiiaiurreeeeeeeesiaiussseeeseessssasssssessssssaasssssessssssamssssssessessssmnssssessessns 34
ANALYSISAND DESIGN: GENERIC ELEMENTS......ccvii ettt 35
L A O 1V Y TP ERRRO 35
5.2 MODEL REFERENCEuttittiieiiiittiteteeeesssisteseessasssssssssseesaassssassssasesaessssssssssseessssssanssssnessesssannnnes 35
5.3 OIM 1.0 COMPATIBILITY teteeeiiiiutueeeeeeesiiistseeesaassssasssseessesesaassssssesasssssmssssseesessssnmssssessesssannnnes 40
ANALYSISAND DESIGN: COMMON DATA TYPES. ..ot 42
B.1 OVERVIEW ..utttiiiieeieiiittiee et e e e e s st tee e e e e e e s s aaa b e e e e e aaeessssstaeeeaeeesaaaseseeeeaaeeasaasssaneeaeeessansssaneeaeeesannnes 42
B.2 SEMANTICS . .utttiiiee e et ittt et e e e et sttt ee e e e e e et s aastaaeeeaeeesaasssaaeeaaeeesaasssseeeaaeeessaassseneeaeeessannssaneeaeeesannnes 42
6.3 CLASSREFERENCEuttttiiieiiiiittteeteeeesssittaaeeeaaesssastaaeeeaaeesaassataeeaaeeessasssaneeaeeessasssaneeaeessannnnes 42
6.4 OIM 1.0 COMPATIBILITY tereeeiiiittueeeeeeeeiiistrseesaesesssssssnesaesesaasssesesassssssassssssesesssssssssssessesssansnes 45

Table of Contents i

© 00 N O O A WDN PP

N I
A wdNRO

B R R
© 0N O O

N DNDNDNDN
A WDNPEFO

N NDNN
0 N O O

W W WwWwN
N P, O ©

FHERE

B W W w
O © 0 N

A bDoD
W N P

Meta Data Coalition Open Information Model

10

11

12

13

14

15

16

ANALYSISAND DESIGN: ENTITY RELATIONSHIPMODELING ... 52
7.1 OVERVIEW ..eeeeeeeeeeeeeeeeeeeeeesesesesesesssnnnnes 52
A = Y - N 1 T 52
S T O NS S === = N = 53
OBJECT AND COMPONENTS: COMPONENT DESCRIPTIONS......oovveeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee 63
S TR R @ Y= =Y 1 RN 63
T = Y - N 1 [SRR 63
8.3 CLASSREFERENCE.......ccttttttttttteeeeeetteeeeeeereeeeeereeeeeeeeeeeeeeereerereesserereeerreresersrererererresrererrrresrrrrrrrere 71
DATABASE AND WAREHOUSING: RELATIONAL DATABASE SCHEMA 85
0.1 OVERVIEW ..eeeeeeeeteeeeeeeeeeeeeeeeeeseessesssssssessssessnnnnes 85
0.2 SEMANTICS ..eeeteteeteeeeeeeeeeeeeeeeeeeereeeeeeeeeeesseseserssssressesssrnnnnes 85
0.3 MDIS COMPATIBILITY eevtttteeeeeeeeeeeeeeeeeeessesessesesssesseesesessssssesssrssrsere 87
0.4 CLASSREFERENCE........cettttttettettteeeteeeteeeereeeeeereeeeeeeeereeeeereerereeesererrerrrerererererererrrreerrrerrrrrrrrrrrrrrre 89
O.5 OIM 1.0 COMPATIBILITY etveteeeeeeereeeeeeeeeeesseseesssesssesseesseessssssssssssesssssesessssssssssessrsssessererrer 110
DATABASE AND WAREHOUSING: DATA TRANSFORMATIONS........ccccoeii 117
JO.1 OVERVIEW ... 117
10.2 SEMANTICS ..o 117
10.3 CLASSREFERENCE.......cccc it ee et 119
10.4 OIM 1.0 COMPATIBILITY oeeeeeeeeeeeeee e 126
DATABASE AND WAREHOUSING: OLAP SCHEMA.......ooo e, 127
T1.1 OVERVIEW . 127
T1.2 SEMANTICS ..o 127
11.3 CLASSREFERENCE.......cccc et e e oot 128
11.4 OIM 1.0 COMPATIBILITY ceeeeeeeeeeeeeeee et 135
DATABASE AND WAREHOUSING: RECORD-ORIENTED DATABASE SCHEMA........... 137
12,1 OVERVIEW ..o 137
12.2 SEMANTICS ..o 138
12.3 CLASSREFERENCE.......cccc et et 138
DATABASE AND WAREHOUSING: XML SCHEMA ... 150
13,1 OVERVIEW .. 150
13,2 SEMANTICS ..o 150
13.3 MODEL REFERENCEcccie e e e 151
DATABASE AND WAREHOUSING: REPORT DEFINITIONS........cccooeii 156
T4.1 OVERVIEW ..o 156
T4.2 SEMANTICS ..o 156
14.3 CLASSREFERENCE........ccc ettt e 158
BUSINESS ENGINEERING: BUSINESSGOALS.......ooooeeeeeeeeeeeeeee, 162
15.1 OVERVIEW ..o 162
15.2 SEMANTICS ..o 162
15.3 CLASSREFERENCE........ccc i e e eeeeeeeeeeeee e 163
BUSINESS ENGINEERING: ORGANIZATIONAL ELEMENTS......ooooiii, 167
16.1 OVERVIEW ... 167
16.2 SEMANTICS ..o 167

Table of Contents

© 00 N O a b~ wnN P

e el
w N Rk O

e
~N o oA~

S
©

N N DN
N P O

Open Information Model

16.3 CLASSREFERENCEcctttuuiiieieeiitttteeseeeeseteta e ssseeseeetsaassesesstessaaesessesssaaassessesssranassseeseersres

17 BUSINESS ENGINEERING: BUSINESS PROCESSES
L7.0 OVERVIEW ..ciiii e ittt e e e ettt et e e e e sttt e e e e e e e st b aeeaae e e s satseeeeaeeesaansseaeeeaeeesannsteeeeaeeesannnnranenns
S Y Y T TSR
17.3 CLASS REFERENCEcceiieiiiiuttteeeeeeesssittteeeeeesssaasteaeeaaeessaassseeeaeeesaasstsaseeaeeesaassssseeseesssnnnsrenees

18 BUSINESSENGINEERING: BUSINESS RULES.........cccoii it
L8.1 OVERVIEW ..eiiieeiiiititteee e e e e e ettt et e e e e s sttt e e e e e e s at e e e e e e e s s saeseeeeaeeessanstsaeeeaeeesannseeeeeeeeessnnnnrannens
S TS Y Y T TSR
18.3 CLASS REFERENCEccetiiiiiitttiteeteeeessitttteeeeeesssssseeeesaesssassssaeeaaeessaasssseeeaeessansssaeeeseeessnnsssanees

19 KNOWLEDGE MANAGEMENT: KNOWLEDGE DESCRIPTIONS
FO. 1 OVERVIEW ceiiieii ittt e e e et ettt et e e e e s sttt e e e e e e s aa b e e e e e e e e s e saeaaeeeaeeeaaastsaeaeaeessannsteeeeeaeessnnnnraneens
F0.2 SEMANTICS e eii i e it iitittte e e e e e sttt et e e e e s sttt e e e e e e s s atteeeeaaeesaassebeeeaaeeeasassssaeeeaeessannssaeeeeeeessnnnnrannens
19.3 CLASS REFERENCEccttieiiiiuttiteeteeeessitteteeeeeesssstteeeeaaeessassssaeeaaeessaassssaeeeaesssaasssaeeeseeessanssrannes

20 KNOWLEDGE MANAGEMENT: SEMANTIC DEFINITIONS
20,1 OVERVIEW ..utttiiiieeeiiittietete e e e s ssttteeesaaesssassttaeeeaeessaassssaeeaaesssassssseeeaeessasssaasesessssasssssnneseesnsnnnnes
20.2 SEMANTICS e ttttttteeeiiettttteeee e et aattrereeaeessaaatraeeaaaessaasttaeeaaasssaassssseeeaesssaasssaeseaeeessasssssnneseesasnnnnes
20.3 CLASSREFERENCEuuttttiteiiiiittttteseeesisistteeeeaeesssasssaeeeaesssaasssaseeaaesssaasssaseeeeessssssssseeseesssnnnns

GLOSSARY .ttt e e e e E e e n e ne e e n e s r e e re e nee s
CLASS INDEX .ottt ettt et e b e e e a e e e s e e s s e e s s e e e s e e e b et e e sr e e s an e e s r e e ene e e anee s
TABLE OF FIGURES....... .ottt ettt et et re e ne e s e e e s

Table of Contents

Meta Data Coalition

abhwiN =

»

10
11
12
13

14
15
16

17

18
19
20
21

22
23
24
25
26
27

28
29
30
31

32
33

35
36
37

38
39
40
41

42
43

Open Information Model Meta Data Coalition

1 Overview

The Meta Data Coalition (MDC) Open Information Modd (OIM) is a vendor-neutral and technol ogy-
independent specification of core meta data types found in the operational and data warehousing
environment of enterprises. This section presentsthe motivation for meta data management and the creation
of the OIM.

1.1 What is Meta Data?

Meta data is descriptive information about the structure and meaning of data and of the applications and
processes that manipul ate data. Meta data can be grouped into two categories: technical and business meta
data.

Technical meta data supports designers, devel opers, and administrators during devel opment, maintenance,
and management of an information technology environment. It isthe technical glue that links the tools,
applications, and systems that together constitute a solution. For example, technical meta data can address
database structures, installed applications, server systems, and so forth.

Business meta data, on the other hand, makes the services of the enterprise environment more
understandable to end-users. For example, it provides explanations of the business objects and processes to
ease browsing, navigation, and querying of data.

1.2 Situation Analysis

Corporate globalization and internationalization in arapidly changing and increasingly competitive
business environment requires that companies leverage their information assets in new and more efficient
ways. Enterprise data, once viewed as merely operational or tactical in nature, is now being used for
strategic decision-making at every enterprise business level.

Managing the strategic information assets and providing timely, accurate, and global access to enterprise
datain a secure, manageable, and cost efficient environment is becoming increasingly critical.
Competitiveness forces companies to integrate turnkey solutions to achieve the tactical advantages of lower
cost and reduced implementation time. The strategic advantages of online access to all knowledge
maintained in the distributed computing environment of an enterprise requires blurring the lines between
OLTP (Online Transaction Processing), Data Warehousing, and the Web.

Meta data, or information about data, has become the critical enabler for the integrated management of the
information assets of an enterprise. The proliferation of data manipulation and management tools
throughout an enterprise has resulted in a host of incompatible information technology products, each of
which processes meta data differently.

End-users suffer from inaccessible and incompatible meta data locked into individual tools. Meta data has
become the number one integration problem in the area of enterprise information and data warehouse
management for the following reasons:

e Nosingletool coversall information processing requirements of a multi-task business or
development process. Users are forced to change tools, and of course, they want to reuse the meta
data they have already entered.

e Not all components of an integrated tool set may provide the required functionality or
performance. Better tools may be available. Mixing and matching of best-of-breed toolsis
important, or even crucial, for the success of today’ s corporations. This mixing and matching
requires meta data integration of tools from different vendors.

e Organizations may wish or may be required to track meta datafor their OLTP or datawarehousing
environment to make it auditable. This requires the extraction of meta data from individual
databases, applications, and tools, and archiving the combined state as a configuration.

Overview 1

~NOoO oo ~AWNPE

10
11
12

13
14

15
16
17
18

19
20
21

22
23
24

25
26
27
28

29
30
31

Meta Data Coalition Open Information Model

1.3

Large enterprises spread over many countries and grouped into individual sub-companieswill not
be able to agree on a single set of database systems, applications, and tools. Meta data integration
isthe only solution that provides an overview of the global information inventory in such a
Situation.

Today' s enterprises are faced with the difficult decision of either undertaking the expensive task of
meta data integration by themselves, or missing out on the benefit of sharable and reusable meta
data.

Challenge

Enterprise-wide information management requires global and efficient accessto shared meta data by all the
heterogeneous products found in today’ s information technology environment. To use tools efficiently,
users need to be able to move meta data between tools or between tools and a repository. In addition, tools
are often provided by different vendors and run on different hardware and software platforms.

M eta data Sources
End user

C] Shared Meta Data /

T Meta Data Model

Internet and
Client / Server UML Model Table Desc.

IE 5.0, Windows, Dependency ~ Process Model | | o
unix,... _—. Component Spec. Administrator
S ‘ Transformation
S =<) Column Desc.
%@T’ Business Rule
> \
Legacy Systems Developer
DB2 MVS, VSAM,
CICS/IMS,...

Figure 1: Shared Meta Data Environment

To integrate the different tools and repositoriesin an enterprise environment, they all must share meta data
in the same way. In addition to global access, thisrequires that meta data is stored, managed, and
interpreted in a consistent way by all participants. A successful framework to integrate tools from different
vendors through shared meta data must satisfy the following requirements:

Meta data integration requires a common specification that defines the structure and semantics of
meta datain aformal and consistent way to which the different vendors' products can comply. For
the industry to agree on this specification, it must be technol ogy-independent and vendor-neutral.

The common specification must be published in a standard language, so it can be understood and
manipulated by humans as well astools. Automatic trandations and mappings are necessary to
support multiple implementations as well as new and emerging technol ogies.

The common specification hasto be abstract and published in a format so that vendors can
implement it on many platforms and by many technologies. Vendors are therefore free to innovate
in the area of implementation technology and are not forced to use specific component models,
APIs, database technologies, or platforms.

Multi-vendor implementations of the common specification require an interchange mechanism for
moving meta data between the resulting heterogeneous products. The interchange enables end-
users to integrate conforming products in a plug-and-play fashion.

Overview

N OO WNPE

10
11
12
13

14
15
16
17
18

19
20
21

22

23
24
25

26
27
28

29

30
31

32
33

35

Open Information Model Meta Data Coalition

e Browsing, querying, and reporting on meta data described by the common specification requires
that tools and repositories expose a schema. End-users and devel opers therefore can rely on a
consistent queriable view of their meta data even in different implementations.

The MDC Open Information Model is a specification of a core set of meta data types such as database
schema, business process, or business object e ements. The following figure shows how the MDC OIM fits
into the different levels of data modeling and abstraction:

Unified Modeling Language Class, Attribute, Method, Association,
Generalization

Open Information Model Table, Column, Business Process, Business Object,
Dictionary, Term, Synonym

Meta Data Customer Table, Order Entry Process, Expense
Report, Business Object, Cost Center Definitions

Data Vulcan Coffee, Report 12/99, Cost Center 10747

The UML isthe most abstract description of information structures by classes arranged into a
generalization / specialization hierarchy. The Open Information Model is a specialization of the abstract
concepts of UML into domain specific types that describe meta data. It represents an industry agreement on
a detailed semantics of types such as atable definition. The instances of the Open Information Model
represent the descriptive information about enterprise data such as actual SQL Schema, OLAP Schema, or
business process definitions.

The meta data types — along with their attendant native interchange format and relational query schema—
form a comprehensive, easy-to-use, and standards-based solution for the integration of meta datain an
enterprise environment, including the extension and customization of the meta data mode itself. The use of
standard definitions enables linking of heterogeneous implementations. The following standard
technologies are used to provide implementations of the MDC OIM:

e The Unified Modeling Language (UML) as the formal specification language for OIM,
e TheeXtensible Markup Language (XML) as the interchange format for OIM, and
e The Structured Query Language (SQL) as the query language for OIM.

1.4 The Meta Data Coalition

The Meta Data Coalition (MDC), founded in 1995, is a not-for-profit consortium of vendors and end-users
whose goal isto provide a vendor-neutral and technol ogy-independent specification of enterprise meta
data.

The Meta Data Coalition brings industry vendors and users together to address a variety of problems and
issues regarding access, sharing, and management of meta data. Thisis avoluntary coalition of interested
parties with a common focus and shared goals, not atraditional standards body or regulatory group.

The Meta Data Coalition members agreed upon goals, including:

e Creating a vendor-independent, industry-defined and industry-maintained specification for meta
data;

e Enabling usersto control and manage the access and interchange of meta data in their unique
environments through the use of specification-compliant tools;

e Allowing usersto build tool configurations that meet their needs and to incrementally adjust those
configurations as necessary to add or subtract tools without impact on the environment;

Overview 3

O NO Oo0h~h WDNPE

21

22
23
24
25

26
27
28
29
30
31
32
33

35
36
37
38
39
40
41
42
43

45

Meta Data Coalition Open Information Model

o Defining a clean, simple interchange implementation framework that will facilitate compliance
and speed adoption by minimizing the amount of modification required to existing toolsto achieve
and maintain compliance;

e Creating a process and procedure not only for establishing and maintaining a meta data standard
but for extending and updating it over time as required by evolving industry and user needs; and

e Using or aligning with existing and accepted standard technologies or standards efforts wherever
possible.

A non-goal of the MDC isto develop a specification for specific repository implementations, component
technologies, or database systems. Furthermore, the scope of the specification is focused on a core set of
generic meta data types independent of individual tools or applications. The limits on the scope of the
MDC meta data specification are introduced to make it possible to reach a wide consensus and avoid that
individual vendor solutions become the only “correct” way.

The Meta Data Coalition maintains both a Web Page site and an e-mail address to alow members or
potential members to communicate electronically. The current Web address is:

http://www.MDCinfo.com/

which is available through the World Wide Web. The Council also maintains the e-mail address:
coalition@evtech.com

which includes the e-mail addresses of coalition members, and
mdc-spec@evtech.com

for sending comments regarding technical proposals.

1.5 Development History

The development history of the OIM includesinitial designs based on existing standards, collaborations
with dozen of vendors, broad reviews by hundreds of vendors, and widely distributed beta rel eases. The
development of the original version of OIM, driven by Microsoft before transferring OIM to the MDC, was
marked by the following milestones:

e October 1996: First OIM Design Preview
Microsoft and Texas Instruments (TI) unveiled their Repository design, which included a draft
information model, devel oped by Microsoft, Tl, SELECT Software Tools and Rational Software.
Thisinitial version of OIM comprised interfaces enabling the devel opment of interoperable tools
for component-based devel opment and reuse. The technical review and demonstrations were
conducted as part of Microsoft’s Open Process, with the participation of over 50 core members of
the software devel oppment community, including vendors of development tools, design and
modeling toals, enterprise applications, and document management and version control systems.

e January 1997: UML Model Interchange Initiative
Twenty-one leading enterprise modeling vendors jointly announced with Microsoft the
development of the Unified Modeling Language (UML) subject area of the OIM. This model
enables teams of corporate developers to easily share models developed with different modeling
toaols, enabling high-quality component-based application devel opment and reuse. Vendors
involved in thefirst round of UML model development included Microsoft, Logic Works (now a
division of PLATINUM technology), Popkin Software and Systems, Rational Software, SELECT
Software Tools and Texas Instruments (T1). Via the Open Process, the information model review
was then expanded to include essentially all vendorsin the software modeling industry. These
vendors were invited to a design preview held on January 31, where the model was presented and
the first-round vendors demonstrated full cross-tool interoperability with each other’ stools. The
final version of the modedl was shipped two months later in Visual Basic 5.0 and Visua Studio 97.

4 Overview

O©CO~NOUA~WNPE

Open Information Model Meta Data Coalition

July 1997: Open Information Model Design Preview

Over 60 software vendors attended a design preview of a greatly expanded OIM, which provided a
common way for development tools to work together across the software development life cycle.
This event gave vendors an opportunity to offer input on the design specifications. Over 30 of
these vendors had development projects underway that utilize the model. The addition of a new
database schema model enabled devel opment tools to automatically target multiple databases
without rewriting application code. Based on design input from Business Objects, Cognos,
Informatica, Logic Works, PLATINUM technology, Popkin Software and Systems, Powersoft,
Prism Solutions and Sterling Software, the new database schema model enabled easy sharing of
schema information between multiple vendors data warehousing and database design tools. At
this preview, Microsoft and PLATINUM technol ogy announced a partnership to make the OIM
available on non-Microsoft operating systems and database systems, and to draw on
PLATINUM’sinformation model expertisein future extensionsto OIM.

October 1997: Meta Data Coalition Endorsement

The MDC was an active reviewer of the OIM and the DBM subject area, proposing extensions to
the DBM modé to fit the needs of the MDC. The MDC also launched its Metadata Interchange
Specification (MDIS) to OIM trandlator freeware, which reads mapping information from an
MDISfileto the DBM model, and vice-versa. Thisfirst release emphasized the relational database
model, and the transformations and business rules from MDISthat have an explicit representation
in the DBM moddl.

December 1997: Data Warehousing Extension Web Review

An open design review process was initiated for gathering industry feedback on new data
warehousing extensions to the OIM, whose goal was to enable data warehousing products from
different vendors to share information. Theinitial partnersin this effort were Apertus Carleton,
Business Objects, Cayenne Software, Cognos, Evolutionary Technologies International,
Informatica, Logic Works, Microsoft, PLATINUM technology, Popkin Software & Systems,
Powersoft, Prism Solutions, and Sterling Software. This open design review period began with the
availahility of preliminary specifications for data transformation services and online anal ytical
processing (OLAP) extensions to the Open Information Model. More than 550 vendors reviewed
the specifications.

April 1998: Data Warehousing Workshop

The Data Warehousing Workshop brought together more than 200 leading devel opers and users of
data warehousing, software devel opment and data transformation tools to review and shape an
open standard for a repository-based data warehousing infrastructure. The event focused on the
expanding role of the OIM as a common infrastructure for data warehousing products and
software development tools. Evolutionary Technologies International, DWSoft Technology, Logic
Works, PLATINUM technology, Sagent Technology and TopTier Software demonstrated early
product implementations based on the new extensions. The model shipped in SQL Server 7.0 and
Visual Studio 6.0.

December 1998 - Technology-Independent OIM Moves to the MDC

Microsoft announced its membership in the MDC and the transfer of control of OIM to that
consortium. The OIM will be made technology neutral, and in particular, be made independent of
Microsoft Repository. MDC will maintain and evolve the OIM as a technol ogy-independent and
vendor-neutral meta data standard. Microsoft also announced the availability of the XML
Interchange Format, by which meta data can be moved between any two repository products. New
submodels of OIM were also announced: amodel for Semantic Information, which accommodates
meta data about linguistic processing tools that interpret relational databases, and a model for
Record-Oriented databases, devel oped in cooperation with PLATINUM technol ogy, which
accommodates meta data from record-oriented legacy systems.

July 1999 — MDC Accepts the OIM as a Standard, Work Underway on Extensions
The technical work by the MDC concluded with a vote by the membership on July 15th to adopt
the OIM 1.0 specification as a standard. In addition, Microsoft and the MDC announced an open
design review for proposed extensions to the OIM. The model extensions capture business

Overview 5

~NO O WN PR

10
11
12
13
14
15
16
17
18

Meta Data Coalition Open Information Model

modeling information such as business goals, objectives, processes, and rules as well as business
terminology and categorizations. This information can be used to enhance the usability and
effectiveness of tools and applications such as enterprise business information portals. These
extensions were developed in cooperation with CA/PLATINUM technology, KPMG, LEXIS
NEXIS, News Edge, ICL, DWSoft, AppsCo, Deloitte & Touche Consulting, InteliCorp,
Micrografx, VISIO, Longs Drug Stores, Rule Machines, and the members of the MDC Technical
Committee.

1.6 Acknowledgments

The development of the OIM involved the collaboration of many vendors. We especially thank Microsoft
Corporation for their effort in driving the specification of the initial version of the OIM and for their
agreement to pass control of thiswork to an independent standards organization, namely MDC. Microsoft’s
primary partnersin the development of the OIM were PLATINUM technology and Sterling Software.
Other key contributors include AppsCo, Business Objects, Cognos, DWSoft Technology, Evolutionary
Technologies International (ETI), Informatica Corporation, Informix Inc., Intellicorp, Visible Systems
Corporation, Logic Works (now a division of PLATINUM technology), Popkin Software and Systems,
Powersoft (now a division of Sybase), Prism Solutions, Rational Software, Sagent Technology, SELECT
Software Tools, and Visio Corporation. The specific contributions of particular vendors are summarized in
section 1.5.

6 Overview

=

OO WN

10
11

12
13

14
15
16

17
18

19

20
21

22
23

24
25
26
27

28

29
30

Open Information Model Meta Data Coalition

2 Introduction

The purpose of the Meta Data Coalition Open Information Model (MDC OIM) isto support tool
interoperability across technol ogies and companies via a shared information model. The OIM isdesigned to
encompass al phases of information systems devel opment, from analysis through deployment. Computing
technologies as diverse as CASE, component, application, Intranet, database, and data warehousing are
supported.

2.1 Goals and Scope
The goals of the MDC OIM are to:

e Bean easy-to-use, expressive, and extensible model of core meta data types.

e Provide mechanisms to specialize and extend the core meta data types rather than to modify or
replace core concepts.

e |Implement a set of fundamental concepts that are generic and generally applicable, and to reuse
these concepts through refinement without repeatedly redefining the fundamental concepts.

e Allow adding new concepts to the core in a consistent way.
e Allow specialization of concepts for particular domains.
e Provide atechnol ogy-independent and vendor-neutral specification.

e Support heterogeneous implementation using different component technol ogies, programming
languages, and other technologies.

e Bescalable from individual tools to enterprise-wide meta data repositories.

o Bewiddy acceptable (general purpose and expressive) and usable (ssmple and evolutionary). This
includes the use of or alignment with existing standards.

e Integrate best engineering practice in the area of meta data management and meta data
specification.

The MDC OIM is not a specification of arepository API or implementation. The primary goal of the model
isto provide aformal description of meta data types to support sharing of meta data between tools and
repositories. Thisincludes interoperability between repositories. However, the MDC OIM focuses on the
description of the information, not on data access and management.

2.2 Overview and Package Structure

The meta data types specified by the MDC Open Information Model are structured into domain-specific
submodels. The following figure shows the high-level structure of the MDC Open Information Model.

Introduction 7

O©oo~N OoOhhw N B

Meta Data Coalition Open Information Model

3 Open Information Model
3 Analysis and Design Model
=3 Unified Modeling Language
=1 UML Extensions
-1 Common Data Types
£3 Generic Elements
3 Entity Relationship Modeling
£3 Object and Component Model
-3 Component Description Model
1 Database and Warehousing Model
------------ 1 Relational Database Schema
=3 OLAP Schema
»»»»» 3 Data Transformations
31 Record Oriented L egacy Databases
3 Report Definitions
=3 XML Schema
""""""" &3 Business Engineering M odel
""" 3 Business Goals
3 Organizational Elements
3 Business Rules
3 Business Processes
-] Knowledge Management Model
£3 Knowledge Description Format
3 Semantic Definitions

The submodels address the most important areas of information, data warehouse, and knowledge
management in the integrated meta data environment found in an enterprise. The submodels provide a
general set of meta data types that enable generic access and interchange. Each of the submodelsis
described in detail in this document.

In addition to its specific use as core of the Analysis and Design Model, UML’s breadth and high level of
abstraction make it an excellent base model from which other MDC Open Information Model submodels
can inherit." UML covers such concepts as type, class, component, package, diagram, method, operation,
relationship, attribute, and constraint — concepts that are relevant to virtually all domains described by the
MDC Open Information Model. The following figure shows the dependencies between the submodel s of
the MDC Open Information Modd.

! The MDC OIM uses the UML in three different roles:

e TheUML as modeling language and, as such, as a standard to design and customize the MDC OIM.
Focus with this usage of the language is on the UML notation.

e TheUML asmain part of the Analysis and Design Model subject-area of the MDC OIM. In thisrole,
the UML supplies the meta data types to express object-oriented models. Focus with this usage of the
language is on the UML meta model.

e TheUML ascore modd of the MDC OIM from which other submodelsinherit concepts. This usage of
the language has the goal to minimize the complexity of the MDC OIM by re-using and therefore
reducing the number of modeling concepts. Focus with this usage of the language is on the UML meta
model.

Confusion may arise because of the three different roles. To avoid this we have separated them as much as

possible in this document. Nevertheless, the use of the UML in the MDC OIM, to make it salf-describing,

as model for the analysis and design domain, and as core model are all important concepts to make the
model easier-to-use, standards-based, and expressive.

8 Introduction

22

23
24
25

26
27
28
29
30

Open Information Model

Meta Data Coalition

Model Dependency Diagram
Unified Modeling
7 Language K.

I A =
Analysisand Knowledge
Design Mode Management

Mode
.
Object and
ﬁ Component .
Business Model Database and
Engineering Warehousing
Model Model

Each of the dependent models inherits and refines concepts out of the UML. The use of UML astheroot of
the OIM isdiscussed in the UML reference section.

2.3 Extensibility Model

The MDC Open Information Model offers a set of extensibility features to accommodate specific tool
implementations and to enable vendors to add value with their products. Extensibility is a core feature
designed into the moddl. Individual vendors are able to enhance the core model with tool specific types
independent of the MDC or other vendors. Such a flexible and powerful extension mechanism is not only
necessary for the feature differentiation of multi-vendor implementations, but is also a prerequisite for the
evolution of the core modedl itself.

The MDC OIM extensibility is based on:

e Stereotypes—are used to classify existing modeling elements, thereby introducing new types of
modeling elements.

e Tagged Values— are name/ value pairs which can be used to extend the state of an object without
modifying its structural definition.

e Type Extension —modifies an existing type by adding one or more inheritance relationships to
new types. The modification adds a feature but leaves the existing structural definition of the
existing type untouched.

e Type Reuse — enables defining a new type through inheritance from an existing type and adding
new features. The new type conforms to the existing type, and can replace it, but offers new
features to clients, which know of these and are able to use them.

2.4 Scenarios

Meta data existsin every tool and application in an enterprise. The MDC Open Information Model must
therefore have a very broad scope. The following lists several general areasin which meta data
management and interchange is an important part.

e Business Process Reengineering - includes the devel opment of models of an enterprise to
document, analyze, and simulate the operational environment and its control and product flow.
Models and their complex cross relationships, as well as the links to the outside world, need to be
stored, managed, and interchanged between modeling and back-end tools, such as ERP (Enterprise
Resource Planning) systems.

Introduction 9

O©CoO~NOOOUT hWDNPF

e e
UORWNRO

O el el
QWO

21

22
23
24
25

26
27

28

29
30
31

32
33

Meta Data Coalition Open Information Model

2.5

Application Development - is one of the main areas in which meta data has been used to integrate
tools. Software development is a multi-step process, which often involves several different tools.
Integrating these tools can be challenging, especially if they are from different vendors. Meta data
models implemented by repositories are the base technol ogy to accomplish this task.

Data Modeling and Design - is a multi-devel oper task with such problems as global access, multi-
version synchronization, and history tracking. A common meta data model enables the integration
of network-based tools and the support of team devel opment with a centralized repository. An
important part of this architecture is the queryability of the meta data to implement such features
as data dictionaries and meta data reporting.

Packaged Applications - require customization to address the needs of individual enterprises.
Customization affects not only the application itself, but also the software environment around it.
A common meta data model allows third-party vendor applications to interchange information
with the packaged application. This ensures a controlled deployment of the application and its
modifications, so that customizations can be re-applied to software revisions, and impact analysis
can validate changes before they are applied.

Data Warehousing - with its hard-to-solve integration, consistency, lineage, and usability
problems, has made meta data management mission critical. Integrated meta data management isa
necessity not only to achieve tool integration, but also to aid the end-user with definitions and
explanations. The integration of technical and business meta datain a common meta data model
makes the tasks of designing, managing, and using a data warehouse easier to do.

Meta Data Specification with UML

The Unified Modeling Language (UML) is the modeling standard for specifying and representing meta
data types for the MDC OIM. Based on the formal representation of the meta data specification in the
UML, it is possible to generate automatically all the necessary deliverables to deploy implementations of
the specifications in tools or repositories.

UML Model

i

—
Object Model Reposit
Interface Def. epository
XML Document »| XML
Specification Type Definition Transfer
Query View

Documentatiol SQL Schema , \
Test, etc. Déefinition

Figure 2: Deliver able Generation from the UML

Formal

2.5.1 The Unified Modeling Language (UML) Standard

The UML isalanguage for modeling information systems and software artifacts. The UML can be used to

visualize, specify, construct, and document knowledge about software-intensive systems and their purposes

at an abstract level.

The goals of the UML areto unify the most prominent modeling methodol ogies into a ready-to-use
expressive modeling language that is simple and extensible. The modeling language was devel oped by

10

Introduction

el
RPOOWON OUAW NBR

U =
w N

[l
(2SN

e e T
o N O

19

20
21

22
23

Open Information Model Meta Data Coalition

Rational Software Corporation and its partners, and was adopted by the Object Management Group (OMG)
in November 1997. The UML continues to evolve though this standard body.

Industry organizations and the leading modeling vendors have embraced the UML. Numerous products and
services have been announced or introduced into the market since its standardization as UML 1.0. Assuch,
the language enabl es projects to focus on the modeling task at hand rather than to select or invent a
consistent, accepted, and tool-supported representation language.

The UML consists of a notation and a semantic description. The notation defines the visual representation
of diagrams and modeling elements. The semantic description, or metamodel, isthe formal specification of
the semantics of the notation. The UML is defined in itself, which means that a subset of the language
notation and semanticsis used to specify the complete language. It istherefore more than just alanguage; it
provides a conceptual framework for modeling software artifacts beyond the current scope of the UML.

In summary, the UML provides:
e A conceptual framework for modeling software artifacts.

e A modeling language that consists of the UML notation and the UML meta model that definesthe
semantics of the notation.

e Sufficient notation and semantics to address object-oriented analysis and design.
e Extensibility mechanisms for the addition, variant interpretation, and specialization of concepts.

e A widedy accepted standard with industry support and existing products and services.

2.5.2 Modeling Concepts

The following figure shows an example of how UML modeling concepts are used to specify meta data
types in the framework.

ownedElement| ModelElements.
x| Name : String

Aggregation / " Data Type
Containment Zﬁ

- Class Name

“- Attribute Name

, [
Namespace | Abstract . Association
fabstracty [Class Multiplicity - Name

L‘l « ClassHasMember

0.1 *
Package Classifier Feature
features
4 Y {ordered} Zﬁ
Concrete : /TableHasColumn
Classes .. ~ 1.*
* Table 0.1 - Column
'[] Class «columns
> Association e / {ordered}
Generalization Derived o
> Dependency Association Association End
Name

Figure 3: UML Modeling Framework

Introduction 11

=
QOVWoww ~Noool AW NP

el
A WNPE

B
o~ U

N =
o o

NNNNDN
GabrwWDNPEF

N NN
o0 ~NO®

WWWN
NP~ O

FHRREY

w W
o

B W
[@Xe]

A
l_\

R&ES

A DD
~N o o

Meta Data Coalition Open Information Model

The example shown isaformal specification of a simplified database schema representation. A package
may contain tables, and a table may have columns. All elements can be named.

The following lists the main meta data modeling concepts of the UML that are used to expressthe MDC
Open Information Model.

12

Packages — are used to group model elements together, such as classes and associations. Packages
themselves may be nested into other packages. Each e ement isdirectly owned by a single package
and packages therefore form a strict hierarchy.

Diagrams—diagrams are graphical representations of a set of model e ementsthat render views of
amodel from a certain perspective. Diagrams are used to provide a graphical structuring of a
model so that it can be better understood by the modeler.

Classes — are specifications of a set of objects that have common structural and behavioral
features. Classes are used to model entities with common characteristics and semantics. Classes
may be Abstract, and therefore incompletely specified, or Concrete, in which case they are
complete and, in an implementation, would be instantiable.

Attributes — are members of classes and describe structural features of entities. Attributes are
used to model information associated with entities. They can have a data type and an initial value,
usually denoted by: attribute-name : data type = initial-value. Attributes may be derived from
other attributes in the model.

Data Types— areinstances that define data values and are used to modd simple values that have
no identity.

Associations — are descriptions of relationships between classes, which have similar structural and
behavioral features. They are used to relate entities where the relationship has common
characteristics and semantics. An association has two Association Ends, which connect the
association to two classes. Associations and Association Ends can be named and can have the
following properties:

Navigability — indicates that an association can be navigated towards the class attached to the
arrow. Associations that do not have the Navigability flag are either unknown or bi-
directional.

Aggregation / Containment — are properties of association ends modeling containment or
composition. The property is attached to the association end of the class that is aggregated or
contained. At most one association end can have the property. The Aggregation or
Composition property isindicated as a hollow or filled diamond in diagrams.

Multiplicity — isa constraint on a association end, specifying how many of the elements related by
the association end are allowed to participate in the association. Multiplicity provides lower
and upper bounds for the participating elements. * is a short form for O..Infinity and is
assumed if no Multiplicity rangeis provided.

Ordering - if present, saysthat, for association ends with multiplicity greater than one, the set of
related dementsis ordered.

Sorted — is a property of a association end that specifies that the elements attached by the
association end are sorted based on their internal value.

Derived — indicates an association that is derived from an existing association.

Generalization is defined as the taxonomic relationship between a more general and a more
specific element that is fully consistent with the first element, and that provides additional
information.

Dependencies - indicate a semantic relationship between two or more moddl elements. The client
of the dependency requires features and therefore the presence of the supplier e ement of the
dependency. The modeling concept is used to show the dependency between model packages.

Introduction

22

23
24
25
26
27
28

29
30
31
32

33

35
36
37

38

39
40
41
42
43

Open Information Model Meta Data Coalition

2.6 Submodels

The remainder of this document describes the submodel s of the Open Information Model. These submodels
are organized as UML packages addressing four major subject areas, described below.

2.6.1 Analysis and Design Model

Analysis and design tools are integrated in the software design, development, and deployment life cycle at
every step either as an input tool, for documentation purposes, or as atool to analyze or validate results.
This requiresthat they be tightly integrated with all the other applications, either through meta data
interchange, or by sharing a common repository.

Object-oriented model's, enterprise data models, and other meta data evolve individually or in a
configuration with the described system. It is therefore necessary that the relationships between a model
and the elements of a system can be expressed and maintained. The Analysis and Design Modd therefore
must provide not only modeling elements but also mechanisms for referring to e ements outside of the
scope of the model. This capability, as well as the generic conceptsin the model, make it a natural fit to
serve as a core model from which other more specialized models inherit more generic concepts such as
package, containment, or dependency.

The Analysis and Design Model covers the domain of object-oriented modeling and design of software
centric systems. The mode provides concepts to describe problems and solutions throughout the compl ete
software life cycle. The core of the mode isthe UML meta mode. The UML consists of a notation and a
meta model. The meta model describes the semantics of the notation in aformal way. It consists of a set of
meta types, their relationships, and their meaning, and, as such, isideally suited to become the core of a
model for the analysis and design subject area.

2.6.2 Database and Warehousing Model

The Database and Warehousing Model provides meta data concepts for schema management for database
design, schema reuse, and data warehousing. The Relational Database Schema package includes concepts
found in standard SQL data definitions and similar types of formatted data models. For the most part, the
model focuses on logical database concepts. However, it also includes some physical database concepts,
because they are needed in nearly all usage scenarios. The Record-Oriented Database Schema package
describes data maintained in the files, legacy databases, and so forth, of an enterprise.

Schemas definitionsin XML define types for the valid structuresin an XML document. The XML Schema
package provides meta data types to represent the definitions that constitute an XML schema. The Report
Definitions package represents information necessary for data reporting tools and their relationshipsto the
systems they report on.

The Data Warehousi ng-specific packages extend the database schemamodel in several important directions
in order to support data marts and data warehouse applications. The OLAP schema package data types
capture descriptions of multi-dimensional (OLAP) data cubes used in decision support systems. The Data
Transformations package captures information about data transformations used in moving data from
production databases into a data warehouse or data mart.

2.6.3 Object and Component Model

The use of object-oriented devel opment techniques to facilitate sharing and reuse of code has become
strategic for enterprisesin order to reduce cost and timeto deployment. Reuse and sharing requirestracking
meta data throughout the whole life-cycle of a component, from specification through design and
subsequent enhancements. The Object and Component submodel intends to cover the various aspects of
object-oriented devel opment.

Introduction 13

21

22

23
24
25
26
27

28
29
30
31
32

33

35
36

37

38
39
40

41

42
43

45

Meta Data Coalition Open Information Model

2.6.4 Knowledge Management Model

Knowledge management is the integrated and collaborative process of information asset creation, capture,
organization, access, and usage. Information assets include databases, documents, and the experience and
knowledge of domain experts.

The Knowledge Management Model provides the necessary meta data types to create catalog structures of
enterprise information and to capture business terminology, its semantic relationships, and the mapping to
storage structures.

The Knowledge Description Mode extensions provide meta data types to define a controlled vocabulary to
classify business information. The model allows one to define subject and topic terms and a hierarchy or
classification tree of categories. Each category has a defined schema, which is a composition of locally
defined properties and schemas inherited from parent categories. Information objects, such as data base
tables, queries, reports, and documents, can appear in multiple categories, such as corporate sales, product
marketing and finance. The vocabulary of controlled topics and subjects, together with uncontrolled terms,
can be used to search the information maintained by the information directory.

The Semantic Definition submodel extensions provide meta data types to describe models for a semantic or
linguistic processor. These processors let users interact with their database data without learning a data
manipulation language. Before alinguistic processor can interact with a database, however, an analyst must
articulate the mappings between the database schema and the semantic constructs familiar to the users. The
model provides concepts to define business terms and synonyms and to map them to the names of SQL
tables and columns.

2.6.5 Business Engineering Model

The goal of business or enterprise modeling isto devel op a blueprint depicting how a company or a part of
a company operates or should operate. For the purpose of this specification, a businessis defined as a set of
cooperative activities that are performed by the interaction of people and machines. Documenting the
structure and processes of a business in a formal and accurate way is necessary not only to re-engineer
them but also to automate or semi-automate them by computers.

The goal of the Business Engineering submodel isto align the storage and interchange representation of
business engineering meta data. A well-defined set of meta data types provides standardization of
information representation for the purpose of tool integration by vendors and end-users. No methodol ogy or
notation is assumed or enforced by the model. The information captured by the model can be represented
visually using modeling techniques such as IDEF or the UML.

The Business Engineering Model contains several related packages. These packages provide meta data
types to describe the goals of a business, its organizational structure, the rulesthat govern the business, and
the processes that move information and material. The separation of goals, process, and structure alows a
more flexible and understandabl e description of a business.

2.7 Compatibility

The MDC OIM supersedesthe MDI'S 1.0 and the Microsoft OIM 1.0 specification. The MDC OIM offers
backward compatibility in order to protect the investment software vendors have made in adopting one of
the predecessor models.

The changes between the existing models and the MDC OIM can be grouped into three areas:

e Name changes— are simple changes of the identifier of amodel element, e.g. Typein UML 1.0 has
changed to Classifier in UML 1.3. The UML representation of the MDC OIM that accompanies this
document provide the ability to maintain different name compatibility sets (OIM 1.0, MDIS 1.0) for all
model elementsincluding classes, attributes, associations, association ends, etc. For example, the

14 Introduction

O~NO U W NP

11
12
13
14

Open Information Model Meta Data Coalition

MDIS 1.0 name compatibility set maps MDIS DATABASE onto MDC OIM Catalog. An
implementation may choose a specific name set to ensure backward compatibility.

Additions — are modifications that add new e ements or attributes to the model. The MDC OIM
includes new features such asthe UML 1.3 Activity Diagrams package (UML 1.0 did not include
Activity Diagrams) for which no semantically equivalent concept existed. The UML concept of
derivation of attributes and associations has been used to create backward compatible structuresin case
an element has been moved. In such a case the old element continuesto exist and the new oneis
derived from the existing one.

Incompatible changes — are structural or semantic modifications that require a modification or
migration of an implementation. The UML 1.3 Model Management package, for example, has changed
significantly from the UML 1.0 version. The MDC OIM maintains compatible structures along with
the new structures to maintain backward compatibility. These compatibility structures are noted in the
model and will be removed in future revisions. They should be used only if backward compatibility is
an issue.

Introduction 15

27

28
29
30
31

32
33

35
36

Meta Data Coalition Open Information Model

3 Analysis and Design: Unified Modeling
Language (UML)

3.1 Overview

The UML package describes version 1.3 of the Unified Modeling Language, a standard from the Object
Management Group (OMG). It forms the foundation of the MDC Open Information Models and isthe
package from which all other packages inherit.

Having submodels inherit from the UML yields the usual benefits of reuse viainheritance:

e It reducesthe overall size and complexity of OIM by reusing UML conceptsin many submodels.
The containment hierarchy defined for UML Packages and Model Elements, for example, is
generally applicable. For example, database schemas using the generic UML containment
mechanism contain table definitions.

e |t makes sharing between different types of tools smpler and more efficient. For example, a useful
function in a database-oriented development tool is to generate a component definition from a
table definition. Usually, this requires trandating details about the table definition into details
about the component’s class. However, in the MDC OIM, since both database table and
component class inherits from UML class, many details of atable definition can be interpreted as
details of a component class. Thus, atable definition’s details can be directly interpreted as a
component class definition, without any explicit trand ation.

e |t enables generic tool functionality that can analyze and interpret meta data structures without
understanding the complete semantics. Dependencies, for example, are defined in UML and used
by all submodels. This allows generic analysis tools to show dependencies independent of the
semantics of the dependent objects. Once the user has navigated to a specific item, a specific tool
that understands the individual semantics can be invoked.

The architecture of the UML package is based on version 1.3 of the Unified Modeing Language published
by the Object Management Group. Please review the UML version 1.3 specifications and model diagrams
available at the Web site http://www.omg.org.

3.2 Semantics

The MDC OIM isbased on UML 1.3 as standardized by the OMG. The MDC is committed to evolving the
MDC OIM as UML evolves and to ensuring backward compatibility to the OIM 1.0 and MDIS 1.0
specifications. This section contains additionsto UML 1.3 to ensure backward compatibility of the MDC
OIM with UML 1.0, on which OIM 1.0 was based.

The MDC OIM enables the modeling of meta data at multiple levels of abstraction - including conceptual,
logical, physical, and deployed. It uses the UML concept of refinement to link objects of different levels
together, where the refining element is somehow less abstract (more physical) than the refined element. The
following diagramsillustrate a common use of this concept:

16 Analysis and Design: Unified Modeling Language (UML)

Open Information Model Meta Data Coalition

CUSTOMER
customer number PAYMENT
payment transaction number
name makes °
address type
phone amount
credit card date
credit card exp status

status code
type

CREDIT CARD
CHECK

]

credit card number
check bank number credit card exp
check number credit card type

1

2 Figure 4: Sample L ogical Database M odel

3

CUSTOMER ‘ PAYMENT

customer_number: int payment_transaction_number: int
customer_first_name: char(15) customer number: int
customer_last_name:. char(15) ° payment__type: char(18)
customer_address_1: varchar(180) payment_amount: money
customer_address_2: varchar(180) payment_date: détetime
customer_gity: <.:har(18) payment_status: varchar(L)
customer_state: char(2) check_bank_number: char(18)
customer_zip: char(10) check_number: char(18)
customer_phone: int y credit_card_number: char(18)
customer_credit_card: int _) credit_card_expiration: datetime
customer_credit_card_exp: datetime credit_card_type: char(18)

4 customer_status_code: char(l) - =

5 Figure 5: Sample Physical Database M odel

6 Thefirst diagram depicts alogical data modd that relates a customer to a payment. The second diagram

7 depictsthe same modd with implementation (deployment) details added. A refinement object can be used

8 toindicate which specific physical elements are refinements of which logical elements. It can, likewise, be

9 usedtotieasinglephysical eement (e.g. payment) as a refinement of multiple logical e ements (e.g.
10 payment, check, and creditcard).

11 In a conceptual model, the type of an object (e.g. table, component) is not strongly defined. For example, a
12 user may want to describe a system that relates the concepts of customers and payments, but not to specify
13 whether it will be deployed in arelational database or as a C++ component. It is suggested that a

14 conceptual eement simply modeled asa UML model e ement with a name and description can be linked to

15 other elements through dependencies and refinements until an equivalent logical element can be identified
16 and created. As modd el ements, they can till be packaged, diagrammed, named, defined, refined, and
17 related through dependencies. When a more type-specific logical element is created, it should conform to
18 theinformation model for that type with regard to properties, relationships, and constraints.

Analysis and Design: Unified Modeling Language (UML) 17

1

w

© 00 N oo b~

10

11

12
13

14
15
16
17
18

Meta Data Coalition Open Information Model

3.3 Class Reference

Package I
(from Model Management)| Taggedval
+Ta alues
+Packages TaggedValue 99
(from Extension Mechanisms)
0..*
4 +TaggedValues |0..* TO..*
System 1.1 0..* Model 0..1
(from Model Management)
+System +Models +Model
+Elements
0.1
0.1 0.* +SourceDependencies +TargetElement
. Dependency Element
+Dependencies | ¢rom core) (from Core)
+TargetDependencies +SourceElement
1.1 0..*
+Stereotypes Stereotype UML 1.0 Compatibility Addtions to UML 1.3 N
(from Extension Mechanisms)
Attribute: Attribute - TypeExpression
Instance Attribute: Parameter - TypeExpression
+SubSystems
4 (from Common Behavior) Attribute: Multiplicity - Body
0.*
Class: System
Class: Note
0.1
ModelElement DataValue General!zat!oni System - Package
(from Core) (from Common Behavior)| +Values Generalization: Note - ModelElement
Generalization: Constraint - Note
Z> Parameter Association: Element - TaggedValue
Note defaultValue : Expression Assaoaciation: TaggedValue - TaggedValue
Value : Text kind : ParameterDirectionKind Assaociation: Instance - DataValue
typeExpression : Expression Association: Model - System
ZF Assaociation: Package - Model
Attribute Association: System - Dependency
Constraint Multiplicity iniialvalue - Expression Association: System - Stereotype
(trom Core) body : String ook res-sionp B oression Association: System - System
ypeExp F Exp Association: Dependency - Element
Figure 6: OIM 1.0 Compatibility

A note is a comment attached to an element or a collection of elements. A Note has no semantic impact.
See UML 1.0 specification for more details.

Specializes
e ModeElement (from UML)
Attribute
e Value (Text) — The uninterpreted content of the note.

3.3.2 System

A collection of connected units that are organized to accomplish a specific purpose. One or more models
can describe a system, possibly from different points of view. See UML 1.0 specification for more details.

Specializes
e Package (from UML)
Association
e Models (Moddl) — collection of Moddl el ements that congtitute the System.
e Dependencies (Dependency) — dependencies between the System and other model elements.

18 Analysis and Design: Unified Modeling Language (UML)

N

Open Information Model Meta Data Coalition

o Sereotypes (Stereotype) — stereotypes that apply to the System and its subelements.
e SubSystems (System) — collection of Systems as sub-elements that constitute the System.

Analysis and Design: Unified Modeling Language (UML)

19

N

0 NOoOOob~hw

10
11
12

13
14
15
16
17

Meta Data Coalition Open Information Model

4 Analysis and Design: UML Extensions

4.1 Overview

The UML Extensions package has two primary purposes. Firgt, it enhances the UML package by
introducing the ability to describe the presentation or display of UML elements. Thisis extremely relevant
information to gather, as anyone who has ever spent time using an object-oriented design tool knows,
because much of the time is spent arranging diagrams so that they communicate the model clearly. Second,
it provides a place for other general -purpose additions to the UML package.

The UML Extensions package is dependent on the UML package.

4.2 Semantics

The UML extension package is divided in to three subpackages. The Presentation and View Elements
package contains all of the classes used to model the presentation of elements on a diagram. The Auxiliary
Elements package contains all of the other general-purpose extensions to the UML package.

The Syntax Elements package is used to store and interchange formal definitions of computer languages
and expressions. The unambiguous definition of a grammar allows devel oping parsers for a language
automatically. Each Grammar Rule defines a pattern that defines a named structural part of the language.
The name forms the set of non-terminal Symbols available in the Syntax. Such anon-terminal Symbol is
replaced by the Statement part of the Grammar Rule also called |eft-hand side.

20 Analysis and Design: UML Extensions

Open Information Model

1 4.3 Class Reference

Classifier
(from Core)

2

Meta Data Coalition

ModuleSpec Component
(from Core)
Module Application Library File
Dependency
(from Core)
Package
(from Model Management)
Project Derivation Import Call
2
3 Figure 7: Auxiliary Elements
Operation Attribute
(from Core) (from Core) ModelElement TaggedValue Namespace
(from Core) (from Extension Mechanisms) (from Core)
Attribute
IsNullable : Boolean
Module Operation IsReadOnly : Boolean
EntryIDString : String IsConstant : Boolean TaggedValue +TaggedValues
EntrylDOrdinal : Long AwveragelLength: Long N
Body : Text MinimumLength : Long 0.
OctetLength : Long 4
Length: Long
Comment Numer!cScaIQ Integer
Numeric Precision : Integer
(from Core) R .. *
TimePrecision : Long 1.
VariantTaggedValue TaggedValueSet
VariantValue : Binary
Comment MemberVariable
Value : String Offset : Long
4
5 Figure 8: Additional Auxiliary Elements

Analysis and Design: UML Extensions

21

Meta Data Coalition

PresentationElement
(from Core)

*

Open Information Model

ModelElement

B

+presentation

+subject| (from Core)

GraphicElement

BackgroundColor : Long

0.*

]

Projection
Style : String

+Projections

Figure 9: View Elements

ViewElement
1.1
Diagram
ComponentDiagram ClassDiagram
22

Analysis and Design: UML Extensions

Open Information Model Meta Data Coalition

LineProperties

GraphicElement Style : String
BackgroundColor : Long Width : Integer
Color : Long
Point +Points 1.1 PointContainer
X: Long 0..* {ordered}
Y : Long
Z: Long Font
0..*| +Points Name.: String
{ordered} FontSize : Integer
Style : FontStyle
Color : Long
Alignment : FontAlignment
1.1 Zﬁ Zﬁ
Projection Multiplicity Projection Line
0..1 | +MultiplicityProjection +Lines | 0..*
{ordered}
1.1
AssociationRoleProjection
1.1

LineContainer

RelationshipProjection

Figure 10: Projections

Analysis and Design: UML Extensions

Meta Data Coalition Open Information Model

Namespace
(from Core) ModelElement
(fromCore)
I
Grammar | +Rules Rule 1.1 +Elements
IsStart : Boolean @———————————————— Statement
1 1.* 1.*
{ordered}
0..* +Elements
*
{ordered} L. ZF
Expression Symbol
1..1 |Order : ExpressionOrder
Occurence : UML:Multiplicity
0.1 | +Syntax ! \
.. . . -
Substitute NonTerminal TerminalSymbol
Syntax 1.1 *
Classifier
@from Cor)

Figure 11: Syntax Elements

4.3.1 Application

This class defines an application (e.g., an .exe). This class realizes the UML “application” stereotype.
Specializes
e Component (from UML)

4.3.2 AssociationEndProjection

This class represents the projection of an association end onto a diagram. This class provides the position
(and other view characteristics) of the association end label. Any associated Multiplicity Projection gives
the position (and other view characteristics) of the labels showing the association end multiplicity.

Specializes
e Progjection (from UML)
Association

e MultiplicityProjection (MultiplicityProjection) — The projection of the multiplicity label of the
association end.

24 Analysis and Design: UML Extensions

24

25
26
27

28

29
30

31
32

33

34
35

36
37

Open Information Model Meta Data Coalition

4.3.3 Attribute

This call extends the features of the UML attribute.
Attribute
e |sNullable (Boolean) — Indicates whether the attribute can be null.
e |sReadOnly (Boolean) — Indicates whether the attribute is read only.

e |sConstant (Boolean) — Indicates that the attribute has a constant value. Such an attribute must
have an InitialValue that defines the constant val ue defined.

e AveragelLength (Long) — The expected average length of data stored in this attribute.
e MinimumLength (Long) — The smallest length of data that can be stored in this attribute.

e OctetLength (Long) — Maximum length in octets (bytes) of the attribute, if the type of the attribute
is character or binary. A value of zero means the attribute has no maximum length.

e Length (Long) — The maximum possible length of a value of the attribute.

e NumericScale (Integer) — The number of digits to the right of the decimal point in the column for
numeric attributes.

e NumericPrecision (Integer) — The maximum number of base 10 digits that can be stored for
numeric attributes.

e TimePrecision (Long) — Datetime precision (number of digitsin the fractional seconds portion) if
the attribute is a datetime or interval type.

Association

o DerivedAttributes (Attribute) — The collection of attributes that are derived from this attribute.
For example, your age is based on your birthday.

Specializes
e Attribute (from UML)

434 Call
This class represents the invocation from one element of another.
Specializes
e Dependency (from UML)
4.3.5 ClassDiagram

This class specifies the domain and behavior of a diagram encompassing types, classes, and their
relationships.

Specializes
e Diagram
4.3.6 ComponentDiagram

This class specifies the domain and behavior of a diagram encompassing components and their
relationships.

Specializes
e Diagram

Analysis and Design: UML Extensions 25

A

© 00~NO® (61

10

11

12
13

14
15
16
17

18

19
20
21

22
23
24

25
26

27
28

29

30
31
32
33

Meta Data Coalition Open Information Model

4.3.7 Derivation

This class represents the derivation of one element to another.
Specializes
e Dependency (from UML)

4.3.8 Diagram

This class specifies the domain and behavior of a graphical projection of a collection of model elements.
Diagrams are most often rendered as a connected graph of arcs (relationships) and vertices (other model
elements).

Specializes

e ViewElement

4.3.9 Dictionary

Instances of this class maintain the terminal symbols of a syntax, i.e. of agrammar. The dictionary entries
are ordered by name and must be unique for a grammar.

Specializes
e ModeElement (from UML)
Associations

e Symbols— collection of sorted Terminal symbol objects that constitute the Dictionary.

4.3.10 Expression

An expression consists of a collection of sub-expressions or symbols. The property Order of the Expression
object indicates if the collection should be treated as a Sequence or a set of Alternatives. An AND
expression corresponds to the EBNF sequence (A B C) and the OR expression to an Alternative (A | B | C).

Specializes
e Statement
Attributes

e Order (ExpressionOrder) —is an enumeration type property, which controls the type of
expression: AND : Alternative, OR : Sequence.

Associations

e Elements (Statement) — set of objects of RuleElement type, i.e. Expressions or Symbols.

4.3.11 ExpressionOrder

An enumeration that determinesif an expression is a sequence or a set of alternative (choices).
Values

e AND - The dements of the Expression represent a sequence.

e OR- Thedements of the Expression represent alternatives.

e NONE - Same as AND (default value)

26 Analysis and Design: UML Extensions

=

D O ~AWN

10
11

12
13

14
15
16

17

18
19
20
21
22

23

24
25
26
27
28
29

30

31
32

33

35

Open Information Model Meta Data Coalition

4.3.12 File

This class represents an operating system file. Instances of the class should not represent specific files (this
is handled with the Surrogate class in the Generic Element Package), but may indicate the use of afiletype
as part of aimplementation model.

Specializes
e Component (from UML)

4.3.13 Font
This class represents the use of a graphic font for text rendering.
Attributes
e Name (String) — The name of the font (e.g., MS Sans Serif, or Courier).
e FontSze (Integer) — The point size of the font (e.g., 10 for pica, 12 for dite).

o Syle (FontStyle) — Indicates the font style defined by the FontStyle enumeration (e.g., regular,
bold, italic, bold italic).

e Color (Long) — The color of the text. The value should be in standard RGB three-byte format.
e Alignment (FontAlignment) — The alignment or justification of the text within its bounding
rectangle.

4.3.14 FontAlignment

An enumeration whose values indicate the alignment or justification of text within its bounding rectangle.
Values

e FONTALIGNMENT_LEFT =0

e FONTALIGNMENT_CENTER=1

e FONTALIGNMENT_RIGHT =2

4.3.15 FontStyle

An enumeration whose values indicate the font style of text.
Values

e FONTSTYLE REGULAR=0

e FONTSTYLE ITALIC=1

e FONTSTYLE BOLD =2

e FONTSTYLE BOLDITALIC=3

4.3.16 Grammar

Instances of this class represent a set of rules that can conform to a specific syntax. For example, an XML
document or a C++ file could constitute a grammar.

Specializes
e ModeElement (from UML)

Associations

Analysis and Design: UML Extensions 27

N

©oo N o o b~ W

10

11
12

13
14

15

16
17
18

19
20

21

22
23
24

25
26
27
28
29

30

31
32
33

35

Meta Data Coalition Open Information Model

e Rules(Rule) — Set of Rulesthat congtitute the Grammar.

e Syntax (Syntax) — Syntax to which the Grammar conforms.

4.3.17 GraphicElement

This class represents additional graphics details for a projection.
Specializes
e PresentationElement (from UML)
Attribute
e BackgroundColor (Long) — The color of the area which surrounds and/or is between graphical
elements of an object. The value should be in standard RGB three-byte format.

4.3.18 Import

This class represents one package being imported by ancther. An import dependency causes the public
contents of the target package to be referenceable in the source package.

Specializes
e Dependency (from UML)

4.3.19 Library

This class represents defining alibrary (e.g., aDLL). It realizesthe UML “library” stereotype. A library is
associated with the e ements (including modules) it contains by means of the inherited UML “implements’
relationship.

Specializes
e Component (from UML)

4.3.20 Line

This class represents a single line on a diagram. This may be made up of several line segments. The first
point in the points collection is an absolute point on the diagram and every point thereafter is a point
relative to the previous point.

Associations

e LineContainer (LineContainer) — The view object described using thisline.
Specializes

¢ PointContainer

e LineProperties

4.3.21 LineContainer

This class represents a set of lines.
Associations

e Lines (Line) — Thelines contained in this container.

4.3.22 LineProperties

This class represents various properties of aline.

28 Analysis and Design: UML Extensions

A W N P

© 00 N O

10
11

12

13
14
15
16

17

18
19
20
21

22
23

24
25

26

27
28

29
30

31

32
33

Open Information Model Meta Data Coalition

Attributes
e Style (String) — The style of line (e.g., solid, dashed, or dotted).
e Width (Integer) — The width or weight of the linein points.
e Color (Long) — The color of the line. The value should be in standard RGB three-byte format.

4.3.23 MemberVariable

This class represents a member variable. This includes members of structures, unions, member
variables/fields on atype, and entry variables of modules.

Attributes

e Offset (Long) — The offset of the member variable in the structure.
Specializes

e Attribute (from UML Extensions)

4.3.24 Module

This class represents a module (i.e., a group of operations and entry variables).
Specializes

e Component (from UML Extensions)

e ModuleSpec (from UML Extensions)

4.3.25 ModuleOperation
This class represents an operation that is contained in a module.
Attributes
e EntrylDString (String) — Identifies a named entry point in the DLL.
e EntrylDOrdinal (Long) — Identifies an entry point in the DLL viaan ordinal.

e Body (Text) — Thetext of the body of the module operation. This may include its mandatory
encompassing signature.

Specializes
e Operation (from UML Extensions)

4.3.26 ModuleSpec

This class represents the specification of amodule (i.e., a group of operations and entry variables). The
module is related to its members by the relationship inherited from Classifier (from UML).

Specializes
e Classifier (from UML)
4.3.27 MultiplicityProjection
This class represents the projection of the multiplicity of an association end.
Specializes

e PointContainer

Analysis and Design: UML Extensions 29

AW N P

© 00 N o O

10

11

12
13
14

15
16
17
18

19
20
21
22

23

24
25
26

27

28
29
30
31

32
33

35

Meta Data Coalition Open Information Model

o Font
Associations
e AssociationEndProjection (AssociationEndProjection) — The projection of the association end for
which thisisthe multiplicity.

4.3.28 NonTerminalSymbol

Name will contain the name of the symbol.
Specializes
e Symbol

Associations

e Subgtitute (Rule) — Rule that subgtitutes for the non-terminal symbal.

4.3.29 Point

This class specifies the domain and behavior of a three-dimensional Cartesian point in twips. A twipisa
unit of measurement, implemented as 1/20 of a point, or 1/1440 of an inch. There are 567 twipsto a
centimeter. Twips are screen-independent measurements.

Attributes
e X (Long) — The position along the x-axis.
e Y (Long) — The position along the y-axis.
e Z(Long) — The position along the z-axis.

4.3.30 PointContainer

This class represents any view object that can be described as a set of points.
Associations

e Points (Point) — The points that make up this element.

4.3.31 Project

This class represents a development project, such asa VBP or DSP file.
Specializes
e Package (from UML)

4.3.32 Projection

A projection of amodel eement onto a view element. This class can accommodate most of what the
common types of projection require: a collection of points, afont, aline style, and some basic graphic
element details. If a projection requires more advanced details (e.g., a projection composed of multiple
graphic components), then another class and/or interface will be required.

For example, the projection for a Class depicted in some tool using the UML notation may simply be two
points defining the (left, top) and (width, height), and font information describing the display of the class
name labd.

In other cases, additional interfaces may provide additional view information. For example:

30 Analysis and Design: UML Extensions

0 N o O AW NP

(o]

el
()

=
N

BPRRERE R
©CoO~NO U AW

20

21
22

23
24

25
26
27

28

29
30
31

32
33

35
36
37

38
39

Open Information Model Meta Data Coalition

e A projection of an association end may require positional and font information to be recorded
about both the assoication end name label and the multiplicity labd.

e A projection of a Classin sometool may require information about whether properties and/or
methods are to be shown.

Specializes
e Font
e GraphicElement
e LineProperties
Attributes

e Style (String) — A string indicating any presentation information beyond location necessary to
render an e ement on a view e ement.

Associations

e Points (Point) — The collection of points specifying the placement of the referenced model el ement
on the referenced view element. If amoded el ement is composed of several graphical elements on
aview element, then it may have collections of points appearing on other interfaces. The specific
type must specify what this collection of pointsisto be used for. For node-like el ements, this
collection should consist of two points (Left, Top,0) and (Width,Height,0). For line-like e ements,
thefirst point in this collection should describe the absol ute position of the first point of the ling;
each subsequent point should describe its position relative to the previous point in the collection.

4.3.33 RelationshipProjection

A projection of any UML relationship model e ement onto a view e ement such as adiagram. This
projection has a collection of all lines of the relationship that, in turn, contain a collection of points.

The collection of points on the inherited projection type is reserved for the (I€eft, top) and (width, height)
points of the relationship’s name.

Specializes
e LineContainer
e Projection
4.3.34 Rule
Specializes
e C(Classfier (from UML)
Associations
e Elements (Statement) — Represents the root of the right side of therule, i.e. an Expression or a

Symbol.

4.3.35 Statement
Specializes

e ModedElement
Attributes

e Occurrence (Multiplicity) — Occurrence of the statement (Expression or Symbal) in a Rule or
Expression (1, 0..N, N, N..M).

Analysis and Design: UML Extensions 31

=Y

a b~ WN

© 0 N O

10
11

12

13
14
15

16

17
18
19
20
21
22

23

24
25

26

27
28
29
30

31
32

Meta Data Coalition Open Information Model

4.3.36 Symbol

Abstract class representing e ements decomposed within arule. I's specialized to Terminal Symbol and
NonTermina Symbols.

Specializes

e Statement

4.3.37 Syntax

Represents the syntax or rules to which an grammar conforms. An example is the C++ language.
Specializes

e Classifier (from UML)
Associations

e SyntaxSymbols (SyntaxSymbol) - Collection of terminal symbols used described by the Syntax.

4.3.38 TaggedValue

This class represents a tagged value that can be a member of atagged value set (TaggedValueSet).
Specializes
e TaggedValue (from UML)

4.3.39 TaggedValueSet

This class represents a set of tagged values.
Specializes
e TaggedValue
Associations
e TaggedValues (TaggedValue, derived from UML:TaggedValue.taggedValues) — The tagged
valuesin this set.

4.3.40 TerminalSymbol

Specializes
e Symbol

4.3.41 VariantTaggedValue

This class represents a tagged value that may contain a COM variant.
Specializes

e TaggedValue (from UML Extensions)
Attributes

e \VariantValue (Binary) — An arbitrary variant value to be associated with the name for the
associated Element.

32 Analysis and Design: UML Extensions

~No o B~ W DN

10
11

Open Information Model Meta Data Coalition

4.3.42 ViewElement

ViewElement is an abstract classthat represents atop-level container for projections, e.g. adiagram.
Specializes

e ModeElement (from UML)
Associations

e Projections (Projection) — The collection of all projections referencing the model elements that
appear on this view e ement.

4.4 OIM 1.0 Compatibility

e Thereflexive relationship on Attribute (the relationship whose assoication end names are
BasedAttributes and DerivedAttributes) has been removed because its functionality was duplicated
by Derivation.

Analysis and Design: UML Extensions 33

N

© 00 N o bW

10

11
12

13
14

Meta Data Coalition

5

5.1 Overview

The Generic Elements package provides a set of general-purpose classes that are relevant across diverse
information models. In some cases the classes described are designed to fill atemporary gap in other

models until a more compete model isintroduced.
Specifically, the Generic moddl:

e Addsthe ahility to specify component version information.

e Addsthe ahility to point to external objects, such asfiles.

e Introduces the concept of handlers for OIM objects.

The Generic Elements package is dependent on the UML package.

5.2 Model Reference

Surrogate

URL : String

SourceCreated : Date Time
SourcelLastChanged : DateTime
Repository Updated : Date Time

ModelE lement

Open Information Model

Analysis and Design: Generic Elements

NamedVersion

Storage

MajorVersion : String
MinoVersion : String
Revision : String

MIMEType : String
Stream : Binary

Summaryinformation

HelpContext : String
DescriptionContext : String
Ownerinformation : String
Status : String

Author : String

Caption : String

Package

. . (from Core)
Repository UpdatedBy : String
0.1 0.*
HelpSource
+HelpSource
0..* 0..*
Keyword
+Keywords
0.1 0..*
DescriptionSource .
+DescriptionSource
lcon +Icons 0.~
Kind : String 0.+
Package
from Model Management)
+
TypeDef DefaultTypes
Extension : String 0..* 0.
TypeDef : String ..
ClassDef : String +AllowedTypes

0..* o

34

Figure 12:

Generic Elements

Analysis and Design: Generic Elements

© 00 N o O

10
11
12
13
14

15

16
17

18
19
20

Open Information Model Meta Data Coalition

Element
(from Core)

£

TelephoneNumber
PhoneNumber : String . Contactinfo
PhoneType : String 0. 11 Title : String
+Telephone
1.1
EMaillD 0..*
EMailAddress : String | +EMails
EMailType : String
0.* 1.1
Location

LocationType : String | tLocations

Figure 13: Contact Information

521 Contactinfo

This classis designed as a simple way to describe a person who can be contacted.
Specializes

e ModeElement (from UML)
Attributes

e Title (String) — The contact may have atitle, such as“Director”.
Associations

e EMails (EMaillD) — The contact may have one of more e-mail addresses.

e Telephone (TelephoneNumber) — The contact may have one of more telephone numbers.

e Location (Location) — The contact may have one of more locations, such as addresses.

5.2.2 DescriptionSource

A description source is atype of surrogate that pointsto aresource that provides additional descriptive

information. For example, it could point to a specification document for a classifier.
Specializes

e Surrogate (from Generic Elements)

e ModeElement (from UML)

Analysis and Design: Generic Elements

o~N OO O~ W DN

10
11

12
13
14

15

16
17
18
19
20

21
22
23

24

25
26

27
28

29

30
31
32
33

Meta Data Coalition Open Information Model

5.2.3 EMaillD

An instance of this class defines a contact’ s e-mail address.
Specializes
e Element (from UML)
Attributes
e EMailAddress (String) — The actual e-mail address would be stored here.
o EMailType (String) — Usage information about the e-mail address, such as whether it’s a home
account, business account, or backup business account.

5.2.4 HelpSource

A help source is atype of surrogate that pointsto aresource that provides help. For example, it could point
to ahelp file on a network resource.

Specializes
e Surrogate (from Generic Elements)
e ModeElement (from UML)

525 Icon

Anicon isatype of surrogate that points to an icon resource.
Specializes

e Surrogate (from Generic Elements)

e ModeElement (from UML)
Attributes

e Kind (String) — Indicates the kind of the icon. The value is user-defined. It allows different icons
that represent the object in different conditions to be distinguished. For example: color vs.
monochrome or opened vs. closed (for an icon of afolder).

5.2.6 Keyword

This class represents keywords that are used for classifying an object. Such keywords can be used as a
search criterion when searching catal ogs for objects.

Specializes
e ModeElement (from UML)
5.2.7 Location
This classis used to represent any type of physical location, such as a house address.
Specializes
e Element (from UML)
Attributes

e LocationType (String) — Indicates the type of address, such aswork or home.

36 Analysis and Design: Generic Elements

o O~ WD

©

10
11
12
13

14
15

16

17

18
19

20
21
22

23
24

25
26
27
28

29

30
31

32
33

35
36

Open Information Model Meta Data Coalition

5.2.8 NamedVersion

This class represents user-defined version information (e.g., version 2.1.001).
Attributes

e MajorVersion (String) — The major version.

e MinorVersion (String) — The minor version.

e Revision (String) — The Revision (e.g., the build number).

5.2.9 Package

This classis afurther refinement of the UML package. It adds the ability to define allowed and default
types for itemsin the package.

Specializes
e Summarylnformation
e Package (from UML)
Associations

o AllowedTypes (TypeDef) — The typesthat are allowed to be contained within the package. If no
such types are specified, then the package is allowed to contain any type.

o DefaultTypes (TypeDef) — The typesthat are normally in that package.

5.2.10 Summaryinformation

This class allows additional summary information beyond that provided by Summarylnformation (from
UML Extensions).

Attributes
e HelpContext (String) — A key into the associated Hel pSource.
e DescriptionContext (String) — A key into the associated DescriptionSource.

o Ownerlinformation (String) — The contact information for the object, such as the person or
organization which manages this object.

e Satus (String) — Indicates the status of the object, such asits degree of completeness, its
robustness, and so on. For example, a document may have status “draft”, or a component may
have status “published”. This property is not intended as a formal classification of objects for use
by configuration management tools, but more for browser tools as display information.

e Author (String) — The person or organization who was the major creator of the object.

e Caption (String) — The human name for an object. This property could store the value for this
object that should be displayed on aform or report.

Associations
e HelpSource (HelpSource) — The source of help on this object.
e Keywords (Keyword) — The keywords used to describe or categorize this object.
e DescriptionSource (DescriptionSource) — The description source for the object.

e Icons (Icon) — Theicons that represent the object.

Analysis and Design: Generic Elements 37

=Y

D OB~ WN

10
11
12

13

14
15

16

17
18
19
20

21
22

23
24

25

26
27

28
29
30
31

32
33

Meta Data Coalition Open Information Model

5.2.11 Storage

This class represents the physical storage of an element. The class may be used when the actual
implementation of a component or element accompanies the e ement description.

Attributes
e MIMEType (String) — Describes the format of the storage stream.
e Sream (Binary) — Contains the actual € ement storage.

5.2.12 Surrogate

A surrogate represents an object that is not stored in the repository.

This class simply allows a URL of the source object to be recorded, along with relevant timestamp details.
It is envisaged that future extensionsto thisinterface will be defined to add an Object property, allowing
the source object to be set and/or retrieved, and to provide support for synchronization between the
surrogate and its source.

Attributes

e URL (String) — The URL of the source (surrogated/replicated) object. For example, for afilewith
path C:\examplessmyfile.txt the URL would be File://C:\examples\myfile.txt.

e SourceCreated (DateTime) — The date and time that the source object was created.

e SourceLastChanged (DateTime) — The date and time that the source object was last changed.
Thisrecords any last changed timestamp on the source object at the time the replica/surrogate is
created (or refreshed). Comparing thiswith the current value of thelast changed timestamp on the
source object indicates whether the replicated details are still up-to-date.

e RepositoryUpdated (DateTime) — The date and time that the repository was last updated with
information from this source.

¢ RepositoryUpdatedBYy (String) — Identifies the user ID that initiated the last repository update from
this source.

5.2.13 TelephoneNumber

This class represents a phone number. It allows for the expression of both the actual phone number and its
type.
Specializes
e Element (from UML)
Attributes
e PhoneNumber (String) — The actual phone number, such as (123) 456-7890.

e PhoneType (String) — Explains when this phone number should be used, such as home or business
phone, cell phone, pager, or fax.

38 Analysis and Design: Generic Elements

1

A~ W

QUOVWoO~NO® (6]

12
13
14
15

16

17
18

19
20

Open Information Model Meta Data Coalition

5.3 OIM 1.0 Compatibility

Element
(from Core)
MenuContainer | 0.1 0. Menu
ModelElement +Menus |MenuText : String
(fom Core) {sorted}
0.1
TypeDef
Extension : String 0.1 0.* +SubMenus
TypeDef : String Handler o~
ClassDef : Stiing +Handlers | Handler : String -
{sorted}

NamedVersion
MajorVersion : String
MinorVersion : String
Revision : String

Figure 14: OIM 1.0 Compatibility Classes

53.1 Handler

This class defines a handler for some type of object within some context. The context is defined through
the name on the relationship between atype and its handlers. For example, a particular handler may be
responsible for various user interface events on objects of some type within the context of some Explorer.
The handler would identify a class that would be instantiated by the Explorer, which would provide the
needed services.

Specializes
e MenuContainer
Attributes

e Handler (String) — Theidentifier of the component that serves as the handler. An instance of the
handler can be created to handle events within the context.

5.3.2 Menu

This class represents a user interface menu or menu item. Thisincludes both menus appearing on menu
bars and free-floating context menus.

Specializes
e Element (from UML)

Analysis and Design: Generic Elements 39

o0 b~ WON

~

10
11
12

13

14
15
16
17

18
19

20
21
22

23
24
25

26

Meta Data Coalition Open Information Model

Attributes

e MenuText (String) — The name appearing on the menu item (with ampersands on underscored
characters).

Associations
e SubMenus (Menu) -The menu items on this menu. There should only be menu itemsiif the
supermenu is a menu itself.

5.33 MenuContainer

An instance of this class contains menus.
Specializes

e Element (from UML)
Associations

e Menus (Menu) — The collection of contained menus.

5.3.4 TypeDef

This class represents an object in the repository that can be associated with a handler.
Specializes

e ModeElement (from UML)
Attributes

e Extension (String) A short string of characters which help identify objects of thistype (e.g., the
three-letter DOS file extension).

o TypeDef (String) -The ID of the type this definition this appliesto.
e ClassDef (String) — The ID of the class this definition this applies to.
Associations

e Handlers (Handler) — Associates a type definition with the handlers of that type within various
contexts. For example, a type may be associated with ahandler that will manage the context menu
within the context of some Explorer.

40 Analysis and Design: Generic Elements

QUOVWoo~N OO0k~ W N

=

12
13
14
15
16

17

18
19

20
21

Open Information Model Meta Data Coalition

6 Analysis and Design: Common Data Types

6.1 Overview

The Common Data Types package provides data type definitions for the Open Information Moddl. The
goal of the model isto standardize and unify data types. The package el ements are used as a base set of
types that is extended to represent the data type concepts of other information models in the Open
Information Model.

The package is defined as a set of extensionsto the Unified Modeling Language Information Model (UML)
that provides a set of classes for describing data types. The scope includes the common data types needed
for component specifications, component implementation languages, and databases. The intent is that this
model is extended and specialized by particular information models of these and other domains.

6.2 Semantics

The Common Data Types package provides definition of data types for the Open Information Moddl. It
forms the basis for extensions to include additional data typesin specific domains. It is expected that the
types described in the model will be defined as reusable instances, which will minimize the number of
instances representing identical data types. Type instances should be uniquely identified by name or
identifier within a data type set.

6.3 Class Reference

This section describes the data types of the Common Data Types package.

ModelElement
ModelE lement DataType
(from Core)
(from Core) (from Core)
TypeSet 1.1 +Types | ObjectType UnderlyingT 0
ion - Stri +Underlyin e ..
Version : String o~ yingTyp ObjectTypeMapping
+SwitchType L1 BestMatch : Boolean
o +ExposedType 0..*
Attribute - 11
(from Auxiliary Elements) .
MemberVariable +Type +Type
A 0.1 0.1
+Members UnionMember Attribute
MemberCase : String (from Core)
IsDefault : Boolean
0.*
Union Primitive Alias Structure Enumeration 1 EnumerationLiteral
* *
0.1 0. 1" [/ name : UML:Name
+Literals |/ value : UML:Expression

Figure 15: Data Types

Analysis and Design: Common Data Types 41

=Y

N OO 0o B~ WD

10
11
12
13
14
15

16

17
18
19
20
21
22
23

24

25
26
27

28
29

30

31
32
33

Meta Data Coalition Open Information Model

6.3.1 Alias

Alias describes an alias for another type (e.g., a C++ typedef). Thisincludes any user-defined datatype that
merely provides an alternate name for atype.

Specializes
e ObjectType
Associations

o Type (ObjectType) — The type represented.

6.3.2 Enumeration

Enumeration describes an enumeration datatype; i.e., a set of named constants (e.g., a C++ enum). Each
enumeration constant is a (constant) attribute, with a defined initial value.

Specializes
o ObjectType
Associations
o Type (ObjectType) — The type of the constants within the enumeration.

e Literals (EnumerationLiteral) — The set of literals for the enumeration.

6.3.3 EnumerationLiteral

Describes the values that an instance of the attribute of the related enumeration type may contain.
Specializes
e Attribute (from UML)
Attributes
e Name (Name, derived from UML:ModelElement.Name) — A display name for the literal value.
. I_/al ua? (Expression, derived from UML:Attribute.InitialValue) — The value (e.g. stored) for the
iteral.

6.3.4 ObjectType

ObjectType is an abstract type that is supported by all data typesin the Common Data Types package. It
extends the UML Classifier by allowing relationships to other types that reference the object typein their
definition (e.g., aliases or pointers).

Specializes
e DataType (from UML)
6.3.5 ObjectTypeMapping
The natural mapping of an object type in a namespace to a set of object types in another namespace.
Specializes
e ModeElement (from UML)

42 Analysis and Design: Common Data Types

©oo ~NO O hOWON P

10

11
12

13
14

15
16
17
18

19

20
21

22
23
24

25
26

27
28

29

30
31
32
33

35

Open Information Model Meta Data Coalition

Attributes

e BestMatch (Boolean) — Indicates that the mapping between a pair of object typesisthe best match.
Thereisaconstraint that for each underlying object type, only one instance of the mapping will
have BestMatch = TRUE.

Associations

e UnderlyingType (ObjectType) — The underlying object type of the mapping pair, i.e. the object
type from which the exposed type is mapped.

o ExposedType (ObjectType) — The exposed type of the mapping pair, i.e. the object type to which
the underlying type is mapped.

6.3.6 Primitive

Instances of this class represent primitive data typesin a system (e.g. a C++ char or int). Primitives are
generally implemented directly by a system rather than being abstractly defined.

Specializes
o ObjectType

6.3.7 Structure

Structure defines a structured data type (e.g., a C++ struct).
Specializes
o ObjectType

6.3.8 TypeSet

The set of object and data types for a specific system or application, for example, areationa database
system or programming language.

Specializes
e Namespace (from UML)
Attributes

e Version (String) — The version identifier of the specified object type set. For example, this might
differentiate between the data types supported in ODBC 2.0 and 3.0.

Associations

o Types (ObjectType) — The collection of data types that make up the set.

6.3.9 Union

Union describes a union data type (e.g., a C++ union).
Specializes
e ObjectType
Associations
e SwitchType (ObjectType) — The type of the switch for the union.
e Members (UnionMember, derived from UML:Classifier.feature) — The members of the union.

Analysis and Design: Common Data Types 43

o~N OO O~ W DN

10
11

12

13
14

Meta Data Coalition Open Information Model

6.3.10 UnionMember

UnionMember describes the members of a union.
Specializes
e MemberVariable (from UML Extensions)
Attributes
e MemberCase (String) — Defines the value of the union switch that selects this member.

o |sDefault (Boolean) — Indicates whether or not thisisthe default member of the union. The default

iSFALSE.

6.4 OIM 1.0 Compatibility

This section describes classes of the Common Data Types package required for OIM version 1.0
compatibility.

ObjectType
+Type +Type

1.1 Z} 1.1

IntrinsicType
OctetLength : Integer
StorageExpression : String

IsSequenced : Boolean
IsNamed : Boolean

B

Array
LowerBound : Long

Binary Numeric Float Time

Length : Long NumericScale : Integer FloatPrecision : Integer TimePrecision - TimePrecision
IsVariable : Boolean NumericPrecision : Integer

IsSigned : Boolean
Date
String
IsVariable : Boolean ‘ ‘

Length : Long - -
IsCaseSensitive : Boolean Integer Decimal ‘ Single ‘ Double
ZF Pointer

[
CollectionType

Urorond Lo

0. |PP - -ong T I

Datetime

CharacterType : CharacterType

Longint

Boolean ‘ Tinyhnt

Figure 16: Common Data Types (OIM 1.0 compatibility)

‘ Shortint

‘ Quadint

44 Analysis and Design: Common Data Types

=

N o o B~ WD

oo

10
11
12
13
14
15

16

17
18

19
20

21

22
23
24
25
26
27

28

29
30
31
32
33

35

Open Information Model Meta Data Coalition

6.4.1 Array

Array is supported by all datatypes whose values are arrays of objects (i.e., sequenced, indexed
collections).

Specializes
e CollectionType
Attributes
e LowerBound (Long) — The lower bound of the array.

6.4.2 Binary

Binary describes a binary large object datatype. Thisincludes such types as memo and unbounded text.
Specializes

e Scalar
Attributes

e Length (Long) — The maximum length of the blob (in bytes).

o !|§|\?/Sr|i5able (Boolean) — Indicatesif the blob value may be of a variable length. The default is

6.4.3 Boolean

Defines a Boolean data type. A Boolean is any type that defines only two possible values - TRUE and
FALSE.

Specializes
e Scalar

6.4.4 CharacterType

An enumeration whose values indicate the type of the character set used in a string.
Values

e CHARACTER TYPE_SINGLE BYTE=0

e CHARACTER TYPE_DOUBLE BYTE=1

e CHARACTER TYPE _MULTI_BYTE=2

e CHARACTER TYPE_UNICODE =1

6.4.5 CollectionType

CollectionType is supported by all datatypes whose values are collections of objects.
Specializes

e IntrinsicType
Attributes

e UpperBound (Long) — The upper bound of the collection.

e IsSequenced (Boolean) — Indicates whether collections of this type are sequenced. The default is
TRUE.

Analysis and Design: Common Data Types 45

A W NP

0 N o O

10
11
12
13

14

15
16

17
18

19

20
21

22
23

24

25
26

27
28
29
30

31

32
33

Meta Data Coalition Open Information Model

e |sNamed (Boolean)- Indicates whether a name can be applied to the membership of elementsin
collections of thistype. The default is FALSE.

Associations

o Type (ObjectType) — The type of object contained.

6.4.6 Date
Defines a date data type. This does not include time.
Specializes

e Scalar

6.4.7 Datetime

Datetime describes a combined date time datatype, encapsulating Date and Time.
Specializes
e Time

e Date

6.4.8 Decimal

Decimal describes an exact decimal data type. This differs from Float, as float is an approximate value and
Decimal is exact.

Specializes

e Numeric

6.4.9 Double

Double describes a signed, approximate, numeric value with a binary precision 53. (zero or absolute value
10[-308] to 10[308]).

Specializes
e Float

6.4.10 Float

Float describes any floating point data type of an arbitrary precision. The actual precision of an instance
that supports the Float interface should be indicated by the FloatPrecision attribute.

Specializes
e Scalar
Attributes
e FloatPrecision (Integer) — The maximum number of base 10 digits that can be stored.

6.4.11 Integer

Integer describes a non-specific integer data type. Instances of this type should set the NumericScale
property inherited from Numeric type to zero.

46 Analysis and Design: Common Data Types

14

15
16
17
18

19
20

21

22
23
24
25

26
27
28
29
30
31
32

33

35

36
37

Open Information Model Meta Data Coalition

Specializes

e Numeric

6.4.12 IntrinsicType

An intrinsic typeis one that is built into the information model
Specializes

o ObjectType
Attributes

e OctetLength (Integer) — OctetLength is an attribute used to specify the number of 8 bit bytes that
are used in the physical storage of this data type. This value differs from length in many of the
data typesin that this value should take into effect any overhead involved in the storage of this
data type.

e SorageExpression (String) — Storage Expression is a user-defined attribute describing the physical
storage characteristics of the data type in question. The format of this attribute is undefined.

6.4.13 Longlint

Longlnt describes a double word (4 byte) integer data type. Instances of this type should set the
NumericPrecision attribute inherited from Numeric to less than or equal to 10 and NumericScale to 0.
Signed and unsigned 4 byte integers are distinguished by using the IsSigned attribute inherited from
Numeric.

Specializes
e Integer

6.4.14 Numeric

Numeric describes a numeric data type. The Numeric Scale and Numeric Precision values represent the
scale and precision of the values of this data type rather than the scale and precision allowed by the storage
mechanism. For example, a piece of information that can have the values 1-9 should have the precision for
its data type set to 1 and the scale to 0, without regard to how the data is actually stored.

Specializes
e Scalar
Attributes
e NumericScale (Integer) — The maximum number of digitsto theright of the decimal point.
e NumericPrecision (Integer) — The maximum number of base 10 digits that can be stored.
. ::sfl_gggd (Boolean) — Indicates whether or not the value of this type may be signed. The default is

6.4.15 Pointer

Pointer describes a pointer data type. A pointer is any indirect reference to an object established by a
physical address.

Specializes
e Scalar

Analysis and Design: Common Data Types 47

N

© 00 NOOl»~ w

10

11
12
13
14

15
16

17

18
19

20
21

22

23
24
25
26

27
28

29

30
31

32
33

35

Meta Data Coalition Open Information Model

Associations

o Type (ObjectType) — The type of object referenced.

6.4.16 QuadInt

Quadint describes a quad word (8 byte) integer data type. Instances of this type should set the
NumericPrecision attribute inherited from Numeric to a number less than or equal to 19 (if signed - 20 if
unsigned) and the scale to 0. Signed and unsigned 8 byte integers are distinguished by using the IsSigned
attribute inherited from Numeric.

Specializes
e Integer

6.4.17 TinyInt

Tinylnt describes a half word (1 byte) integer data type. Instances of this type should set the
NumericPrecision attribute inherited from Numeric to a number less than or equal to 3 and NumericScale
to 0. Signed and unsigned 1-byte integers are distinguished by using the IsSigned attribute inherited from
Numeric.

Specializes
e Integer

6.4.18 Scalar

Scalars are atomic data types used in a system. Strings and numbers are examples of scalars. This class
simply acts as a classification of such types.

Specializes

e IntrinsicType

6.4.19 Shortint

ShortInt describes a double word (2 byte) integer data type. Instances of this type should set the
NumericPrecision attribute inherited from Numeric to less than or equal to 5 and NumericScaleto O.
Signed and unsigned 2-byte integers are distinguished by using the IsSigned attribute inherited from
Numeric.

Specializes
e Integer
6.4.20 Single

Single describes a signed, approximate, numeric value with a binary precision 24. (zero or absolute value
10[-38] to 10[38]).

Specializes
e Float.

6.4.21 String
String describes a string data type.

48 Analysis and Design: Common Data Types

POWOW O~N O OO W N P

= el
N

e =~
o o~ W

e
o~

19

20
21

22
23
24
25
26
27
28
29
30
31
32
33

35
36

Open Information Model Meta Data Coalition

Specializes
e Scalar
Attributes

e |sVariable (Boolean) — Indicates whether or not the string value is of avariablelength. The default
is TRUE.

e Length (Long) — The maximum or defined length of the string data type (in characters).

e |sCaseSensitive (Boolean) — Indicates whether or not strings of thistype are case sensitive. The
default is FALSE.

e CharacterType (Character Type) — Character type specifies the width of the character set used in
the string. It is an enumeration containing values for single-byte, double-byte, and multi-byte
character sdts.

6.4.22 Time

Time describes a time data type.
Specializes
e Scalar
Attributes
e TimePrecision (Datetime) — Precision (maximum number of digitsin the fractional seconds
portion) of the data type.

6.4.23 TimePrecision

An enumeration whose values indicate the number of digitsin the fractional seconds portion of atime
guantity.

Values
e TIMEPRECISION_YEARS=0
e TIMEPRECISION_MONTHS =1
e TIMEPRECISION_DAYS=2
e TIMEPRECISION_HOURS =3
e TIMEPRECISION_MINUTES =4
e TIMEPRECISION_SECONDS=5
e TIMEPRECISION_TENTHS=6
e TIMEPRECISION_HUNDREDTHS = 7
e TIMEPRECISION_THOUSANDTHS = 8
e TIMEPRECISION_TENTHOUSANDTHS =9
e TIMEPRECISION_HUNDREDTHOUSANDTHS = 10
e TIMEPRECISION_MILLIONTHS = 11

6.4.24 Void
Void describes avoid type.

Analysis and Design: Common Data Types 49

Meta Data Coalition Open Information Model

Specializes

e IntrinsicType

50 Analysis and Design: Common Data Types

N

el
RPoOOVWoO~NOUA

12

13

14
15
16
17
18
19

20
21
22

Open Information Model Meta Data Coalition

7 Analysis and Design: Entity Relationship
Modeling

7.1 Overview

The Entity Relationship Modeling package provides meta data types for ER-based modeling toolsto store
information about relational systems and provide alogical modeling level for physical database design
toals. It is based on IDEF1X, a diagramming method originally developed by the U.S. Air Force and
widely used in various governmental agencies, in the aerospace and financial industry, and supported by
most database design tools. IDEF1X isamethod for designing relational databases with a syntax designed
to support the semantic constructs necessary in developing a conceptual schema. A conceptual schemaisa
single integrated definition of the enterprise data that is unbiased toward any single application and
independent of its access and physical storage.

This package extends the UML package

7.2 Semantics

Entity Relationship Diagrams consist of a few basic concepts. An entity specifies a type for real or abstract
things that have common attributes or characteristics. Entities can be mapped in other model sto deployable
or physical concepts such as tables or components. Like UML, a powerful feature of IDEF1X isits support
for modeling logical data types through the use of a classification structure or generalization/specialization
construct. Attributes represent properties of instances of entities. Keys are collections of attributes that
represent uniqueness constraints over the values of entity attributes.

A relationship indicates an association between entities. Relationships may have a specific set of
semantics, for example cardinality or relationship rules which govern the deletions or changes to related
entities.

Analysis and Design: Entity Relationship Diagrams 51

Meta Data Coalition Open Information Model

7.3 Class Reference

Classifier AssociationEnd Association
(from Core) (from Core)
(from Core)
Entity +Entity ReferentialRule 2 1 Relationship
- N Delete : String +1 i] MinVolume : Integer
MinVol o * ' ntegrityRules
Mm i 0-* | Update : String * MaxVolume : Integer
axVolume : Integer Insert - Strin 0.. AaVolume : Intedor
AvgVolume : Integer [: 9 vgvolume : Integer
GrowthRate : Integer RelationshipType : String
+Supertype | rowthPeriod : String| *+Subtype
- 0.*
1 1

Generalization
(from Core)

ModelElement

Z% (from Core)

Generalization
IsExclusive : Boolean

IsCovering : Boolean
0.* ¢ 0.> +ParentKey Key
KeyType : KeyType
i 1 | Y YPe S REYIYPE L Childkey
+Specializations +Generalizations
+Keys
0.*

Figure 17: Entities and Relationships

Classifier Attribute

(from Core) (from Core) ObjectType
(from Data Types)

Entity Attribute

MinVolume : Integer Sample : String

——MaxVolume: Integer +Attributes
AvgVolume : Integer >

+Type DataType

1 |GrowthRate : Integer |1 * _
GrowthPeriod : String +Attributes
0.x 1% ModelElement
A b, (fom Core)
+ChildAttribute 0.%
+ParentAttiibute
0..* Key

KeyType : KeyType

+Keys
0..*

Figure 18: Attributes

52 Analysis and Design: Entity Relationship Diagrams

Open Information Model

Meta Data Coalition

ModelElement
(from Core)

Attribute Classifier ObjectType
(from Core) (from Core) (from Data Types)
- 0..* DataType
Attribute) Domain 1 yp
Sample : String *+Domain i nyii : Boolean +DefaultType
0.* 1|Precision : String
Scale : String
0..*
0..*
+ChildDomain
0..*

Value

NumericValue : Integer
StoredValue : String
ValueExpression : String

1 7

01

+ParentDomain
|

Constraint
(from Core)

+DefaultvValue

ValidationRule

+Validvalues 0.1

0..* 0.1 +ValidationRule
Figure 19: Domains
Diagram Projection Association
(from Presentation and View Elements) (from Presentation and View Elements) from Cor)
GraphicFeat GraphicFeature +GraphicFeatures Relationship
- . : :
StoredDisplay raphicFeatures FeatureType : String o o MinVolume : integer

Author : String
IsLogical : Boolean

Comment
(from Auxiliary Elements)

1

Text

0..* | PropertyType : String - MaxVolume: Integer

StoredValue : String Ang_olume; ! Integer _
RelationshipType : String

+GraphicFeatures +GraphicFeatures

0..*
0.* Classifier
(from Core)

Entity
MinVolume : Integer
MaxVolume : Integer

AvgVolume : Integer
0..* |GrowthRate : Integer
GrowthPeriod : String

Figure 20: Diagrams

Analysis and Design: Entity Relationship Diagrams 53

© 00 N ook~ W

10
11

12
13

14
15

16
17

18

19
20
21

Meta Data Coalition Open Information Model

Subsystem Model
(from Model Management)

Package

(from Model Management) (from Model Management)

+Models) 1
ModelLibrary > Model +SubjectAreas SubjectArea
ModelCount : Integer 1 * | AttributeCount : Integer 1.* |IsPrimary : Boolean
TotalObjectCount : Integer TotalObjectCount : Integer
0.1 EntityCount : Integer
+SubLibraries| * h -
Diagram
(from Presentation and View Elements)
i +Domains Z}
Domain StoredDisplay «
. *
EN“” : Bo_ogetqn 1 Author : String ,
recision : String L sLogical : Boolean +Diagams
Scale : String 1 1
+Relationships | * +Entities | « +Text| «
Relationship Entity Text

MinVolume : Integer
MaxVolume : Integer
AwgVolume : Integer
RelationshipType : String

MinVolume : Integer
MaxVolume : Integer
AwgVolume : Integer
GrowthRate : Integer

GrowthPeriod : String

Figure 21: Model Packaging

7.3.1 Attribute

Each instance of this class describes a characteristic or property associated with a set of real or abstract
things (people, places, events, etc.). The attribute “age” defined on an entity called “person” is an example
of an attribute. An attribute belongs to exactly one entity or subtype.

Specializes

e Attribute (from UML)
Attributes

e Sample (String) — A sample value that may be contained in an instance of this attribute.
Associations.

e ChildAttribute (Attribute) — Links an attribute to its child attributes, i.e. the attributes that are
contained with it.

e ParentAttribute (Attribute) — Links an attribute to its parent attribute, i.e. the attributesit inherits
from.

e Domain (Domain, derived from UML:Structural Feature. Type) — Links an attribute to the Domain
that defines valid values for instances of the attribute.

7.3.2 DataType

Each instance of this class describes the data type associated with a particular domain or attribute.
Specializes
o ObjectType (from Common Data Types)

54 Analysis and Design: Entity Relationship Diagrams

=

© 00 N O gabrhwdN

e
N B O

e
AW

e
o o

e
o~

N =
[(o]

21

22
23
24
25
26
27

28
29
30
31
32
33

35
36

37

38
39

Open Information Model Meta Data Coalition

7.3.3 Domain

Each instance of this class describes a domain, which represents a named and defined set of attribute
properties, including constraints on values the attribute can take. Each attribute is associated with exactly
one domain. The domain specifies the type, default value, possible values, etc. for attributes belonging to
the domain.

Specializes
e Classifier (from UML)
Attributes
e IsNull (Boolean) — Whether or not the attribute associated with the domain can have anull value.
e Precision (String) — The precision associated with the attributes belonging to the domain.
e Scale (String) — The scale associated with the attributes bel onging to the domain
Associations

e ChildDomain (Domain) —Link to the domainsthat depend upon thisdomain. Thevauesof achild
domain override the values in the parent domain.

e ParentDomain (Domain) — Link to the domain this domain inherits from.
o DefaultValue (Value) — Describes the default value taken by attributes belonging to the domain.

e DefaultType (DomainDataType) — Describes the default data type associated with attributes
bel onging to the domain.

e ValidationRule (ValidationRule) — Describes the validation rule to be applied to attributes
bel onging to the domain.

7.3.4 Entity

Each instance of this class describes a set of real or abstract things (people, places, events, etc.), which have
common attributes or characteristics. It can represent either a dependent or an independent entity. An
example of an entity isthe class of employees. Every instance of this class has common attributes like work
location, title, etc. The classes, salaried employees and non-salaried empl oyees are dependent entities
which derive from the class of employees. The class of salaried employees has all the attributes of the class
employees plus additional attributes like salary, etc.

Specializes
e Classifier (from UML)
Attributes
e MinVolume (Integer) — The minimum number of instances of the entity.
e MaxVolume (Integer) — The maximum number of instances of the entity.
e AvgVolume (Integer) — The average number of instances of the entity.
e GrowthRate (Integer) — The rate at which the number of instancesis projected to grow.

e GrowthPeriod (String) — The period of time for which the number of instances is projected to
grow.

Associations

o Keys (Key) — Whenever entities are connected by a relationship, the relationship contributes a key
(or set of key attributes) to the child entity. Links an entity to the keys defined on it.

Analysis and Design: Entity Relationship Diagrams 55

AW NP

© 0O~NO (61

10
11
12
13
14
15
16
17
18

19

20
21
22
23

24
25
26
27
28
29
30
31

32
33

Meta Data Coalition Open Information Model

e GraphicFeatures (GraphicFeature, derived from UML:Model Element.presentation) — Links an the
entity to the graphic features (projections) associated with it.

o EntityAttributes (Attribute, derived from UML:Classifier.feature) — Describes the attributes
bel onging to the entity.

7.3.5 GraphicFeature

Each instance of this class describes a graphic feature, which is arepresentation of the graphic features of a
particular object. These represent characteristics of the graphic representation of the associated object. The
line color, and line type, etc. used for drawing a relationship is an are examples of a graphic features.

Specializes
e Projection (Presentation and View Elements)
e Font (Presentation and View Elements)
e GraphicElement (Presentation and View Elements)
e LineContainer (Presentation and View Elements)
e MultiplicityProjection (Presentation and View Elements)
Attributes
e FeatureType (String) — The type of feature represented; i.e. whether it's a relationship, entity, etc.
e PropertyType (String) — The type of property represented. For example, line color, linewidth, etc.
e StoredValue (String) — The actual value of the property represented.

736 Key

Each instance of this class describes a key, which is a set of one or more attributes that identifies an
instance of the entity associated with it. In addition to a simgle primary (or unique) key, entities can have
alternate keys that also uniquely identify the entity, but are not used for describing relationships with other
entities.

Specializes
e ModeElement (from UML)
Attributes
o KeyType (KeyType) — Identifies the type of key.
Associations
e Attributes (Attributes) — Describes the set of attributes that comprises the key.
Condtraints

e Only asinglekey per entity should be designated as the primary key.

7.3.7 KeyType

Identifies the type of key associated with the entity.

Values
KEYTYPE_PRIMARY =1 The key uniquely identifies an instance of the
entity.
KEYTYPE_ALERNATE =2 If an entity has more than one unique key, all

56 Analysis and Design: Entity Relationship Diagrams

=Y

© 00 N o o b~ WN

e~ i e
o o W N P O

17

18
19
20
21
22

23
24

25

26
27

28
29

Open Information Model Meta Data Coalition

unique keys not selected asthe primary key are
described as alternate keys.

KEYTYPE_NON_UNIQUE =3 Does not uniquely identify an instance of an entity,
but are often used to access instances of entities.
Non-unique keys may be mapped to indexesin a
relational database.

KEYTYPE_FOREIGN =4 I dentifies the primary key attributes of a parent
entity contributed to a child entity across a
relationship.
7.3.8 Model

Each instance of this class describes a model, which isalogical collection of entities and the relationships
between them. Models are top-level constructs, that is, elements cannot be associated across models.

Specializes
e Modd (from UML)
Attributes
e AttributeCount (Integer) — The number of attributes of the objects described in the model.
e TotalObjectCount (Integer) — The total number of objects represented in the model.
e EntityCount (Integer) — The number of entities described in the model.
Associations.
e Domains (Domain) — The domains defined for the model.
o SoredDisplays (StoredDisplay) — The stored displays associated with the model.
e SubjectAreas (SubjectArea) — The subject areas associated with the model.
e Entities (Entity) — The entities contained in the modd.
o Relationships (Relationship) — The relationships contained in the model.
e Text (Text) — Thetextual annotations contained in the model.

7.3.9 ModelLibrary

Each instance of this class describes a model library, which is a collection of models.
Specializes
e Subsystem (from UML)
Attributes
e ModelCount (Integer) — The number of models contained in the library.
e TotalObjectCount (Integer) — The number of objects contained in al the models contained in the

library.
Associations.
e Models (Moddl, derived from UML:Namespace.ownedElement) — The collection of modelsin this
library.

e SubLibraries (ModelLibrary, derived from UML:Namespace.ownedElement) — The collection of
libraries nested in thislibrary.

Analysis and Design: Entity Relationship Diagrams 57

17

18
19

20
21
22

23
24

25
26

27
28

29
30
31

32
33

35
36

Meta Data Coalition Open Information Model

7.3.10 Relationship

Each instance of this class describes a relationship, which represents connections, links or associations
between entities.

Specializes
e Association (from UML)

Attributes
e MinVolume (Integer) — The minimum number of instances of the relationship
e MaxVolume (Integer) — The maximum number of instances of the relationship
e AvgVolume (Integer) — The average number of instances of the relationship

e RelationshipType (RelationshipType) — Describes the specifics of the relationship between the
Entities.

Associations.

e IntegrityRules (Referential Rule, derived from UML:Associ ation.connection) — Describes the
integrity rules associated with the relationship.

e GraphicFeatures (GraphicFeature, derived from UML:Mode Element.presentation) — Describes
the graphic features (projections) associated with the relationship.

7.3.11 RelationshipRole

Each instance of this class describes therole and entity playsin arelationship, which can be used to enforce
areferential integrity constraint.

Specializes
e AssociationEnd (from UML)
Attributes

e Delete (String) — Describes the action associated with deletion of an instance of the associated
entity.

e Update (String) — Describes the action associated with associated with update of an instance of the
associated entity.

e Insert (String) — Describes the action associated with associated with instantiation of an instance
of the associated entity.

Associations.
o ParentKey (Key) — The key that forms the parent of the referential rule.
e ChildKey (Key) — The key that depends on the parent key.
e Entity (Entity, derived from UML:AssociationEnd.type) — The entity which is participating in the
relationship.

7.3.12 RelationshipType

This enumeration describes the possible types of Relationships between Entities.
Values

RELTYPE_IDENTIFYING =1 A relationship whereby an instance of the child
entity isidentified through its association with a

58 Analysis and Design: Entity Relationship Diagrams

N

© 00 N O O~ w

10
11
12
13
14

15

16
17
18

19
20

Open Information Model Meta Data Coalition

parent entity. The primary key attributes of the
parent entity become primary key attributes of the
child.

RELTYPE_NONIDENTIFYING =2 A relationship whereby an instance of the child
entity is not identified through its association with
a parent entity. The primary key attributes of the
parent entity become non-key attributes of the
child.

RELTYPE_MANYTOMANY =3 A relationship where multiple instances of the
child entity are related to multiple instances of the
parent entity.

RELTYPE _COMPLETESUBTYPE =4 A subtype relationship (also known as a
categorization relationship) isarelationship
between a subtype entity and its generic parent. If
every instance of the generic parent is associated
with one subtype, then the subtype is complete.

RELTYPE_INCOMPLETESUBTYPE =5 A subtype relationship where instances of the
generic parent are not associated with at least one
subtype.

RELTYPE_DERIVED =6 A relationship between entities that is derived
from another relationship in the model (used for
view relationship).

7.3.13 StoredDisplay

Each instance of this class describes a stored display, which isagraphical presentation of a subject area or
model that highlights a particular aspect of the total data structure. A stored display can include objectsin a
other stored display, but the objects may be positioned differently.

Specializes
e Diagram (from UML Extensions)
Attributes
e Author (String) — The author of the display.
e RelationshipLineType (String) — The type of line used to represent relationships.
e Islogical (Boolean) — Whether or not the display isrepresents alogical or physical modd.
Associations
e GraphicFeatures (GraphicFeature, derived from UML:Namespace.ownedElement) — Describes
the graphic features contained in the stored display.

7.3.14 SubjectArea

Each instance of this class describes a subject area, a named, manageable and meaningful subset of a
model that may include all the entities, relationships, subtypes and diagrams, or any subset of the objectsin
the complete model.

Specializes
e Package (from UML)

Analysis and Design: Entity Relationship Diagrams 59

a b~ WON -

© 00~ »

10
11
12

13
14
15
16
17

18
19
20

21
22
23

24

25
26

27
28
29
30
31

32
33

35
36
37

38
39

Meta Data Coalition Open Information Model

Attributes

e |sPrimary (Boolean) — Whether the subject area is designated as the primary one. Tools may
designate one area as the main or default subset of the model.

Associations

o SoredDisplays (StoredDisplay) — The stored displays associated with the model.

7.3.15 SubType

Instances of this class (sometimes called categorization relationships) describe the generalization of an
entity into a subtype and supertype. For example, a salaried employee is a specific type of employee.
Subtypes are useful for expressing attributes or relationships only relevant to that subtype of the entity.

Specializes
e Generalization (Core)
Attributes

e |sExclusive (Boolean) — In an exclusive subtype relationship, each instance in the supertype can
relate to one and only one subtype. For example, you might model a business rule that says an
employee can be either a full-time or part-time employee but not both. To create the model, you
would include an EMPLOY EE supertype entity with FULL-TIME and PART-TIME subtype
entities and a discriminator attribute called “empl oyee-status.”

e |IsCovering (Boolean) - Specifies whether or not the set of subtype entitiesin a subtype
relationship is fully defined. When false, indicates that the modeler feels there may be other
subtype entities that have not yet been discovered.

Associations
e Discriminator (Attribute) — The value of an attribute in an instance of the generic parent
determines to which of the possible subtypes that instance belongs.

7.3.16 Text

Each instance of this class describes a text object, which may be used to store text annotational entrieson a
stored display.

Specializes
e GraphicFeatureComment (from UML Extensions)
Attributes
e TextSring (String) — Thetext contained in the field.
Associations
e GraphicFeatures (GraphicFeature, derived from UML:Mode Element.presentation) — Describes
the graphic features (projections) associated with the relationship.

7.3.17 ValidationRule

Each instance of this class describes a validation rule, which can be constraint expressions or alist of valid
values for attributes belonging to a domain. The validation rule specifies the rule that will be applied in
order to verify the validity of the assigned values.

Specializes
e Congtraint (from UML)

60 Analysis and Design: Entity Relationship Diagrams

N

PO © 00 N o O &~ W

el

Open Information Model Meta Data Coalition

Associations
e ValidValues (Validvaue) — Thelist of valid values or value ranges the rule checks against.

7.3.18 Value

Each instance of this class describes a value that an attribute can take.
Specializes
e ModelElement (Core)
Attributes
e NumericValue (Integer) — The numeric value associated with the instance of the class.
e SoredValue (String) — A string version of the value associated with the instance of the class.

e ValueExpression (String) — A string expression of the value associated with the instance of the
class.

Analysis and Design: Entity Relationship Diagrams 61

31

32
33

35
36
37
38
39

40
41

Meta Data Coalition Open Information Model

8 Object and Components: Component
Descriptions

8.1 Overview

Component-based development is the task of building families of product from kits of interoperable
components. Component sharing and reuse has become strategic for enterprisesin order to reduce cost and
time to deployment. Reuse and sharing requires tracking meta data throughout the whole life-cycle of a
component from specification through design and subsequent enhancements.

The Component Descriptions package defines component as “a software package that offers services
through interfaces.” Thisis meant to capture the perspectives of a component as the unit of packaging and
delivery, provider of services, and encapsulation boundary.

The Component Descriptions package covers the different component devel opment life-cycle deliverables.
It covers component specification, component implementation, and the result of construction - the
component executable (or simply “component” for short).

The model is divided into three distinct layers: specification, implementation, and executable. The
specification layer contains types whose purpose is to define the behavior specification of a component.
Theimplementation layer contains types that define the implementation of a component. The executable
layer contains meta data types that define the run-time characteristics or executable behavior of a
component.

The current version of the model defines the specification and executable layers. Future versions will also
include the implementation layer. It does not cover the supporting information that gives rise to those
deliverables: the requirements of different analysis, design and implementation tools, version and
configuration management tools, build tools, or component packaging and depl oyment concepts.

The Component Descriptions package intends to cover the various aspects of a component implementation,
but will not cover the specifics of any particular programming language. For example, a component
implementation may be realized using an object-oriented programming (OOP) language such as Java,
Smalltalk or C++, or a3GL, such as COBOL.

The Component Description package includes concepts derived from the following sources:
e Inter-operation Standards. OMG CORBA, Microsoft® OLE, Java/Beans.
e OOA/D Methods. In particular Catalysis, itself based on OMT and Fusion.
e The Unified Modeling Language (UML).

8.2 Semantics

This section explains the key aspects of the Component Description model. The model is genericin the
sense that it captures the common aspects of a number of different component models, including COM,
CORBA, and Java.

Theterm “component” is ubiquitous, so this section defines both its meaning in the Component Description
Model and how it relates to the UML definition. Benefits of components, such as reusability and
replaceability, and requirements, such as “plug-and-play,” have caused some of thislack of clarity by
promoting a particular aspect of a component and its consequent requirements and demoting more general
defining aspects.

The following are the most common perspectives:

e Packaging perspective - component as the unit of packaging, distribution, or delivery.

62 Object and Components: Component Descriptions

QOO NO O AW N B

=
l_\

NP RRRER R R
QOVONOURWN

N NN
WN -

WWWNDNNNDNN
NFRPOOO~NO U~

wwwwgw
O~NO O w

w
[Ee]

B
= O

Open Information Model Meta Data Coalition

e Consumer perspective - component as the provider of services.
e Integrity perspective - component as a data integrity or encapsulation boundary.

All of these perspectives support the notion of component reuse, which is, perhaps, the least constraining
requirement. The UML defines a component as:

“areusable part that provides the physical packaging of model e ements.”

This definition represents the packaging perspective, is quite general, and accommodates a number of
stereotypes. application, document, file, library, web page, and table.

The Component Description Model has atighter meaning for component, which iscommon to a number of
component models. The model further qualifies the UML definition by adopting the consumer perspective,
and defines a component as:

“a software package which offers services through interfaces.”

Components under this definition may also support theintegrity perspective by allowing a component to be
designated as independently creatable. Thisindependence enables the important requirement of component
replaceability to be achieved. Theintegrity perspective isanecessary condition for component replacement
in that it defines a component as a software encapsul ation boundary, that set of software which collectively
maintains the integrity of the data it manages. An encapsulated set of data is referred to as an instance of a
component, or a component object. Components that are not independently creatable may be termed “sub”
components and are created through specific operations on a related component. Therefore, they cannot be
replaced independently of that related component. Sub-components are still componentsin that they offer
services through interfaces, but they do not designate an encapsulation boundary.

The packaging perspectiveis called out in the Component Description Model as a server and is a separate
specialization of the UML component concept. A server may package many components and a component
may comprise many Servers.

An example of the difference between these perspectivesis the application Microsoft® Excel. The
packaged item is “excel.exe’. This correspondsto a server and contains a number of components such as
Application, Chart, and Sheet. Each of these is a component and is an encapsulation boundary. They are
independently creatable components and could be individually replaced. For example, an aternative
implementation of the Sheet component, which could inter-operate correctly with the application
component, could be implemented without having any implementation knowledge of the application
component. Within each component there are a number of sub-components that, once instantiated, behave
like any other component object but are not independently replaceable. Examples of sub-components
within a Sheet are Range and Cell.

The Component Description Modd is divided into three distinct layers. specification, implementation, and
executable. The specification layer contains classes whose purpose is to define the behavior specification of
a component. The implementation layer contains interfaces that define the implementation of acomponent.
The executable layer contains interfaces that define the run-time characteristics or executable behavior of a
component. The current version of the Component Description Mode specializes the specification and
executable layers. Future versions will also extend the implementation layer.

Specification Layer

To understand the Component Description Modél, it isinstructive to examine how the different component
models of CORBA and COM are modeled in UML in a generic way.

Object and Components: Component Descriptions 63

©Co~NOUITA~ W

10

12
13
14
15
16
17

18
19
20

Meta Data Coalition Open Information Model

CORBA COM

IX

refines

lx;lc;lB; ” lli;lA

Figure 22: CORBA and COM Component M odels

CORBA

CORBA specifies component behavior through interface definition language (IDL), which supports the
concept of multiple interface inheritance. The total behavior of a component can therefore be defined in
terms of a single interface (1X), which multiply inherits from the range of interfaces that collectively define
the behavior of the component (1A, IB, IC). In this scheme thereis no need for an explicit notion of
component specification; a CORBA component specification is simply an interface. Thisis covered in the
UML conceptual model by the Interface concept, which is a specialization of the type Classifier.

CoM

COM supports single interface inheritance and the separate concept of a COM Class, which combines
specification and executable information. A COM class therefore defines the total behavior of a
component. The COM Class (X) supportsthetotal set of behavior (1A, 1B, and IC) but thereis no explicit
interface (1X) representing this combination. This component model is supported in the UML conceptual
model by the Abstraction dependency between types. A component specification implementing a set of
interfaces is seen simply as a Classifier, which abstracts other Classifiers. This refinement provides the
multiple “inheritance” of behavior specification.

The Component Description Model defines explicit meta data types for the notions of component
specification, interface, and the refinement relationship between them. These are called ComponentSpec,
Interface, and InterfaceSupport respectively.

64 Object and Components: Component Descriptions

N -

~NOoO Ok~ W

10
11
12
13
14
15
16

17
18

19
20
21

Open Information Model Meta Data Coalition

.
o

Model Element Abstraction

<Refined
*

Classifier

T

ComponentSpec Interface

.

InterfaceSupport

Figure 23: Component Specifications and I nterfaces

The instance diagram bel ow shows a component specification instance (CompSpecA of class
ComponentSpec) supporting an interface instance (InterfaceX of class Interface) via the interface support
instance (Ref_AX of class InterfaceSupport). The refining and refined relationships are shown linking the
appropriate interfaces on each object. Note that in the figure bel ow we use an implementation related Class
/ Interface representation to represent the MDC OIM types and type inheritance.

CompspeCA—o ModelElement
——O GeneralizableElement
Component ——O Classifier

Spec ——O ComponentSpec

ModelElement o—| Ref AX
Relationship O——
Abstraction O—— Interface
InterfaceSupport O— Support

< client

T2
InterfaceXt——O ModelElement
——QO GeneralizableElement

——0 C(lassifier
F——0O Type
\)—O0 Interface

Interface

Figure 24: Instance Diagram showing component specifications and interfaces

InterfaceSupport has a property |sAlwaysSupported, which allows a component specification to distinguish
between those interfaces it will always support and those that it may support only under certain conditions.
Also, ComponentSpec has a property sl nterfaceSetOpen, which allows a component specification to
indicate whether instances may support additional interfaces beyond those defined in the specification. In
this case, the specification may also be related to those interfaces that it will never support under any
condition. This differentiation of properties allows for flexible components. Though the behavior of these
components may vary at run time, they still capture as much information asisoptimal in their specification.

A component specification may also be associated with the interfaces that it requires from some other
party. The exact nature of this dependency is not modeled.

ComponentSpec has an important Boolean property |slndependentlyCreatable. This allows the distinction
to be made between specifications of components that may be created directly by an external client and are
therefore potentially independently replaceable, and those “sub” components that have identical

Object and Components: Component Descriptions 65

O NOURW NP

21
22

23
24
25
26

27
28
29
30
31
32
33

35

36
37

Meta Data Coalition Open Information Model

specification requirements but may only be created through specific operations on arelated component and
therefore can neither be created independently of that related component nor independently replaced.

Fundamentally, a component specification is a set of interfaces. Each interface represents a certain aspect
of the behavior of a given component. However, for complex behavior-rich components the number of
interfaces involved may become large, and the need arises to categorize and define constraints on behavior
at ahigher level than a single interface. The Component Description Modd provides two meta data types
for categorizing behavior: ComponentCategory and ComponentType.

ComponentCategory allows a category to be associated with the component specifications that implement
it. A category may simply be some definition of a capability offered by such components. Additionally, a
category may impose constraints over the set of interfaces that such components may support.
ComponentType allows a category to define a set of mandatory interfaces, optional interfaces or disallowed
interfaces, and to designate the events raised by compliant components. If a component specification
implements such a category, then it must comply with the constraints defined by it. The component
specification is still associated with the full set of interfaces it supports.

An important requirement when modeling with interfaces is the ability to specify the constraint that support
for one interface (by a component) implies support for another interface. Thisisthe same as the constraint
placed on an implementing component by a child and parent interface in an inheritance hierarchy (if the
component supports the child interface it must support the parent), but it does not have the additional
requirement that one interface inherits from the other. Thisimplication relationship is defined with the
dependency Interfacel mplication.

1 Implies
» - Interface
Interface Implication
1 *
—

IdmplicationFor

Figure 25: Interface Implication

The Component Description Mode defines a class Type. Typeis provided as an extension of the UML
Classifier and represents atype used in the specification of an interface. These types are called specification
types. Interface in the Component Description Model is an extension of Type and represents an interface, a
type that defines (part of) the behavior of a component.

An Interface consists of a set of members and a specification type model. A specification type model isthe
set of specification typesthat support the definition of Interface behavior in terms of constraints and
operation pre- and post-conditions (see below). They represent the vocabulary of an interface, the language
in which its members and constraints are described. A specification type model is modeled as a
Typelibrary, which generalizesthe UML Package. A Package may own or reference any UML

Model Element. However, if a Typelibrary is acting as the specification type model of an interface (that is,
its relationship to Interface exists), then it is constrained to own or reference only elements that specialize
the Type class of the Component Description Model and constraints (from UML).

Type Package
T HasSpecification T
Interface SupportedBy TypeLibrary
-
0.1 0.1

Figure 26: Specification Type Models

66 Object and Components: Component Descriptions

GO wWDNPEF

Open Information Model Meta Data Coalition

The figure below gives an example of the specification type model of a book library interface. The
interface has a number of operations (CreateMember, CheckOutCopy, and so on). It has a supporting type
library containing types of the Component Description Model such as Member, Reservation, Copy, Title,
and so on. These types, and their attributes and association ends, are used to specify the effect of each
operation as explained before.

Library
i
0”*
Member 1 places > o.r| Reservation for >
num: Integer date: Date 0.%
0.1 1
checksout > | COpY title > Title Jor 1
N . N name: String
0.* |duedate: Date |o.. 1 period: Time |<Stocks
Book CD
CreateMember ()
CheckOutCopy()
ReturnCopy()
ReserveCopy()

Figure 27: Library Interface Example

A type, and hence an interface, consists of a set of members. This structureis provided at the UML level by
the relationship between a classifier and its structural features. UML features may be operations or
attributes and these are specialized at the level of the Component Description Model with Operation and
Attribute respectively.

Classifier feature Feature
1 *
7 ;
R p—— .I_ I
Attribute Operation
Type
Member
<
| 5
Attribute
Interface from UML Extensions) -
IsConstant: Boolean Operatl on
IsReadOnly: Boolean
IsAccessor: Boolean
Signature: Text
*
Attribute 0.1
-
| sAccessedBy

Figure 28: Attributes and Oper ations

Object and Components: Component Descriptions 67

=
QUOWoO~NOUAWNE

el el
wWN P

PR e
~No g b

NNDNERERE
NP O OO

N
w

24
25

26
27
28
29
30
31
32
33

34
35
36

37
38
39
40
41

Meta Data Coalition Open Information Model

Attributes may be “ specification-only” in that they are defined on specification types to support the
definition of constraints and operation pre-and post-conditions (for example, Title:period in the library
example above). An attribute that is defined on an interface (as opposed to only a specification type) is
either a constant or smply an abstraction of a get/put operation. Such attributes are represented by types
that inherit from the Component Description Mode type Attribute, allowing them to be associated with
their accessor operations. An operation has an |SAccessor property that indicates whether or not it isan
attribute accessor. If it is, then it is classified as either a put, get, or put by reference accessor viaits
AccessorKind property. This also means that attributes can be parameterized via the parameters of the
operations they represent. For example, the attribute Pay may be associated with the accessor
Get_Pay(Grade) which returns the pay for a given grade.

Operation has a Signature property, which provides an alternative way of recording an operation signature
to the full representation of parameters and types modeled at the UML leve. This property may be
populated in place of, or in addition to, the full details of the parameters.

As ComponentSpec also inherits from Classifier, component specifications may also contain attributes and
operations. Such attributes include member variables (e.g., afield). Hence, the notion of attribute in UML
is used to cover constants, member variables; and, by inheriting from the Component Description Model
type Attribute, abstractions of a get/put operation.

The Component Description Model type Operation further extendsthe UML Operation with exceptions and
the notion of arelated set of pre- and post-condition pairs. Each pre-condition/post-condition pair details
one aspect of the effect of that operation. A pre-condition defines a condition that must hold, prior to
execution, for its corresponding post-condition to hold. The pre- and post-conditions are defined in terms of
attributes and association ends on the specification types of the interface.

Operation IsDefinedBy | PrePostPair
1 o * PreCondition: Text
PostCondition: Text
* E ti
xception
-
Raises *

Figure 29: Pre/Post Condition Pairs and Exceptions
Continuing with the library interface example above, hereis an example of a pre-condition/post-condition
pair for the CheckOutCopy operation:
CheckOutCopy (in t: Title, in m: Member, out c: Copy)
pre The member belongsto the library and a copy of the title is available
(m.library=NIL) ~ (3 ce ce t.copy " c.checkedout=NIL)
post The copy is checked out to the member for a given period
Jce ce t.copy ™ c.checkedout=NIL
(m.checksout += c) * (c.duedate = TODAY + t.period)

Operations may raise exceptions. Thisis provided for by the generic type Exception and its relationship to
Operation. It is a placeholder for technol ogy-specific extensions that will provide the mechanism for
defining exceptions within a particular component modd.

For any given interface, there may be a specification type model as described above. As a specification
convenience, an operation may be factored onto a type within the specification type model of itsinterface.
This may occur when the operation concerns a particular (specification) instance of the type. By factoring
the operation onto that type, its specification can be smplified: A parameter identifying that instance can be
omitted, and any pre- and post-conditions and constraints can be simplified by avoiding quantification of

68 Object and Components: Component Descriptions

ga ~AWNPEF

10
11

12
13
14

15
16
17
18

19
20

21
22

23
24
25
26
27

28

29
30
31
32
33

35
36

Open Information Model Meta Data Coalition

that instance within those expressions. Note that thisis ssimply atechnique for smplifying the specification
of operations. It does not imply that the specification typeis an interface and that the factored operation is
an operation of that interface. It remains an operation of the original (outer) interface. However, it may
anticipate a potential design decision to implement the operation in that way.

Type Factors Operation

-
! o

0.1 *

Figure 30: Operation Factoring

The Component Description Mode defines a specific meta data type called EventSourceSpec for objects
that are the source of events. This allows component specifications, interfaces, and other objectsto be event
sources by specializing this type. In COM, component specifications (Com class) are event sources. In
Corba, interfaces are event sources.

The Component Description Model covers one particular event scheme, where an event isrepresented asan
operation on an interface, and where the parameters of the operation provide data about the event. Many
events can be defined on a single interface. The events can be raised in different ways:

e In push models, the interface defining the eventsisimplemented on objects other than the one that
raised the event. The raiser then invokes an operation on those other objects as a means of
signaling the event. Such consumerswill have registered interest with the raiser in component
moddl specific ways.

e In pull modds, the event raiser implements the interface defining the events. A consumer invokes
an operation on that interface to pall for the event.

Event . Sourced Interface
SourceSpec R:":S% Event I sSgl:JrceOf
1 % | EventModel: * 1
CdeEventModel

Figure 31: Event Modeling

To model both push and pull models, a meta data type called SourcedEvent is defined, which representsthe
relationship between an event source and the interfaces defining the eventsit raises. The property
EventMode indicates whether a push or a pull schemeisbeing used in each case. The default event model
is“Push.” An object can source an event using either, or both, schemes. Alternative schemes for the same
interface will require separate sourced event objects, one for each scheme.

Executable Layer

The Component Description Mode type Component isintroduced as an extension to the UML Component
and has atighter meaning than in UML. MemberExe augments the UML Feature and the Component
Description Model type Member with some executable level attributes. ExecutionPerformance provides
information on the performance characteristics of the member. ResourcesNeeded describes the run-time
resources consumed by the member. ExecutionDetailsis an uninterpreted string allowing the designation of
technol ogy-specific information that may be needed in order to invoke the member. Different technology
extensions of the Component Description Model will have different conventions for the content of this
attribute.

Object and Components: Component Descriptions 69

N

POOW CO~NO UL W

= el
N

[N
w

Meta Data Coalition

Classifier

Open Information Model

Feature

er

ComponentSpec

Component

Server

fimplements

i

Component

|

*

*

Figure 32: Executable L ayer

Member

MemberExe

ExecutionPerformance: Text
ResourcesNeeded: Text
ExecutionDetails: Text

The meta data type Server inherits from the UML Component type and represents a physical packaging of
functionality consistent with the UML definition of component. A Server may package one or more
Components through the association implements. This is a many-to-many relationship that alows many
components to be packaged into a single server. It also allows a single component to comprise many
servers. Server also has a many-to-many <IsDescribedBy> association with Typelibrary, allowing a server
to be associated with one or more type libraries that describe the componentsit implements.

The form this physical packaging often takesis either an executable load module or a dynamic link library
(DLL). These concepts are defined in the UML Extension model as Application and Library and are
realizations of the UML <<application>> and <<library>> stereotypes of component, respectively.

8.3 Class Reference

70

Object and Components: Component Descriptions

Open Information Model

ModelElement
(from Core)

Meta Data Coalition

ComponentElement

IsHidden : Boolean
IsRestricted : Boolean
IsExpert : Boolean

B

Abstraction
(from Core)

InterfaceSupport

IsDefault : Boolean
IsAlwaysSupported : Boolean

ObjectType
fom Common Data Types)

C

IsindependentlyCreatable : Boolean
isInterfaceS etOpen : Boolean

Type

0.* 0.*
0.*
+Unsupportedinterfaces
0.* 0.*
Component
Details : Text
(from Core) ResourcesNeeded : Text
IsLicensed : Boolean
Interfacelmplication | 0..» 11
+mpliedinterfaces
0.* 1.1

+RequiredComponentCategories

edC ategorie:

Interface

0.*

+SourcedEventinterfaces

0.*

+Optionallnterfaces

0.*

+Disallowedinterfaces

0.*

+Mandatoryhterfaces

ComponentType

0.*

ComponentCategory

Figure 33: Component Specification

Object and Components: Component Descriptions

71

[SPOINIUBAT : [BPONIUBAT

SIUBAF pue So.injesH ¢ w.__._@_u_

X3 : uonIpuODISod

esjoog : anfeAuINIays|

y

ﬁ ueajoog : Ladx3s|

©3]00g : PAlOLISaYS|
uea|oog : UsppIHS|

VTV ET VNI s V¥ [o}g)

suonduoasa@ wauodwo) :susuodwo) pue 193[qO

(sadA 1 ereg uowwo) wouy)

adA1108l00

UBB1004 * ANBIBAS 5]USA3P32IN0S+ X8 : uonpuoDalid UoNeIado3[NPON uesjoog : _MCO:QOm_
1009 - 3Nejaasl 9 -7 [990S90IN0SIUaAT TegiS0gaIg Tojeurered
JUBAJpPa2IN0S * :
0 7 *"0 |siredisodaid+
,, v
(8100 woy) (210D wouy)
JuBWa|J|epoN I918Wered
71

. uesjoog : wajodwapis|

SorMEMI+ | T7T ues|joog : Biyiens|

X8 : ainjeubis

PUIMIOSS320YaPD : PUIMIOSS800Y

+ 0 «0 ues|oog : J0SSa22ys|| 0 70
EREIE] uonasdXd [“suondeaxg+ uoneisdo suonesedo+ SIGITY
0
suoneladopaioloed+
uesjoog : yneaainsi (swawa|g Areyxny wouy)
FELWEI aINqUIY
(2100 wouy)
uonelado
T°0
(810D wouy)
ainjeaH
adAl

L

suonduoasaq usuodwo) :swusuodwod pue 193[q0

“ue|q Ajeuonueui st abed siy |

€L

- N M < IO © N~ 00 O

Meta Data Coalition Open Information Model

Interface
(from Specification Elements)

ComponentSpec +Requiredinterfaces

(from Specification Elements)

0..* 0..*

+Unsupp0nedlnterfaces‘

0..* O“*
0.1
Component Storage Package
(from Core) (from Generic Elements) (from Model Management)
+SpecificationTypeLibrary 0.1
Component Sener o TypelLibrary
(from SpecificationElements) +TypeLibraries
+Components 0.* 0.
Member
(from Spedfication Elements)
ServerlLibrary ServerApplication Z}
MemberExe
ExecutionPerformance : Text
ResourcesNeeded : Text
ExecutionDetails : Text
AttributeExe OperationExe

Figure 35: Execution Elements

8.3.1 AccessorKind

An enumeration whose values indicate whether an accessor operation is a get, a put-by-value, or a put-by-
reference.

Vaues
e ACCESSOR KIND GET =2
e ACCESSOR KIND PUT =4

© 00 N o b~ W

10

11
12

13
14

8.3.2

Each instance of this class describes an attribute, allowing an attribute to be an abstraction of operations

ACCESSOR_KIND_PUTBYREF =8

Attribute

that accessit.
Specializes
Attribute (from UML Extensions)

74

Object and Components: Component Descriptions

A WO N

© 00 N O

10
11

12

13
14
15
16
17
18

19
20

21
22

23

24
25
26
27

28
29
30

31

32
33

34
35

Open Information Model Meta Data Coalition

e Member
e ComponentElement
Associations

e Operations (Operation) — The set of accessor operations (that Get, Put or PutRef the value).

8.3.3 AttributeExe

Each instance of this class describes an attribute on a binary or run-time component. This class allows
execution information to be recorded for the attribute, if required.

Specializes
e MemberExe
e Attribute (from UML Extensions)

e ComponentElement

8.3.4 Component

Each instance of this class describes a binary or run-time component.
Specializes
e Component (from UML Extensions)
e ComponentSpec
Attributes
e InstallationDetails (String) — A natural language description of how to install the component.

e ResourcesNeeded (String) — A natural language description of the run-time resources consumed by
the component.

e Islicenced (Boolean) — Indicates that the component is licensed. Only clients that are authorized
to use them can create licensed components. The default is FALSE.

8.3.5 ComponentCategory

Each instance of this class describes a component category, which identifies a set of functionality that a
component either implements or requires. A component may implement or require many categories, and a
category may be implemented or required by many components. Categories are not structured and do not
combine together to form hierarchy.

Specializes
e ComponentType

e ComponentElement

8.3.6 ComponentElement

Each instance of this class describes a component description e ement, providing general information
relevant to various sorts of objects.

Specializes
e ModeElement (from UML)

Object and Components: Component Descriptions 75

~NOoO Ok WN P

oo

10
11
12
13

14
15
16

17
18
19

20
21

22
23

24
25

26
27

28

29
30
31
32

33

35

36
37

38
39

Meta Data Coalition Open Information Model

Attributes

8.3.7

IsHidden (Boolean) — Indicates that the element exists, but should not be displayed in a user-
orientated browser. The default is FALSE.

IsRestricted (Boolean) — Indicates whether macro/scripting programmers should be prevented
from using the element. The default is FALSE.

IsExpert (Boolean) — Indicates that the element isintended for expert users only. The default is
FALSE.

ComponentSpec

Each instance of this class describes the specification aspects of a component.

Specializes

ObjectType (from Common Data Types)

ComponentElement

Attributes

I slndependentlyCreatable (Boolean) — Indicates that the component can be created directly, and
independently of any other component. If the component is not independently creatable, then it
must be created by another component. The default is TRUE.

IsinterfaceSetOpen (Boolean) — Indicates whether the interface set is open. If so, then instances
may support additional interfaces beyond those associated with the specification. The default is
FALSE.

Associations

8.3.8

Requiredinterfaces (Interface) — The set of interfaces that the component specification requires.

Unsupportedinterfaces (Interface) — The set of interfaces that are not supported by any instance of
the component specification.

RequiredComponentCategories (ComponentCategory) — The set of categories required by this
component specification.

I mplementedComponentCategories (ComponentCategory) — The set of categoriesimplemented by
this component specification.

ComponentType

Each instance of this class defines a component type that identifies a set of functionality implemented by a
component. It issimilar to component category, except ComponentType provides detailed information
about the set of interfaces that components conforming to this type will definitely support, may support, or
must not support, aswell asinformation about the events raised by such components.

Specializes

ComponentElement

Associations

76

Mandatorylnterfaces (Interface) — The set of interfaces that must be supported by components
compliant with thistype.

OptionalInterfaces (Interface) — The set of interfaces that may optionally be supported by
components compliant with this type.

Object and Components: Component Descriptions

AW NP

=
QO NO (6]

11
12

13
14
15

16
17
18

19
20
21
22
23
24

25
26
27
28

29

30
31
32

33

35
36
37

Open Information Model Meta Data Coalition

o Disallowedinterfaces (Interface) — The set of interfaces that must not be supported by components
compliant with thistype.

o SourcedEventlnterfaces (Interface) — The set of interfaces defining the events that must be
supported by components compliant with this type.

8.3.9 EventModel

An enumeration whose values indicate whether a SourcedEvent israised using a Push or a Pull moddl. The
models are:

e Push Modd: The source of the event will push event data to the consumer by invoking operations
defined on an event interface supported by the consumer. Consumers will register interest in the
event component model in specific ways.

e Pull Modd: The consumer interested in the event will pull event data from the source, by invoking
“polling” operations supported by the source.

An object can source any given event interface via either, or both, models. If both models raise an event
interface, there would be two SourcedEvent objects associating the source with the event interface. The
default modd is Push.

Vaues
e EVENT MODEL PUSH=1
e EVENT MODEL PUSH=2

8.3.10 EventSourceSpec

Each instance of this class describes the specification of objects that are the source of events.
Specializes

e ModeElement (from UML)
Associations

e SourcedEvents — The set of events raised by the objects implementing this specification.

8.3.11 Exception

Each instance of this class describes an exception.
Specializes
e Type

8.3.12 Interface

Each instance of this class describes the specification information for an interface. This serves as both an
implementation specification to a component builder, and a test specification to a component tester or
reuser.

Specializes
o Type
Associations
o Impliedinterfaces (Interface) — The set of implied interface implications.

e Implyinglnterfaces (Interface) — The set of implying interfaces.

Object and Components: Component Descriptions 77

N -

N o OOk~ W

10
11
12
13
14
15

16
17

18
19
20

21

22
23

24
25
26
27
28

29

30
31
32
33

35
36

Meta Data Coalition Open Information Model

o SpecificationTypeLibrary (TypeLibrary) — Thetype library containing elements that support the
specification of thisinterface.

8.3.13 Interfacelmplication

Each instance of this class describes the association object between an interface and another interfacethat it
implies. If 11 implies 12, no class should support 11 without also supporting 12.

Specializes
e ModeElement (from UML)

8.3.14 InterfaceSupport

Each instance of this class describes the association object between a component and an interface that it
supports.

Specializes
e Abstraction (from UML)
e Summarylnformation (from Generic Elements)
e ComponentElement

Attributes

e IsDefault (Boolean) — Indicates that the interface is the default for the component. A component
may have only one default interface. The default valueis FALSE.

e |sAlwaysSupported (Boolean) — Indicates whether the interface is always supported by al
instances of the component. Interfaces for which 1sAlwaysSupported is FALSE may be supported
only under certain conditions. The default is TRUE.

8.3.15 Member

Each instance of this class describes the generalization of the specification of membersin an interface. The
term “member” in Component Description Model does not cover member variables.

Specializes
e Feature (from UML)
Attributes
e |IsUIDefault (Boolean) — Indicates that this isthe default member for display in the user interface.
The default value is FALSE.

8.3.16 MemberExe

Each instance of this class describes the run-time characteristics of a member.
Specializes

e Member
Attributes

e ExecutionPerformance (String) — A natural language description of the execution performance of
the member. This provides information for using the component, and for selecting between
candidate components for reuse.

78 Object and Components: Component Descriptions

ahbh WNPEF

© 00 N O

10

11

12
13

14
15
16
17

18

19
20
21
22
23

24
25
26

27
28

29
30

31
32
33

35
36
37

38
39

Open Information Model Meta Data Coalition

e ResourcesNeeded (String) — A natural language description of the run-time resources consumed by
the member. This provides information for using the component and for selecting between
candidate components for reuse.

e ExecutionDetails (String) — A natural language description that provides any additional details
necessary to invoke the member.

8.3.17 ModuleOperation

Each instance of this class describes an operation on a module.
Specializes

e ModuleOperation (from UML Extensions)

e Operation

8.3.18 ModuleOperationExe

Each instance of this class describes an operation on a binary or run-time module. This class allows
execution information to be recorded for the operation, if required.

Specializes
e Operation
e ModuleOperation (from UML Extensions)
e MemberExe

8.3.19 Operation

Each instance of this class describes a Component Description Model operation.
Specializes

e Operation (from UML)

e Member
Attributes

e |sAccessor (Boolean) — Indicatesif the operation is an accessor or an attribute. An attribute
accessor either gets the value, putsthe value, or puts the value by reference. The AccessorKind
member is only relevant if this property is TRUE.

e AccessorKind (AccessorKind) — Indicates the kind of the accessor: Get, Put or PutRef. Only
relevant if |SAccessor is TRUE.

e Sgnature (String) — The signature of the operation. This may be provided in place of, or in
addition to, the full parameter details.

e IsVarArg (Boolean) — Indicates that the operation takes a variable number of arguments. If TRUE,
then the last parameter of the operation must be an array, containing all of the remaining
parameters. The default is FALSE.

e |sldempotent (Boolean) — Indicates whether the operation isidempotent. An idempotent operation
is onethat does not modify state information and returns the same result each timeit is performed.
Performing the routine more than once has the same effect as performing it once. The default is
FALSE.

Associations

e Exceptions (Exception) —The set of exceptions raised by the operation.

Object and Components: Component Descriptions 79

A OWDNPEF

© 00 N O

10

11

12
13
14
15
16

17
18

19

20
21
22
23
24

25
26
27

28
29
30
31

32
33

35
36
37
38
39

Meta Data Coalition Open Information Model

e PrePostPairs (PrePostPair) — The set of pre- and post-condition pairs that define the semantics of
the operation. For operations that have no pre- and post-condition pairs, the semanticsis only
defined in the documentation. Pre- and post-condition pairs provide a basis for component testing
because they formalize the effect of an operation in terms of apparent state changes to the object.

8.3.20 OperationExe

Each instance of this class describes an operation on a binary or run-time component. This class allows
execution information to be recorded for the operation if required.

Specializes
e Operation
e MemberExe

8.3.21 Parameter

Each instance of this class describes a parameter of an operation.
Specializes
e Parameter (from UML)
Attributes
e |sOptional (Boolean) — Indicates that the parameter is optional. The default is FALSE.

e IsReturnValue (Boolean) — Designates the parameter as containing the return value for some
clients. The default is FALSE.

8.3.22 PrePostPair

Each instance of this class describes a pre-condition/post-condition pair that forms part of the specification
of an operation. An operation may define a number of such pairs. Each pair may detail one aspect of the
effect of the operation. Pre- and post-conditions are conditions described in terms of queries on types. For a
given interface, the pre- and post-conditions of its operations will reference the types that form the
specification type model of the interface.

Specializes
e None
Attributes

e PreCondition (String) — Operation pre-condition. Thisis a condition that must hold true prior to
the execution of the operation in order for its corresponding post-condition to be guaranteed. If a
pre-condition is false this does not mean that the operation cannot, or will not execute, but simply
that the corresponding post-condition is not guaranteed.

e PostCondition (String) — Operation post-condition. Thisis a condition that will hold true after the
execution of the operation, provided its corresponding pre-condition held prior to the execution.
The post-condition defines the guarantees of the operation. Any effect on an object that is not
defined in a post-condition of an operation is not a guarantee of the operation and cannot be
assumed by a client of that operation. Any dependencies on “side-effects’ of operations are likely
to cause failure in the client if the component providing that operation is replaced with another
meeting the same specification. All effects must be documented as part of the operation viathe
pre- and post-conditions.

80 Object and Components: Component Descriptions

=

0 N O O ~AOWN

11
12

13

14
15
16
17
18
19
20

21

22
23
24
25
26
27
28

29

30
31

32
33

35
36

Open Information Model Meta Data Coalition

8.3.23 Server

Each instance of this class describes the server of a component. The server is the application or library that
implements the component. It is associated with the components for which it is the server by the inherited
“implements’ relationship of UML. The physical implementation of the server may also be represented.

Specializes

e Component (from UML)

e Storage (from Generic Elements)
Associations

e Typelibraries (TypelLibrary) — The set of type libraries that describe the components
implemented by this server.

e Components (Component, derived from UML:Component.resident) — The set of components
implemented by the server.

8.3.24 ServerApplication

Each instance of this class describes a server that is an application (e.g., an EXE).
Specializes

e Surrogate (from Generic Elements)

e NamedVersion (from Generic Elements)

e Summarylnformation (from Generic Elements)

e Application (from UML Extensions)

e Server

8.3.25 ServerLibrary

Each instance of this class describes a server that isalibrary (e.g., aDLL).
Specializes

e Surrogate (from Generic Elements)

e NamedVersion (from Generic Elements)

e Summarylnformation (from Generic Elements)

e Library (from UML Extensions)

e Server

8.3.26 SourcedEvent

Each instance of this class describes the association object between a component and the sourced event
interfaces.

Specializes
e ComponentElement
Attributes

e IsDefault (Boolean) — Indicates that the interface is the default interface raised by the component.
Upon registering for events, if no specific interfaceis provided then it is assumed to be default.

Object and Components: Component Descriptions 81

N

© 00 N Ul b

10
11
12
13

14

15
16
17

18
19

Meta Data Coalition Open Information Model

e EventModel (EventModel) — The event model (Push or Pull) by which the event is raised.
Associations

e Interface (Interface) — The interface describing the events rai sed.

8.3.27 Type

Each instance of this class defines a specification type. Specification types represent the vocabulary of an
interface — the language in which its members and constraints are described. An interface containsits
specification types through the specification package that may be associated with the interface.

Specializes
e Classifer (from UML)
e ObjectType (Common Data Types)
e ComponentElement

Associations

e FactoredOperations (Operation) — The set of operations that have been factored onto this type.

8.3.28 TypelLibrary

Each instance of this class describes atype library that contains a set of Types.
Specializes

e Package (from UML)

e ModedElement

82 Object and Components: Component Descriptions

© 00 N O O B~ W N P

=
o

Open Information Model

This page isintentionally blank.

Object and Components: Component Descriptions

Meta Data Coalition

83

19

20

21
22

23
24

25

26
27
28
29
30

Meta Data Coalition Open Information Model

9 Database and Warehousing: Relational
Database Schema

9.1 Overview

The Relational Database Schema package describes information about data maintained in the relational
databases of an organization. To enable enterprise-wide data management, such metadata must be readily
availablein a commonly agreed-upon format for tools and applications. The goal of this packageisto serve
asthe core mode for such an infrastructure.

Additional goals of the package are to:

e Introduce an industry-standard access mechanism and infrastructure for metadata about relational
data sources.

e Introduce a core mode for describing metadata about data sources that enables tools to store and
exchange such descriptive information.

e Enabletool vendorsto extend the model to address requirements of individual toolsin the context
of acommon core model.

The Relational Database Schema package covers the basic elements of a SQL data provider, such astables,
columns, and relationships. It does not address physical or implementation details.

The concepts in the package are modeled after the ANSI SQL-92 standard, with selected extensions
supported by popular relational database vendors.

9.2 Semantics
The Database Schema Package contains three packages:

e Schema Elements— The primary package, containing classes for tables, views, queries, columns,
indexes, congtraints, joins, data sources, catalogs, schemas, triggers, and keys.

e Catalog and Connections— A package containing classes of interest to the client side of
client/server applications, such as classes about establishing connections to database servers.

o Data Types— A package containing database-specific extensions to the data type modd.

Catalogs are the top-level container for all database definitions. Following the ANSI SQL-92 standard,
thereisthe further constraint that a catalog should only contain schemas, an ownership package for
database components. A schema should, in turn, only contain other database components (such as tables
and views). The following entity relationship diagram illustrates a simple database schemathat is
referenced in the accompanying text:

84 Database and Warehousing: Database Schema

Open Information Model

EMPLOYEE

STORE

store_number: int

employee_number: int

store_number: int
employee_first_name: int
employee_last_name: char(15)
employee_address_1:

store_manager:
store_address1: varchar(20)
store_address2: varchar(20)
store_city: varchar(20)
store_state: varchar(20)
store_zip: int

store_phone: datetime

Meta Data Coalition

employee_address_2: char(20)
employee_city: varchar(20)
employee_state: char(2)
employee_zip: int ®
employee_phone: int
employee_ssn: int
hire_date: datetime
salary: money
supervisor: int

EMPLOYEE_STORE

employee_number: EMPLOYEE.employee_number
employee_first_name: EMPLOYEE.employee_first_name
employee_last_name: EMPLOYEE.employee_last_name
store_city: STORE.store_city

store_state: STORE.store_state

store_phone: STORE.store_phone

store_manager: STORE.store_manager

Figure 36: Sample database schema

Tables, views, and queries all exhibit table-like qualities (their definitionsinclude a set of columnsand their
instances contain a set of rows. The generalization of table, view, and query is known as a column set. In
the diagram above, the employee and store tables contain a set of columns, each with a specified data type.
The employee_store view is defined as a query of the underlying tables.

Constraints are schema e ements used to enforce the integrity of datain a database. Constraintsdefinerules
regarding the values allowed in columns and are the standard mechanism for enforcing integrity. The ANS|
SQL-92 standard identifies three magjor types of constraints - table constraints, Domain constraints, and
assertion constraints. Table constraints are further broken down into referential constraints, unique
constraints, and check constraints.

A key describes an ordered collection of columns on asingle table or view. A key may be one of the
following: aforeign key, a unique key (or candidate key), or an alternate key (need not be unique). A key
has a relationship to an associated column set (that is, atable or view) and another relationship to an
ordered collection of columns (to represent a composite key). In the sample schema above, the

employee number has been designated as a unique key for the employee table.

A key may be associated with zero or morejoin roles. Each join role links the key to another key of the
same or different column set. A join roleidentifies a key that can be used for a meaningful join with
another key.

Columns aretied together between the keys on two related join roles. The column order of the two column
collections (on the two keys) must be compatible, so that each column corresponds to the column in the
same ordinal position in both collections.

A referential integrity constraint is represented by referential roles, which are specializations of join role.
Each referential role identifies one of the keys that participate in a referential constraint (a unique key on
one side and aforeign key on the other). Referential roles appear on each side of a referential association,
rather than directly connecting to a key on one side, because update and del ete rules, which are properties
of areferential role, can appear on both sides of such associations. For example, some database systems
allow you to define both a cascade delete from parent to children and a pendant delete from the last child to
its parent. In addition, some database systems allow for a many-to-many referential association. In such
cases, neither side of the association is a unique key.

Database and Warehousing: Database Schema 85

O~NO U WNPEF

10
11
12

13
14

15
16

17

18
19
20
21

22
23
24

25
26
27
28

29

Meta Data Coalition Open Information Model

In the sample schema above, thereis areferential constraint specified between the employee and store
tables. The store_number column on the employee table comprises aforeign key that istied to the
store_number column, the unique key on the store table.

The Database Schema package includes information about connections and data sources. The model
captures enough information about a database connection to create a session with a data source (in the OLE
DB sense) or server. Typically, when making a connection to a data source, the connection bindsto a
particular default database at that data source. Information about the data types supported by a particular
DBMS product can also be modeled.

9.3 MDIS Compatibility

The Meta Data I nterchange Specification (MDIS) provides concepts to support a bi-directional file based
interchange of meta data while maintaining the consistency of the transferred information. The file-based
transfer specification implies a hierarchical information structure.

Thefollowing illustrates the objects and relationships that define the metamodel for MDIS Version 1.0.

1:1 1:1
DATABASE
11 o2 | 11
SUBSCHEMA
DIMENSION
n:1 R 0:2 .
; O:N 11 Ll AO oN
11 11 o;zt LY Yo L1, o
O:N N 1:1 0:
11 RELATIONSHIP RECORD
y ON ' <
O:N 1 oN 11 11
LEVEL 11 02
O:N .
> ELEMENT <N]

Figure 37: Meta data | nter change Specification M etamodel

This figure labels each object with a <number>:<number/variable> notation, which indicates the possible
one-to-many relationships. For example, for every database, there may be as few as no records or as many

as "n" records. Likewise every record can contain as few as no eement types (though this is more
theoretical than likely), or as many as"n" eement types.

The model defines how and MDISfileis constructed by embedding each object definition within its parent
prior to embedding the parent definition. So for example a database definition can directly contain
Dimension, View, Record, or Subschema objects, but cannot contain Element or Level objects.

MDI S objects each have a set of well-defined properties like Identifier, ElementName, or ElementLength,
which carry the description of the meta data object. Each of the MDIS objects in itsfile based
representation is encapsulated by a BEGIN / END statement, which may contains either properties of sub-
objects. Properties are the leaf-nodes of the hierarchy and simply name/ value pairs.

The following example shows the structure of a simple MDISfile:

86 Database and Warehousing: Database Schema

N -

© O~N O bW

10

12
13

14
15

16
17

18
19
20

21

22
23
24

25
26
27

Open Information Model Meta Data Coalition

BEGIN HEADER
MDISVersion “1.0"”

END HEAbER

BEGIN DATABASE
Identifier “053”
DatabaseName “ CUSTOM ER-ORDER-RECORD”

BEGIN RECORD
Identifier “054"
RecordName “ CUSTOMER-RECORD”
RecordType “RECORD”

BEGIN ELEMENT
Identifier “055”
ElementName “SOCIAL-SECURITY -NUMB”
ElementDaaType “CHAR”
ElementLength “11”
ElementNulls“T”
END ELEMENT

END REC‘bRD

END DA'I.'.A BASE

Figure 38: MDIS Example

The MDIS modd has been integrated into the MDIC OIM by defining a mapping of the MDIS objects,
relationships, and properties onto MDC OIM classes. The compatible name mappings can be found in the
UML representation of the MDC OIM. The following provides an overview of the mapping:

DATABASE

A Database object in MDIS can be used to represent: a group of files, arelational database, a network
database, a hierarchical database, a multi-dimensional database, or an object database.

Database is mapped onto Catalog (from Database Schema) in the MDC OIM.
SUBSCHEMA

The Subschema object in MDIS is used to provide alogical grouping of record objects that describe a
meaningful subset of a database. Instances of the Relationship object (of type "CONTAINS') are used to
represent the record types that belong in a particular subschema.

Subschemais mapped onto the Schema (from Database Schema) in the MDC OIM.
RECORD

The purpose of the Record object in MDIS isto provide a physical grouping of element objects that
describe a unit of data.

Record is mapped on the Table (from Database Schema) or Record (from Record Oriented Schema) in
MDC OIM. Note, that thereis no distinction in the MDIS 1.0 specification between tables and views and
therefore arecord element in arelational database is always mapped onto Table.

ELEMENT

The purpose of the element object in MDIS isto provide aphysical description of the smallest piece of data
that can be described. The element represents a data value that islogically or physically represented in the
database.

Element objects cannot contain any other objectsin the object model. They are considered the lowest
definable unit of data. Element is mapped to Column (from Database Schema) or Field (from Record
Oriented Schema) in the MDC OIM.

Database and Warehousing: Database Schema 87

Meta Data Coalition Open Information Model

DIMENSION

A Dimension in MDIS is made up of a hierarchy of members, where members are data e ementsthat are
referenced by a set of coordinates that uniquely define their position in a hypercube.

Dimension is mapped onto Dimension (from OLAP Schema) and DimensionHierarchy (from OLAP

© O~N O UOh WN P

=
o

el
A WNPE

=
o Ul

=Y
~

Schema) in the MDC OIM.
LEVEL

A Leve in MDISisapart of a Dimension hierarchy that can be referenced by name and numbered from

the top.
Level is mapped onto DimensionLevel (from OLAP Schema) in the MDC OIM.
RELATIONSHIP

The Relationship object in MDI S defines a relationship between object types. In many ways, the
Relationship object is the most semantically rich and flexible object in the MDIS meta-model. There are
seven types of relationships:. EQUIVALENT, DERIVED, INHERITS-FROM, CONTAINS, INCLUDES,

LINK-TO, and USER-DEFINED.

The DERIVED Relationship is mapped onto Transformation (from Data Transformations) of the MDC

OIM while the other types are mapped onto the corresponding UML concepts.

9.4 Class Reference

Package
(from Model Manage ment)
$ ColumnSet ModelElement
‘ ‘ (from Core)
Method Catalog +Schemas | Schema A
(from Core)
+Tables| Table | ygpe TableSynonym
0.* 1 0.*
StoredProcedure +StoredProcedures
0..* +TableSynonyms
*
O“
A Query
Referential Constraint | +ReferentialConstraints ZF
0.* +Views View
0..*|IsReadOnly : Boolean
Constraint CheckOption : Boolean Index
from Core) IsUnique : Boolean
IsClustered : Boolean
Z} +Indexes|Nulls : Nulls
) AutoUpdate : Boolean
- +DatabaseConstraints 0..* -
DatabaseConstraint |~~~ =~ IndexFillFactor : Long
0..* IsSorted : Boolean
‘ LogicalSc hema ‘

‘ DeployedSchema‘
\ |

18
19

20

88

Figure 39: Schema Elements

Database and Warehousing: Database Schema

Open Information Model

Meta Data Coalition

Attribute

(from Auxiliary Elements)

EstimatedSize : Double

Classifier SummaryInformation
(from Core) (from Generic Elements)
ColumnSet

7

DatabaseConstraint

EstimatedRows : Double +Columns Column
ProjectGrowthRate : Double ——{IdentityIncrement : Integer +Type| ColumnType
ProjectedGrowthPeriod : TimePeriod Ordinal : Long 0..* 1
ValueExpression : String
Query RowSet Table
Body : Text
% ‘ LogicalColumn ‘ ‘ DeployedColumn
View
IsReadOnly : Boolean Component
CheckOption : Boolean (from Core)
‘ LogicalView ‘ ‘ DeployedView ‘ ‘ LogicalMaterializedView ‘ ‘ DeployedMaterializedView H LogicalTable ‘ ‘ DeployedTable
Figure 40: Tables, Columns, and Views
Constraint Classifier Attribute
from Core) (from Core) (from Auxilia
ry Elements)

4 ColumnSet
+Columns
TableConstraint +Table
Table
1.*
ColumnConstraint +Column
* 1%

Figure 41: Constraints

Column

Database and Warehousing: Database Schema

89

Meta

Data Coalition

Open Information Model

ModelElement

Method
(from Core)
4& +Columns
ColumnSet Column
‘ IdentityIncrement : Integer
Trigger Ordinal : Long
|sinsert - Boolean ValueExpression : String
IsUpdate : Boolean
IsDelete : Boolean .
BeforeAfter : BeforeAfter 0.. 0.7
- Frequency : Frequency) +Columns
+Triggers |/ Body : UML:ProcedureExpression
LogicalTrigger DeployedTrigger
Method Parameter
(from Core) (from Core)
StoredProcedureParameter
StoredProcedure +P ; Length : Long
arameters |\ymericScale : Long
0.1 » |NumericPrecision : Long
v TimePrecision : Long
IsOutput : Boolean

Figure 42: Triggersand Stored Procedures

Classifier

SummaryInformation
(from Generic Elements)

(from Auxiliary Elements)

Attribute

Logicallndex

Deployedindex

90

from Core) (from Core)
Index
ColumnSet
+Columns
+Indices Z%
Table
0..* 1
+ndexColumns |_ndexColumn +Column

1.1 1. 0. 1

{ordered}

Figure 43: Indexes

Database and Warehousing: Database Schema

Column

Open Information Model

Attribute
(from Auxiliary Elements)

SummaryInfomation
(from Generic Elements)

2

]

AssociationEnd | 2..*

Meta Data Coalition

.. 1 Assaociation
(from Core) +connection (from Core)

il

Column

+Columns ColumnSet
ModelElement
(fom Coe) +ColumnSet
1.1
1.*
Key 0..*
+Keys
0.*
1r 0.* 11 0.* JoinRole
+Columns +Key +JoinRoles
{ordered} A
A ReferentialRole
ForeignKeyRole

ForeignKey | *Foreignkey

EUmqueKey +UniqueKey

UpdateRule : ReferentialRule +ForeignKeyRole
DeleteRule : ReferentialRule
IsDeferrable : Boolean
InitiallyDeferred : Boolean
MatchType : MatchType

ReferentialConstraint

|
}:‘UmqueKeyRole +UniqueKeyRole

Figure 44: Referential Integrity

ColumnSet
1.*
Table
+Tables +Tables
+Keys | 0.
Key
+UniqueKeys
UniqueKey

IsPrimary : Boolean

+ForeignKeys

ForeignKey

Figure 45: Keys

Database and Warehousing: Database Schema

91

Meta Data Coalition

92

Surrogate
(from Generic Elements)

v a——

Component
(from Core)

A

ModelE lement
(from Core)

&

Open Information Model

Dependency
(from Core)

Package

(from Model Management)

&

UsesConnection

Provider +Provider

Connection

ClassID : String

Catalog
>

LogicalCatalog

DeployedCatalog

ProgID : String [1..1 0..%

Version : String

ConnectionSet

+Connections

UserName : String
Password : String
ConnectString : String
ConnectionTimeout : Long
Mode : Long
IsReusable : Boolean
CloseQuoteChar : String
OpenQuoteChar : String
DBName : String

DSN : String
IsReadOnly : Boolean

+Connection

+DefaultCatalog
0.* 0.*
DataSource
IsPublic : Boolean +Connections
+DeployedCatalogs 0.1 0.
Figure 46 - Catalogs and Connections
Component

(from Core)

TypeSet
(from Data Types)

i

Provider) -
——<@ ClassID : String +ProviderTypeSet | ProvderTypeSet
1 |ProgID : String 0.* 1
Version : String 1
ObjectType
from Data Types)
+ProviderDataTypes | 0..* ZF
ProviderTypeMapping -
BestMatch : Bodean | 0..* 1 | ProvderDataType
- DataTypelD : Long
+ProviderType
0..*
*
+Mappings 0- 1
+ColumnType
Column 0.* 1
Identitylncrement : Integer
Ordinal : Long +DataType
ValueExpression : String

ColumnTypeSet

¢

+ColumnTypes

ColumnType

ColumnSize : Long
LiteralPrefix : String
LiteralSuffix : String
CreateParams : String
Searchable : Searchable
MinimumScale : Integer
MaximumScale : Integer
IsLong : Boolean

IsNullable : Boolean
IsCaseSensitive : Boolean
IsUnsignedAttribute : Boolean
IsFixedPrecisionScale : Boolean
IsAutoUniqueValue : Boolean
IsFixedLength : Boolean

Figure 47: Data Type M appings

Database and Warehousing: Database Schema

22

23

24
25
26

27
28

29
30
31
32
33

35
36
37
38
39

40

Open Information Model Meta Data Coalition

94.1 BeforeAfter

An enumeration whose values indicate when atrigger fires.

Values
e BEFOREAFTER_BEFORE =1 — Thetrigger isfired before the event.
e BEFOREAFTER_AFTER =2 —Thetrigger isfired after the event.

9.4.2 Catalog

Each instance of this class describes a catalog — a named collection of schemasin a SQL environment.
This class can represent: agroup of files, arelational database, a network database, a hierarchical database,
an object database, or any other type of data store. Because a catalog is model ed as a specialization of
Package, which inherits from Element, a catalog can be contained in other types of packages that are not
specified in the modd.

The model distinguishes logical (or deployable) database definitions from definitions that are physically
deployed. According to UML, physical tables and views are stereotypes of components (where component
is a subtype of class). Having the deployed table and view classes specialize the Component (from UML)
class allows them to be deployed.

Specializes
e Package (from UML)
e Summarylnformation (from Generic Elements)
Associations
e Schemas (Schema, derived from UML:Namespace.ownedElement) — The set of schemas
contained in the catal og.

943 Column

Each instance of this class describes a column —a multiset of values that may vary over time.

All values of the same column are of the same data type or domain and are valuesin the sametable. A
value from a column is the smallest unit of data that can be selected from atable and the smallest unit of
data that can be updated.

Column provides a physical description of the smallest piece of data that can be described. A column
cannot contain any other object and is considered the lowest definable unit of data.

This class can represent columnsin arelational database or propertiesin an object database.
Specializes

e Attribute (from UML Extensions)

e Summarylnformation (from Generic Elements)
Attributes

e Identitylncrement (Integer) — Indicates the amount that an identity column should be incremented
for each new row. Thisvalue indicates the amount that the value for this column in the previous
instance should be automatically incremented in order to produce the value for this column in the
current instance. Identity columns are automatically incrementing columns that are often used to
provide unique key identification. If this property's value is greater than zero, then thisisan
identity column.

e Ordinal (Long) — Theindex of the column within the sequence of columns (1-origin indexing).

Database and Warehousing: Database Schema 93

ahbh W NP

© 00~ »

10
11
12
13
14

15

16
17

18
19
20
21

22
23
24

25
26
27
28

29
30

31
32

33

35
36
37

Meta Data Coalition Open Information Model

o ValueExpression (String) — Explains how a derived column is cal culated, such as" (Extended Price
* Quantity) — Discount".

Associations
e DataType (ColumnType, derived from UML:Structural Feature.type) — The data type of the
column.

944 ColumnConstraint

Each instance of this class describes a constraint on the values for a column. Constraints are invariants
typically expressed using Boolean logic. A ColumnConstraint is a specialization of a Constraint (from
UML).

Specializes
e Congtraint
Associations
e Column (Column, derived from UML:Constraint.constrainedElement) — The target of the

constraint.

945 Connection

Each instance of this class describes a connection — a client reference to a particular database resource. In
the case of Microsoft® SQL Server, a particular database (catal og) within the server can aso be specified.

Specializes
e ModeElement (from UML)
Attributes
e UserName (String) — The user name or 1D used to establish the connection to the data source.

e Password (String) — The password used to establish the connection to the datasource. Thisfield is
an unencrypted string. This may be empty when using integrated security or if the database
provider requires an encrypted password.

e ConnectSring (String) — A string containing provider-specific extended connection information,
such as an ODBC provider string. Although other connection properties (UserName, Password,
DSN) can be stored in this string, it istypically used for information that cannot be expressed in
other properties.

e ConnectionTimeout (Long) — The amount of time (in seconds) for connection initialization.
e Mode (Long) — A bitmask specifying access permissions requested by the connection.

e |sReusable (Boolean) — Indicates whether the connection may be shared among multiple clients or
it isclosed immediately after use.

e CloseQuoteChar (String) — Defines the right (closing) quoting character used by the data source.
e OpenQuoteChar (String) — Defines the left (opening) quoting character used by the data source.
e DBName (String) — The name of the database (catal og) used by the connection.

e DN (String) — The name of the datasource to used by the connection.

e |sReadOnly (Boolean) — Indicatesif the data sourceisread only.

94 Database and Warehousing: Database Schema

A WON

© 00 N O

10

12

13

14
15
16
17
18
19
20

21
22

23
24
25
26

27

28
29
30
31
32
33

35
36

Open Information Model Meta Data Coalition

Associations

e DefaultCatalog (Catalog) — An instance of DeployedCatal og — the catal og to be used as the default
if no catalog is specified when the connection is established.

e Provider (Provider) — The provider that is used by this connection.

9.4.6 ConnectionSet

Each instance of this class describes a connection set — a collection of database connections grouped
together for packaging.

Specializes
e Package (from UML)
Associations
e Connections (Connection) — A set of instances of the Connection class — these are the connections
present in the ConnectionSet.

947 ColumnSet

Each instance of this class describes any general set of columns —typically atable, view, or query.
Specializes

e Classifier (from UML)

e Summarylnformation (from Generic Elements).
Attributes

o EstimatedSze (Double) — The estimated size for this object.

e EstimatedRows (Double) — The estimated number of rows for this object.

e ProjectGrowthRate (Double) — The projected rate of growth for the column set. Used in
conjunction with the projected growth period to determine the rate of growth.

e ProjectGrowthPeriod (TimePeriod) — The period of time over which the growth rate holds.
Associations
e Columns (Column) — The set of columnsin the column set.

o Keys(Key) — The set of keys that apply to the column set.

9.4.8 ColumnType

An underlying or base data type object associated with a database column.
Specializes

o ObjectType (from Common Data Types)
Attributes

e ColumnSze (Long) — The length of a non-numeric column or parameter that refersto either the
maximum or the defined length for this type. For character data, thisis the maximum or defined
length in characters. For datetime data types, thisisthe length of the string representation
(assuming the maximum allowed precision of the fractional seconds component). If the data type
is numeric, thisis the upper bound on the maximum precision of the data type.

Database and Warehousing: Database Schema 95

O©Co~NOOOT AW NP

37

38
39
40

41
42
43

45

Meta Data Coalition Open Information Model

o LiteralPrefix (String) — The character or characters used to prefix aliteral of thistypein atext
command.

e LiteralSuffix (String) — The character or characters used to suffix aliteral of thistypein atext
command.

e CreateParams (String) — Creation parameters are specified when creating a column of this data
type. For example, the SQL data type DECIMAL needs a precision and a scale. In this case, the
creation parameters might be the string "precision,scal€”. In atext command used to create a
DECIMAL column with a precision of 10 and a scale of 2, the value of the TYPE_NAME column

might be DECIMAL() and the complete type specification would be DECIMAL(10,2).

The creation parameters appear as a comma-separated list of values, in the order in which they are
to be supplied, with no surrounding parentheses. If a creation parameter is length, maximum
length, precision, or scale, "length”, "max length", "precision”, and "scal€" should be used,
respectively. If the creation parameters are some other value, the text used to describe the creation
parameter is provider-specific.

If the data type requires creation parameters, "()" generally appears in the type name. This
indicates the position at which to insert the creation parameters. If the type name does not include
"()", the creation parameters are enclosed in parentheses and appended to the end of the data type
name.

e Searchable (Searchable) — Indicates the searchability of a data type; otherwise, thiscolumn is
NULL.

e MinimumScale (Integer) — If the type corresponds to a numeric or decimal, thisis the minimum
number of digits allowed to the right of the decimal point.

e MaximumScale (Integer) — If the type corresponds to a numeric or decimal, thisisthe maximum
number of digits allowed to the right of the decimal point.

e |sLong (Boolean) — Indicates that the data type is abinary or text that contains very long data. The
definition of very long data may be provider-specific.

e IsNullable (Boolean) — Indicates whether the columns of this data type can be defined as nullable.
o |sCaseSensitive (Boolean) — Indicates that the data type is a character type and is case sensitive.
e |sUnsignedAttribute (Boolean) — Indicates whether the column data typeis unsigned.

e |sFixedPrecisionScale (Boolean) — Indicates that, for numeric types, the data type has a fixed
precision and scale.

e |sAutoUniqueValue (Boolean) — Indicates that values of this type can be autoincrementing.
e IsFixedLength (Boolean) — Indicates whether columns of this type created by the DDL will be of
fixed length.

9.4.9 ColumnTypeSet

Each instance of this class describes a collection of column types corresponding to a specific version of a
DBMS product. ColumnTypes within a typeset should be shared by all columns of a certain type for a
specific database product.

Specializes
e TypeSet (from Common Data Types)
Associations

e ColumnTypes (ColumnType, from Common Data Types: TypeSet) — Specifies the collection of
column data types within this TypeSet.

96 Database and Warehousing: Database Schema

=

D O ~AWN

©

10
11
12
13
14
15
16
17

18

19
20
21
22

23
24
25
26
27
28
29
30

31

32
33

35
36
37

Open Information Model Meta Data Coalition

9.4.10 DatabaseConstraint

Each instance of this class describes ageneral constraint or assertion that can involve an arbitrary collection
of columns from an arbitrary collection of base tables. In most database systems, these are created via
CREATE ASSERTION.

Specializes
e Congtraint (from UML)

9.4.11 DataSource

Each instance of this class describes data source — a provider of database servicesto which a client can
connect.

Specializes

e Package (from UML)
Attributes

e |IsPublic (Boolean) — Indicates whether the data sourceis generally available for reuse.
Associations

e DeployedCatalogs (Catalog) — The set of Deployed catal ogs present in the data source.

o SBMS (ColumnTypeNameSpace) — The instance of a column type namespace product used by the

atasource.

9.4.12 DeployedCatalog

Each instance of this class describes an implemented catalog — that is, an actual physical database server.
The state of a deployed catalog in the repository may be periodically synchronized with its state in the
database where it is deployed. This synchronization activity is captured by the Surrogate class (from
Generic Elements).

Specializes
e Catalog
e Component (from UML)
e ModeElement (from UML)
e Surrogate (from Generic Elements)
Attributes
e SourceType (String) — The type of provider that operates on this catalog, such as SQL Server 6.5

or Oracle7.3.

9.4.13 DeployedColumn

Each instance of this class describes a column of a deployed table.
Specializes

e Column

e Component (from UML)
Attributes

e ConfidenceFactor (Integer) — Confidence in accuracy of column’sdata. Integer between 0%-100%

Database and Warehousing: Database Schema 97

A

© 00 NO O

10
11

12

13
14
15
16

17

18
19
20
21

22

23
24
25

26

27
28
29
30

31

32
33

Meta Data Coalition Open Information Model

9.4.14 Deployedindex
Each instance of this class describes an index of a deployed table.
Specializes
e Index
9.4.15 DeployedMaterializedView

Each instance of this class describes a physical grouping of columns from different tables forming a new
table.

Specializes
e Table
e View

e Component (from UML)

9.4.16 DeployedSchema
Each instance of this class describes a schema of an implemented database.
Specializes

e Schema

e Component (from UML)

9.4.17 DeployedTable

Each instance of this class describes atable asrealized in an implemented schema.
Specializes

o Table

e Component (from UML)

9.4.18 DeployedTrigger
Each instance of this class describes atrigger in a deployed schema.
Specializes
e Trigger
9.4.19 DeployedView
Each instance of this class describes a physical grouping of columns from different tables.
Specializes
e View
e Component (from UML)
9.4.20 ForeignKey

Each instance of this class describes an ordered collection of columns that can be used to refer to another
key in another table or view.

98 Database and Warehousing: Database Schema

QW 00 N o uoh~ W N

=

12
13
14
15

16

17
18
19

20
21
22
23

24
25
26
27

28
29
30

31
32
33

35
36

37
38
39
40
41

Open Information Model Meta Data Coalition

Specializes
o Key
9.4.21 ForeignKeyRole

Each instance of this class describes a referential role on the foreign key side of the referential integrity
congtraint.

Specializes
e RefaentidRole
Associations

e ForeignKey (ForeignKey, derived from JoinRole.Key) — The foreign key that participatesin this
referential constraint.

9.4.22 Frequency

An enumeration whose values indicate how often atrigger fires.
Values
e FREQUENCY_PERROW =1 —Trigger fires once for each row.
e FREQUENCY_PERSTATEMENT = 2 —Trigger fires once for each statement.

9.4.23 Index

Each instance of this class describes the physical characteristics of an index. Each table and materialized
view may have zero or more indexes, each of which are associated with a sequence of index columns. Each
instance can be a B+ tree, linear-hashing hash file, extensible-hashing hash file, or content index.

Specializes
e ModeElement (from UML)
Attributes
e IsUnique (Boolean) — TRUE only if the index is a unique index.

o |sClustered (Boolean) — TRUE only if theindex isa clustered index. That is, TRUE means that
the leaf nodes of the index contain full rows, not bookmarks. Thisisaway to represent atable
clustered by key value. On the other hand, FALSE means that the leaf nodes of the index contain
bookmarks of the base table rows whose key value matches the key value of the index entry.

e Nulls(Nulls) —indicates whether null values are alowed. This property should be set to one of the
following values: NULLS DISALLOWNULL, NULLS IGNORENULL,
NULLS IGNOREANYNULL.

e AutoUpdate (Boolean) — Indicates whether the index is maintained automatically when changes
are made to the corresponding base table. Thevalueis either:
TRUE: Theindex is automatically maintained.
FALSE: Theindex must be maintained by the consumer through explicit calls. Ensuring
consistency of the index as a result of updates to the associated base table is the responsibility of
the consumer.

e IndexFillFactor (Long) — For a B+-tree index, this represents the storage utilization factor of page
nodes during the creation of the index. The valueis an integer from 1 to 100 representing the
percentage of use of an index node. For alinear hash index, this property represents the storage
utilization of the entire hash structure (the ratio of used areato total allocated area) before afile
structure expansion occurs.

Database and Warehousing: Database Schema 99

~NOoO 01 ARWN B

oo

10

11
12
13

14
15

16

17
18
19

20
21
22
23
24

25

26
27

28
29
30

31
32

33

35

36
37
38
39

Meta Data Coalition Open Information Model

e |sSorted (Boolean) — Indicates whether the index totally orders the values of the columns on which
it isdefined. Typically, a sorted index isimplemented by a B-tree and an unsorted index is
implemented by hashing. When using sorted indexes, each column may be ordered ascending or
descending, which can be specified on the associated IndexColumn class.

Associations
e IndexColumns (IndexColumn) — The set of IndexColumns, where each IndexColumn indicatesthe
inclusion of a particular column in a particular index.

9.4.24 IndexColumn

Each instance of this classindicates that a particular column contributes to a particular index.
Attributes

e |IsAscending (Boolean) — Indicates whether the index sorts records in ascending order on the
values of the related column. If this property is false, then records will be sorted in descending
order. This property is meaningful only if the IsSorted property on thisinterfaceistrue.

Associations

e Column (Column) — The contributing column.

9.4.25 Join

Each instance of this class describes ajoin —that is, atable-to-table (or view-to-view, or table-to-view) link
using one key from each table (or view). Join inherits from Association (from UML), which has a
relationship to AssociationEnd, a generalization of JoinRole.

Specializes
e Association (from UML)
Associations
e JoinRoles (JoinRole, derived from UML:Association.Connection) — The pair of join roles on
opposite ends of thejoin.

9.4.26 JoinRole

Each instance of this class describes one “side” of ajoin. AssociationEnd has a relationship to Classifier
that isused to tiethejoin role to a ColumnSet.

Specializes
e AssociationEnd (from UML)
Associations

e Key—TheKey that isused for comparison on this“side’ of thejoin. (Each join connectstable
rows by comparing the value of a key of one table to the value of a key in another table.)

e ColumnSet (derived from UML:AssociationEnd. Type) — The table that participatesin thejoin via
thisjoin role.

9.4.27 Key

Each instance of this class describes an ordered collection of columns on a singletable or view. The same
key may be used in various referential roles or join roles. If a collection of columns happens to be useful as
both a unique key and aforeign key there must be two keys, because a referential role must be from a
foreign key to a unique key.

100 Database and Warehousing: Database Schema

A WO N P

© 00 N O

10

11
12

13
14

15

16
17

18
19

20

21
22
23

24
25
26

27

28
29

30
31
32
33

Open Information Model Meta Data Coalition

Specializes
e ModeElement (from UML).
Associations

e Columns (Column) — The ordered set of columns contributing to the key.

9.4.28 LogicalCatalog

Each instance of this classis a canonical description of a catalog that is not deployed in any particular
database.

Specializes
e Catalog

9.4.29 LogicalColumn

Each instance of this classis a canonical description of a column that is not deployed in any particul ar
database.

Specializes

e Column

9.4.30 Logicalindex

Each instance of this classis a canonical description of an index that is not deployed in any particular
database.

Specializes

e Index

9.4.31 LogicalMaterializedView

Each instance of this class describes a canonical description of a materialized view that is not deployed in
any particular database. (A materialized view isalogical grouping of columns from different tables that
forms a new table.)

Specializes
e Table
e View
9.4.32 LogicalSchema

Each instance of this classis a canonical description of a schemathat is not deployed in any particul ar
database.

Specializes
e Schema

9.4.33 LogicalTable

Each instance of this classis a canonical description of atablethat is not deployed in any particular
database.

Database and Warehousing: Database Schema 101

N

N o ok~ W

10
11
12

13

14
15

16
17

18
19

20

21
22

23
24
25

26
27
28

29
30
31
32

33

35
36
37

Meta Data Coalition Open Information Model

Specializes
e Table

9.4.34 LogicalTrigger

Each instance of this classis a canonical description of atrigger that is not deployed in any particul ar
database.

Specializes
e Trigger

9.4.35 LogicalView

Each instance of this classis a canonical description of aview that is not deployed in any particul ar
database.

Specializes

e View
9.4.36 MatchType

An enumeration whose values indicate the kind of match type for areferential role.
Values

e MATCHTYPE_FULL_MATCH = 1 — Every column must match for the record to be included in
the reference.

e MATCHTYPE_PARTIAL_MATCH = 2 — Some columns may be null but those that are not null
must match for the record to be included in the reference.

9.4.37 Nulls

An enumeration whose values indicate the way that nulls are to be handled.
Values

e NULLS DISALLOWNULL — Theindex does not allow entries where the key columns are
NULL. If the user attemptsto insert an index entry with aNULL key, then the provider returns an
error.

e NULLS IGNORENULL — Theindex does not insert entries containing NULL keys. If the user
attempts to insert an index entry with a NULL key, then the provider ignores that entry and no
error codeis returned.

e NULLS IGNOREANYNULL — Theindex does not insert entries where some column key hasa
NULL value. For an index having a multi-column search key, if the user inserts an index entry
with NULL value in some column of the search key, then the provider ignoresthat entry and no
error codeisreturned.

9.4.38 Provider

A provider isarun-time component that provides database information and exposes underlying data types
to aclient application. Examples of providers are SQLOLEDB (OLE DB for SQL Server), or the ODBC
driver for SQL Server. The friendly name of the provider, for example "Microsoft OLE DB Provider for
ODBC Driver" should be captured in the description attribute.

102 Database and Warehousing: Database Schema

=
P OOV ~NO O W N K

el
w N

[l
(2SN

16

17
18

19
20
21
22

23

24
25

26
27
28
29
30

31

32
33

35
36

Open Information Model Meta Data Coalition

Specializes
e Component (from UML)
Attributes

e ClassiD (String) — The ClassID of the provider used by a connection for provider initiaization, if
applicable.

e ProglD (String) — The ProgID of the provider used by a connection for provider initialization, if
applicable.

e \ersion (String) — The version of the provider. The version is of the form ##.##.####, where the
first two digits are the major version, the next two digits are the minor version, and the last four
digitsare the release version. A description of the provider can be appended.

Associations

e Mappings (Provider TypeMapping) — A set of instances of Provider TypeMapping. These indicate
how the provider exposes underlying datatypes to programs manipulating the data.

o TypeSet (ProviderTypeSet) — The typeset used by this provider. For example, the ODBC driver
for Microsoft® SQL Server would specify the ODBC 3.0 TypeSet.

9.4.39 ProviderDataType

Each instance of this class describes a provider data type — an intrinsic type a provider uses to expose one
or more underlying column data types.

Specializes
o ObjectType (Common Data Types)
Attributes
e DatatypelD (Long) — An arbitrary identifier for the ProviderDataType.

9.4.40 ProviderTypeSet

Each instance of this class describes a provider typeset — a set of data types exposed by a provider, for
example OLE DB 1.0 or ODBC 3.0.

Specializes
e TypeSet (from Common Data Types)
Associations
e ProviderDataTypes (ProviderDataType, from Common Data Types: TypeSet) — The set of
provider data types for this TypeSet.

9.4.41 ProviderTypeMapping

Each instance of this classindicatesthat aparticular Provider usesaparticular ProviderDataType to expose
any column whose underlying data type is ColumnType.

Each instance of this class as an ordered triplet (A, B, C), asfollows:

Whenever provider A encounters a database column whose ColumnTypeis B, it exposes the column’s
value as a variable with ProviderDatatype C.

Database and Warehousing: Database Schema 103

AN -

© 0O~NO® (61

10
11
12

13

14
15
16
17

18
19

20
21

22

23
24
25

26
27
28

29
30

31
32

33

35
36

37
38

Meta Data Coalition Open Information Model

Attributes

e BestMatch (Boolean) — Indicates that the mapping between a pair of object types by a provider is
the "best" match. Thereis a constraint that for each underlying object type, only one instance of
the mapping will have BestMatch = TRUE.

9.4.42 Query

Each instance of this class describes a query -- A query is a predefined specification for retrieving a set of
information. A query can retrieve data from many different sources, including tables, views, and OLE DB
providers.

Specializes
e ColumnSet
Attributes
e Body (Text) — The SQL text of the query.

9.4.43 ReferentialConstraint

Each instance of this class describes a referential integrity constraint.
Specializes

e Join
Associations

o ForeignKeyRole (ForeignKeyRole, derived from Join.JoinRoles) — The side corresponding to the
foreign key.

e UniqueKeyRole (UniqueKeyRole, derived from Join.JoinRoles) — The side corresponding to the
primary key.
9.4.44 ReferentialRole

Each instance of this class describes one “side” of areferential integrity constraint. Typically, the rules for
the referential constraint are stored on the foreign key role, however some database systems may allow for
different constraints on each role.

Specializes
e JoinRole
Attributes

e UpdateRule (Referential Rule) — Describes the behavior when arow is updated in the table
participating in the constraint.

e DeleteRule (Referential Rule) — Describes the behavior when arow is deleted from the table
participating in the constraint.

o IsDeferable (Boolean) — TRUE if the referential integrity check can be deferred.
e InitiallyDeferred (Boolean) — TRUE if the referential integrity check isinitially deferred.

e MatchType (MatchType) — Indicates whether or not every referencing column value must match
every referenced column value to include the record.

9.4.45 ReferentialRule

An enumeration whose values indicate the type of referentia rule.

104 Database and Warehousing: Database Schema

o b W N

©

10
11

12

13
14
15
16
17
18

19
20
21
22
23

24
25

26
27

28
29

30
31

32
33

35

36

37
38
39

Open Information Model Meta Data Coalition

Values
e REFERENTIALRULE_CASCADE = 1 — Cascade the update or delete to the referenced row.
e REFERENTIALRULE_SET_NULL = 2 — Set the column in the referenced row to null.

e REFERENTIALRULE_SET_DEFAULT = 3 — Set the column in the referenced row to its default
value.

e REFERENTIALRULE_NO_ACTION = 4 — Do nothing with the referenced row.

9.4.46 RowSet

Each instance of this class describes a generic column set that is neither aquery, aview, nor atable. Such a
column set can temporarily exist as the result of a query.

Specializes
e ColumnSet

9.4.47 Schema

Each instance of this class describes a schema — a persistent descriptor packaging database component
descriptors. This structure can be used to represent alogical or physical relationship between database
objects. For example: All objects owned by a user of arelational database, alogical grouping of objectsin
an object database, the directory structure of files. An instance of this class can contain objects
representing: tables, indexes, and constraintsin arelational database, and objects and relationshipsin an
object database.

Specializes

e Package (from UML)

e Module (from UML Extensions)

e Summarylnformation (from Generic Elements)
Associations

e Indexes (Index, derived from UML:Namespace.ownedElement) — The indexes contained in the
schema.

e Tables(Table, derived from UML:Namespace.ownedElement) — The tables contained in the
schema.

o Views (View, derived from UML:Namespace.ownedElement) — The views contained in the
schema.

e StoredProcedures (StoredProcedure, derived from UML:Classifier.feature) — The stored
procedures of the schema.

o Referential Congtraints (Referential Constraint, derived from UML:Namespace.ownedElement) —
The set of referential (primary key/foreign key) constraints owned by the schema.

e DatabaseConstraints (DatabaseConstraint, derived from UML:Namespace.ownedElement) — The
set of general constraints (sometimes called assertions) owned by the schema

9.4.48 Searchable

An enumeration whose values indicate the searchability of a data type.
Values
e UNSEARCHABLE =1 — The data type cannot be used in a WHERE clause.

Database and Warehousing: Database Schema 105

18

19
20
21

22
23

24
25

26
27

28
29

30
31
32

33

35

36
37
38
39
40
41

Meta Data Coalition Open Information Model

e LIKE_ONLY =2 - The datatype can be used in a WHERE clause only with the LIKE predicate.

e ALL_EXCEPT_LIKE = 3 — The data type can be used in a WHERE clause with all comparison
operators except LIKE.

e SEARCHABLE =4 — The data type can be used in a WHERE clause with any comparison
operator.

9.4.49 StoredProcedure

Each instance of this class describes a stored procedure, a named set of SQL statements that can be
executed by database users. Stored procedures are modeled as extensions of Method (from UML). UML
requiresthat a Classifier own every Method. However, database systems don’t offer a natural grouping of
stored procedures into classifiers. The solution offered by the Schema Elements package is that the Schema
class specialize the Module class (defined in the UML Extensions package), of which Classifier isa
specialization ancestor.

Specializes
e Method (from UML)
Associations

e ProcedureParameters (StoredProcedureParameter, derived from
UML:Behavioral Feature.parameter) — A set of instances of the StoredProcedureParameter class.

9.4.50 StoredProcedureParameter

Each instance of this class describes a parameter of a stored procedure.
Attributes
e Length (Long) — The maximum possible length of a value of the attribute.

e NumericScale (Integer) — The number of digitsto the right of the decimal point in the column for
numeric parameters.

e NumericPrecision (Integer) — The maximum number of base 10 digits that can be stored for
numeric parameters.

e TimePrecision (Long) — Datetime precision (number of digitsin the fractional seconds portion) if
the attribute is a datetime or interval type.

e |sOutput (Boolean) — Indicates that the parameter is a return parameter. Output parameters return
information to the calling procedure.

e Default (String, derived from UML:Parameter.defaultValue) — The default value for the
parameter. If a default is defined, the procedure can be executed without specifying a value for
that parameter.

Specializes
e Parameter (from UML)

9.451 Table

Each instance of this class describes atable, a multi-set of rows. A row is a nonempty sequence of values.
Every row of the same table has the same cardinality and contains a value of every column of that table.
The nth value in every row of atable isavalue for the nth column of that table. A row isthe smallest unit
of datathat can be inserted into or deleted from atable. A tableis a grouping of columns that describe a
basic unit of data. Instances of this class can represent: record layouts of afile, relational database tables,
objects in an object database, recordsin a network database, or segmentsin a hierarchical database. Tables

106 Database and Warehousing: Database Schema

© 00 N o 0o B~ W NP

10

11
12

13
14
15
16

17

18
19
20

21
22
23
24

25

26
27

28
29
30
31
32
33

35
36

Open Information Model Meta Data Coalition

can contain objects representing: columnsin arelational database, propertiesin an object database, or fields
in arecord type.

Specializes
e ColumnSet
Associations
e Triggers (Trigger, derived from UML:Classifier.feature) — The triggers defined on the table.
e Indices (Index) — The set of indexes for the table.
e UniqueKeys (UniqueKey, derived from ColumnSet.Keys) — The set of unique keys for the table.
o ForeignKeys (ForeignKey, derived from ColumnSet.Keys) — The set of foreign keys for the table.

9.452 TableConstraint

Each instance of this class describes a database constraint that appliesto atable. Constraints are invariants
typically expressed using Boolean logic. A TableConstraint is a specialization of Congtraint (from UML).

Specializes
e Constraint
Associations

e Table(Table, derived from UML:Constraint.constrainedElement) — The target of the constraint.

9.4.53 TableSynonym

Each instance of this class describes an aternate name or alias for atable. Whileit sharesits schema
namespace with tables and views, unlike a view, it does not contain a SQL statement or column
specification.

Specializes
e ModeElement (from UML)
Associations
e Table(Table) — Thetable for which thisisasynonym.

9.4.54 Trigger

Each instance of this class describes atrigger — essentially arule that automatically fires on a certain event
such as an insert, update, or delete operation. This class captures the ANSI SQL-92 concept of atrigger.

Specializes
e Method (from UML)
Attributes
e Islnsert (Boolean) — TRUE if the trigger fires on an insert operation.
e |sUpdate (Boolean) — TRUE if the trigger fires on an update operation.
o |sDelete (Boolean) — TRUE if the trigger fires on a delete operation.

e Frequency (Frequency) — Indicates how often the trigger fires. For example, does the trigger fire
once per row, or once per statement?

o BeforeAfter (BeforeAfter) — Indicates when the trigger fires, either before or after the operation.

Database and Warehousing: Database Schema 107

ahbh W NP

© 00 N O

10
11

12

13
14

15
16
17
18
19

20

21
22

23
24
25
26

27

28
29
30
31
32
33

Meta Data Coalition Open Information Model

e Statements (String, derived from UML:Method.body) — The SQL statements which specify the
trigger conditions and actions.

Associations
e Columns (Column) — The set of columns controlling whether thetrigger fires. If thisassociation is
null, then the trigger firesif the event occurs on any column in the table.

9.4.55 UniqueKey

Each instance of this class describes a set of columns whose values must be unique for each row of atable.
Specializes

e Key
Attributes

e IsPrimary (Boolean) — TRUE only if the key isa primary key.

9.4.56 UniqueKeyRole

Each instance of this class describes a referential role on the unique key side of the referential integrity
congtraint.

Specializes
o ReferentialRole
Associations
o UniqueKey (UniqueKey, derived from JoinRole.Key) — The unique key that participatesin the
referential constraint.

9.4.57 UsesConnection

Each instance of this classindicates that a particular object uses a particular Connection. A connection is
the supplier of the Dependency, and the client is the object that uses, or depends on, the connection.

Specializes
e Dependency (from UML)
Associations

e Connection (Connection, from UML:Dependency.supplier) — The connection used by the object.

9.4.58 View

Each instance of this class describes a view — a grouping of columns not necessarily from the sametable.
Specializes

e Query
Attributes

e |sReadOnly (Boolean) — TRUE only if the view cannot be used to insert, delete, or update data.

e CheckOption (Boolean) — Indicates whether inserts and updates performed through the view must
result in rows that the view query can select.

108 Database and Warehousing: Database Schema

=

a ~AWN

© 00 ~NO

10
11

12

13
14
15

16

17
18

19
20
21

Open Information Model Meta Data Coalition

9.5 OIM 1.0 Compatibility

Theoriginal OIM specialized the Common Data Types package to provide relational database specific
types. The limitations of this approach have led to the recommendation to use the generic ColumnType
class.

This section describes classes included in the OIM for compatibility with earlier versions of OIM.

ColumnType

Money NChar Char Real Double Time

Decimal SmallMoney TimeStamp

VarChar

VarBinary ‘

Bi"a Bit Quadint

Blob Clob Interval Numeric Date Smallint Integer TinyInt

Figure 48: OIM 1.0 Data Types

9.5.1 Binary
Specializes
e Binary

e ColumnType

9.5.2 Bit

Bit describes a single-bit binary-data data type. Instances that support this interface should set the
IsVariable property inherited from Binary to FALSE and the Length property inherited from Binary to 1.

Specializes
e Binary

e ColumnType

Database and Warehousing: Database Schema 109

=Y

© O~N OO0 ~hAOWN

=
o

11

12
13

14

15
16

17
18

19
20

21
22
23

24

25
26
27

28
29
30

31
32

33

35
36

37
38

Meta Data Coalition Open Information Model

953 Blob

Blob describes BLOB data types. Blob data types usually have physical implementations that differ from
other variable-length binary data types. These physical implementation differences are specific to the
DBMSin question.

Instances that support thisinterface should set the IsVariable property inherited from the Binary typeto
TRUE.

Instances that support thisinterface should set the Length property inherited from the Binary type to the
maximum length allowed for a BLOB datatype in the DBMS.

Specializes

e VaBinary

954 Char

Char describes a fixed length character string data type using the database's default character set to
determine the type of character data.

The length of theinstance is determined by the Length property inherited from the String data type.

The IsCaseSensitive property inherited from String determines whether the column’s sorting order should
consider the case of the value.

The Character Type property (also inherited from the String data type) indicates whether the value of the
instance is composed of single byte characters, double byte characters, or multi-byte characters.

Instances that support thisinterface should set the IsVariable property inherited from the String type to
FALSE.

Specializes
e String
e ColumnType

955 Clob

Clob describes a character large object data type. Clob data types usually have physical implementations
that differ from other variable-length character data. These physical implementation differences are specific
tothe DBMS.

Instances that support this interface have the maximum length determined by the value of the Length
property inherited from the String type. Instances that support this interface should set the IsVariable
property inherited from the String type to TRUE.

The IsCaseSensitive property inherited from String determines whether the column’s sorting order should
consider the case of the value,

The Character Type property aso inherited from the String data type indicates whether the value of the
instance is composed of single byte characters, double byte characters, or multi-byte characters.

Specializes
e VarChar

956 Date

Date describes database year, month, and day fields conforming to the rules of the Gregorian calendar.

110 Database and Warehousing: Database Schema

N

N o 0o b

10
11

12
13
14

15

16
17
18
19

20

21
22

23
24

25
26

27
28

29
30
31

32
33

Open Information Model Meta Data Coalition

Specializes
e Date
e ColumnType

957 Double
Specializes
e Double

e ColumnType

9.5.8 Integer

This type represents a double word (4 byte) integer data type.

Instances that implement this interface should set the NumericPrecision attribute of the inherited Numeric
type to less than or equal to 10 and NumericScaleto O.

Specializes
e Longint
e ColumnType

959 Interval

Each instance of this class describes a datatype representing the difference between two dates or times.
Specializes

e Scalar

e ColumnType

95.10 NChar

The type defining a fixed-length character string data type using the database's national character set.
Thelength of theinstance is determined by the Length property inherited from the String data type.

The IsCaseSensitive property inherited from String determines whether the columns sorting order should
consider the case of the value.

The Character Type property (also inherited from the String data type) indicates whether the value of the
instance is composed of single byte characters, double byte characters, or multi-byte characters.

Instances that support thisinterface should set the IsVariable property inherited from the String type to
FALSE.

Specializes

e String

e ColumnType
9.5.11 NVarChar

The type defining a variable length character string data type using the database's national character set to
determine character data type.

Database and Warehousing: Database Schema 111

© 00 N o0 AW NP

10

11
12
13

14

15
16

17

18
19
20

21
22
23
24

25
26
27
28
29
30
31
32
33

35

Meta Data Coalition Open Information Model

The maximum length determined by the value of the Length property inherited from the String type.
Instances of this type should set the IsVariable property inherited from the String type to TRUE.

The IsCaseSensitive property inherited from String determines whether the columns sorting order should
consider the case of the value.

The Character Type property also inherited from the String data type indicates whether the value of the
instance is composed of single byte characters, double byte characters, or multi-byte characters.

Specializes
e String
e ColumnType

9.5.12 Numeric
Specializes
e Numeric

e ColumnType

9.5.13 Money

The type defining a money data type. Money usually differs from SmallMoney in the maximum amounts
theinstance of thistypeis ableto store.

The IsSigned property inherited from Numeric should be set to TRUE.

The NumericScale and NumericPrecision properties inherited from the Numeric type should be set in an
implementation specific way. Likewise, the OctetL ength property inherited from the IntrinsicType type
should be set in an implementation-specific way.

Specializes
e Decima

e ColumnType

9.5.14 Quadint

Specializes
e Quadint
e ColumnType

9.5.15 Real
Specializes

e Single

e ColumnType
9.5.16 Smallint

The type that represents a double word (2-byte) integer column data type. Instances that implement this
interface should set the NumericPrecision attribute of the inherited Numeric type to lessthan or equal to 5
and NumericScale to 0.

112 Database and Warehousing: Database Schema

N

©o~N O o1 b~

10
11
12

13

14
15
16

17

18
19
20

21

22
23
24
25

26

27
28

29
30

31
32
33

Open Information Model

Specializes

9.5.17 SmallMoney

Shortint
ColumnType

The type defining a small money data type.
The IsSigned property inherited from Numeric should be set to TRUE.

The NumericScale and NumericPrecision properties inherited from the Numeric type should be set in an
implementation-specific way. Likewise, the OctetLength property inherited from the IntrinsicType type
should be set in an implementation-specific way.

Specializes

Decimal

ColumnType

9.5.18 Time
Specializes

Time

ColumnType

9.5.19 TinyInt
Specializes

9.5.20 TimeStamp

Tinylnt
ColumnType

The type that describes a timestamp data type.
Specializes

9.5.21 VarBinary

Datetime
ColumnType

Meta Data Coalition

The type that implements a variable length binary data with a maximum length determined by the val ue of
the Length property inherited from the Binary type.

Instances that support thisinterface should set the IsVariable property inherited from the Binary interfaceto

TRUE.

Specializes

Binary
ColumnType

Database and Warehousing: Database Schema

113

=Y

© O~N OO0 ~hAOWN

=
o

e
N

Meta Data Coalition Open Information Model

9.5.22 VarChar

The type defining a variable length character string data type with the maximum length determined by the
value of the Length property inherited from the String type. Instances that support this interface should set
the IsVariable property inherited from the String type to TRUE.

The IsCaseSensitive property inherited from String determines whether the columns sorting order should
consider the case of the value.

The Character Type property also inherited from the String data type indicates whether the value of the
instance is composed of single byte characters, double byte characters, or multi-byte characters.

Specializes
e String
e ColumnType

114 Database and Warehousing: Database Schema

© 00 N OO O B~ W N P

=
o

Open Information Model

This page isintentionally blank.

Database and Warehousing: Database Schema

Meta Data Coalition

115

Meta Data Coalition Open Information Model

10 Database and Warehousing: Data
Transformations

10.1 Overview

When moving data from production databasesinto a data warehouse or data mart, data typically needsto be
transformed into a more suitable form for data analysis. The Data Transformation package describes data
transformations, what they do, and what data they access.

This package covers basic transformations for relational-to-relational trandations. As additional packages
areintroduced (legacy languages, VSAM, IDMS, and so forth), other types of sources and destinations may
be specified aswell.

The Data Transformation package is intended to enable sharing of meta data about transformation activities
by making such meta data readily available in a commonly agreed-upon format for tools and applications.
More specifically, the goals are to:

e Givedata extraction and transformation logic (ETL) tools a common place to store their
transformation information. This gives the customers a single place to view all of their warehouse
transformations, regardless of the tool.

e Allow exchange of transformation information. Many transformations are sufficiently generic to
be used for avariety of databases and applications. By storing such transformations and their
constituent piecesin arepository, existing transformations can be reused when building anew data
warehouse or data mart. A customer may initially build a data mart by using a low-end
transformation tool, but later decide to invest in more powerful tools.

e Provide a meta data storage mechanism for custom-coded applications. Thiswill alow custom
applications to have their transformations documented in a consistent manner.

e Leveragethe existing Database Schema package information in transformations. Tools can usethe
schema model information, such as table and column descriptions, to build their transformation
models.

e Provide support for package executions, or data lineage. This allows usersto trace datain the data
warehouse to the transformations that were used to populate it.

The classesin this chapter are related closely to the classes in Database Schema package, which presents
both the motivation for relational database schema and the usage scenarios for which they are intended.

Some source and destination classes in the transformation packages model inherit from classesin the
Database Schema package. Therefore, an instance of the Data Transformation package can be viewed and
accessed by tools that use the Database Schema package but do not use the Data Transformation package
itself.

10.2 Semantics
This section provides a discussion of the main features of the Data Transformations package beyond that

specified in the reference section. The following figure introduces the core el ements of the package
described in detail below:

116 Database and Warehousing: Data Transformations

Open Information Model Meta Data Coalition

Package
« Task A

Task B

Step 2 —> Source

Task C
Step 3 | =

Figure 49: A Sample Transfor mation Package

Target

A transformation maps from a set of source objects into a set of target objects, both represented by a
transformabl e object set. The elements of a transformable object set are typically columns or tables.
Transformable object sets can be both sources and targets for different transformations. The object set
abstraction makesit easier to identify pairs of transformations where the output of one transformation isthe
input of another. Thisis often the case with transformations that produce and consume temporary objects.

Transformations allow a wide range of granularity to be defined based upon the information in the specific
tool. If the tool is not very granular, only tracking inputs and outputs for a program, the transformable
object set can berelated to alarge set of tables or columns. More granular tools can track the
transformationsin great detail, with each transformation only relating to one or two columns.

Within atransformation, transformation tools may store scripts, atextual description, or actual program
code. Extended textual descriptions and summary information can aso be stored. The model can aso
handle temporary transformation fields (those that are not persisted in a database).

Transformations can be packaged into groups. These groups can represent the transformations performed in
asingle program or in alogically related set of transformations (for example, all of the transformations
related to moving the customer master file into the warehouse). There are three levels of grouping that can
be done with the transformation model. Thefirst uses a transformation task, which describes a set of
transformations that must be executed together — alogical unit of work. In this context, alogical unit of
work relatesto a program or execution unit. Therewill usually be many physical units of work for each
logical unit of work. Transformations can be ordered and executed in a particular sequence for the task.

The second level of grouping is a transformation step. A transformation step executes asingle
transformation task. Steps are used to coordinate the flow of control between tasks. The third leve of
grouping is a transformation package, consisting of a set of transformation steps, transformation tasks, and
other related objects. This grouping can be used, for example, as the unit of versioning of transformations
and as the unit of access control.

Simple value conversions are often performed during the transformation process. For example, a
transformation may wish to map literal values of 1, 2, and 3 in a source database to ‘good’, ‘fair’, and
‘poor’ in adatawarehouse. Or the transformation might use a lookup table to convert values such as zip
codes to state names.

Conversions are specified using code/decode sets. Literal conversions are specified using code/decode
values. The namelvalue pairs are specified like constantsin an enumeration. Ranged expressions and other

Database and Warehousing: Data Transformations 117

O©CoOo~NOOOUITA WN P

=
o

11
12

Meta Data Coalition

multiple or spanning values can also be defined using tool -specific expressions. A code/decode set can also
be stored in atable. For code/decode sets using a lookup table, the model specifies the related columns that

Open Information Model

represent the column storing the code and decode values respectively.

Package executions express the concept of a data lineage. Information about each execution of a package
can be stored along with information about the execution of each task within the package. The ExecutionlD
property can be stored in atarget database in the object that was populated by the package execution. This
enables the lineage of the data to be traced back to the package execution that created it. Thisallows datain
the warehouse to be tracked, so that a user can determine from which data it was derived, and which

transformation was used to create it.

10.3 Class Reference

ConnectionSet
(rom Catalog and Connections

fom Schema Elements

ColumnSet ‘

Summary information
(fom Generic Element§

Package
(from Model Management)

TransformationPackage

118

Module
(rom Auxiliary Elements)

Classifier
(from Core)

b

CreationDate : String

Method

(from Core)

i

+Executions

Executionld : String
ShortExecutionld : Long
System : Stiing
Account : String
WhenExecuted : String

StepExecution

+StepExecutions | WhenStarted : String
WhenEnded : String
Duration : Double
Succeeded : Boolean

Figure 50: Transformation Packaging

Database and Warehousing: Data Transformations

Transformation "
: o - Dependency
B : FunctionExpression : Text
+Transformations
+OwnedTasks Transformatlor"nTask IsControl : Boolean (from Core)
o Language : String 0..* |Language : String
/ Body : String
+Task | 1..1
0.* StepPrecedence
PrecedenceBasis : StepPrecedenceBasis
0.*
0.* +PrecedingStep| 1.*
TransformationStep %
+OwnedSteps 1.
+SucceedingStep
1.1
Element
(from Core)
0..*| +StepExecutions
1.1 0.*| PackageExecution 1.1 0.

Open Information Model

Classifier
(from Core)

TransformationTask

(from Core)

Dependency

o

Meta Data Coalition

TransformationTaskDependency

Language : String

+Dependencies|

Type : String

(from Core)

Method

Z% TransformableObjectSet

0..*

+OriginalTransformation

TemporaryField

Transformation
0. 1.*
FunctionExpression : Text
IsControl : Boolean +Target
1 0..* |Language : String
/ Body : String
+Transformations
0.* 1.*
0.* Attribute +Source
(from Auxiliary Elements)

Figure 51: Transformation Tasks

Method
(from Core)

T

Transformation

Enumeration
(from Common Data Types)

FunctionExpression : Text
IsControl : Boolean
Language : String
/ Body : String

CodeDecodeSet

+Dependencies

Dependency
(from Core)

-

0..*

+Conwersions

0.*

TransformationDependency

TransformationConversion

+CodeDecodeSet

Column

(from Schema Elements)

+DecodeColumn

0..*

+CodeColumn

0..*

CodeDecodeColumn

EnumerationLiteral
(from Common Data Types)

CodeDecodeValue

BeginDate : String
EndDate : Stiing

/ DecodeValue : String
EncodeValue : String

0..*

+Values

Figure 52: Constraints and Conversions

Database and Warehousing: Data Transformations

119

=Y

a b~ WN

O © oo~ »

12
13

14
15

16
17
18

19
20
21

22
23
24

25

26
27
28

29
30
31
32
33

35

36

37

38
39

Meta Data Coalition Open Information Model

10.3.1 CodeDecodeColumn

This class defines a specialization of the column class from the Database Schema package that can be used
within a CodeDecodeSet.

Specializes

e Column (from Schema Elements)

10.3.2 CodeDecodeSet

Each instance of this class defines a set of code/decode pairs for a TransformationConversion. There are
two ways to describe code/decode values. Thefirst isto enumerate them explicitly, through a collection of
CodeDecodeValues. If the code/decode values are also stored in atable or query, the CodeColumn and
DecodeColumn associations can be used.

Specializes

e Enumeration (from Common Data Types)

Associations
e Values (CodeDecodeValue, derived from DataTypes.Enumeration.literal) — Contains the set of
encode/decode pairs.

e CodeColumn (CodeDecodeColumn) — Describes the column where the code value is stored. This
association is used in conjunction with the DecodeColumn associ ation relationship to show that
the code/decode information is stored in atable or query.

e DecodeColumn (CodeDecodeColumn) — Describes the column where the decode value is stored.
This relationship isused in conjunction with the CodeColumn association to show that the code
decode information is stored in atable or query.

Condtraints
e Thetarget columnsfor both CodeColumn and DecodeColumn associations should be on the same
ColumnSset.

10.3.3 CodeDecodeValue

Each instance of this class describes a code/decode pair used for mapping transformation values. The
values are specified just like the constants in an Enumeration. Ranged expressions and other multiple or
spanning values can also be defined using tool -specific expressions.

Specializes
e EnumerationLiteral (from UML)
Attributes
e BeginDate (Date) — The effective date for which the pair isvalid.
e EndDate (Date) — The last effective date for which the pair isvalid.

e DecodeValue (String, derived from DataTypes.EnumerationLiteral.Name) — The decoded val ue of
theliteral, i.e. the value that will be translated from.

e EncodeValue (String) — The encoded value of theliteral, i.e. the value that will be translated from.

10.3.4 PackageExecution

Each instance of this class describes an execution of the associated TransformationPackage. The lineage of
data can be tracked by having instances of the target data contain the PackageExecutionlD. Customers can

120 Database and Warehousing: Data Transformations

© O~N OO O~ W NP

e <
w N Pk O

14

15
16
17
18
19
20
21
22
23

24

25
26
27
28

29
30
31

32
33

35
36

Open Information Model Meta Data Coalition

determine how the data was calculated, where it came from, and when it was loaded into the data
warehouse.

Specializes
e Element (from UML)
Attributes
e Account (String) — The user account under which the package was executed.

e ExecutionID (String) — A GUID that uniquely identifiesthe package execution, sometimescalled a
lineage.

e ShortExecutionID (Long) — Represents the ExecutionID in a compressed form.

e System (String) — The name of the machine on which the package was executed.

e \WhenExecuted (String) — The date and time when the package was executed.
Associations

e SepExecutions (StepExecution) — Describes the steps executed during this package execution.

10.3.5 StepExecution

Instances of this class represent a step execution during the associated package execution.
Specializes
e Element (from UML)
Attributes
o WhenSarted (String) — Time/date when the step began execution.
e WhenEnded (String) — Time/date when the step finished execution.
e Duration (Double) — Amount of time (in seconds) that it took the step to compl ete execution.
e Suceeded (Boolean) — A Boolean indicating whether the step completed execution. If avalue does

not exist, the step never started execution.

10.3.6 StepPrecedence

An instance of this class represents an order-of-execution constraint between two transformation steps. It
indicates that the successor step may not be executed until all preceding steps have been completed. The
initial steps of a package are defined as steps that have no precedence. In a single-threaded system, only
one step will match this criterion.

Specializes
e Dependency (from UML)
Attributes

e PrecedenceBasis (StepPrecedenceBasis) — Indicates whether to use Sep Satus or Result in the
Precedence.

Associations

e PrecedingStep (TransformationStep, derived from UML:Dependency.supplier) — Set of
TransformationStep instances that must be executed before the succeeding steps may be executed.

Database and Warehousing: Data Transformations 121

a A WDNPEF

© oOo~N O

10
11

12

13
14
15

16
17

18

19
20
21
22
23

24

25
26
27

28
29

30
31

32
33

35
36

Meta Data Coalition Open Information Model

e SucceedingStep (TransformationStep, derived from UML:Dependency.client) — Set of
TransformationStep instances that will be executed after the preceding steps have completed
execution.

Constraints

e Circular precedenceis not supported.

10.3.7 StepPrecedenceBasis

An enumeration whose values indicate whether to use Sep Status or Result to determine the step
precedence. May be one of the following values:

Vaues
e STEPPRECEDENCEBASIS EXECSTATUS = 0 — Use the Step Status.
e STEPPRECEDENCEBASIS EXECRESULT = 2 — Use the Result.

10.3.8 TemporaryField

This class describes an attribute that can be used as a temporary field in atransformation. A Classifier
needs to be created to hold the temporary fields (Attributes are owned by a Classifier as
Structural Features). Global fields can be owned by the transformation package.

Specializes
e Attribute (from UML Extensions)

10.3.9 TransformableObjectSet

This class defines a set of objects (e.g., columns) used as the source or target of a Transformation.
Specializes

e Dependency (from UML)
Associations

e TransformObjects (TransformableObject) — The set of objects referenced within the set.

10.3.10 Transformation

Each instance of this class describes a transformation from a set of source objects to a set of target objects.
For simple transformations, the FunctionExpression property can be used to provide a short description of
the transformation code/script.

To define contraints for a transformation, define a TransformationConstraint from the constraint to the
transformation.

To define a simple code/decode trand ation, define a TransformationConversion from the CodeDecodeSet
to the transformation.

Specializes
e Method (from UML)
Attributes
e Body (String, derived from UML:Method.body) — Any code or script for the Transformation.

122 Database and Warehousing: Data Transformations

©o0o N ool AW NP

el
()

e
w N

[l
(2SN

16

17
18
19
20
21
22

23

24
25

26
27

28

29
30
31

32
33

35
36
37

Open Information Model Meta Data Coalition

e FunctionExpression (String) — A short description for any code/script performed by the
Transformation.

e |sControl (Boolean) — Used to show that this Transformation isthe primary transformation for the
associated Task.

e Language (String, derived from UML:Method.body_|anguage) — The language in which the
Transformation is expressed. Typically, the name of a programming language.

Associations

e Source (TransformableObjectSet, derived from UML:Mode Element.clientDependency) — The set
of attributes that will function as the source of the Transformation.

e Target (TransformableObjectSet, derived from UML:Mode Element.clientDependency) — The set
of attributes that will function as the destination of the Transformation.

e Dependencies (TransformationDependency, derived from UML:Model Element.clientDependency)
— The set of objects on which the transformation depends.

e Conversions (TransformationConversion, derived from UML:Mode Element.clientDependency) —
The set of CodeDecodeSet objects or other objects used by the transformation to convert values.

10.3.11 TransformationConversion

A transformation conversion is a dependency used to attach a code/decode set to a transformation.
Specializes
e Dependency (from UML)
Associations
o CodeDecodeSet (CodeDecodeSet) — The CodeDecodeSet that will be used by the
TransformationConversion.

10.3.12 TransformationDependency

Transformation dependencies associ ate transformations with objects required by the transformation, such
asafunction or query.

Specializes
e Dependency (from UML)

10.3.13 TransformationPackage

A transformation package is the unit of storage and execution for transformations. Each instance of this
class describes a grouping of Transformations, TransformationSteps, TransformationTasks, and
Connections.

Specializes
e Package (from UML)
e ConnectionSet (from Database Schema)
e Summarylnformation (from Generic Elements)
e Module (from UML Extensions)
e ColumnSet (from Database Schema)

Database and Warehousing: Data Transformations 123

10

11
12

13
14
15
16
17
18

19

20
21

22
23
24

25
26

27

28
29

30
31
32
33

35
36

37

38
39
40

Meta Data Coalition Open Information Model

Attributes

e CreationDate (Date) — When the TransformationPackage was created/saved.
Associations

e Executions (TransformationExecution) — Represents the set of executions for the package.

e OwnedTasks (TransformationTask, derived from UML:Namespace.ownedElement) — The set of
tasks that are owned by the TransformationPackage.

o OwnedSeps (TransformationStep, derived from UML:Namespace.ownedElement) — The set of
steps that are owned by the TransformationPackage. Note that StepPrecedence, not the order of
steps within the package, solely determines the order of execution of the steps.

10.3.14 TransformationStep

A transformation step describes alogical a unit of execution within the package. Each transformation step
executes a single transformation task. Order of execution is defined using the StepPrecedence class.

Specializes
e ModeElement (from UML)
Associations
e Task (TransformationTask) — The TransformationTask that is executed.
e SepExecutions (StepExecution) — A set of actual executions of the Transformation Step. Note that
thisrelationship did not exist in OIM 1.0.

10.3.15 TransformationTask

Each transformation task describes alogical unit of work within the package. It can aso be used to
describe an ordered set of transformations that must be executed together.

Specializes
e Classifier (from UML)
Attributes

e Language (String) — The language in which the transformation is expressed. Typically, the name
of a programming language.

Associations

e Transformations (Transformation, derived from UML:Classifier.Feature) — A set of
transformations that are to be executed by the task.

e |nverseTransformation (TransformationTask) — Relates the original transformation task to a
transformation task that will return transformed data back to the original state. For example, if a
transformation task divides each data value by ten, then the inverse transformation task would
multiply each data value by ten. Thisrelationship is used for bi-directional transformations.

e Dependencies (TransformationTaskDependency, derived from
UML:model Element.clientDependency) — The set of dependencies that indicate the elements
required for thistask.

10.3.16 TransformationTaskDependency
A transformation task may use an existing query, table, view, or connection via the tranformation task

dependency class. For example, a custom-coded application could define common queries, and each query
could have a dependency on the many task instances that useit.

124 Database and Warehousing: Data Transformations

Open Information Model Meta Data Coalition

Specializes
e Dependency (from UML)
Attributes
e Type (String) — The type of object that isthe target of the dependency, such as"SourceTable,"
"TargetTable," "SourceQuery," "TargetQuery," "InsertQuery," and so forth.

10.4 OIM 1.0 Compatibility

In OIM 1.0, objects that participated in transformations had to have classes that inherited from
TransformableObject. This meant that every package that might participate in atransformation had a
dependency on the Data Transformation package. In this model, transformable object sets are modeled
using UML dependencies, so the classis only required for backward compatibility.

10.4.1 TransformableObject

Instances of this class are objects that can be the source or target of a transformation. Instances are
collected in a TransformableObjectSet.

Specializes
e DeployedTable (from Schema Elements)

Database and Warehousing: Data Transformations 125

N

PR
NRPOOWONO Uhw

13

14
15

16
17

18
19

20

21

22

23
24

25
26

Meta Data Coalition Open Information Model

11 Database and Warehousing: OLAP Schema

11.1 Overview

Online analytical processing (OLAP) isthe area of decision support that focuses on the analysis of
multidimensional datain a data warehousing setting. The OLAP Schema package describes
multidimensional databases.

A multidimensional database allows usersto view information through a set of data cubes. These cubes
allow users to examine a set of data values, called measures, associated with avariety of dimensions. For
example, common dimensions are attributes such as time, region, product type, and customer type. Such
databases are typically used in a data warehousing setting, where a user explores summaries of the data
across each dimension. For example, a cube might summarize the total sales by region for each product
type, or it might summarize the total sales per quarter for each region. The user is essentially exploring a
data cube, where each dimension attribute defines one dimension of the cube.

The goals of the OLAP Schema package are to:

e Provide acommon place for multidimensional toolsto store their schemainformation. This gives
the customer a single placeto view all of his’lher multidimensional data, regardless of the tool.

e Allow limited exchange of multidimensional information. Because implementations of
multidimensional tools vary widely, complete exchange among tools may not be possible.

e Leverage existing database information in the multidimensional schemas. Tools can use relational
database model information to integrate their multidimensional models.

This model extends the classes defined in the Database Schema package.

11.2 Semantics

This section describes semantics of the package not fully described in the reference section.

A cube is the basic component in multidimensional data analysis. The following diagram illustrates the
features of atypical cube:

Dimensions

Dimension
Hierarchy

N
S
E
\W

Measure

Figure 53: A Typical OLAP Cube

126 Database and Warehousing: OLAP Schema

O~NO U WDN P

11
12
13

14
15
16
17
18

19
20
21
22
23

24

25
26

Open Information Model Meta Data Coalition

It isusually composed of a measure (or fact) table and one or more dimension tables. A measure table
contains a value of the measure for each combination of values for the dimensions. A dimension table
defines the values of a dimension. This creates either the traditional star schema or the snowflake schema
commonly used in OLAP processing. For relational OLAP (ROLAP), thedatais stored in arelational table
and thetool usesits knowledge of the structure to select the appropriate information for the user. Pure
OLAP toolsretrieve the data from the relational sources and create a true multidimensional store that can
then be accessed by the user. Some tools use a combination of both approaches, storing some data locally
in thereational system and some in multidimensional storage.

A dimension hierarchy defines how a dimension decomposes into subdimensions. For example, for the
product dimension each product has a product number, each product isin aproduct group, and then product
groups are grouped into product classes. The product number can also be used to determine the division
that produces the product. Thiswould be represented as two hierarchies, one with two level s (product
group, product class) and one with one level (division).

Many OLAP tools allow the data from a cube to be divided into multiple subsets, or partitions, for
performance or storage reasons. A partition contains all of the measures and dimensions used by the
partition. A horizontal partition containsall of the measures and dimensions of its cube. A vertical partition
contains a subset of the measures and dimensions of its cube. The derived measures and dimensions are
related back to the partition.

Aggregations are precal culated roll-ups of data stored in a cube, and they are usually maintained for
performance reasons. For example, if sales data is stored by state but is often retrieved by region, an
aggregation of sales by region may be created. An aggregation contains all of the measures and dimensions
defined for the aggregation. In general, an aggregation contains all the measures contained in its cube, but
its store dimensions reference a different level in the dimension hierarchy.

11.3 Class Reference

Package
(from Model Management)

&

- Classifier
Connection
. (from Core)
Catalog (from Catalog and Connections)
(from Catalog and Connections) ZF
Store
DataSource OlapMode : OlpOlapMode
(from Catalog and Connections) OLAPDatabase JoinClause : Text
Connection
+DataSources ZF
+Cubes Cube
OLAPSener
+Dimensions Dimension
+DeployedCatalogs IsTime : Boolean
DimensionType : OlpDimensionType
$ ModelE lement
(from Core)
4‘ DeployedOLAPDatabase ‘ ‘ LogicalOLAPDatabase ‘ Zﬁ 1.* +Hierarchies
0.* | | \ |

DimHierarchy

Figure 54: OL AP Serversand Databases

Database and Warehousing: OLAP Schema 127

Meta Data Coalition Open Information Model

Attribute
(fom Auxiliatly Elements)

1

Classifier
(from Core)

Field
Store Z}
OlapMode : OlpOlapMode +Measures M e
JoinClause : Text
$ 1 0..*
1.x ‘ ‘ +OwnedAggregations ‘
Cube Partition ggreg Aggregation
1 0..*
4 0..*# +OwnedPartitions
+UsingVirtualCubes
1
0-*"" VirtualCub -
IrtualCube PhysicalCube
Figure 55: Stores, Cubes, and Partitions
Classifier ModelE lement
(from Core) (from Core)
[\
Store 0.1 0.* Mapping MappingLevelPair
- 5 IsDisabled : Boolean
JOlo;pCI\/IIaoudsee..QrgglapMode +Mappings MemberKeyColumn : String
: 1.1 0.*
ModelElement +MappedLevels
(from Core)
{ordered} - Z>
DimLevel 0. 1.1 DimHierarchy | g 1 0.*
MemberKeyColumn : String +Lewel +Mappings
MemberNameColumn : String
o.*
1.1 "
+Mappings
AssociationEnd
(from Core)
0.1 0.* JoinRole
+DimLevel +JoinRoles

Figure 56: Hierarchy and Levels

11.3.1 Aggregation

Aggregations are precal culated roll-ups of data stored in a cube that are maintained for performance
reasons. An aggregation contains all of the measures and dimensions used by the aggregation. In general,

128 Database and Warehousing: OLAP Schema

A W NP

a1

10

11

12
13
14

15
16

17

18
19
20

21
22
23
24
25

26

27
28
29
30
31
32
33

35
36

Open Information Model Meta Data Coalition

an aggregation contains all the measures contained in its cube, but its store dimensionsreference adifferent
level in the dimension hierarchy. The derived measures and dimensions are then related back to the cube.

Specializes

e Store

11.3.2 Catalog

Specializes
e Catalog (from Database Schema)

11.3.3 Connection

Specializes
e Connection (from Database Schema)

11.3.4 Cube

A cubeis the basic component in multidimensional data analysis. It is usually composed of a measure (or
fact) table and one or more dimension tables. A measure table contains a value of the measure for each
combination of values for the dimensions. A dimension table defines the values of a dimension.

Specializes

e Store

11.3.5 DeployedOLAPDatabase

An OLAP database is an extension of arelational database catalog, and isa container for multidimensional
storage components, namely cubes and dimensions. Deployed OLAP databases are stored on an OLAP
server.

Specializes
e Catalog (Database Schema)
Associations

e DataSources (Connection, derived from UML:Namespace.OwnedElement) — The set of data
sources used by the catal og.

11.3.6 Dimension

The valuesin an OLAP cube are tracked or summarized by dimensions. For example, sales data can be
analyzed using product, store, geography, date, and salesperson dimensions. Dimensions are defined
independently of the OLAP stores that use them. A dimension’s levels are associated to the storesthe same
way relational tables are associated to each other. In this way the model can accurately model relational
OLAP (ROLAP) aswell as multidimensional OLAP (MOLAP). In ROLAP the association would be one
with two referential roles describing the keys and columnsto join the tables, as described in the database
model. With MOLAP it would be the same, except that there might not be any keys or columnsto describe
thejoin criteria.

Specializes
e Package (from UML)

Database and Warehousing: OLAP Schema 129

©oo~N O OO0~ WON -

10

11
12
13
14
15

16
17
18
19
20
21

22

23
24
25

26
27
28
29

30
31

32
33

35
36

37
38

39

Meta Data Coalition Open Information Model

Attributes

e |sTime (Boolean) — Indicates whether or not this dimension is atime dimension. Many OLAP
tools can perform default special processing for time dimensions.

e DimensionType (DimensionType) — The type of the dimension. Note that time dimensions also
need to set the IsTime flag.

Associations

e Hierarchies (DimHierarchy, derived from UML:Namespace.ownedElement) — The set of
hierarchies for the dimension. Some OLAP providers support only a single hierarchy per
dimension.

11.3.7 DimensionHierarchy

A dimension hierarchy represents an entire dimension set. The hierarchy contains one or more levels that
represent the roll-up or breakdown of detail. For example, a geography dimension hierarchy could have
states, regions, and countries as levels. For each level there can be one or more dimension attributes to
describe the members of that level. For example, the attributes for state may be name and two-character
abbreviation.

Specializes
e ModeElement (from UML)
Associations
e Levels(DimensionLevel) — The set of levels for the hierarchy.
e Mappings (Mapping) — Each hierarchy can have mappings, which indicate of the use of a
DimensionHierarchy by a Store.

11.3.8 DimensionLevel

A dimension level represents a particular level in adimension hierarchy. A dimension level can have
dimension attributes, which represent data about the level that intereststhe user. For example, the user may
want to know the name of the division, its location, and a contact person.

Specializes
e Classifier (from UML)
Attributes
e MemberKeyColumn (String) — The column that serves as a key of the dimension level.

e MemberNameColumn (String) — The column whose values serve as names of the instances of the
dimension levd.

Associations

e Mappings (MappingLevel Pair) — Each level can have mappings, which indicate the use of a
specific level of a DimensionHierarchy by a Store.

e MemberKey (Fied) — The rdationship connecting the level to the column that the level usesasa
key. (Note that Field isa class retained for compatibility with OIM 1.0.)

e MemberName (Field) — The relationship connecting the level to the column that thelevel usesasa
name. (Notethat Field isaclass retained for compatibility with OIM 1.0.)

e JoinRoles (JoinRole) — The set of joins between keys within an OLAP database.

130 Database and Warehousing: OLAP Schema

0 N oo b~

10
11
12

13
14

15

16
17
18

19
20

21

22
23
24
25
26
27

28

29
30

Open Information Model Meta Data Coalition

11.3.9 DimensionType

An enumeration whose values indicate the type of a dimension.

Values
DIMENSION_REGULAR =0 The type of the dimension cannot be determined.
DIMENSION_TIME =1 Thisisatime dimension.
DIMENSION_OTHER =3 This dimension does nat fit into a standard type.
DIMENSION_QUANTITATIVE=5 Thisisaquantitative dimension.

11.3.10 Field

Thisrepresents afield or column in the cube that is not a dimension or ameasure. Usually it isaforeign
key used to relate this cube to a dimension table, or a dimension field such as SalesTime.

Specializes
e Attribute (from UML Extensions)

11.3.11 JoinRole

Represents a key that can be joined or related to another key within an OLAP database. Objects
implementing this interface will appear on each side of an association representing a join between two

keys.
Specializes
e AssociationEnd (from UML)

11.3.12 LogicalOLAPDatabase

A logical database is simply an extension of arelational database catalog, and it is a container for
multidimensional storage components, namely cubes and dimensions. Local databases can be deployed, but
they may not have an associated OLAPServer.

Specializes
e OLAPDatabase
11.3.13 Mapping
A mapping indicates that a particular OLAP store maps to a particular OLAP dimension hierarchy.
Specializes
e ModeElement (from UML)
Associations

e MappedLevels (MappingLevel Pair) — Each mapping has a set of mapped levels; each mapped
level indicates the participation of a particular DimensionLevel within a mapping.

11.3.14 MappingLevelPair

A (mapping,level) pair indicates that a particular dimension level participatesin a particular OLAP
mapping.

Database and Warehousing: OLAP Schema 131

QW 00 N o0 A W N P

=

12
13

14
15

16

17
18

19
20
21
22
23
24

25

26
27

28

29
30
31

Meta Data Coalition Open Information Model

Specializes
e ModeElement (from UML)
Attributes
e IsDisabled (Boolean) — Whether the mapping is valid within the store.

e MemberKeyColumn (String) — The column containing the key of the dimension hierarchy, asitis
used by the OLAP Store.

Associations
e MappedLevel (DimensionLevel) — Indications of the use of aleve by a store.
e MemberKey (Field) — The relationship connecting a dimension level to the column that level uses
asakey. (Notethat Field isaclassretained for OIM 1.0 compatibility.)

11.3.15 Measure

A measure (or fact) isa set of data used in multidimensional analysis. It represents a single piece of
information (e.g., SalesAmount) that will be analyzed across dimensions.

Specializes
e Field (From UML Extensions)

11.3.16 OLAPDatabase

An OLAP database is an extension of arelational database catalog, and it is a container for
multidimensional storage components (that is, cubes and dimensions).

Specializes
e Catalog (from Database Schema)
Associations
e Cubes (Cube, derived from UML:Namespace.ownedElement) — The set of cubes for the database.
e Dimensions (Dimension, derived from UML:Namespace.ownedElement) — The set of dimensions
defined with the database. Dimensions may be shared by multiple cubes.

11.3.17 OLAPMode

An enumeration whose values indicate the mode (hybrid, relational, or multidimensional) of operation.
Values

HYBRID_OLAP=1 The datais stored in a combination of relational
and multidimensional stores.

RELATIONAL_OLAP=2 The dataisstored in arelational data source.

MULTI_DIMENSIONAL_OLAP=3 Thedataisstored in amultidimensional data
source.

11.3.18 OLAPServer

An OLAP server is physical (deployed) provider of multidimensional data.
Specializes
e DataSource (from Database Schema)

132 Database and Warehousing: OLAP Schema

[CSN\V]

© 0O~NO O B

10
11
12

13

14
15

16
17
18
19

20

21
22

23
24
25
26
27
28
29
30
31

32
33

35
36
37

Open Information Model Meta Data Coalition

Associations
e DeployedDatabases (DeployedOL APDatabase, derived from UML:Namespace.el ements) — The
set of databases located on the server.

11.3.19 Partition

A partition is a subset of a cube used for performance or storage reasons. A partition contains all of the
measures and dimensions used by the partition. A horizontal partition contains al of the measures and
dimensions of its cube. A vertical partition contains a subset of the measures and dimensions of its cube.
The derived measures and dimensions can then be related back to the partition.

Specializes
e Store
Associations

e OwnedAggregations (Aggregation) — The set of Aggregations owned by the partition.

11.3.20 PhysicalCube

A physical cubeisaCubethat ispersisted. Contrast thiswith a Virtual Cube, which is acubethat is derived
from one or more cubes but not persisted.

Specializes
e Cube
Associations
e OwnedPartitions (Partition) — The set of partitions owned by the cube.

11.3.21 Store

A storeis an abstract class that isthe generalization for the different multidimensional storage objects. Its
specializations can represent cubes, virtual cubes, cube partitions, or aggregations.

Specializes
e ColumnSet (from Database Schema)
Attributes
e JoinClause (String) — The SQL syntax necessary tojoin all of the FROM tables together.
e OlapMode (OlapMode) — The storage mode of multidimensional data.
Associations
e Mappings (Mapping) — The set of instances of the Mapping class.
e Measures (Measure, derived from UML:Classifier.feature) — The set of measuresin a cube, virtual

cube, or aggregation.
11.3.22 VirtualCube

In amultidimensiona schema, avirtual cubeisanalogousto arelational view. Like a cube, thevirtual cube
has measures and dimensions, but those measures and dimensions are based on other measures and
dimensionsinstead of relational columns. The measures and dimensions of a virtual cube point back to the
underlying cube measures and dimensions through a derivation, with the virtual cube asthe source and the
cube asthetarget. A virtual cubetypically is based on other cubes.

Database and Warehousing: OLAP Schema 133

a A W N

»

10

11

12

13
14
15
16

17
18
19
20

21
22

Meta Data Coalition Open Information Model

Specializes
e Cube
Associations
e UsedCubes (Cube) — The cubes on which the virtual cubeis based.

11.4 OIM 1.0 compatibility

This section describes classes retained for compatibility with earlier versions of OIM.

Derivation
(from Auxiliary Elements)

Field FieldToFieldDerivation
+BaseField +DerivedField

Field

Figure 57: Field-to-Field Derivation

11.4.1 FieldToFieldDerivation

It is often the case that a measure or dimension member does not come directly from a source column, but
isasimple or complex derivation of one or more source columns. For simple cases where the derivation
can be expressed in SQL-like syntax, the expression can be stored as a property of the source column. For
more complex cases, afield-to-field derivation indicates that one Measure is based on another Measure.

Specializes

e Derivation (from UML Extensions)
Associations

e BaseField (Field) — The underlying field.

e DerivedField (Field) — Thefield that is derived.

134 Database and Warehousing: OLAP Schema

© 00 N OO O B~ W N P

=
o

Open Information Model

This page isintentionally blank.

Database and Warehousing: OLAP Schema

Meta Data Coalition

135

N

o~N O OO~ W

11
12
13
14
15
16

17
18
19

20

21
22
23
24
25
26
27
28

29
30
31
32
33

35
36
37
38
39
40
41
42
43

45
46

Meta Data Coalition Open Information Model

12 Database and Warehousing: Record-Oriented
Database Schema

12.1 Overview

The Record-Oriented Database Schema package describes record-oriented information, that is, information
about data maintained in the files, legacy databases, and so forth, of an enterprise.

The goals of the Record-Oriented Schema package are to:

e Introduce a core mode for describing meta data about record-oriented data sources that enables
tools to store and exchange such descriptive information.

e Enabletool vendorsto extend the model to address requirements of individual toolsin the context
of a common core model.

e Allow data warehousing tools to define the structure of some common data sources. VSAM, flat
files, and record-oriented databases are commonly used as sources for data warehouses. This
model and some of its derived models will provide the warehouse tools with a common metadata
definition for these record definitions in these sources. Note that information about the file
systems or databases themsalves will be defined in their own information models (e.g., IMS
database information model, VSAM information model, and so forth).

The model coversthe basic elements of a record-oriented file structure or database, such as records, fields,
and relationships. It also includes some deployment information for locating physical files based upon the
structure, but does not address all physical or implementation details.

Some typical usage scenarios of the Record-Oriented Database Schema package are:

e Exchange of Schema Information
Tools and applications are able to manipul ate schema information stored in the repository by using
the common model definitions. A repository implementing record model can be a global store for
record-oriented metadata. This includes such data providers as COBOL/VSAM, Excel
spreadsheets, or ASCII files, which have only limited capabilitiesto describe their schema or store
additional design-tool-related information. Using only the repository interfaces, tools will be able
to browse such information at a common location, without activating the individual data providers
one-by-one.

e Reuse of Schema Information
Storage of metadata about data sourcesin arepository enables the reuse of basic descriptions. An
enterpriseis therefore able to standardize on core definitions, such as data types, making its
environment easier to maintain. A user who wantsto find the definition of the customer record has
one well-defined location to search and a well-defined interface to use while searching for this
information.

e Catalog for Enterprise and Warehouse Information
The Record-Oriented Database Schema model provides a one-stop store for information about
enterprise data. The repository acts as a catalog that offers a common view of individual data
sources and the attendant relationships. A description of a data source may not only consist of
records and fields but also may have relationships that describe where it resides or how it can be
accessed. Furthermore, the repository allows the user to track the history of how the metadata has
evolved.

Record-oriented structures are al'so common sources for data warehouses, and this model provides
a common place for these definitions. The Transformations package provides for the definition of
warehouse transformations; the record model can be used as the source (or target) of
transformations.

136 Database and Warehousing: Record-Oriented Database Schema

~NO O WN PR

10

11
12
13

14
15
16
17
18

19
20
21

22
23
24

25
26
27
28
29

30
31
32
33

35
36
37

38

Open Information Model Meta Data Coalition

e Additional Scenarios
By storing many record schemas in the same repository, objects can be related to each other. For
example, arecord definition may be shared by many designs. Another scenario isto relate record
information to information models covering other subject areas, such as component descriptions.
A repository may be used to store a relationship between arecord object and another object that
references it, such as the relationship between a component and the file/database it references or
popul ates.

12.2 Semantics

This section provides a discussion of the main features of the Record-Oriented Schema package beyond
what is specified in the reference section.

The Record-Oriented Schema package does not cover detailed |ogical-to-physical mapping or information
about any of the file systems or databases that may use record structures. Thisincludes VSAM, IMS,
IDMS, and so forth. These will later be documented in subsequent packages.

Typesin the record model are different from relational schemain that record types do not have a natural
owner like a database catalog. It is up to the application to determine how (if at all) to logically group
record types together. The typical choice would be to use a single package to contain the record types (the
package could be owned by a model, another package, or the root object). For items like COBOL copylibs,
the record types could be owned by the copylib, and the copylib owned by some other object.

Care should be taken with the other related items used by the record model, such asfile and node. Because
they are created as part of arecord type definition, they should also have their ownership defined when they
are created.

Many languages offer record-oriented features that go beyond basic record processing. The record model
explicitly accommodates many of the more common features — such as redefines and variable dimensions.
For the others, there are properties and relationshipsin the model to capture these items.

There are essentialy two kinds of features — those that apply to asingle item, and those that link items
together. The first case includes features like number of occurrences, byte alignment, and justification.
Some are defined as properties of Recorditem, while the rest will use the FeatureExpression property of
Recorditem. For the second case, a number of dependencies have been defined to capture features that
relate one item to another. For those not already defined, LanguageFunction is used.

To indicate that two fields on separate records have values from the same domain (e.g., to indicate user-
defined data type), use Alias to encapsulate the domain. For example, to indicate that Custld:VarChar(10)
in the Customer record has the same domain Customerld:VarChar(10) in the CustomerContact record,
create a Alias Customerld for VarChar(10), and then indicate that Custld in the Customer record is of type
Customerld and Customerld in the CustomerContact record is also of type Customerld.

The record model makes use of the existing data type model to capture the data types of the fields. Refer to
the Common Data Types package for more information on how to define data types for a given language or
database.

12.3 Class Reference

Database and Warehousing: Record-Oriented Database Schema 137

STewW Jo4 pue ‘sppl4 ‘sdno o ‘spJosey 85 a.nbi-

pieidpakoldea dnoiopakoideq pi1023y[ealbo] piodaypaAodeq
1
pR141ea607 dnoorealbo
JewI04pI0daYy+ MW
1X3] : Apog
TewWI0-4pI0day Buo : smoydnis
ues|oog : SBWeN|0OMOY]SIIHS|
Buins : ssyirendIxe L
AN AN Bus : J8NwWIe@pPI0d3Y
adA+ jeadnpio+ uesjoog : YIPIMPaXIS|
g g Buins : senwiieapield
T dnou Jagdnoio
SjanaT+ pleid o pioday
Buuis : sweNuonIpuo) /
1Xa] : uoissaidx3aneA
+0 uolssaldx3anfeAp|al4
(sluswa|3 uoneoypads woiy) Mv
wews|Fsuodwo)d (Suswa|3 Areljixny woy) uesjoog : paubl|ys|
anquIy Bun s : uoissaidx3ainiea
wIa1|pJoday
(2100 woyy)
Jaisse|n
(S1uswa 3 oudueD wol)

uoife wio|Arewwinsg

(a10Qwoy)
juswie |3

BWAYIS aseqgeleq pajusLi0-ploday Buisnoysiepn pue aseqereq 8T

eWAYIS asegereq palusliO-pioday :Buisnoysiepn pue sseqereq

“ue|q Ajeuonueui st abed siy |

6€T

(@]
—

- N M < IO © N~ 0 O

N

© 00 N O

Meta Data Coalition

Package
(from Model Managem ent)

Surrogate
(from Generic Elements)

i

CopyLib

Open Information Model

Dependency
(from Core)

CopyLibContains

+ContainedCopyLib

+ContainmentsAsContainer

Record

+OwnedRec ords

FieldDelimiter : String

IsFixedWidth : Boolean

RecordDelimiter : String
TextQualifier : String

IsFirstRowColNames : Boolean

SkipRows : Long

+ContainedRecordType

Sequence : Long
Is0O1Generated : Boolean

Figure 59: CopyLibs

Dependency
(from Core)

Redefines

RenamesThru

LanguageFunction

FeatureExpression : String
Sequence : Integer

CopyLibContains

Renames

Sequence : Long
Is01Generated : Boolean

ArrayDimension

DimensionNumber : Long

Figure 60: Constraints and Dependencies

12.3.1 ArrayDimension

Each instance of this class describes a variable dimension for arecord item. This correspondsto the
OCCURS DEPENDING clause in COBOL and variables used as dimensionsin PL/I.

Specializes
e Dependency (from UML)

140

Database and Warehousing: Record-Oriented Database Schema

N

L <
A W N P OO N OUN ©

B
~o u

18

19
20
21
22
23

24
25

26

27
28

29
30

31
32

33

35

36
37

Open Information Model Meta Data Coalition

Constraints

e Only useitemsthat support Recorditem in the client and supplier collections.

12.3.2 CopyLib

Each instance of this class describes a copy library member. Many legacy languages support the use of
Copylibs, which are reusable definitions stored external to the program, much like C and C++ header files.
The copylib can contain multiple record definitions, and even references to other copylibs.

There are often one or more physical files somewhere in the enterprise that include data corresponding to
the record definition. The actual file that stores the copylib is defined using the File object.

To ensurethat al items are owned, the copylib will aso include the records, file, and
FieldValueExpressions.

Specializes

e Package (from UML)

e Surrogate (from Generic Elements)
Associations

e OwnedRecords (Record, derived from UML:Namespace.ownedElement) — Used to provide
ownership for the records in the copylib. The copylib will also relate to the record via the
CopyLibContains dependency.

12.3.3 CopyLibContains

Each instance of this class describes the records and copylibs that a copylib contains.
Specializes
e Dependency (from UML)
Attributes
e Sequence (Long) — Used to define the ordering of the records and copylibs in the copylib.

e |01Generated (Boolean) — Used to define whether or not the record item (i.e., the O1 level item)
is generated in this copybook, or if generation should start at the first subordinate item.

Associations

e ContainingCopyLib (CopyLib, derived from UML:Dependency.supplier) — Used to define the
parent copyLib that contains the subordinate record or CopyLib.

e ContainedCopylib (CopyLib, derived from UML:Dependency.client) — Used to define the copylib
that is contained.

e ContainedRecord (Record, derived from UML:Dependency.client) — Used to define the record
that is contained.

Constraints
e There can only be one ContainingCopylib.
e There can only be either one ContainedCopylib or one ContainedRecord.

12.3.4 DeployedField
A deployed field represents afield in a particular file or DBMS system.

Database and Warehousing: Record-Oriented Database Schema 141

A WO N P

© 00 N o O

10

11

12
13

14
15

16
17
18
19
20

21

22
23
24
25
26

27
28

29
30

31

32
33

35
36
37

Meta Data Coalition Open Information Model

Specializes
e Fidd
Constraints

e Can only be contained by a DeployedRecord or GroupDef from a Depl oyedGroup.

12.3.5 DeployedGroup

A deployed Group represents a group of fieldsin a particular file or DBMS system.
Specializes

e Group
Condtraints

e Can only be contained by a DeployedRecord or GroupDef from a Depl oyedGroup.

12.3.6 DeployedRecord

A deployed record represents a group of fieldsin a particular file or DBM S system. Contained fields can be
atomic fields (Field) or other groups of fields (Group).

This deployed record isthen related to the appropriate file that contains the information defined by this
record.

Specializes
e Record
Condtraints
e Only a DeployedRecord can berelated to a File (from Auxiliary Elements) viathe
ImplementationL ocation collection.

12.3.7 Field

A field is an abstract data type that represents an atomic piece of information.
Specializes

e Attribute (from UML)

e Recorditem
Attributes

e InitialValue (String, derived from UML:Attribute.initial Value) — Used to define the default value
for thefield, asin the COBOL VALUE clause.

e TypeExpression (String, derived from UML:Attribute.typeExpression) — Used to express complex
data types, asin PICTURE $22Z,999.9ZZ.

Associations
o Levels(FiedValueExpression) — Used to describe the conditional value expressions defined for
this element.

12.3.8 FieldValueExpression
Record-oriented languages such as COBOL support the concept of assigning namesto particular values of

afield. Because these expressions are not explicitly owned by the field that uses them, they must be owned
by another package. In the case of a COBOL 88Level, the CopyLib can provide the ownership.

142 Database and Warehousing: Record-Oriented Database Schema

a b~ W N

© 00 N O

10
11
12

13

14
15

16
17
18
19

20
21

22
23

24

25
26
27
28

29
30
31
32
33

35
36

Open Information Model Meta Data Coalition

Specializes
e ModelElement (Component Description Model)
Attributes
o ValueExpression (Text) — Used to define the value of the expression.

e ConditionName (String, from UML:M odel Element.name) — Used to define the condition name.

12.3.9 FormatOf

Used to define which record a RecordFormat is based upon.
Specializes

e Dependency (from UML)
Condtraints

e Theclient collection must contain a RecordFormat.

e Theitemin the supplier collection must be a single Record.

12.3.10 Group

Each instance of this class describes a Group in arecord. Thisis an abstract interface — all groups will be
either logical or deployed groups.

Specializes
e Attribute (from UML)
e Recorditem
Associations

o Type (GroupDef, derived from UML:Structural Feature.type) — Used to define the format for the
group. The groupdef contains the subordinate types (fields and groups) for this group.

Constraints

e Thetype can only relate to a GroupDef.

12.3.11 GroupDef

A GroupDef is used to define the format of a Group. The GroupDef relates to the group viathe

Structural FeatureHasT ype relationship. The Group is contained by the record or recordformat, and the
groupdef is used to define the subordinates of the group. The groupdef relates to its subordinate fields and
groups via the feature collection from Classifier.

Specializes
e Classifier (from UML)
Constraints
e Can only be used as a type definition for a group.

e Can only contain fields and groups via the feature collection.

12.3.12 LanguageFunction

Each instance of this class describes an additional language specific feature that does not have a specific
interface.

Database and Warehousing: Record-Oriented Database Schema 143

©oo N OO uob W N PP

10

11
12
13
14
15

16

17
18
19
20
21

22

23
24

25
26
27
28
29

30

31
32

33
35

36
37

Meta Data Coalition Open Information Model

Specializes
e Dependency (from UML)
Attributes

e FeatureExpression (String) — Used to define what the function represents. Suggested format isto
use the native language expression.

e Sequence (Integer) — Used to sequence multiple functions of the same type.
Constraints
e Language functions can only use items that support Recorditem in the client and supplier
collections.

12.3.13 LogicalField

A logical field represents afield definition that is not associated with a physical file.
Specializes
e Fidd
Condtraints
e A Logica Field can only be contained by a Logical Record or GroupDef from a L ogical Group.

12.3.14 LogicalGroup

A logical Group represents a Group definition that is not associated with a physical file.
Specializes

e Group
Condtraints

e A LogicalGroup can only be contained by a Logical Record or GroupDef from a Logica Group.

12.3.15 LogicalRecord

A logical record represents a record definition that is not associated with a physical file. Contained fields
can be atomic fields (Field) or other groups of fields (Group).

Specializes
e Record
Constraints

e A Logica Record cannot be related to a File (from Auxiliary Elements) viathe
I mplementationL ocation collection.

12.3.16 Record

Thisisan abstract interface that represents a group of fields. Contained fields can be atomic fields (Field)
or other groups of fields (Group).

Thisroot record of a nested set can represent a number of different things— arecord definition for a
COBOL program, adeimited ASCII file, or aVSAM record definition. These all have very different
characteristics, and thus require a very flexible model. There is some common information that can be
captured about each of these, and that has been stored explicitly in the model. There are also constructs that
allow additional information to be captured that may be specific to a particular language or file type.

144 Database and Warehousing: Record-Oriented Database Schema

0 N O O ~AWNPE

Open Information Model Meta Data Coalition

Also, note that many languages allow for duplicate namesin arecord definition, e.g., COBOL FILLER.
The names given to the items as they are placed in the feature collection will have to recognize this. A
simple method for ensuring uniqueness would be to use NAME.SEQ as the rel ationship name when adding
itemsto the collection.

Specializes

e Recorditem

e Classifier (from UML)
Attributes

o FieldDelimiter (String) — For filesthat are delimited (as opposed to fixed width), the character(s)
that are used to delimit the fields.

e |sFixedWidth (Boolean) — Indicates whether thefieldsin the file are fixed width (as opposed to
delimited).

e RecordDelimiter (String) — The character(s) used to indicate the end of arecord.

o TextQualifier (String) — The character used to delimit text strings. For example, a quotation mark
(II).

o |sFirstRowColNames (Boolean) — Indicates whether thefirst row of the file contains column
names for thefields.

e SkipRows (Long) — The number of rows at the top of the file that do not contain data.
Associations

e Format (RecordFormat, derived from UML:Namespace.ownedElement) — Used to provide
ownership for the RecordFormat.

e GroupDef (GroupDef, derived from UML:Namespace.ownedElement) — Used to provide
ownership for the GroupDef.

Constraints
e A record cannot be contained by another record.
Sample Data
Thisisan example COBOL record layout that could be expressed in the record-oriented schema model.
01 EMP-RECORD.
05 EMPLOYEE-INFO OCCURS 100 TIMES
ASCENDING KEY IS HOURLY-RATE EMPLOYEE-NO

INDEXED BY A, B.

10 EMPLOYEE-NAME PIC X(20).

10 EMPLOYEE-NO PIC 9(6).

10 NUMBER-YEARS-EMPLOYED PIC S9(5) COMP.
10 HOURLY-RATE PIC 9999V99.

10 WEEKLY-TALLY OCCURS 52 TIMES

ASCENDING KEY IS NUMBER-OF-WEEK INDEXED BY C.

15 NUMBER-OF-WEEK PIC 99.
15 VACATION-DAYS PIC 9.
15 UNEXPLAINED-ABSENCE PIC 9.
15 DAYS-LATE PIC 9.

Database and Warehousing: Record-Oriented Database Schema 145

37

38
39
40

Meta Data Coalition Open Information Model

12.3.17 RecordFormat

A record format is used to describe a usage format (view) of a record.

In many cases, the use of redefines and record types allow a single file to have many different types of
logical recordsin one physical file. A record format is used to describe a single logical record for arecord
definition - a format should be unambiguous. Note that it may contain redefinesin order to access sub-
fields at the sametimeit is accessing the larger field.

The conditions under which a given format are valid (e.g., when FIELD1 = 1) also must be described.

Record formats are used to deal with the variability in many record-oriented structures. A common
example would be afile that has arecord typein thefirst byte. If it is“D” it isadetail record, and if itis
“S’ itisasummary record. The record definition may use redefinition to describe these different layoutsin
asinglerecord. Thisis especially common in legacy languages such as COBOL and PL/I. There may be
cases that are more complex.

The format will have its own groups and fields (which will correspond to the appropriate subset of the
original record), and they will relate back to the original record groups and fields via the Derivation
dependency. The format itemswill bein the client collection for the dependency and the record items will
be in the supplier collection. The format will also relate to the record it is based upon using the FormatOf
dependency, with the format in the client collection and the record in the supplier collection.

Specializes

e Recorditem

e Classifier (from UML)
Attributes

e Body (Text) — The condition under which the format isvalid is defined using the Body property of
the Query class. Thisvalueisan uninterpreted string with the format dependent on thetool storing
the information.

Constraints
e A recordformat cannot be contained by another record or recordformat.

Sample Data

The purpose of the record format is to capture the conditions under which a given definition is valid.
Consider the following record pseudo-definition:

01 Record-Layout.

05 Record-Type Character (1)
05 Detail-Info Character (250)
05 Summary-Info Redefines Detail-info Character (250).

If atool isto read thisfile to convert the information for a data warehouse, it needs to know the differing
formats and conditions under which they are valid. In this example, there would be two formats — one for
the detail record and one for the summary record.

12.3.18 Recordltem

Thisisan abstract interface to represent the common information for record-oriented schemas.
Specializes

e Summarylnformation (from Generic Elements)

146 Database and Warehousing: Record-Oriented Database Schema

18

19
20
21
22
23

24

25
26

27
28
29
30

Open Information Model Meta Data Coalition

Attributes

e FeatureExpression (String) — Used to describe any language features that apply to thisitem. This
would only be used for features that don't have specific attributes to describe them. The preferred
method would be to separate the individual feature expressions with a semicolon (;). For example,
"AUTOMATIC; Dimension (4,*,3)". It is suggested that the native language syntax be used when
defining data for thisitem.

e Multiplicity (String, derived from UML:Structural Feature.multiplicity) — Used to define the occurs
for repeating fields (e.9., COBOL OCCURS clause).

e |sAligned (Boolean) — Flag indicating if the fields of the record are aligned to byte/word
boundaries.

12.3.19 Redefines

This classis used to represent items that share the same memory location. They map to the COBOL
REDFINES clause or the PL/I Def clause.

Specializes
e Dependency (from UML)
Constraints

e Only useitemsthat support Recorditem in the client and supplier collections.

12.3.20 Renames

Thisclassis used to represent the COBOL RENAMES clause.
Specializes

e Dependency (from UML)
Condtraints

e Only useitemsthat support Recorditem in the client and supplier collections.

12.3.21 RenamesThru

Thisclassis used to represent the COBOL RENAMES THRU clause. Thisrelatesto theitem named in the
THRU portion of the clause.

Specializes
e Dependency (from UML)
Constraints

e Only useitemsthat support Recorditem in the client and supplier collections.

Database and Warehousing: Record-Oriented Database Schema 147

22

23
24
25

26
27
28
29
30
31

32
33

35
36
37

38
39
40

Meta Data Coalition Open Information Model

13 Database and Warehousing: XML Schema

13.1 Overview

Schemas definitionsin XML define types for the valid structuresin an XML document. The XML Schema
package provides meta data types to represent the definitions that congtitute an XML schema.

Currently there are two schema definition languages for XML in use. Data Type Definition (DTD)
language is a simple format that is closely related to EBNF's. DTD’ s lack expressiveness and therefore
introduce limitations if complex schemas have to be described. Limitations are, for example, the lack of
inheritance; missing data types formats, and no relationship types. XML Data (and XML Data Reduced)
are efforts led by Microsoft and other companies to introduce a more expressive schema language for
XML.

XML Schemaisthe current standardization effort by the W3C. XML Schemawill provide a
comprehensive schema language for XML. Parts of XML Data have been carried forward into XML
Schema.

The XML Schema package is based on the subset of XML Data implemented in Internet Explorer 5 and
includes all the concepts provided by DTDs. The model has been validated against a draft of the W3C
XML Schema proposal. The model will be enhanced to include all the concepts of XML Schema once they
become available.

Related standards:
e Data Type Definition (DTD)
e XML Data

¢ XML Schema

13.2 Semantics

The definition of the structure of an XML document starts with a Schema object. The Schemaisacontainer
for all the definitions of individual structures that might occur in the documents. A Schema may contain
structure definitions and attribute definitions.

Element types are content models that provide the rules how XML e ements can be nested and how such
sub-structures can be combined with text. A content model may require that all sub-elements of the
described element have to conform to the schema. Such amodel is called a closed content model, while an
open model does not restrict the possible sub-elements. A special case of element is the empty XML
element that simply consists of a single tag and therefore has no content. Other content types may be text
only, sub-elements only and a mixture of both.

Attribute types specify name/value pairs for start tags of XML Elements. Part of the definition of an
attribute isits data type, default value and if it is mandatory or optional.

The content model consists of references to element and attribute types that are used to define the valid
structures of the element. A content model imprints a sequence and occurrence onto the definitions it
contains. In order to change these definitions for a specific subset of references Groups may be introduced,
which encloses the subset of references.

In order to avoid name collisions between schema elements in a document, XML namespaces are used.
Namespaces are sets of names identified by a URI reference. The names may be used once the namespace
has been declared by an XML structure such as a schema, element, or data type.

148 Database and Warehousing: XML Schema

1

2

Open Information Model Meta Data Coalition

13.3 Model Reference
The following shows the UML diagram for the XML Schema package.

Package Classifier Attribute
(fom Model Management) (rom Core) (from Auxiliary Elements)

1 +Contents
[+ContainingType +Contents ElementContents
ElementType
Model : ElementTypeModel 0.1 0.*
Content : ElementTypeContent

|
| Schema | +ElementTypes
) o m—
1.1 I
Group
+ElementType ElementReference AnnbuteR?ference
Default : String
1.1 *| o0x
ObjectType
(from Data Types)
* 1.1 XMLDataType
0.. yp
+DataType Values : String
AttributeType
Default : String 0.* 1.1
+DataTy pe
+Attribute Types 3
L P +Attribute Ty pe
0.1 0. 1.1

Figure 61: XML Schema

The following sections describe the different meta data types of the XML Schema package in al phabetical
order.

13.3.1 AttributeReference

An AttributeReferenceis areference to an attribute definition (AttributeType) contained in the definition of
an ElementType, thereby including it into the definition. The reference may supply a default value for the
specific use of the AttributeType in the containing ElementType definition.

Specializes
e ElementContent
Attributes
o Default (String) — default value for this specific instance of the attribute definition.

e Occurrence (Multiplicity) —indicates if the attribute is required or optional in an XML e ement.
Note that this definition can not override a more restrictive specification supplied by the
AttributeType. The possible values are:

o 0..1theattributeis optional
o 1.1theattributeisrequired
Associations

e Type-—acollection of at most one AttributeType object that represents the referenced attribute
definition.

Database and Warehousing: XML Schema 149

=Y

© 00 N O gabrhwdN

U =
= O

el
w N

e =
o g N

e
o~

19

20
21

22

23
24

25
26
27

28
29

30
31
32
33
34

35
36

Meta Data Coalition Open Information Model

13.3.2 AttributeType

An AttributeType is a definition of a XML attribute that can be used in the definition of ElementTypes. In
XML an attribute is represented as a name/value pair contained in atag, e.g. <element_tag
attribute_name=value >. The AttributeType represents a grammar rule of how to parse the name/ value
statement. The definition also declaresif the attribute has a default value and if it isrequired or optional.

Specializes
e Classifier (from UML)
Attributes
e Name (String) — defines the name of the AttributeType.
e ShortDescrition (String) — Description of the purpose of the AttributeTypeis present.
o Default (String) — default value for the attribute if not present in an XML eement.

e Occurrence (Multiplicity) —indicates if the attribute is required or optional in an XML e ement.
The possible values are:

o 0..1theattributeis optional
o 1.1theattributeisrequired
Associations
. Dat_atl)Type —acollection with at most one XML DataType object, which defines the data type of the
attribute.

13.3.3 ElementContent

Specializes
e Attribute (from UML)

13.3.4 ElementReference

An ElementReference references an ElementType as part of a content model definition. The object
specifiesif the sub-element may be required, optional, or may occur multiple times.

Specializes
e ElementContent
Attributes

e Occurrence (Multiplicity) —indicates if the attribute is required or optional and how often it may
occur in an XML element. The possible values are;

o 0..1theattributeisoptiona and may occur only once (OPTIONAL)

o 1l.1theattributeisrequired and must occur only once (REQUIRED)

o 0..* theattribute may occur unlimited times (ZEROORMORE)

o 1.* theattribute may occur from 1 to an unlimited number of times (ONEORMORE)
Associations

e ElementType (ElementType from UML:Structural Feature.type) — collection that contains an
ElementType object that represents the referenced ElementType.

150 Database and Warehousing: XML Schema

=

© 00 N O garhwdN

=
o

e
N -

r
A W

=
o Ul

17

18
19

20

21
22

23

24
25

26
27

28

29
30

31
32

33

35

36
37

Open Information Model Meta Data Coalition

13.3.5 ElementType

An ElementType provides a content model for a well-defined XML structure and as such is the equivalent
of aclassfor an object definition. The content model consists of references to element and attribute types.
Element references describe the XML sub-elements that may occur in this ElementType and attribute
references define the name/value pairs that are alowed for an element.

Specializes
e Classifier (from UML)
Attributes
e Name (String) — defines the name of the ElementType.
e ShortDescrition (String) — Description of the purpose of the ElementType is present.

e Model (ElementTypeMode) — defines if the content model can be extended with additional
elements (open) or if the addition of structured is not allowed (closed).

e Content (ElementTypeContent) — defines the structure of the content.
Associations
e Elements— collection of ElementReference or AttributeReference objects that constitute the
content model for the ElementType.

13.3.6 ElementTypeContent

ElementTypeContent is an enumeration that provides the valid definitions for the content part of an
ElementType.

Attributes

e ELEMENTTYPECONTENT MIXED = 0 - elements and characters (text) together may be
contained in an element described by this type.

e ELEMENTTYPECONTENT_EMPTY = 1 — specifies that the element can have no content

e ELEMENTTYPECONTENT_TEXT_ONLY = 2 —the element can have only text as content and
no sub-el ements.

e ELEMENTTYPECONTENT _ELEMENTS ONLY =4 —the ement can contain only sub-
e ements and no text.

13.3.7 ElementTypeModel

ElementTypeMode is an enumeration that provides the content model types of an ElementType.
Values

e ELEMENTTYPEMODEL_OPEN =0 - the content model can be extended with additional
elements

e ELEMENTTYPEMODEL_CLOSED = 1 - the addition of structures not defined in the schema to
an element is not allowed

13.3.8 Group

A Group represents a set or sequence of elementsin a content mode, i.e. can be used to introduce
alternative orderings among € ements.

Database and Warehousing: XML Schema 151

© 00 N o o~ W N Bk

=
= O

e
w N

14

15
16

17
18
19
20

21

22
23
24
25
26
27
28

Meta Data Coalition Open Information Model

Specializes
e ElementContent
Attributes

e Occurrence (Multiplicity) —indicates if the group is required or optional and how often it may
occur in an XML element. The possible values are:

o 0..1theattributeisoptional and may occur only once (OPTIONAL)
o 1l.1theattributeisrequired and must occur only once (REQUIRED)
o 0..* theattribute may occur unlimited times (ZEROORMORE)
o 1.* theattribute may occur from 1 to an unlimited number of times (ONEORMORE)
e Order (ExpressionOrder) —indicatesif the group is a set (OR) or a sequence (AND)
Associations
e Elements— collection of ElementReference or AttributeReference objects that constitute the
content model for the ElementType.

13.3.9 Schema

A Schema object is a container for the ElementType and AttributeType definitions that makeup the
definition of a XML document. A Schema might be named.

Specializes
e Package (from UML)
Associations

e Elements— collection of ElementType and AttributeType definition objects.

13.3.10 XMLDataType

XMLDataType defines the format of Attributes or Elements.
Specializes

e DataType (from UML)
Attributes

e Name (String) — defines the name of the data type.

e Values (String) — provides a set of valuesin case that the data type is an enumeration.

152 Database and Warehousing: XML Schema

Open Information Model Meta Data Coalition

Database and Warehousing: Report Definitions 153

26

27
28

14 Database and Warehousing: Report
Definitions

14.1 Overview

The Report Definitions package provides meta data types to represent information necessary for reporting
tools and their relationships to the systems they report on. The goals of the Report Definitions package are
to:

e Introduce a core mode for describing meta data about reports that enables tools to store and
exchange this type of meta data in a consistent format.

e Enabletool vendorsto extend the model to address requirements of individual toolsin the context
of acommon core model.

e Allow for business intelligence and reporting tool s to define the structure of their reports and how
they relate to existing systems, such as warehouse databases.

Storage of meta data about reportsin a common format enables the reuse of basic descriptions. A business
is therefore able to standardize on core definitions, such as common report fields, making its environment
easier to maintain. A user who wants to find the definition of “total sales’ has one well-defined location to
search and a well-defined description while searching for this information.

The Report Definitions package also provides a one-stop store for information about enterprise data.
Implemented by a repository it acts as a catalog that offers a common view of individual reports and the
relationships in-between. A description of a report may not only consist of reports and fields but also may
have relationships that describe where it resides or how it can be accessed. Reports are also commonly used
to access data warehouses, and this model provides a common place for these definitions. Users can scan
the modd to find existing reports for a given topic, or see the source for a given report field.

Theinitial target isto support the definition of reports for business intelligence and reporting tools
accessing areationa / OLAP warehouse. Extensions for reporting for other domains may be added in the
future.

14.2 Semantics

Below isa samplereport. It has two groups and a number of fields. It illustrates most of the conceptsin the
report modd.

N -

©oo~N OOk~ w

11
12
13

14
15
16

17
18

Open Information Model Meta Data Coalition

Customer Invoice Report |« Report Header Group
Customer Customer Number Report Detail Group 1 - the
customer information. Related to a
Benning 1789048 !4 query that is “ Select name, id from
customer_table”
I nvoice Number Date Amount -
134789 1/1/99 $1.200.45 ! ;:ag’c;rt Field —“Amount” field from
135890 2/5/99 $5,789.00
Total $6,989.45
Boscoe 2387654 Report Detail Group 2 - theinvoice
i P information. Related to aquery that is
I nvoice Number Date Amount “Select number, date, amount from
invoice_table where customer_id =
133758 12/28/98 $3,506.23 <ReporGroupLid>"
135890 1/15/99 $5,890.23 J Report Field (Calculated) —
Total $9,396.46 - Expressed as “ Sum (Amount)
for Group2”
Jan 5, 1999 Page 1 of 2 |« Report Footer Group

Figure 62 - Sample Report

A report isaset of related formatting definitions. It is structured into report groups that may contain report
fields. Report groups may either be headers, footers, detail bands or a custom type interpreted by the
reporting tool. Fields provide the actual definitions for pieces of information. Fields may either be
expressed as query result columns, derived from other fields, or afunctional expression.

The UML concept of dependency is used to describe how one field is based upon another column or field.
In the case of report fields, the report field is dependent on the underlying columns or other report fields
upon which it is based.

The report model makes use of the OIM data type definitionsin order to capture the data types of the fields.
A reporting tool could either use the data types in a data provider namespace (e.g. ODBC) or create a
custom set of types. Refer to the Common Data Types package for more information on how to define data
types for a given language or database.

Reports are contained in areport package, which represents a simple grouping of related reports. Reports
may be grouped into tool specific, user specific packages, or classified based on the information they report
on.

The package currently does not cover detailed semantics for layouts or graphical positions. Each tool will
likely have very different means for storing this information.

Database and Warehousing: Report Definitions 155

1

14.3 Class Reference

Component | | SummaryInformation Surrogate Package
from Core) (from Generic Elements) (from Geneiic Elements (from Model Management)
Z% Element
(from Core)
ReportPackage +Report Report +Execution [panortExecution
0.1 * 1.1 0..*|System : Stiing
0.1
Classifier
(from Core)
Query
(from Schema Elements)
+Group ReportGroup
« | GroupType : String
ReportQuery PositionExpression : String
+Query
0..* 0.1
+ChildGroup
Figure 63- Report Grouping Elements
Attribute
(from Auxiliary Elements) Derivation
(from Auxiliary Elements)
. ReportField
ReportGroup +Field .)
RepottLiteral : String +DerivedField ReportFieldDerivati
0..* |ValueExpression : String eportrieldbenvation
0.* PositionExpression : String
IsHidden : Boolean
+InputValue
0”*

Figure 64 - Report Field Elements

=

© 00 N O O B~ Wb

I
N R O

13

14
15
16

17
18
19
20
21

22

23
24
25

26
27
28

29
30
31
32
33

35

36
37

38
39

Open Information Model Meta Data Coalition

14.3.1 Report

Each instance of this class describes a report used to represent a single set of information formatted to be
understandable by a user. It can represent a printed, HTML, or dynamic on-line report.

The source for reports can be files, relational databases, OLAP stores, etc.
Specializes
e Package (from Model Management)
e Surrogate (from Generic Elements)
Associations
e Execution (ReportExecution) — Links areport to its executions.
e Group (ReportGroup, from Namespace.ownedElement) — Describes the Report groups in areport.
Condtraints

o Every report must have at least one ReportGroup to contain any fields on the report.

14.3.2 ReportDerivation

Each instance of this class describes a derivation for the report field. Thisiswhat columns, report fields,
etc., thereport fields valueis derived from (if any). The source for reports can befiles, relational databases,
OLAP stores, etc.

Specializes
e Derivation (from Auxiliary Elements)
Associations

e DerivedField (ReportField, from Dependency.Client) — Defines the report field that is derived
from another object.

14.3.3 ReportElement

Each instance of this class describes a single piece of information appearing on areport. Note that a report
field may repeat on areport, asin the case of atabular report, or it may be represented graphically asin a
chart.

Specializes
o Attribute (from Auxiliary Elements)
Attributes

o ElementType (ReportElementType) — Indicates the type of the element. One of the following:
ELEMENT TYPE FIELD =1
ELEMENT _TYPE TEXT =2
ELEMENT_TYPE _GRAPHIC =3
ELEMENT _TYPE OTHER =4

e Literal (String) — Literal or column heading used to describe the field on the report (if any). If the
ElementTypeistext, will contain the text displayed.

e ValueExpression (String) — Explains how a derived field is calculated, such as"(Extended Price*
Quantity) - Discount"

e PositionExpression (String) — Expression describing where this el ement existswithin the group on
the report.

Database and Warehousing: Report Definitions 157

N -

© 00 N o 0o b

10

11

12
13

14
15
16
17
18

19

20

21
22
23

24
25
26

27
28
29
30
31
32

33

35

36
37

38

o StyleExpression (String) — Expression describing the formatting of the element. For example, the
font or color.

e |sHidden (Boolean) — Indicates that the field is not visible on the report.

14.3.4 ReportElementType

Enumeration indicating the type of the report e ement.
Values

e ELEMENT_TYPE FIELD =1

e ELEMENT_TYPE_TEXT =2

e ELEMENT_TYPE GRAPHIC =3

e ELEMENT_TYPE OTHER=4

14.3.5 ReportExecution

Each instance of this class describes an execution of areport. Can be used to track who is executing reports,
or to store the location for saved reports.

Specializes

e Element (from Core)

e Surrogate (from Generic Elements)
Attributes

e System (String) — Location where the report was executed, usually a machine name.

14.3.6 ReportGroup

Each instance of this class describes a grouping of fields on areport or a report section.

A common use would be the results of an SQL statement displayed in one group. Additional groups could
be embedded within, asin a group with invoice information and a subgroup with lineitem detail. Other
examples would be a detail section or a footer section.

Specializes
e Classifier (from Core)
Attributes

e GroupType (ReportGroupType) — Describes the function of the group. May be one of the
following:
REPORT_GROUP_HEADER =1
REPORT_GROUP_FOOTER =2
REPORT_GROUP _DETAIL =3
REPORT_GROUP_OTHER =4

e PositionExpression (String) — An uninterpreted string describing the position of the group on the
report.

Associations

e ChildGroup (ReportGroup, derived from Namespace.OwnedElement) — Used to links groups that
are embedded in one another on the report.

e Query (ReportQuery) — Used to relate the group to the query used to derive the datain the group.

ga ~AWNPEF

© oOo~N O

10
11
12
13
14
15
16

17

18
19

20
21
22

Open Information Model Meta Data Coalition

e InputValue (ReportField) — Used to show that afield (not directly owned by the current group)
provides a value to the group for usein its query or calculation. As an example, an outer group
displays customer information, and the customer ID is passed into an inner group to display
invoice information.

e Element (ReportField, from Classifier.Feature) — Defines the fields in this section of the report.

14.3.7 ReportPackage

Each instance of this class describes a grouping of reports. Many products or companies will group reports
by subject area or topic. This can also be used to represent the physical packaging (i.e., the report file).

Specializes
e Package (from Model Management)
e Surrogate (from Generic Elements)
e Summarylnformation (from Generic Elements)
e Component (from Core)
Associations
o Repli)rt (Report, from Namespace.OwnedElement) — Describes the Reports contained in a report
package.

14.3.8 ReportQuery

Each instance of this class describes a query that is used by areport. The columns of the query can be used
asthe source for field derivations.

Specializes

e Query (from Schema Elements)

Database and Warehousing: Report Definitions 159

N

oO~NO bW

10

11
12
13

14
15
16
17

18

19
20

21
22
23

24
25
26
27
28

29
30

Meta Data Coalition Open Information Model

15 Business Engineering: Business Goals

15.1 Overview

Business goals describe the reason a business operatesin a special market and why it operatesin a specific
way. The Business Goals Model enables the capture of unstructured information related to a business. It
describes the goals of a business as well as the measures for their achievement.

The Business Goals sub-model islinked to all of the other sub-models of the Business Engineering Model
and explains the purpose of structures and processes. The main meta data type of this modd isthe Goal,
which islinked into a semantic network with other goals and supporting el ements.

15.2 Semantics

The Business Goal s package provides a set of elements that describe the goals of a business.

Vision and Mission are e ements that document why a certain business and its processes and tasks exist.
The Vision type is used to describe the purpose of a business or business process, while Mission documents
the necessary achievements to fulfill the Vision.

A Goal isadesired state of a business that an individual or organization wishesto achieve. A goal can be
expressed as a measurable set of steps (objectives) or by general visions and mission directives. The model
captures goals of a businessin a hierarchy of Goal instances with more general ones at the top and more
specific ones (sub-goals) at the bottom.

The following figure shows goals for an Order Fulfillment Process.

Goal And Objective Model

Order
Processing
Goal

il B

Customer On-time ;
Satisfaction Delivery Qézlal}y
Goal Goal
Reduce Next Day Delivery
R?—id:rf; a;der In-Warehousa God
Godl Time Objective : Increase next day
Goa delivery rate to 80%
of dl shipments.

Figure 65: Goal and Objective M odel

Goals are associated with other elements of the moddl using the concept of dependency, which indicates
that the achievement of the goal depends on the outcome of a process or the performance of an business
unit.

Goals can be structured in different ways. They may be decomposed into sub-goals to model the fact that
abstract goals may be decomposed into or refined by more specific goals. Note that such decomposition can
be a graph. In addition to the decomposition structure, the model allows the capturing of information about
how different goals are related to each other. For example, a goal may support, may prevent the
achievement of, or may bein conflict with, another goal.

Objective and Measure types are used to drive a process and track the achievement or non-achievement of
targets. Thisistypically done against the information stored in a data warehouse. An Objectiveisa

160 Business Engineering: Organizational Elements

abhw NP

10
11

12
13
14
15
16
17
18
19

Open Information Model Meta Data Coalition

measurabl e step to achieve a Goal. An Objective uses Measures to quantify the achievement or non-
achievement of the quantified result (Goal).

A Measurein form of an Expression depends on one or more quantifiable business objects, which can be
any of the Open Information Model meta data types that inherit from Classifier. Business objects therefore
can be tables, OLAP cubes, components, executables, and so forth.

15.3 Class Reference

ModelElement
(from Core)

1

Dependency
(from Core)

Vision
Mission 0..*
+missions
MeasureExpressionDependency
0..* -
goals +objectives Objective +measures Measure N 0.
Codl 1.1 * ! «|Expression : UML:Expression .
Criticality : String v 0. 0.1 0.. ’) +measure
L) {ordered}
Priority : String - v
Dependency
(from Core) pr— * 0.*
ZF (from Core) +measurableObject
1.* Goallmpact
+impactingGoal ImpactType : String
0.*
+impactedGoal
0.*
+subgoals

"

Figure 66: Goal and Measures

15.3.1 Goal

Goal captures the mgjor goals a business has to achieve in order to fulfill its Mission. Goals, beside the
textual description, can be further classified by providing priority and criticality information.

Specializes
e ModeElement (from UML)
Attributes
e Name (String) — Name of the Goal.
e Comments (String) — Additional unstructured information about the Goal.
e ShortDescription (String) — Description of the Goal .
e Criticality (String) — Describes the perceived criticality of the Goal (low, medium, high).
e Priority (String) — The priority of the Goal (low, medium, high).

Business Engineering: Business Goals 161

N

© 00 N o 0o b

10
11
12
13

14
15

16
17

18

19
20

21
22
23
24
25
26
27

28

29
30

31
32
33

35
36

Meta Data Coalition Open Information Model

Associations
e subgoals— Goals of which the Goal is composed.
e objectives— Collection of Objectives that need to be fulfilled to achieve the Goal.

15.3.2 Goallmpact

The GoalImpact class captures the different ways in which goals may interact.
Specializes
e Dependency (from UML)
Attributes
e ImpactType (String) — One of the following:
e Supports— A Goal supports other goalsin the decomposition or refinement structure.
e |Impedes— A Goal impedes other goalsif it has a negative influence on them.
e Conflicts— A Goal conflictswith other Goals, i.e., it prevents achievement of other goals.
Associations

e |mpactingGoal (Goal, derived from Dependency.supplier) — Source of the interaction between two
goals.

e |mpactedGoal (Goal, derived from Dependency.client) — Destination of the interaction between
goals, i.e., the Goal that isimpacted by the source Goal.

15.3.3 Measure

Measure describes a quantifiable measure of an objective that can be based on the value of a classifier, for
example, on the data maintained in a data warehouse.

Specializes
e ModeElement (from UML)
Attributes
e Name (String) — Name of the MeasureExpression.
e Comments (String) — Additional unstructured information about the MeasureExpression.
e ShortDescription (String) — Description of the MeasureExpression.

e Expression (UML::Expression) —String that represents the Expression of the measure.

15.3.4 MeasureExpressionDependency

M easureExpressionDependency describes the relationship that links a MeasureExpression to a set of
measurable classifiersin the Open Information Model.

Specializes
e Dependency (from UML)
Attributes
e Name (String) — Identifier of the MeasureElementDependency.
e Comments (String) — Additional unstructured information about the M easureElementDependency.
e ShortDescription (String) — Description of the MeasureElementDependency.

162 Business Engineering: Organizational Elements

AW N P

© 00 N O

10
11
12
13
14
15

16

17
18
19
20
21
22
23
24
25

26

27
28
29

30
31
32
33

35

Open Information Model Meta Data Coalition

Associations
e Measure — The quantifiable measure of the related business object.
e MeasurableObject — Theinstance of a class, which inherits from Classifier and providesthe result
to be measured.

15.3.5 Mission

Mission describes at an abstract level the means by which the Vision of an organization can be fulfilled. A
mission is usually expressed as a set of Goals.

Specializes
e ModeElement (from UML)
Attributes
e Name (String) — Name of the Mission.
e Comments (String) — Additional unstructured information about the Mission.
e ShortDescription (String) — Description of the Mission.
Associations

e (Goals— Set of Goalsrequired to achieve the Mission.

15.3.6 Objective

An Objective describes a measurable step to achieve a Goal.
Specializes
e ModeElement (from UML)
Attributes
e Name (String) — Identifier of the Objective.
e Comments (String) — Additional unstructured information about the Objective.
e ShortDescription (String) — Description of the Objective.
Associations

e Measures — The quantifiable measures (MeasuerExpression) of the fulfillment of the Objective.

15.3.7 Vision

Vision captures the ultimate purpose of an organization and the associated business processes. It isa very
high-level statement that needs to be further detailed in related mission statements that explain how it can
be fulfilled.

Specializes
e ModeElement (from UML)
Attributes
e Name (String) — Name of the Vision.
e Comments (String) — Additional unstructured information about the Vision.
e ShortDescription (String) — Description of the Vision.

Business Engineering: Business Goals 163

Meta Data Coalition Open Information Model

Associations

e Missions— Set of mission statements that indicate how the goal will be realized.

164 Business Engineering: Organizational Elements

N

©O©o0o~NO O~ w

10

11
12
13
14
15

16
17
18
19
20

21
22
23

24
25
26
27

28
29
30

31
32
33

35
36
37
38
39

Open Information Model Meta Data Coalition

16 Business Engineering: Organizational
Elements

16.1 Overview

The Organizational Elements package defines the resources and structures that areinvolved in the
processes and activities of a business. Its main goal isto capture common information about organizational
features relevant to business process and task modeling. The Organizational Elements package does not
store or maintain compl ete organizational information, or serve asthe model for extensive organizational
research and analysis. Such functions are often performed by systems such as Enterprise Resource Planning
(ERP) systems.

16.2 Semantics

The Organizational Modd captures an organization’s structure, resources, and jobs and describes the
relationships to its market and industry. The most generic meta data type in the package is a Resource,
which can play a specific role in a business process or in a relationship to the business processitself. A
Resourceis an abstract type and as such is never instantiated. It servesto capture the common
characteristics of its sub-types Physical Resource, InformationResource, and BusinessUnit.

Physical Resources are resources that exist in the real world, such as a conference room or an automobile.
Information Resources carry information about business objects, such as aloan file or customer database.
Note that both Physical Resource and I nformati onResource types may play roles in a business and may be
related to other resources, especially of BusinessUnit type. For example, a printer may belong to a specific
department.

A resource may play arole regarding other resourcesin different contexts, such as an engineer who
performs the administrator’ srole for a printer. The ResourceRole meta data type represents this kind or
relationship.

A Business Unit captures the topological aspects of a business, its division into organizational functions, its
geographical distribution, or the context in which it operates. BusinessUnit is an abstract type that is
specialized into Industry and Business Unit. Business Units may be arranged into a hierarchy with more
general entities at the top and more specialized ones towards the bottom.

A Business Unit may have a set of Policies that govern its activities. Policies may be decomposed into a
hierarchy of sub-palicies reflecting the fact that a Policy may consist of several other, more specific,
Policies.

A business operates in an environment such as the market, the competitive landscape, the legal
environment, and so forth. Industry is the generic meta data type that allows modeling of the business
environment or market, such asitstrading partners. Industries are Business Units and can therefore be
arranged in a hierarchy with industries lower in the hierarchy being increasingly more detailed.

A Business Unit can model every organizational structure of a business such as a subsidiary, department,
division, group, or team. Business Units can be arranged into hierarchies to reflect the reporting and
management hierarchy found in a company. An business unit may contain other units or may contain the
actual resources that perform Organizational Roles. The following figure shows an example organization
with unitsand roles.

Business Engineering: Organizational Elements 165

N

Meta Data Coalition Open Information Model

Organizational M odel

Company A g g?g;ﬁ?or:; Role
Sales Marketing| |Operationg Finance HR
|
Research Production Devel opment
Order Assembly Shiping Quiality

o) (] o) (e

Figure 67: Organizational M odel

A Resource can play one or more rolesin an organization. For example, a software devel oper may also
play the hardware administrator role. Organizational Role captures the specific jobsin a business and as
such may have a Person assigned. The Person performs the OrganizationalRole.

BusinessUnits, Organizational Roles, and Persons can be related to Skills. Skill is a meta data type that
describes required or offered ahilities to perform tasks. A BusinessUnit may offer a set of skills, (e.g., a
consulting company focused on a vertical market), whereas an Organizational Role may require a set of
specific skills from its owner, (e.g., a bank teller must be able to count). The Person that ownsaroleor is
part of a unit ultimately has to have the skills required or offered. The model allows the capturing and
matching of skills at different levels.

Authority is a meta data type that captures the different authorities Business Units, Organizational Roles,
and Persons may have assigned or exercise in an organization. Authority can be used to describe rights
such as signing authority as well as more abstract things such as power and influence.

Key Persons or individuals are usually included in a business model to clarify roles and add meaning. The
model is not intended to serve as a generic structure for maintaining the organizational information of a
businessin an operational environment.

The Organizational Model offers a core set of types to structure a business and to capture actors and
resources. Business may have more detailed and specialized organizational typesto mode their structures.
Such types can be captured using the extensibility mechanism (stereotypes) of the UML or by introducing
new types that inherit from the core Organizational Modedl.

166 Business Engineering: Organizational Elements

1

w

© 00 ~No o b~

10
11
12
13

14

15
16
17
18

19
20
21
22
23

24
25

Open Information Model Meta Data Coalition

16.3 Class Reference

Dependency Classifier
(from Core) (from Core)
* Iclient 1.1 +Subindustries
ResourceRole Resource
+perfomedBy 0..1) +SubPolicies
+Subunits 0.*

- Industry 0..1

Isupplier 1.1 0..* |
+performedFor +industry) 0.* Policy ModelElement

4 01 (from Core)
T +Policies
BusinessUnit 0.*
PhysicalResource LineOfBusiness : Text | 0-*
I Authority Person
: . +Authorities +Authorities FirstName : String
InformationResource)| 0.+ 0.* A MiddleName : String
+Authorities 0.* | LastName : String
OrganizationalRole Title : String
0.* 0.*
+Performs
0.* 0.
Skill
0.* 0.> 1asSk
fasSk
+OfferedSkills 0 0.r
0.* 0.

Figure 68: Organizational Definitions

16.3.1 Authority

Authority describes the type of authorization required to perform a Task, access rights for resources,
responsibilities for specific tasks, or any combination of these elements. It also captures the more abstract
definitions such as the power and influence a unit, role, or person may have.

Specializes
e Classifier (from UML)
Attributes
e Name (String) — Name of the Authority, such as Read or Write.
e Comments (String) — Additional unstructured information about the Authority.
e ShortDescription (String) — Description of the Authority.

16.3.2 BusinessUnit

BusinessUnit characterizes an industry, an organization, or department that has a goal of performing
business activities. BusinessUnits can be arranged into a hierarchy to reflect the structure of industries or
organizations. Because they are Resources, BusinessUnits may play specific ResourceRolesin relationship
to other Resources.

Specializes
e Resource
Attributes
e LineOfBusiness (String) — Characterization of the major line of business for the BusinessUnit.

Associations
e Subunits— Set of BusinessUnits, Industries, or Organizational Role objects a BusinessUnit
contains.

Business Engineering: Organizational Elements 167

A W N P

el
RPOoOwOwo~NoO O

12
13

14

15
16
17

18

19
20
21

22
23
24
25

26
27
28
29
30
31
32
33

35

36

37
38

Meta Data Coalition Open Information Model

e Policies— Set of Policies defined for this BusinessUnit.

e Authorities— Set of Authoritiesthis BusinessUnit has or requires.

o Offeredkills — Set of Skillsthis BusinessUnit offers.

e Industry — Describes the industry in which the BusinessUnit participates.

16.3.3 Industry

An Industry describes a market segment. Each industry usually has a set of business processes that are
typical for that industry. For example, the health care industry registers patients, confirms medical benefits,
records medical histories, and tracks health care specialists. Within an industry, a process specific to the
industry may be performed differently by individual businesses even though the basic processisthe same.
Therefore, an industry may have a set of business process templates that can be customized to specific
companies.

Specializes
e Classifier (from UML)

16.3.4 InformationResource

Information resources carry information about business objects, such as aloan file or customer database.
Specializes

e Resource

16.3.5 OrganizationalRole

An Organizational Role represents one or more human resources exhibiting a specific set of skillswithin an
organization. Typically any resource assigned to a particular Organizational Role can undertake a task or
work item that requires a resource with the same set of skills.

Organizational Role forms a leaf node of an organizationa hierarchy. It represents jobs that are performed
by a Person linked to perform tasks. A role may be generic, such as a position or title, or more specific,
such as a job description. Organizational Role captures the static knowledge about the tasks that a resource
can perform. This knowledge is described by the set of Skillsarolerequires.

For example, theroles of an electronic technician can include:
e Troubleshooting to locate problems.
e Repairing faulty equipment.
e Reading and understanding wiring diagrams.
Specializes
e BusinessUnit
Associations
e Policies — The Policy set defined for this Organizational Role.
e Authorities— The Authority set this Organizational Role has or requires.
e Requiredskills— The set of Skills an OrganizationalRole requires.

16.3.6 Person

Person describes a human actor that participatesin a Business Process in one or more roles. Example
individuals with specific skills and authorities are commonly included in a business process model for

168 Business Engineering: Organizational Elements

© 00 N o 0o B~ W NP

e I~ e i =
o o0 M W N B O

17

18
19

20
21

22

23
24
25
26

27
28
29
30
31
32
33

Open Information Model Meta Data Coalition

clarification and in order to support ssimulation. Typically, the actual instances of Person will be contained
in ERP systems or network directories.

Specializes
e ModeElement (from UML)
Attributes
o Name (String) — Identifier of the Person.
e Comments (String) — Additional unstructured information about the Person.
e ShortDescription (String) — Description of the Person.
e FirstName (String) — First part of the name of a Person.
e MiddleName (String) — Middle part or initial of the name of a Person.
e LastName (String) — Last part of the name of a Person.
e Title (String) — Title, such as PhD or Dr., of a Person.
Associations
e HasAuthorities — The Authority set a Person has.
e Hasskills — The Skill set aPerson has.

e Performs (OrganizationalRole) — The set of roles a Person performsin an organizational structure.

16.3.7 PhysicalResource

PhysicalResource is a representation of an entity from the physical world, such as a conference room or an
automobile.

Specializes

e Resource

16.3.8 Policy

Policy describesthe rulesthat govern the actions of a Business Unit. It is also used to express policies from
the outside world that affect industries or individual organizations. Policies can be recursively decomposed
into a set of supporting sub-policies. Note that Policies may overlap with BusinessRules, which can aso
express policies within an organization.

Specializes
e Classifier (from UML)
Attributes
e Name (String) — Identifier of the Policy.
e Comments (String) — Additional unstructured information about the Policy.
e ShortDescription (String) — Description of the Policy.
Associations

e composedOf — Collection of sub-Policies of which the Policy is composed.

Business Engineering: Organizational Elements 169

=Y

© 00 N ou AWM

PR
N R O

13

14
15

16
17
18

19
20

21
22

23

24
25

26
27
28
29
30
31

Meta Data Coalition Open Information Model

16.3.9 Resource

Resource describes an entity that participates in the tasks that constitute a Business Process or which may
be related to the Business Processitself. Resource is an abstract type and therefore cannot be instantiated. It
captures common features for its sub-types.

A resource may play a specific ResourceRole in relationship to other Resources, such as an administrator
role for aphysical resource such as a printer.

Specializes
e Classifier (from UML)
Attributes
e Name (String) — Name of the Resource.
e Comments (String) — Additional unstructured information about the Resource.

e ShortDescription (String) — Description of the function of the Resource.

16.3.10 ResourceRole

e ResourceRole describes the role played by a Resourcein a context. For example, an Engineer
organizational role may play the Administrator role for a Printer resource.

Specializes
e Dependency (from UML)
Associations

e PerformedBy (Resource, derived from UML:Dependency.supplier) — The Resource that performs
the ResourceRole.

e PerformedFor (Resource, derived from UML:Dependency.client) — The Resource for which a
specific ResourceRole is performed.

16.3.11 Skill

Skill describes the specific skills each role an organization requires or offers, or the specific skills a person
has.

Specializes
e Classifier (from UML)
Attributes
e Name (String) — Identifier of the Skill.
e Comments (String) — Additional unstructured information about the Skill.
e ShortDescription (String) — Description of the Skill.

170 Business Engineering: Organizational Elements

N

© 00 NO O~ w

10
11
12

13
14
15
16

17
18
19
20
21
22
23
24
25
26
27
28

29

30
31
32

33

35

Open Information Model Meta Data Coalition

17 Business Engineering: Business Processes

17.1 Overview

The Business Process package provides meta data types to capture the semantic content of process models
and associated structuresin an object-oriented environment. Business processes are described by activities
performed by resources and by transitions between activities.

Business Processes can be either long-lived, such as the budget supervision for afinancial year, or
relatively short-lived, such as the approval of an expense report.

Examples of business processes are:
e Software Development
e Project Management and Scheduling
e Order Entry or Fulfillment
e Resource and Product Planning

The Business Processes package extends UML 1.3 and therefore supports the more generic concepts of
dynamic modeling in a seamlessly integrated way. This makes the model highly adaptable to individual
methodol ogies and allows the use of UML concepts to develop more specialized model s such as business
interaction diagrams, and the use of case models and system decomposition diagrams.

The Business Process package includes concepts derived from the following sources:
e Ddoitte & Touche s Notation (IndustryPrint)
e Erngt & Young'sNotation
e UML (Unified Modeling Language) and the BPM extensions

e Flow Chart

e Gane-Sarson DFD (Data Flow Diagram)
e |IDEFO

o Petri Net

e SAPEPC (Event Process Chain)
e SAD Actigram

e ISAC Activity Graph

e ICN (Information Control Nets)

17.2 Semantics

A Business Process representation for a specific application domain can be structured into a model of the
tasks, a model of the available business processes, and the behavioral representation of the business process
as graph of states and transitions.

Tasks and Business Processes are model ed as services provided by some higher-level structure such asan
Industry or Business Unit. In terms of the UML, both types of services are described as operations exposed
by a Classifier. Industry and Business Units are specializations of Classifier.

Business Engineering: Business Processes 171

O©CoOoO~NO O WNPEF

23
24

25
26
27
28
29

30
31

Meta Data Coalition Open Information Model

Tasks are services exposed by Industries or BusinessUnits. Tasks can be either Manual Tasks or Automated
Tasks depending on whether they are to be executed manually or performed by computer. Tasks can be
decomposed into sub-tasks along different dimensions such astime, goal, or resources.

Tasks are clearly separated from the state/transition graph that represents the behavior of the Business
Process. This separation allows the reuse of tasks by one or more Business Processes.

A Task isusually an activity that is performed with a specific Goal in mind. The operation, “deleting afile’
could be the task of “cleaning one' s hard-drive’ or the task of “protecting confidential information”.
Depending on the granularity of the task model and thelevel of reuse, tasks and goal s can be separated and
the structures of the Business Goal Model used to represent and associate goals.

Business Processes may correspond to services provided by Industries or BusinessUnits. A Business
Process (like an Operation) represents the signature or entry point and can have multiple implementations
in form of Business Process Methods. A BusinessProcessGraph, i.e. the graph of states and transitions,
defines the behavior of thisimplementation.

A BusinessProcessGraph is represented by a set of Task States and the Transition of control aswell asthe
Data Flow between these states. The individual states refer to the Tasks to be performed and the Resources
that perform the Tasks. A processisinitiated with a well-defined state, i.e. the flow beginswith asingle
Initiator state. From this pseudostate the flow follows Transitions to other states or pseudo states. A
Transition may be guarded by Boolean expressions allowing it to fire or not. Depending on theresult (True
or False), a path through a Transition is taken or not taken. States can be the source of many guarded
transitions, which allow control of the execution path through a process.

The following figure shows a business process model expressed using the meta data types discussed in this
section:

Business Process M odel

" Oord
Customer - > R w

) A

Order product - .
by transmitting |——| Receive order;
order assignto clerk

Production
slot available

Enter order; check
production status

Production slot
not available

| Notify customer
o~ | of delay
v S }
» !
e Customer [] Information [Physical
Ship product Resource Resource
to customer —» Transition () TaskState

~® Dependency Organizational
Role

Produce ordered
product

Figure 69: Business Process M odel

Process flow can be influenced by two special meta data types, Fork and Join, which allow oneto create
and combine parallel execution of tasks. In a Business Process Graph, States can be either production
activities or coordinating activities. Production activities (Data Flow) modify the environment and
manipulate information or materials whereas Coordinating activities (Task States) control the flow of the
process and do not change the environment.

A Business Process Graph terminates after all its TaskStates have been completed, i.e. all paralle process
flows have reached a Terminator.

172 Business Engineering: Business Processes

Open Information Model

Meta Data Coalition

1 A Process Partition is a clustering of Task States that congtitutes a business process graph. Thisfigure
2 showsthe partitioning of an example business process graph.
Organization Role Organization Unit Organization Unit
Customer Sales Production
Order product
by mailing
f
order form Receive order;
assign to clerk
A 4
Enter order;
check production
status
Production slot| Production Produce ordered
uction slof
notavailable | sotavailable product
Notify customer Ship product
of delay to customer
3
4 Figure 70: Process Partition

5 Each partition represents the responsibilities of a Business Unit in performing the tasks. Process Partitions

6 separate thetasks performed by separate Business Units into concurrent flows loosely synchronized by

7 transitions. The Business Process Model allows Task States to bel ong to multiple Partitions.

g8 17.3 Class Reference

Operation
(from Core)

+specification

Method

1

BusinessActivity

PerformanceMetric : String
EffectivePeriod : String
Frequency : String
CompletionType : String

+Process

N (from Core)

BusinessProcessMethod

IsManual : Boolean
EnablingTechnology : String

10

1.1

DecompositionReason : String

0.1 *

+Graph
0.*

o<f

+SubMethod

Figure 71: Process Definitions

Business Engineering: Business Processes

ActivityGraph
(from Activity Graphs)

BusinessProcessGraph

PerformanceMetrics : String

173

Meta Data Coalition

174

State
(from State Machines)

L

SimpleState
(from State Machines)

ActionState
(from Activity Graphs)

1

Open Information Model

CallState
(from Activity Graphs)

TaskState

0..1
Tentry Actlon‘
0..1 (from Common Behavior)
- 0..1
+exit
0.1 0.1
+doActivity
0.*
+action
{ordered} ZF
ActionSequence CallAction * 1 -
0.1 (from Common Behavior) (from Common Behavior) Operation
+operation | (fem Core)
* 1 BusinessActivity
Task Activi ic - stri
askStateActivity +Actiity PerformanceMetric : String
EffectivePeriod : String
Frequency : String
CompletionType : String
Figure 72: Task Definitions
State
(from State Ma chines)
CompositeState SimpleState FinalState

(from State Machines)

(from State Machines)

(from State Machines)

g

SubmachineState
(fom State Machines)

ActionState
(from Activity Graphs)

?

SubactivityState
(from Activity Graphs)

]

]

Terminator

Call

(from Activity Graphs)

State

ObjectFlowState
(from Activity Graphs) *

+type

1

SubtaskState

(from Core)

Classifier

1

Tas

kState

ResourceFlowState

ActivityGraph
(from Activity Graphs)

BusinessProcessGraph

+subprocess

Resource

(from Organizational Elements)

Figure 73: State Definitions

Business Engineering: Business Processes

Open Information Model Meta Data Coalition

* +supplierDependency
+supplier 1.*

ModelElement
from Core)

Dependency

(from Core)
+ownedElement .

+clientDependency

Z} +client 1. Z>

+namespace Namespace
from Core)

Classifier

(fom Core)
Z% supplier

Resource ResourceStateRole client
(from Organizational Model) +Resource

*

0.1

State
+Task State (from State Machines)

i — [client BusinessProcess
supplier ResourceProcessRole
+Resource +BusinessProcess

Figure 74: Resour ce Role Definitions

ModelElement | *client +clientDe pendency Dependency
* (from Core) R 1+ |fomCore)
+contents
+supplier +supplierDependency
* l .*
* ar
Partition StateVertex Transition
(from Activity Graphs) (from State Machines) (from State Machines)
ActivityGraph +partition
(from Activity Graphs) o
*
1 0.. State
(from State Machines)
BusinessProcessGraph +Partition ProcessPartition PartitionResourceRole
PerformanceMetrics : String .
+Partition
Resource
(from Organizational Elements) +Resource

Figure 75: Process Partitions

Business Engineering: Business Processes 175

©O©oo ~NO U~ w

10
11
12
13
14
15

16
17

18
19

20
21

22

23

24
25
26
27
28

29
30

Meta Data Coalition Open Information Model

Pseudostate
(from State Machines)

i

Initiator Fork

Branch

Join Connector Merge

Figure 76: Pseudostates

17.3.1 BusinessActivity

A business activity is a service offered by a business object (e.g. Industry or BusinessUnit). If a
BusinessActivity is represented by a process graph, the activity may references one or more
implementations by BusinessProcessMethods, which in turn link to the BusinessProcessGraph that
specifies the behavior as states and transitions.

A BusinessActivity may also be the specification of alogical work item within a BusinessProcessGraph. It
forms the operation for a specific TaskState and related TaskStateActivity.

Specializes
e Operation (from UML)
Attributes
e Name (String) — Name or identifier of the activity.
e Comments (String) — Additional unstructured information about the activity.
e ShortDescription (String) — Description of the activity or what problem it addressees.

e Frequency (String) — Provides information about the frequency of execution of the activity. The
might be an absolute — “every morning” — or relative — “with every shipment”.

e PerformanceMetrics (String) — Information relating to cost, cycle time, and other performance
reguirements. These may be related to a specified Goal.

e CompletionTime (String) — Information about the estimated, permissible, or typical time for the
completion of this Task.

o EffectivePeriod (String) — Indicates when this activity becomes effective and for how long.

17.3.2 BusinessProcessGraph

A BusinessProcessGraph is defined by a network of TaskStates. TaskStates are linked by Transitions that
may have Guards to control the flow of execution. Task States reference BusinessActivities through a
TaskStateActivity, and a BusinessActivity can be referenced by multiple TaskStates. Special nodesin the
process graph act as Initiator and Terminator of the process flow, or Fork and Join of parallel execution
threads. TaskStates also relate resources in a specific role in the execution of the process.

Specializes
e ActivityGraph (from UML)

176 Business Engineering: Business Processes

~No 0o~ W N P

10
11

12

13
14

15
16

17
18
19
20

21
22

23

24
25

26
27

28

29
30
31
32

33

35
36
37
38

Open Information Model Meta Data Coalition

Attributes
e Name (String) — Name of the BusinessProcessGraph.
e Comments (String) — Additional unstructured information about the Busi nessProcessGraph.
e ShortDescription (String) — Description of the BusinessProcessGraph.
Associations
e Partitions (ProcessPartition, derived from ActivityGraph.Partition) — The set of partitions
contained within this BusinessProcessGraph.

17.3.3 BusinessProcessMethod

A BusinessProcessMethod can be executed automatically or manually. Automated methods can be
performed by information systems and may have their implementation specified in a
Busi nessProcessGraph.

Attributes

e DeompositionReason (String) — Provides a rational for the decomposition of the method into sub-
methods.

e EnablingTechnology (String) — Identifies the underling system that enables processing, eg., a
specific ERP system.

e IsManual (Boolean) — Whether the method is performed by a computer system. A process
definition may include such types to provide a complete description, but the execution of the
method is outside the scope of an automatic system, i.e,, it is assumed that the specified resources
perform the method.

Associations
e SubMethod (BusinessProcessMethod) — Set of child methods that decompose the method.

17.3.4 Branch

Indicates a decision point for flow-of-control within a business process graph. Unlike afork, only asingle
path will be taken.

Specializes
e Pseudostate

17.3.5 ResourceFlowState

A ResourceFlowState describes the flow of information or physical resources associated with the flow of
control through Activitiesand Transitions. A transition from a TaskState to a ResourceF owState indicates
that the Resource isthe product of the task. A transition from a ResourceFlowState to a TaskState indicates
that the resourceis used as theinput to the task.

Specializes
e ObjectFHowState (from UML)
Attributes
e Name (String) — Name of the ResourceFlowState.
e Comments (String) — Additional unstructured information about the ResourceFlowState.
e ShortDescription (String) — Description of the ResourceFlowState.

Business Engineering: Business Processes 177

abh W N

© oOo~N O

10

11

12
13

14
15

16

17
18

19
20

21

22
23

24
25

26

27
28
29
30

31
32

33

35

Meta Data Coalition Open Information Model

Associations
e outgoing — Specifies the Transition departing from the ResourceFlowState to an Activity.
e incoming — Specifies the Transitions entering the ResourceFl owState emanating from an Activity.
e Container (CompositeState, derived from StateVertex.Container) — The SubProcess that contains
this ResourceFlowState, if any.

17.3.6 Fork

Fork describes the split of control flow into several parallel execution threads. A Fork isthe target of a
single Transition and is the source of two or more outgoing Transitions.

Specializes
e Pseudostate (from UML)

17.3.7 Initiator

Initiator isapseudo statein a processthat describesthe single start point for the execution. An Initiator has
no incoming Transitions.

Specializes
e Pseudostate (from UML)

17.3.8 Join

Join describes the junction of several parallel threads of execution in a process flow. A Join isthe target of
two or more Transitions and the source of a single outgoing Transition.

Specializes
e Pseudostate (from UML)

17.3.9 Merge

Describes the combination of two paths of execution into a single path. Unlikeajoin, it is not synchronous,
it can join non paralld thread paths. It isthe opposite of the Branch pseudostate.

Specializes
e Pseudostate (from UML)

17.3.10 PageConnector

A PageConnector describes a simple node between Transitions. It allows tools to have a process diagram
span multiple pages or sections. An instance of the PageConnector pseudostate could tell the tool to
continue the model on the next page starting with the transition after the connector (i.e., a page break).
Toolsthat are not concerned with pagination can simply ignore the connector.

Specializes
e Pseudostate (from UML)
17.3.11 PartitionResourceRole

PartitionResourceRol e associates one or more Resourcesto a Partition in different roles. For example, an
Organizational Role may be the owner of a set of activities that are owned by a Partition.

178 Business Engineering: Business Processes

© 00 N o 0o B~ W N PP

10

11
12
13

14
15
16
17
18
19
20
21

22

23
24

25
26
27
28
29
30
31
32
33

Open Information Model Meta Data Coalition

Specializes
e Dependency (from UML)
Attributes
e Name (String) — Name of the PartitionResourceRole.
e Comments (String) — Additional unstructured information about the PartitionResourceRole.
e ShortDescription (String) — Description of the PartitionResourceRole.
Associations
e Partition — Partition with which the specific Resource is associated.

e Resource — Resourcethat is associated with a Partition.

17.3.12 ProcessPartition

A ProcessPartition groups TaskStates, normally with respect to their responsibility. ProcessPartitions are
used for several different purposes, for example, to group a set of actions functionally or to show in which
part of an organization an action is performed.

Specializes
e Partition (from UML)
Attributes
e Name (String) — Name of the ProcessPartition.
e Comments (String) — Additional unstructured information about the ProcessPartition.
e ShortDescription (String) — Description of the ProcessPartition.
Associations

e contents— The set of process elements (State types) associated with this ProcessPartition.

17.3.13 ResourceProcessRole

ResourceProcessRol e describes the role a Resource has regarding a Business Process Graph. This might
include roles such as owner, steward, contact person, or administrator (if the process is automated).

Specializes
e Dependency (from UML)
Attributes
e Name (String) — Identifier of the ResourceProcessRole.
e Comments (String) — Additional unstructured information about the ResourceProcessRole.
e ShortDescription (String) — Description of the ResourceProcessRole.
Associations
e BusinessProcess— The BusinessProcess that the Resourceis related to in a specific Role.

e Resource — The Resource that is associated with a BusinessProcessin a specific Role.

Business Engineering: Business Processes 179

=Y

© 00 N O O ~AOWN

e < e
w N P O

14

15
16
17
18

19
20
21
22
23
24

25
26

27
28

29
30

31

32
33

35

36

37
38
39

Meta Data Coalition Open Information Model

17.3.14 ResourceStateRole

ResourceStateRol e associ ates workflow participants (Resources) to a collection of business process
TaskStates. The role defines the context in which the Resource participatesin a particular activity such as
responsibility or authority.

Specializes
e Dependency (from UML)
Attributes
e Name (String) — Identifier of the ResourceStateRole.
e Comments (String) — Additional unstructured information about the ResourceStateRole.
e ShortDescription (String) — Description of the ResourceStateRole.
Associations
e TaskSate — The TaskState (State) that the Resourceisrelated to in a specific Role.
¢ Resource — The Resource that participatein a TaskState (State) in a specific Role.

17.3.15 SubTaskState

SubTaskState represents the execution of sub-process within a parent process graph. It isa structuring
mechanism enabling hierarchically structured complex flows and facilitates the reuse of predefined
processes. A SubTaskState may reference either the composition of other states and transitions or a defined
Busi nessProcessGraph.

Specializes
e SubactivityState (from UML)
Attributes
e Name (String) — Name of the SubTaskState.
e Comments (String) — Additional unstructured information about the SubTaskState.
e ShortDescription (String) — Description text about the SubTaskState or what problem it addresses.

e PerformanceMetrics (String) — Information relating to cost, cycle time, and other performance
requirements.

e EnablingTechnology (String) — Identifies the underlying system that enables processing, eg., a
specific transaction of an ERP system.

o EffectivityPeriod (String) — Indicates when this process SubTaskState becomes effective and for
how long.

Associations

e subprocess (BusinessProcessGraph, derived from UML:SubmachineState.submachine)— The
business process graph to be substituted in place of this state.

e subvertex — The set of subprocess elements (TaskState, SubTaskState, DataFl ow, etc.) owned by
the SubTaskState if it isa composition.

17.3.16 TaskState
A TaskState models a state of a business process. A State becomes active when it is entered because of

incoming transitions. The state executes the related TaskActions and passes contral to its outgoing
Transitions it the actions have been completed.

180 Business Engineering: Business Processes

0 N o o B~ W N P

10
11
12
13

14
15
16
17

18
19

20
21
22

23

24
25

26
27
28
29
30
31
32
33

35
36

Open Information Model Meta Data Coalition

Specializes

e ActionState CallState (from UML)
Attributes

e Name (String) — Name or identifier of the Task.

e ShortDescription (String) — Description of the Task or what problem it addressees.
Associations

e incoming — Set of incoming Transitions for the TaskState.

e outgoing — Set of outgoing Transitions for the TaskState.

17.3.17 TaskStateActivity

TaskStateActivity represents the execution of a BusinessActivity in a specific TaskState. A
BusinessActivity can be re-used by multiple TaskActions, i.e. may be related to multiple different Task
States. The invocation of the Task may be either synchronous or asynchronous, indicating whether the
TaskState waits for the execution to be finished or not.

Specializes
e CalAction (from UML)
Attributes
e Name (String) — Name or identifier of the activity.

e IsAsynchronous (Boolean) — Indicatesif the related BusinessActivity is activated synchronously
(True) or asynchronoudly (False).

Associations
e Activity (BusinessActivity, derived from Call Action.Operation)— The business activity that is
invoked by the TaskStateActivity.

17.3.18 Terminator

Terminator is a pseudo state in a process that identifies one of the possible end points. A business process
terminates when all paralld flows have reached a Terminator.

Specializes
e FinalState (from UML)
Attributes
e Name (String) — Name of the Terminator.
e Comments (String) — Additional unstructured information about the Terminator.
e ShortDescription (String) — Description of the Terminator.
Associations
e incoming — Specifies the Transition entering the Terminator.
e container — The SubProcess that contains this Terminator, if any.
Constraints

e A Terminator has no outgoing Transitions.

Business Engineering: Business Processes 181

oS O~ WD

Meta Data Coalition Open Information Model

17.3.19 Transition
Transition is a directed relationship between a source TaskState and atarget TaskState.
Specializes
e ModeElement (from UML)
Associations

e guard—The Guard or logical expression that determinesif the transition is taken.

182 Business Engineering: Business Processes

N

o~N O Ok~ W

11
12
13
14

15

16
17
18

19
20
21
22

23

24
25

26
27

28
29
30

31
32
33

35
36

37
38
39

40
41

Open Information Model Meta Data Coalition

18 Business Engineering: Business Rules

18.1 Overview

A businessrule is a statement that controls or defines some aspect of a business. It either asserts the
structure of a business or governs its business processes. The Business Rules package provides meta data
types to capture, classify, and store business rules. Scenarios supported by the package are:

e Capturing tools used by analysts to describe and document the rules of a business.

e Interchanging business rule definitions between capturing tools, business process modeling
environments, and back-ends such as workflow engines

The package is an integrated part of the Business Engineering Sub-model of the Open Information Model.
This makes the model highly adaptable to individual methodol ogies and allows the use of UML conceptsto
develop more specialized models.

The Business Rules package includes concepts derived from the following sources:
e UML13
e GUIDE Business Rule Project

18.2 Semantics

A business rule describes how to transition from one state to another or how to prohibit such atransition.
Assuch it is a declarative statement rather than a procedural description. Business rules are highly
structured atomic statements that are usually extracted from informal documentation found in a business.

The business rambling has been introduced in the modd to support the process of isolating business rules.
It isthe starting point for deriving business rules and as such may contain more than a singlerule, may be
inconsistent, contradict other ramblings, and even be untrue. The model allows specifying the source of a

business rambling by relating it to a resource, a meta-data type defined in the Organizational Model.

A formalized representation of a Business Rule can be categorized into the following types:

e TermRule — Introduces the definition of aterm into abusinessterm dictionary. It isused to define
the vocabulary of a business.

e Fact Rule — Documents the connections between items. Examples are rel ationships between
entities, e.g., the “belongsto” relationship between an attribute and an entity.

e Action Rule— Action rules are concerned with the invocation of actions. They state the conditions
under which actions must be taken; this includes pre-conditions, post-conditions, and triggering
conditions.

e Inference Rule — Describes the inference or derivation of a business rule from other rules or by
mathematical calculations. Inference rules are sometimes called derived rules or Derivation Rules
because they capture knowledge that is dynamically derived instead of explicitly stored.

Business Rules may be grouped into Business Rule Sets that reflect a simple sequencing, a specific
business area, implementation considerations, or organizational aswell as project structures. Sets organize
business rules into manageabl e groups.

A BusinessRule may interact with other rules by supporting, conflicting, or subsuming them. Thisfact is
modeled by the Impacts Rule relationship, which can be used to define a network of semantic relationships
in-between rules.

BusinessRules are extracted from the informal knowledge that governs a business. They usually have one
or more sources, a steward, and one or more supporters. A Resource in an organization may play different

Business Engineering: Business Rules 183

O©CoOo~NOOOUITA WN P

Meta Data Coalition Open Information Model

roles regarding a Business Rule. These roles are captured by the relationship type, ResourceRuleRole. This
relationship also allows aresourceto register interest in arule and how it evolves, and information that can
be used by a system to send out naotifications.

The abstract meta-data type BusinessRule has RuleTypes that capture the different types of business rules
listed above. A DefinitionRule is an expression that introduces a business term into the vocabulary of a
business model in a specific context. The context in which aterm may exist controlsits definition. For
example, theterm “Table’ may have a vastly different meaning in the context “Data Warehouse” than in
the context “Furniture Warehouse’. The Knowledge Representation Modd presents a meta-data type Term
that fits the context-to-term framework used by DefinitionRule and could be referenced by standard UML
Dependency instances.

A FactRule establishes a form of relationship between two or more business terms. Types of relationships
include Aggregation, Association, Generalization, and so forth. A Fact Rule, for example, may state the
fact that arental car (term) has alicense plate (term).

ActionRules are statements that are concerned with the invocation of actions. Action Rules capture the
condition under which an activity has to occur, i.e., the events, pre-conditions, and post-conditions that
must hold before and after the rule has been applied.

A congtraint is a special type of Action Rule. A constraint isa condition that must evaluate to True.
Constraints may be static or transitional. Static constraints are structural and time independent; they must
hold at any point in time. Transition constraints assert the dynamic integrity of a system; they are
behavioral in nature and restrict the transitions from one state of the system to ancther.

InferenceRules are statements that express knowledge in terms of information itemsthat are already present
in the modd of a business. InferenceRules capture structural domain knowledge that does not need to be
stored explicitly because it can be dynamically derived from existing or other derived information. For
example, if a person’s birth date is known, then the person’s age can be calculated (mathematical
derivation). Another example is that a student with 32 to 64 creditsis known as a “sophomore” (logical
derivation).

184 Business Engineering: Business Rules

Open Information Model Meta Data Coalition

18.3 Class Reference

ModelElement

(from Core)

Package
(from Mode | Management)

BusinessRuleSet
GroupingReason : String
EffectiveDate : Datetime
ExpirationDate : Datetime

BusinessRule
Status : String Resource
0.* |+OwningSets EffectiveDate : Datetime (from Organizational Model)
ExpirationDate : Datetime
CreationDate : Datetime
+Members |UpdateDate : Datetime
{Ordered} |History: Text

AssociationClass RuleType : String L * | ResourceRuleRole |* 1
(from Core) +Rule Notification : String +Resource
Kind : String
| tedRul 1 *| BusinessRambling | * 1.*
+mpactedRule
P " +Ramblings |[Rambling : Text +Source
*

+IlmpactingRule

Rulelmpact
ImpactType : String

Figure 77: Core Definitions

1
Grammar
(from Grammar Elements)

BusinessRuleSet
GroupingReason : String +Definition -

. . Busin RuleGrammar
EffectiveDate : Datetime usinessRuleGra a
ExpirationDate : Datetime * 1 \—1

0..* | +OwningSets
GrammarRule +Rules
(from Grammar Elements)
*
+Members =
* {Ordered}

BusinessRule
Status : String
EffectiveDate : Datetime
ExpirationDate : Datetime BusinessGrammarRule
CreationDate : Datetime
UpdateDate : Datetime
History : Text
RuleType : String

H
o
N

InferenceRule FactRule ‘ ActionRule ‘
I I Facttype -sting| [|

Figure 78: Rule Type Definitions

Business Engineering: Business Rules 185

N -

o o~ W

©

11
12
13
14
15
16
17

18

19
20

21
22
23

24
25

26
27

28

29
30

31
32

33

35
36
37

38
39

Meta Data Coalition Open Information Model

The following sections describe the different meta-data types of the Business Rule Model in alphabetical
order.

18.3.1 ActionRule

ActionRule describes actions and their conditional invocation as well as the special case of constraints.
Specializes
e BusinessRule

18.3.2 BusinessRambling

BusinessRambling is an unstructured piece of information about a business. It isthe starting point for
deriving business rules, and may contain more than a single rule, be inconsistent, contradict other
ramblings, or even be untrue.

Specializes
e ModeElement (from UML)
Attributes
e Rambling — A textual representation of the business rambling as stated by a source.
Associations
e Source — The Resources that state the business rambling. It isimportant to record these sources of
the rambling so that details can be clarified.

18.3.3 BusinessRule

BusinessRule is a statement of a rule under which a business operates. Its classification is further defined
by RuleType.

Specializes
e Congtraint (from UML)
Attributes

e Name— An English phrase that describes the purposed of the business rule. The name should be
worded in noun form (Order Number Validation) rather than verb form (Validate Order Number).

e ShortDescription — A declarative expression of the business policy that the rule enforces. For
example, “All prescriptions for schedule 2 drugs shall be verified with the prescribing doctor.”

e Status— The status of the rule. Valid values for the rule status are the following:

e Proposed — A potential rule that has been discovered by any of the normal means, such as
code scan, extraction from business ramblings, interviews, and so forth.

e Validated — Indication that the potential rule has been reviewed by a business analyst and
determined preliminarily to be valid.

e Approved — Indication that the business owner or steward has approved therule. The
implication of an “approved” statusis that a business owner or steward has been assigned.

e Archived — Business rules can change. When they do, the old rule should be kept around, but
put into an “archived” status. The archived status should be connected to the new version of
the business rule via the “version of” link.

o EffectiveDate — The date on which the business rule becomes effective. The primary purpose of
thisfield is to indicate when business rules will become effective at a future date (perhaps due to

186 Business Engineering: Business Rules

0 N oo 0o AW NP

11
12

13
14
15

16
17
18

19
20
21
22

23

24
25
26

27
28
29

30
31

32
33

35
36
37

38
39

Open Information Model Meta Data Coalition

pending legidation). A blank value indicates that the business rule was effective prior to being put
into the repository.

e ExpirationDate — Business rules may expire, i.e., become no longer effective. This attribute
documents the date on which the business rule is no longer valid.

e CreationDate — The date on which the rule was entered into the business modd.
e UpdatedDate — The date on which the rule was last updated.

e History — Documentation of the evolution of the rule to its present state.

e RuleType - Theintended use of Rule. Valid values for the RuleType are:

o DefinitionRule — Introduces the definition of aterm into a business term dictionary. It isused
to define the vocabulary of a business.

e FactRule — Documents the connections between items. Examples are rel ationships between
entities, such as Aggregation, Association, Generalization and Feature.

e ActionRule— Action Rules are concerned with the invocation of actions. They state the
conditions under which actions must be taken, thisincludes pre-conditions, post-conditions,
and triggering conditions.

e |InferenceRule — Describes theinference or derivation of a business rule from other rules or by
mathematical calculations. InferenceRules capture knowledge that is dynamically derived
instead of explicitly stored.

Associations
e Ramblings— Set of BusinessRamblings from which the rule was extracted.
e ImpactedRule — A set of rules affected by thisrule.
e ImpactingRule — A set of rulesthat affect thisrule.

18.3.4 BusinessRuleSet

BusinessRuleSet is a grouping of related BusinessRules into meaningful sets. The grouping might reflect a
simple sequencing, a specific business area, implementation considerations, organizational structures, or
project structures.

Specializes
e ModelElement (from UML)
Attributes

e GroupingReason (String) — A descriptor that denotes the reason why the rules were grouped
together. Possible values might include:

e Order — Therules must be tested or executed in a certain sequence.

e BusinessArea—Therulesare al related to a particular line or area of the business.

e System Implementation — The rules are all implemented within a certain system.

e Project Implementation — Therules are all implemented within a certain project.

e Organization Implementation — The rules are all implemented within a certain project.
o EffectiveDate — The date on which the rule grouping became effective.

e ExpirationDate — The date on which the rule grouping is no longer valid. This might occur
because the grouping was due to a project, and the project has been completed.

Business Engineering: Business Rules 187

N

0 N O ok~ W

11
12
13
14

15

16
17
18
19

20
21

22

23
24
25
26
27

28
29
30
31

32
33

35
36
37

Meta Data Coalition Open Information Model

Associations

¢ Rules (BusinessRule) — Set of ordered business rules grouped into the rule set.

18.3.5 FactRule

A FactRule establishes a form of relationships between two or more terms. Types of relationships include
Aggregation, Association, Generalization, etc., and they are indicated by a property of the FactRule.

Specializes
e BusinessRule
Attributes
e FactType — Thefollowing lists the most generic relationship types:

e Aggregation — (part-of) Expresses the fact that one Term is a component of the other one and
that they form awhole.

e Association — (associated-with) Expresses a generic type of relationship between Terms.
e Generalization — (is-a) Expresses a specialization of a Term by another Term.

e Feature — (member-of) Expresses that an attribute or operation belongs to an entity.

18.3.6 InferenceRule

An InferenceRuleisarulethat describes how information is derived from existing structures and terms of a
business. It allows capturing domain knowledge that is computed rather than persisted. For example, if a
person’s birth date is known, then the person’s age can be calculated. Another example isthat a student
with 32 to 64 creditsis known as a “sophomore”.

Specializes
e BusinessRule

18.3.7 ResourceRuleRole

ResourceRuleRole describes the role a Resource plays for a specific businessrule.
Specializes

e ModeElement (from UML)
Attributes

e Kind - Typeof therole

e RuleSource — An InformationResource maybe the source of the business rule or rambling.
Thisisnormally a document (such as a manual, program code, or official policy) or an
Organizational Role, such as CTO. Organizational Roles can be related to Persons, i.e.,
BusinessRules may be related to individuals through their specific organizational role.

e RuleSeward — The responsibility that a BusinessUnit (or arelated Person) has for a business
rule. For agiven rule, either an OrganizationalRole or an BusinessUnit can fulfill this
particular role.

e RuleRequestor — The BusinessUnit that requested that the rule be added to therepository. This
may not be known or may be redundant to the rule source, in which case no requestor should
be defined.

188 Business Engineering: Business Rules

QW 00 N O Uoh~ WNPEF

e < =
w N P

14

15
16

17
18
19
20
21
22
23
24
25
26
27
28

29

30
31
32

33

Open Information Model Meta Data Coalition

e RuleAdministrator — OrganizationalRole (and related Person) that entered the rule into the
repository. Thisisthe Organizational Role to which questions can be directed concerning the
way in which the rule was entered.

e Notification — Type of notification a Resource wants to receive if the state of the related
BusinessRule changes:

Approval — The rule cannot be changed or deleted without the approval of the resource.
Notify — The resource needs to be notified before the rule is modified.
e Interested — The resource can be notified after the rule is modified

Validate — A resource that needs to be notified before aruleis activated. This second resource
has to agree that theruleis correct.

Associations
e Rule—TheBusinessRule for which a Resource plays a specific role.

e Resource — Resource that plays a specific role for a BusinessRule.

18.3.8 Rulelmpact

The Rulelmpact class describes semantic relationships between BusinessRules. For example, a rule may
support or conflict with another rule.

Specializes
e ModeElement (from UML)
Attributes
e ImpactType (String) — The reason for the relationship between the rules. Valid reasons are:
e Redundant — A ruleis covered by one or more other business rules.
e Supports— A ruleisdecomposed into several supporting rules.
e Conflicts— A rule has a negative impact on another rule.
e Subsumed — A rule has been replaced by another businessrule,
e Variant — A businessrule has been customized and is a variant of an existing one.
Associations
e ImpactingRule — The BusinessRule that impacts another rule.
e |mpactedRule — The BusinessRule that isimpacted by ancther rule.

18.3.9 TermRule

A TermRule defines aterm, a symbol, word or phrase that has a specific meaning for abusiness. A termis
defined by aterm rulein a specific context, which makes the meaning unique. Process, for example, has
vastly different meanings in operating system environments and car manufacturing busi nesses.

Specializes
e BusinessRule

Business Engineering: Business Rules 189

N

O~NOOlh w

11
12

13
14
15
16

17
18
19
20

21
22
23
24
25

26
27
28
29

30
31
32
33

35
36
37
38

39
40

41
42

43

Meta Data Coalition Open Information Model

19 Knowledge Management: Knowledge
Descriptions

19.1 Overview

Knowledge Management (KM) is the systematic approach of capturing, organizing, and using the
information resources of an enterprise to add business value and achieve strategic market advantages. A
KM environment usually consists of a combination of different systems, such as Enterprise Resource
Planning (ERP) systems, Data Warehouses (DW), Document Management (DM) systems, Groupware
applications, and Intranets.

Sharing and collaboration of knowledge amassed in information systems across organizational and
geographical boundaries of an enterprise requires an efficient mechanism to find and access relevant data.
Knowledge portals, which in their simplest form can be viewed as giant resource directories, offer the entry
points into information resources for users, groups, and communities with common interests.

At the core of a Knowledge Portal lies the catal oging and categorization of information using a consistent
taxonomy that reflects a business or user specific view. A taxonomy is a description of domain specific
concepts and their relationships, covering such areas as financial services, health care, commodities, sales
and marketing and including such concepts as Bond, Benefit, Country, and Product.

A consistently applied taxonomy can be used to improve upon the usual keyword and full text based
techniques. It allows a knowledge worker to retrieve information using business standard terminology and
avoids problems of poor selectivity and quality of results caused by missing, inconsistent, or conflicting
terminol ogy.

Asan example, asimpletextual search for theterm “table” may yield aresult set that coversfurnitureitems
aswdl asreational database definitions, e.g. the order entry table. It would be up to the user to sort
through the set of items and determine their relevance. However, if “table” items had been classified either
as furniture or data definitions, then the retrieval results would have been of much higher quality for the
end user.

Additional information such as synonyms (Customer ~ Client), abbreviations (Department ~ DEP), or
preferred terms provided by the taxon would allow the system to offer an even higher degree of precision
and user-friendliness. Information about the semantic rel ationships between different search terms enables
the system to automatically adjust the query to include or exclude certain concepts.

A more significant benefit of ataxon isthat it often reflects the dimensions a business uses to track
unstructured as well as structured information. For example, ataxon for the support department might
define product, problem, and resolution. A support person may search for the resolution of a specific
problem for an individual product and then pivot the view to search for related problemsin other products
that are also solved by thefix.

The introduction of business terminology and taxonomiesin an enterprise requires the alignment of
categorizations and controlled vocabul aries between itsinformation systems. Thefirst stepin thisprocessis
to enable the interchange of such definitions through a standard format. The goals of the Knowledge
Description Model are to provide the basic mechanisms to define or interchange:

e Representations of abasic meta data schema for knowledge, i.e. schemasfor the representation of
meta data about unstructured or semi-structured data.

e Structuresto classify content into sets of related concepts that describe the meaning of real world
entities.

e Descriptions of taxons or controlled vocabulary. The representation of the controlled vocabulary
consists of sets of terms arranged into a hierarchy of glossaries.

190 Knowledge Management: Knowledge Descriptions

N OO 0o~ WNE

10
11
12
13

14
15
16

17
18

19
20

21
22
23
24
25
26

27
28
29
30
31
32
33

35
36
37
38
39

40
41
42
43

45
46

Open Information Model Meta Data Coalition

Note that the Knowledge Description Model does not define the schema or the vocabulary in a specific or
vertical knowledge domain. The model instead provides the basic mechanismsto describe such schemaand
vocabulary in order to maintain them by or interchange them between computer systems.

The Knowledge Description Mode package includes concepts derived from the following sources:
e Resource Description Framework (RDF)
e Knowledge Interchange Format (KIF)
e UML (Unified Modeling Language)

19.2 Semantics

The Knowledge Descriptions package provides meta data types to describe and categorize information
managed by computer systems. It deals with topics interesting to humans modeled as concepts. Users can
then choose familiar termsto refer to these concepts. Most likely, the terms a user chooses to identify an
individual concept will be a domain-specific subset of alarger set of termsthat can refer to the same

concept.

The definition of a controlled vocabulary for a set of concepts reduces ambiguity and complexity for the
user. The package providesthree main structural featuresto express a controlled vocabulary and the rel ated
semantics:

e Thesaurus—isacollection of Concepts that provide the context for the intended meaning of a
particular term.

e Glossary —isacollection of Term definitions and various related forms of the term.
e |ndex —isacollection of Words or Phrases that are related to internal or external definitions.

A thesaurusis a collection of concepts. Concepts are identified by Terms, which in turn are manifested by
aword or phrase. Note that Terms used in nhormal language may create ambiguity by describing the same
Concepts (e.g. they might have different meaningsin different contexts). What differentiatesthe meaning is
the semantic relationship of a Term (i.e. aword or phrase) to a specific Concept. As such Concepts are
placeholders for semantic information and relationships, which will be modeled in further detail at alater
time.

A glossary isacollection of termsthat are related through implicit or explicit relationships. The
Knowledge Representation Model provides Glossary and Term meta data types and a set of relationships
that model Concept synonyms, hierarchically correlated terms, and related “ See Also” terms. These
relationships allow modeling the most common relationship types found in taxonomies, i.e. between Terms.
In reality, such relationships are much more complex and extensive, but this would make a glossary too
hard to construct or maintain. The model therefore separates the semantic modeling features of the
Thesaurus from the more narrowly scoped Glossary.

A term has a definition and may reference one or more words or phrases denoted by index entries.

Terms may be preferred (the term best representing its Concept), and as such represent the vocabulary of a
user or domain, or non-preferred. Non-preferred Terms are synonyms and point at the preferred Term that
should be used instead. The synonym’ s relationship between a preferred Term and several non-preferred
Terms represents the fact that several Terms describe the same concept, although they might do it with
different shades of meaning. Synonyms need to be identified in order to make a vocabulary useful.

Terms may be arranged into a hierarchy of more generic and more specific entries. This Broader/Narrower
type of relationship allows subgtituting “USA” with “Country” or “State” with “Region”. Thisrelationship
allows the devel opment of Glossaries without using the, as yet undevel oped, more complex semantic
modeling features of the Thesaurus.

Sets of Terms may be related to each other through occurrences. The result of the analysis of the strength of
the inter-term co-occurrences in a specific domain is captured by the Related Term relationship. For any
particular Term, the relationship captures how strongly the Term is related to a set of other Terms.

Knowledge Management: Knowledge Descriptions 191

b wWNPEF

Meta Data Coalition

An Index organizes Termsinto collections. It is a mechanism that provides the entry point into a Glossary
or Taxonomy. An index consists of a set of index entries represented by the meta data type IndexEntry. An
IndexEntry represents a word, acronym, abbreviation, phrase, or PartOf Speech that serves as a hook for a

reference to adefinition or areationship to a Term. Indexes might be nested to allow structuring of indexes

or the grouping of entriesinto sets meaningful to the user.

19.3 Class Reference

Open Information Model

ModelElement
(from Core)

192

v

KnowledgeElement

Date : Date

Author : String

Figure 79: Core Elements

Knowledge Management: Knowledge Descriptions

ModelElement VocabularyElement
(from Core) I |Example: Text
UsageDescription : Text
Thesaurus
Language : String {ordered} coneet +R t Term
- iption : epresents
+Concepts |FormalDescription : Text s Definition : Text
0..1 0..%
1.1 0.*
0..*| {ordered}
+Terms
Glossary
Language : String
1.1
Index
Language : String
+Glossaries +Indexes
0.* 0. 0..* 0. 1
0..1
{ordered}
0..* | +SubGlossary IndexEntry
Symbol : String +Entries
{ordered} Language : String o
IsCaseSensitive : boolean ;
EntryType : IndexEntryType

Open Information Model Meta Data Coalition

KnowledgeElement
Author : String

Date : Date VocabularyElement
Example : Text
4 UsageDescription : Text
Thesaurus o c "
Language : String = ohc?p
11 {ordered} FormalDescription : Text 0..*
+Concepts
0..* +RelatedConcepts
Glossary 0.1
0.% 0..*|Language : String
+Glossaries
0..1 0.* Term
N —— Definition : Text
+Represents
0..*| +SubThesaurus
{ordered}
0.*
1.1 {ordered}
+Terms
0.1
0.* | {ordered}
+SubGlossary
Figure 80: Thesaurus Elements
KnowledgeE lement VocabularyElement Concept
Author : String Example : Text FormalDescription : Text
Date : Date UsageDescription : Text [
0.1
0..*| *Represents
Glossary Term
Language : String Definition : Text +Synonyms
1.1 0.+ 0.*
+PreferedTerm
{ordered} +Terms
0.1
0..1
{ordered} | 0..* +Narrower Terms
+SubGlossary 0..*
+BroaderTerms
0.* 0.%
+Related Terms
RelatedTerm
Weight : Long
0.1
+BaseTerms

Figure 81: Glossary Elements

Knowledge Management: Knowledge Descriptions 193

W

o~NO (6]

11

12
13
14

15

16
17

18
19
20
21

Meta Data Coalition Open Information Model

KnowledgeElement
Author : String
Date: Date

Index
Language : String
0. IndexEntry EntryTypeEnum:
= {ordered} 0. |Symbol: String - Word
) Language : String - Acronym
1 +Entries IsCaseSensitive : boolean - Abbreviation
EntryType : EntryTypeEnum - PartOfSpeech
0..* | +SubIndex
{ordered}
Term 0.1
Definition : Text
Surrogate
(from Generic Elements)
0.1\ +RelatedTerm
1 0.* |{Ordered} A
+DescribedEntry| +SubEntry
. *
VocabularyElement +Entries +Usages

Example : Text ‘IndexUsage 1 0.*| IndexRef
UsageDescription : Text +Refs |icon

Figure 82: Index Elements

The following describes the different meta data types of the Knowledge Description Mode in a phabetical
order.

19.3.1 Concept

A Concept represents a semantic type or relationship in ataxon. Semantic types are nodes and rel ationships
arelinksin a network that represent knowledge at the conceptual level. The purpose of a semantic network
isto categorize and relate information in a Thesaurus, i.e. it talks about the topics a user isinterested in.

Concepts are represented by Terms. Users choose the Terms that are familiar to them in their environment
and that represent a subset of the larger set of Terms that could be used to represent the specific concept.
The combination of Context and Term unambiguously defines the topic a user has selected.

Concept is avery broad type, allowing for the semantic categorization of a wide range of terminology in
multiple domains. Using the extension mechanisms of the OIM, stereotyping or sub-classing, developers
may specialize Concept into more domain specific types.

Concepts are placeholders for the future introduction of relationship semantics.

Example Concept: “Patty” having the FormalDescription of “a Flat food product” could represent the
following Terms “Beef Patty”, “Chicken Patty”, “Mint Patty”.

Specializes
e VocabularyElement
Attributes
e FormalDescription (String) — Formal description of the Concept.

194 Knowledge Management: Knowledge Descriptions

23

24
25
26
27

28
29

30
31
32
33

35

36
37
38

39
40

Open Information Model Meta Data Coalition

Associations

e Represents— A Concept both represents and is further defined by its associated Terms.

19.3.2 Glossary

A Glossary is acollection of Terms and their various usage forms. A Glossary may contain sub-glossaries,
i.e it may be nested. Nesting of Glossaries may be used for assembly of alarge Glossary from several
smaller glossaries or for grouping of related Terms. Such a grouping may label a set of Terms for better
representation at the user level.

The Glossary isa container for Terms. Terms can also be organized into broader-narrower Term structures
or by synonymous and related term relationships that capture non-hierarchical related meanings (for
example “See Also” references). This allows the navigation of a Glossary by starting with a Term and
following relationships to the set of linked Terms.

Example Glossary: “Food products’ with contained Terms such as “Hamburger” and “Hamburger Patty”.
Specializes

e KnowledgeElement
Attributes

e Language (String) — Language of the Glossary. Note that the Language definition, if provided,
applies hierarchically to all contained Index and IndexEntry objects that have no local Language
definition. It is recommended to avoid multi-lingual Glossaries and rather use a Glossary or
Taxonomy as context for a specific language.

Associations
e SubGlossaries — Set of Glossary objects that are contained and as such form the Glossary.

e Terms— Set of Term objectsthat define the entries of the Glossary.

19.3.3 Index

An Index isa collection of IndexEntry items that represents words or multi-words and references to their
definitions. Indexes may be nested to group the entries in a meaningful way. An Index represents the set of
entry points into ataxon. Once such a point is chosen, the user can navigate through Terms and Concepts
(if defined) or access the referenced internal and external information.

For example, theindex “Cooking” could have sub-indexes of “Food Products’, “Cooking |mplements”’,
and “Cooking Techniques’.

Specializes
e KnowledgeElement
Attributes

e Language (String) — Language of the Index. Note that the Language definition, if provided,
applies hierarchically to all contained IndexEntry objects that have no local Language definition.

Associations

e Sublndex — Set of Index objects that are contained and as such form the Index. Example usage: an
MSDN Index of “Visual Programming Language References’ could have a set of Sublndex’ s such
asVC++, VJ++. To support this semantic, a particular Index can be contained by several Index’s.

e Entries— Set of IndexEntry objects that isolate document references for thisindex. To reduce
problems resulting from updating documents, an IndexEntry may be contained by only one Index.

Knowledge Management: Knowledge Descriptions 195

=Y

QUOoo~N OO0 AWM

L T
A W N BB

=
o Ul

e
o ~

N N B
= O O

22

23
24

25
26

27
28

29
30

31

32
33

35
36
37

Meta Data Coalition Open Information Model

19.3.4 IndexEntry

An IndexEntry identifies the text from which an entry in the index is made. Each IndexEntry is aword or
multi-word representation that may have sub entries further narrowing the entry. An IndexEntry can be of
type Word, Abbreviation, Acronym, Phrasing, or PartOfSpeech.

Example IndexEntry: “Patty”, with no associated IndexUsage' s but with SubEntry’s “Melt”, “Hamburger”
each having IndexUsage’ s representing their locations within documents.

Usage observation. Indexes could be kept “semantically pure” but blended by the presentation interface
with IndexEntry’ s linked by their Term’s (via Synonyms, RelatedTerms and Narrower Terms). Conversaly,
IndexEntry could have SubEntry’ swho'srelated Term’s were from widely varied Concepts such as “ Patty”
sub “Melt” and sub “Hearst”.

Specializes
e ModedElement
Attributes
e Symbol (Text) — Value of the IndexEntry.

e Language (String) — Language of the IndexEntry. Note that if no language is defined, a definition
may be inherited from the Index, Glossary, or Taxonomy objects the entry is contained in.

e |sCaseSensitive (Boolean) — Indicatesif the value of the IndexEntry — symbol attribute —is case
sensitive or not (default).

o EntryType (IndexEntryType) — Type of the IndexEntry:
Associations

e SubEntry — Set of IndexEntry objects that are contained and as such form the Index.

19.3.5 IndexEntryType

Values
e Word—isastring of charactersthat represent the Term at thelinguistic level. = 1

e Acronym —aset of characters or symbols that represent a Term in addition to its representation as
word or multi-word phrase,

e Abbreviation —isthe representation of a Term by omitting one of more characters from the word
or multi-word representation.

e Phrasing —amulti word representation of a Term.

o PartOfSpeech — any part of speech that representsa Term.

19.3.6 IndexUsage

An IndexUsage provides semantic encapsulation of a particular example of an IndexEntry, the particular
document references and any associated Term.

Example: The Term “Hamburger Patty” could have two associated IndexUsage' s, one referencing the
IndexEntry “Hamburger, sub Patty” and another with an IndexEntry of “Patty, sub Hamburger”, and each
IndexUsage could have several IndexRef’s. The set of IndexRef’s would more than likely be the same for
each IndexUsage, but that may not betrue for all cases.

196 Knowledge Management: Knowledge Descriptions

oO~NO® O hOWODN B

11
12
13
14

15

16
17
18
19
20
21
22
23

24

25
26

27
28
29
30
31

32

33
35
36

37
38

Open Information Model Meta Data Coalition

Specializes
e VocabularyElement — Since an IndexEntry/IndexUsage doesn’t need an associated Term. Note

this actually provides the user an opportunity to create a more focused example related to this
IndexUsage.

Associations

o Refs— Set of IndexRef objects representing specific document locations where this IndexEntry is
located. The back cardinality on this association is one to smplify index updates when the
associated document changes.

e DescribedEntry — The IndexEntry being described by this IndexUsage.

e RelatedTerm—The Term that is being isolated by this IndexEntry/IndexUsage pair. Semantically
speaking the example used by IndexUsage can only apply to one Term. Although there may be
other related Terms (Synonyms, Narrower Terms, RelatedTerms), to be effective an Index should
represent these as additional IndexEntry’s or rely upon the referenced Term’srelated Term
collections.

19.3.7 IndexRef

An IndexRef identifies a specific document location where the IndexEntry is mentioned.
Specializes
e Surrogate (From Generic Elements)
Attributes
e Icon—Thelcon from the referenced document’s “reader” application.
Associations
e IndexUsage — The IndexUsage this IndexRef is elaborating. The cardinality is one to ease the
problem of updating Index’ s when the Document changes.

19.3.8 KnowledgeElement

KnowledgeElement is an abstract type that serves as common super type for the Knowledge Representation
Model elements. It defines administration information such as Author and Date.

Specializes
e ModedElement
Attributes
e Author (String) - Name of the person or tool that created the Knowl edgeElement.
e Date (Date) — Date and time when the KnowledgeElement was created or |ast updated.

19.3.9 RelatedTerm

RelatedTerm is an association class relating Terms outside the current Concept. A common use of the
related term relationship is to establish “ See Also” links to other Terms based on the strength of the inter-
term occurrence. The related instance in the RelatedTerm association class provides the strength or Weight
factor.

Example: The Term “Hamburger Patty” within the Concept of “flattened food products’, could have a
RelatedTerm for “Patty Hearst” within the Concept of “Famous Peopl€e’.

Knowledge Management: Knowledge Descriptions 197

32
33

35

36
37

38
39

Meta Data Coalition Open Information Model

Specializes
e ModeElement
Attributes
e \Weight (Long) — Weight factor or strength of the relationship between the Terms.

19.3.10 Term

A Term captures words, phrases, etc. and their definition asaformal entry in a Glossary. Terms are very
context dependent, e.g. Tablein the furniture business has a completely different meaning than tablein
database technology. The word “Table’ therefore may be used by multiple Terms (Furniture or Database
Table) to represent different Concepts (“Thing to put thingson” or “Relation”).

A Term references one or more IndexUsage' s and may have a definition in a specific context. The context
is provided by arelated Concept that describes the underlying semantics and makes the Term unique.

Terms may be grouped into preferred (best representing its Concept) or non-preferred Terms. A non-
preferred Term isonethat isinvalid to use from a perspective of its related Glossary and therefore should
lead to a preferred or valid Term. PreferredTerm’s are the ones that make up avalid vocabulary and all
non-preferred Terms from the set of synonyms.

Terms also can be grouped into broader/narrower term hierarchies capturing the fact that a Term may be of
more generic meaning then another Term.

Terms may be related to other terms based on occurrences through the Related Term relationship.
Specializes
e VocabularyElement
Attributes
o Definition (String) — Textual representation of the definition of a Term.
Associations

e Synonyms (Term) — Set of synonymous Terms for the preferred Term. For a Term to be atrue
Synonym, it must be contained by the same Concept as the preferred Term.

e NarrowerTerms (Term) — Set of Terms with a narrower meaning then the Term. These are Terms
whose related Concepts denote a hierarchical relationship such as County within State within
Country.

o RelatedTerms (Term) — Set of Termsthat are related to the Term through similar Concepts.
Example usage would be for “See Also” references.

e Entries (IndexUsage) — Set of IndexUsages for the given term.

19.3.11 Thesaurus

A Thesaurusis a collection of Concepts that form an ontology. Concepts are the entities and relationships
of a semantic network. Thesauruses may be nested to construct larger entities from existing ones or to
group Concepts into sets with user meaningful labels.

Concepts are related to the Terms that identify them. Terms are words or phrases used by humans to refer
to the Concepts.

Specializes
e KnowledgeElement

198 Knowledge Management: Knowledge Descriptions

© oO~N O O ~AWN P

10

11
12

13
14
15

16
17

18
19

Open Information Model Meta Data Coalition

Attributes

e Language (String) — Language of the Thesaurus. Note that the Language definition, if provided,
applies hierarchically to all contained Glossary and Index objects that have no local Language
definition.

Associations
e SubThesaurus— Set of Thesaurus objects from which the Thesaurusis constructed.

e Glossary — Glossary object that contains the Termsthat are related to the Concepts of the
Thesaurus.

e Concepts— Set of Concept contained in the Thesaurus.

19.3.12 VocabularyElement

VocabularyElement is an abstract class that servers as general meta data type that captures common
properties for Concepts, Terms, and IndexEntry’s.

Specializes
e Element (from UML)
Attributes

e Example (String) — Textual representation of a sample of the VocabularyElement, i.e. Concept,
Term, or Word.

o UsageDescription (String) — Textual description of the usage scenarios for the
VocabularyElement, i.e. Concept, Term, or Word.

Knowledge Management: Knowledge Descriptions 199

14

15
16
17
18

19
20
21
22

23
24

25

26
27
28
29
30
31
32
33

35
36
37
38
39
40
41
42
43

Meta Data Coalition Open Information Model

20 Knowledge Management: Semantic
Definitions

20.1 Overview

The Semantic Definitions package accommodates conceptual models of user information. The models are
conceptual in that they are independent of any storage structure or programming structure (DBM S schema,
object moddl, etc.). Instead, they conform to canonical and linguistic expressions of categories of data and
the interactions among those categories.

With a semantic or linguistic processor, users can interact with data in databases without learning data
manipulation languages. Before a linguistic processor can interact with a database, however, an analyst
must articulate the mappings between the database schema and the semantic constructs familiar to the
users. The Semantic Definition Elements information model accommodates such schema-to-semantic
mappings.

The model derives from the UML mode and the Database Schema package.

20.2 Semantics

The UML Package class is a general-purpose mechanism for establishing containment hierarchies. The
Semantic Elements package uses instances of the UML Package class to organize the information in a
semantic model. Each instance of Model can own several other packages, named “Entities,”
“Relationships,” and “Dictionary.”

Each of these packages in turn can owns other UML Model Elements:
e The"Entities’ package owns instances of the Entity class.
e The“Rdationships’ package ownsinstances of the Relationship class.
e The“Dictionary” package owns instances of the DictionaryEntry class.

The “Relationships’ package can also own a package named “PhrasingGroups.” The *PhrasingGroups’
package owns instances of the PhrasingGroup class.

Hereis a summary of the package hierarchy:

SimModel
Entities package
Entityl
Entity2

Relati ons.ﬁ.i ps package
Relationshipl
Rel ationship2

I5Hrasi ngGroups package
PhrasingGroupl
PhrasingGroupl

Dictionary package
DictionaryEntryl
DictEntrylrregularity
DictionaryEntry2
DictEntrylrregularity

200 Knowledge Management: Semantic Definitions

O~NO U W NP

11
12
13
14
15
16
17
18
19
20
21
22
23

24
25
26
27
28
29
30
31
32
33

35
36
37

38
39
40
41
42
43

45
46
47
48
49
50
51
52
53

Open Information Model Meta Data Coalition

The semantic information model honors the way humans (and communities as a whol€) speak about the
information that isimportant to them. There are afew fundamental principles that apply:

e Thereareentities.

An entity is anamed category, such as*Author” or “Book.” Entities have instances, such as
“Mark Twain”, or Huckleberry Finn.” Most (but not all) entities correspond to a database table, a
database field, or a set of fields.

e Therearerdationships.

A relationship is atype of association that exists between entities. For example, one relationship
indicates that authors write books. Relationships also have instances, such as“Mark Twain wrote
Huckleberry Finn.” There can be several relationships between the same pair of entities. For
example another relationship can indicate that authors review books.

A relationship can include more than two entities. For example “Authors write Books for
Publishers.” (Thethird entity is“Publisher.”)

Some relationships include only one entity. For example, “Authors are important.”

A relationship can include the same entity in several different roles. For example, “Authors
admire Authors.” An instance of this relationship might be“S.J. Perleman admiresMark Twain.”

e Rdationships have phrasings.

A phrasing is a syntactic template that formalizes one way that people talk about a particular
relationship. For example, one phrasing for the relationship between authors and the books they
writeis*Authors write Books.”

A relationship can have several phrasings (because people can talk about a relationship in several
different ways.) For example, all the following phrasings apply to the same relationship:

Authors write Books.

Books are by Authors.

Books have Authors.

Authors are the Creators of Books.

Through their syntactic and semantic structure, phrasings allow linguistic processors to interpret
relationships.

Each phrasing conformsto a particular syntactic and semantic structure. That is, each phrasingisa
particular type of phrasing: Verb Phrasing, Adjective Phrasing, Trait Phrasing, Subset Phrasing, Command
Phrasing, Prepositional Phrasing, or Name Phrasing. For example “ Authors write Books® isaverb
phrasing; it is of the form <SubjectEntity> <Verb> <ObjectEntity>. The subject entity is “Author”; the
object entity is“Book.” A linguistic processor can harvest two important facts from this verb phrasing.
Firg, theverbis“write’ (rather than “review,” or “didike,” or “burn.”) Second, the relationship isthat
“Authorswrite Books’ (rather than “Books write Authors’). Because the syntactic structure of the
phrasing type (verb phrasing) distinguishes between the subject entity and the object entity, alinguistic
processor can understand which entity acts upon the other.

Every relationship must have at least one phrasing. Without at least one phrasing for a relationship, a
linguistic processor could not interpret the relationship.

Knowledge Management: Semantic Definitions 201

=Y

Meta Data Coalition

Open Information Model

Note that the various phrasings of a relationship need not be phrasings of the sametype. For example,
“Authors write Books” is a verb phrasing, whereas “Books are by Authors’ isa prepositional phrasing.

20.3 Class Reference

This section describes the classes of the Semantic Definitions package in detail.

Relationship

0..* | +OwnedPhrasings

Phrasing

ID : String

+PresentPhrasing

+PresencesInGroups

Dependency
(from Core)

7

PresenceOfPhrasingInPhrasingGroup

Mandatory : Boolean

+IncludedPhrasings

+IncludingGroup

PhrasingGroup

202

PrepPhrasing

SubsetPhrasing

NamePhrasing

CommandPhrasing

TraitPhrasing

VerbPhrasing

Adjective Phrasing

SignOfRestatementAdjective : SignOfRestatementAdjective

PlusThreshold : String

MinusThreshold : String

Figure 83: Phrasing Groups and Types of Phrasing

Knowledge Management: Semantic Definitions

© 00 N OO O B~ W N P

=
o

Open Information Model

This page isintentionally blank.

Knowledge Management: Semantic Definitions

Meta Data Coalition

203

sBuse.yd pue sdiysuoirepy 8 9Inbi4

ueajoog : Arewds|
. adALabesnpiop : ad AL abesn BULIS : [BA
uesjoog w“wimww&bmgim_ BUIS : pIom bune oo
deld piom e deneApIoM
1 7 I
Buuls : wAUOUAg | | Uesloogd : moTArewtids]
Bums : saweN Buns : piom
1e JwAuouASaweN PIOMPBUMO AT . .
suonisodaidpaumo+/ =0 U L1 paumobulselyd
sbuiyLpaumo+ | +°0
bus :
1S © pIOM 1T
uonisodaid
Bums : ai
Buisel
Buiy1psumo Anu3 Iseiyd]
sbuiseiydpsumo+ | * 0

«0 sbuiy1paumo+

bus : ad A1 abesn TT

pIoMsYIRduUIUTIOAUZI08SN

Buuss : 1xoLdieH
+"0 | sedoualgjeyplomsyAnua+ SeoUBIBEYPIOMSYIaUNUT+ | ¥ 0 saoualeRdAnug + « 0 uesjoog : mm_u:cmwﬂw_mum.om_,__
diysuoreRy
. Amuzo] pausey+ Buybuisgpeyd+ | 1T NV\
T 10 diysg+ |11
uesjoog : He|4saweNs Zuowsn [syupu3oLpalgdd+ | sannu30 L Jeyayuedrey) Bulyl 7
ueajoog : Be|4auolyspuels o
Buis : 1xedioH (210 woy) - .
adA LAz : adALAmuz Kouspuadeq uesjoog .m%_%a_u%:o 0
BuIS | . -0 uesjoog : be|qunowy
Y WS a1t " uesjoog : Be|gmoys shkem|y | [94UNUT+
n3 Anuz+ P adALgquon : adALgquon
Bums : ai
[syunusg
(2100 wouy)
Jayisse|o
(2100 wouy)
Aouapuadag

suoniuya@ onuewsas uswabeuey abpaimou 02

suoniueq onuewWwaS uswabeue abpajmou

sjuewnd 1y puewiwo) :GgaInbi

wawnbiypuewwodbuisn +

salouapuadagAQiu3a+

adAluswnbiypuewwo) : adA1biypw)d
BuoT : uonisod

JusWNBIypuRWWOD

BIVPWOSY PHURUTIOAIMUTIOD SN

salouapuadagbiypuewwod+

Anugpssn+

Amu3

(810D wouy)
Aouspuadaq

71

x'0

Anug+

|eyqupu3gpasn+ | [dduiug

salouapuadagbiypuewiwod +

suawnbl ypurwWWOD+ | x°0

{paispio}

1T

BuL1S : 8 WRNpPUBWWOD

puewwo)

(aroowaiy)
Juswis|3[BPON

diysyaseqereq

v

1

(810D wouy)
Aouspuadaq

diysuonejpy

diysy+

S0¢

Meta Data Coalition Open Information Model

Dependency
(from Core)
+DateResolingDependency +UsedRelationshi
DateResolutionForEntByRship 1.1 Relations hip p
1.1
0.*
0.1 +DateResolvingDependency +DateResolingRship
1..1 | +ResolvedForEntity Dependency
Entity (from Core)
+ObjectEntity
- —1.1
1..1| +SubjectEntity
0..*
UseOfRshipForSubjectObjectEntity Pair +SOEPairDependencies
0..* | +DefaultRshipDependencies
+PairAsObject
0.* 1..1| *UsingSOEPair
Subject Object EntityPair
+PairAsSubject
e —
0..*
Figure 86: Default Relationships and Date Resolution
Dependency
(from Core)
UseOfFieldByEntity
A Entity
+Correspondences ToTableRefs
+FieldCorrespondences
CorrespondenceOfFieldRefToEntity CorrespondenceOfTableRefToEntity
SequenceNumber : Long
+EntityCorrespondences +CorrespondencesToSemanti cEntities
FieldRef NameEntity
ID : Stiing NameType : NameEntityName Type
DataType : FieldDataType TableRef
CapitalizationType : Stiing D - Stri
KeyFlag : Boolean - String

DateType : DateType

Computation : String

NameStructure : NameStructureType
WildCardFlag : Boolean

Units : String

Caption: String

Denorm CopyFlag : Boolean

Dependency
(from Core)

L

+CorrespondenceToDbTable

+CorrespondenceToDatabaseColumn

L

CorrespondenceOffFieldToFieldRef ‘ ‘ CorrespondenceOfTableToTableRef

Figure 87: Entity-To-Database Links

206 Knowledge Management: Semantic Definitions

© 00 N O

Open Information Model

Meta Data Coalition

InclusionOfTableSetinSchema

FieldRef Dependency
+UsedField (from Core)
+EntityUseDependencies
UseOfFieldByEntity
+UsedField
+UsingEntity Zﬁ
Entity

+InclusioninDbSchema

SortingOfEntityByField

DisplayOfEntity ByField

Package
(from Model Management)

AscendingFlag : Boolean
SequenceNumber : Long

SequenceNumber : Long

CorrespondenceOfFieldRefToEntity

SequenceNumber : Long

TableSet

+SemanticTableSet

Figure 88: More Database Links

Dependency
(from Core)

b

CorrespondenceOfTableToTableRef

CorrespondenceOfJoinToJoinRef

+JoinDependencies

+TableRef
TabIeRef +JoinRole
ID : String
! 0.* | JoinRoleRef
+UsedJoinTable 0
+SequenceOfloinPathitems | ID : String
UseOfJoinTableRefByRship {ordered)
0..1
+UsingRship
EntinRel Entity
Relationship ID : String ~|ID: String
ID: String +Rship NonDBType : NonDB Type +Entity | EntityType : EntityType

HelpText : String

MostRecentFlag : Boolean| 1. 1 0..#|AlwaysShowFlag : Boolean| g« 11
AmountFlag : Boolean

QuantityFlag : Boolean

Figure 89: Semantics and Database Joins

20.3.1 AdjectivePhrasing

HelpText : String
StandsAloneFlag : Boolean
MemorizeNamesFlag : Boolean

Each instance of this class describes an AdjectivePhrasing. There are three kinds of adjective phrasing:

e Single-entity adjective phrasings

e Two-entity adjective phrasings

Knowledge Management: Semantic Definitions

207

O©Co~NO O A W N P

14

15
16
17

18
19
20
21

22

23

24
25
26

27
28
29
30

31
32
33

35

36
37

38
39

40

Meta Data Coalition Open Information Model

e Measurement phrasings.
Each of theseis described in a subsegquent section.
Specializes

e Phrasing
Attributes

e SgnOfRestatementAdjective (SignOfRestatementAdjective) — Controls tool restatement of
adjective phrasings containing measurement words (PluswWords or MinusWords). That is, when a
linguistic processor paraphrases a user-entered sentence involving a measurement phrasing, does
the processor rephrase using the primary PluswWord or the primary Minusword?

e PlusThreshold (String) — The minimum value that a linguistic tool considers a high value for a
measurement adjective (e.g., what is the minimum age at which a person is considered old?).

e MinusThreshold (String) — The maximum value that a linguistic tool considers alow value for a
measurement adjective (e.g., what is the maximum age at which a person is considered young?).

20.3.1.1 Single-entity adjective phrasings

Some adjective phrasings are of the form:
XareY.
For example, Customers are Important.

In such a phrasing, thereis an instance of UseOfEntOrEntinRel AsWord (with UsageType = subject)
referring to the EntInRel characterizing the Customer entity’ s participation in therelationship. “Important”
isstored as an instance of Word in the phrasing’ s OwnedThings collection; the string is* Important” and the
UsageTypeis WordUsageType Adjective.

Notice that in this relationship, thereis only one EntInRel; only one entity participatesin the relationship.

20.3.1.2 Two-entity adjective phrasings

Some adjective phrasings are of the form:
The values of Y yield adjectives describing the instances of X.
For example, BranchTypes describe Branches.

In such aphrasing, BranchType isan entity, and thereisan EntInRel describing the participation of it in the
relationship. Thisisdifferent from asingle-entity adjective phrasing, because heretherearetwo EntinRels.
One EntInRd corresponds to X' s participation as the described thing, and the other correspondsto Z's
participation as entity containing the describing adjectives.

Note that the values of Y might not be adjectives — they could be codes that yield adjectives when applied
to some lookup table. For example, the possible values of Y could be {1,2,3} corresponding to the
adjectives { Good, Fair, Poor} respectively. For information about expressing (code,adjective) pairs, see
the section about the WordValuePair class.

20.3.1.3 Measurement phrasings

Some adjective phrasings are of the form:
Ysindicate how Z X are.

...where Y is an entity corresponding to anumeric field, Z is an adjective, and X is an entity to
which the adjective can apply.

For example, “Agesindicate how old customers are.”

208 Knowledge Management: Semantic Definitions

O©CoO~NOOUITA~AW NP

Open Information Model Meta Data Coalition

There can be several adjectives associated with Y. For example, two such adjectives are“old” and
“elderly.”

The measurement adjectives can correspond to opposite ends of the spectrum of the numeric attribute.
(e.g., “old” and “young”.) Thus, these measurement adjectives can be characterized as PlusWords and
MinusWords. PlusWords are the adjectives associated with high values of the measurement. MinusWords
are associated with low values. Thereis no semantic requirement that the plus words be favorable and the
minus words be unfavorable. For example, if the phrasing is*“ Scores indicate how good golfers are,” the
PlusWords could be “bad” and “poor.” Likewise, the MinusWords could be “good,” “skillful,” and
“talented.”

Toindicate an Adjective, the model includes an instance of Word in the phrasing’s OwnedThings
collection. The value of the WordUsageType is WordUsageType Plusword or
WordUsageType MinusWord.

Sample Data

Consider the adjective phrasing “Ages indicate how old customersare.” This phrasing belongsto a
relationship (called, say, “AgesOfCustomers’) with two EntinRdls:

e OneEntInRel describes the participation of the Customer entity as the characterized thing.
e OneEntInRe describes the participation of the Age entity as the characterizing thing.
What's more, the relationship has an adjective phrasing:

e PhrasingName: AgeslndicateHowOldCustomersAre
SignOfRestatementAdjective: SignOfRestatementAdjective Plus
PlusThreshold: 70
MinusT hreshold: 10

The phrasing can have several Wordsin its OwnedThings collection:
e PlusWord: “Old” (IsPrimary = TRUE)
e Plusword: “Aged” (IsPrimary = FALSE)
e PlusWord: “Elderly” (IsPrimary = FALSE)
e PlusWord: “Young” (IsPrimary = TRUE)
e PlusWord: “Youthful” (IsPrimary = FALSE)
The phrasing also has two instances of UseOfEntityOrEntinRel AswWord:

e UsageType: Subject
ReferredToEntInRel: Customer(AsCharacterizedThing)

e UsageType: ObjectOfMeasurement
ReferredToEntInRel: Age(AsCharacterizingThing)

20.3.2 Command

Each instance of this class describes a command — an imperative statement. Typical commands are “Run
the Quarterly Financial Report” or “Buy n of the best-selling book.”

Specializes
e Rdationship
Attributes

e CommandName (String) — The name of the command.

Knowledge Management: Semantic Definitions 209

©O©ow N oo A WON B

16

17
18
19
20

21
22
23
24
25
26

27
28

29
30

31

32
33

35
36

37
38

Meta Data Coalition Open Information Model

Associations

e CommandArguments (CommandArgument) — The set of arguments of the command. A command
can have zero or more command arguments.

Note also that Command is a specialization of Relationship.

Congtraint: Within acommand’ s OwnedPhrasings collection, every phrasing must be a CommandPhrasing
(rather than aVerbPhrasing, TraitPhrasing, etc.).

Sample Data

A command iskind of relationship. Thus, it can have all the properties and members of relationships, such
aphrasings and EntInRels. For example, the instance of Command corresponding to “ Send 5000 light
bulbs to the Chicago office” would have two instances of EntInRel:

e Oneinstance of EntInRel describes the participation of the Inventoryltem entity in the relationship
astheto-be-sent thing. (In the database, “light bulb” is an instance of the Inventoryltem entity.)

e Oneingtance of EntinRel describes the participation of the Office entity in the relationship as the
send-to destination. (In the database, “Chicago” is an instance of the Office entity.)

The command would also have a phrasing, a command phrasing.

20.3.3 CommandArgument

Each instance of this class describes an argument of a particular command. 1n the command “Buy n copies
of the latest book written by author” there are two instances of CommandArgument. Oneinstance
corresponds to n — the number of copies to be bought. The other corresponds to author — the author whose
most recent book isto be bought.

Specializes

e ModeElement (from UML)
Attributes

e Position (Long) — The ordinal position of the command argument.

e CmdArgType (CommandArgumentType) — One of { Entity, Amount, Quantity} .
Associations

e EntityDependencies (UseOfEntityOrEntinRel ASCmdArg) — A set containing one instance of
UseOfEntityOrEntinRel ASCmdArg.

e Command (Command) — A set containing one instance of Command — The command to which
this CommandArgument contributes.

20.3.4 CommandArgumentType

An enumeration whose values indicate the type of a command argument.
Values

e COMMANDARGUMENTTYPE_ENTITY =1

e COMMANDARGUMENTTYPE_AMOUNT =2

e COMMANDARGUMENTTYPE_QUANTITY =3

20.3.5 CommandPhrasing

Each instance of this class describes a phrasing that consists of:

210 Knowledge Management: Semantic Definitions

© 00 N o 0o b~ W N PP

=
= O

el
w N

[
(62 BN SN

B
~No

N
O ©om

N N DN
w N

N NN
[e2 I &) ¥

N N N
© 0

w w
= O

w W
W N

®

w W
o O1

37
38

Open Information Model Meta Data Coalition

e Animperative verb.
e Zero, one, or two nouns.
e Zeroor more PrepPhrases.
Specializes
e Phrasing
Examples
e Zeronouns: “Reboot.”
e Onenoun: “Send notifications.”
e Twonouns. “Send customers products.”
e Two nouns and one PrepPhrase: “Send customers products via shippers.”

Sample Data

Consider the command phrasing “ Send customers products via shippers.” This phrasing belongsto a
Command with three EntinRels:

e OneEntInRe describes the participation of the Product entity as the to-be-sent thing.
e OneEntInRe describes the participation of the Customer entity as the receiving thing.
e OneEntInRe describes the participation of the Shipper entity as the object of the preposition

Within its OwnedThings collection, the phrasing can have at least one instance of the Word class and one
instance of the PrepPhrase class In this example, the OwnedThings collection contains these instances of
the Word class:

e Type=Verb, Word = “Send,” IsPrimary = TRUE
e Type=Verb, Word = “Transmit,” IsPrimary = FALSE
e Type= Verb, Word = “Ship,” IsPrimary = FALSE

The PrepPhrase corresponds to the “via shippers’ part of the sentence. The PrepPhrase can have within its
OwnedPrepositions role at least one Preposition. In this example, the OwnedThings collection contains
these instances of the Preposition class:

e Word ="vid’
e Word = “through”
The phrasing has two instances of UseOfEntityOrEntInRel AsWord:

e UsageType: FirstObject
ReferredToEntinRel: Customer(AsReceivingThing)

e UsageType: SecondObject
ReferredToENntInRd: Product(AsToBeSentThing)

In addition, the PrepPhrase (corresponding to “via shippers’) has one UseOfEntityOrEntInRel AsWord:

e UsageType: FirstObject
ReferredToENtInRel: Shipper (AsObjectOfPrepositionVia)

20.3.6 CorrespondenceOfFieldRefToEntity

Each instance of this classindicates that a particular FieldRef correspondsto a particular entity.

Knowledge Management: Semantic Definitions 211

A WO N P

© 0O~NO (61

10

11

12
13
14

15
16

17

18
19
20

21

22
23
24

25

26
27

28
29
30
31
32

33

35
36

Meta Data Coalition Open Information Model

Specializes
o UseOfFiddByENtity
Attributes
e SequenceNumber (Long) — Establishes the ordering of FieldRefs within an entity.

20.3.7 CorrespondenceOfFieldToFieldRef

Each instance of this classindicates that a particular FieldRef correspondsto a particular Column. Note
that this dependency crosses a package boundary, from the Semantic Elements package to the Schema
Elements package.

Specializes
e Dependency (from UML)

20.3.8 CorrespondenceOfJoinToJoinRef

Each instance of this class indicates that a particular JoinRoleRef corresponds to a particular Join. Note
that this dependency crosses a package boundary, from the Semantic Elements package to the Schema
Elements package.

Specializes
e Dependency (from UML)

20.3.9 CorrespondenceOfTableRefToEntity

Each instance of this classindicates that a particular TableRef corresponds to a particular entity.
Specializes
e Dependency (from UML)

20.3.10 CorrespondenceOfTableToTableRef

Each instance of this classindicates that a particular TableRef corresponds to a particular Logical Table.
Note that this dependency crosses a package boundary, from the Semantic Elements package to the Schema
Elements package.

20.3.11 DatabaseRship

Each instance of this class describes a relationship that uses a join table (see UseOFJoinTabl eRefByRship)
to link the related entities.

Specializes
e Reationship
Associations
e JoinTableRefDependencies (UseOFJoinTableRefByRship) — A set of instances of the
UseOFJoinT ableRefByRship class.

20.3.12 DateResolutionForEntByRship

Each instance of this classindicatesthat a particular entity usesa particular relationship situateitsinstances
intime. That is, each instance indicates that a linguistic tool can use a particular relationship to resolve
unexpressed (assumed) datesin user expressions.

212 Knowledge Management: Semantic Definitions

QUOVWoo~N O O A W N P

=

12
13
14
15
16
17
18
19
20
21
22

23

24
25
26
27

28
29
30
31
32

33

35
36

Open Information Model Meta Data Coalition

Specializes
e Dependency (from UML)

Example

Suppose that there are two relationships involving the entity Author:
e Authorswrite books on dates.
e Authorsareborn on dates.

If alinguistic processor encounters the question “Who are the 1998 authors?’ it must determine whether
the question means the authors born in 1998 or the authors who have published booksin 1998. If the
semantic model includes an instance of DateResol utionForEntByRship where the resolved-for entity is
Author, the processor knows to use the date from the resolving relationship.

20.3.13 DateType

An enumeration whose values indicate the type of a date.
Values

e DATETYPE DATE=1

e DATETYPE TIME=2

e DATETYPE DATETIME =3

e DATETYPE_INTYEAR=4

e DATETYPE_INTMONTH =5

e DATETYPE_MONTHNAME =6

e DATETYPE_ MMM =7

e DATETYPE_ DAY =8

e DATETYPE_NONE =0

20.3.14 DictEntrylrregularity

Each instance of this class describes an irregular form of adictionary entry. Some verbs have unusual past-
tense forms — forms that do not conform to standard grammatical rules. For example, the past tense of sell
issold (rather than selled). Similarly, some nouns have unusual plural forms. For example, the plural of
alumnusis alumni (rather than alumnuses).

Specializes
e Feature (from UML)
Attributes
o Type (IrregularType) — One of {IrregularType PastTense, IrregularType Plural}.

e Form(String) — The plural form of the noun or the past-tense form of the verb.

20.3.15 DictionaryEntry

Each instance of this class describes a word.
Specializes
e Classifier (from UML)

Knowledge Management: Semantic Definitions 213

13

14
15

16
17
18
19

20

21
22
23
24
25

26
27
28

29
30

31
32
33

35

Meta Data Coalition Open Information Model

Attributes
e ID (String) — An arbitrary identifier.
o PartOfSpeech (PartOfSpeech) — One of the following:
e PartOfSpeech Pnoun (proper noun)
o PartOfSpeech Noun
o PartOfSpeech Verb
e PartOfSpeech_Preposition
o PartOfSpeech Adjective
e PartOfSpeech Adverb
e PartOfSpeech Pronoun
Associations

e Irregularities (DictEntrylrregularity) — A set of instances of DictEntrylrregularity.

20.3.16 DisplayOfEntityByField

Each instance of this class indicates that an entity depends on a field; specifically that when atool displays
instances of the entity, values of thisfield areincluded in the display.

Specializes
o UseOfFiddByEntity
Attributes
e SequenceNumber (Long) — Sequences the display fields of an entity.

20.3.17 EntInRel

Each instance of this class describes a particular entity’s participation in a particular relationship.
Specializes

e Dependency (from UML)
Attributes

e |ID (String) — An arbitrary identifier of the EntInRd.

e NonDBType (enumerated data type) — A coarse characterization of the data type of the entity. The
enumeration is NonDBType, with domain of values{ NonDBType Numeric, NonDBType Text,
NonDBType Date}.

e AlwaysShowrlag (Boolean) — TRUE indicates that each time the relationship is used to answer a
guestion, the entity is considered to be part of the query result.

e AmountFlag (Boolean) — TRUE only if this EntinRel can have an amount applied to it.
e QuantityFlag (Boolean) — TRUE only if this EntInRel can have a quantity applied to it.
Associations

e SequenceOfJoinPathitems — Thisis the JoinPath from the Relationship’s JoinTable to the
Database object that corresponds to the entity (of this EntInRel).

214 Knowledge Management: Semantic Definitions

O ~NO OOR~rWN P

PR
N R O

13

14
15

16
17
18
19
20
21
22
23
24
25

26
27
28
29
30
31
32
33

34
35

36
37

38

39
40
41

Open Information Model Meta Data Coalition

Examples

The AmountFlag and QuantityFlag indicate whether an entity can have a quantity or amount associated
with it when a user-entered sentence uses this relationship. For example, consider an instance of the
CommandPhrasing class: “Send customers products.” The command associated with this phrasing has
two EntInRels:

e An EntInRd (corresponding to the participation of the Customer entity in the relationship). This
EntInRel has QuantityFlag = FALSE and AmountFlag = FALSE.

e An EntInRd (corresponding to the participation of the Product entity in the relationship). This
EntinRel as QuantityFlag = TRUE and AmountFlag = FALSE.

The following user-entered sentence conforms to this relationship. “Send Hank’s Hotel 1000 light bulbs.”
Light bulb is an instance of the Product entity and Hank’ s Hotel is an instance of the Customer entity.
Because the second EntInRe has the QuantityFlag = TRUE, the number “1000” is appropriate.

20.3.18 Entity

Each instance of this class describes a type of thing. Note that an entity can correspond to any of the
following:

e A single database column

e Anordered set of database columns

e A single database table
What's more, an entity might be freestanding — corresponding to no database construct whatsoever.
Specializes

e Classifier (from UML)
Attributes

e |ID (String) — An arbitrary identifier.

e EntityType (EntityType) — Person, Geographic, DateOrTime, or None.

e HelpText (Text) — Explanatory text for the Semantic entity.

e StandsAloneFlag (Boolean) — TRUE indicates that a linguistic process can display afield entity
independently, without the context of the attendant table entity. For many field entities, it makes
no sense to display them alone. For example, “Show the ages’ should not simply return a column
of numbers, since“age’ isinherently dependent on what it isthe age of. By default, field entities
are shown in the context of the table entity they are most directly related to (if any). For example,
“Show the ages’” would be interpreted as “ Show the people and their ages.” Certain field entities,
however, can be displayed alone. Thisflag markssuch entities, instructing the linguistic processor
to not automatically include the major entity (and associated relationship).

e MemorizeNamesFlag (Boolean) — TRUE only if the linguistic processor should load this entity’s
values from the database into memory whenever the model is loaded.

Associations
e OwnedThings
20.3.19 EntityOwnedThing
Each instance of this class describes either an EntityOwnedWord or NameSynonymPair.
Specializes
e ModeElement (from UML)

Knowledge Management: Semantic Definitions 215

=Y

©oo~N O O~ WDN

10
11
12
13
14
15
16

17

18
19
20
21
22
23
24
25
26
27

28

29
30
31
32

33

35
36

Meta Data Coalition Open Information Model

20.3.20 EntityOwnedWord

Each instance of this class describes a word that can be used to refer to an entity.
Specializes

e EntityOwnedThing
Attributes

e \Word (String) — The text of the word that can refer to the entity.

e IsPrimaryEow (Boolean) — TRUE only if thisword is the preferred word for the entity.
(Linguistic processorstypically use the preferred word when paraphrasing user-entered sentences.)
Each entity will have at most one preferred word.

20.3.21 EntityType

An enumeration whose values indicate the type of an entity.
Values

e ENTITYTYPE_PERSON =1

e ENTITYTYPE_GEOGRAPHIC =2

e ENTITYTYPE_DATEORTIME =3

e ENTITYTYPE_NONE=0

20.3.22 FieldDataType

An enumeration whose values indicate the type of a field.
Values

e FIELDDATATYPE_ INTEGER=1

e FELDDATATYPE FLOAT =2

e FIELDDATATYPE DATE=3

e FIELDDATATYPE_STRING =4

e FIELDDATATYPE BIT =5

e FIELDDATATYPE TEXT =6

e FIELDDATATYPE_BINARY =7

e FELDDATATYPE OTHER=0

20.3.23 FieldRef

Each instance of this classisa simplified, abbreviated description of a database column; the description is
limited to those things of interest to a semantic or linguistic processor. That is, a FieldRef isanot a
complete description of a database column. For a complete description of any column corresponding to the
FieldRef, see CorrespondenceOfFiel dToFiel dRef.

Specializes

e ModeElement (from UML)
Attributes

e |ID (String) — An arbitrary identifier.

216 Knowledge Management: Semantic Definitions

o~N OO0 A WN P

14

15
16
17

18

19
20
21

22

23
24

25
26
27

28

29
30

31
32
33

Open Information Model Meta Data Coalition

o DataType (FiedDataType) — Integer, Float, Date, String, Bit, Text, Binary, or Other.

e CapitalizationType (String) — Upper, Lower, or FirstLetter

o KeyFlag (Boolean) — TRUE only if the field contributes to the table' s key.

e Computation (String) — For computed fields, Computation contains the SQL computation.

e NameStructure (NameStructure) — FirstName, LastName, FirstAndMiddleAndLast,
LastAndFirstAndMiddle, or Middle.

e WildCardFlag (Boolean) — TRUE only if searches against this field should be automatically
wildcarded. For example, “tablefield = '"ABC™ becomes “tablefield like * ABC*'.”

e Units (String) — The unit of measure for a (generally numeric) field. Allows questions referring to
units of measure (e.g., “How many feet tall is Abraham?’) including known conversions (e.g.,
“How many inchestall is Abraham?")

e Caption (String) — The caption to put on the field in the displayed result set. DenormCopyFlag is
set to TRUE only if this FieldRef refers to a denormalized copy of afield.

20.3.24 InclusionOfTableSetInSchema

Each instance indicates that a TableSet exists within a particular Schema object.
Specializes
e Dependency (from UML)

20.3.25 InheritanceOfEntityFromEntity

Each instance indicates that one entity inherits from ancther.
Specializes
e Dependency (from UML)

20.3.26 IrregularType

An enumeration whose values indicate the type (part of speech) of an instance of the DictEntrylrregularity
class.

Vaues
e |IRREGULARTYPE PASTTENSE=1
e |IRREGULARTYPE PLURAL =2

20.3.27 JoinRoleRef

Each instance indicates that a particular EntinRel uses a particular database join as part of its
SequenceOf JoinPathltems.

Specializes

e ModeElement (from UML)
Attributes

e |ID (String) — An arbitrary identifier.

Knowledge Management: Semantic Definitions 217

AN -

0 N o O

10
11
12
13
14
15
16
17
18
19
20

21

22
23
24
25
26
27
28
29

30

31
32

33

35

Meta Data Coalition Open Information Model

Associations

e JoinDependencies (CorrespondenceOfJoinToJdoinRef, derived from
UML:Model Element.clientDependency) — a set of instances of the
CorrespondenceOfJoinToJoinRef class.

20.3.28 Model

Each instance of this class describes an individual semantic modd.
Specializes
e Package (from UML)

20.3.29 NameEntity

Each instance of this class describes a naming entity —an entity that contains names of things.
Specializes
e Entity
Attributes
o NameType (NameEntityNameType) — One of the following:
e EntityType ProperNoun
e EntityType CommonNoun
e EntityType ClassifierNoun
e EntityType ModeNoun
e EntityType UniquelD
e EntityType None

20.3.30 NameEntityNameType

An enumeration whose values indicate the type of names contained in an instance of the NameEntity class.
Values

e ENTITYTYPE_PROPERNOUN =1

e ENTITYTYPE_COMMONNOUN =2

e ENTITYTYPE_CLASSIFIERNOUN =3

e ENTITYTYPE_MODELNOUN =4

e ENTITYTYPE_UNIQUEID =5

e ENTITYTYPE_NONE=0

20.3.31 NamePhrasing

Each instance of this class describes a NamePhrasing — a phrasing that describes how things are named,
such as “Titles are the Names of Books.”

A NamePhrasing consists of the following:

e A subject (e.g., Books) — Stored as an instance of UseOfEntityOrEntInRel AsWord with
UsageType = “ Subject.”

218 Knowledge Management: Semantic Definitions

A W NP

© 00 N o O

10
11
12

13

14
15

16
17

18
19
20

21
22

23

24

25
26
27
28
29

30

31
32
33

35

Open Information Model Meta Data Coalition

e Anobject (eg., Titles) — Stored as an instance of UseOfEntityOrEntinRel AsWord with
UsageType = “FirstObject.”

Specializes
. Phrasing

20.3.32 NameStructureType

An enumeration whose values indicate the structure of names.

Values
e NAMESTRUCTURETYPE_FIRSTNAME =1
e NAMESTRUCTURETYPE_LASTNAME =2
e NAMESTRUCTURETYPE_FIRSTANDMIDDLEANDLAST =3
e NAMESTRUCTURETYPE LASTANDFIRSTANDMIDDLE =4
e NAMESTRUCTURETYPE _MIDDLE =5

20.3.33 NameSynonymPair

Each instance of this class describes a pair of equivalent entity values. For example, the author surname
“Twain” is paired with the author surname “Clemens.”

Note that name-synonym pairs indicate synonymy between entity VALUES (Twain = Clemens) rather than
between entity NAMES (e.g., Author = Writer).

Specializes
e EntityOwnedThing
Attributes

e InstanceName (String, derived from UML:Mode Element.name) — The Name part of a Name-
Synonym pair.
e Synonym (String) — The Synonym part of a Name-Synonym pair.

20.3.34 NonDBType

An enumeration whose values provide a generic, coarse data type for afield.
Values

e NONDBTYPE_NUMERIC=1

e NONDBTYPE TEXT =2

e NONDBTYPE DATE=3

20.3.35 PartOfSpeech

An enumeration whose values indicate the part of speech of a word.
Values

e PARTOFSPEECH_PNOUN = 1 (proper noun)

e PARTOFSPEECH_NOUN =2

e PARTOFSPEECH_VERB =3

Knowledge Management: Semantic Definitions 219

A W N P

© 0O~NO® (61

10
11
12
13
14

15

16

17
18
19
20
21
22
23

24
25

26

27
28

29
30

31

32
33

35
36
37

Meta Data Coalition Open Information Model

e PARTOFSPEECH_PREPOSITION =4
e PARTOFSPEECH_ADJECTIVE =5

e PARTOFSPEECH_ADVERB =6

e PARTOFSPEECH_PRONOUN =7

20.3.36 Phrasing

Each instance of this class describes an AdjectivePhrasing, CommandPhrasing, NamePhrasing,
PrepPhrasing, SubsetPhrasing, TraitPhrasing, or VerbPhrasing. Each type of phrasing is described in
another section of this chapter.

Specializes

e ThingThatCanReferToEntities
Attributes

e |ID (String) — An arbitrary identifier.
Associations

e OwnedThings (PhrasingOwnedThing)

20.3.37 PhrasingGroup

Each instance of this class describes a group of phrasings that can be used together as a unit.

Sometimes, multiple phrasings are required to work together to describe a single relationship. For
example, consider a database that contains people and their hair color. One phrasing which describes this
relationship isthetrait phrasing “people have hair color.” However, thiswill not be sufficient to answer
questions such as “What isthe color of John’shair?’ For this, we need the phrasings “people have hair”
and “hair has color.” (In thiscase, “hair” isan entity that is not represented by a database object). These
two phrasings collectively describe the relationship between people and hair color. These two phrasings
need to be grouped so that a linguistic processor knows to treat them asalogical unit.

Specializes
e ModeElement (from UML)

20.3.38 PhrasingOwnedThing

Each instance of this class describes a WordValuePair, aWord, or a PrepPhrase. Each of these classesis
described el sewhere within this chapter.

Specializes
e ModeElement (from UML)

20.3.39 Preposition

Each instance of this class describes a preposition that is owned by a PrepPhrase. Notethat if two different
PrepPhrases use the same preposition, there will be two different instances of PrepPhrase.

Specializes
e ModeElement (from UML)
Attributes
e \Word (String) — the text of the word that is the preposition.

220 Knowledge Management: Semantic Definitions

21

22

23
24

25

26
27

28
29
30

31
32

33

35
36
37
38
39

Open Information Model Meta Data Coalition

20.3.40 PrepPhrase

Each instance of this class describes a prepositional phrase that is attached to a phrasing.

(Note: Do not confuse PrepPhrase with PrepPhrasing, described in the next section. Also note that some
prepositional phrases are better stored in another way — not as instances of the PrepPhrase class. For more
information, see ThingThatCanRefer ToEntities: Relationship.)

Grammatically, a prepositional phraseis a preposition (in, out, above, below, of, from, to, through, within,
etc.) followed by a noun.

Within the Semantic Elements package, each PrepPhrase has these parts:

e The OwnedPrepositionsrole. A single PrepPhrase can have multiple prepositions becausein
some situations, certain prepositions are interchangeable. (For example, “...in years’ and
“...during years’ are equivalent.) Note that two prepositions are not interchangeablein all
Situations. (For example, “...in cities” and “...during cities’ are not equivalent.)

e A UseOfEntityOrEntinReAsWord. (PrepPhraseis a specialization of
ThingThatCanReferToEntities.)) The UseOfEntityOrEntInRel AsWord indicates which EntInRel
serves as the object of the preposition.

Specializes
e Phrasing
Attributes
e IsPrimaryPrepPhrase (Boolean) — TRUE only if the prepositional phraseisthe primary
prepositional phrase of its owning phrasing.

20.3.41 PrepPhrasing

(Note: Do not confuse PrepPhrasing with PrepPhrase, described in the previous section.)

Each instance of this class describes a Prepositional Phrasing — a phrasing that relates a subject to a
prepositional phrase, such as “People are on medications.”

A PrepPhrasing consists of the following:

e A subject (e.g., People) — Stored as an instance of UseOfEntityOrEntinRel AsWord with
UsageType = “ Subject.”

e Oneor more prepositions (e.g., on) — Each stored as an instance of Word with UsageType —
WordUsageType = WordUsageType_Preposition. Exactly one of the prepositions will have the
IsPrimary flag set to TRUE.

e An object of the preposition (e.g., medications) — Stored as an instance of
UseOfentityOrEntlnRel AsWord with UsageType = “FirstObject.”

e Zeroor more prepositional phrases (e.g., “People are on medications for conditions’) — Each
stored as an instance of PrepPhrase in the PrepPhrasing’ s OwnedT hings collection.

Specializes
e ThingThatCanReferToEntities
e PhrasingOwnedThing
Associations

e OwnedPrepositions (Preposition)

Knowledge Management: Semantic Definitions 221

PR R R
RwNROOCONO® O A W N

15

16
17
18
19
20

21
22
23
24

25
26
27
28

29
30
31

32
33

35
36
37

38

39
40

41

Meta Data Coalition Open Information Model

20.3.42 PresenceOfPhrasingInPhrasingGroup

Each instance of this classindicates that a particular phrasing group includes a particular phrasing.
Specializes

e Dependency (from UML)
Attributes

e Mandatory (Boolean) — TRUE only if the phrasing isarequired part of the phrasing group.
It might be senseless to ask about some phrasingsin a group without also including other required
phrasings. For example, you may wish to ask the question “List the colors of the parts’ to always
beinterpreted as“List the colors of the parts that suppliers supply,” so the user clearly understands
that colors of parts are known only in the context of suppliers supplying them.

If the phrasing group includes the verb phrasing “suppliers supply parts’ and the adjective
phrasing “parts have colors,” mark the verb phrasing as mandatory and the adjective phrasing as
not mandatory.

20.3.43 Relationship

Each instance of this class describes a semantic relationship.
Specializes

e ThingThatCanReferToEntities
Attributes

e |ID (String) — An arbitrary identifier.

e MostRecentFlag (Boolean) — TRUE only if the linguistic processor should show only the most
recent data when thisrelationship is used. For example, if the user asks the question “ Show the
blood pressure of patient 123,” the linguistic processor would interpret the question as “ Show the
most recent blood pressure of patient 123.”

o HelpText (String) — Explanatory text about the Relationship.
Associations
e OwnedPhrasings (Phrasing)

Examples

One phrasing describing a relationship is“Authors write Books.” This phrasing isaverb phrasing. That
meansit is of the form <SUBJECT> <VERB> <OBJECT>. (Some verb phrasings are of theform
<SUBJECT> <VERB> <OBJECT><OBJECT>, like “Professors give students grades.”)

The verb phrasing has in its OwnedThings collection an instance of Word, where;
e Word.Word = "write"
e Word.UsageType = VERB

The verb phrasing also has two instances of UseOfEntityOrEntinRel AsWord (which is a Dependency).
The first instance connects the verb phrasing to the particular instance of EntinRel describing the
AUTHORS s participation in the relationship. It hasthis property value:

e UseOfEntityOrEntlnRel AsWord.UsageType = SUBJECT

The second instance of UseOfEntityOrEntinRel Asword connects the verb phrasing to the particul ar
instance of EntinRel describing the BOOK's participation in the relationship. It has this property value:

e UseOfEntityOrEntInRel AsWord.UsageType = OBJECT

222 Knowledge Management: Semantic Definitions

=

o OB~ WN

©

10
11
12

13
14

15
16

17

18

19
20
21
22
23
24
25

26
27
28

29
30

31

32
33

35

36
37

38
39

Open Information Model Meta Data Coalition

20.3.44 SignOfRestatementAdjective

An enumeration whose values indicate whether an adjective of measurement uses the primary Plusword or
the primary MinusWord in ordinary discourse.

Vaues
o SIGNOFRESTATEMENTADJECTIVE PLUS=0
e SIGNOFRESTATEMENTADJECTIVE MINUS=1

20.3.45 SortingOfEntityByField
Each instance of this class indicates the contribution of afield to an entity’ s sort order (whenever instances
of that entity are displayed).
Specializes
e UseOfFiddByENtity
Attributes

e AscendingFlag (Boolean) — TRUE only if thefield' s values are arranged in ascending order in the
entity’ sdisplay.

e SequenceNumber (Long) — Indicates the significance of thisfield among all of this entity’s sorting
fields: 1= most significant; n = least significant..

20.3.46 SubjectObjectEntityPair

Each instance of this class describes a pair of entities for which some default relationship is declared.

In a semantic model two entities (e.g., Author and Book) could have several relationships between them
(e.g., Authors-Write-Books and Authors-Review-Books and Authors-Own-Books). The designer of the
semantic model can declare one of these relationships to be the default rel ationship for connecting instances
of the two entities to each other. In thisexample, the designer would probably declare Author-Write-Books
to be the default relationship. This meansthat if the query is“Show me the books and their authors,” the
linguistic processor will assume that user means*... the books and the authors who wrote them,” rather than
“...the books and the authors who reviewed them.”

Specializes
e Dependency (from UML)
Associations

o DefaultRshipDependencies (UseOfRshipFor SubjectObjectEntityPair) — An instance of the class
UseOfRshi pFor SubjectObjectEntityPair.

Note

Note that (subject entity, object entity) isan ordered pair. This makes sense, and an example will show
why. Consider the two phrases:

e Authorsand their books — The designer of the semantic model might want this phrase to be
interpreted as “the authors and the books they own.”

e Books and their authors — The designer of the semantic model might want this phrase to be
interpreted as “the books and the authors who wrote them.”

In other words, the default relationship for (Author, Book) is not the same as the default relationship for
(Book, Author).

Knowledge Management: Semantic Definitions 223

27

28
29
30
31

32
33

35

36

37
38
39
40
41

42
43

Meta Data Coalition Open Information Model

20.3.47 SubsetPhrasing

Each instance of this class describes a subset phrasing.
Specializes
. Phrasing
Note
There are two kinds of subset phrasing:
e SomeX areY.

For example, Some Authors are Poets.

In such a phrasing, thereis an instance of UseOfEntOrEntIlnRel AsWord (with UsageType =
subject) referring to the EntinRel characterizing the Author’ s participation in the relationship.
Poet is stored as an instance of Word in the phrasing’s OwnedThings collection; the string is Poet
(singular; not “Poets’) and the UsageTypeis “ SubsetWord.”

Noticethat in this relationship, thereis only one EntinRel — only one entity participatesin the
relationship.

e Each Xischaracterized by the value of Z.
For example, each author is characterized by the value of genre.

In such aphrasing, genre isan entity, and thereis an EntInRel describing the participation of the
genre entity in therelationship. Thisis different from the other kind of subset phrasing, because
in thiskind, there are two EntInRels. One EntInRel corresponds to X' s participation asthe
superset, and the other corresponds to Z' s participation as the classifying axis.

20.3.48 TableRef

Each instance of this classis a simplified, abbreviated description of a database table; the description is
limited to those things of interest to a semantic or linguistic processor. That is, a TableRef isanot a
complete description of a databasetable. For a complete description of any table corresponding to the
TableRef, see CorrespondenceOfTableToTableRef.

Specializes

e ModeElement (from UML)
Attributes

e |ID (String) — An arbitrary identifier.

20.3.49 TableSet

Each instance of this classis a set of database tables all existing within the same database catalog. Thisis
simply a grouping mechanism for convenience to the designers of Semantic models. A TableSet does not
haveto include all the tables defined in a catalog. Within a semantic model, there can be several TableSets
referring to tables from the same catalog. (Within any semantic model, however, each table can appear in
at most one TableSet.)

Specializes
e Package (from UML)

224 Knowledge Management: Semantic Definitions

A

0o ~NO (6]

11
12

13
14

15

16
17
18
19

20
21

22
23

24

25
26
27
28
29
30
31
32

33

35
36

37
38
39

40
41
42

Open Information Model Meta Data Coalition

20.3.50 ThingThatCanReferToEntities

Each instance of this class describes a Phrasing, PrepPhrase, or Relationship.
Specializes
e ModeElement (from UML)

20.3.50.1 ThingThatCanReferToEntities: Phrasing

A Phrasing is athing that can refer to entities because a phrasing can use an entity — or more typically, an
EntinRel —asanoun. For example, one possible form for averb phrasing is <SUBJECT> <VERB>
<OBJECT> (e.g., “Customers buy Products.”).

The<VERB> (e.g., “buy”) is stored as an instance of Word in the VerbPhrasing’ s OwnedThings coll ection.

The <SUBJECT> (Customers) is stored as an instance of UseOfEntOrEntInRel AsWord (with UsageType =
“Subject”), in the VerbPhrasing’ s EntityReferences collection. The VerbPhrasing has an EntityReferences
collection because it specializes Phrasing, which specializes ThingThatCanRefer ToEntities.

Similarly, the <OBJECT> (e.g., Products) is stored as an instance of UseOfEntOrEntinRel AswWord (with
UsageType = “FirstObject”).

20.3.50.2 ThingThatCanReferToEntities: PrepPhrase

A PrepPhraseis athing that can refer to entities because a prepositional phrase can use an entity —or more
typically, an EntinRel —asanoun. A prepositiona phraseis of the form <PREPOSI TION> <NOUN>.
For example atypica prepositional phraseis“through shippers,” asin “Branches send Customers Products
through Shippers.”

The <PREPOSITION> (in this example, “through”) is stored as an instance of Preposition in the
PrepPhrase’ s OwnedPrepositions collection.

Similarly, the <NOUN> (in this example, “Shippers’) is stored as an instance of
UseOfEntOrEntinRel AswWord (with UsageType = “FirstObject”)

20.3.50.3 ThingThatCanReferToEntities: Relationship

In some cases, what is grammatically a prepositional phraseis stored differently (that is, it is not stored as
an instance of PrepPhrase) to take advantage of the semantic capabilities of linguistic processors. For
example, consider “Authors write books during years.” The phrase”“...during years’ isnot stored asa
prepositional phrase. Rather, thereisan instance of UseOfEntOr EntlnRel AsWord whose ReferringThing is
the relationship itself and whose ReferredToEntity is some entity whose instance describes ayear. This
particular instance of UseOfEntOrEntlnRel AsWord has UsageType = “RELATIONSHIP_WHEN.” By
storing the relationship this way, alinguistic process could answer questions like “what author wrote books
before 19747

In this context, there are five noteworthy values of UseOfEntityOrEntlnRel AsWord.Usage Type:

e RELATIONSHIP_WHEN
This UsageType applies when an entity' s participation in arelationship indicates when the
relationship occurred (e.g., “Authors write books during years.”).

e RELATIONSHIP_WHERE
This UsageType applies when an entity' s participation in arelationship indicates where the
relationship occurred (e.g., “Authorswrite booksin cities.”).

e RELATIONSHIP_START
This UsageType applies when an entity’s participation in a relationship indicates when the
relationship started (e.g., “Employees work on projects from dates until dates.”).

Knowledge Management: Semantic Definitions 225

oOUThr, WNPE

~

10
11

12
13
14
15

16

17
18

19
20

21

22
23

24
25

26

27
28

29

30
31

32
33

35
36

37
38

Meta Data Coalition Open Information Model

e RELATIONSHIP_END
This UsageType applies when an entity' s participation in a relationship indicates when the
relationship ended (e.g., “Employees work on projects from dates until dates.”).

e RELATIONSHIP_DURATION
This UsageType applies when an entity’' s participation in arelationship indicates for howlong the
relationship occurred (e.g., “Employees commute to work for time_periods.”).

20.3.51 TraitPhrasing

Each instance of this class describes a TraitPhrasing — a phrasing between entities in which the instances of
one entity describe a characteristic of instances of the other entity.

For example, atrait phrasing is “Employees have PhoneNumbers.” The values of the entity PhoneNumber
describe a characteristic of the instances of the entity Employee.

Each instance of TraitPhrasing must indicate the characterized entity (e.g., “Employee’) and the
characterizing entity (e.g., “PhoneNumber”). To indicate the characterized entity, the model includes an
instance of UseOfEntityOrEntInRel AsWord whose usage typeis “ Subject” and whose referred-to thing is
either:

e Theentity describing “Employee.”

e TheEntInRel describing the participation of the“Employee” entity in the relationship to which the
TraitPhrasing belongs. (Remember, each phrasing belongs to a particular relationship.)

To indicate the characterizing entity, the model includes an instance of UseOfEntityOrEntInRel AsWord
whose usage typeis “FirstObject” and whose referred-to thing is either:

e Theentity describing “Employee.”

e TheEntIinRe describing the participation of the“Employeg” entity in the relationship to which the
TraitPhrasing belongs.

Specializes
. Phrasing

20.3.52 UseOfEntityOrEntinRelAsCmdArg

Each instance of this class indicates that a particular CommandArgument uses a particular entity or
EntInRél.

20.3.53 UseOfEntityOrEntinRelAsWord

Each instance indicates that a semantic entity is used in some phrasing, relationship, or prepositional
phrase.

Specializes
e Dependency (from UML)
Attributes

o UsageType (String) — Indicates how the entity participates (e.g., as Subject or Object,) in the
semantic construct that usesit.

e Entity (Entity, derived from Dependency.Supplier) — The Entity referred to.
e EntinRd (EntInRel, derived from Dependency.Supplier) — The EntInRel referred to.

226 Knowledge Management: Semantic Definitions

A

© 00 N O

10

11
12

13
14

15

16
17

18
19
20

21
22

23
24

25

26
27

28
29

30
31

32
33

35

36
37
38

Open Information Model Meta Data Coalition

20.3.54 UseOfFieldByEntity

Each instance of this class indicates that a semantic entity uses a field.
Specializes
e Dependency (from UML)

20.3.55 UseOfJoinTableRefByRship

Each instance indicates that a Semantic Relationship uses a database table as the starting table for the
various join paths leading to each of the database objects corresponding to the various EntInRels.

Specializes
e Dependency (from UML)

20.3.56 UseOfRshipForSubjectObjectEntityPair

Each instance indicates that a Semantic Relationship is the default relationship for a particular (subject
entity, object entity) pair. For moreinformation, see “ SubjectObjectEntityPair.”

Specializes
e Dependency (from UML)

20.3.57 VerbPhrasing

Each instance of this class describes a VerbPhrasing — a phrasing indicating a verb-based relationship
between entities. For example, in the phrasing “ Salespeople sell customers books,” the verbis“sdll.”

Specializes
e Phrasing
Notes

Each instance of VerbPhrasing must indicate the subject entity (e.g., “Salesperson”), the verb (“sdl”), the
direct object (“book”), and potentially the indirect object (“customer™).

To indicate the subject entity, the model includes an instance of UseOfEntityOrEntInRel AsWord whose
usage typeis“Subject” and whose referred-to thing is either:

e The Entity describing “ Salesperson.”

e TheEntInRe describing the participation of the “ Salesperson™ entity in the relationship to which
the VerbPhrasing belongs. (Remember, each phrasing belongs to a particular relationship.)

Toindicate the Verb, the model includes an instance of Word in the phrasing’ s OwnedT hings collection.
The value of the WordUsageType is WordUsageType Verb.

To indicate the object or objects, the model includes one or two instances of
UseOfEntityOrEntinRelAsword. There are two cases:

e Casel: Ifthereisadirect object only, the mode includes an instance of
UseOfEntityOrEntInRel AsWord whose UsageTypeis “FirstObject” and whose referred-to thing is
the EntInRel describing the direct object’s participation in the relationship.

e Case2: Ifthereisadirect object and an indirect object, the mode includes:

o For theindirect object: An instance of UseOfEntityOrEntInRel AsWord whose UsageType is
“FirstObject” and whose referred-to thing is the EntInRel describing the indirect object’s
participation in the relationship.

Knowledge Management: Semantic Definitions 227

WN -

© 00 N O O b

10
11

12
13

14
15
16

17
18

19

20
21
22

23

24
25

26
27
28
29
30
31
32

Meta Data Coalition Open Information Model

o For thedirect object: An instance of UseOfEntityOrEntlnRel AsWord whose UsageTypeis
“SecondObject” and whose referred-to thing is the EntinRel describing the direct object’s
participation in the relationship.

20.3.58 Word

Each instance of this class describes aword that is used in a phrasing.
Specializes

e PhrasingOwnedThing
Attributes

e Word (String) — The text of the word.

o UsageType (WordUsageType)

e IsPrimary (Boolean) — TRUE if the word is the preferred word.

IsPrimary is used because some phrasings can have several interchangeable words — all of the same
UsageType. For example, there can be asingle verb phrasing that allows several different verbs, such as:

e “Authorswrite books.”
e “Authors pen books.”
e “Authors author books.”

In such a situation, the verb phrasing has three instances of Word in its OwnedThings collection. The
following table describes:

Word UsageType IsPrimary
Write WordUsageType Verb TRUE
Pen WordUsageType Verb FALSE
Author WordUsageType Verb FALSE

A linguistic processor might use the preferred word when paraphrasing user-entered sentences for
clarification.

20.3.59 WordUsageType

An enumeration whose values indicate what syntactic role an entity or EntinRel playsin a particul ar
phrasing.

Values
e WORDUSAGETYPE_ADJECTIVE =1
e WORDUSAGETYPE_MINUSWORD = 2
e WORDUSAGETYPE_PLUSWORD = 3
e WORDUSAGETYPE_SUBSETWORD = 4
e WORDUSAGETYPE_VERB=5
e WORDUSAGETYPE_PREPOSITION =6

228 Knowledge Management: Semantic Definitions

=

© 00 N ouhrhw N

U =
= O

Open Information Model Meta Data Coalition

20.3.60 WordValuePair

Each instance of this class describes an (Adjective, StoredEncoding) pair.

In two-entity adjective phrasings, the object entity sometimes contains codes instead of adjectives. Such a
phrasing can have any number of (Word, Value) pairsto equate the adjectivesto their stored encoding. For
example, an adjective phrasing might have threeword value pairs. (Agree, 1); (Disagree, -1); (NoOpinion,
0).

Specializes
e PhrasingOwnedThing

Attributes
e Word (String) — The Word of a Word-Value pair.
e Val (String) — The Value of aWord-Value pair.

Knowledge Management: Semantic Definitions 229

10
11
12

13

14

15
16
17
18
19

20

21
22

23

24
25

26

27
28
29
30
31
32
33

35

36

37
38

39

40
41

Meta Data Coalition Open Information Model

Glossary

aggregate
A total created from smaller units. For example, the population of a county is an aggregate of the
populations of the cities, rural areas, etc. that comprise the county.

application

A program or set of programs designed to assist in the performance of atask, for example, an order
entry system.

architecture

An organized framework consisting of principles, rules, conventions, and standards that serve to guide
development and construction activities such that al components of the intended structure will work
together to satisfy the ultimate objective of the structure.

BPR

Business process reengineering. A radical improvement approach that critically examines, rethinks,
and redesigns mission product and service processes within a political environment. It achieves
dramatic mission performance gains from multiple customer and stakeholder perspectives. BPR isa
key part of a process management approach that continually evaluates, adjusts or removes processes to
achieve optimal performance.

business

An organization or group of people that have formed to perform a specific mission and to achieve
specific goals and objectives.

business obj ect

An object that is modeled after a business concept, such as a person, place, event, or process. Business
objects represent real world things such as employees, products, invoices, or payments.

cleansing

A process that checks data quality for adherenceto standards, internal consistency, referential integrity,
domain validity, and replaces incorrect data with correct data. For example, an invalid zip code can be
replaced by a zip code derived from the state/city/address information. Cleansing methods can include
combinations of: look-up againgt valid data (e.g. alist of mailing addresses), look-up against domain
values (e.g. alist of valid State, Province, or Territory codes), domain range checks (e.g. Employees
lessthan 15 or greater than 90 years old), consistency checks among table data, pattern analysis of
exceptions, correlation, and frequency distributions.

condition
Sufficient prerequisite for an object to enter, transfer, or exit a state.

constant

A language element that specifies an unchanging value. Constants are classified as string constants or
numeric constants. The opposite of a constant isavariable.

constraint

A statement that must hold or not hold in a system. Constraints most often are logical properties of
objects or transitions between objects that must apply for a system to function correctly.

230 Glossary

[V \V]

a1

10
11
12

13
14

15

16
17

18

19
20

21
22

23

24
25
26

27

28
29

30

31
32

33

35

36

37
38

Open Information Model

data warehouse

Meta Data Coalition

A special database assembled from data extracted from operational databases and other data sources.

Often used for analysis and decision support

decomposition

The process of breaking down an activity into more detailed component activities.

expression

An operand or a collection of operators and operands that yields a single return value.

extraction

The process that sel ects data from various data sources in preparation of a copy to atarget database.
Extraction includes the selection of the data to be copied and the access to the physical storage that

manages the data.

fact

A relationship between objects that hold in the actual world.

field

An atomic piece of information in afile or database. A field has aformat such as character, number, or

date and its presence can be optional or man

file

datory.

A complete, named collection of information. The basic unit of storage that enables a computer to
distinguish one set of information from another.

IDEF
Integrated Definition Language

IDEF modeling techniques

A combination of graphic and narrative symbols and rules designed to capture the processes and
structure of information in an organization. IDEFQ is an activity, or behavior, modeling technique;
IDEF1X isarule, or data, modeling technique.

information
Datain context related to a specific purpose.

information pump

A tool that extracts data from source systems, such as mainframe or client/server systems, performs
cleansing and transformations, and loads the resulting information into another database.

knowledge

The sum of what has been perceived, discovered, or learned through experience or study.

meta data
Descriptive information about data.

Glossary

231

10
11

12
13
14
15

16
17

18
19
20

21
22

23
24
25

Meta Data Coalition Open Information Model

model

A representation of a complex, real-world phenomenon that can answer questions about the real-world
phenomenon within some acceptable and predictable tolerance.

obj ect
A digtinct entity.
obj ect-oriented
Of, pertaining to, or being a system or language that supports the use of objects.

relational database

A database that can be perceived as a set of tables and manipulated in accordance with the relational
model of data.

repository
A model-driven facility for the storage of meta data.

scrubbing
See cleansing.

skill
The ahility to perform atask or function to an agreed-upon criterion.

UML
The Unified Modeling Language.

variable
A data element that is a container for a value that can be changed.

232 Glossary

18

19
20
21
22
23
24
25
26
27
28
29
30
31

32
33

35
36
37
38
39
40
41
42
43

45
46
47
48
49

Open Information Model

Meta Data Coalition

Class Index

— A —
ACCeSSOIKING....cooveviviiecee e 75
ACONRUIE.......oeiiiieiiee e 188
AdjectivePhrasingccooeeeveeneeneeiecieen 209
AQOregation........ccoveeieeieeneeneee e 129
AlIBS et 43
APPLICALION.eiiiiiiiiei e 25
ATTAY oo 46
ArrayDimeNnSioNcoeeveeneeneene e 142
AssociationEndProjection...........ccooeeveenieennens 25
ATIDBULE.......co i 26, 55, 75
ALHDULEEXE. ... 76
AttributeReference ... 151
AttrDULETYPE .o 152
AULNOTTEY ..o 169
— B —
BefOreAterooveieee e 94
BiNArY .ococveeeiee e 46, 110
Bit. e 110
BIOD ..ot 111
BOOI€AN.cceieeie e 47
BranCh......cooceveiii e 179
BUSINESSACIVITY....ccvveiviiiieeiiee e 178
BusinessProcessGraph.........cceveeveereeneeniens 178
BusinessProcessMethod...........cccoeeveenieenienne 179
BusinessRambling.........ccccovveeienieeneeneeniens 188
BUuSINESSRUIE........ooiiiiieieeeeeeeceeeeie 188
BuSINesSRUIESELccoveeiiericeeeeeeiee 189
BUSINESSUNITooviiiiiiieeeeecereeee e 169
— C —
Call ..o 26
CalalOg..c e 94, 130
Char ..o 111
CharaCterTYPe...cooveeveeereee e 47
ClassDiagram........ccoceeveeneenieneese e 26
ClOD e 111
CodeDecodeColumn...........cooeeveereeneeneennn. 121
CodeDecodeSetcoveereeneinienie e 121
CodeDecodeValue..........cccoveeneeneeneeneennnn 121
CollECtioNTYPE...cveeieeeieiereee e a7
COlUMN ... 94
ColumnNCOoNSFaiNtcceevveereeeiieieeie e 95
COolUMNSEL ..o 96
ColUMNTYPE ..ttt 96
ColUMNTYPESEL......ccvveiieieeieee e 97
ComMMENG........ooiiiiiiieiie e 211
CommandArgumentc.oceeveereeneeneennens 212

Class Index

50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

70

71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

CommandArgumentType........cccovvvvereernenn 212
CommandPhrasing........c.cocvevveneeneeseesnenens 212
COMPONENE ..o 76
ComponentCategorycovcveerrreeerreeeneeeneens 76
ComponentDiagram..........cccoveeveeeeneeneenieenne 26
ComponentElement...........ccoocveveiieieeneenienn 76
COMPONENESPEC.eevireeiiee e 77
CompPOoNENtTYPE ...cevveeeieieieeesiee e 77
CONCEPL .. 196
CONNECLION ... 95, 130
CONNECLIONSEL.......veevveeiieeriee e 96
Contactinfo.......coeveeiieiiereeeeereeeeee 36
COPYLID e 142
CopyLibContains..........cccocvreerinninninnee 142
CorrespondenceOfFiddRef T OEntity 213
CorrespondenceOfFiddToFieldRef 214
CorrespondenceOfJoinToJoiNREf 214
CorrespondenceOf TableRef ToEntity............ 214
CorrespondenceOfTableToTableRef 214
CUDBB. ...t 130
— D —
DatabaseConstraintccooveeveeneeniecnienieenn 98
DatabaseRSNiP.....evveiriiiiiiree e, 214
DataSOourCe........coevvveeeiiee e 98
DataTYPe...cc ittt 55
D (TSN 47, 111
DateResol utionForEntByRshipcccc...e. 214
Datelime.covviiiiiiiriee e 47
DaAtETYPE...co it 215
DECIMAl ..o 48
DeployedCatal 0gcceeveerieereenieeieeie e 98
DeployedColumn.........ccoveevieenenieeie e 98
DeployedFieldcccovieneenienienieneenieee, 143
DeployedGroupcoveereenieenieenieenieenieeneens 143
DeployediNdeXcccoeevveerieiieeieeie e 99
DeployedMaterializedView...........ccccoevvennenne 99
DeployedOLAPDatabaseccoevveerieennn. 130
DeployedRecord..........ccvvevrerneeneeneenieenen 143
DeployedSchema..........ccoceeveevennieniiecieeiee 99
DeployedTable........ccoveevienieneeeeee 99
DeployedTrigger....coooveereere e 99
DeployedViewcoveeneenieeneeie e 99
DErivation........cccooveveeneeneee e 27
DesCriptionSOUrCe.........covveereenieenie e 36
Diagram........ccevceeiieeeee e 27
DictEntrylrregularity........ccoceeveeneeneenennnnn, 215
DiCtioNary.....cccooeieeieeieeneene e 27
DictionaryENtrycccooveveeieeneeneeneenieeneens 215
DIimMeNSiONccevieeiieiiee e 130
DimensionHierarchyccccveeveeneniennnns 131

233

abhwWDNPEF

25

26
27
28
29
30
31
32
33

35
36
37
38
39
40
41

42
43

45
46
47
48
49
50

Meta Data Coalition

DimensionLeveccoeveiieenienieneees 131
DIimenSiONTYPE.coveiveeiieriee e 132
DisplayOfEntityByField..........cccoovreeriennenne 216
DOM@IN.....coiiiiiiiiiie e 56
DOUDIE....uveeeieceieeee e 48, 112
— E —
ElementContentccooveeverneeneeneeieeies 152
ElementReference........ccooeveeveeneencenceniens 152
ElementType.....ccooveeiiriienee e 153
ElementTypeContent...........ccovveeveeneeneeneens 153
ElementTypeModdccooviiiiiiniinnens 153
EMailID....cceoiiiiiiiiiieeeeeeee e 37
ENtINRE ..o 216
ENtity...cooeiiii 56, 217
EntityOwnedThing..........ccooveeveenieninneeneens 217
EntityOwnedWordccoceveeneenieneenens 218
ENtityTYPE ...co e 218
ENUMEration........ccoooveviiniiniie e 43
EnumerationLiteralccocoeiiiiiiiiniienee 43
EventModeccooviiiiiii 78
EVentSourceSPECcccvvvvirereiei e 78
EXCEPLION.ceieiiiiie e 78
EXPreSSioncccoveiiiiiiiiiesie e 27
EXPressionOrderooevvevveeieeniese e 27
— F —
FactRUIEcoeireiieeeeeeeeeee 190
Field .o 132, 143
FieldDataTypecoooevieeiieiee e 218
FIaldRES ... 218
FieldToFieldDerivation...........cccoeevveeeeneeene 135
FieldValUeEXPressionccoveeveeieeieenieens 144
FIlE e 28
FLOBL ... 48
FONt ... 28
FONtALIgNMENT......ooveiiie 28
FONtSIYIE .. 28
FOraignKeycooeviiiiiiieeee e 99
ForeignKeyRole........ccoovveiiniii 100
FOPK oottt 180
FOrmatOfcooveiiiiiereeeereeeeeee 144
FreqUENCYcoooveeeieeeeec e 100
— G —
GlOSSANY..c.eeiveesiee e 197
GOl . 163
GOAlIMPECE ... 164
GramMar.........coocveerrie e 28
GraphicElement ... 29
GraphicFeature..........ccoooeveenieneiiccec 57
L€ (0 H o RS 144, 153
GrOUPDES ..ot 145

234

51

52
53

55
56
57
58
59
60
61
62
63

65
66
67
68
69
70
71
72
73
74
75

76

77
78
79

80

81
82
83

85

86
87
88
89
90
91
92
93
94
95
96
97
98
99

Open Information Model

— H —
Handler ..o 40
HEIPSOUICE.eeieiiieeeee e 37
— | —
[CON ..ottt 37
IMPOIT ... 29
InclusonOfTableSetIinSchema..................... 219
INAEX et 100, 197
INAEXCOlUMN....viiiiieeec e 101
INAEXENTIY ..o 198
INAEXENTIYTYPE. ..coveiieeieeie e 198
INAEXRES ..o 199
INAEXUSAZEooviiieeieeece e 198
INAUSEFY . e 170
InferenceRUle........cooviiiiii 190
InformationReESOUICecovvreeerierieeee 170
InheritanceOfEntityFromEntity..................... 219
INITEAEON .. 180
191050 = SR 48, 112
INEENTACE......ei i 78
Interfacelmplication............ccoeeveeneeneniiennene 79
INterfaceSUPPOITcoveveereerieree e 79
INEENVAL.....coveiiieie e 112
INEINGCTYPE e 48
rregUIar TYPE oo 219
—J —
JOIN ot 101, 180
JOINROIE.....coiiiiiii 101, 132
JOINROIERES ..ot 219
— K —
KEY e 57,101
KEYTYPE oo 57
KEYWOId ..ot 37
KnowledgeElementccoccoviniiniincnnens 199
— L —
LanguageFunclion...........ceveeveenieenieenieennens 145
LiDrary ..o.oooeenieneenereee e 29
LB e 29
LineContaiNer........c.cceveereeneenienie e 29
LinePropertieS.....cccovreerieniie e 29
LOCALION ..ot e 37
Logical Cata0g......ccverveerverieeiiieniienieenieeniens 102
Logical COlUMN.....cooveereieiienieeieeieeieeieeiee 102
LogicalField........ccooveniiiiii 145
LOQiCalGrOUP ...covveeveenieenieenieesieeieeie e 145
LogicalINdeXccveevveenieiiieieeeeeeeceee 102
LogicalMateriaizedView........ccoooeevereennnnne 102
Logical OLAPDatabase.........cccoeevveenveeiennnnne 132
LogicalReCOrd........ccovveenieinieeiecieeiecieeiee 146

Class Index

abhwWDNPEF

28

29
30
31
32
33

35
36
37
38
39
40
41
42

43

45
46
47
48
49
50
51

Open Information Model

LogicalSchema.........cccoeveeniinicnicccieeee 102 52
Logical Table.......ccoevviiiiniiiiiieeeeieeiee 102
LOgiCaAl TIIQOEr ... eeiveeieeeniee et 103 53
LOQiCAlVIBW.....coiviiiiiiiiie et 103 54
LONGINt ...ooiiiiiie e 49 55
56
— M= 57
MaPPING. ..ot 132 58
MappingLevelPairccoooeeieenieneeneenene 132 59
MaECNTYPE...coivieitierieeree e 103 60
MEBSUIE ...t 133 61
MeEaSUreEXPreSSiON.covveerveerieenieenieeieeiens 164 62
MeasureExpressionDependency.................... 164 63
MeEMDEr ... 79 64
MEMDErEXE.......coiiiiiiiiiieeeeeeeeee e 79 65
MemberVariable..........ccooevininincee, 30 66
MENU...coiiiiiei e 40 67
MenUCONLAINEScoreiriiriire e 41 68
MEIGE...eeiee e 180 69
MISSION ..ot 165 70
MOdE ..o 58,220 71
ModelLibrarycoccovceereenieninenee e 58 72
MOAUIE......oeiiiiiiieee e 30 73
ModuleOperation...........cccceveveeeicersieenene 30, 80 74
ModuleOperationEXe...........cccocververieenieeeenn 80 75
MOAUIESPECoveeeeiiiireee e 30 76
MONEY ...t 113 77
MultiplicityProjection..........cccocvveireenecneene. 30 78
79
— N — 80
81
NamMedVErSIoN.......ccceereereerieresee e 38 82
NaMEENLILYooveireeiieeceee e 220 83
NameEntityNameTypeccovveveriereeneeene 220
NamePNrasingc.cceveereeneenieeneenieesieeiens 220
43 84
NameSIrUCtUrE€TYPE.ccocvevriee e 221 85
NameSynonymPair...........ccccecveereeiieeiennene 221 86
NCRE ..ot 112
NONDBTYPE...ccctei et 221 87
NonTermina Symbolcccoevviininieneee 31
NOLE oot 18 S8
NUIIS oo 103 99
NUMIEHIC ..o oo 49, 113 8(1)
NVarChar........ccoooeeveenienieneeseseeneeee e 112
92
93
—0—= 94
ObJECLIVE. ..ot 165 95
ObJECITYPE. ..ottt 4 96
ObjectTYpeMapPing.......c.cceveerveereenie e 4 97
OLAPDAEhase.ccvveereiiieiienieseesieeneees 133 98
OLAPMOGE.ooitiiieiiiienieeriee s 133 99
OLAPSENVEN ..o 133 100
OPEFAiON ..ot 80 101
OpPEratioNEXE.....cceoveeiieieeseese e 81 102

Class Index

Meta Data Coalition

OrganizationalRole..........ccvvvreinienieieene. 170
— P —
Package........oooeevieiiee 38
PackageExecution..........c.cccoevveineeneeneennen. 121
PageCoNNECLor..........covvveveieeerieeee e 180
Parametercocoveviiiie e 8l
Partition.......ccooevieiiiine e 134
PartitionResourceRole..........ccocvvveerernieennen. 180
PartOf SPeeCh.......coveeveerierieeeee e 221
PErSON.....iiiiii e 170
Phrasing........cooeeveeneeneeneenee e 222
PhrasingGroup.......c.ceveereereeneeneeseenieeneens 222
PhrasingOwnedThing...........ccvvvveeneenennnen. 222
PhysicalCube.........oovvviiniiiiiieceeeieeen 134
PhysiCAlRESOUICE.......covviieeirieerieeeeee e 171
POINT. ..t e 31
POINtCONLAINETcoiveeieeieee e 31
POINTEN ..o 49
POLICY . 171
Preposition.........cocvvevieeienieeneeee e 222
PrePOostPairoovvieiiiiee 81
PrepPhrase........cooeeveeveeneenieneesee e 223
PrepPhrasing........ccooeeveeneeneenenneeneeneeneens 223
PresenceOfPhrasinglnPhrasingGroup........... 224
Primitive. ..o 44
ProcessPartitionccceveeveeneenenieniienens 181
PrOJECE ..oovieieceeeee e 31
ProjeCtionccoeeveeneenieene e 31
Provider....oooovieiienieeeeeee e 103
ProviderDataType........ccveeererreereeneenennnens 104
ProviderTypeMappingccoveereeneereennen 104
ProviderTYPeSEcovveveereerienieneenieeien 104
J— Q J—

QUAINE . 49, 113
QUENY oot 105
— R —

RE8L ... 113
RECOId......coiviiiiiiiiiiie e 146
ReCOrdFormat.........cccovevreinenneeneeneenieeneen 147
Recorditem.........cccoveenieniiniereeeeeeseeen 148
RedefiNES......cooviiiein 148
Referential Constraintceoveeveeneenieennen, 105
Referential Role........coveeviiniiiieeeeeen 105
Referential RUle.........coveiiiiiiieeeeeen 105
RelatedTermM......cccevviiiiieeeeeee e 199
Relationship.......ccceevvvevvevee e 59, 224
RelationshipProjectioncccecevevienienne 32
RelationshipROIE..........coveeiienieeeecc e 59
RENAMES......eiieee e 148
ReNamMESTRIU........eoiiiriiirieieeeeeeeeee 149
REPOI......veeee e 159

235

O©CoO~NOUITA WN P

17

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

35
36
37
38
39
40
41
42
43

45
46
47
48
49
50
51
52

Meta Data Coalition

RepOrtDEiVation.........ccoveeieeneeieeneeieeiens 159
ReportElementccccoeveeveenennieneeneeniee 159
ReportElementTYPecooveveeieeieereeieeniee 160
REPOIEXECULTON ... 160
REPOMGIOUPcee et 160
ReportPackage........ccoveeieeneeneenieneeseenes 161
REPOMQUENY ... 161
RESOUICE......eiiiiei et 172
ResourceFl owState.ceeveeieeieniieieenies 179
ResourceProcessROle........coeeveerieenieeiieeiens 181
ResourceROle........coeeviiiieieec 172
ResourceRUIEROIE........cooeeviiieiiecceee 190
ResourceStateRole........coeeveiieenienieieeee 182
ROWSEL ..ot 106
RUIE....eeiee e 32
RUIEIMPECE ... 191
— S —
SCAA ..o 50
SChEMAL. ..o 106, 154
Searchable ... 106
SEIVES oo 82
Server AppliCationcoveeveeieeneee e 82
SVErLibrary......ccoeveeneenee e 82
ShOrtINt.....oooee 50
SignOfRestatementAdjective............ccoveenee. 225
SINGIE .o 50
SKill oo 172
SMAlINt ..o 113
SMAIMONEY.......ooiiiiiiiiiieeeee e 114
SortingOfEntityByFieldccovevrvenieenen. 225
SOUrCEAEVENLc.veiieiecieee e 82
SEAEMENT ... 32
SLEPEXECULION....oeieeiee e 122
StepPrecedence........vveeveeneene e, 122
StepPrecedenceBasis........covvvveevieneenieeen, 123
SOrBOR.....eee et 39
SOME. et 134
StOredDisplay ...cccveeveereenieneee e 60
StoredProcedure.........ooveveeneenieenieneenieee 107
StoredProcedureParameterccooeeveeenee. 107
SUNG e 50
SHUCIUNE .. 44
SUDJECLATEA ..o 60
SubjectObjectEntityPairccocvvvveneennen. 225
SUBSELPOIasiNg.......coeevveereenieneenee e 226
SUDTASKSEALE.....ccuvereeiieiecieeriee e 182
SUDTYPE .ot 61
Summarylnformationcccoeeeveeieeieenenn 38
SUMTOQALE ...t 39
SYMDO! . 33
SYNEAX. ettt 33
SYSEM i 18

236

53

55
56
57
58
59
60
61
62
63

65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83

85
86
87
88
89
90
91
92

93

94
95
96
97
98
99
100
101
102
103

Open Information Model

— T —
TaI€. .o 107
TableConstraintccoocvvveerieninee e 108
TablERES ..o 226
TablESEL ..o 226
TableSynonym ... 108
TaggedValUe.........ccooeeiiiiiiiiiiee e 33
TaggedValueSetc.oovevvevieeiie e 33
TaSKACHON......covviriiiiii e 183
TaKSAE.....ccveeeiriiriee e 182
TaskStAtEACHIVILY ..o 183
TelephoneNUMDbErccoovveiiiie 39
TemporaryField. ..., 123
TEIM s 200
Terminal Symbol ..o 33
TEMINGLON ..o 183
TEMRUIE. ...t 191
B 1L SR 61
TRESAUIUS. ...t 200
ThingThatCanRefer ToENtities...........cccuee.... 227
TIME it 50, 114
TIMEPIECISION ..o 51
TIMESAMP..ccveiereiere e 114
TINYINE oo 49, 114
TratPArasing.......cocevveeieeneeneeseeseee e 228
TransformableObjectcccocvveririeiiene 126
TransformableObjectSetccocvvverienienne. 123
Transformation..........ccooeeveereeneeniene e 123
TransformationConversionc.cceceeeeene 124
TransformationDependencyccecveeenee 124
TransformationPackage............ccccevvevveenennn 124
TransformationStepovveveeveevienieeie 125
TransformationTasK.........ccveveereerveniesieeens 125
TransformationTaskDependency................... 125
TranNStion.......ccocvveininii e 184
THIQOEN et 108
TYPE e 83
TYPEDES .. 41
TypeLibrary ... 83
TYPESEL ...t 44
— U —
UNION e 45
UNioNMemberccoveeveinieneee e 45
UNiQUEKEYc.eeeiiiiiiiiiieieeerieeeeriee e 109
UniqueKeyRole.........ccooveiviiiiinieiicnieeniens 109
UseOfEntityOrEntinRelAsCmdArg.............. 228
UseOfEntityOrentinRelAsWord 228
UseOfFi el dBYENLItYccccoveereenieeiecieniene 229
UseOfJoinTableRefBYRShIp.........cccveueeneee 229
UseOf Rshi pFor SubjectObj ectEntityPair 229
USeSCONNECHION.....cveerveeiieenieenieesieeieeieeeens 109

Class Index

el

N
o

POOWOO~NOURWN -

Open Information Model

—V —

ValidationRUIE..........oovveeeeeeiiiieeeeeeeeeeeeeeeeeeee 61
ValUB ..o 62
VarBiNarycccocevreiiiiiiiiiene e 114
VarCharoooooveeiii 115
VariantTaggedValue...........cccoeveeieeienneeniens 33
VerbPhrasing.........ccooeeveeneinene e 229
VIBW oo 109
ViewElement.......ccoovvvvv 34
VirtualCubg.........oooovviiii 134
VISION oo 165

Class Index

12
13
14

15
16
17
18

19

Meta Data Coalition

VocabularyElement..........ccooeeveeneeneeneeniens 201
VOId i 51
— W —

WOId ..o 230
WOrdUSagETYPE...cveeiveeiieieeieeieeieeie e 230
WOordValuePairc.oeeveeneenieenieenieeieeeens 231
— X —

XMLDAATYPE ..o 154

237

Meta Data Coalition Open Information Model

Table of Figures

Figure 1: Shared Meta Data ENVIFONMENTc..ooiiiiieiieie ettt 2
Figure 2: Deliverable Generation from the UMLooiiiiiiiiiin e 10
Figure 3: UML MOdeling FramMeWOrK............oouiiiiiiiiiiiee ettt sb e sbe e 11
Figure 4: Sample Logical Database MOGEc.oiiiiiiiiiii e 17
Figure 5: Sample Physical Datahase MOGE.........c.eiiiiiiiieee e 17
Figure 6: OIM 1.0 ComMPatiDilitycooueeiieiiee e 18
Figure 7: AUXITArY ETEMENTS........coiiiiiiiie ettt ettt sttt b e naeenneas 21
Figure 8: Additional AUXiliary EIEMENTS........ccuiiiiiiiiii et 22
FIQUIrE O: VIBW EIEMENTS ... bbbt sb bt bbb e b e naeenneas 23
FIQUIE 10: PrOJECLIONSveiveiitee ittt sttt sttt sb bbbt e bt e bt sb e s b e e b e sbeesbeesb e e nbe e beesbeesbeesaeenneas 24
Figure 11: SYNtaX ElEMENTS.oouiiieiie et sb bbbt sbe et e b e sbeenaeenneas 25
Figure 12: GENEXiC EIBMENTSoueiiiiiiie ittt ettt ettt ettt naeenneas 35
Figure 13: Contact INFOrMELION.ciiiiiiiiiiie ittt sb e b sb e b e naeenneas 36
Figure 14: OIM 1.0 CompatiDility ClaSSES.......c.eiuiiiiiiiiiieie sttt naeas 40
FIQUIE 15. DAIA TYPES ... veeiteeitee sttt sttt sttt st st st sb e sb e sbe e sbe e s beesb e e sbeesb e e bt e b e e sbe e b e e nbeesbe et e e beesbeenneenneas 42
Figure 16: Common Data Types (OIM 1.0 compPatibility)cccocuerieiiiiiiiieiie e 45
Figure 17: Entities and REGLONSNIPS.coveeiieiieiiieeieie sttt b e nneas 53
FIQUIE 18: AIITDULES ...ttt b bbbt e s b e s bt e sb e be et e e sbeesbeenaeenneas 53
FIQUIE 19: DOMEINS......ceitietieteeiteestiestee sttt et e st st et esbe e s bt e sb e e s beesb e e sbeesb e e sb e e sbeesbeeabeesbeenbeesbeenbeenbeenneenneas 54
FIQUIE 20: DIBOIAITIS. . ..eueeitee ettt ettt sttt sttt sttt sb et sb et sb et sb e e sbe e ebe e sbe e eb e e sb e e eb e e she e sbe e ebe e sbeesbeenbeesbeenaeenneas 54
Figure 21: MOdel PaCKAGING.civeeiteeiteeitieitie sttt ettt ettt sb et sb et e b b e e b e be e b e naeenneas 55
Figure 22: CORBA and COM Component MOEIS.........coeiiiiiiiiiiniieneesiee st 65
Figure 23: Component Specifications and INEErfaceS.ooviiiiiii i 66
Figure 24: Ingance Diagram showing component specifications and interfaces..........coocoveeveevieieciennnne 66
Figure 25 INterface IMPIICALION.coouiiiiiiieie et b e b e e saeenneas 67
Figure 26: Specification TYPE MOUEISooiiiiiiiiii bbb 67
Figure 27: Library INterface EXAMPIEooviiiiieiii ettt 68
Figure 28: AttribULES aNd OPEratiONS.........eiviiiiiiiiitie ittt ettt ettt b e e bbb ssnesnneenneas 68
Figure 29: Pre/Post Condition PairSand EXCEPLIONS.........ccoiiiiiiiieiie ettt 69
Figure 30: Oparation FACLONING.eiutiiiiiiiie ittt sttt ettt ettt b e bt bt b e an e sb e sanesa e e nneenneas 70
Figure 31: EVENE MOOEIINGeiitiiiiiiiiie ettt sb bbbt sbe e sbe e b e b e saeenneenneas 70
FigUre 32: EXECULAINIE LAYESooueiieieceie ettt b bbb sbe bbb nneenneas 71
Figure 33: Component SPECITICALION..........iieiiiiieiiie ittt sbe e b beesaeeneeas 72
Figure 34: FEatureS @O EVENES.oi ittt sttt ettt b et b e e bbbt enneenneas 73
Figure 35: EXECULION EIEMENES......oc.oiiiie ettt nneas 75
Figure 36: Sample datahase SCHEMAL..........c.ooiiii e 86
Figure 37: Meta data Interchange Specification Metamodeccooeiiiiiiiiin i 87
Figure 38: MDIS EXAMPIE........eiiiiiiiieitie ittt ettt b bbbttt et e et e et e et e et enneenneas 88
Figure 39: SChemMa ElEMENTSoiiiiiieiie ettt ettt naeenneas 89
Figure 40: Tables, COlUMNS, BN VIBWS.........ooiiieiiiieiie st stie e et e et esseee e sseeesseeesneeesneeesnseesnseesnseesnnees 90
FIQUIE 4L: CONSITAINTSeeveetee st steesteestee st e st e st e st e st e st e sbe et e e s bt et e e bt et e e bt e b e e beebeebeenbeenbeesbeesbeenneenneas 20
Figure 42: Triggers and Stored PrOCEOUNES.........co.eiiuiiitieiieriie ettt ettt sttt see e b b e saeenneas 91
FIQUIE 43 TNOEXES. ...ttt ettt b bbb e s b e b e e s bt e sb e sb e e sb e e sbe e sb e e sb e e sbeenb e e sbeesbeenneenneas 91
Figure 44: Referential INTEONITYcooveiieiieeieee bbbttt b et r e e nneas 92
[T B o Q= Y O OO PP PP 92
Figure 46 - Catal 0gS and CONNECLIONS.oivviiiiiiieiitie ittt sttt sttt st sb bbb e b e b e b e sbeesbeenaeenneas 93
Figure 47: Data TYPE MaADPINGSoveeieeeiieeiteisiee sttt sttt ettt st sbe e sbeesbeesbeesbeesbeesbeesbeesbeesbeesbeenbeenneenneas 93
FigUre 48: OIM 1.0 DAta TYPES .. ueeiteeiteeiteesteesteestee st e bt e steesbe bt ettt et e be bt esbesabeesteeatesneesanesanesneessneeans 110
Figure 49: A Sample Transformation PaCKaJEcouiiuiiiiiiiiie e 118
Figure 50: Transformation PaCKAGINGcoeeieeiieiieiee ettt ettt 119
Figure 51: Transformation TaSKS.........eeieeiieieeiie ettt sane e 120

238 Table of Figures

O©CO~NOOOUITA WN P

Open Information Model Meta Data Coalition

Figure 52: ConstraintS and CONVEISIONS.........ccieiiieieeiieesiee ettt ste et et e b b s be s e sieesanesieesaeesaneen 120
Figure 53: A Typical OLAP CUDE......cc.iiiiiiie ittt ettt ettt snnesane e 127
Figure 54: OLAP Servers and Datalases.coieeiiiieeiiee ettt sttt neene e 128
Figure 55: Stores, Cubes, and PartitionsS.cvviiiieiiee e seeeenneee s 129
Figure 56: Hierarchy and LEVEIS........ooiiiiiieie ettt 129
Figure 57: Field-to-Field DEIVALION.......cccuiiiiiie ettt sbe e sre e nneens 135
Figure 58: Records, Groups, Fields, and FOrMELS.........ccoeiiieiiieiie e esee e s e e 139
FIQUIE 59: COPYLIDS. ...ttt ettt et ettt ettt e ab e et e e st e et e e sbeenbeeneens 141
Figure 60: Constraints and DEPENAENCIES..........eiiiiiieiie et 141
FIQUrE 61: XIML SCHEMAeeiiiiiieieitie ettt ettt ettt ettt et et e b e s anesnbeenneen 151
Figure 62 - SAMPIE REPOITc.veiitiiitieitie ettt ettt e b e e ab e saneeab e s s e e nbeenneens 157
Figure 63- Report Grouping EIEMENES........ooiiiiiiie et 158
Figure 64 - REPOrt FIald EIEMENTS.......c.oiiii ittt ettt et nne e 158
Figure 65: Goal and OBJECtiVE MOcoiiiii e 162
Figure 66: GOal @NO IMEBSUIES........couiiiteeitee ittt sttt ettt ettt ettt et et e e b e e b e esbeeaneenneenneenneenneen 163
Figure 67: Organizational MOEooiiiiiiiiie et sne e 168
Figure 68: Organizational DEfiNITIONSccuiiiirieiie ettt sre e nneens 169
Figure 69: BUSINESS PrOCESS MOOEooiuiiiiiiieitieee ettt sr e 174
Figure 70: ProCeSS PartitiOneeieeieeiee ettt ettt ettt e e r e e ineeanesnneenbeenneen 175
Figure 71: ProCeSS DEfINITIONSoieiiiiiee ittt sttt sttt ettt sae e sbeesbeesbee s nbeenneens 175
Figure 72: Task DEfINITIONSooviiiiiii ittt sbe e sbeesbe e e nbeenneens 176
Figure 73; State DEfiNITIONSeo ettt ettt e b e et b e e aneeaneenneesbeenneens 177
Figure 74: Resource ROIE DEfiNITIONS.........couiiiiiieiie ettt s snne e 177
FiQUre 75 ProCeSS PartitiONS.........coieeiteeieerieesieestee ettt ettt ettt s et e e e sn e ane s e e sneenneens 178
FiQUIE 76: PSEUOOSIALESveeieeeieee sttt sttt bbbttt b e bt b e et et e et e b e eneesbeenbeenneens 178
Figure 77: Core DEfINITIONSooeiiii ittt b e n e san e s e e e nbeenneens 187
Figure 78: RUIE TYPE DEfiNITIONS.oiiiieiiieeiie ettt sttt st b e sb e sb e b e e sneeneeneenne e 187
FiQUIrE 79: Core EIEIMENTSottt ettt sbe e sae e sbe e e nbeenneens 194
Figure 80: TheSaUrUS EIEMENESciuiiiiiiie ittt ettt bbb e sn e s e e e enneenneens 195
Figure 81: GlOSSArY EIEIMENLS........ooiiiiiiieiie ettt sttt st sttt b e sb e sb e e b e b e beeneenbeenneens 195
Figure 82: INEX EIBMENTS......cuiiiiiiitie ittt ettt ettt st e bt e sbeesae e sbeeenbeenneens 196
Figure 83: Phrasing Groups and TyPes Of PhIraSiNg.........coveieeiiiniieie e 204
Figure 84: Relationships and PHFaSINGS.coveiiieiiieeiee ettt sttt sttt ettt et et e nesnesnnesane e 206
Figure 85: ComMENG ATQUIMIENTScoiuiiiieeitieitie it siee st e st e ste st e e beesbe et e beesbessesanesseesssesanesanesaeesreesaneens 207
Figure 86: Default Relationships and Date RESOIULTIONcoviiiiiiiiie e 208
Figure 87: Entity-To-Datahase LinKSoouiiiiiiiiie ittt e 208
Figure 88: More Database LiNKS.eiieiiiiiieiie ettt ettt s nne e 209
Figure 89: Semantics and Database JOINSccueeieeieeiieriee e siee et sttt st e e b e sbe b e e sbeesbeesneenseeneens 209

Table of Figures 239

