
1

2

3

4

5

6

Meta Data Coalition7

Open Information Model8

9

10

11

12

13

Version 1.1 (Proposal)14

15

16

17

18

19

20

21

22

August, 199923

24

25

26

27
28

Meta Data Coalition Open Information Model

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Copyright Microsoft Corporation, 1996 - 2000.17

18

Microsoft agrees to grant, and does grant to the Meta Data Coalition ("MDC"), a perpetual, nonexclusive,19
royalty-free, world-wide right and license under any Microsoft copyrights in this contribution to copy,20
publish and distribute the contribution, as well as a right and license of the same scope to any derivative21
works prepared by MDC and based on, or incorporating all or part of the contribution. Microsoft further22
agrees that, upon adoption of this contribution as a MDC Standard, any party will be able to obtain a23
royalty-free license under applicable Microsoft rights to implement and use the technology described in this24
contribution for the purpose of supporting the MDC Standard by entering into an agreement to be25
negotiated with Microsoft. One condition of this license shall be the party's agreement not to assert patent26
rights against Microsoft and other companies for their implementation of the MDC Standard. Microsoft27
expressly reserves all other rights it may have in the material and subject matter of this contribution.28
Microsoft expressly disclaims any and all warranties regarding this contribution including any warranty29
that (a) this contribution does not violate the rights of others, (b) the owners, if any, of other rights in this30
contribution have been informed of the rights and permissions granted to MDC herein or (c) any required31
authorizations from such owners have been obtained.32

33

This is a preliminary document and may be changed substantially prior to final release. THIS34
DOCUMENT IS PROVIDED FOR EVALUATION PURPOSES ONLY AND THE META DATA35
COALITION (MDC) MAKES NO WARRANTIES, EITHER EXPRESS OR IMPLIED, IN THIS36
DOCUMENT. THE ENTIRE RISK OF THE USE OR THE RESULTS OF THE USE OF THIS37
DOCUMENT REMAINS WITH THE USER.38

39

Companies, names, and data used in examples herein are fictitious unless otherwise noted. No part of this40
document may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any41
purpose, without the express written permission of the Meta Data Coalition (MDC).42

Open Information Model Meta Data Coalition

Table of Contents i

1

Table of Contents2

1 OVERVIEW .. 13
1.1 WHAT IS META DATA?... 14
1.2 SITUATION ANALYSIS... 15
1.3 CHALLENGE... 26
1.4 THE META DATA COALITION.. 37
1.5 DEVELOPMENT HISTORY .. 48
1.6 ACKNOWLEDGMENTS ... 69

2 INTRODUCTION ... 710
2.1 GOALS AND SCOPE ... 711
2.2 OVERVIEW AND PACKAGE STRUCTURE ... 712
2.3 EXTENSIBILITY MODEL .. 913
2.4 SCENARIOS .. 914
2.5 META DATA SPECIFICATION WITH UML ... 1015

2.5.1 The Unified Modeling Language (UML) Standard ... 1016

2.5.2 Modeling Concepts ... 1117
2.6 SUBMODELS... 1318

2.6.1 Analysis and Design Model ... 1319

2.6.2 Database and Warehousing Model .. 1320

2.6.3 Object and Component Model ... 1321

2.6.4 Knowledge Management Model... 1422

2.6.5 Business Engineering Model ... 1423
2.7 COMPATIBILITY ... 1424

3 ANALYSIS AND DESIGN: UNIFIED MODELING LANGUAGE (UML) 1625
3.1 OVERVIEW... 1626
3.2 SEMANTICS.. 1627
3.3 CLASS REFERENCE ... 1828

4 ANALYSIS AND DESIGN: UML EXTENSIONS ... 2029
4.1 OVERVIEW... 2030
4.2 SEMANTICS.. 2031
4.3 CLASS REFERENCE ... 2132
4.4 OIM 1.0 COMPATIBILITY ... 3433

5 ANALYSIS AND DESIGN: GENERIC ELEMENTS.. 3534
5.1 OVERVIEW... 3535
5.2 MODEL REFERENCE ... 3536
5.3 OIM 1.0 COMPATIBILITY ... 4037

6 ANALYSIS AND DESIGN: COMMON DATA TYPES .. 4238
6.1 OVERVIEW... 4239
6.2 SEMANTICS.. 4240
6.3 CLASS REFERENCE ... 4241
6.4 OIM 1.0 COMPATIBILITY ... 4542

Meta Data Coalition Open Information Model

ii Table of Contents

7 ANALYSIS AND DESIGN: ENTITY RELATIONSHIP MODELING521
7.1 OVERVIEW ...522
7.2 SEMANTICS ..523
7.3 CLASS REFERENCE..534

8 OBJECT AND COMPONENTS: COMPONENT DESCRIPTIONS ...635
8.1 OVERVIEW ...636
8.2 SEMANTICS ..637
8.3 CLASS REFERENCE..718

9 DATABASE AND WAREHOUSING: RELATIONAL DATABASE SCHEMA........................859
9.1 OVERVIEW ...8510
9.2 SEMANTICS ..8511
9.3 MDIS COMPATIBILITY..8712
9.4 CLASS REFERENCE..8913
9.5 OIM 1.0 COMPATIBILITY ..11014

10 DATABASE AND WAREHOUSING: DATA TRANSFORMATIONS.....................................11715
10.1 OVERVIEW ...11716
10.2 SEMANTICS ..11717
10.3 CLASS REFERENCE..11918
10.4 OIM 1.0 COMPATIBILITY ..12619

11 DATABASE AND WAREHOUSING: OLAP SCHEMA..12720
11.1 OVERVIEW ...12721
11.2 SEMANTICS ..12722
11.3 CLASS REFERENCE..12823
11.4 OIM 1.0 COMPATIBILITY...13524

12 DATABASE AND WAREHOUSING: RECORD-ORIENTED DATABASE SCHEMA...........13725
12.1 OVERVIEW ...13726
12.2 SEMANTICS ..13827
12.3 CLASS REFERENCE..13828

13 DATABASE AND WAREHOUSING: XML SCHEMA ...15029
13.1 OVERVIEW ...15030
13.2 SEMANTICS ..15031
13.3 MODEL REFERENCE ..15132

14 DATABASE AND WAREHOUSING: REPORT DEFINITIONS..15633
14.1 OVERVIEW ...15634
14.2 SEMANTICS ..15635
14.3 CLASS REFERENCE..15836

15 BUSINESS ENGINEERING: BUSINESS GOALS...16237
15.1 OVERVIEW ...16238
15.2 SEMANTICS ..16239
15.3 CLASS REFERENCE..16340

16 BUSINESS ENGINEERING: ORGANIZATIONAL ELEMENTS..16741
16.1 OVERVIEW ...16742
16.2 SEMANTICS ..16743

Open Information Model Meta Data Coalition

Table of Contents iii

16.3 CLASS REFERENCE ... 1691

17 BUSINESS ENGINEERING: BUSINESS PROCESSES ... 1732
17.1 OVERVIEW... 1733
17.2 SEMANTICS.. 1734
17.3 CLASS REFERENCE ... 1755

18 BUSINESS ENGINEERING: BUSINESS RULES... 1856
18.1 OVERVIEW... 1857
18.2 SEMANTICS.. 1858
18.3 CLASS REFERENCE ... 1879

19 KNOWLEDGE MANAGEMENT: KNOWLEDGE DESCRIPTIONS 19210
19.1 OVERVIEW... 19211
19.2 SEMANTICS.. 19312
19.3 CLASS REFERENCE ... 19413

20 KNOWLEDGE MANAGEMENT: SEMANTIC DEFINITIONS.. 20214
20.1 OVERVIEW... 20215
20.2 SEMANTICS.. 20216
20.3 CLASS REFERENCE ... 20417

GLOSSARY.. 23218

CLASS INDEX ... 23519

TABLE OF FIGURES.. 24020

21

22

Open Information Model Meta Data Coalition

Overview 1

1 Overview1

The Meta Data Coalition (MDC) Open Information Model (OIM) is a vendor-neutral and technology-2
independent specification of core meta data types found in the operational and data warehousing3
environment of enterprises. This section presents the motivation for meta data management and the creation4
of the OIM.5

1.1 What is Meta Data?6

Meta data is descriptive information about the structure and meaning of data and of the applications and7
processes that manipulate data. Meta data can be grouped into two categories: technical and business meta8
data.9

Technical meta data supports designers, developers, and administrators during development, maintenance,10
and management of an information technology environment. It is the technical glue that links the tools,11
applications, and systems that together constitute a solution. For example, technical meta data can address12
database structures, installed applications, server systems, and so forth.13

Business meta data, on the other hand, makes the services of the enterprise environment more14
understandable to end-users. For example, it provides explanations of the business objects and processes to15
ease browsing, navigation, and querying of data.16

1.2 Situation Analysis17

Corporate globalization and internationalization in a rapidly changing and increasingly competitive18
business environment requires that companies leverage their information assets in new and more efficient19
ways. Enterprise data, once viewed as merely operational or tactical in nature, is now being used for20
strategic decision-making at every enterprise business level.21

Managing the strategic information assets and providing timely, accurate, and global access to enterprise22
data in a secure, manageable, and cost efficient environment is becoming increasingly critical.23
Competitiveness forces companies to integrate turnkey solutions to achieve the tactical advantages of lower24
cost and reduced implementation time. The strategic advantages of online access to all knowledge25
maintained in the distributed computing environment of an enterprise requires blurring the lines between26
OLTP (Online Transaction Processing), Data Warehousing, and the Web.27

Meta data, or information about data, has become the critical enabler for the integrated management of the28
information assets of an enterprise. The proliferation of data manipulation and management tools29
throughout an enterprise has resulted in a host of incompatible information technology products, each of30
which processes meta data differently.31

End-users suffer from inaccessible and incompatible meta data locked into individual tools. Meta data has32
become the number one integration problem in the area of enterprise information and data warehouse33
management for the following reasons:34

• No single tool covers all information processing requirements of a multi-task business or35
development process. Users are forced to change tools, and of course, they want to reuse the meta36
data they have already entered.37

• Not all components of an integrated tool set may provide the required functionality or38
performance. Better tools may be available. Mixing and matching of best-of-breed tools is39
important, or even crucial, for the success of today’s corporations. This mixing and matching40
requires meta data integration of tools from different vendors.41

• Organizations may wish or may be required to track meta data for their OLTP or data warehousing42
environment to make it auditable. This requires the extraction of meta data from individual43
databases, applications, and tools, and archiving the combined state as a configuration.44

Meta Data Coalition Open Information Model

2 Overview

• Large enterprises spread over many countries and grouped into individual sub-companies will not1
be able to agree on a single set of database systems, applications, and tools. Meta data integration2
is the only solution that provides an overview of the global information inventory in such a3
situation.4

• Today’s enterprises are faced with the difficult decision of either undertaking the expensive task of5
meta data integration by themselves, or missing out on the benefit of sharable and reusable meta6
data.7

1.3 Challenge8

Enterprise-wide information management requires global and efficient access to shared meta data by all the9
heterogeneous products found in today’s information technology environment. To use tools efficiently,10
users need to be able to move meta data between tools or between tools and a repository. In addition, tools11
are often provided by different vendors and run on different hardware and software platforms.12

Legacy Systems
DB2 MVS, VSAM,

CICS/IMS,...

Meta Data ModelInternet and
Client / Server

IE 5.0, Windows,
Unix,...

UML Model

Transformation

Table Desc.

Column Desc.

Component Spec.

Business Rule

Process ModelDependency
Administrator

End user

Developer

Meta data Sources

Shared Meta Data

13

Figure 1: Shared Meta Data Environment14

To integrate the different tools and repositories in an enterprise environment, they all must share meta data15
in the same way. In addition to global access, this requires that meta data is stored, managed, and16
interpreted in a consistent way by all participants. A successful framework to integrate tools from different17
vendors through shared meta data must satisfy the following requirements:18

• Meta data integration requires a common specification that defines the structure and semantics of19
meta data in a formal and consistent way to which the different vendors’ products can comply. For20
the industry to agree on this specification, it must be technology-independent and vendor-neutral.21

• The common specification must be published in a standard language, so it can be understood and22
manipulated by humans as well as tools. Automatic translations and mappings are necessary to23
support multiple implementations as well as new and emerging technologies.24

• The common specification has to be abstract and published in a format so that vendors can25
implement it on many platforms and by many technologies. Vendors are therefore free to innovate26
in the area of implementation technology and are not forced to use specific component models,27
APIs, database technologies, or platforms.28

• Multi-vendor implementations of the common specification require an interchange mechanism for29
moving meta data between the resulting heterogeneous products. The interchange enables end-30
users to integrate conforming products in a plug-and-play fashion.31

Open Information Model Meta Data Coalition

Overview 3

• Browsing, querying, and reporting on meta data described by the common specification requires1
that tools and repositories expose a schema. End-users and developers therefore can rely on a2
consistent queriable view of their meta data even in different implementations.3

The MDC Open Information Model is a specification of a core set of meta data types such as database4
schema, business process, or business object elements. The following figure shows how the MDC OIM fits5
into the different levels of data modeling and abstraction:6

7

Unified Modeling Language Class, Attribute, Method, Association,
Generalization

Open Information Model Table, Column, Business Process, Business Object,
Dictionary, Term, Synonym

Meta Data Customer Table, Order Entry Process, Expense
Report, Business Object, Cost Center Definitions

Data Vulcan Coffee, Report 12/99, Cost Center 10747

The UML is the most abstract description of information structures by classes arranged into a8
generalization / specialization hierarchy. The Open Information Model is a specialization of the abstract9
concepts of UML into domain specific types that describe meta data. It represents an industry agreement on10
a detailed semantics of types such as a table definition. The instances of the Open Information Model11
represent the descriptive information about enterprise data such as actual SQL Schema, OLAP Schema, or12
business process definitions.13

The meta data types – along with their attendant native interchange format and relational query schema –14
form a comprehensive, easy-to-use, and standards-based solution for the integration of meta data in an15
enterprise environment, including the extension and customization of the meta data model itself. The use of16
standard definitions enables linking of heterogeneous implementations. The following standard17
technologies are used to provide implementations of the MDC OIM:18

• The Unified Modeling Language (UML) as the formal specification language for OIM,19

• The eXtensible Markup Language (XML) as the interchange format for OIM, and20

• The Structured Query Language (SQL) as the query language for OIM.21

1.4 The Meta Data Coalition22

The Meta Data Coalition (MDC), founded in 1995, is a not-for-profit consortium of vendors and end-users23
whose goal is to provide a vendor-neutral and technology-independent specification of enterprise meta24
data.25

The Meta Data Coalition brings industry vendors and users together to address a variety of problems and26
issues regarding access, sharing, and management of meta data. This is a voluntary coalition of interested27
parties with a common focus and shared goals, not a traditional standards body or regulatory group.28

The Meta Data Coalition members agreed upon goals, including:29

• Creating a vendor-independent, industry-defined and industry-maintained specification for meta30
data;31

• Enabling users to control and manage the access and interchange of meta data in their unique32
environments through the use of specification-compliant tools;33

• Allowing users to build tool configurations that meet their needs and to incrementally adjust those34
configurations as necessary to add or subtract tools without impact on the environment;35

Meta Data Coalition Open Information Model

4 Overview

• Defining a clean, simple interchange implementation framework that will facilitate compliance1
and speed adoption by minimizing the amount of modification required to existing tools to achieve2
and maintain compliance;3

• Creating a process and procedure not only for establishing and maintaining a meta data standard4
but for extending and updating it over time as required by evolving industry and user needs; and5

• Using or aligning with existing and accepted standard technologies or standards efforts wherever6
possible.7

A non-goal of the MDC is to develop a specification for specific repository implementations, component8
technologies, or database systems. Furthermore, the scope of the specification is focused on a core set of9
generic meta data types independent of individual tools or applications. The limits on the scope of the10
MDC meta data specification are introduced to make it possible to reach a wide consensus and avoid that11
individual vendor solutions become the only “correct” way.12

The Meta Data Coalition maintains both a Web Page site and an e-mail address to allow members or13
potential members to communicate electronically. The current Web address is:14

http://www.MDCinfo.com/15

which is available through the World Wide Web. The Council also maintains the e-mail address:16

coalition@evtech.com17

which includes the e-mail addresses of coalition members, and18

mdc-spec@evtech.com19

for sending comments regarding technical proposals.20

1.5 Development History21

The development history of the OIM includes initial designs based on existing standards, collaborations22
with dozen of vendors, broad reviews by hundreds of vendors, and widely distributed beta releases. The23
development of the original version of OIM, driven by Microsoft before transferring OIM to the MDC, was24
marked by the following milestones:25

• October 1996: First OIM Design Preview26
Microsoft and Texas Instruments (TI) unveiled their Repository design, which included a draft27
information model, developed by Microsoft, TI, SELECT Software Tools and Rational Software.28
This initial version of OIM comprised interfaces enabling the development of interoperable tools29
for component-based development and reuse. The technical review and demonstrations were30
conducted as part of Microsoft’s Open Process, with the participation of over 50 core members of31
the software development community, including vendors of development tools, design and32
modeling tools, enterprise applications, and document management and version control systems.33

• January 1997: UML Model Interchange Initiative34
Twenty-one leading enterprise modeling vendors jointly announced with Microsoft the35
development of the Unified Modeling Language (UML) subject area of the OIM. This model36
enables teams of corporate developers to easily share models developed with different modeling37
tools, enabling high-quality component-based application development and reuse. Vendors38
involved in the first round of UML model development included Microsoft, Logic Works (now a39
division of PLATINUM technology), Popkin Software and Systems, Rational Software, SELECT40
Software Tools and Texas Instruments (TI). Via the Open Process, the information model review41
was then expanded to include essentially all vendors in the software modeling industry. These42
vendors were invited to a design preview held on January 31, where the model was presented and43
the first-round vendors demonstrated full cross-tool interoperability with each other’s tools. The44
final version of the model was shipped two months later in Visual Basic 5.0 and Visual Studio 97.45

Open Information Model Meta Data Coalition

Overview 5

• July 1997: Open Information Model Design Preview1
Over 60 software vendors attended a design preview of a greatly expanded OIM, which provided a2
common way for development tools to work together across the software development life cycle.3
This event gave vendors an opportunity to offer input on the design specifications. Over 30 of4
these vendors had development projects underway that utilize the model. The addition of a new5
database schema model enabled development tools to automatically target multiple databases6
without rewriting application code. Based on design input from Business Objects, Cognos,7
Informatica, Logic Works, PLATINUM technology, Popkin Software and Systems, Powersoft,8
Prism Solutions and Sterling Software, the new database schema model enabled easy sharing of9
schema information between multiple vendors' data warehousing and database design tools. At10
this preview, Microsoft and PLATINUM technology announced a partnership to make the OIM11
available on non-Microsoft operating systems and database systems, and to draw on12
PLATINUM’s information model expertise in future extensions to OIM.13

• October 1997: Meta Data Coalition Endorsement14
The MDC was an active reviewer of the OIM and the DBM subject area, proposing extensions to15
the DBM model to fit the needs of the MDC. The MDC also launched its Metadata Interchange16
Specification (MDIS) to OIM translator freeware, which reads mapping information from an17
MDIS file to the DBM model, and vice-versa. This first release emphasized the relational database18
model, and the transformations and business rules from MDIS that have an explicit representation19
in the DBM model.20

• December 1997: Data Warehousing Extension Web Review21
An open design review process was initiated for gathering industry feedback on new data22
warehousing extensions to the OIM, whose goal was to enable data warehousing products from23
different vendors to share information. The initial partners in this effort were Apertus Carleton,24
Business Objects, Cayenne Software, Cognos, Evolutionary Technologies International,25
Informatica, Logic Works, Microsoft, PLATINUM technology, Popkin Software & Systems,26
Powersoft, Prism Solutions, and Sterling Software. This open design review period began with the27
availability of preliminary specifications for data transformation services and online analytical28
processing (OLAP) extensions to the Open Information Model. More than 550 vendors reviewed29
the specifications.30

• April 1998: Data Warehousing Workshop31
The Data Warehousing Workshop brought together more than 200 leading developers and users of32
data warehousing, software development and data transformation tools to review and shape an33
open standard for a repository-based data warehousing infrastructure. The event focused on the34
expanding role of the OIM as a common infrastructure for data warehousing products and35
software development tools. Evolutionary Technologies International, DWSoft Technology, Logic36
Works, PLATINUM technology, Sagent Technology and TopTier Software demonstrated early37
product implementations based on the new extensions. The model shipped in SQL Server 7.0 and38
Visual Studio 6.0.39

• December 1998 - Technology-Independent OIM Moves to the MDC40
Microsoft announced its membership in the MDC and the transfer of control of OIM to that41
consortium. The OIM will be made technology neutral, and in particular, be made independent of42
Microsoft Repository. MDC will maintain and evolve the OIM as a technology-independent and43
vendor-neutral meta data standard. Microsoft also announced the availability of the XML44
Interchange Format, by which meta data can be moved between any two repository products. New45
submodels of OIM were also announced: a model for Semantic Information, which accommodates46
meta data about linguistic processing tools that interpret relational databases, and a model for47
Record-Oriented databases, developed in cooperation with PLATINUM technology, which48
accommodates meta data from record-oriented legacy systems.49

• July 1999 – MDC Accepts the OIM as a Standard, Work Underway on Extensions50
The technical work by the MDC concluded with a vote by the membership on July 15th to adopt51
the OIM 1.0 specification as a standard. In addition, Microsoft and the MDC announced an open52
design review for proposed extensions to the OIM. The model extensions capture business53

Meta Data Coalition Open Information Model

6 Overview

modeling information such as business goals, objectives, processes, and rules as well as business1
terminology and categorizations. This information can be used to enhance the usability and2
effectiveness of tools and applications such as enterprise business information portals. These3
extensions were developed in cooperation with CA/PLATINUM technology, KPMG, LEXIS-4
NEXIS, News Edge, ICL, DWSoft, AppsCo, Deloitte & Touche Consulting, IntelliCorp,5
Micrografx, VISIO, Longs Drug Stores, Rule Machines, and the members of the MDC Technical6
Committee.7

1.6 Acknowledgments8

The development of the OIM involved the collaboration of many vendors. We especially thank Microsoft9
Corporation for their effort in driving the specification of the initial version of the OIM and for their10
agreement to pass control of this work to an independent standards organization, namely MDC. Microsoft’s11
primary partners in the development of the OIM were PLATINUM technology and Sterling Software.12
Other key contributors include AppsCo, Business Objects, Cognos, DWSoft Technology, Evolutionary13
Technologies International (ETI), Informatica Corporation, Informix Inc., Intellicorp, Visible Systems14
Corporation, Logic Works (now a division of PLATINUM technology), Popkin Software and Systems,15
Powersoft (now a division of Sybase), Prism Solutions, Rational Software, Sagent Technology, SELECT16
Software Tools, and Visio Corporation. The specific contributions of particular vendors are summarized in17
section 1.5.18

Open Information Model Meta Data Coalition

Introduction 7

2 Introduction1

The purpose of the Meta Data Coalition Open Information Model (MDC OIM) is to support tool2
interoperability across technologies and companies via a shared information model. The OIM is designed to3
encompass all phases of information systems development, from analysis through deployment. Computing4
technologies as diverse as CASE, component, application, Intranet, database, and data warehousing are5
supported.6

2.1 Goals and Scope7

The goals of the MDC OIM are to:8

• Be an easy-to-use, expressive, and extensible model of core meta data types.9

• Provide mechanisms to specialize and extend the core meta data types rather than to modify or10
replace core concepts.11

• Implement a set of fundamental concepts that are generic and generally applicable, and to reuse12
these concepts through refinement without repeatedly redefining the fundamental concepts.13

• Allow adding new concepts to the core in a consistent way.14

• Allow specialization of concepts for particular domains.15

• Provide a technology-independent and vendor-neutral specification.16

• Support heterogeneous implementation using different component technologies, programming17
languages, and other technologies.18

• Be scalable from individual tools to enterprise-wide meta data repositories.19

• Be widely acceptable (general purpose and expressive) and usable (simple and evolutionary). This20
includes the use of or alignment with existing standards.21

• Integrate best engineering practice in the area of meta data management and meta data22
specification.23

The MDC OIM is not a specification of a repository API or implementation. The primary goal of the model24
is to provide a formal description of meta data types to support sharing of meta data between tools and25
repositories. This includes interoperability between repositories. However, the MDC OIM focuses on the26
description of the information, not on data access and management.27

2.2 Overview and Package Structure28

The meta data types specified by the MDC Open Information Model are structured into domain-specific29
submodels. The following figure shows the high-level structure of the MDC Open Information Model.30

Meta Data Coalition Open Information Model

8 Introduction

� Open Information Model
� Analysis and Design Model

� Unified Modeling Language
� UML Extensions
� Common Data Types
� Generic Elements
� Entity Relationship Modeling

� Object and Component Model
� Component Description Model

� Database and Warehousing Model
� Relational Database Schema
� OLAP Schema
� Data Transformations
� Record Oriented Legacy Databases
� Report Definitions
� XML Schema

� Business Engineering Model
� Business Goals
� Organizational Elements
� Business Rules
� Business Processes

� Knowledge Management Model
� Knowledge Description Format
� Semantic Definitions

1

2

The submodels address the most important areas of information, data warehouse, and knowledge3
management in the integrated meta data environment found in an enterprise. The submodels provide a4
general set of meta data types that enable generic access and interchange. Each of the submodels is5
described in detail in this document.6

In addition to its specific use as core of the Analysis and Design Model, UML’s breadth and high level of7
abstraction make it an excellent base model from which other MDC Open Information Model submodels8
can inherit.1 UML covers such concepts as type, class, component, package, diagram, method, operation,9
relationship, attribute, and constraint concepts that are relevant to virtually all domains described by the10
MDC Open Information Model. The following figure shows the dependencies between the submodels of11
the MDC Open Information Model.12

1 The MDC OIM uses the UML in three different roles:
• The UML as modeling language and, as such, as a standard to design and customize the MDC OIM.

Focus with this usage of the language is on the UML notation.
• The UML as main part of the Analysis and Design Model subject-area of the MDC OIM. In this role,

the UML supplies the meta data types to express object-oriented models. Focus with this usage of the
language is on the UML meta model.

• The UML as core model of the MDC OIM from which other submodels inherit concepts. This usage of
the language has the goal to minimize the complexity of the MDC OIM by re-using and therefore
reducing the number of modeling concepts. Focus with this usage of the language is on the UML meta
model.

Confusion may arise because of the three different roles. To avoid this we have separated them as much as
possible in this document. Nevertheless, the use of the UML in the MDC OIM, to make it self-describing,
as model for the analysis and design domain, and as core model are all important concepts to make the
model easier-to-use, standards-based, and expressive.

Open Information Model Meta Data Coalition

Introduction 9

Model Dependency Diagram

Analysis and
Design Model

Database and
Warehousing

Model

Object and
Component

ModelBusiness
Engineering

Model

Knowledge
Management

Model

Unified Modeling
Language

1

Each of the dependent models inherits and refines concepts out of the UML. The use of UML as the root of2
the OIM is discussed in the UML reference section.3

2.3 Extensibility Model4

The MDC Open Information Model offers a set of extensibility features to accommodate specific tool5
implementations and to enable vendors to add value with their products. Extensibility is a core feature6
designed into the model. Individual vendors are able to enhance the core model with tool specific types7
independent of the MDC or other vendors. Such a flexible and powerful extension mechanism is not only8
necessary for the feature differentiation of multi-vendor implementations, but is also a prerequisite for the9
evolution of the core model itself.10

The MDC OIM extensibility is based on:11

• Stereotypes – are used to classify existing modeling elements, thereby introducing new types of12
modeling elements.13

• Tagged Values – are name / value pairs which can be used to extend the state of an object without14
modifying its structural definition.15

• Type Extension – modifies an existing type by adding one or more inheritance relationships to16
new types. The modification adds a feature but leaves the existing structural definition of the17
existing type untouched.18

• Type Reuse – enables defining a new type through inheritance from an existing type and adding19
new features. The new type conforms to the existing type, and can replace it, but offers new20
features to clients, which know of these and are able to use them.21

2.4 Scenarios22

Meta data exists in every tool and application in an enterprise. The MDC Open Information Model must23
therefore have a very broad scope. The following lists several general areas in which meta data24
management and interchange is an important part.25

• Business Process Reengineering - includes the development of models of an enterprise to26
document, analyze, and simulate the operational environment and its control and product flow.27
Models and their complex cross relationships, as well as the links to the outside world, need to be28
stored, managed, and interchanged between modeling and back-end tools, such as ERP (Enterprise29
Resource Planning) systems.30

Meta Data Coalition Open Information Model

10 Introduction

• Application Development - is one of the main areas in which meta data has been used to integrate1
tools. Software development is a multi-step process, which often involves several different tools.2
Integrating these tools can be challenging, especially if they are from different vendors. Meta data3
models implemented by repositories are the base technology to accomplish this task.4

• Data Modeling and Design - is a multi-developer task with such problems as global access, multi-5
version synchronization, and history tracking. A common meta data model enables the integration6
of network-based tools and the support of team development with a centralized repository. An7
important part of this architecture is the queryability of the meta data to implement such features8
as data dictionaries and meta data reporting.9

• Packaged Applications - require customization to address the needs of individual enterprises.10
Customization affects not only the application itself, but also the software environment around it.11
A common meta data model allows third-party vendor applications to interchange information12
with the packaged application. This ensures a controlled deployment of the application and its13
modifications, so that customizations can be re-applied to software revisions, and impact analysis14
can validate changes before they are applied.15

• Data Warehousing - with its hard-to-solve integration, consistency, lineage, and usability16
problems, has made meta data management mission critical. Integrated meta data management is a17
necessity not only to achieve tool integration, but also to aid the end-user with definitions and18
explanations. The integration of technical and business meta data in a common meta data model19
makes the tasks of designing, managing, and using a data warehouse easier to do.20

2.5 Meta Data Specification with UML21

The Unified Modeling Language (UML) is the modeling standard for specifying and representing meta22
data types for the MDC OIM. Based on the formal representation of the meta data specification in the23
UML, it is possible to generate automatically all the necessary deliverables to deploy implementations of24
the specifications in tools or repositories.25

Formal
Specification

Object Model
Interface Def.

XML Document
Type Definition

SQL Schema
Definition

Repository

XML
Transfer

Query View

UML Model

Documentation
Test, etc.

26

Figure 2: Deliverable Generation from the UML27

2.5.1 The Unified Modeling Language (UML) Standard28

The UML is a language for modeling information systems and software artifacts. The UML can be used to29
visualize, specify, construct, and document knowledge about software-intensive systems and their purposes30
at an abstract level.31

The goals of the UML are to unify the most prominent modeling methodologies into a ready-to-use32
expressive modeling language that is simple and extensible. The modeling language was developed by33

Open Information Model Meta Data Coalition

Introduction 11

Rational Software Corporation and its partners, and was adopted by the Object Management Group (OMG)1
in November 1997. The UML continues to evolve though this standard body.2

Industry organizations and the leading modeling vendors have embraced the UML. Numerous products and3
services have been announced or introduced into the market since its standardization as UML 1.0. As such,4
the language enables projects to focus on the modeling task at hand rather than to select or invent a5
consistent, accepted, and tool-supported representation language.6

The UML consists of a notation and a semantic description. The notation defines the visual representation7
of diagrams and modeling elements. The semantic description, or meta model, is the formal specification of8
the semantics of the notation. The UML is defined in itself, which means that a subset of the language9
notation and semantics is used to specify the complete language. It is therefore more than just a language; it10
provides a conceptual framework for modeling software artifacts beyond the current scope of the UML.11

In summary, the UML provides:12

• A conceptual framework for modeling software artifacts.13

• A modeling language that consists of the UML notation and the UML meta model that defines the14
semantics of the notation.15

• Sufficient notation and semantics to address object-oriented analysis and design.16

• Extensibility mechanisms for the addition, variant interpretation, and specialization of concepts.17

• A widely accepted standard with industry support and existing products and services.18

2.5.2 Modeling Concepts19

The following figure shows an example of how UML modeling concepts are used to specify meta data20
types in the framework.21

0..1 1..*

columns

Association
Name

Association End
Name

{ordered}

Feature
0..1 *

features

ModelElement
Name : String

Package Classifier

ownedElement

*

0..1

Aggregation /
Containment

Table

Multiplicity

Class Name

Attribute Name

Data Type

Column

Namespace
{abstract}

Abstract
Class

Class
Association
Generalization
Dependency

ClassHasMember

/TableHasColumn

Derived
Association

Concrete
Classes

{ordered}

22

Figure 3: UML Modeling Framework23

Meta Data Coalition Open Information Model

12 Introduction

The example shown is a formal specification of a simplified database schema representation. A package1
may contain tables, and a table may have columns. All elements can be named.2

The following lists the main meta data modeling concepts of the UML that are used to express the MDC3
Open Information Model.4

• Packages – are used to group model elements together, such as classes and associations. Packages5
themselves may be nested into other packages. Each element is directly owned by a single package6
and packages therefore form a strict hierarchy.7

• Diagrams – diagrams are graphical representations of a set of model elements that render views of8
a model from a certain perspective. Diagrams are used to provide a graphical structuring of a9
model so that it can be better understood by the modeler.10

• Classes – are specifications of a set of objects that have common structural and behavioral11
features. Classes are used to model entities with common characteristics and semantics. Classes12
may be Abstract, and therefore incompletely specified, or Concrete, in which case they are13
complete and, in an implementation, would be instantiable.14

• Attributes – are members of classes and describe structural features of entities. Attributes are15
used to model information associated with entities. They can have a data type and an initial value,16
usually denoted by: attribute-name : data type = initial-value. Attributes may be derived from17
other attributes in the model.18

• Data Types – are instances that define data values and are used to model simple values that have19
no identity.20

• Associations – are descriptions of relationships between classes, which have similar structural and21
behavioral features. They are used to relate entities where the relationship has common22
characteristics and semantics. An association has two Association Ends, which connect the23
association to two classes. Associations and Association Ends can be named and can have the24
following properties:25

Navigability – indicates that an association can be navigated towards the class attached to the26
arrow. Associations that do not have the Navigability flag are either unknown or bi-27
directional.28

Aggregation / Containment – are properties of association ends modeling containment or29
composition. The property is attached to the association end of the class that is aggregated or30
contained. At most one association end can have the property. The Aggregation or31
Composition property is indicated as a hollow or filled diamond in diagrams.32

Multiplicity – is a constraint on a association end, specifying how many of the elements related by33
the association end are allowed to participate in the association. Multiplicity provides lower34
and upper bounds for the participating elements. * is a short form for 0..Infinity and is35
assumed if no Multiplicity range is provided.36

Ordering - if present, says that, for association ends with multiplicity greater than one, the set of37
related elements is ordered.38

Sorted – is a property of a association end that specifies that the elements attached by the39
association end are sorted based on their internal value.40

Derived – indicates an association that is derived from an existing association.41

• Generalization is defined as the taxonomic relationship between a more general and a more42
specific element that is fully consistent with the first element, and that provides additional43
information.44

• Dependencies - indicate a semantic relationship between two or more model elements. The client45
of the dependency requires features and therefore the presence of the supplier element of the46
dependency. The modeling concept is used to show the dependency between model packages.47

Open Information Model Meta Data Coalition

Introduction 13

2.6 Submodels1

The remainder of this document describes the submodels of the Open Information Model. These submodels2
are organized as UML packages addressing four major subject areas, described below.3

2.6.1 Analysis and Design Model4

Analysis and design tools are integrated in the software design, development, and deployment life cycle at5
every step either as an input tool, for documentation purposes, or as a tool to analyze or validate results.6
This requires that they be tightly integrated with all the other applications, either through meta data7
interchange, or by sharing a common repository.8

Object-oriented models, enterprise data models, and other meta data evolve individually or in a9
configuration with the described system. It is therefore necessary that the relationships between a model10
and the elements of a system can be expressed and maintained. The Analysis and Design Model therefore11
must provide not only modeling elements but also mechanisms for referring to elements outside of the12
scope of the model. This capability, as well as the generic concepts in the model, make it a natural fit to13
serve as a core model from which other more specialized models inherit more generic concepts such as14
package, containment, or dependency.15

The Analysis and Design Model covers the domain of object-oriented modeling and design of software16
centric systems. The model provides concepts to describe problems and solutions throughout the complete17
software life cycle. The core of the model is the UML meta model. The UML consists of a notation and a18
meta model. The meta model describes the semantics of the notation in a formal way. It consists of a set of19
meta types, their relationships, and their meaning, and, as such, is ideally suited to become the core of a20
model for the analysis and design subject area.21

2.6.2 Database and Warehousing Model22

The Database and Warehousing Model provides meta data concepts for schema management for database23
design, schema reuse, and data warehousing. The Relational Database Schema package includes concepts24
found in standard SQL data definitions and similar types of formatted data models. For the most part, the25
model focuses on logical database concepts. However, it also includes some physical database concepts,26
because they are needed in nearly all usage scenarios. The Record-Oriented Database Schema package27
describes data maintained in the files, legacy databases, and so forth, of an enterprise.28

Schemas definitions in XML define types for the valid structures in an XML document. The XML Schema29
package provides meta data types to represent the definitions that constitute an XML schema. The Report30
Definitions package represents information necessary for data reporting tools and their relationships to the31
systems they report on.32

The Data Warehousing-specific packages extend the database schema model in several important directions33
in order to support data marts and data warehouse applications. The OLAP schema package data types34
capture descriptions of multi-dimensional (OLAP) data cubes used in decision support systems. The Data35
Transformations package captures information about data transformations used in moving data from36
production databases into a data warehouse or data mart.37

2.6.3 Object and Component Model38

The use of object-oriented development techniques to facilitate sharing and reuse of code has become39
strategic for enterprises in order to reduce cost and time to deployment. Reuse and sharing requires tracking40
meta data throughout the whole life-cycle of a component, from specification through design and41
subsequent enhancements. The Object and Component submodel intends to cover the various aspects of42
object-oriented development.43

Meta Data Coalition Open Information Model

14 Introduction

2.6.4 Knowledge Management Model1

Knowledge management is the integrated and collaborative process of information asset creation, capture,2
organization, access, and usage. Information assets include databases, documents, and the experience and3
knowledge of domain experts.4

The Knowledge Management Model provides the necessary meta data types to create catalog structures of5
enterprise information and to capture business terminology, its semantic relationships, and the mapping to6
storage structures.7

The Knowledge Description Model extensions provide meta data types to define a controlled vocabulary to8
classify business information. The model allows one to define subject and topic terms and a hierarchy or9
classification tree of categories. Each category has a defined schema, which is a composition of locally10
defined properties and schemas inherited from parent categories. Information objects, such as data base11
tables, queries, reports, and documents, can appear in multiple categories, such as corporate sales, product12
marketing and finance. The vocabulary of controlled topics and subjects, together with uncontrolled terms,13
can be used to search the information maintained by the information directory.14

The Semantic Definition submodel extensions provide meta data types to describe models for a semantic or15
linguistic processor. These processors let users interact with their database data without learning a data16
manipulation language. Before a linguistic processor can interact with a database, however, an analyst must17
articulate the mappings between the database schema and the semantic constructs familiar to the users. The18
model provides concepts to define business terms and synonyms and to map them to the names of SQL19
tables and columns.20

2.6.5 Business Engineering Model21

22

The goal of business or enterprise modeling is to develop a blueprint depicting how a company or a part of23
a company operates or should operate. For the purpose of this specification, a business is defined as a set of24
cooperative activities that are performed by the interaction of people and machines. Documenting the25
structure and processes of a business in a formal and accurate way is necessary not only to re-engineer26
them but also to automate or semi-automate them by computers.27

The goal of the Business Engineering submodel is to align the storage and interchange representation of28
business engineering meta data. A well-defined set of meta data types provides standardization of29
information representation for the purpose of tool integration by vendors and end-users. No methodology or30
notation is assumed or enforced by the model. The information captured by the model can be represented31
visually using modeling techniques such as IDEF or the UML.32

The Business Engineering Model contains several related packages. These packages provide meta data33
types to describe the goals of a business, its organizational structure, the rules that govern the business, and34
the processes that move information and material. The separation of goals, process, and structure allows a35
more flexible and understandable description of a business.36

2.7 Compatibility37

The MDC OIM supersedes the MDIS 1.0 and the Microsoft OIM 1.0 specification. The MDC OIM offers38
backward compatibility in order to protect the investment software vendors have made in adopting one of39
the predecessor models.40

The changes between the existing models and the MDC OIM can be grouped into three areas:41

• Name changes – are simple changes of the identifier of a model element, e.g. Type in UML 1.0 has42
changed to Classifier in UML 1.3. The UML representation of the MDC OIM that accompanies this43
document provide the ability to maintain different name compatibility sets (OIM 1.0, MDIS 1.0) for all44
model elements including classes, attributes, associations, association ends, etc. For example, the45

Open Information Model Meta Data Coalition

Introduction 15

MDIS 1.0 name compatibility set maps MDIS DATABASE onto MDC OIM Catalog. An1
implementation may choose a specific name set to ensure backward compatibility.2

• Additions – are modifications that add new elements or attributes to the model. The MDC OIM3
includes new features such as the UML 1.3 Activity Diagrams package (UML 1.0 did not include4
Activity Diagrams) for which no semantically equivalent concept existed. The UML concept of5
derivation of attributes and associations has been used to create backward compatible structures in case6
an element has been moved. In such a case the old element continues to exist and the new one is7
derived from the existing one.8

• Incompatible changes – are structural or semantic modifications that require a modification or9
migration of an implementation. The UML 1.3 Model Management package, for example, has changed10
significantly from the UML 1.0 version. The MDC OIM maintains compatible structures along with11
the new structures to maintain backward compatibility. These compatibility structures are noted in the12
model and will be removed in future revisions. They should be used only if backward compatibility is13
an issue.14

Meta Data Coalition Open Information Model

16 Analysis and Design: Unified Modeling Language (UML)

3 Analysis and Design: Unified Modeling1

Language (UML)2

3.1 Overview3

The UML package describes version 1.3 of the Unified Modeling Language, a standard from the Object4
Management Group (OMG). It forms the foundation of the MDC Open Information Models and is the5
package from which all other packages inherit.6

Having submodels inherit from the UML yields the usual benefits of reuse via inheritance:7

• It reduces the overall size and complexity of OIM by reusing UML concepts in many submodels.8
The containment hierarchy defined for UML Packages and Model Elements, for example, is9
generally applicable. For example, database schemas using the generic UML containment10
mechanism contain table definitions.11

• It makes sharing between different types of tools simpler and more efficient. For example, a useful12
function in a database-oriented development tool is to generate a component definition from a13
table definition. Usually, this requires translating details about the table definition into details14
about the component’s class. However, in the MDC OIM, since both database table and15
component class inherits from UML class, many details of a table definition can be interpreted as16
details of a component class. Thus, a table definition’s details can be directly interpreted as a17
component class definition, without any explicit translation.18

• It enables generic tool functionality that can analyze and interpret meta data structures without19
understanding the complete semantics. Dependencies, for example, are defined in UML and used20
by all submodels. This allows generic analysis tools to show dependencies independent of the21
semantics of the dependent objects. Once the user has navigated to a specific item, a specific tool22
that understands the individual semantics can be invoked.23

The architecture of the UML package is based on version 1.3 of the Unified Modeling Language published24
by the Object Management Group. Please review the UML version 1.3 specifications and model diagrams25
available at the Web site http://www.omg.org.26

3.2 Semantics27

The MDC OIM is based on UML 1.3 as standardized by the OMG. The MDC is committed to evolving the28
MDC OIM as UML evolves and to ensuring backward compatibility to the OIM 1.0 and MDIS 1.029
specifications. This section contains additions to UML 1.3 to ensure backward compatibility of the MDC30
OIM with UML 1.0, on which OIM 1.0 was based.31

32

The MDC OIM enables the modeling of meta data at multiple levels of abstraction - including conceptual,33
logical, physical, and deployed. It uses the UML concept of refinement to link objects of different levels34
together, where the refining element is somehow less abstract (more physical) than the refined element. The35
following diagrams illustrate a common use of this concept:36

Open Information Model Meta Data Coalition

Analysis and Design: Unified Modeling Language (UML) 17

makes

type

CREDIT CARD

credit card number
credit card exp
credit card type

CHECK

check bank number
check number

CUSTOMER

customer number

name
address
phone
credit card
credit card exp
status code

PAYMENT

payment transaction number

type
amount
date
status

1

Figure 4: Sample Logical Database Model2

3

CUSTOMER

customer_number: int

customer_first_name: char(15)
customer_last_name: char(15)
customer_address_1: varchar(180)
customer_address_2: varchar(180)
customer_city: char(18)
customer_state: char(2)
customer_zip: char(10)
customer_phone: int
customer_credit_card: int
customer_credit_card_exp: datetime
customer_status_code: char(1)

PAYMENT

payment_transaction_number: int

customer_number: int
payment_type: char(18)
payment_amount: money
payment_date: datetime
payment_status: varchar(1)
check_bank_number: char(18)
check_number: char(18)
credit_card_number: char(18)
credit_card_expiration: datetime
credit_card_type: char(18)

4

Figure 5: Sample Physical Database Model5

The first diagram depicts a logical data model that relates a customer to a payment. The second diagram6
depicts the same model with implementation (deployment) details added. A refinement object can be used7
to indicate which specific physical elements are refinements of which logical elements. It can, likewise, be8
used to tie a single physical element (e.g. payment) as a refinement of multiple logical elements (e.g.9
payment, check, and creditcard).10

In a conceptual model, the type of an object (e.g. table, component) is not strongly defined. For example, a11
user may want to describe a system that relates the concepts of customers and payments, but not to specify12
whether it will be deployed in a relational database or as a C++ component. It is suggested that a13
conceptual element simply modeled as a UML model element with a name and description can be linked to14
other elements through dependencies and refinements until an equivalent logical element can be identified15
and created. As model elements, they can still be packaged, diagrammed, named, defined, refined, and16
related through dependencies. When a more type-specific logical element is created, it should conform to17
the information model for that type with regard to properties, relationships, and constraints.18

Meta Data Coalition Open Information Model

18 Analysis and Design: Unified Modeling Language (UML)

3.3 Class Reference1

DataValue
(from Common Behavior)

Instance
(from Common Behavior)

0..*

0..1

+Values

0..*

0..1

UML 1.0 Compatibility Addtions to UML 1.3

Attribute: Attribute - TypeExpression
Attribute: Parameter - TypeExpression
Attribute: Multiplicity - Body

Class: System
Class: Note

Generalization: System - Package
Generalization: Note - ModelElement
Generalization: Constraint - Note

Association: Element - TaggedValue
Association: TaggedValue - TaggedValue
Association: Instance - DataValue
Association: Model - System
Association: Package - Model
Association: System - Dependency
Association: System - Stereotype
Association: System - System
Association: Dependency - Element

Note
Value : Text

Attribute

initialValue : Expression
typeExpression : Expression

Parameter
defaultValue : Expression
kind : ParameterDirectionKind
typeExpression : Expression

Multiplicity

body : String

ModelElement
(from Core)

Constraint
(from Core)

Package
(from Model Management)

Model
(from Model Management)

0..1

1..*

+Model

0..1

+Packages

1..*

Stereotype
(from Extension Mechanisms)

System

0..1

0..*

0..1

+SubSystems

0..*

1..1 0..*

+System

1..1

+Models

0..*

0..*1..1

+Stereotypes

0..*1..1

Dependency
(from Core)

0..*0..1

+Dependencies

0..*0..1
Element

(from Core)

+SourceElement+TargetDependencies

+TargetElement+SourceDependencies

TaggedValue
(from Extension Mechanisms)

0..*
0..*

0..*

+TaggedValues

0..*

0..1

0..*

+Elements
0..1

+TaggedValues 0..*

2

Figure 6: OIM 1.0 Compatibility3

3.3.1 Note4

A note is a comment attached to an element or a collection of elements. A Note has no semantic impact.5
See UML 1.0 specification for more details.6

Specializes7

• ModelElement (from UML)8

Attribute9

• Value (Text) – The uninterpreted content of the note.10

3.3.2 System11

A collection of connected units that are organized to accomplish a specific purpose. One or more models12
can describe a system, possibly from different points of view. See UML 1.0 specification for more details.13

Specializes14

• Package (from UML)15

Association16

• Models (Model) – collection of Model elements that constitute the System.17

• Dependencies (Dependency) – dependencies between the System and other model elements.18

Open Information Model Meta Data Coalition

Analysis and Design: Unified Modeling Language (UML) 19

• Stereotypes (Stereotype) – stereotypes that apply to the System and its subelements.1

• SubSystems (System) – collection of Systems as sub-elements that constitute the System.2

3

Meta Data Coalition Open Information Model

20 Analysis and Design: UML Extensions

4 Analysis and Design: UML Extensions1

4.1 Overview2

The UML Extensions package has two primary purposes. First, it enhances the UML package by3
introducing the ability to describe the presentation or display of UML elements. This is extremely relevant4
information to gather, as anyone who has ever spent time using an object-oriented design tool knows,5
because much of the time is spent arranging diagrams so that they communicate the model clearly. Second,6
it provides a place for other general-purpose additions to the UML package.7

The UML Extensions package is dependent on the UML package.8

4.2 Semantics9

The UML extension package is divided in to three subpackages. The Presentation and View Elements10
package contains all of the classes used to model the presentation of elements on a diagram. The Auxiliary11
Elements package contains all of the other general-purpose extensions to the UML package.12

The Syntax Elements package is used to store and interchange formal definitions of computer languages13
and expressions. The unambiguous definition of a grammar allows developing parsers for a language14
automatically. Each Grammar Rule defines a pattern that defines a named structural part of the language.15
The name forms the set of non-terminal Symbols available in the Syntax. Such a non-terminal Symbol is16
replaced by the Statement part of the Grammar Rule also called left-hand side.17

Open Information Model Meta Data Coalition

Analysis and Design: UML Extensions 21

4.3 Class Reference1

Application

CallDerivation

File

Import

LibraryModu le

ModuleSpec

Project

Classifier
(f rom Core)

Dependency
(f rom Core)

Component
(f rom C ore)

Package
(f rom Model Management)

2

Figure 7: Auxiliary Elements3

VariantTaggedValue
VariantValue : Binary

Attribute

IsNul lable : Boolean
IsReadOnly : Boolean
IsConstant : Boolean
AverageLength : Long
MinimumLength : Long
Oc tetLength : Long
Length : Long
NumericScale : Integer
NumericPrecision : Integer
TimePrecision : Long

MemberVariable
Offset : Long

ModuleOperation
EntryIDString : String
EntryIDOrdinal : Long
Body : Text

Operation
(from Core)

Attribute
(from Core)

TaggedValueSet

TaggedValue

1..*

0.. *

1..*

+TaggedValues

0..*

Comment
Value : String

Namespace
(from Core)

Comment
(f rom Core)

ModelElement
(from Core)

TaggedValue
(from Extension Mechanisms)

4

Figure 8: Additional Auxiliary Elements5

Meta Data Coalition Open Information Model

22 Analysis and Design: UML Extensions

1

Diagram

ComponentDiagram ClassDiagram

Projection

Sty le : String

ViewElement

0.. *

1..1

+Projections

0.. *

1..1

ModelElement
(from Core)

PresentationElement
(from Core)

**

+subject

*

+presentation

*

GraphicElement

BackgroundColor : Long

2

Figure 9: View Elements3

Open Information Model Meta Data Coalition

Analysis and Design: UML Extensions 23

Associat ionRoleProjection

MultiplicityProjection

1..1

0..1

1..1

+MultiplicityProjection0..1

Font

Name : String
FontSize : Integer
Style : FontSty le
Color : Long
Alignment : FontAl ignment

LineProperties

Style : String
Width : Integer
Color : Long

LineContainer

Line

1..1

0..*

1.. 1

+Lines 0..*
{ordered}

RelationshipProjection

GraphicElement

BackgroundColor : Long

PointContainer

Projection

Point

X : Long
Y : Long
Z : Long

1..1

0..*

1..1+Points

0..* {ordered}

1..1

0..*

1..1

+Points0..*
{ordered}

1

Figure 10: Projections2

Meta Data Coalition Open Information Model

24 Analysis and Design: UML Extensions

Symbol

Classifier
(f rom Co re)

TerminalSymbol

Expression

Order : ExpressionOrder
Occurence : UML:Multiplicity

NonTerminal

Statement

1..*

1..1

+Elements

1..*{ordered}

1..1

Rule

IsStart : Boolean

*1..1 *

+Substitute

1..1

1..*

1..1 +Elements

1..*{ordered}

1..1

Syntax

Grammar

1..*1

+Rules

1..*1

0..1

0..*

+Syntax0..1

0..*

Namespace
(from Core) ModelElement

(from Core)

1

Figure 11: Syntax Elements2

3

4.3.1 Application4

This class defines an application (e.g., an .exe). This class realizes the UML “application” stereotype.5

Specializes6

• Component (from UML)7

4.3.2 AssociationEndProjection8

This class represents the projection of an association end onto a diagram. This class provides the position9
(and other view characteristics) of the association end label. Any associated Multiplicity Projection gives10
the position (and other view characteristics) of the labels showing the association end multiplicity.11

Specializes12

• Projection (from UML)13

Association14

• MultiplicityProjection (MultiplicityProjection) – The projection of the multiplicity label of the15
association end.16

Open Information Model Meta Data Coalition

Analysis and Design: UML Extensions 25

4.3.3 Attribute1

This call extends the features of the UML attribute.2

Attribute3

• IsNullable (Boolean) – Indicates whether the attribute can be null.4

• IsReadOnly (Boolean) – Indicates whether the attribute is read only.5

• IsConstant (Boolean) – Indicates that the attribute has a constant value. Such an attribute must6
have an InitialValue that defines the constant value defined.7

• AverageLength (Long) – The expected average length of data stored in this attribute.8

• MinimumLength (Long) – The smallest length of data that can be stored in this attribute.9

• OctetLength (Long) – Maximum length in octets (bytes) of the attribute, if the type of the attribute10
is character or binary. A value of zero means the attribute has no maximum length.11

• Length (Long) – The maximum possible length of a value of the attribute.12

• NumericScale (Integer) – The number of digits to the right of the decimal point in the column for13
numeric attributes.14

• NumericPrecision (Integer) – The maximum number of base 10 digits that can be stored for15
numeric attributes.16

• TimePrecision (Long) – Datetime precision (number of digits in the fractional seconds portion) if17
the attribute is a datetime or interval type.18

Association19

• DerivedAttributes (Attribute) – The collection of attributes that are derived from this attribute.20
For example, your age is based on your birthday.21

Specializes22

• Attribute (from UML)23

4.3.4 Call24

This class represents the invocation from one element of another.25

Specializes26

• Dependency (from UML)27

4.3.5 ClassDiagram28

This class specifies the domain and behavior of a diagram encompassing types, classes, and their29
relationships.30

Specializes31

• Diagram32

4.3.6 ComponentDiagram33

This class specifies the domain and behavior of a diagram encompassing components and their34
relationships.35

Specializes36

• Diagram37

Meta Data Coalition Open Information Model

26 Analysis and Design: UML Extensions

4.3.7 Derivation1

This class represents the derivation of one element to another.2

Specializes3

• Dependency (from UML)4

4.3.8 Diagram5

This class specifies the domain and behavior of a graphical projection of a collection of model elements.6
Diagrams are most often rendered as a connected graph of arcs (relationships) and vertices (other model7
elements).8

Specializes9

• ViewElement10

4.3.9 Dictionary11

Instances of this class maintain the terminal symbols of a syntax, i.e. of a grammar. The dictionary entries12
are ordered by name and must be unique for a grammar.13

Specializes14

• ModelElement (from UML)15

Associations16

• Symbols – collection of sorted Terminal symbol objects that constitute the Dictionary.17

4.3.10 Expression18

An expression consists of a collection of sub-expressions or symbols. The property Order of the Expression19
object indicates if the collection should be treated as a Sequence or a set of Alternatives. An AND20
expression corresponds to the EBNF sequence (A B C) and the OR expression to an Alternative (A | B | C).21

Specializes22

• Statement23

Attributes24

• Order (ExpressionOrder) – is an enumeration type property, which controls the type of25
expression: AND : Alternative, OR : Sequence.26

Associations27

• Elements (Statement) – set of objects of RuleElement type, i.e. Expressions or Symbols.28

4.3.11 ExpressionOrder29

An enumeration that determines if an expression is a sequence or a set of alternative (choices).30

Values31

• AND – The elements of the Expression represent a sequence.32

• OR – The elements of the Expression represent alternatives.33

• NONE – Same as AND (default value)34

Open Information Model Meta Data Coalition

Analysis and Design: UML Extensions 27

4.3.12 File1

This class represents an operating system file. Instances of the class should not represent specific files (this2
is handled with the Surrogate class in the Generic Element Package), but may indicate the use of a file type3
as part of a implementation model.4

Specializes5

• Component (from UML)6

4.3.13 Font7

This class represents the use of a graphic font for text rendering.8

Attributes9

• Name (String) – The name of the font (e.g., MS Sans Serif, or Courier).10

• FontSize (Integer) – The point size of the font (e.g., 10 for pica, 12 for elite).11

• Style (FontStyle) – Indicates the font style defined by the FontStyle enumeration (e.g., regular,12
bold, italic, bold italic).13

• Color (Long) – The color of the text. The value should be in standard RGB three-byte format.14

• Alignment (FontAlignment) – The alignment or justification of the text within its bounding15
rectangle.16

4.3.14 FontAlignment17

An enumeration whose values indicate the alignment or justification of text within its bounding rectangle.18

Values19

• FONTALIGNMENT_LEFT = 020

• FONTALIGNMENT_CENTER = 121

• FONTALIGNMENT_RIGHT = 222

4.3.15 FontStyle23

An enumeration whose values indicate the font style of text.24

Values25

• FONTSTYLE_REGULAR = 026

• FONTSTYLE_ITALIC = 127

• FONTSTYLE_BOLD = 228

• FONTSTYLE_BOLDITALIC = 329

4.3.16 Grammar30

Instances of this class represent a set of rules that can conform to a specific syntax. For example, an XML31
document or a C++ file could constitute a grammar.32

Specializes33

• ModelElement (from UML)34

Associations35

Meta Data Coalition Open Information Model

28 Analysis and Design: UML Extensions

• Rules (Rule) – Set of Rules that constitute the Grammar.1

• Syntax (Syntax) – Syntax to which the Grammar conforms.2

4.3.17 GraphicElement3

This class represents additional graphics details for a projection.4

Specializes5

• PresentationElement (from UML)6

Attribute7

• BackgroundColor (Long) – The color of the area which surrounds and/or is between graphical8
elements of an object. The value should be in standard RGB three-byte format.9

4.3.18 Import10

This class represents one package being imported by another. An import dependency causes the public11
contents of the target package to be referenceable in the source package.12

Specializes13

• Dependency (from UML)14

4.3.19 Library15

This class represents defining a library (e.g., a DLL). It realizes the UML “library” stereotype. A library is16
associated with the elements (including modules) it contains by means of the inherited UML “implements”17
relationship.18

Specializes19

• Component (from UML)20

4.3.20 Line21

This class represents a single line on a diagram. This may be made up of several line segments. The first22
point in the points collection is an absolute point on the diagram and every point thereafter is a point23
relative to the previous point.24

Associations25

• LineContainer (LineContainer) – The view object described using this line.26

Specializes27

• PointContainer28

• LineProperties29

4.3.21 LineContainer30

This class represents a set of lines.31

Associations32

• Lines (Line) – The lines contained in this container.33

4.3.22 LineProperties34

This class represents various properties of a line.35

Open Information Model Meta Data Coalition

Analysis and Design: UML Extensions 29

Attributes1

• Style (String) – The style of line (e.g., solid, dashed, or dotted).2

• Width (Integer) – The width or weight of the line in points.3

• Color (Long) – The color of the line. The value should be in standard RGB three-byte format.4

4.3.23 MemberVariable5

This class represents a member variable. This includes members of structures, unions, member6
variables/fields on a type, and entry variables of modules.7

Attributes8

• Offset (Long) – The offset of the member variable in the structure.9

Specializes10

• Attribute (from UML Extensions)11

4.3.24 Module12

This class represents a module (i.e., a group of operations and entry variables).13

Specializes14

• Component (from UML Extensions)15

• ModuleSpec (from UML Extensions)16

4.3.25 ModuleOperation17

This class represents an operation that is contained in a module.18

Attributes19

• EntryIDString (String) – Identifies a named entry point in the DLL.20

• EntryIDOrdinal (Long) – Identifies an entry point in the DLL via an ordinal.21

• Body (Text) – The text of the body of the module operation. This may include its mandatory22
encompassing signature.23

Specializes24

• Operation (from UML Extensions)25

4.3.26 ModuleSpec26

This class represents the specification of a module (i.e., a group of operations and entry variables). The27
module is related to its members by the relationship inherited from Classifier (from UML).28

Specializes29

• Classifier (from UML)30

4.3.27 MultiplicityProjection31

This class represents the projection of the multiplicity of an association end.32

Specializes33

• PointContainer34

Meta Data Coalition Open Information Model

30 Analysis and Design: UML Extensions

• Font1

Associations2

• AssociationEndProjection (AssociationEndProjection) – The projection of the association end for3
which this is the multiplicity.4

4.3.28 NonTerminalSymbol5

Name will contain the name of the symbol.6

Specializes7

• Symbol8

Associations9

• Substitute (Rule) – Rule that substitutes for the non-terminal symbol.10

4.3.29 Point11

This class specifies the domain and behavior of a three-dimensional Cartesian point in twips. A twip is a12
unit of measurement, implemented as 1/20 of a point, or 1/1440 of an inch. There are 567 twips to a13
centimeter. Twips are screen-independent measurements.14

Attributes15

• X (Long) – The position along the x-axis.16

• Y (Long) – The position along the y-axis.17

• Z (Long) – The position along the z-axis.18

4.3.30 PointContainer19

This class represents any view object that can be described as a set of points.20

Associations21

• Points (Point) – The points that make up this element.22

4.3.31 Project23

This class represents a development project, such as a VBP or DSP file.24

Specializes25

• Package (from UML)26

4.3.32 Projection27

A projection of a model element onto a view element. This class can accommodate most of what the28
common types of projection require: a collection of points, a font, a line style, and some basic graphic29
element details. If a projection requires more advanced details (e.g., a projection composed of multiple30
graphic components), then another class and/or interface will be required.31

For example, the projection for a Class depicted in some tool using the UML notation may simply be two32
points defining the (left, top) and (width, height), and font information describing the display of the class33
name label.34

In other cases, additional interfaces may provide additional view information. For example:35

Open Information Model Meta Data Coalition

Analysis and Design: UML Extensions 31

• A projection of an association end may require positional and font information to be recorded1
about both the assoication end name label and the multiplicity label.2

• A projection of a Class in some tool may require information about whether properties and/or3
methods are to be shown.4

Specializes5

• Font6

• GraphicElement7

• LineProperties8

Attributes9

• Style (String) – A string indicating any presentation information beyond location necessary to10
render an element on a view element.11

Associations12

• Points (Point) – The collection of points specifying the placement of the referenced model element13
on the referenced view element. If a model element is composed of several graphical elements on14
a view element, then it may have collections of points appearing on other interfaces. The specific15
type must specify what this collection of points is to be used for. For node-like elements, this16
collection should consist of two points (Left,Top,0) and (Width,Height,0). For line-like elements,17
the first point in this collection should describe the absolute position of the first point of the line;18
each subsequent point should describe its position relative to the previous point in the collection.19

4.3.33 RelationshipProjection20

A projection of any UML relationship model element onto a view element such as a diagram. This21
projection has a collection of all lines of the relationship that, in turn, contain a collection of points.22

The collection of points on the inherited projection type is reserved for the (left, top) and (width, height)23
points of the relationship’s name.24

Specializes25

• LineContainer26

• Projection27

4.3.34 Rule28

Specializes29

• Classifier (from UML)30

Associations31

• Elements (Statement) – Represents the root of the right side of the rule, i.e. an Expression or a32
Symbol.33

4.3.35 Statement34

Specializes35

• ModelElement36

Attributes37

• Occurrence (Multiplicity) – Occurrence of the statement (Expression or Symbol) in a Rule or38
Expression (1, 0..N, N, N..M).39

Meta Data Coalition Open Information Model

32 Analysis and Design: UML Extensions

4.3.36 Symbol1

Abstract class representing elements decomposed within a rule. Is specialized to TerminalSymbol and2
NonTerminalSymbols.3

Specializes4

• Statement5

4.3.37 Syntax6

Represents the syntax or rules to which an grammar conforms. An example is the C++ language.7

Specializes8

• Classifier (from UML)9

Associations10

• SyntaxSymbols (SyntaxSymbol) - Collection of terminal symbols used described by the Syntax.11

4.3.38 TaggedValue12

This class represents a tagged value that can be a member of a tagged value set (TaggedValueSet).13

Specializes14

• TaggedValue (from UML)15

4.3.39 TaggedValueSet16

This class represents a set of tagged values.17

Specializes18

• TaggedValue19

Associations20

• TaggedValues (TaggedValue, derived from UML:TaggedValue.taggedValues) – The tagged21
values in this set.22

4.3.40 TerminalSymbol23

Specializes24

• Symbol25

4.3.41 VariantTaggedValue26

This class represents a tagged value that may contain a COM variant.27

Specializes28

• TaggedValue (from UML Extensions)29

Attributes30

• VariantValue (Binary) – An arbitrary variant value to be associated with the name for the31
associated Element.32

Open Information Model Meta Data Coalition

Analysis and Design: UML Extensions 33

4.3.42 ViewElement1

ViewElement is an abstract class that represents a top-level container for projections, e.g. a diagram.2

Specializes3

• ModelElement (from UML)4

Associations5

• Projections (Projection) – The collection of all projections referencing the model elements that6
appear on this view element.7

4.4 OIM 1.0 Compatibility8

• The reflexive relationship on Attribute (the relationship whose assoication end names are9
BasedAttributes and DerivedAttributes) has been removed because its functionality was duplicated10
by Derivation.11

Meta Data Coalition Open Information Model

34 Analysis and Design: Generic Elements

5 Analysis and Design: Generic Elements1

5.1 Overview2

The Generic Elements package provides a set of general-purpose classes that are relevant across diverse3
information models. In some cases the classes described are designed to fill a temporary gap in other4
models until a more compete model is introduced.5

Specifically, the Generic model:6

• Adds the ability to specify component version information.7

• Adds the ability to point to external objects, such as files.8

• Introduces the concept of handlers for OIM objects.9

The Generic Elements package is dependent on the UML package.10

5.2 Model Reference11

12

Surrogate

URL : String
SourceCreated : DateTime
SourceLas tChanged : DateTime
RepositoryUpdated : DateTime
RepositoryUpdatedBy : String

ModelElement
(from Core)

HelpSource

Keyword

DescriptionSource

SummaryInformation
HelpContext : String
DescriptionContext : String
OwnerInformation : String
Status : String
Author : String
Caption : String

0..*0..1 0..*

+HelpSource

0..1

0..*0..* 0..*

+Keywords

0..*

0..*0..1 0..*

+DescriptionSource

0..1

Icon
Kind : String

0..*

0..*

0..*+Icons

0..*

Package
TypeDef

Extension : String
TypeDef : String
ClassDef : String

0..*0..* 0..*

+AllowedTypes

0..*

0..*0..* 0..*

+DefaultTypes

0..*

Package
(f rom M odel Man agem en t)

NamedVersion

MajorVersion : String
MinorVersion : String
Revision : String

Storage

MIMEType : String
Stream : Binary

13

Figure 12: Generic Elements14

Open Information Model Meta Data Coalition

Analysis and Design: Generic Elements 35

1

EMailID

EMailAddress : String
EMailType : String

Location

LocationType : String

ContactInfo

Title : String

1..10..* 1..1

+EMails

0..*

1..10..* 1..1

+Locations

0..*

TelephoneNumber

PhoneNumber : String
PhoneType : String 1..10..* 1..1

+Telephone

0..*

Element
(from Core)

2

Figure 13: Contact Information3

4

5.2.1 ContactInfo5

This class is designed as a simple way to describe a person who can be contacted.6

Specializes7

• ModelElement (from UML)8

Attributes9

• Title (String) – The contact may have a title, such as “Director”.10

Associations11

• EMails (EMailID) – The contact may have one of more e-mail addresses.12

• Telephone (TelephoneNumber) – The contact may have one of more telephone numbers.13

• Location (Location) – The contact may have one of more locations, such as addresses.14

5.2.2 DescriptionSource15

A description source is a type of surrogate that points to a resource that provides additional descriptive16
information. For example, it could point to a specification document for a classifier.17

Specializes18

• Surrogate (from Generic Elements)19

• ModelElement (from UML)20

Meta Data Coalition Open Information Model

36 Analysis and Design: Generic Elements

5.2.3 EMailID1

An instance of this class defines a contact’s e-mail address.2

Specializes3

• Element (from UML)4

Attributes5

• EMailAddress (String) – The actual e-mail address would be stored here.6

• EMailType (String) – Usage information about the e-mail address, such as whether it’s a home7
account, business account, or backup business account.8

5.2.4 HelpSource9

A help source is a type of surrogate that points to a resource that provides help. For example, it could point10
to a help file on a network resource.11

Specializes12

• Surrogate (from Generic Elements)13

• ModelElement (from UML)14

5.2.5 Icon15

An icon is a type of surrogate that points to an icon resource.16

Specializes17

• Surrogate (from Generic Elements)18

• ModelElement (from UML)19

Attributes20

• Kind (String) – Indicates the kind of the icon. The value is user-defined. It allows different icons21
that represent the object in different conditions to be distinguished. For example: color vs.22
monochrome or opened vs. closed (for an icon of a folder).23

5.2.6 Keyword24

This class represents keywords that are used for classifying an object. Such keywords can be used as a25
search criterion when searching catalogs for objects.26

Specializes27

• ModelElement (from UML)28

5.2.7 Location29

This class is used to represent any type of physical location, such as a house address.30

Specializes31

• Element (from UML)32

Attributes33

• LocationType (String) – Indicates the type of address, such as work or home.34

Open Information Model Meta Data Coalition

Analysis and Design: Generic Elements 37

5.2.8 NamedVersion1

This class represents user-defined version information (e.g., version 2.1.001).2

Attributes3

• MajorVersion (String) – The major version.4

• MinorVersion (String) – The minor version.5

• Revision (String) – The Revision (e.g., the build number).6

5.2.9 Package7

This class is a further refinement of the UML package. It adds the ability to define allowed and default8
types for items in the package.9

Specializes10

• SummaryInformation11

• Package (from UML)12

Associations13

• AllowedTypes (TypeDef) – The types that are allowed to be contained within the package. If no14
such types are specified, then the package is allowed to contain any type.15

• DefaultTypes (TypeDef) – The types that are normally in that package.16

5.2.10 SummaryInformation17

This class allows additional summary information beyond that provided by SummaryInformation (from18
UML Extensions).19

Attributes20

• HelpContext (String) – A key into the associated HelpSource.21

• DescriptionContext (String) – A key into the associated DescriptionSource.22

• OwnerInformation (String) – The contact information for the object, such as the person or23
organization which manages this object.24

• Status (String) – Indicates the status of the object, such as its degree of completeness, its25
robustness, and so on. For example, a document may have status “draft”, or a component may26
have status “published”. This property is not intended as a formal classification of objects for use27
by configuration management tools, but more for browser tools as display information.28

• Author (String) – The person or organization who was the major creator of the object.29

• Caption (String) – The human name for an object. This property could store the value for this30
object that should be displayed on a form or report.31

Associations32

• HelpSource (HelpSource) – The source of help on this object.33

• Keywords (Keyword) – The keywords used to describe or categorize this object.34

• DescriptionSource (DescriptionSource) – The description source for the object.35

• Icons (Icon) – The icons that represent the object.36

Meta Data Coalition Open Information Model

38 Analysis and Design: Generic Elements

5.2.11 Storage1

This class represents the physical storage of an element. The class may be used when the actual2
implementation of a component or element accompanies the element description.3

Attributes4

• MIMEType (String) – Describes the format of the storage stream.5

• Stream (Binary) – Contains the actual element storage.6

5.2.12 Surrogate7

A surrogate represents an object that is not stored in the repository.8

This class simply allows a URL of the source object to be recorded, along with relevant timestamp details.9
It is envisaged that future extensions to this interface will be defined to add an Object property, allowing10
the source object to be set and/or retrieved, and to provide support for synchronization between the11
surrogate and its source.12

Attributes13

• URL (String) – The URL of the source (surrogated/replicated) object. For example, for a file with14
path C:\examples\myfile.txt the URL would be File://C:\examples\myfile.txt.15

• SourceCreated (DateTime) – The date and time that the source object was created.16

• SourceLastChanged (DateTime) – The date and time that the source object was last changed.17
This records any last changed timestamp on the source object at the time the replica/surrogate is18
created (or refreshed). Comparing this with the current value of the last changed timestamp on the19
source object indicates whether the replicated details are still up-to-date.20

• RepositoryUpdated (DateTime) – The date and time that the repository was last updated with21
information from this source.22

• RepositoryUpdatedBy (String) – Identifies the user ID that initiated the last repository update from23
this source.24

5.2.13 TelephoneNumber25

This class represents a phone number. It allows for the expression of both the actual phone number and its26
type.27

Specializes28

• Element (from UML)29

Attributes30

• PhoneNumber (String) – The actual phone number, such as (123) 456-7890.31

• PhoneType (String) – Explains when this phone number should be used, such as home or business32
phone, cell phone, pager, or fax.33

Open Information Model Meta Data Coalition

Analysis and Design: Generic Elements 39

5.3 OIM 1.0 Compatibility1

2

NamedVersion

MajorVersion : String
MinorVersion : String
Revision : String

MenuContainer Menu

MenuText : String

0.. *

0..1

+SubMenus

0.. *
{sorted}

0..1

0..1 0..*0..1

+Menus

0..*

{sorted}

TypeDef

Extension : St ring
TypeDef : String
ClassDef : St ring

Handler

Handler : String

0..1 0..*0..1

+Handlers

0..*

Element
(from Core)

ModelElement
(from Core)

3

Figure 14: OIM 1.0 Compatibility Classes4

5.3.1 Handler5

This class defines a handler for some type of object within some context. The context is defined through6
the name on the relationship between a type and its handlers. For example, a particular handler may be7
responsible for various user interface events on objects of some type within the context of some Explorer.8
The handler would identify a class that would be instantiated by the Explorer, which would provide the9
needed services.10

Specializes11

• MenuContainer12

Attributes13

• Handler (String) – The identifier of the component that serves as the handler. An instance of the14
handler can be created to handle events within the context.15

5.3.2 Menu16

This class represents a user interface menu or menu item. This includes both menus appearing on menu17
bars and free-floating context menus.18

Specializes19

• Element (from UML)20

Meta Data Coalition Open Information Model

40 Analysis and Design: Generic Elements

Attributes1

• MenuText (String) – The name appearing on the menu item (with ampersands on underscored2
characters).3

Associations4

• SubMenus (Menu) -The menu items on this menu. There should only be menu items if the5
supermenu is a menu itself.6

5.3.3 MenuContainer7

An instance of this class contains menus.8

Specializes9

• Element (from UML)10

Associations11

• Menus (Menu) – The collection of contained menus.12

5.3.4 TypeDef13

This class represents an object in the repository that can be associated with a handler.14

Specializes15

• ModelElement (from UML)16

Attributes17

• Extension (String) A short string of characters which help identify objects of this type (e.g., the18
three-letter DOS file extension).19

• TypeDef (String) -The ID of the type this definition this applies to.20

• ClassDef (String) – The ID of the class this definition this applies to.21

Associations22

• Handlers (Handler) – Associates a type definition with the handlers of that type within various23
contexts. For example, a type may be associated with a handler that will manage the context menu24
within the context of some Explorer.25

26

Open Information Model Meta Data Coalition

Analysis and Design: Common Data Types 41

6 Analysis and Design: Common Data Types1

6.1 Overview2

The Common Data Types package provides data type definitions for the Open Information Model. The3
goal of the model is to standardize and unify data types. The package elements are used as a base set of4
types that is extended to represent the data type concepts of other information models in the Open5
Information Model.6

The package is defined as a set of extensions to the Unified Modeling Language Information Model (UML)7
that provides a set of classes for describing data types. The scope includes the common data types needed8
for component specifications, component implementation languages, and databases. The intent is that this9
model is extended and specialized by particular information models of these and other domains.10

6.2 Semantics11

The Common Data Types package provides definition of data types for the Open Information Model. It12
forms the basis for extensions to include additional data types in specific domains. It is expected that the13
types described in the model will be defined as reusable instances, which will minimize the number of14
instances representing identical data types. Type instances should be uniquely identified by name or15
identifier within a data type set.16

6.3 Class Reference17

This section describes the data types of the Common Data Types package.18

19

Structure

DataType
(from Core)

MemberVariable

UnionMember

MemberCase : String
IsDefault : Boolean

ObjectTypeMapping

BestMatch : Boolean

Alias

TypeSet

Version : String

Union

+Members

ObjectType

1..1

0..*+ExposedType

1..1

0..*

1..1

0..*+UnderlyingType

1..1

0..*

0..*

0..1

0..*

+Type

0..1

1..1

0..*

1..1 +Types

0..*

0.. *

0..1

+SwitchType

0..*

0..1

EnumerationLiteral

/ name : UML:Name
/ value : UML:Expression

Enumeration

0..*

0..1

0..*

+Type

0..1

1..*1

+Literals

1..*1
Primitive

ModelElement
(from Core)

ModelElement
(from Core)

Attribute
(from Auxiliary Elements)

Attribute
(from Core)

20

Figure 15: Data Types21

Meta Data Coalition Open Information Model

42 Analysis and Design: Common Data Types

6.3.1 Alias1

Alias describes an alias for another type (e.g., a C++ typedef). This includes any user-defined datatype that2
merely provides an alternate name for a type.3

Specializes4

• ObjectType5

Associations6

• Type (ObjectType) – The type represented.7

6.3.2 Enumeration8

Enumeration describes an enumeration datatype; i.e., a set of named constants (e.g., a C++ enum). Each9
enumeration constant is a (constant) attribute, with a defined initial value.10

Specializes11

• ObjectType12

Associations13

• Type (ObjectType) – The type of the constants within the enumeration.14

• Literals (EnumerationLiteral) – The set of literals for the enumeration.15

6.3.3 EnumerationLiteral16

Describes the values that an instance of the attribute of the related enumeration type may contain.17

Specializes18

• Attribute (from UML)19

Attributes20

• Name (Name, derived from UML:ModelElement.Name) – A display name for the literal value.21

• Value (Expression, derived from UML:Attribute.InitialValue) – The value (e.g. stored) for the22
literal.23

6.3.4 ObjectType24

ObjectType is an abstract type that is supported by all data types in the Common Data Types package. It25
extends the UML Classifier by allowing relationships to other types that reference the object type in their26
definition (e.g., aliases or pointers).27

Specializes28

• DataType (from UML)29

6.3.5 ObjectTypeMapping30

The natural mapping of an object type in a namespace to a set of object types in another namespace.31

Specializes32

• ModelElement (from UML)33

Open Information Model Meta Data Coalition

Analysis and Design: Common Data Types 43

Attributes1

• BestMatch (Boolean) – Indicates that the mapping between a pair of object types is the best match.2
There is a constraint that for each underlying object type, only one instance of the mapping will3
have BestMatch = TRUE.4

Associations5

• UnderlyingType (ObjectType) – The underlying object type of the mapping pair, i.e. the object6
type from which the exposed type is mapped.7

• ExposedType (ObjectType) – The exposed type of the mapping pair, i.e. the object type to which8
the underlying type is mapped.9

6.3.6 Primitive10

Instances of this class represent primitive data types in a system (e.g. a C++ char or int). Primitives are11
generally implemented directly by a system rather than being abstractly defined.12

Specializes13

• ObjectType14

6.3.7 Structure15

Structure defines a structured data type (e.g., a C++ struct).16

Specializes17

• ObjectType18

6.3.8 TypeSet19

The set of object and data types for a specific system or application, for example, a relational database20
system or programming language.21

Specializes22

• Namespace (from UML)23

Attributes24

• Version (String) – The version identifier of the specified object type set. For example, this might25
differentiate between the data types supported in ODBC 2.0 and 3.0.26

Associations27

• Types (ObjectType) – The collection of data types that make up the set.28

6.3.9 Union29

Union describes a union data type (e.g., a C++ union).30

Specializes31

• ObjectType32

Associations33

• SwitchType (ObjectType) – The type of the switch for the union.34

• Members (UnionMember, derived from UML:Classifier.feature) – The members of the union.35

Meta Data Coalition Open Information Model

44 Analysis and Design: Common Data Types

6.3.10 UnionMember1

UnionMember describes the members of a union.2

Specializes3

• MemberVariable (from UML Extensions)4

Attributes5

• MemberCase (String) – Defines the value of the union switch that selects this member.6

• IsDefault (Boolean) – Indicates whether or not this is the default member of the union. The default7
is FALSE.8

6.4 OIM 1.0 Compatibility9

This section describes classes of the Common Data Types package required for OIM version 1.010
compatibility.11

12

Numeric

NumericScale : Integer
NumericPrecision : Integer
IsSigned : Boolean

String

IsVariable : Boolean
Length : Long
IsCaseSensitive : Boolean
CharacterType : CharacterType

Scalar

Array

LowerBound : Long

Binary

Length : Long
IsVariable : Boolean

Boolean

Date

DatetimeDecimal Double

Float

FloatPrecision : Integer

Integer

IntrinsicType

OctetLength : Integer
StorageExpression : String

LongInt QuadIntShortInt

Single

Time

TimePrecision : TimePrecision

TinyInt

Void
CollectionType

UpperBound : Long
IsSequenced : Boolean
IsNamed : Boolean

Pointer

ObjectType

0..*

1..1

0..*

+Type

1..1

0..*

1..1

0..*

+Type

1..1

13

Figure 16: Common Data Types (OIM 1.0 compatibility)14

Open Information Model Meta Data Coalition

Analysis and Design: Common Data Types 45

6.4.1 Array1

Array is supported by all datatypes whose values are arrays of objects (i.e., sequenced, indexed2
collections).3

Specializes4

• CollectionType5

Attributes6

• LowerBound (Long) – The lower bound of the array.7

6.4.2 Binary8

Binary describes a binary large object datatype. This includes such types as memo and unbounded text.9

Specializes10

• Scalar11

Attributes12

• Length (Long) – The maximum length of the blob (in bytes).13

• IsVariable (Boolean) – Indicates if the blob value may be of a variable length. The default is14
TRUE.15

6.4.3 Boolean16

Defines a Boolean data type. A Boolean is any type that defines only two possible values - TRUE and17
FALSE.18

Specializes19

• Scalar20

6.4.4 CharacterType21

An enumeration whose values indicate the type of the character set used in a string.22

Values23

• CHARACTER_TYPE_SINGLE_BYTE = 024

• CHARACTER_TYPE_ DOUBLE_BYTE = 125

• CHARACTER_TYPE_MULTI_BYTE = 226

• CHARACTER_TYPE_UNICODE = 127

6.4.5 CollectionType28

CollectionType is supported by all datatypes whose values are collections of objects.29

Specializes30

• IntrinsicType31

Attributes32

• UpperBound (Long) – The upper bound of the collection.33

• IsSequenced (Boolean) – Indicates whether collections of this type are sequenced. The default is34
TRUE.35

Meta Data Coalition Open Information Model

46 Analysis and Design: Common Data Types

• IsNamed (Boolean)- Indicates whether a name can be applied to the membership of elements in1
collections of this type. The default is FALSE.2

Associations3

• Type (ObjectType) – The type of object contained.4

6.4.6 Date5

Defines a date data type. This does not include time.6

Specializes7

• Scalar8

6.4.7 Datetime9

Datetime describes a combined date time datatype, encapsulating Date and Time.10

Specializes11

• Time12

• Date13

6.4.8 Decimal14

Decimal describes an exact decimal data type. This differs from Float, as float is an approximate value and15
Decimal is exact.16

Specializes17

• Numeric18

6.4.9 Double19

Double describes a signed, approximate, numeric value with a binary precision 53. (zero or absolute value20
10[-308] to 10[308]).21

Specializes22

• Float23

6.4.10 Float24

Float describes any floating point data type of an arbitrary precision. The actual precision of an instance25
that supports the Float interface should be indicated by the FloatPrecision attribute.26

Specializes27

• Scalar28

Attributes29

• FloatPrecision (Integer) – The maximum number of base 10 digits that can be stored.30

6.4.11 Integer31

Integer describes a non-specific integer data type. Instances of this type should set the NumericScale32
property inherited from Numeric type to zero.33

Open Information Model Meta Data Coalition

Analysis and Design: Common Data Types 47

Specializes1

• Numeric2

6.4.12 IntrinsicType3

An intrinsic type is one that is built into the information model4

Specializes5

• ObjectType6

Attributes7

• OctetLength (Integer) – OctetLength is an attribute used to specify the number of 8 bit bytes that8
are used in the physical storage of this data type. This value differs from length in many of the9
data types in that this value should take into effect any overhead involved in the storage of this10
data type.11

• StorageExpression (String) – Storage Expression is a user-defined attribute describing the physical12
storage characteristics of the data type in question. The format of this attribute is undefined.13

6.4.13 LongInt14

LongInt describes a double word (4 byte) integer data type. Instances of this type should set the15
NumericPrecision attribute inherited from Numeric to less than or equal to 10 and NumericScale to 0.16
Signed and unsigned 4 byte integers are distinguished by using the IsSigned attribute inherited from17
Numeric.18

Specializes19

• Integer20

6.4.14 Numeric21

Numeric describes a numeric data type. The Numeric Scale and Numeric Precision values represent the22
scale and precision of the values of this data type rather than the scale and precision allowed by the storage23
mechanism. For example, a piece of information that can have the values 1-9 should have the precision for24
its data type set to 1 and the scale to 0, without regard to how the data is actually stored.25

Specializes26

• Scalar27

Attributes28

• NumericScale (Integer) – The maximum number of digits to the right of the decimal point.29

• NumericPrecision (Integer) – The maximum number of base 10 digits that can be stored.30

• IsSigned (Boolean) – Indicates whether or not the value of this type may be signed. The default is31
FALSE.32

6.4.15 Pointer33

Pointer describes a pointer data type. A pointer is any indirect reference to an object established by a34
physical address.35

Specializes36

• Scalar37

Meta Data Coalition Open Information Model

48 Analysis and Design: Common Data Types

Associations1

• Type (ObjectType) – The type of object referenced.2

6.4.16 QuadInt3

QuadInt describes a quad word (8 byte) integer data type. Instances of this type should set the4
NumericPrecision attribute inherited from Numeric to a number less than or equal to 19 (if signed - 20 if5
unsigned) and the scale to 0. Signed and unsigned 8 byte integers are distinguished by using the IsSigned6
attribute inherited from Numeric.7

Specializes8

• Integer9

6.4.17 TinyInt10

TinyInt describes a half word (1 byte) integer data type. Instances of this type should set the11
NumericPrecision attribute inherited from Numeric to a number less than or equal to 3 and NumericScale12
to 0. Signed and unsigned 1-byte integers are distinguished by using the IsSigned attribute inherited from13
Numeric.14

Specializes15

• Integer16

6.4.18 Scalar17

Scalars are atomic data types used in a system. Strings and numbers are examples of scalars. This class18
simply acts as a classification of such types.19

Specializes20

• IntrinsicType21

6.4.19 ShortInt22

ShortInt describes a double word (2 byte) integer data type. Instances of this type should set the23
NumericPrecision attribute inherited from Numeric to less than or equal to 5 and NumericScale to 0.24
Signed and unsigned 2-byte integers are distinguished by using the IsSigned attribute inherited from25
Numeric.26

Specializes27

• Integer28

6.4.20 Single29

Single describes a signed, approximate, numeric value with a binary precision 24. (zero or absolute value30
10[-38] to 10[38]).31

Specializes32

• Float.33

6.4.21 String34

String describes a string data type.35

Open Information Model Meta Data Coalition

Analysis and Design: Common Data Types 49

Specializes1

• Scalar2

Attributes3

• IsVariable (Boolean) – Indicates whether or not the string value is of a variable length. The default4
is TRUE.5

• Length (Long) – The maximum or defined length of the string data type (in characters).6

• IsCaseSensitive (Boolean) – Indicates whether or not strings of this type are case sensitive. The7
default is FALSE.8

• CharacterType (CharacterType) – Character type specifies the width of the character set used in9
the string. It is an enumeration containing values for single-byte, double-byte, and multi-byte10
character sets.11

6.4.22 Time12

Time describes a time data type.13

Specializes14

• Scalar15

Attributes16

• TimePrecision (Datetime) – Precision (maximum number of digits in the fractional seconds17
portion) of the data type.18

6.4.23 TimePrecision19

An enumeration whose values indicate the number of digits in the fractional seconds portion of a time20
quantity.21

Values22

• TIMEPRECISION_YEARS = 023

• TIMEPRECISION_MONTHS = 124

• TIMEPRECISION_DAYS = 225

• TIMEPRECISION_HOURS = 326

• TIMEPRECISION_MINUTES = 427

• TIMEPRECISION_SECONDS = 528

• TIMEPRECISION_TENTHS = 629

• TIMEPRECISION_HUNDREDTHS = 730

• TIMEPRECISION_THOUSANDTHS = 831

• TIMEPRECISION_TENTHOUSANDTHS = 932

• TIMEPRECISION_HUNDREDTHOUSANDTHS = 1033

• TIMEPRECISION_MILLIONTHS = 1134

6.4.24 Void35

Void describes a void type.36

Meta Data Coalition Open Information Model

50 Analysis and Design: Common Data Types

Specializes1

• IntrinsicType2

Open Information Model Meta Data Coalition

Analysis and Design: Entity Relationship Diagrams 51

7 Analysis and Design: Entity Relationship1

Modeling2

7.1 Overview3

The Entity Relationship Modeling package provides meta data types for ER-based modeling tools to store4
information about relational systems and provide a logical modeling level for physical database design5
tools. It is based on IDEF1X, a diagramming method originally developed by the U.S. Air Force and6
widely used in various governmental agencies, in the aerospace and financial industry, and supported by7
most database design tools. IDEF1X is a method for designing relational databases with a syntax designed8
to support the semantic constructs necessary in developing a conceptual schema. A conceptual schema is a9
single integrated definition of the enterprise data that is unbiased toward any single application and10
independent of its access and physical storage.11

This package extends the UML package.12

7.2 Semantics13

Entity Relationship Diagrams consist of a few basic concepts. An entity specifies a type for real or abstract14
things that have common attributes or characteristics. Entities can be mapped in other models to deployable15
or physical concepts such as tables or components. Like UML, a powerful feature of IDEF1X is its support16
for modeling logical data types through the use of a classification structure or generalization/specialization17
construct. Attributes represent properties of instances of entities. Keys are collections of attributes that18
represent uniqueness constraints over the values of entity attributes.19

A relationship indicates an association between entities. Relationships may have a specific set of20
semantics, for example cardinality or relationship rules which govern the deletions or changes to related21
entities.22

Meta Data Coalition Open Information Model

52 Analysis and Design: Entity Relationship Diagrams

7.3 Class Reference1

Ass ociationEnd
(from Core)

Association
(from Core)

ModelElement
(from Core)

Generalization

IsExclusive : Boolean
IsCovering : Boolean

Relationship

MinVolume : Integer
MaxVolume : Integer
AvgVolume : Integer
RelationshipType : String

Key

KeyType : KeyType

Ent ity

MinVolume : Integer
MaxVolume : Integer
AvgVolume : Integer
GrowthRate : Integer
GrowthPeriod : String

0..*

1

+Keys

0..*

1

0..*

1

+Specializations

0..*

+Supertype

1

0..*

1

+Generalizations

0..*

+Subtype

1

ReferentialRule

Delete : String
Update : String
Insert : String

12 1

+IntegrityRules

2

1

0..*

+ChildKey

1

0..*

1

0..*

+ParentKey

1

0..*

1 0..*

+Entity

1 0..*

Classifier
(from Core)

Generalization
(from Core)

2

Figure 17: Entities and Relationships3

ObjectType
(from Data Types)

Classifier
(from Core)

ModelElement
(f rom Core)

Attribute
(from Core)

Key

KeyType : KeyType

Ent ity

MinVolume : Integer
MaxVolume : Integer
AvgVolume : Integer
GrowthRate : Integer
GrowthPeriod : S tring

0..*

1

+Keys

0..*

1

DataType

At tribute

Sample : String

0..*

1..*

0..*

+Attributes

1..*

0..*

0..*

+ParentAttribute

0..*+ChildAttribute

0..*

1 *1

+Attributes

*

+Type

4

Figure 18: Attributes5

Open Information Model Meta Data Coalition

Analysis and Design: Entity Relationship Diagrams 53

ObjectType
(from Data Types)

Attribute
(from Core)

Classifier
(from Core)

ModelElement
(from Core)

Constraint
(from Core)

Attribute

Sample : String

ValidationRule

Value

NumericValue : Integer
StoredValue : String
ValueExpression : String

0..* 0..1

+ValidValues

0..* 0..1

Domain

IsNull : Boolean
Precision : String
Scale : String

1

0..*

+ParentDomain
1

+ChildDomain

0..*

10..*

+Domain

10..*

0.. *

0..1

0.. *

+ValidationRule

0..1

1

0..*

+Defaul tValue

1

0..*

DataType0..* 10..*

+DefaultType

1

1

Figure 19: Domains2

Diagram
(from Presentation and View Elements)

Projection
(from Presentation and View Elements)

Entity

MinVolume : Integer
MaxVolume : Integer
AvgVolume : Integer
GrowthRate : Integer
GrowthPeriod : St ring

StoredDisplay

Author : String
IsLogical : Boolean

Relationship

MinVolume : Integer
MaxVolume : Integer
AvgVolume : Integer
RelationshipType : St ring

Association
(f ro m Co re)

Classifier
(from Core)

Comment
(from Auxil ia ry Elemen ts)

Text

GraphicFeature

FeatureType : String
PropertyType : String
StoredValue : String

0..*

0..*

+GraphicFeatures

0..*

0..*

0..*1

+GraphicFeatures

0..*1
0..* 0..*

+GraphicFeatures

0..* 0..*

0..*

+GraphicFeatures

0..*

3

Figure 20: Diagrams4

Meta Data Coalition Open Information Model

54 Analysis and Design: Entity Relationship Diagrams

Model
(from M odel Management)

Package
(from Model Management)

Subsystem
(from Model Management)

Diagram
(from Presentation and View Elements)

Domain

IsNull : Boolean
Precision : String
Scale : String

StoredDisplay

Author : St ring
IsLogical : Boolean

SubjectArea

IsPrimary : Boolean

1

*

1

+Diagams

*

ModelLibrary

ModelCount : Integer
TotalObjectCount : Integer

*
0..1

Relationship
MinVolume : Integer
MaxVolume : Integer
AvgVolume : Integer
RelationshipType : String

Entity

MinVolume : Integer
MaxVolume : Integer
AvgVolume : Integer
GrowthRate : Integer
GrowthPeriod : String

Text

Model

AttributeCount : Integer
TotalObjectCount : Integer
EntityCount : Integer

*1

+Models

*1

1* 1

+Domains

*

1..*

+SubjectAreas

1

*

1

*+Entities

1

*

1

*

1

*+Relationships

1

+Tex t *

1..*

+SubLibraries *
0..1

1

Figure 21: Model Packaging2

7.3.1 Attribute3

Each instance of this class describes a characteristic or property associated with a set of real or abstract4
things (people, places, events, etc.). The attribute “age” defined on an entity called “person” is an example5
of an attribute. An attribute belongs to exactly one entity or subtype.6

Specializes7

• Attribute (from UML)8

Attributes9

• Sample (String) – A sample value that may be contained in an instance of this attribute.10

Associations.11

• ChildAttribute (Attribute) – Links an attribute to its child attributes, i.e. the attributes that are12
contained with it.13

• ParentAttribute (Attribute) – Links an attribute to its parent attribute, i.e. the attributes it inherits14
from.15

• Domain (Domain, derived from UML:StructuralFeature.Type) – Links an attribute to the Domain16
that defines valid values for instances of the attribute.17

7.3.2 DataType18

Each instance of this class describes the data type associated with a particular domain or attribute.19

Specializes20

• ObjectType (from Common Data Types)21

Open Information Model Meta Data Coalition

Analysis and Design: Entity Relationship Diagrams 55

7.3.3 Domain1

Each instance of this class describes a domain, which represents a named and defined set of attribute2
properties, including constraints on values the attribute can take. Each attribute is associated with exactly3
one domain. The domain specifies the type, default value, possible values, etc. for attributes belonging to4
the domain.5

Specializes6

• Classifier (from UML)7

Attributes8

• IsNull (Boolean) – Whether or not the attribute associated with the domain can have a null value.9

• Precision (String) – The precision associated with the attributes belonging to the domain.10

• Scale (String) – The scale associated with the attributes belonging to the domain11

Associations12

• ChildDomain (Domain) – Link to the domains that depend upon this domain. The values of a child13
domain override the values in the parent domain.14

• ParentDomain (Domain) – Link to the domain this domain inherits from.15

• DefaultValue (Value) – Describes the default value taken by attributes belonging to the domain.16

• DefaultType (DomainDataType) – Describes the default data type associated with attributes17
belonging to the domain.18

• ValidationRule (ValidationRule) – Describes the validation rule to be applied to attributes19
belonging to the domain.20

7.3.4 Entity21

Each instance of this class describes a set of real or abstract things (people, places, events, etc.), which have22
common attributes or characteristics. It can represent either a dependent or an independent entity. An23
example of an entity is the class of employees. Every instance of this class has common attributes like work24
location, title, etc. The classes, salaried employees and non-salaried employees are dependent entities25
which derive from the class of employees. The class of salaried employees has all the attributes of the class26
employees plus additional attributes like salary, etc.27

Specializes28

• Classifier (from UML)29

Attributes30

• MinVolume (Integer) – The minimum number of instances of the entity.31

• MaxVolume (Integer) – The maximum number of instances of the entity.32

• AvgVolume (Integer) – The average number of instances of the entity.33

• GrowthRate (Integer) – The rate at which the number of instances is projected to grow.34

• GrowthPeriod (String) – The period of time for which the number of instances is projected to35
grow.36

Associations37

• Keys (Key) – Whenever entities are connected by a relationship, the relationship contributes a key38
(or set of key attributes) to the child entity. Links an entity to the keys defined on it.39

Meta Data Coalition Open Information Model

56 Analysis and Design: Entity Relationship Diagrams

• GraphicFeatures (GraphicFeature, derived from UML:ModelElement.presentation) – Links an the1
entity to the graphic features (projections) associated with it.2

• EntityAttributes (Attribute, derived from UML:Classifier.feature) – Describes the attributes3
belonging to the entity.4

7.3.5 GraphicFeature5

Each instance of this class describes a graphic feature, which is a representation of the graphic features of a6
particular object. These represent characteristics of the graphic representation of the associated object. The7
line color, and line type, etc. used for drawing a relationship is an are examples of a graphic features.8

Specializes9

• Projection (Presentation and View Elements)10

• Font (Presentation and View Elements)11

• GraphicElement (Presentation and View Elements)12

• LineContainer (Presentation and View Elements)13

• MultiplicityProjection (Presentation and View Elements)14

Attributes15

• FeatureType (String) – The type of feature represented; i.e. whether it’s a relationship, entity, etc.16

• PropertyType (String) – The type of property represented. For example, line color, line width, etc.17

• StoredValue (String) – The actual value of the property represented.18

7.3.6 Key19

Each instance of this class describes a key, which is a set of one or more attributes that identifies an20
instance of the entity associated with it. In addition to a simgle primary (or unique) key, entities can have21
alternate keys that also uniquely identify the entity, but are not used for describing relationships with other22
entities.23

Specializes24

• ModelElement (from UML)25

Attributes26

• KeyType (KeyType) – Identifies the type of key.27

Associations28

• Attributes (Attributes) – Describes the set of attributes that comprises the key.29

Constraints30

• Only a single key per entity should be designated as the primary key.31

7.3.7 KeyType32

Identifies the type of key associated with the entity.33

Values34

KEYTYPE_PRIMARY = 1 The key uniquely identifies an instance of the
entity.

KEYTYPE_ALERNATE = 2 If an entity has more than one unique key, all

Open Information Model Meta Data Coalition

Analysis and Design: Entity Relationship Diagrams 57

unique keys not selected as the primary key are
described as alternate keys.

KEYTYPE_NON_UNIQUE = 3 Does not uniquely identify an instance of an entity,
but are often used to access instances of entities.
Non-unique keys may be mapped to indexes in a
relational database.

KEYTYPE_FOREIGN = 4 Identifies the primary key attributes of a parent
entity contributed to a child entity across a
relationship.

7.3.8 Model1

Each instance of this class describes a model, which is a logical collection of entities and the relationships2
between them. Models are top-level constructs, that is, elements cannot be associated across models.3

Specializes4

• Model (from UML)5

Attributes6

• AttributeCount (Integer) – The number of attributes of the objects described in the model.7

• TotalObjectCount (Integer) – The total number of objects represented in the model.8

• EntityCount (Integer) – The number of entities described in the model.9

Associations.10

• Domains (Domain) – The domains defined for the model.11

• StoredDisplays (StoredDisplay) – The stored displays associated with the model.12

• SubjectAreas (SubjectArea) – The subject areas associated with the model.13

• Entities (Entity) – The entities contained in the model.14

• Relationships (Relationship) – The relationships contained in the model.15

• Text (Text) – The textual annotations contained in the model.16

7.3.9 ModelLibrary17

Each instance of this class describes a model library, which is a collection of models.18

Specializes19

• Subsystem (from UML)20

Attributes21

• ModelCount (Integer) – The number of models contained in the library.22

• TotalObjectCount (Integer) – The number of objects contained in all the models contained in the23
library.24

Associations.25

• Models (Model, derived from UML:Namespace.ownedElement) – The collection of models in this26
library.27

• SubLibraries (ModelLibrary, derived from UML:Namespace.ownedElement) – The collection of28
libraries nested in this library.29

Meta Data Coalition Open Information Model

58 Analysis and Design: Entity Relationship Diagrams

7.3.10 Relationship1

Each instance of this class describes a relationship, which represents connections, links or associations2
between entities.3

Specializes4

• Association (from UML)5

Attributes6

• MinVolume (Integer) – The minimum number of instances of the relationship7

• MaxVolume (Integer) – The maximum number of instances of the relationship8

• AvgVolume (Integer) – The average number of instances of the relationship9

• RelationshipType (RelationshipType) – Describes the specifics of the relationship between the10
Entities.11

Associations.12

• IntegrityRules (ReferentialRule, derived from UML:Association.connection) – Describes the13
integrity rules associated with the relationship.14

• GraphicFeatures (GraphicFeature, derived from UML:ModelElement.presentation) – Describes15
the graphic features (projections) associated with the relationship.16

7.3.11 RelationshipRole17

Each instance of this class describes the role and entity plays in a relationship, which can be used to enforce18
a referential integrity constraint.19

Specializes20

• AssociationEnd (from UML)21

Attributes22

• Delete (String) – Describes the action associated with deletion of an instance of the associated23
entity.24

• Update (String) – Describes the action associated with associated with update of an instance of the25
associated entity.26

• Insert (String) – Describes the action associated with associated with instantiation of an instance27
of the associated entity.28

Associations.29

• ParentKey (Key) – The key that forms the parent of the referential rule.30

• ChildKey (Key) – The key that depends on the parent key.31

• Entity (Entity, derived from UML:AssociationEnd.type) – The entity which is participating in the32
relationship.33

7.3.12 RelationshipType34

This enumeration describes the possible types of Relationships between Entities.35

Values36

RELTYPE_IDENTIFYING = 1 A relationship whereby an instance of the child
entity is identified through its association with a

Open Information Model Meta Data Coalition

Analysis and Design: Entity Relationship Diagrams 59

parent entity. The primary key attributes of the
parent entity become primary key attributes of the
child.

RELTYPE_NONIDENTIFYING = 2 A relationship whereby an instance of the child
entity is not identified through its association with
a parent entity. The primary key attributes of the
parent entity become non-key attributes of the
child.

RELTYPE_MANYTOMANY = 3 A relationship where multiple instances of the
child entity are related to multiple instances of the
parent entity.

RELTYPE_COMPLETESUBTYPE = 4 A subtype relationship (also known as a
categorization relationship) is a relationship
between a subtype entity and its generic parent. If
every instance of the generic parent is associated
with one subtype, then the subtype is complete.

RELTYPE_INCOMPLETESUBTYPE = 5 A subtype relationship where instances of the
generic parent are not associated with at least one
subtype.

RELTYPE_DERIVED = 6 A relationship between entities that is derived
from another relationship in the model (used for
view relationship).

1

7.3.13 StoredDisplay2

Each instance of this class describes a stored display, which is a graphical presentation of a subject area or3
model that highlights a particular aspect of the total data structure. A stored display can include objects in a4
other stored display, but the objects may be positioned differently.5

Specializes6

• Diagram (from UML Extensions)7

Attributes8

• Author (String) – The author of the display.9

• RelationshipLineType (String) – The type of line used to represent relationships.10

• IsLogical (Boolean) – Whether or not the display is represents a logical or physical model.11

Associations12

• GraphicFeatures (GraphicFeature, derived from UML:Namespace.ownedElement) – Describes13
the graphic features contained in the stored display.14

7.3.14 SubjectArea15

Each instance of this class describes a subject area, a named, manageable and meaningful subset of a16
model that may include all the entities, relationships, subtypes and diagrams, or any subset of the objects in17
the complete model.18

Specializes19

• Package (from UML)20

Meta Data Coalition Open Information Model

60 Analysis and Design: Entity Relationship Diagrams

Attributes1

• IsPrimary (Boolean) – Whether the subject area is designated as the primary one. Tools may2
designate one area as the main or default subset of the model.3

Associations4

• StoredDisplays (StoredDisplay) – The stored displays associated with the model.5

7.3.15 SubType6

Instances of this class (sometimes called categorization relationships) describe the generalization of an7
entity into a subtype and supertype. For example, a salaried employee is a specific type of employee.8
Subtypes are useful for expressing attributes or relationships only relevant to that subtype of the entity.9

Specializes10

• Generalization (Core)11

Attributes12

• IsExclusive (Boolean) – In an exclusive subtype relationship, each instance in the supertype can13
relate to one and only one subtype. For example, you might model a business rule that says an14
employee can be either a full-time or part-time employee but not both. To create the model, you15
would include an EMPLOYEE supertype entity with FULL-TIME and PART-TIME subtype16
entities and a discriminator attribute called “employee-status.”17

• IsCovering (Boolean) - Specifies whether or not the set of subtype entities in a subtype18
relationship is fully defined. When false, indicates that the modeler feels there may be other19
subtype entities that have not yet been discovered.20

Associations21

• Discriminator (Attribute) – The value of an attribute in an instance of the generic parent22
determines to which of the possible subtypes that instance belongs.23

7.3.16 Text24

Each instance of this class describes a text object, which may be used to store text annotational entries on a25
stored display.26

Specializes27

• GraphicFeatureComment (from UML Extensions)28

Attributes29

• TextString (String) – The text contained in the field.30

Associations31

• GraphicFeatures (GraphicFeature, derived from UML:ModelElement.presentation) – Describes32
the graphic features (projections) associated with the relationship.33

7.3.17 ValidationRule34

Each instance of this class describes a validation rule, which can be constraint expressions or a list of valid35
values for attributes belonging to a domain. The validation rule specifies the rule that will be applied in36
order to verify the validity of the assigned values.37

Specializes38

• Constraint (from UML)39

Open Information Model Meta Data Coalition

Analysis and Design: Entity Relationship Diagrams 61

Associations1

• ValidValues (ValidValue) – The list of valid values or value ranges the rule checks against.2

7.3.18 Value3

Each instance of this class describes a value that an attribute can take.4

Specializes5

• ModelElement (Core)6

Attributes7

• NumericValue (Integer) – The numeric value associated with the instance of the class.8

• StoredValue (String) – A string version of the value associated with the instance of the class.9

• ValueExpression (String) – A string expression of the value associated with the instance of the10
class.11

Meta Data Coalition Open Information Model

62 Object and Components: Component Descriptions

8 Object and Components: Component1

Descriptions2

8.1 Overview3

Component-based development is the task of building families of product from kits of interoperable4
components. Component sharing and reuse has become strategic for enterprises in order to reduce cost and5
time to deployment. Reuse and sharing requires tracking meta data throughout the whole life-cycle of a6
component from specification through design and subsequent enhancements.7

The Component Descriptions package defines component as “a software package that offers services8
through interfaces.” This is meant to capture the perspectives of a component as the unit of packaging and9
delivery, provider of services, and encapsulation boundary.10

The Component Descriptions package covers the different component development life-cycle deliverables.11
It covers component specification, component implementation, and the result of construction - the12
component executable (or simply “component” for short).13

The model is divided into three distinct layers: specification, implementation, and executable. The14
specification layer contains types whose purpose is to define the behavior specification of a component.15
The implementation layer contains types that define the implementation of a component. The executable16
layer contains meta data types that define the run-time characteristics or executable behavior of a17
component.18

The current version of the model defines the specification and executable layers. Future versions will also19
include the implementation layer. It does not cover the supporting information that gives rise to those20
deliverables: the requirements of different analysis, design and implementation tools, version and21
configuration management tools, build tools, or component packaging and deployment concepts.22

The Component Descriptions package intends to cover the various aspects of a component implementation,23
but will not cover the specifics of any particular programming language. For example, a component24
implementation may be realized using an object-oriented programming (OOP) language such as Java,25
Smalltalk or C++, or a 3GL, such as COBOL.26

The Component Description package includes concepts derived from the following sources:27

• Inter-operation Standards. OMG CORBA, Microsoft® OLE, Java/Beans.28

• OOA/D Methods. In particular Catalysis, itself based on OMT and Fusion.29

• The Unified Modeling Language (UML).30

8.2 Semantics31

This section explains the key aspects of the Component Description model. The model is generic in the32
sense that it captures the common aspects of a number of different component models, including COM,33
CORBA, and Java.34

The term “component” is ubiquitous, so this section defines both its meaning in the Component Description35
Model and how it relates to the UML definition. Benefits of components, such as reusability and36
replaceability, and requirements, such as “plug-and-play,” have caused some of this lack of clarity by37
promoting a particular aspect of a component and its consequent requirements and demoting more general38
defining aspects.39

The following are the most common perspectives:40

• Packaging perspective - component as the unit of packaging, distribution, or delivery.41

Open Information Model Meta Data Coalition

Object and Components: Component Descriptions 63

• Consumer perspective - component as the provider of services.1

• Integrity perspective - component as a data integrity or encapsulation boundary.2

All of these perspectives support the notion of component reuse, which is, perhaps, the least constraining3
requirement. The UML defines a component as:4

“a reusable part that provides the physical packaging of model elements.”5

This definition represents the packaging perspective, is quite general, and accommodates a number of6
stereotypes: application, document, file, library, web page, and table.7

The Component Description Model has a tighter meaning for component, which is common to a number of8
component models. The model further qualifies the UML definition by adopting the consumer perspective,9
and defines a component as:10

“a software package which offers services through interfaces.”11

Components under this definition may also support the integrity perspective by allowing a component to be12
designated as independently creatable. This independence enables the important requirement of component13
replaceability to be achieved. The integrity perspective is a necessary condition for component replacement14
in that it defines a component as a software encapsulation boundary, that set of software which collectively15
maintains the integrity of the data it manages. An encapsulated set of data is referred to as an instance of a16
component, or a component object. Components that are not independently creatable may be termed “sub”17
components and are created through specific operations on a related component. Therefore, they cannot be18
replaced independently of that related component. Sub-components are still components in that they offer19
services through interfaces, but they do not designate an encapsulation boundary.20

The packaging perspective is called out in the Component Description Model as a server and is a separate21
specialization of the UML component concept. A server may package many components and a component22
may comprise many servers.23

An example of the difference between these perspectives is the application Microsoft® Excel. The24
packaged item is “excel.exe”. This corresponds to a server and contains a number of components such as25
Application, Chart, and Sheet. Each of these is a component and is an encapsulation boundary. They are26
independently creatable components and could be individually replaced. For example, an alternative27
implementation of the Sheet component, which could inter-operate correctly with the application28
component, could be implemented without having any implementation knowledge of the application29
component. Within each component there are a number of sub-components that, once instantiated, behave30
like any other component object but are not independently replaceable. Examples of sub-components31
within a Sheet are Range and Cell.32

The Component Description Model is divided into three distinct layers: specification, implementation, and33
executable. The specification layer contains classes whose purpose is to define the behavior specification of34
a component. The implementation layer contains interfaces that define the implementation of a component.35
The executable layer contains interfaces that define the run-time characteristics or executable behavior of a36
component. The current version of the Component Description Model specializes the specification and37
executable layers. Future versions will also extend the implementation layer.38

Specification Layer39

To understand the Component Description Model, it is instructive to examine how the different component40
models of CORBA and COM are modeled in UML in a generic way.41

Meta Data Coalition Open Information Model

64 Object and Components: Component Descriptions

b

IB

c

IC

IX

IX; IC; IB; IAX

a

IA

b

IB

c

IC

a

IA

IB; IA
X

IC

refines

refines

CORBA COM

X

X

1

Figure 22: CORBA and COM Component Models2

CORBA3

CORBA specifies component behavior through interface definition language (IDL), which supports the4
concept of multiple interface inheritance. The total behavior of a component can therefore be defined in5
terms of a single interface (IX), which multiply inherits from the range of interfaces that collectively define6
the behavior of the component (IA, IB, IC). In this scheme there is no need for an explicit notion of7
component specification; a CORBA component specification is simply an interface. This is covered in the8
UML conceptual model by the Interface concept, which is a specialization of the type Classifier.9

COM10

COM supports single interface inheritance and the separate concept of a COM Class, which combines11
specification and executable information. A COM class therefore defines the total behavior of a12
component. The COM Class (X) supports the total set of behavior (IA, IB, and IC) but there is no explicit13
interface (IX) representing this combination. This component model is supported in the UML conceptual14
model by the Abstraction dependency between types. A component specification implementing a set of15
interfaces is seen simply as a Classifier, which abstracts other Classifiers. This refinement provides the16
multiple “inheritance” of behavior specification.17

The Component Description Model defines explicit meta data types for the notions of component18
specification, interface, and the refinement relationship between them. These are called ComponentSpec,19
Interface, and InterfaceSupport respectively.20

Open Information Model Meta Data Coalition

Object and Components: Component Descriptions 65

Classifier

ModelElement Abstraction
<Refined

InterfaceSupport

InterfaceComponentSpec

*

1 *

1

Figure 23: Component Specifications and Interfaces2

The instance diagram below shows a component specification instance (CompSpecA of class3
ComponentSpec) supporting an interface instance (InterfaceX of class Interface) via the interface support4
instance (Ref_AX of class InterfaceSupport). The refining and refined relationships are shown linking the5
appropriate interfaces on each object. Note that in the figure below we use an implementation related Class6
/ Interface representation to represent the MDC OIM types and type inheritance.7

CompSpecA

Component
Spec

ModelElement

ModelElement

Relationship

Abstraction

Interface

< client

< supplier

GeneralizableElement

Classifier

ComponentSpec

InterfaceSupport

Type

InterfaceX

Interface

ModelElement

GeneralizableElement

Classifier

Ref_AX

Interface
Support

8

Figure 24: Instance Diagram showing component specifications and interfaces9

InterfaceSupport has a property IsAlwaysSupported, which allows a component specification to distinguish10
between those interfaces it will always support and those that it may support only under certain conditions.11
Also, ComponentSpec has a property IsInterfaceSetOpen, which allows a component specification to12
indicate whether instances may support additional interfaces beyond those defined in the specification. In13
this case, the specification may also be related to those interfaces that it will never support under any14
condition. This differentiation of properties allows for flexible components. Though the behavior of these15
components may vary at run time, they still capture as much information as is optimal in their specification.16

A component specification may also be associated with the interfaces that it requires from some other17
party. The exact nature of this dependency is not modeled.18

ComponentSpec has an important Boolean property IsIndependentlyCreatable. This allows the distinction19
to be made between specifications of components that may be created directly by an external client and are20
therefore potentially independently replaceable, and those “sub” components that have identical21

Meta Data Coalition Open Information Model

66 Object and Components: Component Descriptions

specification requirements but may only be created through specific operations on a related component and1
therefore can neither be created independently of that related component nor independently replaced.2

Fundamentally, a component specification is a set of interfaces. Each interface represents a certain aspect3
of the behavior of a given component. However, for complex behavior-rich components the number of4
interfaces involved may become large, and the need arises to categorize and define constraints on behavior5
at a higher level than a single interface. The Component Description Model provides two meta data types6
for categorizing behavior: ComponentCategory and ComponentType.7

ComponentCategory allows a category to be associated with the component specifications that implement8
it. A category may simply be some definition of a capability offered by such components. Additionally, a9
category may impose constraints over the set of interfaces that such components may support.10
ComponentType allows a category to define a set of mandatory interfaces, optional interfaces or disallowed11
interfaces, and to designate the events raised by compliant components. If a component specification12
implements such a category, then it must comply with the constraints defined by it. The component13
specification is still associated with the full set of interfaces it supports.14

An important requirement when modeling with interfaces is the ability to specify the constraint that support15
for one interface (by a component) implies support for another interface. This is the same as the constraint16
placed on an implementing component by a child and parent interface in an inheritance hierarchy (if the17
component supports the child interface it must support the parent), but it does not have the additional18
requirement that one interface inherits from the other. This implication relationship is defined with the19
dependency InterfaceImplication.20

Interface

Implies

Interface
Implicat ion

IsImplicationFor

1 *

1 *
21

Figure 25: Interface Implication22

The Component Description Model defines a class Type. Type is provided as an extension of the UML23
Classifier and represents a type used in the specification of an interface. These types are called specification24
types. Interface in the Component Description Model is an extension of Type and represents an interface, a25
type that defines (part of) the behavior of a component.26

An Interface consists of a set of members and a specification type model. A specification type model is the27
set of specification types that support the definition of Interface behavior in terms of constraints and28
operation pre- and post-conditions (see below). They represent the vocabulary of an interface, the language29
in which its members and constraints are described. A specification type model is modeled as a30
TypeLibrary, which generalizes the UML Package. A Package may own or reference any UML31
ModelElement. However, if a TypeLibrary is acting as the specification type model of an interface (that is,32
its relationship to Interface exists), then it is constrained to own or reference only elements that specialize33
the Type class of the Component Description Model and constraints (from UML).34

35

Interface

Type Package

HasSpecification
SupportedBy TypeLibrary

0..1 0..1
36

Figure 26: Specification Type Models37

Open Information Model Meta Data Coalition

Object and Components: Component Descriptions 67

The figure below gives an example of the specification type model of a book library interface. The1
interface has a number of operations (CreateMember, CheckOutCopy, and so on). It has a supporting type2
library containing types of the Component Description Model such as Member, Reservation, Copy, Title,3
and so on. These types, and their attributes and association ends, are used to specify the effect of each4
operation as explained before.5

Library

Member Reservation

Copy

Book CD

Titlechecksout

places for

title

num: Integer

name: String
period: Time

date: Date

duedate: Date stocks

CreateMember()
CheckOutCopy()
ReturnCopy()
ReserveCopy()

0..*

0..*

0..*

0..*

0..* 0..*

0..1

1

1

1

1

1

6

Figure 27: Library Interface Example7

A type, and hence an interface, consists of a set of members. This structure is provided at the UML level by8
the relationship between a classifier and its structural features. UML features may be operations or9
attributes and these are specialized at the level of the Component Description Model with Operation and10
Attribute respectively.11

Feature

Attribute Operation

Member

Operation

IsAccessedBy

Classifier feature

Interface

Type

*1

Attribute
(from UML Extensions)

IsConstant: Boolean

IsReadOnly: Boolean

Attribute

*
0..1

IsAccessor: Boolean
Signature: Text

12

Figure 28: Attributes and Operations13

Meta Data Coalition Open Information Model

68 Object and Components: Component Descriptions

Attributes may be “specification-only” in that they are defined on specification types to support the1
definition of constraints and operation pre-and post-conditions (for example, Title:period in the library2
example above). An attribute that is defined on an interface (as opposed to only a specification type) is3
either a constant or simply an abstraction of a get/put operation. Such attributes are represented by types4
that inherit from the Component Description Model type Attribute, allowing them to be associated with5
their accessor operations. An operation has an IsAccessor property that indicates whether or not it is an6
attribute accessor. If it is, then it is classified as either a put, get, or put by reference accessor via its7
AccessorKind property. This also means that attributes can be parameterized via the parameters of the8
operations they represent. For example, the attribute Pay may be associated with the accessor9
Get_Pay(Grade) which returns the pay for a given grade.10

Operation has a Signature property, which provides an alternative way of recording an operation signature11
to the full representation of parameters and types modeled at the UML level. This property may be12
populated in place of, or in addition to, the full details of the parameters.13

As ComponentSpec also inherits from Classifier, component specifications may also contain attributes and14
operations. Such attributes include member variables (e.g., a field). Hence, the notion of attribute in UML15
is used to cover constants; member variables; and, by inheriting from the Component Description Model16
type Attribute, abstractions of a get/put operation.17

The Component Description Model type Operation further extends the UML Operation with exceptions and18
the notion of a related set of pre- and post-condition pairs. Each pre-condition/post-condition pair details19
one aspect of the effect of that operation. A pre-condition defines a condition that must hold, prior to20
execution, for its corresponding post-condition to hold. The pre- and post-conditions are defined in terms of21
attributes and association ends on the specification types of the interface.22

23

IsDefinedBy PrePostPair

PreCondition: Text
PostCondition: Text

Operation

*1

Exception

Raises *

*

24

Figure 29: Pre/Post Condition Pairs and Exceptions25

Continuing with the library interface example above, here is an example of a pre-condition/post-condition26
pair for the CheckOutCopy operation:27

CheckOutCopy (in t: Title, in m: Member, out c: Copy)28

pre The member belongs to the library and a copy of the title is available29

(m.library≠NIL) ^ (∃ c • c∈ t.copy ^ c.checkedout=NIL)30

post The copy is checked out to the member for a given period31

∃ c • c∈ t.copy ^ c.checkedout=NIL32

(m.checksout += c) ^ (c.duedate = TODAY + t.period)33

Operations may raise exceptions. This is provided for by the generic type Exception and its relationship to34
Operation. It is a placeholder for technology-specific extensions that will provide the mechanism for35
defining exceptions within a particular component model.36

For any given interface, there may be a specification type model as described above. As a specification37
convenience, an operation may be factored onto a type within the specification type model of its interface.38
This may occur when the operation concerns a particular (specification) instance of the type. By factoring39
the operation onto that type, its specification can be simplified: A parameter identifying that instance can be40
omitted, and any pre- and post-conditions and constraints can be simplified by avoiding quantification of41

Open Information Model Meta Data Coalition

Object and Components: Component Descriptions 69

that instance within those expressions. Note that this is simply a technique for simplifying the specification1
of operations. It does not imply that the specification type is an interface and that the factored operation is2
an operation of that interface. It remains an operation of the original (outer) interface. However, it may3
anticipate a potential design decision to implement the operation in that way.4

5

Type OperationFactors

0..1 *
6

Figure 30: Operation Factoring7

The Component Description Model defines a specific meta data type called EventSourceSpec for objects8
that are the source of events. This allows component specifications, interfaces, and other objects to be event9
sources by specializing this type. In COM, component specifications (Com class) are event sources. In10
Corba, interfaces are event sources.11

The Component Description Model covers one particular event scheme, where an event is represented as an12
operation on an interface, and where the parameters of the operation provide data about the event. Many13
events can be defined on a single interface. The events can be raised in different ways:14

• In push models, the interface defining the events is implemented on objects other than the one that15
raised the event. The raiser then invokes an operation on those other objects as a means of16
signaling the event. Such consumers will have registered interest with the raiser in component17
model specific ways.18

• In pull models, the event raiser implements the interface defining the events. A consumer invokes19
an operation on that interface to poll for the event.20

EventModel:
CdeEventModel

Raises
Sourced
Event

Event
SourceSpec

*1

IsSourceOf

* 1

Interface

21

Figure 31: Event Modeling22

To model both push and pull models, a meta data type called SourcedEvent is defined, which represents the23
relationship between an event source and the interfaces defining the events it raises. The property24
EventModel indicates whether a push or a pull scheme is being used in each case. The default event model25
is “Push.” An object can source an event using either, or both, schemes. Alternative schemes for the same26
interface will require separate sourced event objects, one for each scheme.27

Executable Layer28

The Component Description Model type Component is introduced as an extension to the UML Component29
and has a tighter meaning than in UML. MemberExe augments the UML Feature and the Component30
Description Model type Member with some executable level attributes. ExecutionPerformance provides31
information on the performance characteristics of the member. ResourcesNeeded describes the run-time32
resources consumed by the member. ExecutionDetails is an uninterpreted string allowing the designation of33
technology-specific information that may be needed in order to invoke the member. Different technology34
extensions of the Component Description Model will have different conventions for the content of this35
attribute.36

Meta Data Coalition Open Information Model

70 Object and Components: Component Descriptions

Component

ComponentSpec

Classifier Featurefeatures

Component
MemberExe

ExecutionPerformance: Text
ResourcesNeeded: Text
ExecutionDetails: Text

Server

*1

Member

* *

/implements

1

Figure 32: Executable Layer2

The meta data type Server inherits from the UML Component type and represents a physical packaging of3
functionality consistent with the UML definition of component. A Server may package one or more4
Components through the association implements. This is a many-to-many relationship that allows many5
components to be packaged into a single server. It also allows a single component to comprise many6
servers. Server also has a many-to-many <IsDescribedBy> association with Typelibrary, allowing a server7
to be associated with one or more type libraries that describe the components it implements.8

The form this physical packaging often takes is either an executable load module or a dynamic link library9
(DLL). These concepts are defined in the UML Extension model as Application and Library and are10
realizations of the UML <<application>> and <<library>> stereotypes of component, respectively.11

8.3 Class Reference12

13

Open Information Model Meta Data Coalition

Object and Components: Component Descriptions 71

Abstraction
(from Core)

Type

Int erfaceSupport
IsDefault : Boolean
IsAlwaysSupported : Boolean

Component
InstallationDetails : Text
ResourcesNeeded : Text
IsLicensed : Boolean

ComponentElement

IsHidden : Boolean
IsRestricted : Boolean
IsExpert : Boolean

ObjectType
(f ro m Co mmo n Data T ypes)

ComponentType

InterfaceImplication

Interface

0..*0..* 0..*

+MandatoryInterfaces

0..*

0..*0..* 0..*

+OptionalInterfaces

0..*

0..*0..* 0..*

+DisallowedInterfaces

0..*

0..*0..* 0..*

+SourcedEventInterfaces

0..*

0..* 1..1

+ImpliedInterfaces

0..* 1..1

1..10..* 1..1

+ImplyingInterfaces

0..*

ComponentSpec
IsIndependentlyCreatable : Boolean
IsInterfaceSetOpen : Boolean

0..* 0..*0..*

+RequiredInterfaces

0..*

0..* 0..*0..*

+UnsupportedInterfaces

0..*

ComponentCategory

0..*

0..*

0..*

+RequiredComponentCategories

0..*

0..*

0..*

0..*

+Implement edComponentCategories

0..*

ModelElement
(from Core)

ModelElement
(from Core)

1

Figure 33: Component Specification2

72
O

bj
ec

t
an

d
C

om
po

ne
nt

s:
C

om
po

ne
nt

D
es

cr
ip

tio
ns

A
ttr

ib
ut

e
(f

ro
m

A
ux

ili
ar

y
E

le
m

en
ts

)

F
ea

tu
re

(f
ro

m
C

or
e)

A
ttr

ib
ut

e
E

xc
ep

tio
n

P
re

P
os

tP
ai

r
P

re
C

on
di

tio
n

:T
ex

t
P

os
tC

on
di

tio
n

:T
ex

t

O
pe

ra
tio

n
Is

A
cc

es
so

r
:B

oo
le

an
A

cc
es

so
rK

in
d

:C
de

A
cc

es
so

rK
in

d
S

ig
na

tu
re

:T
ex

t
Is

V
ar

A
rg

:B
oo

le
an

Is
Id

em
po

te
nt

:B
oo

le
an

0.
.1

0.
.*

0.
.1

+O
pe

ra
tio

ns 0.
.*

0.
.*

0.
.*

0.
.*

+E
xc

ep
tio

ns 0.
.*

0.
.*1.
.1

+
P

re
P

os
tP

ai
rs

0.
.*1.
.1

T
yp

e

0.
.*

0.
.1

+
F

ac
to

re
dO

pe
ra

tio
ns

0.
.*

0.
.1

M
em

be
r

Is
U

ID
ef

au
lt

:B
oo

le
an

In
te

rf
ac

e

E
ve

nt
S

ou
rc

eS
pe

c
S

ou
rc

ed
E

ve
nt

Is
D

ef
au

lt
:B

oo
le

an
E

ve
nt

M
od

el
:E

ve
nt

M
od

el

0.
.*

1.
.1

0.
.*

+I
nt

er
fa

ce
1.

.1

1.
.1

0.
.*

1.
.1

+
S

ou
rc

ed
E

ve
nt

s

0.
.*

M
od

ul
eO

pe
ra

tio
n

O
pe

ra
tio

n
(f

ro
m

C
or

e)

P
ar

am
et

er
Is

O
pt

io
na

l:
B

oo
le

an
Is

R
et

ur
nV

al
ue

:B
oo

le
an

P
ar

am
et

er
(f

ro
m

C
or

e)

O
bj

ec
tT

yp
e

(f
ro

m
C

om
m

on
D

at
a

T
yp

es
)

M
od

el
E

le
m

en
t

(f
ro

m
C

or
e)

C
om

po
ne

nt
E

le
m

en
t

Is
H

id
de

n
:B

oo
le

an
Is

R
es

tr
ic

te
d

:B
oo

le
an

Is
E

xp
er

t:
B

oo
le

an

1

F
ig

ur
e

34
:

F
ea

tu
re

s
an

d
E

ve
nt

s
2 3

73
O

bj
ec

t
an

d
C

om
po

ne
nt

s:
C

om
po

ne
nt

D
es

cr
ip

tio
ns

1 2 3 4 5 6 7

T
hi

s
pa

ge
is

in
te

nt
io

na
lly

bl
an

k.
8 9

Meta Data Coalition Open Information Model

74 Object and Components: Component Descriptions

Member
(f rom Sp eci ficati on Elements)

MemberExe

ExecutionPerformance : Text
ResourcesNeeded : Text
ExecutionDetails : Text

ComponentSpec
(from Specification Elements)

TypeLibrary

Interface
(from Specification Elements)

0..* 0..*0..*

+RequiredInterfaces

0..*

0..* 0..*0..*

+UnsupportedInterfaces

0..*

0..1

0..1

+SpecificationTypeLibrary
0..1

0..1

AttributeExe OperationExe

ServerApplicationServerLibrary

Component
(from Core)

Package
(from Model Management)

Component
(from Specificatio n E lements)

Server

0..* 0..*0..*

+TypeLibraries

0..*+Components

Storage
(from Generic Elements)

1

Figure 35: Execution Elements2

8.3.1 AccessorKind3

An enumeration whose values indicate whether an accessor operation is a get, a put-by-value, or a put-by-4
reference.5

Values6

• ACCESSOR_KIND_GET = 27

• ACCESSOR_KIND_PUT = 48

• ACCESSOR_KIND_PUTBYREF = 89

8.3.2 Attribute10

Each instance of this class describes an attribute, allowing an attribute to be an abstraction of operations11
that access it.12

Specializes13

• Attribute (from UML Extensions)14

Open Information Model Meta Data Coalition

Object and Components: Component Descriptions 75

• Member1

• ComponentElement2

Associations3

• Operations (Operation) – The set of accessor operations (that Get, Put or PutRef the value).4

8.3.3 AttributeExe5

Each instance of this class describes an attribute on a binary or run-time component. This class allows6
execution information to be recorded for the attribute, if required.7

Specializes8

• MemberExe9

• Attribute (from UML Extensions)10

• ComponentElement11

8.3.4 Component12

Each instance of this class describes a binary or run-time component.13

Specializes14

• Component (from UML Extensions)15

• ComponentSpec16

Attributes17

• InstallationDetails (String) – A natural language description of how to install the component.18

• ResourcesNeeded (String) – A natural language description of the run-time resources consumed by19
the component.20

• IsLicenced (Boolean) – Indicates that the component is licensed. Only clients that are authorized21
to use them can create licensed components. The default is FALSE.22

8.3.5 ComponentCategory23

Each instance of this class describes a component category, which identifies a set of functionality that a24
component either implements or requires. A component may implement or require many categories, and a25
category may be implemented or required by many components. Categories are not structured and do not26
combine together to form hierarchy.27

Specializes28

• ComponentType29

• ComponentElement30

8.3.6 ComponentElement31

Each instance of this class describes a component description element, providing general information32
relevant to various sorts of objects.33

Specializes34

• ModelElement (from UML)35

Meta Data Coalition Open Information Model

76 Object and Components: Component Descriptions

Attributes1

• IsHidden (Boolean) – Indicates that the element exists, but should not be displayed in a user-2
orientated browser. The default is FALSE.3

• IsRestricted (Boolean) – Indicates whether macro/scripting programmers should be prevented4
from using the element. The default is FALSE.5

• IsExpert (Boolean) – Indicates that the element is intended for expert users only. The default is6
FALSE.7

8.3.7 ComponentSpec8

Each instance of this class describes the specification aspects of a component.9

Specializes10

• ObjectType (from Common Data Types)11

• ComponentElement12

Attributes13

• IsIndependentlyCreatable (Boolean) – Indicates that the component can be created directly, and14
independently of any other component. If the component is not independently creatable, then it15
must be created by another component. The default is TRUE.16

• IsInterfaceSetOpen (Boolean) – Indicates whether the interface set is open. If so, then instances17
may support additional interfaces beyond those associated with the specification. The default is18
FALSE.19

Associations20

• RequiredInterfaces (Interface) – The set of interfaces that the component specification requires.21

• UnsupportedInterfaces (Interface) – The set of interfaces that are not supported by any instance of22
the component specification.23

• RequiredComponentCategories (ComponentCategory) – The set of categories required by this24
component specification.25

• ImplementedComponentCategories (ComponentCategory) – The set of categories implemented by26
this component specification.27

8.3.8 ComponentType28

Each instance of this class defines a component type that identifies a set of functionality implemented by a29
component. It is similar to component category, except ComponentType provides detailed information30
about the set of interfaces that components conforming to this type will definitely support, may support, or31
must not support, as well as information about the events raised by such components.32

Specializes33

• ComponentElement34

Associations35

• MandatoryInterfaces (Interface) – The set of interfaces that must be supported by components36
compliant with this type.37

• OptionalInterfaces (Interface) – The set of interfaces that may optionally be supported by38
components compliant with this type.39

Open Information Model Meta Data Coalition

Object and Components: Component Descriptions 77

• DisallowedInterfaces (Interface) – The set of interfaces that must not be supported by components1
compliant with this type.2

• SourcedEventInterfaces (Interface) – The set of interfaces defining the events that must be3
supported by components compliant with this type.4

8.3.9 EventModel5

An enumeration whose values indicate whether a SourcedEvent is raised using a Push or a Pull model. The6
models are:7

• Push Model: The source of the event will push event data to the consumer by invoking operations8
defined on an event interface supported by the consumer. Consumers will register interest in the9
event component model in specific ways.10

• Pull Model: The consumer interested in the event will pull event data from the source, by invoking11
“polling” operations supported by the source.12

An object can source any given event interface via either, or both, models. If both models raise an event13
interface, there would be two SourcedEvent objects associating the source with the event interface. The14
default model is Push.15

Values16

• EVENT_MODEL_PUSH = 117

• EVENT_MODEL_PUSH = 218

8.3.10 EventSourceSpec19

Each instance of this class describes the specification of objects that are the source of events.20

Specializes21

• ModelElement (from UML)22

Associations23

• SourcedEvents – The set of events raised by the objects implementing this specification.24

8.3.11 Exception25

Each instance of this class describes an exception.26

Specializes27

• Type28

8.3.12 Interface29

Each instance of this class describes the specification information for an interface. This serves as both an30
implementation specification to a component builder, and a test specification to a component tester or31
reuser.32

Specializes33

• Type34

Associations35

• ImpliedInterfaces (Interface) – The set of implied interface implications.36

• ImplyingInterfaces (Interface) – The set of implying interfaces.37

Meta Data Coalition Open Information Model

78 Object and Components: Component Descriptions

• SpecificationTypeLibrary (TypeLibrary) – The type library containing elements that support the1
specification of this interface.2

8.3.13 InterfaceImplication3

Each instance of this class describes the association object between an interface and another interface that it4
implies. If I1 implies I2, no class should support I1 without also supporting I2.5

Specializes6

• ModelElement (from UML)7

8.3.14 InterfaceSupport8

Each instance of this class describes the association object between a component and an interface that it9
supports.10

Specializes11

• Abstraction (from UML)12

• SummaryInformation (from Generic Elements)13

• ComponentElement14

Attributes15

• IsDefault (Boolean) – Indicates that the interface is the default for the component. A component16
may have only one default interface. The default value is FALSE.17

• IsAlwaysSupported (Boolean) – Indicates whether the interface is always supported by all18
instances of the component. Interfaces for which IsAlwaysSupported is FALSE may be supported19
only under certain conditions. The default is TRUE.20

8.3.15 Member21

Each instance of this class describes the generalization of the specification of members in an interface. The22
term “member” in Component Description Model does not cover member variables.23

Specializes24

• Feature (from UML)25

Attributes26

• IsUIDefault (Boolean) – Indicates that this is the default member for display in the user interface.27
The default value is FALSE.28

8.3.16 MemberExe29

Each instance of this class describes the run-time characteristics of a member.30

Specializes31

• Member32

Attributes33

• ExecutionPerformance (String) – A natural language description of the execution performance of34
the member. This provides information for using the component, and for selecting between35
candidate components for reuse.36

Open Information Model Meta Data Coalition

Object and Components: Component Descriptions 79

• ResourcesNeeded (String) – A natural language description of the run-time resources consumed by1
the member. This provides information for using the component and for selecting between2
candidate components for reuse.3

• ExecutionDetails (String) – A natural language description that provides any additional details4
necessary to invoke the member.5

8.3.17 ModuleOperation6

Each instance of this class describes an operation on a module.7

Specializes8

• ModuleOperation (from UML Extensions)9

• Operation10

8.3.18 ModuleOperationExe11

Each instance of this class describes an operation on a binary or run-time module. This class allows12
execution information to be recorded for the operation, if required.13

Specializes14

• Operation15

• ModuleOperation (from UML Extensions)16

• MemberExe17

8.3.19 Operation18

Each instance of this class describes a Component Description Model operation.19

Specializes20

• Operation (from UML)21

• Member22

Attributes23

• IsAccessor (Boolean) – Indicates if the operation is an accessor or an attribute. An attribute24
accessor either gets the value, puts the value, or puts the value by reference. The AccessorKind25
member is only relevant if this property is TRUE.26

• AccessorKind (AccessorKind) – Indicates the kind of the accessor: Get, Put or PutRef. Only27
relevant if ISAccessor is TRUE.28

• Signature (String) – The signature of the operation. This may be provided in place of, or in29
addition to, the full parameter details.30

• IsVarArg (Boolean) – Indicates that the operation takes a variable number of arguments. If TRUE,31
then the last parameter of the operation must be an array, containing all of the remaining32
parameters. The default is FALSE.33

• IsIdempotent (Boolean) – Indicates whether the operation is idempotent. An idempotent operation34
is one that does not modify state information and returns the same result each time it is performed.35
Performing the routine more than once has the same effect as performing it once. The default is36
FALSE.37

Associations38

• Exceptions (Exception) –The set of exceptions raised by the operation.39

Meta Data Coalition Open Information Model

80 Object and Components: Component Descriptions

• PrePostPairs (PrePostPair) – The set of pre- and post-condition pairs that define the semantics of1
the operation. For operations that have no pre- and post-condition pairs, the semantics is only2
defined in the documentation. Pre- and post-condition pairs provide a basis for component testing3
because they formalize the effect of an operation in terms of apparent state changes to the object.4

8.3.20 OperationExe5

Each instance of this class describes an operation on a binary or run-time component. This class allows6
execution information to be recorded for the operation if required.7

Specializes8

• Operation9

• MemberExe10

8.3.21 Parameter11

Each instance of this class describes a parameter of an operation.12

Specializes13

• Parameter (from UML)14

Attributes15

• IsOptional (Boolean) – Indicates that the parameter is optional. The default is FALSE.16

• IsReturnValue (Boolean) – Designates the parameter as containing the return value for some17
clients. The default is FALSE.18

8.3.22 PrePostPair19

Each instance of this class describes a pre-condition/post-condition pair that forms part of the specification20
of an operation. An operation may define a number of such pairs. Each pair may detail one aspect of the21
effect of the operation. Pre- and post-conditions are conditions described in terms of queries on types. For a22
given interface, the pre- and post-conditions of its operations will reference the types that form the23
specification type model of the interface.24

Specializes25

• None26

Attributes27

• PreCondition (String) – Operation pre-condition. This is a condition that must hold true prior to28
the execution of the operation in order for its corresponding post-condition to be guaranteed. If a29
pre-condition is false this does not mean that the operation cannot, or will not execute, but simply30
that the corresponding post-condition is not guaranteed.31

• PostCondition (String) – Operation post-condition. This is a condition that will hold true after the32
execution of the operation, provided its corresponding pre-condition held prior to the execution.33
The post-condition defines the guarantees of the operation. Any effect on an object that is not34
defined in a post-condition of an operation is not a guarantee of the operation and cannot be35
assumed by a client of that operation. Any dependencies on “side-effects” of operations are likely36
to cause failure in the client if the component providing that operation is replaced with another37
meeting the same specification. All effects must be documented as part of the operation via the38
pre- and post-conditions.39

Open Information Model Meta Data Coalition

Object and Components: Component Descriptions 81

8.3.23 Server1

Each instance of this class describes the server of a component. The server is the application or library that2
implements the component. It is associated with the components for which it is the server by the inherited3
“implements” relationship of UML. The physical implementation of the server may also be represented.4

Specializes5

• Component (from UML)6

• Storage (from Generic Elements)7

Associations8

• TypeLibraries (TypeLibrary) – The set of type libraries that describe the components9
implemented by this server.10

• Components (Component, derived from UML:Component.resident) – The set of components11
implemented by the server.12

8.3.24 ServerApplication13

Each instance of this class describes a server that is an application (e.g., an EXE).14

Specializes15

• Surrogate (from Generic Elements)16

• NamedVersion (from Generic Elements)17

• SummaryInformation (from Generic Elements)18

• Application (from UML Extensions)19

• Server20

8.3.25 ServerLibrary21

Each instance of this class describes a server that is a library (e.g., a DLL).22

Specializes23

• Surrogate (from Generic Elements)24

• NamedVersion (from Generic Elements)25

• SummaryInformation (from Generic Elements)26

• Library (from UML Extensions)27

• Server28

8.3.26 SourcedEvent29

Each instance of this class describes the association object between a component and the sourced event30
interfaces.31

Specializes32

• ComponentElement33

Attributes34

• IsDefault (Boolean) – Indicates that the interface is the default interface raised by the component.35
Upon registering for events, if no specific interface is provided then it is assumed to be default.36

Meta Data Coalition Open Information Model

82 Object and Components: Component Descriptions

• EventModel (EventModel) – The event model (Push or Pull) by which the event is raised.1

Associations2

• Interface (Interface) – The interface describing the events raised.3

8.3.27 Type4

Each instance of this class defines a specification type. Specification types represent the vocabulary of an5
interface – the language in which its members and constraints are described. An interface contains its6
specification types through the specification package that may be associated with the interface.7

Specializes8

• Classifer (from UML)9

• ObjectType (Common Data Types)10

• ComponentElement11

Associations12

• FactoredOperations (Operation) – The set of operations that have been factored onto this type.13

8.3.28 TypeLibrary14

Each instance of this class describes a type library that contains a set of Types.15

Specializes16

• Package (from UML)17

• ModelElement18
19

Open Information Model Meta Data Coalition

Object and Components: Component Descriptions 83

1

2

3

4

5

6

7

This page is intentionally blank.8

9

10

Meta Data Coalition Open Information Model

84 Database and Warehousing: Database Schema

9 Database and Warehousing: Relational1

Database Schema2

9.1 Overview3

The Relational Database Schema package describes information about data maintained in the relational4
databases of an organization. To enable enterprise-wide data management, such metadata must be readily5
available in a commonly agreed-upon format for tools and applications. The goal of this package is to serve6
as the core model for such an infrastructure.7

Additional goals of the package are to:8

• Introduce an industry-standard access mechanism and infrastructure for metadata about relational9
data sources.10

• Introduce a core model for describing metadata about data sources that enables tools to store and11
exchange such descriptive information.12

• Enable tool vendors to extend the model to address requirements of individual tools in the context13
of a common core model.14

The Relational Database Schema package covers the basic elements of a SQL data provider, such as tables,15
columns, and relationships. It does not address physical or implementation details.16

The concepts in the package are modeled after the ANSI SQL-92 standard, with selected extensions17
supported by popular relational database vendors.18

9.2 Semantics19

The Database Schema Package contains three packages:20

• Schema Elements – The primary package, containing classes for tables, views, queries, columns,21
indexes, constraints, joins, data sources, catalogs, schemas, triggers, and keys.22

• Catalog and Connections – A package containing classes of interest to the client side of23
client/server applications, such as classes about establishing connections to database servers.24

• Data Types – A package containing database-specific extensions to the data type model.25

Catalogs are the top-level container for all database definitions. Following the ANSI SQL-92 standard,26
there is the further constraint that a catalog should only contain schemas, an ownership package for27
database components. A schema should, in turn, only contain other database components (such as tables28
and views). The following entity relationship diagram illustrates a simple database schema that is29
referenced in the accompanying text:30

Open Information Model Meta Data Coalition

Database and Warehousing: Database Schema 85

EMPLOYEE_STORE

employee_number: EMPLOYEE.employee_number
employee_first_name: EMPLOYEE.employee_first_name
employee_last_name: EMPLOYEE.employee_last_name
store_city: STORE.store_city
store_state: STORE.store_state
store_phone: STORE.store_phone
store_manager: STORE.store_manager

STORE

store_number: int

store_manager:
store_address1: varchar(20)
store_address2: varchar(20)
store_city: varchar(20)
store_state: varchar(20)
store_zip: int
store_phone: datetime

EMPLOYEE

employee_number: int

store_number: int
employee_first_name: int
employee_last_name: char(15)
employee_address_1:
employee_address_2: char(20)
employee_city: varchar(20)
employee_state: char(2)
employee_zip: int
employee_phone: int
employee_ssn: int
hire_date: datetime
salary: money
supervisor: int

1

Figure 36: Sample database schema2

Tables, views, and queries all exhibit table-like qualities (their definitions include a set of columns and their3
instances contain a set of rows. The generalization of table, view, and query is known as a column set. In4
the diagram above, the employee and store tables contain a set of columns, each with a specified data type.5
The employee_store view is defined as a query of the underlying tables.6

Constraints are schema elements used to enforce the integrity of data in a database. Constraints define rules7
regarding the values allowed in columns and are the standard mechanism for enforcing integrity. The ANSI8
SQL-92 standard identifies three major types of constraints - table constraints, Domain constraints, and9
assertion constraints. Table constraints are further broken down into referential constraints, unique10
constraints, and check constraints.11

A key describes an ordered collection of columns on a single table or view. A key may be one of the12
following: a foreign key, a unique key (or candidate key), or an alternate key (need not be unique). A key13
has a relationship to an associated column set (that is, a table or view) and another relationship to an14
ordered collection of columns (to represent a composite key). In the sample schema above, the15
employee_number has been designated as a unique key for the employee table.16

A key may be associated with zero or more join roles. Each join role links the key to another key of the17
same or different column set. A join role identifies a key that can be used for a meaningful join with18
another key.19

Columns are tied together between the keys on two related join roles. The column order of the two column20
collections (on the two keys) must be compatible, so that each column corresponds to the column in the21
same ordinal position in both collections.22

A referential integrity constraint is represented by referential roles, which are specializations of join role.23
Each referential role identifies one of the keys that participate in a referential constraint (a unique key on24
one side and a foreign key on the other). Referential roles appear on each side of a referential association,25
rather than directly connecting to a key on one side, because update and delete rules, which are properties26
of a referential role, can appear on both sides of such associations. For example, some database systems27
allow you to define both a cascade delete from parent to children and a pendant delete from the last child to28
its parent. In addition, some database systems allow for a many-to-many referential association. In such29
cases, neither side of the association is a unique key.30

Meta Data Coalition Open Information Model

86 Database and Warehousing: Database Schema

In the sample schema above, there is a referential constraint specified between the employee and store1
tables. The store_number column on the employee table comprises a foreign key that is tied to the2
store_number column, the unique key on the store table.3

The Database Schema package includes information about connections and data sources. The model4
captures enough information about a database connection to create a session with a data source (in the OLE5
DB sense) or server. Typically, when making a connection to a data source, the connection binds to a6
particular default database at that data source. Information about the data types supported by a particular7
DBMS product can also be modeled.8

9.3 MDIS Compatibility9

The Meta Data Interchange Specification (MDIS) provides concepts to support a bi-directional file based10
interchange of meta data while maintaining the consistency of the transferred information. The file-based11
transfer specification implies a hierarchical information structure.12

The following illustrates the objects and relationships that define the metamodel for MDIS Version 1.0.13

14

DATABASE

SUBSCHEMA

RECORD

ELEMENT

RELATIONSHIP

DIMENSION

LEVEL

1:1

1:11:1

1:1

1:1

1:1

1:1

0:N 0:N

0:N

0:N 0:N

0:2

1:10:N
1:1

0:2 0:N

0:2

1:1
0:N

0:N

1:1

1:1
1:1
0:2

0:N

1:1

1:1

0:N

0:2

1:1

15

Figure 37: Meta data Interchange Specification Metamodel16

17

This figure labels each object with a <number>:<number/variable> notation, which indicates the possible18
one-to-many relationships. For example, for every database, there may be as few as no records or as many19
as "n" records. Likewise every record can contain as few as no element types (though this is more20
theoretical than likely), or as many as "n" element types.21

The model defines how and MDIS file is constructed by embedding each object definition within its parent22
prior to embedding the parent definition. So for example a database definition can directly contain23
Dimension, View, Record, or Subschema objects, but cannot contain Element or Level objects.24

MDIS objects each have a set of well-defined properties like Identifier, ElementName, or ElementLength,25
which carry the description of the meta data object. Each of the MDIS objects in its file based26
representation is encapsulated by a BEGIN / END statement, which may contains either properties of sub-27
objects. Properties are the leaf-nodes of the hierarchy and simply name / value pairs.28

The following example shows the structure of a simple MDIS file:29

Open Information Model Meta Data Coalition

Database and Warehousing: Database Schema 87

BEGIN HEADER
MDISVersion “1.0”
...

END HEADER

BEGIN DATABASE
Identifier “053”
DatabaseName “CUSTOMER-ORDER-RECORD”

BEGIN RECORD
Identifier “054”
RecordName “CUSTOMER-RECORD”
RecordType “RECORD”

BEGIN ELEMENT
Identifier “055”
ElementName “SOCIAL-SECURITY-NUMB”
ElementDataType “CHAR”
ElementLength “11”
ElementNulls “T”

END ELEMENT
...

END RECORD
...

END DATABASE
1

Figure 38: MDIS Example2

The MDIS model has been integrated into the MDIC OIM by defining a mapping of the MDIS objects,3
relationships, and properties onto MDC OIM classes. The compatible name mappings can be found in the4
UML representation of the MDC OIM. The following provides an overview of the mapping:5

DATABASE6

A Database object in MDIS can be used to represent: a group of files, a relational database, a network7
database, a hierarchical database, a multi-dimensional database, or an object database.8

Database is mapped onto Catalog (from Database Schema) in the MDC OIM.9

SUBSCHEMA10

The Subschema object in MDIS is used to provide a logical grouping of record objects that describe a11
meaningful subset of a database. Instances of the Relationship object (of type "CONTAINS") are used to12
represent the record types that belong in a particular subschema.13

Subschema is mapped onto the Schema (from Database Schema) in the MDC OIM.14

RECORD15

The purpose of the Record object in MDIS is to provide a physical grouping of element objects that16
describe a unit of data.17

Record is mapped on the Table (from Database Schema) or Record (from Record Oriented Schema) in18
MDC OIM. Note, that there is no distinction in the MDIS 1.0 specification between tables and views and19
therefore a record element in a relational database is always mapped onto Table.20

ELEMENT21

The purpose of the element object in MDIS is to provide a physical description of the smallest piece of data22
that can be described. The element represents a data value that is logically or physically represented in the23
database.24

Element objects cannot contain any other objects in the object model. They are considered the lowest25
definable unit of data. Element is mapped to Column (from Database Schema) or Field (from Record26
Oriented Schema) in the MDC OIM.27

Meta Data Coalition Open Information Model

88 Database and Warehousing: Database Schema

DIMENSION1

A Dimension in MDIS is made up of a hierarchy of members, where members are data elements that are2
referenced by a set of coordinates that uniquely define their position in a hypercube.3

Dimension is mapped onto Dimension (from OLAP Schema) and DimensionHierarchy (from OLAP4
Schema) in the MDC OIM.5

LEVEL6

A Level in MDIS is a part of a Dimension hierarchy that can be referenced by name and numbered from7
the top.8

Level is mapped onto DimensionLevel (from OLAP Schema) in the MDC OIM.9

RELATIONSHIP10

The Relationship object in MDIS defines a relationship between object types. In many ways, the11
Relationship object is the most semantically rich and flexible object in the MDIS meta-model. There are12
seven types of relationships: EQUIVALENT, DERIVED, INHERITS-FROM, CONTAINS, INCLUDES,13
LINK-TO, and USER-DEFINED.14

The DERIVED Relationship is mapped onto Transformation (from Data Transformations) of the MDC15
OIM while the other types are mapped onto the corresponding UML concepts.16

9.4 Class Reference17

LogicalSchemaDeployedSchema

Method
(from Core)

Package
(from M odel Ma nage ment)

ModelElement
(from Core)

Constraint
(f rom Core)

Join

ColumnSet

Query

Index

IsUnique : Boolean
IsClustered : Boolean
Nulls : Nulls
AutoUpdate : Boolean
IndexFillFactor : Long
IsSorted : Boolean

View

IsReadOnly : Boolean
CheckOption : Boolean

StoredProcedure

DatabaseConstraint

ReferentialConstraint

Table TableSynonym

1 0..*

+Table

1 0..*

Schema

0..*

+Indexes

0..*

0..*

+Views

0..*

0..*

+StoredProcedures

0..*

+DatabaseConstraints

0..*

+ReferentialConstraints

0..*

+Tables

0.. *

+TableSynonyms

0.. *

Catalog +Schemas

0..*

0..*

0..*

0..*

18

Figure 39: Schema Elements19

20

Open Information Model Meta Data Coalition

Database and Warehousing: Database Schema 89

Classifier
(from Core)

SummaryInformation
(from Generic Elements)

Attribute
(from Auxiliary Elements)

View

IsReadOnly : Boolean
CheckOption : Boolean

Query

Body : Text

DeployedTableDeployedView LogicalMaterializedView DeployedMaterializedView

DeployedColumn

LogicalTableLogicalView

LogicalColumn

RowSet Table

Component
(from Core)

ColumnSet

Est imat edSize : Double
Est imat edRows : Double
ProjectGrowt hRate : Double
ProjectedGrowthPeriod : TimePeriod

Column

IdentityIncrement : Integer
Ordinal : Long
ValueExpression : String

+Columns
ColumnType

0..* 10..*

+Type

1

1

Figure 40: Tables, Columns, and Views2

Attribute
(from Auxiliary Elements)

Classifier
(from Core)

Constraint
(f ro m Core)

ColumnSet Column
+Columns

ColumnCons traint

1..**

+Column

DatabaseConstraint

TableConstraint
Table

* 1..*

+Table

1..**

* 1..*

3

Figure 41: Constraints4

Meta Data Coalition Open Information Model

90 Database and Warehousing: Database Schema

Method
(from Core)

LogicalTrigger DeployedTrigger

Table

Trigger

IsInsert : Boolean
IsUpdate : Boolean
IsDelete : Boolean
BeforeAfter : BeforeAfter
Frequency : Frequency
/ Body : UML:ProcedureExpression+Triggers

ColumnSet Column
IdentityIncrement : Integer
Ordinal : Long
ValueExpression : String

0..* 0..*0..*

+Columns

0..*

+Columns

Method
(f ro m Core)

Parameter
(from Core)

StoredProcedureParameter

Length : Long
NumericScale : Long
NumericPrecis ion : Long
TimePrecision : Long
IsOutput : Boolean

StoredProcedure

*0..1

+Parameters

*0..1

1

Figure 42: Triggers and Stored Procedures2

3

Attribute
(from Auxi liary Elements)

Classifier
(from Core)

SummaryInformation
(from Generic Elements)

Table

Index

10..* 1

+Indices

0..*

ColumnSet

IndexColumn

1..1 1..*1..1

+IndexColumns

1..*

{ordered}

Column

+Columns

0..* 10..*

+Column

1

LogicalIndex DeployedIndex

ModelElement
(f rom Core)

4

Figure 43: Indexes5

Open Information Model Meta Data Coalition

Database and Warehousing: Database Schema 91

SummaryInformation
(from Generic Elements)

At tribute
(from Auxiliary Elements)

ReferentialRole

ModelElement
(f ro m Co re)

Join

Key

Column

0..*1..* 0..*

+Columns

1..*

{ordered}

JoinRole
+JoinRoles

0..*1..1 0..*

+Key

1..1

ColumnSet

0..* 1..*

+Keys

0..* 1..*

+Columns

0..*

1..1

0..*

+ColumnSet

1..1

Association
(from Core)

AssociationEnd
(from Core)

2..* 1

+connection

2..* 1
Classifier

*1 *

+type

1

UniqueKey

UniqueKeyRole
+UniqueKey

ReferentialConstraint

+UniqueKeyRole

ForeignKeyRole

UpdateRule : ReferentialRule
DeleteRule : ReferentialRule
IsDeferrable : Boolean
InitiallyDeferred : Boolean
MatchType : MatchType

+ForeignKeyRoleForeignKey +ForeignKey

1

Figure 44: Referential Integrity2

UniqueKey

IsPrimary : Boolean

ForeignKey

Table

+UniqueKeys

+Tables

+ForeignKeys

+Tables

Key

ColumnSet

0..*

1..*

+Keys 0..*

1..*

3

Figure 45: Keys4

Meta Data Coalition Open Information Model

92 Database and Warehousing: Database Schema

Catalog

Component
(from Core)

Dependency
(from Core)

ModelElement
(from Core)

UsesConnection

DeployedCatalog

ConnectionSet

DataSource

IsPublic : Boolean

+DeployedCatalogs

Provider

ClassID : String
ProgID : String
Version : String

Connection

UserName : String
Password : String
ConnectString : String
ConnectionTimeout : Long
Mode : Long
IsReusable : Boolean
CloseQuoteChar : String
OpenQuoteChar : String
DBName : String
DSN : String
IsReadOnly : Boolean

+Connection

0..*0..* 0..*

+DefaultCatalog

0..*

+Connections

0..*0..1

+Connections

0..*0..1

1..1 0..*

+Provider

1..1 0..*

Package
(from Model Management)

Surrogate
(from Generic Elements)

LogicalCatalog

1

Figure 46 - Catalogs and Connections2

Component
(from Core)

Provider

ClassID : String
ProgID : String
Version : String

ProviderTypeMapping

BestMatch : Boolean

1

0..*

1

+Mappings

0..*

Column

IdentityIncrement : Integer
Ordinal : Long
ValueExpression : String

ColumnTypeSet

ColumnType

ColumnSize : Long
LiteralPrefix : String
LiteralSuffix : String
CreateParams : String
Searchable : Searchable
MinimumScale : Integer
MaximumScale : Integer
IsLong : Boolean
IsNullable : Boolean
IsCaseSensitive : Boolean
IsUnsignedAttribute : Boolean
IsFixedPrecisionScale : Boolean
IsAutoUniqueValue : Boolean
IsFixedLength : Boolean

0..* 10..*

+ColumnType

1

0..* 10..*

+DataType

1

0..*+ColumnTypes

ProviderTypeSet

0.. * 10.. *

+ProviderTypeSet

1

ProviderDataType

DataTypeID : Long
0..* 10..*

+ProviderType

1

0..*

1

+ProviderDataTypes

1

0..*

0..*

ObjectType
(f rom Data Types)

TypeSet
(from Data Types)

3

Figure 47: Data Type Mappings4

Open Information Model Meta Data Coalition

Database and Warehousing: Database Schema 93

9.4.1 BeforeAfter1

An enumeration whose values indicate when a trigger fires.2

Values3

• BEFOREAFTER_BEFORE = 1 – The trigger is fired before the event.4

• BEFOREAFTER_AFTER = 2 – The trigger is fired after the event.5

9.4.2 Catalog6

Each instance of this class describes a catalog – a named collection of schemas in a SQL environment.7
This class can represent: a group of files, a relational database, a network database, a hierarchical database,8
an object database, or any other type of data store. Because a catalog is modeled as a specialization of9
Package, which inherits from Element, a catalog can be contained in other types of packages that are not10
specified in the model.11

The model distinguishes logical (or deployable) database definitions from definitions that are physically12
deployed. According to UML, physical tables and views are stereotypes of components (where component13
is a subtype of class). Having the deployed table and view classes specialize the Component (from UML)14
class allows them to be deployed.15

Specializes16

• Package (from UML)17

• SummaryInformation (from Generic Elements)18

Associations19

• Schemas (Schema, derived from UML:Namespace.ownedElement) – The set of schemas20
contained in the catalog.21

9.4.3 Column22

Each instance of this class describes a column – a multiset of values that may vary over time.23

All values of the same column are of the same data type or domain and are values in the same table. A24
value from a column is the smallest unit of data that can be selected from a table and the smallest unit of25
data that can be updated.26

Column provides a physical description of the smallest piece of data that can be described. A column27
cannot contain any other object and is considered the lowest definable unit of data.28

This class can represent columns in a relational database or properties in an object database.29

Specializes30

• Attribute (from UML Extensions)31

• SummaryInformation (from Generic Elements)32

Attributes33

• IdentityIncrement (Integer) – Indicates the amount that an identity column should be incremented34
for each new row. This value indicates the amount that the value for this column in the previous35
instance should be automatically incremented in order to produce the value for this column in the36
current instance. Identity columns are automatically incrementing columns that are often used to37
provide unique key identification. If this property's value is greater than zero, then this is an38
identity column.39

• Ordinal (Long) – The index of the column within the sequence of columns (1-origin indexing).40

Meta Data Coalition Open Information Model

94 Database and Warehousing: Database Schema

• ValueExpression (String) – Explains how a derived column is calculated, such as "(Extended Price1
* Quantity) – Discount".2

Associations3

• DataType (ColumnType, derived from UML:StructuralFeature.type) – The data type of the4
column.5

9.4.4 ColumnConstraint6

Each instance of this class describes a constraint on the values for a column. Constraints are invariants7
typically expressed using Boolean logic. A ColumnConstraint is a specialization of a Constraint (from8
UML).9

Specializes10

• Constraint11

Associations12

• Column (Column, derived from UML:Constraint.constrainedElement) – The target of the13
constraint.14

9.4.5 Connection15

Each instance of this class describes a connection – a client reference to a particular database resource. In16
the case of Microsoft® SQL Server, a particular database (catalog) within the server can also be specified.17

Specializes18

• ModelElement (from UML)19

Attributes20

• UserName (String) – The user name or ID used to establish the connection to the data source.21

• Password (String) – The password used to establish the connection to the datasource. This field is22
an unencrypted string. This may be empty when using integrated security or if the database23
provider requires an encrypted password.24

• ConnectString (String) – A string containing provider-specific extended connection information,25
such as an ODBC provider string. Although other connection properties (UserName, Password,26
DSN) can be stored in this string, it is typically used for information that cannot be expressed in27
other properties.28

• ConnectionTimeout (Long) – The amount of time (in seconds) for connection initialization.29

• Mode (Long) – A bitmask specifying access permissions requested by the connection.30

• IsReusable (Boolean) – Indicates whether the connection may be shared among multiple clients or31
it is closed immediately after use.32

• CloseQuoteChar (String) – Defines the right (closing) quoting character used by the data source.33

• OpenQuoteChar (String) – Defines the left (opening) quoting character used by the data source.34

• DBName (String) – The name of the database (catalog) used by the connection.35

• DSN (String) – The name of the datasource to used by the connection.36

• IsReadOnly (Boolean) – Indicates if the data source is read only.37

Open Information Model Meta Data Coalition

Database and Warehousing: Database Schema 95

Associations1

• DefaultCatalog (Catalog) – An instance of DeployedCatalog – the catalog to be used as the default2
if no catalog is specified when the connection is established.3

• Provider (Provider) – The provider that is used by this connection.4

9.4.6 ConnectionSet5

Each instance of this class describes a connection set – a collection of database connections grouped6
together for packaging.7

Specializes8

• Package (from UML)9

Associations10

• Connections (Connection) – A set of instances of the Connection class – these are the connections11
present in the ConnectionSet.12

9.4.7 ColumnSet13

Each instance of this class describes any general set of columns – typically a table, view, or query.14

Specializes15

• Classifier (from UML)16

• SummaryInformation (from Generic Elements).17

Attributes18

• EstimatedSize (Double) – The estimated size for this object.19

• EstimatedRows (Double) – The estimated number of rows for this object.20

• ProjectGrowthRate (Double) – The projected rate of growth for the column set. Used in21
conjunction with the projected growth period to determine the rate of growth.22

• ProjectGrowthPeriod (TimePeriod) – The period of time over which the growth rate holds.23

Associations24

• Columns (Column) – The set of columns in the column set.25

• Keys (Key) – The set of keys that apply to the column set.26

9.4.8 ColumnType27

An underlying or base data type object associated with a database column.28

Specializes29

• ObjectType (from Common Data Types)30

Attributes31

• ColumnSize (Long) – The length of a non-numeric column or parameter that refers to either the32
maximum or the defined length for this type. For character data, this is the maximum or defined33
length in characters. For datetime data types, this is the length of the string representation34
(assuming the maximum allowed precision of the fractional seconds component). If the data type35
is numeric, this is the upper bound on the maximum precision of the data type.36

Meta Data Coalition Open Information Model

96 Database and Warehousing: Database Schema

• LiteralPrefix (String) – The character or characters used to prefix a literal of this type in a text1
command.2

• LiteralSuffix (String) – The character or characters used to suffix a literal of this type in a text3
command.4

• CreateParams (String) – Creation parameters are specified when creating a column of this data5
type. For example, the SQL data type DECIMAL needs a precision and a scale. In this case, the6
creation parameters might be the string "precision,scale". In a text command used to create a7
DECIMAL column with a precision of 10 and a scale of 2, the value of the TYPE_NAME column8
might be DECIMAL() and the complete type specification would be DECIMAL(10,2).9

10
The creation parameters appear as a comma-separated list of values, in the order in which they are11
to be supplied, with no surrounding parentheses. If a creation parameter is length, maximum12
length, precision, or scale, "length", "max length", "precision", and "scale" should be used,13
respectively. If the creation parameters are some other value, the text used to describe the creation14
parameter is provider-specific.15

16
If the data type requires creation parameters, "()" generally appears in the type name. This17
indicates the position at which to insert the creation parameters. If the type name does not include18
"()", the creation parameters are enclosed in parentheses and appended to the end of the data type19
name.20

• Searchable (Searchable) – Indicates the searchability of a data type; otherwise, this column is21
NULL.22

• MinimumScale (Integer) – If the type corresponds to a numeric or decimal, this is the minimum23
number of digits allowed to the right of the decimal point.24

• MaximumScale (Integer) – If the type corresponds to a numeric or decimal, this is the maximum25
number of digits allowed to the right of the decimal point.26

• IsLong (Boolean) – Indicates that the data type is a binary or text that contains very long data. The27
definition of very long data may be provider-specific.28

• IsNullable (Boolean) – Indicates whether the columns of this data type can be defined as nullable.29

• IsCaseSensitive (Boolean) – Indicates that the data type is a character type and is case sensitive.30

• IsUnsignedAttribute (Boolean) – Indicates whether the column data type is unsigned.31

• IsFixedPrecisionScale (Boolean) – Indicates that, for numeric types, the data type has a fixed32
precision and scale.33

• IsAutoUniqueValue (Boolean) – Indicates that values of this type can be autoincrementing.34

• IsFixedLength (Boolean) – Indicates whether columns of this type created by the DDL will be of35
fixed length.36

9.4.9 ColumnTypeSet37

Each instance of this class describes a collection of column types corresponding to a specific version of a38
DBMS product. ColumnTypes within a typeset should be shared by all columns of a certain type for a39
specific database product.40

Specializes41

• TypeSet (from Common Data Types)42

Associations43

• ColumnTypes (ColumnType, from Common Data Types:TypeSet) – Specifies the collection of44
column data types within this TypeSet.45

Open Information Model Meta Data Coalition

Database and Warehousing: Database Schema 97

9.4.10 DatabaseConstraint1

Each instance of this class describes a general constraint or assertion that can involve an arbitrary collection2
of columns from an arbitrary collection of base tables. In most database systems, these are created via3
CREATE ASSERTION.4

Specializes5

• Constraint (from UML)6

9.4.11 DataSource7

Each instance of this class describes data source – a provider of database services to which a client can8
connect.9

Specializes10

• Package (from UML)11

Attributes12

• IsPublic (Boolean) – Indicates whether the data source is generally available for reuse.13

Associations14

• DeployedCatalogs (Catalog) – The set of Deployed catalogs present in the data source.15

• DBMS (ColumnTypeNameSpace) – The instance of a column type namespace product used by the16
datasource.17

9.4.12 DeployedCatalog18

Each instance of this class describes an implemented catalog – that is, an actual physical database server.19
The state of a deployed catalog in the repository may be periodically synchronized with its state in the20
database where it is deployed. This synchronization activity is captured by the Surrogate class (from21
Generic Elements).22

Specializes23

• Catalog24

• Component (from UML)25

• ModelElement (from UML)26

• Surrogate (from Generic Elements)27

Attributes28

• SourceType (String) – The type of provider that operates on this catalog, such as SQL Server 6.529
or Oracle 7.3.30

9.4.13 DeployedColumn31

Each instance of this class describes a column of a deployed table.32

Specializes33

• Column34

• Component (from UML)35

Attributes36

• ConfidenceFactor (Integer) – Confidence in accuracy of column’s data. Integer between 0%-100%37

Meta Data Coalition Open Information Model

98 Database and Warehousing: Database Schema

9.4.14 DeployedIndex1

Each instance of this class describes an index of a deployed table.2

Specializes3

• Index4

9.4.15 DeployedMaterializedView5

Each instance of this class describes a physical grouping of columns from different tables forming a new6
table.7

Specializes8

• Table9

• View10

• Component (from UML)11

9.4.16 DeployedSchema12

Each instance of this class describes a schema of an implemented database.13

Specializes14

• Schema15

• Component (from UML)16

9.4.17 DeployedTable17

Each instance of this class describes a table as realized in an implemented schema.18

Specializes19

• Table20

• Component (from UML)21

9.4.18 DeployedTrigger22

Each instance of this class describes a trigger in a deployed schema.23

Specializes24

• Trigger25

9.4.19 DeployedView26

Each instance of this class describes a physical grouping of columns from different tables.27

Specializes28

• View29

• Component (from UML)30

9.4.20 ForeignKey31

Each instance of this class describes an ordered collection of columns that can be used to refer to another32
key in another table or view.33

Open Information Model Meta Data Coalition

Database and Warehousing: Database Schema 99

Specializes1

• Key2

9.4.21 ForeignKeyRole3

Each instance of this class describes a referential role on the foreign key side of the referential integrity4
constraint.5

Specializes6

• ReferentialRole7

Associations8

• ForeignKey (ForeignKey, derived from JoinRole.Key) – The foreign key that participates in this9
referential constraint.10

9.4.22 Frequency11

An enumeration whose values indicate how often a trigger fires.12

Values13

• FREQUENCY_PERROW = 1 – Trigger fires once for each row.14

• FREQUENCY_PERSTATEMENT = 2 – Trigger fires once for each statement.15

9.4.23 Index16

Each instance of this class describes the physical characteristics of an index. Each table and materialized17
view may have zero or more indexes, each of which are associated with a sequence of index columns. Each18
instance can be a B+ tree, linear-hashing hash file, extensible-hashing hash file, or content index.19

Specializes20

• ModelElement (from UML)21

Attributes22

• IsUnique (Boolean) – TRUE only if the index is a unique index.23

• IsClustered (Boolean) – TRUE only if the index is a clustered index. That is, TRUE means that24
the leaf nodes of the index contain full rows, not bookmarks. This is a way to represent a table25
clustered by key value. On the other hand, FALSE means that the leaf nodes of the index contain26
bookmarks of the base table rows whose key value matches the key value of the index entry.27

• Nulls (Nulls) – indicates whether null values are allowed. This property should be set to one of the28
following values: NULLS_DISALLOWNULL, NULLS_IGNORENULL,29
NULLS_IGNOREANYNULL.30

• AutoUpdate (Boolean) – Indicates whether the index is maintained automatically when changes31
are made to the corresponding base table. The value is either:32
TRUE: The index is automatically maintained.33
FALSE: The index must be maintained by the consumer through explicit calls. Ensuring34
consistency of the index as a result of updates to the associated base table is the responsibility of35
the consumer.36

• IndexFillFactor (Long) – For a B+-tree index, this represents the storage utilization factor of page37
nodes during the creation of the index. The value is an integer from 1 to 100 representing the38
percentage of use of an index node. For a linear hash index, this property represents the storage39
utilization of the entire hash structure (the ratio of used area to total allocated area) before a file40
structure expansion occurs.41

Meta Data Coalition Open Information Model

100 Database and Warehousing: Database Schema

• IsSorted (Boolean) – Indicates whether the index totally orders the values of the columns on which1
it is defined. Typically, a sorted index is implemented by a B-tree and an unsorted index is2
implemented by hashing. When using sorted indexes, each column may be ordered ascending or3
descending, which can be specified on the associated IndexColumn class.4

Associations5

• IndexColumns (IndexColumn) – The set of IndexColumns, where each IndexColumn indicates the6
inclusion of a particular column in a particular index.7

9.4.24 IndexColumn8

Each instance of this class indicates that a particular column contributes to a particular index.9

Attributes10

• IsAscending (Boolean) – Indicates whether the index sorts records in ascending order on the11
values of the related column. If this property is false, then records will be sorted in descending12
order. This property is meaningful only if the IsSorted property on this interface is true.13

Associations14

• Column (Column) – The contributing column.15

9.4.25 Join16

Each instance of this class describes a join – that is, a table-to-table (or view-to-view, or table-to-view) link17
using one key from each table (or view). Join inherits from Association (from UML), which has a18
relationship to AssociationEnd, a generalization of JoinRole.19

Specializes20

• Association (from UML)21

Associations22

• JoinRoles (JoinRole, derived from UML:Association.Connection) – The pair of join roles on23
opposite ends of the join.24

9.4.26 JoinRole25

Each instance of this class describes one “side” of a join. AssociationEnd has a relationship to Classifier26
that is used to tie the join role to a ColumnSet.27

Specializes28

• AssociationEnd (from UML)29

Associations30

• Key – The Key that is used for comparison on this “side” of the join. (Each join connects table31
rows by comparing the value of a key of one table to the value of a key in another table.)32

• ColumnSet (derived from UML:AssociationEnd.Type) – The table that participates in the join via33
this join role.34

9.4.27 Key35

Each instance of this class describes an ordered collection of columns on a single table or view. The same36
key may be used in various referential roles or join roles. If a collection of columns happens to be useful as37
both a unique key and a foreign key there must be two keys, because a referential role must be from a38
foreign key to a unique key.39

Open Information Model Meta Data Coalition

Database and Warehousing: Database Schema 101

Specializes1

• ModelElement (from UML).2

Associations3

• Columns (Column) – The ordered set of columns contributing to the key.4

9.4.28 LogicalCatalog5

Each instance of this class is a canonical description of a catalog that is not deployed in any particular6
database.7

Specializes8

• Catalog9

9.4.29 LogicalColumn10

Each instance of this class is a canonical description of a column that is not deployed in any particular11
database.12

Specializes13

• Column14

9.4.30 LogicalIndex15

Each instance of this class is a canonical description of an index that is not deployed in any particular16
database.17

Specializes18

• Index19

9.4.31 LogicalMaterializedView20

Each instance of this class describes a canonical description of a materialized view that is not deployed in21
any particular database. (A materialized view is a logical grouping of columns from different tables that22
forms a new table.)23

Specializes24

• Table25

• View26

9.4.32 LogicalSchema27

Each instance of this class is a canonical description of a schema that is not deployed in any particular28
database.29

Specializes30

• Schema31

9.4.33 LogicalTable32

Each instance of this class is a canonical description of a table that is not deployed in any particular33
database.34

Meta Data Coalition Open Information Model

102 Database and Warehousing: Database Schema

Specializes1

• Table2

9.4.34 LogicalTrigger3

Each instance of this class is a canonical description of a trigger that is not deployed in any particular4
database.5

Specializes6

• Trigger7

9.4.35 LogicalView8

Each instance of this class is a canonical description of a view that is not deployed in any particular9
database.10

Specializes11

• View12

9.4.36 MatchType13

An enumeration whose values indicate the kind of match type for a referential role.14

Values15

• MATCHTYPE_FULL_MATCH = 1 – Every column must match for the record to be included in16
the reference.17

• MATCHTYPE_PARTIAL_MATCH = 2 – Some columns may be null but those that are not null18
must match for the record to be included in the reference.19

9.4.37 Nulls20

An enumeration whose values indicate the way that nulls are to be handled.21

Values22

• NULLS_DISALLOWNULL – The index does not allow entries where the key columns are23
NULL. If the user attempts to insert an index entry with a NULL key, then the provider returns an24
error.25

• NULLS_IGNORENULL – The index does not insert entries containing NULL keys. If the user26
attempts to insert an index entry with a NULL key, then the provider ignores that entry and no27
error code is returned.28

• NULLS_IGNOREANYNULL – The index does not insert entries where some column key has a29
NULL value. For an index having a multi-column search key, if the user inserts an index entry30
with NULL value in some column of the search key, then the provider ignores that entry and no31
error code is returned.32

9.4.38 Provider33

A provider is a run-time component that provides database information and exposes underlying data types34
to a client application. Examples of providers are SQLOLEDB (OLE DB for SQL Server), or the ODBC35
driver for SQL Server. The friendly name of the provider, for example "Microsoft OLE DB Provider for36
ODBC Driver" should be captured in the description attribute.37

Open Information Model Meta Data Coalition

Database and Warehousing: Database Schema 103

Specializes1

• Component (from UML)2

Attributes3

• ClassID (String) – The ClassID of the provider used by a connection for provider initialization, if4
applicable.5

• ProgID (String) – The ProgID of the provider used by a connection for provider initialization, if6
applicable.7

• Version (String) – The version of the provider. The version is of the form ##.##.####, where the8
first two digits are the major version, the next two digits are the minor version, and the last four9
digits are the release version. A description of the provider can be appended.10

Associations11

• Mappings (ProviderTypeMapping) – A set of instances of ProviderTypeMapping. These indicate12
how the provider exposes underlying datatypes to programs manipulating the data.13

• TypeSet (ProviderTypeSet) – The typeset used by this provider. For example, the ODBC driver14
for Microsoft® SQL Server would specify the ODBC 3.0 TypeSet.15

9.4.39 ProviderDataType16

Each instance of this class describes a provider data type – an intrinsic type a provider uses to expose one17
or more underlying column data types.18

Specializes19

• ObjectType (Common Data Types)20

Attributes21

• DatatypeID (Long) – An arbitrary identifier for the ProviderDataType.22

9.4.40 ProviderTypeSet23

Each instance of this class describes a provider typeset – a set of data types exposed by a provider, for24
example OLE DB 1.0 or ODBC 3.0.25

Specializes26

• TypeSet (from Common Data Types)27

Associations28

• ProviderDataTypes (ProviderDataType, from Common Data Types:TypeSet) – The set of29
provider data types for this TypeSet.30

9.4.41 ProviderTypeMapping31

Each instance of this class indicates that a particular Provider uses a particular ProviderDataType to expose32
any column whose underlying data type is ColumnType.33

Each instance of this class as an ordered triplet (A, B, C), as follows:34

Whenever provider A encounters a database column whose ColumnType is B, it exposes the column’s35
value as a variable with ProviderDatatype C.36

Meta Data Coalition Open Information Model

104 Database and Warehousing: Database Schema

Attributes1

• BestMatch (Boolean) – Indicates that the mapping between a pair of object types by a provider is2
the "best" match. There is a constraint that for each underlying object type, only one instance of3
the mapping will have BestMatch = TRUE.4

9.4.42 Query5

Each instance of this class describes a query -- A query is a predefined specification for retrieving a set of6
information. A query can retrieve data from many different sources, including tables, views, and OLE DB7
providers.8

Specializes9

• ColumnSet10

Attributes11

• Body (Text) – The SQL text of the query.12

9.4.43 ReferentialConstraint13

Each instance of this class describes a referential integrity constraint.14

Specializes15

• Join16

Associations17

• ForeignKeyRole (ForeignKeyRole, derived from Join.JoinRoles) – The side corresponding to the18
foreign key.19

• UniqueKeyRole (UniqueKeyRole, derived from Join.JoinRoles) – The side corresponding to the20
primary key.21

9.4.44 ReferentialRole22

Each instance of this class describes one “side” of a referential integrity constraint. Typically, the rules for23
the referential constraint are stored on the foreign key role, however some database systems may allow for24
different constraints on each role.25

Specializes26

• JoinRole27

Attributes28

• UpdateRule (ReferentialRule) – Describes the behavior when a row is updated in the table29
participating in the constraint.30

• DeleteRule (ReferentialRule) – Describes the behavior when a row is deleted from the table31
participating in the constraint.32

• IsDeferable (Boolean) – TRUE if the referential integrity check can be deferred.33

• InitiallyDeferred (Boolean) – TRUE if the referential integrity check is initially deferred.34

• MatchType (MatchType) – Indicates whether or not every referencing column value must match35
every referenced column value to include the record.36

9.4.45 ReferentialRule37

An enumeration whose values indicate the type of referential rule.38

Open Information Model Meta Data Coalition

Database and Warehousing: Database Schema 105

Values1

• REFERENTIALRULE_CASCADE = 1 – Cascade the update or delete to the referenced row.2

• REFERENTIALRULE_SET_NULL = 2 – Set the column in the referenced row to null.3

• REFERENTIALRULE_SET_DEFAULT = 3 – Set the column in the referenced row to its default4
value.5

• REFERENTIALRULE_NO_ACTION = 4 – Do nothing with the referenced row.6

9.4.46 RowSet7

Each instance of this class describes a generic column set that is neither a query, a view, nor a table. Such a8
column set can temporarily exist as the result of a query.9

Specializes10

• ColumnSet11

9.4.47 Schema12

Each instance of this class describes a schema – a persistent descriptor packaging database component13
descriptors. This structure can be used to represent a logical or physical relationship between database14
objects. For example: All objects owned by a user of a relational database, a logical grouping of objects in15
an object database, the directory structure of files. An instance of this class can contain objects16
representing: tables, indexes, and constraints in a relational database, and objects and relationships in an17
object database.18

Specializes19

• Package (from UML)20

• Module (from UML Extensions)21

• SummaryInformation (from Generic Elements)22

Associations23

• Indexes (Index, derived from UML:Namespace.ownedElement) – The indexes contained in the24
schema.25

• Tables (Table, derived from UML:Namespace.ownedElement) – The tables contained in the26
schema.27

• Views (View, derived from UML:Namespace.ownedElement) – The views contained in the28
schema.29

• StoredProcedures (StoredProcedure, derived from UML:Classifier.feature) – The stored30
procedures of the schema.31

• ReferentialConstraints (ReferentialConstraint, derived from UML:Namespace.ownedElement) –32
The set of referential (primary key/foreign key) constraints owned by the schema.33

• DatabaseConstraints (DatabaseConstraint, derived from UML:Namespace.ownedElement) – The34
set of general constraints (sometimes called assertions) owned by the schema.35

9.4.48 Searchable36

An enumeration whose values indicate the searchability of a data type.37

Values38

• UNSEARCHABLE = 1 – The data type cannot be used in a WHERE clause.39

Meta Data Coalition Open Information Model

106 Database and Warehousing: Database Schema

• LIKE_ONLY = 2 – The data type can be used in a WHERE clause only with the LIKE predicate.1

• ALL_EXCEPT_LIKE = 3 – The data type can be used in a WHERE clause with all comparison2
operators except LIKE.3

• SEARCHABLE = 4 – The data type can be used in a WHERE clause with any comparison4
operator.5

9.4.49 StoredProcedure6

Each instance of this class describes a stored procedure, a named set of SQL statements that can be7
executed by database users. Stored procedures are modeled as extensions of Method (from UML). UML8
requires that a Classifier own every Method. However, database systems don’t offer a natural grouping of9
stored procedures into classifiers. The solution offered by the Schema Elements package is that the Schema10
class specialize the Module class (defined in the UML Extensions package), of which Classifier is a11
specialization ancestor.12

Specializes13

• Method (from UML)14

Associations15

• ProcedureParameters (StoredProcedureParameter, derived from16
UML:BehavioralFeature.parameter) – A set of instances of the StoredProcedureParameter class.17

9.4.50 StoredProcedureParameter18

Each instance of this class describes a parameter of a stored procedure.19

Attributes20

• Length (Long) – The maximum possible length of a value of the attribute.21

• NumericScale (Integer) – The number of digits to the right of the decimal point in the column for22
numeric parameters.23

• NumericPrecision (Integer) – The maximum number of base 10 digits that can be stored for24
numeric parameters.25

• TimePrecision (Long) – Datetime precision (number of digits in the fractional seconds portion) if26
the attribute is a datetime or interval type.27

• IsOutput (Boolean) – Indicates that the parameter is a return parameter. Output parameters return28
information to the calling procedure.29

• Default (String, derived from UML:Parameter.defaultValue) – The default value for the30
parameter. If a default is defined, the procedure can be executed without specifying a value for31
that parameter.32

Specializes33

• Parameter (from UML)34

9.4.51 Table35

Each instance of this class describes a table, a multi-set of rows. A row is a nonempty sequence of values.36
Every row of the same table has the same cardinality and contains a value of every column of that table.37
The nth value in every row of a table is a value for the nth column of that table. A row is the smallest unit38
of data that can be inserted into or deleted from a table. A table is a grouping of columns that describe a39
basic unit of data. Instances of this class can represent: record layouts of a file, relational database tables,40
objects in an object database, records in a network database, or segments in a hierarchical database. Tables41

Open Information Model Meta Data Coalition

Database and Warehousing: Database Schema 107

can contain objects representing: columns in a relational database, properties in an object database, or fields1
in a record type.2

Specializes3

• ColumnSet4

Associations5

• Triggers (Trigger, derived from UML:Classifier.feature) – The triggers defined on the table.6

• Indices (Index) – The set of indexes for the table.7

• UniqueKeys (UniqueKey, derived from ColumnSet.Keys) – The set of unique keys for the table.8

• ForeignKeys (ForeignKey, derived from ColumnSet.Keys) – The set of foreign keys for the table.9

9.4.52 TableConstraint10

Each instance of this class describes a database constraint that applies to a table. Constraints are invariants11
typically expressed using Boolean logic. A TableConstraint is a specialization of Constraint (from UML).12

Specializes13

• Constraint14

Associations15

• Table (Table, derived from UML:Constraint.constrainedElement) – The target of the constraint.16

9.4.53 TableSynonym17

Each instance of this class describes an alternate name or alias for a table. While it shares its schema18
namespace with tables and views, unlike a view, it does not contain a SQL statement or column19
specification.20

Specializes21

• ModelElement (from UML)22

Associations23

• Table (Table) – The table for which this is a synonym.24

9.4.54 Trigger25

Each instance of this class describes a trigger – essentially a rule that automatically fires on a certain event26
such as an insert, update, or delete operation. This class captures the ANSI SQL-92 concept of a trigger.27

Specializes28

• Method (from UML)29

Attributes30

• IsInsert (Boolean) – TRUE if the trigger fires on an insert operation.31

• IsUpdate (Boolean) – TRUE if the trigger fires on an update operation.32

• IsDelete (Boolean) – TRUE if the trigger fires on a delete operation.33

• Frequency (Frequency) – Indicates how often the trigger fires. For example, does the trigger fire34
once per row, or once per statement?35

• BeforeAfter (BeforeAfter) – Indicates when the trigger fires, either before or after the operation.36

Meta Data Coalition Open Information Model

108 Database and Warehousing: Database Schema

• Statements (String, derived from UML:Method.body) – The SQL statements which specify the1
trigger conditions and actions.2

Associations3

• Columns (Column) – The set of columns controlling whether the trigger fires. If this association is4
null, then the trigger fires if the event occurs on any column in the table.5

9.4.55 UniqueKey6

Each instance of this class describes a set of columns whose values must be unique for each row of a table.7

Specializes8

• Key9

Attributes10

• IsPrimary (Boolean) – TRUE only if the key is a primary key.11

9.4.56 UniqueKeyRole12

Each instance of this class describes a referential role on the unique key side of the referential integrity13
constraint.14

Specializes15

• ReferentialRole16

Associations17

• UniqueKey (UniqueKey, derived from JoinRole.Key) – The unique key that participates in the18
referential constraint.19

9.4.57 UsesConnection20

Each instance of this class indicates that a particular object uses a particular Connection. A connection is21
the supplier of the Dependency, and the client is the object that uses, or depends on, the connection.22

Specializes23

• Dependency (from UML)24

Associations25

• Connection (Connection, from UML:Dependency.supplier) – The connection used by the object.26

9.4.58 View27

Each instance of this class describes a view – a grouping of columns not necessarily from the same table.28

Specializes29

• Query30

Attributes31

• IsReadOnly (Boolean) – TRUE only if the view cannot be used to insert, delete, or update data.32

• CheckOption (Boolean) – Indicates whether inserts and updates performed through the view must33
result in rows that the view query can select.34

Open Information Model Meta Data Coalition

Database and Warehousing: Database Schema 109

9.5 OIM 1.0 Compatibility1

The original OIM specialized the Common Data Types package to provide relational database specific2
types. The limitations of this approach have led to the recommendation to use the generic ColumnType3
class.4

This section describes classes included in the OIM for compatibility with earlier versions of OIM.5

Binary Bit

Blob

Char

Clob Date

Decimal SmallMoney

Double

Integer

Money NChar NVarChar

Numeric

QuadInt

Real Time

SmallInt

VarCharVarBinary

TinyInt

TimeStamp

ColumnType

Interval

6
7

8

Figure 48: OIM 1.0 Data Types9

10

11

9.5.1 Binary12

Specializes13

• Binary14

• ColumnType15

9.5.2 Bit16

Bit describes a single-bit binary-data data type. Instances that support this interface should set the17
IsVariable property inherited from Binary to FALSE and the Length property inherited from Binary to 1.18

Specializes19

• Binary20

• ColumnType21

Meta Data Coalition Open Information Model

110 Database and Warehousing: Database Schema

9.5.3 Blob1

Blob describes BLOB data types. Blob data types usually have physical implementations that differ from2
other variable-length binary data types. These physical implementation differences are specific to the3
DBMS in question.4

Instances that support this interface should set the IsVariable property inherited from the Binary type to5
TRUE.6

Instances that support this interface should set the Length property inherited from the Binary type to the7
maximum length allowed for a BLOB datatype in the DBMS.8

Specializes9

• VarBinary10

9.5.4 Char11

Char describes a fixed length character string data type using the database's default character set to12
determine the type of character data.13

The length of the instance is determined by the Length property inherited from the String data type.14

The IsCaseSensitive property inherited from String determines whether the column’s sorting order should15
consider the case of the value.16

The CharacterType property (also inherited from the String data type) indicates whether the value of the17
instance is composed of single byte characters, double byte characters, or multi-byte characters.18

Instances that support this interface should set the IsVariable property inherited from the String type to19
FALSE.20

Specializes21

• String22

• ColumnType23

9.5.5 Clob24

Clob describes a character large object data type. Clob data types usually have physical implementations25
that differ from other variable-length character data. These physical implementation differences are specific26
to the DBMS.27

Instances that support this interface have the maximum length determined by the value of the Length28
property inherited from the String type. Instances that support this interface should set the IsVariable29
property inherited from the String type to TRUE.30

The IsCaseSensitive property inherited from String determines whether the column’s sorting order should31
consider the case of the value.32

The CharacterType property also inherited from the String data type indicates whether the value of the33
instance is composed of single byte characters, double byte characters, or multi-byte characters.34

Specializes35

• VarChar36

9.5.6 Date37

Date describes database year, month, and day fields conforming to the rules of the Gregorian calendar.38

Open Information Model Meta Data Coalition

Database and Warehousing: Database Schema 111

Specializes1

• Date2

• ColumnType3

9.5.7 Double4

Specializes5

• Double6

• ColumnType7

9.5.8 Integer8

This type represents a double word (4 byte) integer data type.9

Instances that implement this interface should set the NumericPrecision attribute of the inherited Numeric10
type to less than or equal to 10 and NumericScale to 0.11

Specializes12

• LongInt13

• ColumnType14

9.5.9 Interval15

Each instance of this class describes a datatype representing the difference between two dates or times.16

Specializes17

• Scalar18

• ColumnType19

9.5.10 NChar20

The type defining a fixed-length character string data type using the database's national character set.21

The length of the instance is determined by the Length property inherited from the String data type.22

The IsCaseSensitive property inherited from String determines whether the columns sorting order should23
consider the case of the value.24

The CharacterType property (also inherited from the String data type) indicates whether the value of the25
instance is composed of single byte characters, double byte characters, or multi-byte characters.26

Instances that support this interface should set the IsVariable property inherited from the String type to27
FALSE.28

Specializes29

• String30

• ColumnType31

9.5.11 NVarChar32

The type defining a variable length character string data type using the database's national character set to33
determine character data type.34

Meta Data Coalition Open Information Model

112 Database and Warehousing: Database Schema

The maximum length determined by the value of the Length property inherited from the String type.1
Instances of this type should set the IsVariable property inherited from the String type to TRUE.2

The IsCaseSensitive property inherited from String determines whether the columns sorting order should3
consider the case of the value.4

The CharacterType property also inherited from the String data type indicates whether the value of the5
instance is composed of single byte characters, double byte characters, or multi-byte characters.6

Specializes7

• String8

• ColumnType9

9.5.12 Numeric10

Specializes11

• Numeric12

• ColumnType13

9.5.13 Money14

The type defining a money data type. Money usually differs from SmallMoney in the maximum amounts15
the instance of this type is able to store.16

The IsSigned property inherited from Numeric should be set to TRUE.17

The NumericScale and NumericPrecision properties inherited from the Numeric type should be set in an18
implementation specific way. Likewise, the OctetLength property inherited from the IntrinsicType type19
should be set in an implementation-specific way.20

Specializes21

• Decimal22

• ColumnType23

9.5.14 QuadInt24

Specializes25

• QuadInt26

• ColumnType27

9.5.15 Real28

Specializes29

• Single30

• ColumnType31

9.5.16 SmallInt32

The type that represents a double word (2-byte) integer column data type. Instances that implement this33
interface should set the NumericPrecision attribute of the inherited Numeric type to less than or equal to 534
and NumericScale to 0.35

Open Information Model Meta Data Coalition

Database and Warehousing: Database Schema 113

Specializes1

• ShortInt2

• ColumnType3

9.5.17 SmallMoney4

The type defining a small money data type.5

The IsSigned property inherited from Numeric should be set to TRUE.6

The NumericScale and NumericPrecision properties inherited from the Numeric type should be set in an7
implementation-specific way. Likewise, the OctetLength property inherited from the IntrinsicType type8
should be set in an implementation-specific way.9

Specializes10

• Decimal11

• ColumnType12

9.5.18 Time13

Specializes14

• Time15

• ColumnType16

9.5.19 TinyInt17

Specializes18

• TinyInt19

• ColumnType20

9.5.20 TimeStamp21

The type that describes a timestamp data type.22

Specializes23

• Datetime24

• ColumnType25

9.5.21 VarBinary26

The type that implements a variable length binary data with a maximum length determined by the value of27
the Length property inherited from the Binary type.28

Instances that support this interface should set the IsVariable property inherited from the Binary interface to29
TRUE.30

Specializes31

• Binary32

• ColumnType33

Meta Data Coalition Open Information Model

114 Database and Warehousing: Database Schema

9.5.22 VarChar1

The type defining a variable length character string data type with the maximum length determined by the2
value of the Length property inherited from the String type. Instances that support this interface should set3
the IsVariable property inherited from the String type to TRUE.4

The IsCaseSensitive property inherited from String determines whether the columns sorting order should5
consider the case of the value.6

The CharacterType property also inherited from the String data type indicates whether the value of the7
instance is composed of single byte characters, double byte characters, or multi-byte characters.8

Specializes9

• String10

• ColumnType11
12

Open Information Model Meta Data Coalition

Database and Warehousing: Database Schema 115

1

2

3

4

5

6

7

This page is intentionally blank.8

9

10

Meta Data Coalition Open Information Model

116 Database and Warehousing: Data Transformations

10 Database and Warehousing: Data1

Transformations2

10.1 Overview3

When moving data from production databases into a data warehouse or data mart, data typically needs to be4
transformed into a more suitable form for data analysis. The Data Transformation package describes data5
transformations, what they do, and what data they access.6

This package covers basic transformations for relational-to-relational translations. As additional packages7
are introduced (legacy languages, VSAM, IDMS, and so forth), other types of sources and destinations may8
be specified as well.9

The Data Transformation package is intended to enable sharing of meta data about transformation activities10
by making such meta data readily available in a commonly agreed-upon format for tools and applications.11
More specifically, the goals are to:12

• Give data extraction and transformation logic (ETL) tools a common place to store their13
transformation information. This gives the customers a single place to view all of their warehouse14
transformations, regardless of the tool.15

• Allow exchange of transformation information. Many transformations are sufficiently generic to16
be used for a variety of databases and applications. By storing such transformations and their17
constituent pieces in a repository, existing transformations can be reused when building a new data18
warehouse or data mart. A customer may initially build a data mart by using a low-end19
transformation tool, but later decide to invest in more powerful tools.20

• Provide a meta data storage mechanism for custom-coded applications. This will allow custom21
applications to have their transformations documented in a consistent manner.22

• Leverage the existing Database Schema package information in transformations. Tools can use the23
schema model information, such as table and column descriptions, to build their transformation24
models.25

• Provide support for package executions, or data lineage. This allows users to trace data in the data26
warehouse to the transformations that were used to populate it.27

The classes in this chapter are related closely to the classes in Database Schema package, which presents28
both the motivation for relational database schema and the usage scenarios for which they are intended.29

Some source and destination classes in the transformation packages model inherit from classes in the30
Database Schema package. Therefore, an instance of the Data Transformation package can be viewed and31
accessed by tools that use the Database Schema package but do not use the Data Transformation package32
itself.33

10.2 Semantics34

This section provides a discussion of the main features of the Data Transformations package beyond that35
specified in the reference section. The following figure introduces the core elements of the package36
described in detail below:37

Open Information Model Meta Data Coalition

Database and Warehousing: Data Transformations 117

Step 1

Step 2

Step 3

Transformation Target

Source Target

Source

Package

Script
Java

Exec Utility

Object

Task C

Task B

Task A

Transformation

1

Figure 49: A Sample Transformation Package2

A transformation maps from a set of source objects into a set of target objects, both represented by a3
transformable object set. The elements of a transformable object set are typically columns or tables.4
Transformable object sets can be both sources and targets for different transformations. The object set5
abstraction makes it easier to identify pairs of transformations where the output of one transformation is the6
input of another. This is often the case with transformations that produce and consume temporary objects.7

Transformations allow a wide range of granularity to be defined based upon the information in the specific8
tool. If the tool is not very granular, only tracking inputs and outputs for a program, the transformable9
object set can be related to a large set of tables or columns. More granular tools can track the10
transformations in great detail, with each transformation only relating to one or two columns.11

Within a transformation, transformation tools may store scripts, a textual description, or actual program12
code. Extended textual descriptions and summary information can also be stored. The model can also13
handle temporary transformation fields (those that are not persisted in a database).14

Transformations can be packaged into groups. These groups can represent the transformations performed in15
a single program or in a logically related set of transformations (for example, all of the transformations16
related to moving the customer master file into the warehouse). There are three levels of grouping that can17
be done with the transformation model. The first uses a transformation task, which describes a set of18
transformations that must be executed together – a logical unit of work. In this context, a logical unit of19
work relates to a program or execution unit. There will usually be many physical units of work for each20
logical unit of work. Transformations can be ordered and executed in a particular sequence for the task.21

The second level of grouping is a transformation step. A transformation step executes a single22
transformation task. Steps are used to coordinate the flow of control between tasks. The third level of23
grouping is a transformation package, consisting of a set of transformation steps, transformation tasks, and24
other related objects. This grouping can be used, for example, as the unit of versioning of transformations25
and as the unit of access control.26

Simple value conversions are often performed during the transformation process. For example, a27
transformation may wish to map literal values of 1, 2, and 3 in a source database to ‘good’, ‘fair’, and28
‘poor’ in a data warehouse. Or the transformation might use a lookup table to convert values such as zip29
codes to state names.30

Conversions are specified using code/decode sets. Literal conversions are specified using code/decode31
values. The name/value pairs are specified like constants in an enumeration. Ranged expressions and other32

Meta Data Coalition Open Information Model

118 Database and Warehousing: Data Transformations

multiple or spanning values can also be defined using tool-specific expressions. A code/decode set can also1
be stored in a table. For code/decode sets using a lookup table, the model specifies the related columns that2
represent the column storing the code and decode values respectively.3

Package executions express the concept of a data lineage. Information about each execution of a package4
can be stored along with information about the execution of each task within the package. The ExecutionID5
property can be stored in a target database in the object that was populated by the package execution. This6
enables the lineage of the data to be traced back to the package execution that created it. This allows data in7
the warehouse to be tracked, so that a user can determine from which data it was derived, and which8
transformation was used to create it.9

10.3 Class Reference10

Module
(f rom Au xili ary Ele ments)

SummaryInformation
(f ro m Gen eric El ements)

Method
(from Core)

Element
(from Core)

ConnectionSet
(f rom Cata log a nd Connections)

Package
(from Model Management)

Transformation

FunctionExpression : Text
IsControl : Boolean
Language : String
/ Body : String

PackageExecution
ExecutionId : String
ShortExecutionId : Long
System : String
Account : String
WhenExecuted : String

TransformationPackage

CreationDate : String

1..1 0..*1..1

+Executions

0..*

Transformat ionTask

Language : String
0.. *

+OwnedTasks

0.. * 1 0.. *1

+Transformations

0.. *

StepPrecedence

PrecedenceBasis : StepPrecedenceBasis

StepExecution

WhenStarted : String
WhenEnded : String
Duration : Double
Succeeded : Boolean

1..1 0..*1..1

+StepExecutions

0..*

TransformationStep
+OwnedSteps

0..*

1..1

0..*

+Task 1..1

1..*

0..*

+PrecedingStep 1..*

0..*

1..*

0..*

+SucceedingStep

1..*

0..*

0.. *

1.. 1

+StepExecutions0.. *

1.. 1

ModelElement
(from Core)

Dependency
(f rom Core)

ColumnSet
(f ro m Schem a Elements)

Classifier
(from Core)

11

Figure 50: Transformation Packaging12

Open Information Model Meta Data Coalition

Database and Warehousing: Data Transformations 119

TemporaryField

Attribute
(f ro m Aux ili ary Elements)

Method
(from Core)

TransformableObjectSet

Transformation

FunctionExpression : Text
IsControl : Boolean
Language : String
/ Body : String

1..*0..*

+Target

1..*0..*

0..* 1..*0..*

+Source

1..*

TransformationTaskDependency

Type : String
TransformationTask

Language : String

0..*

0..*

+OriginalTransformation

0..*

0..*

1 0.. *1

+Transformations

0.. *

+Dependencies

Classifier
(from Core)

Dependency
(from Core)

1

Figure 51: Transformation Tasks2

Method
(from Core)

Enumeration
(from Common Data Types)

Dependency
(from Core)

Transformat ionDependency

Transformation

FunctionExpression : Text
IsControl : Boolean
Language : String
/ Body : String

0..*

1..1

+Dependencies

0..*

1..1

CodeDecodeValue

BeginDate : String
EndDate : St ring
/ DecodeValue : String
EncodeValue : String

TransformationConversion

0.. *

1..*

+Conversions

0.. *

1..*
CodeDecodeSet

1..1

0..*

1..1

+Values

0..*

1..*

0..*

+CodeDecodeSet

1..*

0..*

CodeDecodeColumn

0..*

0..*

0..*

+DecodeColumn

0..*

0..*

0..*

0..*

+CodeColumn

0..*

Column
(from Schema Elements)

EnumerationLiteral
(from Common Data Types)

3

Figure 52: Constraints and Conversions4

Meta Data Coalition Open Information Model

120 Database and Warehousing: Data Transformations

10.3.1 CodeDecodeColumn1

This class defines a specialization of the column class from the Database Schema package that can be used2
within a CodeDecodeSet.3

Specializes4

• Column (from Schema Elements)5

10.3.2 CodeDecodeSet6

Each instance of this class defines a set of code/decode pairs for a TransformationConversion. There are7
two ways to describe code/decode values. The first is to enumerate them explicitly, through a collection of8
CodeDecodeValues. If the code/decode values are also stored in a table or query, the CodeColumn and9
DecodeColumn associations can be used.10

Specializes11

• Enumeration (from Common Data Types)12

Associations13

• Values (CodeDecodeValue, derived from DataTypes:Enumeration.literal) – Contains the set of14
encode/decode pairs.15

• CodeColumn (CodeDecodeColumn) – Describes the column where the code value is stored. This16
association is used in conjunction with the DecodeColumn association relationship to show that17
the code/decode information is stored in a table or query.18

• DecodeColumn (CodeDecodeColumn) – Describes the column where the decode value is stored.19
This relationship is used in conjunction with the CodeColumn association to show that the code20
decode information is stored in a table or query.21

Constraints22

• The target columns for both CodeColumn and DecodeColumn associations should be on the same23
ColumnSet.24

10.3.3 CodeDecodeValue25

Each instance of this class describes a code/decode pair used for mapping transformation values. The26
values are specified just like the constants in an Enumeration. Ranged expressions and other multiple or27
spanning values can also be defined using tool-specific expressions.28

Specializes29

• EnumerationLiteral (from UML)30

Attributes31

• BeginDate (Date) – The effective date for which the pair is valid.32

• EndDate (Date) – The last effective date for which the pair is valid.33

• DecodeValue (String, derived from DataTypes:EnumerationLiteral.Name) – The decoded value of34
the literal, i.e. the value that will be translated from.35

• EncodeValue (String) – The encoded value of the literal, i.e. the value that will be translated from.36

10.3.4 PackageExecution37

Each instance of this class describes an execution of the associated TransformationPackage. The lineage of38
data can be tracked by having instances of the target data contain the PackageExecutionID. Customers can39

Open Information Model Meta Data Coalition

Database and Warehousing: Data Transformations 121

determine how the data was calculated, where it came from, and when it was loaded into the data1
warehouse.2

Specializes3

• Element (from UML)4

Attributes5

• Account (String) – The user account under which the package was executed.6

• ExecutionID (String) – A GUID that uniquely identifies the package execution, sometimes called a7
lineage.8

• ShortExecutionID (Long) – Represents the ExecutionID in a compressed form.9

• System (String) – The name of the machine on which the package was executed.10

• WhenExecuted (String) – The date and time when the package was executed.11

Associations12

• StepExecutions (StepExecution) – Describes the steps executed during this package execution.13

10.3.5 StepExecution14

Instances of this class represent a step execution during the associated package execution.15

Specializes16

• Element (from UML)17

Attributes18

• WhenStarted (String) – Time/date when the step began execution.19

• WhenEnded (String) – Time/date when the step finished execution.20

• Duration (Double) – Amount of time (in seconds) that it took the step to complete execution.21

• Suceeded (Boolean) – A Boolean indicating whether the step completed execution. If a value does22
not exist, the step never started execution.23

10.3.6 StepPrecedence24

An instance of this class represents an order-of-execution constraint between two transformation steps. It25
indicates that the successor step may not be executed until all preceding steps have been completed. The26
initial steps of a package are defined as steps that have no precedence. In a single-threaded system, only27
one step will match this criterion.28

Specializes29

• Dependency (from UML)30

Attributes31

• PrecedenceBasis (StepPrecedenceBasis) – Indicates whether to use Step Status or Result in the32
Precedence.33

Associations34

• PrecedingStep (TransformationStep, derived from UML:Dependency.supplier) – Set of35
TransformationStep instances that must be executed before the succeeding steps may be executed.36

Meta Data Coalition Open Information Model

122 Database and Warehousing: Data Transformations

• SucceedingStep (TransformationStep, derived from UML:Dependency.client) – Set of1
TransformationStep instances that will be executed after the preceding steps have completed2
execution.3

Constraints4

• Circular precedence is not supported.5

10.3.7 StepPrecedenceBasis6

An enumeration whose values indicate whether to use Step Status or Result to determine the step7
precedence. May be one of the following values:8

Values9

• STEPPRECEDENCEBASIS_EXECSTATUS = 0 – Use the Step Status.10

• STEPPRECEDENCEBASIS_ EXECRESULT = 2 – Use the Result.11

10.3.8 TemporaryField12

This class describes an attribute that can be used as a temporary field in a transformation. A Classifier13
needs to be created to hold the temporary fields (Attributes are owned by a Classifier as14
StructuralFeatures). Global fields can be owned by the transformation package.15

Specializes16

• Attribute (from UML Extensions)17

10.3.9 TransformableObjectSet18

This class defines a set of objects (e.g., columns) used as the source or target of a Transformation.19

Specializes20

• Dependency (from UML)21

Associations22

• TransformObjects (TransformableObject) – The set of objects referenced within the set.23

10.3.10 Transformation24

Each instance of this class describes a transformation from a set of source objects to a set of target objects.25
For simple transformations, the FunctionExpression property can be used to provide a short description of26
the transformation code/script.27

To define contraints for a transformation, define a TransformationConstraint from the constraint to the28
transformation.29

To define a simple code/decode translation, define a TransformationConversion from the CodeDecodeSet30
to the transformation.31

32

Specializes33

• Method (from UML)34

Attributes35

• Body (String, derived from UML:Method.body) – Any code or script for the Transformation.36

Open Information Model Meta Data Coalition

Database and Warehousing: Data Transformations 123

• FunctionExpression (String) – A short description for any code/script performed by the1
Transformation.2

• IsControl (Boolean) – Used to show that this Transformation is the primary transformation for the3
associated Task.4

• Language (String, derived from UML:Method.body_language) – The language in which the5
Transformation is expressed. Typically, the name of a programming language.6

Associations7

• Source (TransformableObjectSet, derived from UML:ModelElement.clientDependency) – The set8
of attributes that will function as the source of the Transformation.9

• Target (TransformableObjectSet, derived from UML:ModelElement.clientDependency) – The set10
of attributes that will function as the destination of the Transformation.11

• Dependencies (TransformationDependency, derived from UML:ModelElement.clientDependency)12
– The set of objects on which the transformation depends.13

• Conversions (TransformationConversion, derived from UML:ModelElement.clientDependency) –14
The set of CodeDecodeSet objects or other objects used by the transformation to convert values.15

10.3.11 TransformationConversion16

A transformation conversion is a dependency used to attach a code/decode set to a transformation.17

Specializes18

• Dependency (from UML)19

Associations20

• CodeDecodeSet (CodeDecodeSet) – The CodeDecodeSet that will be used by the21
TransformationConversion.22

10.3.12 TransformationDependency23

Transformation dependencies associate transformations with objects required by the transformation, such24
as a function or query.25

Specializes26

• Dependency (from UML)27

10.3.13 TransformationPackage28

A transformation package is the unit of storage and execution for transformations. Each instance of this29
class describes a grouping of Transformations, TransformationSteps, TransformationTasks, and30
Connections.31

Specializes32

• Package (from UML)33

• ConnectionSet (from Database Schema)34

• SummaryInformation (from Generic Elements)35

• Module (from UML Extensions)36

• ColumnSet (from Database Schema)37

Meta Data Coalition Open Information Model

124 Database and Warehousing: Data Transformations

Attributes1

• CreationDate (Date) – When the TransformationPackage was created/saved.2

Associations3

• Executions (TransformationExecution) – Represents the set of executions for the package.4

• OwnedTasks (TransformationTask, derived from UML:Namespace.ownedElement) – The set of5
tasks that are owned by the TransformationPackage.6

• OwnedSteps (TransformationStep, derived from UML:Namespace.ownedElement) – The set of7
steps that are owned by the TransformationPackage. Note that StepPrecedence, not the order of8
steps within the package, solely determines the order of execution of the steps.9

10.3.14 TransformationStep10

A transformation step describes a logical a unit of execution within the package. Each transformation step11
executes a single transformation task. Order of execution is defined using the StepPrecedence class.12

Specializes13

• ModelElement (from UML)14

Associations15

• Task (TransformationTask) – The TransformationTask that is executed.16

• StepExecutions (StepExecution) – A set of actual executions of the Transformation Step. Note that17
this relationship did not exist in OIM 1.0.18

10.3.15 TransformationTask19

Each transformation task describes a logical unit of work within the package. It can also be used to20
describe an ordered set of transformations that must be executed together.21

Specializes22

• Classifier (from UML)23

Attributes24

• Language (String) – The language in which the transformation is expressed. Typically, the name25
of a programming language.26

Associations27

• Transformations (Transformation, derived from UML:Classifier.Feature) – A set of28
transformations that are to be executed by the task.29

• InverseTransformation (TransformationTask) – Relates the original transformation task to a30
transformation task that will return transformed data back to the original state. For example, if a31
transformation task divides each data value by ten, then the inverse transformation task would32
multiply each data value by ten. This relationship is used for bi-directional transformations.33

• Dependencies (TransformationTaskDependency, derived from34
UML:modelElement.clientDependency) – The set of dependencies that indicate the elements35
required for this task.36

10.3.16 TransformationTaskDependency37

A transformation task may use an existing query, table, view, or connection via the tranformation task38
dependency class. For example, a custom-coded application could define common queries, and each query39
could have a dependency on the many task instances that use it.40

Open Information Model Meta Data Coalition

Database and Warehousing: Data Transformations 125

Specializes1

• Dependency (from UML)2

Attributes3

• Type (String) – The type of object that is the target of the dependency, such as "SourceTable,"4
"TargetTable," "SourceQuery," "TargetQuery," "InsertQuery," and so forth.5

10.4 OIM 1.0 Compatibility6

In OIM 1.0, objects that participated in transformations had to have classes that inherited from7
TransformableObject. This meant that every package that might participate in a transformation had a8
dependency on the Data Transformation package. In this model, transformable object sets are modeled9
using UML dependencies, so the class is only required for backward compatibility.10

10.4.1 TransformableObject11

Instances of this class are objects that can be the source or target of a transformation. Instances are12
collected in a TransformableObjectSet.13

Specializes14

• DeployedTable (from Schema Elements)15

Meta Data Coalition Open Information Model

126 Database and Warehousing: OLAP Schema

11 Database and Warehousing: OLAP Schema1

11.1 Overview2

Online analytical processing (OLAP) is the area of decision support that focuses on the analysis of3
multidimensional data in a data warehousing setting. The OLAP Schema package describes4
multidimensional databases.5

A multidimensional database allows users to view information through a set of data cubes. These cubes6
allow users to examine a set of data values, called measures, associated with a variety of dimensions. For7
example, common dimensions are attributes such as time, region, product type, and customer type. Such8
databases are typically used in a data warehousing setting, where a user explores summaries of the data9
across each dimension. For example, a cube might summarize the total sales by region for each product10
type, or it might summarize the total sales per quarter for each region. The user is essentially exploring a11
data cube, where each dimension attribute defines one dimension of the cube.12

The goals of the OLAP Schema package are to:13

• Provide a common place for multidimensional tools to store their schema information. This gives14
the customer a single place to view all of his/her multidimensional data, regardless of the tool.15

• Allow limited exchange of multidimensional information. Because implementations of16
multidimensional tools vary widely, complete exchange among tools may not be possible.17

• Leverage existing database information in the multidimensional schemas. Tools can use relational18
database model information to integrate their multidimensional models.19

This model extends the classes defined in the Database Schema package.20

11.2 Semantics21

This section describes semantics of the package not fully described in the reference section.22

A cube is the basic component in multidimensional data analysis. The following diagram illustrates the23
features of a typical cube:24

445 539

214

890 312

870 803 771

308 463 276 118

166 903 682 432

Q1

N

S

E

W

Q2 Q3 Q4

1998Dimensions

Time

R
eg

io
n

Measure

Dimension
Hierarchy

25

Figure 53: A Typical OLAP Cube26

Open Information Model Meta Data Coalition

Database and Warehousing: OLAP Schema 127

It is usually composed of a measure (or fact) table and one or more dimension tables. A measure table1
contains a value of the measure for each combination of values for the dimensions. A dimension table2
defines the values of a dimension. This creates either the traditional star schema or the snowflake schema3
commonly used in OLAP processing. For relational OLAP (ROLAP), the data is stored in a relational table4
and the tool uses its knowledge of the structure to select the appropriate information for the user. Pure5
OLAP tools retrieve the data from the relational sources and create a true multidimensional store that can6
then be accessed by the user. Some tools use a combination of both approaches, storing some data locally7
in the relational system and some in multidimensional storage.8

A dimension hierarchy defines how a dimension decomposes into subdimensions. For example, for the9
product dimension each product has a product number, each product is in a product group, and then product10
groups are grouped into product classes. The product number can also be used to determine the division11
that produces the product. This would be represented as two hierarchies, one with two levels (product12
group, product class) and one with one level (division).13

Many OLAP tools allow the data from a cube to be divided into multiple subsets, or partitions, for14
performance or storage reasons. A partition contains all of the measures and dimensions used by the15
partition. A horizontal partition contains all of the measures and dimensions of its cube. A vertical partition16
contains a subset of the measures and dimensions of its cube. The derived measures and dimensions are17
related back to the partition.18

Aggregations are precalculated roll-ups of data stored in a cube, and they are usually maintained for19
performance reasons. For example, if sales data is stored by state but is often retrieved by region, an20
aggregation of sales by region may be created. An aggregation contains all of the measures and dimensions21
defined for the aggregation. In general, an aggregation contains all the measures contained in its cube, but22
its store dimensions reference a different level in the dimension hierarchy.23

11.3 Class Reference24

Store

OlapMode : OlpOlapMode
JoinClause : Text

Package
(from Model Management)

Catalog
(from Catalog and Connections)

ModelElement
(from Core)

LogicalOLAPDatabase

OLAPServer

DeployedOLAPDatabase
0..*

+DeployedCatalogs

0..*

DataSource
(from Catalog and Connections)

Connection
(from Catalog and Connections)

Connection

Cube

DimHierarchy

OLAPDatabase

+DataSources

+Cubes

Dimension

IsTime : Boolean
DimensionType : OlpDimensionType

1..* +Hierarchies1..*

+Dimensions

Classifier
(from Core)

25

Figure 54: OLAP Servers and Databases26

Meta Data Coalition Open Information Model

128 Database and Warehousing: OLAP Schema

Aggregation

PhysicalCube

Partit ion

1 0..*1

+OwnedAggregations

0..*

1

0..*

1

+OwnedParti tions0..*

VirtualCube

Cube

0..*

1..*

+UsingVirtualCubes

0..*

1..*

Classifier
(from Core)

Field

Attribute
(f rom Aux il ia ry Elemen ts)

Measure

Store
OlapMode : OlpOlapMode
JoinClause : Text

0..*1

+Measures

0..*1

1

Figure 55: Stores, Cubes, and Partitions2

3

0..1

JoinRole

DimLevel
MemberKeyColumn : String
MemberNameColumn : String

0..1 0.. *

+DimLevel

0..1

+JoinRoles

0.. *

DimHierarchy1..10..* 1..1

+Level

0..*

{ordered}

MappingLevelPair
IsDisabled : Boolean
MemberKeyColumn : String

0.. *1..1

+Mappings

0.. *1..1

Store
OlapMode : OlpOlapMode
JoinClause : Text

Mapping

0..1 0..*

+Mappings

0..*

1..1 0.. *1..1

+MappedLevels

0.. *

0..1 0..*0..1

+Mappings

0..*

ModelElement
(from Core)

ModelElement
(from Core)

AssociationEnd
(from Core)

Classifier
(f rom Core)

4

Figure 56: Hierarchy and Levels5

11.3.1 Aggregation6

Aggregations are precalculated roll-ups of data stored in a cube that are maintained for performance7
reasons. An aggregation contains all of the measures and dimensions used by the aggregation. In general,8

Open Information Model Meta Data Coalition

Database and Warehousing: OLAP Schema 129

an aggregation contains all the measures contained in its cube, but its store dimensions reference a different1
level in the dimension hierarchy. The derived measures and dimensions are then related back to the cube.2

Specializes3

• Store4

11.3.2 Catalog5

Specializes6

• Catalog (from Database Schema)7

11.3.3 Connection8

Specializes9

• Connection (from Database Schema)10

11.3.4 Cube11

A cube is the basic component in multidimensional data analysis. It is usually composed of a measure (or12
fact) table and one or more dimension tables. A measure table contains a value of the measure for each13
combination of values for the dimensions. A dimension table defines the values of a dimension.14

Specializes15

• Store16

11.3.5 DeployedOLAPDatabase17

An OLAP database is an extension of a relational database catalog, and is a container for multidimensional18
storage components, namely cubes and dimensions. Deployed OLAP databases are stored on an OLAP19
server.20

Specializes21

• Catalog (Database Schema)22

Associations23

• DataSources (Connection, derived from UML:Namespace.OwnedElement) – The set of data24
sources used by the catalog.25

11.3.6 Dimension26

The values in an OLAP cube are tracked or summarized by dimensions. For example, sales data can be27
analyzed using product, store, geography, date, and salesperson dimensions. Dimensions are defined28
independently of the OLAP stores that use them. A dimension’s levels are associated to the stores the same29
way relational tables are associated to each other. In this way the model can accurately model relational30
OLAP (ROLAP) as well as multidimensional OLAP (MOLAP). In ROLAP the association would be one31
with two referential roles describing the keys and columns to join the tables, as described in the database32
model. With MOLAP it would be the same, except that there might not be any keys or columns to describe33
the join criteria.34

Specializes35

• Package (from UML)36

Meta Data Coalition Open Information Model

130 Database and Warehousing: OLAP Schema

Attributes1

• IsTime (Boolean) – Indicates whether or not this dimension is a time dimension. Many OLAP2
tools can perform default special processing for time dimensions.3

• DimensionType (DimensionType) – The type of the dimension. Note that time dimensions also4
need to set the IsTime flag.5

Associations6

• Hierarchies (DimHierarchy, derived from UML:Namespace.ownedElement) – The set of7
hierarchies for the dimension. Some OLAP providers support only a single hierarchy per8
dimension.9

11.3.7 DimensionHierarchy10

A dimension hierarchy represents an entire dimension set. The hierarchy contains one or more levels that11
represent the roll-up or breakdown of detail. For example, a geography dimension hierarchy could have12
states, regions, and countries as levels. For each level there can be one or more dimension attributes to13
describe the members of that level. For example, the attributes for state may be name and two-character14
abbreviation.15

Specializes16

• ModelElement (from UML)17

Associations18

• Levels (DimensionLevel) – The set of levels for the hierarchy.19

• Mappings (Mapping) – Each hierarchy can have mappings, which indicate of the use of a20
DimensionHierarchy by a Store.21

11.3.8 DimensionLevel22

A dimension level represents a particular level in a dimension hierarchy. A dimension level can have23
dimension attributes, which represent data about the level that interests the user. For example, the user may24
want to know the name of the division, its location, and a contact person.25

Specializes26

• Classifier (from UML)27

Attributes28

• MemberKeyColumn (String) – The column that serves as a key of the dimension level.29

• MemberNameColumn (String) – The column whose values serve as names of the instances of the30
dimension level.31

Associations32

• Mappings (MappingLevelPair) – Each level can have mappings, which indicate the use of a33
specific level of a DimensionHierarchy by a Store.34

• MemberKey (Field) – The relationship connecting the level to the column that the level uses as a35
key. (Note that Field is a class retained for compatibility with OIM 1.0.)36

• MemberName (Field) – The relationship connecting the level to the column that the level uses as a37
name. (Note that Field is a class retained for compatibility with OIM 1.0.)38

• JoinRoles (JoinRole) – The set of joins between keys within an OLAP database.39

Open Information Model Meta Data Coalition

Database and Warehousing: OLAP Schema 131

11.3.9 DimensionType1

An enumeration whose values indicate the type of a dimension.2

Values3

DIMENSION_REGULAR = 0 The type of the dimension cannot be determined.

DIMENSION_TIME = 1 This is a time dimension.

DIMENSION_OTHER = 3 This dimension does not fit into a standard type.

DIMENSION_QUANTITATIVE = 5 This is a quantitative dimension.

11.3.10 Field4

This represents a field or column in the cube that is not a dimension or a measure. Usually it is a foreign5
key used to relate this cube to a dimension table, or a dimension field such as SalesTime.6

Specializes7

• Attribute (from UML Extensions)8

11.3.11 JoinRole9

Represents a key that can be joined or related to another key within an OLAP database. Objects10
implementing this interface will appear on each side of an association representing a join between two11
keys.12

Specializes13

• AssociationEnd (from UML)14

11.3.12 LogicalOLAPDatabase15

A logical database is simply an extension of a relational database catalog, and it is a container for16
multidimensional storage components, namely cubes and dimensions. Local databases can be deployed, but17
they may not have an associated OLAPServer.18

Specializes19

• OLAPDatabase20

11.3.13 Mapping21

A mapping indicates that a particular OLAP store maps to a particular OLAP dimension hierarchy.22

Specializes23

• ModelElement (from UML)24

Associations25

• MappedLevels (MappingLevelPair) – Each mapping has a set of mapped levels; each mapped26
level indicates the participation of a particular DimensionLevel within a mapping.27

11.3.14 MappingLevelPair28

A (mapping,level) pair indicates that a particular dimension level participates in a particular OLAP29
mapping.30

Meta Data Coalition Open Information Model

132 Database and Warehousing: OLAP Schema

Specializes1

• ModelElement (from UML)2

Attributes3

• IsDisabled (Boolean) – Whether the mapping is valid within the store.4

• MemberKeyColumn (String) – The column containing the key of the dimension hierarchy, as it is5
used by the OLAP Store.6

Associations7

• MappedLevel (DimensionLevel) – Indications of the use of a level by a store.8

• MemberKey (Field) – The relationship connecting a dimension level to the column that level uses9
as a key. (Note that Field is a class retained for OIM 1.0 compatibility.)10

11.3.15 Measure11

A measure (or fact) is a set of data used in multidimensional analysis. It represents a single piece of12
information (e.g., SalesAmount) that will be analyzed across dimensions.13

Specializes14

• Field (From UML Extensions)15

11.3.16 OLAPDatabase16

An OLAP database is an extension of a relational database catalog, and it is a container for17
multidimensional storage components (that is, cubes and dimensions).18

Specializes19

• Catalog (from Database Schema)20

Associations21

• Cubes (Cube, derived from UML:Namespace.ownedElement) – The set of cubes for the database.22

• Dimensions (Dimension, derived from UML:Namespace.ownedElement) – The set of dimensions23
defined with the database. Dimensions may be shared by multiple cubes.24

11.3.17 OLAPMode25

An enumeration whose values indicate the mode (hybrid, relational, or multidimensional) of operation.26

Values27

HYBRID_OLAP = 1 The data is stored in a combination of relational
and multidimensional stores.

RELATIONAL_OLAP = 2 The data is stored in a relational data source.

MULTI_DIMENSIONAL_OLAP = 3 The data is stored in a multidimensional data
source.

11.3.18 OLAPServer28

An OLAP server is physical (deployed) provider of multidimensional data.29

Specializes30

• DataSource (from Database Schema)31

Open Information Model Meta Data Coalition

Database and Warehousing: OLAP Schema 133

Associations1

• DeployedDatabases (DeployedOLAPDatabase, derived from UML:Namespace.elements) – The2
set of databases located on the server.3

11.3.19 Partition4

A partition is a subset of a cube used for performance or storage reasons. A partition contains all of the5
measures and dimensions used by the partition. A horizontal partition contains all of the measures and6
dimensions of its cube. A vertical partition contains a subset of the measures and dimensions of its cube.7
The derived measures and dimensions can then be related back to the partition.8

Specializes9

• Store10

Associations11

• OwnedAggregations (Aggregation) – The set of Aggregations owned by the partition.12

11.3.20 PhysicalCube13

A physical cube is a Cube that is persisted. Contrast this with a VirtualCube, which is a cube that is derived14
from one or more cubes but not persisted.15

Specializes16

• Cube17

Associations18

• OwnedPartitions (Partition) – The set of partitions owned by the cube.19

11.3.21 Store20

A store is an abstract class that is the generalization for the different multidimensional storage objects. Its21
specializations can represent cubes, virtual cubes, cube partitions, or aggregations.22

Specializes23

• ColumnSet (from Database Schema)24

Attributes25

• JoinClause (String) – The SQL syntax necessary to join all of the FROM tables together.26

• OlapMode (OlapMode) – The storage mode of multidimensional data.27

Associations28

• Mappings (Mapping) – The set of instances of the Mapping class.29

• Measures (Measure, derived from UML:Classifier.feature) – The set of measures in a cube, virtual30
cube, or aggregation.31

11.3.22 VirtualCube32

In a multidimensional schema, a virtual cube is analogous to a relational view. Like a cube, the virtual cube33
has measures and dimensions, but those measures and dimensions are based on other measures and34
dimensions instead of relational columns. The measures and dimensions of a virtual cube point back to the35
underlying cube measures and dimensions through a derivation, with the virtual cube as the source and the36
cube as the target. A virtual cube typically is based on other cubes.37

Meta Data Coalition Open Information Model

134 Database and Warehousing: OLAP Schema

Specializes1

• Cube2

Associations3

• UsedCubes (Cube) – The cubes on which the virtual cube is based.4

5

11.4 OIM 1.0 compatibility6

This section describes classes retained for compatibility with earlier versions of OIM.7

8

Derivation
(from Auxi liary Elements)

Field
Field

FieldToFieldDerivation
+BaseField +DerivedField

9

Figure 57: Field-to-Field Derivation10

11

11.4.1 FieldToFieldDerivation12

It is often the case that a measure or dimension member does not come directly from a source column, but13
is a simple or complex derivation of one or more source columns. For simple cases where the derivation14
can be expressed in SQL-like syntax, the expression can be stored as a property of the source column. For15
more complex cases, a field-to-field derivation indicates that one Measure is based on another Measure.16

Specializes17

• Derivation (from UML Extensions)18

Associations19

• BaseField (Field) – The underlying field.20

• DerivedField (Field) – The field that is derived.21
22

Open Information Model Meta Data Coalition

Database and Warehousing: OLAP Schema 135

1

2

3

4

5

6

7

This page is intentionally blank.8

9

10

Meta Data Coalition Open Information Model

136 Database and Warehousing: Record-Oriented Database Schema

12 Database and Warehousing: Record-Oriented1

Database Schema2

12.1 Overview3

The Record-Oriented Database Schema package describes record-oriented information, that is, information4
about data maintained in the files, legacy databases, and so forth, of an enterprise.5

The goals of the Record-Oriented Schema package are to:6

• Introduce a core model for describing meta data about record-oriented data sources that enables7
tools to store and exchange such descriptive information.8

• Enable tool vendors to extend the model to address requirements of individual tools in the context9
of a common core model.10

• Allow data warehousing tools to define the structure of some common data sources. VSAM, flat11
files, and record-oriented databases are commonly used as sources for data warehouses. This12
model and some of its derived models will provide the warehouse tools with a common metadata13
definition for these record definitions in these sources. Note that information about the file14
systems or databases themselves will be defined in their own information models (e.g., IMS15
database information model, VSAM information model, and so forth).16

The model covers the basic elements of a record-oriented file structure or database, such as records, fields,17
and relationships. It also includes some deployment information for locating physical files based upon the18
structure, but does not address all physical or implementation details.19

Some typical usage scenarios of the Record-Oriented Database Schema package are:20

• Exchange of Schema Information21
Tools and applications are able to manipulate schema information stored in the repository by using22
the common model definitions. A repository implementing record model can be a global store for23
record-oriented metadata. This includes such data providers as COBOL/VSAM, Excel24
spreadsheets, or ASCII files, which have only limited capabilities to describe their schema or store25
additional design-tool-related information. Using only the repository interfaces, tools will be able26
to browse such information at a common location, without activating the individual data providers27
one-by-one.28

• Reuse of Schema Information29
Storage of metadata about data sources in a repository enables the reuse of basic descriptions. An30
enterprise is therefore able to standardize on core definitions, such as data types, making its31
environment easier to maintain. A user who wants to find the definition of the customer record has32
one well-defined location to search and a well-defined interface to use while searching for this33
information.34

• Catalog for Enterprise and Warehouse Information35
The Record-Oriented Database Schema model provides a one-stop store for information about36
enterprise data. The repository acts as a catalog that offers a common view of individual data37
sources and the attendant relationships. A description of a data source may not only consist of38
records and fields but also may have relationships that describe where it resides or how it can be39
accessed. Furthermore, the repository allows the user to track the history of how the metadata has40
evolved.41

42
Record-oriented structures are also common sources for data warehouses, and this model provides43
a common place for these definitions. The Transformations package provides for the definition of44
warehouse transformations; the record model can be used as the source (or target) of45
transformations.46

Open Information Model Meta Data Coalition

Database and Warehousing: Record-Oriented Database Schema 137

• Additional Scenarios1
By storing many record schemas in the same repository, objects can be related to each other. For2
example, a record definition may be shared by many designs. Another scenario is to relate record3
information to information models covering other subject areas, such as component descriptions.4
A repository may be used to store a relationship between a record object and another object that5
references it, such as the relationship between a component and the file/database it references or6
populates.7

12.2 Semantics8

This section provides a discussion of the main features of the Record-Oriented Schema package beyond9
what is specified in the reference section.10

The Record-Oriented Schema package does not cover detailed logical-to-physical mapping or information11
about any of the file systems or databases that may use record structures. This includes VSAM, IMS,12
IDMS, and so forth. These will later be documented in subsequent packages.13

Types in the record model are different from relational schema in that record types do not have a natural14
owner like a database catalog. It is up to the application to determine how (if at all) to logically group15
record types together. The typical choice would be to use a single package to contain the record types (the16
package could be owned by a model, another package, or the root object). For items like COBOL copylibs,17
the record types could be owned by the copylib, and the copylib owned by some other object.18

Care should be taken with the other related items used by the record model, such as file and node. Because19
they are created as part of a record type definition, they should also have their ownership defined when they20
are created.21

Many languages offer record-oriented features that go beyond basic record processing. The record model22
explicitly accommodates many of the more common features – such as redefines and variable dimensions.23
For the others, there are properties and relationships in the model to capture these items.24

There are essentially two kinds of features – those that apply to a single item, and those that link items25
together. The first case includes features like number of occurrences, byte alignment, and justification.26
Some are defined as properties of RecordItem, while the rest will use the FeatureExpression property of27
RecordItem. For the second case, a number of dependencies have been defined to capture features that28
relate one item to another. For those not already defined, LanguageFunction is used.29

To indicate that two fields on separate records have values from the same domain (e.g., to indicate user-30
defined data type), use Alias to encapsulate the domain. For example, to indicate that CustId:VarChar(10)31
in the Customer record has the same domain CustomerId:VarChar(10) in the CustomerContact record,32
create a Alias CustomerId for VarChar(10), and then indicate that CustId in the Customer record is of type33
CustomerId and CustomerId in the CustomerContact record is also of type CustomerId.34

The record model makes use of the existing data type model to capture the data types of the fields. Refer to35
the Common Data Types package for more information on how to define data types for a given language or36
database.37

12.3 Class Reference38

13
8

D
at

ab
as

e
an

d
W

ar
eh

ou
si

ng
:

R
ec

or
d-

O
ri

en
te

d
D

at
ab

as
e

S
ch

em
a

D
ep

lo
ye

dG
ro

up
D

ep
lo

ye
dF

ie
ld

D
ep

lo
y

ed
R

ec
or

d

S
um

m
ar

yI
nf

or
m

at
io

n
(f

ro
m

G
e

n
e

ri
c

E
le

m
en

ts
)

Lo
g

ic
al

F
ie

ld
Lo

gi
ca

lG
ro

up

Lo
gi

ca
lR

ec
or

d

R
ec

or
dI

te
m

F
ea

tu
re

E
xp

re
ss

io
n

:
S

tri
ng

Is
A

lig
ne

d
:

B
oo

le
an

C
la

ss
ifi

er
(f

ro
m

C
o

re
)

F
ie

ld
V

al
ue

E
xp

re
ss

io
n

V
al

ue
E

xp
re

ss
io

n
:

Te
xt

/
C

on
di

tio
nN

am
e

:
S

tr
in

g

F
ie

ld

0.
.*

1
+

Le
ve

ls0.
.*

1

C
om

po
ne

nt
E

le
m

en
t

(f
ro

m
S

p
e

ci
fi

ca
ti

o
n

E
le

m
e

n
ts

)

G
ro

up

R
ec

or
dF

or
m

at

B
od

y
:

Te
xt

G
ro

up
D

ef

+
Ty

pe

R
ec

or
d

F
ie

ld
D

el
im

ite
r

:
S

tr
in

g
Is

F
ix

ed
W

id
th

:
B

oo
le

an
R

ec
or

dD
el

im
ite

r
:

S
tr

in
g

Te
xt

Q
ua

lif
ie

r
:

S
tr

in
g

Is
F

irs
tR

ow
C

ol
N

am
es

:
B

oo
le

an
S

ki
pR

ow
s

:
Lo

ng

+
R

ec
or

dF
or

m
at

+
G

ro
up

D
ef

E
le

m
en

t
(f

ro
m

C
o

re
)

A
tt

rib
ut

e
(f

ro
m

A
u

xi
li

a
ry

E
le

m
e

n
ts

)

1

F
ig

ur
e

58
:

R
ec

or
ds

,G
ro

up
s,

F
ie

ld
s,

an
d

F
or

m
at

s
2 3 4

13
9

D
at

ab
as

e
an

d
W

ar
eh

ou
si

ng
:

R
ec

or
d-

O
ri

en
te

d
D

at
ab

as
e

S
ch

em
a

1 2 3 4 5 6 7

T
hi

s
pa

ge
is

in
te

nt
io

na
lly

bl
an

k.
8 9 10

Meta Data Coalition Open Information Model

140 Database and Warehousing: Record-Oriented Database Schema

CopyLibContains

Sequence : Long
Is01Generated : Boolean

Record

FieldDelimiter : String
IsFixedWidth : Boolean
RecordDelimiter : String
TextQualifier : String
IsFirstRowColNames : Boolean
SkipRows : Long

CopyLib

Dependency
(from Core)

Package
(from Model Man agem ent)

Surrogate
(from Generic Elements)

+ContainmentsAsContainer

+ContainedRecordType
+OwnedRec ords

+ContainedCopyLib

1

Figure 59: CopyLibs2

LanguageFunction

FeatureExpression : String
Sequence : Integer

Redefines

ArrayDimension

DimensionNumber : Long

RenamesRenamesThru

CopyLibContains

Sequence : Long
Is01Generated : Boolean

Dependency
(from Core)

3

Figure 60: Constraints and Dependencies4

12.3.1 ArrayDimension5

Each instance of this class describes a variable dimension for a record item. This corresponds to the6
OCCURS DEPENDING clause in COBOL and variables used as dimensions in PL/I.7

Specializes8

• Dependency (from UML)9

Open Information Model Meta Data Coalition

Database and Warehousing: Record-Oriented Database Schema 141

Constraints1

• Only use items that support RecordItem in the client and supplier collections.2

12.3.2 CopyLib3

Each instance of this class describes a copy library member. Many legacy languages support the use of4
Copylibs, which are reusable definitions stored external to the program, much like C and C++ header files.5
The copylib can contain multiple record definitions, and even references to other copylibs.6

There are often one or more physical files somewhere in the enterprise that include data corresponding to7
the record definition. The actual file that stores the copylib is defined using the File object.8

To ensure that all items are owned, the copylib will also include the records, file, and9
FieldValueExpressions.10

Specializes11

• Package (from UML)12

• Surrogate (from Generic Elements)13

Associations14

• OwnedRecords (Record, derived from UML:Namespace.ownedElement) – Used to provide15
ownership for the records in the copylib. The copylib will also relate to the record via the16
CopyLibContains dependency.17

12.3.3 CopyLibContains18

Each instance of this class describes the records and copylibs that a copylib contains.19

Specializes20

• Dependency (from UML)21

Attributes22

• Sequence (Long) – Used to define the ordering of the records and copylibs in the copylib.23

• Is01Generated (Boolean) – Used to define whether or not the record item (i.e., the 01 level item)24
is generated in this copybook, or if generation should start at the first subordinate item.25

Associations26

• ContainingCopyLib (CopyLib, derived from UML:Dependency.supplier) – Used to define the27
parent copyLib that contains the subordinate record or CopyLib.28

• ContainedCopylib (CopyLib, derived from UML:Dependency.client) – Used to define the copylib29
that is contained.30

• ContainedRecord (Record, derived from UML:Dependency.client) – Used to define the record31
that is contained.32

Constraints33

• There can only be one ContainingCopylib.34

• There can only be either one ContainedCopylib or one ContainedRecord.35

12.3.4 DeployedField36

A deployed field represents a field in a particular file or DBMS system.37

Meta Data Coalition Open Information Model

142 Database and Warehousing: Record-Oriented Database Schema

Specializes1

• Field2

Constraints3

• Can only be contained by a DeployedRecord or GroupDef from a DeployedGroup.4

12.3.5 DeployedGroup5

A deployed Group represents a group of fields in a particular file or DBMS system.6

Specializes7

• Group8

Constraints9

• Can only be contained by a DeployedRecord or GroupDef from a DeployedGroup.10

12.3.6 DeployedRecord11

A deployed record represents a group of fields in a particular file or DBMS system. Contained fields can be12
atomic fields (Field) or other groups of fields (Group).13

This deployed record is then related to the appropriate file that contains the information defined by this14
record.15

Specializes16

• Record17

Constraints18

• Only a DeployedRecord can be related to a File (from Auxiliary Elements) via the19
ImplementationLocation collection.20

12.3.7 Field21

A field is an abstract data type that represents an atomic piece of information.22

Specializes23

• Attribute (from UML)24

• RecordItem25

Attributes26

• InitialValue (String, derived from UML:Attribute.initialValue) – Used to define the default value27
for the field, as in the COBOL VALUE clause.28

• TypeExpression (String, derived from UML:Attribute.typeExpression) – Used to express complex29
data types, as in PICTURE $ZZZ,999.9ZZ.30

Associations31

• Levels (FieldValueExpression) – Used to describe the conditional value expressions defined for32
this element.33

12.3.8 FieldValueExpression34

Record-oriented languages such as COBOL support the concept of assigning names to particular values of35
a field. Because these expressions are not explicitly owned by the field that uses them, they must be owned36
by another package. In the case of a COBOL 88Level, the CopyLib can provide the ownership.37

Open Information Model Meta Data Coalition

Database and Warehousing: Record-Oriented Database Schema 143

Specializes1

• ModelElement (Component Description Model)2

Attributes3

• ValueExpression (Text) – Used to define the value of the expression.4

• ConditionName (String, from UML:ModelElement.name) – Used to define the condition name.5

12.3.9 FormatOf6

Used to define which record a RecordFormat is based upon.7

Specializes8

• Dependency (from UML)9

Constraints10

• The client collection must contain a RecordFormat.11

• The item in the supplier collection must be a single Record.12

12.3.10 Group13

Each instance of this class describes a Group in a record. This is an abstract interface – all groups will be14
either logical or deployed groups.15

Specializes16

• Attribute (from UML)17

• RecordItem18

Associations19

• Type (GroupDef, derived from UML:StructuralFeature.type) – Used to define the format for the20
group. The groupdef contains the subordinate types (fields and groups) for this group.21

Constraints22

• The type can only relate to a GroupDef.23

12.3.11 GroupDef24

A GroupDef is used to define the format of a Group. The GroupDef relates to the group via the25
StructuralFeatureHasType relationship. The Group is contained by the record or recordformat, and the26
groupdef is used to define the subordinates of the group. The groupdef relates to its subordinate fields and27
groups via the feature collection from Classifier.28

Specializes29

• Classifier (from UML)30

Constraints31

• Can only be used as a type definition for a group.32

• Can only contain fields and groups via the feature collection.33

12.3.12 LanguageFunction34

Each instance of this class describes an additional language specific feature that does not have a specific35
interface.36

Meta Data Coalition Open Information Model

144 Database and Warehousing: Record-Oriented Database Schema

Specializes1

• Dependency (from UML)2

Attributes3

• FeatureExpression (String) – Used to define what the function represents. Suggested format is to4
use the native language expression.5

• Sequence (Integer) – Used to sequence multiple functions of the same type.6

Constraints7

• Language functions can only use items that support RecordItem in the client and supplier8
collections.9

12.3.13 LogicalField10

A logical field represents a field definition that is not associated with a physical file.11

Specializes12

• Field13

Constraints14

• A Logical Field can only be contained by a LogicalRecord or GroupDef from a LogicalGroup.15

12.3.14 LogicalGroup16

A logical Group represents a Group definition that is not associated with a physical file.17

Specializes18

• Group19

Constraints20

• A LogicalGroup can only be contained by a LogicalRecord or GroupDef from a LogicalGroup.21

12.3.15 LogicalRecord22

A logical record represents a record definition that is not associated with a physical file. Contained fields23
can be atomic fields (Field) or other groups of fields (Group).24

Specializes25

• Record26

Constraints27

• A LogicalRecord cannot be related to a File (from Auxiliary Elements) via the28
ImplementationLocation collection.29

12.3.16 Record30

This is an abstract interface that represents a group of fields. Contained fields can be atomic fields (Field)31
or other groups of fields (Group).32

This root record of a nested set can represent a number of different things – a record definition for a33
COBOL program, a delimited ASCII file, or a VSAM record definition. These all have very different34
characteristics, and thus require a very flexible model. There is some common information that can be35
captured about each of these, and that has been stored explicitly in the model. There are also constructs that36
allow additional information to be captured that may be specific to a particular language or file type.37

Open Information Model Meta Data Coalition

Database and Warehousing: Record-Oriented Database Schema 145

Also, note that many languages allow for duplicate names in a record definition, e.g., COBOL FILLER.1
The names given to the items as they are placed in the feature collection will have to recognize this. A2
simple method for ensuring uniqueness would be to use NAME.SEQ as the relationship name when adding3
items to the collection.4

Specializes5

• RecordItem6

• Classifier (from UML)7

Attributes8

• FieldDelimiter (String) – For files that are delimited (as opposed to fixed width), the character(s)9
that are used to delimit the fields.10

• IsFixedWidth (Boolean) – Indicates whether the fields in the file are fixed width (as opposed to11
delimited).12

• RecordDelimiter (String) – The character(s) used to indicate the end of a record.13

• TextQualifier (String) – The character used to delimit text strings. For example, a quotation mark14
(").15

• IsFirstRowColNames (Boolean) – Indicates whether the first row of the file contains column16
names for the fields.17

• SkipRows (Long) – The number of rows at the top of the file that do not contain data.18

Associations19

• Format (RecordFormat, derived from UML:Namespace.ownedElement) – Used to provide20
ownership for the RecordFormat.21

• GroupDef (GroupDef, derived from UML:Namespace.ownedElement) – Used to provide22
ownership for the GroupDef.23

Constraints24

• A record cannot be contained by another record.25

Sample Data26

This is an example COBOL record layout that could be expressed in the record-oriented schema model.27

01 EMP-RECORD. 28

 05 EMPLOYEE-INFO OCCURS 100 TIMES 29

 ASCENDING KEY IS HOURLY-RATE EMPLOYEE-NO 30

 INDEXED BY A, B. 31

 10 EMPLOYEE-NAME PIC X(20). 32

 10 EMPLOYEE-NO PIC 9(6). 33

 10 NUMBER-YEARS-EMPLOYED PIC S9(5) COMP. 34

 10 HOURLY-RATE PIC 9999V99. 35

 10 WEEKLY-TALLY OCCURS 52 TIMES 36

 ASCENDING KEY IS NUMBER-OF-WEEK INDEXED BY C. 37

 15 NUMBER-OF-WEEK PIC 99. 38

 15 VACATION-DAYS PIC 9. 39

 15 UNEXPLAINED-ABSENCE PIC 9. 40

 15 DAYS-LATE PIC 9. 41

Meta Data Coalition Open Information Model

146 Database and Warehousing: Record-Oriented Database Schema

12.3.17 RecordFormat1

A record format is used to describe a usage format (view) of a record.2

In many cases, the use of redefines and record types allow a single file to have many different types of3
logical records in one physical file. A record format is used to describe a single logical record for a record4
definition - a format should be unambiguous. Note that it may contain redefines in order to access sub-5
fields at the same time it is accessing the larger field.6

The conditions under which a given format are valid (e.g., when FIELD1 = 1) also must be described.7

Record formats are used to deal with the variability in many record-oriented structures. A common8
example would be a file that has a record type in the first byte. If it is “D” it is a detail record, and if it is9
“S” it is a summary record. The record definition may use redefinition to describe these different layouts in10
a single record. This is especially common in legacy languages such as COBOL and PL/I. There may be11
cases that are more complex.12

The format will have its own groups and fields (which will correspond to the appropriate subset of the13
original record), and they will relate back to the original record groups and fields via the Derivation14
dependency. The format items will be in the client collection for the dependency and the record items will15
be in the supplier collection. The format will also relate to the record it is based upon using the FormatOf16
dependency, with the format in the client collection and the record in the supplier collection.17

Specializes18

• RecordItem19

• Classifier (from UML)20

Attributes21

• Body (Text) – The condition under which the format is valid is defined using the Body property of22
the Query class. This value is an uninterpreted string with the format dependent on the tool storing23
the information.24

Constraints25

• A recordformat cannot be contained by another record or recordformat.26

Sample Data27

The purpose of the record format is to capture the conditions under which a given definition is valid.28
Consider the following record pseudo-definition:29

01 Record-Layout. 30

 05 Record-Type Character(1) 31

 05 Detail-Info Character(250) 32

 05 Summary-Info Redefines Detail-info Character(250). 33

If a tool is to read this file to convert the information for a data warehouse, it needs to know the differing34
formats and conditions under which they are valid. In this example, there would be two formats – one for35
the detail record and one for the summary record.36

12.3.18 RecordItem37

This is an abstract interface to represent the common information for record-oriented schemas.38

Specializes39

• SummaryInformation (from Generic Elements)40

Open Information Model Meta Data Coalition

Database and Warehousing: Record-Oriented Database Schema 147

Attributes1

• FeatureExpression (String) – Used to describe any language features that apply to this item. This2
would only be used for features that don't have specific attributes to describe them. The preferred3
method would be to separate the individual feature expressions with a semicolon (;). For example,4
"AUTOMATIC; Dimension (4,*,3)". It is suggested that the native language syntax be used when5
defining data for this item.6

• Multiplicity (String, derived from UML:StructuralFeature.multiplicity) – Used to define the occurs7
for repeating fields (e.g., COBOL OCCURS clause).8

• IsAligned (Boolean) – Flag indicating if the fields of the record are aligned to byte/word9
boundaries.10

12.3.19 Redefines11

This class is used to represent items that share the same memory location. They map to the COBOL12
REDFINES clause or the PL/I Def clause.13

Specializes14

• Dependency (from UML)15

Constraints16

• Only use items that support RecordItem in the client and supplier collections.17

12.3.20 Renames18

This class is used to represent the COBOL RENAMES clause.19

Specializes20

• Dependency (from UML)21

Constraints22

• Only use items that support RecordItem in the client and supplier collections.23

12.3.21 RenamesThru24

This class is used to represent the COBOL RENAMES THRU clause. This relates to the item named in the25
THRU portion of the clause.26

Specializes27

• Dependency (from UML)28

Constraints29

• Only use items that support RecordItem in the client and supplier collections.30

Meta Data Coalition Open Information Model

148 Database and Warehousing: XML Schema

13 Database and Warehousing: XML Schema1

13.1 Overview2

Schemas definitions in XML define types for the valid structures in an XML document. The XML Schema3
package provides meta data types to represent the definitions that constitute an XML schema.4

Currently there are two schema definition languages for XML in use. Data Type Definition (DTD)5
language is a simple format that is closely related to EBNF’s. DTD’s lack expressiveness and therefore6
introduce limitations if complex schemas have to be described. Limitations are, for example, the lack of7
inheritance; missing data types formats, and no relationship types. XML Data (and XML Data Reduced)8
are efforts led by Microsoft and other companies to introduce a more expressive schema language for9
XML.10

XML Schema is the current standardization effort by the W3C. XML Schema will provide a11
comprehensive schema language for XML. Parts of XML Data have been carried forward into XML12
Schema.13

The XML Schema package is based on the subset of XML Data implemented in Internet Explorer 5 and14
includes all the concepts provided by DTDs. The model has been validated against a draft of the W3C15
XML Schema proposal. The model will be enhanced to include all the concepts of XML Schema once they16
become available.17

Related standards:18

• Data Type Definition (DTD)19

• XML Data20

• XML Schema21

13.2 Semantics22

The definition of the structure of an XML document starts with a Schema object. The Schema is a container23
for all the definitions of individual structures that might occur in the documents. A Schema may contain24
structure definitions and attribute definitions.25

Element types are content models that provide the rules how XML elements can be nested and how such26
sub-structures can be combined with text. A content model may require that all sub-elements of the27
described element have to conform to the schema. Such a model is called a closed content model, while an28
open model does not restrict the possible sub-elements. A special case of element is the empty XML29
element that simply consists of a single tag and therefore has no content. Other content types may be text30
only, sub-elements only and a mixture of both.31

Attribute types specify name/value pairs for start tags of XML Elements. Part of the definition of an32
attribute is its data type, default value and if it is mandatory or optional.33

The content model consists of references to element and attribute types that are used to define the valid34
structures of the element. A content model imprints a sequence and occurrence onto the definitions it35
contains. In order to change these definitions for a specific subset of references Groups may be introduced,36
which encloses the subset of references.37

In order to avoid name collisions between schema elements in a document, XML namespaces are used.38
Namespaces are sets of names identified by a URI reference. The names may be used once the namespace39
has been declared by an XML structure such as a schema, element, or data type.40

Open Information Model Meta Data Coalition

Database and Warehousing: XML Schema 149

13.3 Model Reference1

The following shows the UML diagram for the XML Schema package.2

Classifier
(from Core)

ObjectType
(from Data Types)

AttributeReference

Default : String

AttributeType

Default : String

1..1

0..*

+AttributeType

1..1

0..*

Schema

0..*0..1

+AttributeTypes

0..*0..1

ElementReference

XMLDataType

Values : String

0..* 1..10..*

+DataType

1..1

ElementType

Model : ElementTypeModel
Content : ElementTypeContent

1..*1..1

+ElementTypes

1..*1..1

*1..1 *

+ElementType

1..1

0..* 1..10..*

+DataType

1..1

ElementContents

0..*0..1

+Contents

0..*

+ContainingType

0..1

Group

+Contents

Package
(f rom M odel Management)

At tribute
(from Auxil iary Elements)

3

Figure 61: XML Schema4

The following sections describe the different meta data types of the XML Schema package in alphabetical5
order.6

13.3.1 AttributeReference7

An AttributeReference is a reference to an attribute definition (AttributeType) contained in the definition of8
an ElementType, thereby including it into the definition. The reference may supply a default value for the9
specific use of the AttributeType in the containing ElementType definition.10

Specializes11

• ElementContent12

Attributes13

• Default (String) – default value for this specific instance of the attribute definition.14

• Occurrence (Multiplicity) – indicates if the attribute is required or optional in an XML element.15
Note that this definition can not override a more restrictive specification supplied by the16
AttributeType. The possible values are:17

o 0..1 the attribute is optional18

o 1..1 the attribute is required19

Associations20

• Type – a collection of at most one AttributeType object that represents the referenced attribute21
definition.22

Meta Data Coalition Open Information Model

150 Database and Warehousing: XML Schema

13.3.2 AttributeType1

An AttributeType is a definition of a XML attribute that can be used in the definition of ElementTypes. In2
XML an attribute is represented as a name/value pair contained in a tag, e.g. <element_tag3
attribute_name=value >. The AttributeType represents a grammar rule of how to parse the name / value4
statement. The definition also declares if the attribute has a default value and if it is required or optional.5

Specializes6

• Classifier (from UML)7

Attributes8

• Name (String) – defines the name of the AttributeType.9

• ShortDescrition (String) – Description of the purpose of the AttributeType is present.10

• Default (String) – default value for the attribute if not present in an XML element.11

• Occurrence (Multiplicity) – indicates if the attribute is required or optional in an XML element.12
The possible values are:13

o 0..1 the attribute is optional14

o 1..1 the attribute is required15

Associations16

• DataType – a collection with at most one XMLDataType object, which defines the data type of the17
attribute.18

13.3.3 ElementContent19

Specializes20

• Attribute (from UML)21

13.3.4 ElementReference22

An ElementReference references an ElementType as part of a content model definition. The object23
specifies if the sub-element may be required, optional, or may occur multiple times.24

Specializes25

• ElementContent26

Attributes27

• Occurrence (Multiplicity) – indicates if the attribute is required or optional and how often it may28
occur in an XML element. The possible values are:29

o 0..1 the attribute is optional and may occur only once (OPTIONAL)30

o 1..1 the attribute is required and must occur only once (REQUIRED)31

o 0..* the attribute may occur unlimited times (ZEROORMORE)32

o 1..* the attribute may occur from 1 to an unlimited number of times (ONEORMORE)33

Associations34

• ElementType (ElementType from UML:StructuralFeature.type) – collection that contains an35
ElementType object that represents the referenced ElementType.36

Open Information Model Meta Data Coalition

Database and Warehousing: XML Schema 151

13.3.5 ElementType1

An ElementType provides a content model for a well-defined XML structure and as such is the equivalent2
of a class for an object definition. The content model consists of references to element and attribute types.3
Element references describe the XML sub-elements that may occur in this ElementType and attribute4
references define the name/value pairs that are allowed for an element.5

Specializes6

• Classifier (from UML)7

Attributes8

• Name (String) – defines the name of the ElementType.9

• ShortDescrition (String) – Description of the purpose of the ElementType is present.10

• Model (ElementTypeModel) – defines if the content model can be extended with additional11
elements (open) or if the addition of structured is not allowed (closed).12

• Content (ElementTypeContent) – defines the structure of the content.13

Associations14

• Elements – collection of ElementReference or AttributeReference objects that constitute the15
content model for the ElementType.16

13.3.6 ElementTypeContent17

ElementTypeContent is an enumeration that provides the valid definitions for the content part of an18
ElementType.19

Attributes20

• ELEMENTTYPECONTENT_MIXED = 0 – elements and characters (text) together may be21
contained in an element described by this type.22

• ELEMENTTYPECONTENT_EMPTY = 1 – specifies that the element can have no content23

• ELEMENTTYPECONTENT_TEXT_ONLY = 2 – the element can have only text as content and24
no sub-elements.25

• ELEMENTTYPECONTENT_ELEMENTS_ONLY = 4 – the element can contain only sub-26
elements and no text.27

13.3.7 ElementTypeModel28

ElementTypeModel is an enumeration that provides the content model types of an ElementType.29

Values30

• ELEMENTTYPEMODEL_OPEN = 0 - the content model can be extended with additional31
elements32

• ELEMENTTYPEMODEL_CLOSED = 1 - the addition of structures not defined in the schema to33
an element is not allowed34

13.3.8 Group35

A Group represents a set or sequence of elements in a content model, i.e. can be used to introduce36
alternative orderings among elements.37

Meta Data Coalition Open Information Model

152 Database and Warehousing: XML Schema

Specializes1

• ElementContent2

Attributes3

• Occurrence (Multiplicity) – indicates if the group is required or optional and how often it may4
occur in an XML element. The possible values are:5

o 0..1 the attribute is optional and may occur only once (OPTIONAL)6

o 1..1 the attribute is required and must occur only once (REQUIRED)7

o 0..* the attribute may occur unlimited times (ZEROORMORE)8

o 1..* the attribute may occur from 1 to an unlimited number of times (ONEORMORE)9

• Order (ExpressionOrder) – indicates if the group is a set (OR) or a sequence (AND)10

Associations11

• Elements – collection of ElementReference or AttributeReference objects that constitute the12
content model for the ElementType.13

13.3.9 Schema14

A Schema object is a container for the ElementType and AttributeType definitions that makeup the15
definition of a XML document. A Schema might be named.16

Specializes17

• Package (from UML)18

Associations19

• Elements – collection of ElementType and AttributeType definition objects.20

13.3.10 XMLDataType21

XMLDataType defines the format of Attributes or Elements.22

Specializes23

• DataType (from UML)24

Attributes25

• Name (String) – defines the name of the data type.26

• Values (String) – provides a set of values in case that the data type is an enumeration.27

28

Open Information Model Meta Data Coalition

Database and Warehousing: Report Definitions 153

1

14 Database and Warehousing: Report1

Definitions2

14.1 Overview3

The Report Definitions package provides meta data types to represent information necessary for reporting4
tools and their relationships to the systems they report on. The goals of the Report Definitions package are5
to:6

• Introduce a core model for describing meta data about reports that enables tools to store and7
exchange this type of meta data in a consistent format.8

• Enable tool vendors to extend the model to address requirements of individual tools in the context9
of a common core model.10

• Allow for business intelligence and reporting tools to define the structure of their reports and how11
they relate to existing systems, such as warehouse databases.12

Storage of meta data about reports in a common format enables the reuse of basic descriptions. A business13
is therefore able to standardize on core definitions, such as common report fields, making its environment14
easier to maintain. A user who wants to find the definition of “total sales” has one well-defined location to15
search and a well-defined description while searching for this information.16

The Report Definitions package also provides a one-stop store for information about enterprise data.17
Implemented by a repository it acts as a catalog that offers a common view of individual reports and the18
relationships in-between. A description of a report may not only consist of reports and fields but also may19
have relationships that describe where it resides or how it can be accessed. Reports are also commonly used20
to access data warehouses, and this model provides a common place for these definitions. Users can scan21
the model to find existing reports for a given topic, or see the source for a given report field.22

The initial target is to support the definition of reports for business intelligence and reporting tools23
accessing a relational / OLAP warehouse. Extensions for reporting for other domains may be added in the24
future.25

14.2 Semantics26

Below is a sample report. It has two groups and a number of fields. It illustrates most of the concepts in the27
report model.28

Open Information Model Meta Data Coalition

Database and Warehousing: Report Definitions 155

Customer Invoice Report

Customer Customer Number

Benning 1789048

Invoice Number Date Amount

134789 1/1/99 $1,200.45

135890 2/5/99 $5,789.00

Total $6,989.45

Boscoe 2387654

Invoice Number Date Amount

133758 12/28/98 $3,506.23

135890 1/15/99 $5,890.23

Total $9,396.46

Report Detail Group 1 - the
customer information. Related to a
query that is “Select name, id from
customer_table”

Report Detail Group 2 - the invoice
information. Related to a query that is
“Select number, date, amount from
invoice_table where customer_id =
<ReportGroup1.id>”

Report Field – “Amount” field from
query

Report Header Group

Report Field (Calculated) –
Expressed as “Sum (Amount)
for Group2”

Page 1 of 2Jan 5, 1999 Report Footer Group

1

Figure 62 - Sample Report2

A report is a set of related formatting definitions. It is structured into report groups that may contain report3
fields. Report groups may either be headers, footers, detail bands or a custom type interpreted by the4
reporting tool. Fields provide the actual definitions for pieces of information. Fields may either be5
expressed as query result columns, derived from other fields, or a functional expression.6

The UML concept of dependency is used to describe how one field is based upon another column or field.7
In the case of report fields, the report field is dependent on the underlying columns or other report fields8
upon which it is based.9

The report model makes use of the OIM data type definitions in order to capture the data types of the fields.10
A reporting tool could either use the data types in a data provider namespace (e.g. ODBC) or create a11
custom set of types. Refer to the Common Data Types package for more information on how to define data12
types for a given language or database.13

Reports are contained in a report package, which represents a simple grouping of related reports. Reports14
may be grouped into tool specific, user specific packages, or classified based on the information they report15
on.16

The package currently does not cover detailed semantics for layouts or graphical positions. Each tool will17
likely have very different means for storing this information.18

14.3 Class Reference1

Classifier
(from Core)

Package
(from Model Management)

SummaryInformation
(from Generic Elements)

Surrogate
(f rom Generi c El ements)

Element
(from Core)

Query
(from Schema Elemen ts)

ReportPackage ReportExecution
System : String

Report

0..1 *0..1

+Report

* 1..1 0..*1..1

+Execution

0..*

ReportQuery

ReportGroup

GroupType : String
Posit ionExpression : String

0..1

*

0..1

+Group

*

0..10..* 0..1

+Query

0..*

+ChildGroup

Component
(f rom Core)

2

Figure 63- Report Grouping Elements3

Attribute
(from Auxil iary Elements) Derivat ion

(f rom Au xili ary Elements)

ReportFieldDerivation

ReportGroup ReportField

ReportLiteral : String
ValueExpression : String
Posit ionExpression : String
IsHidden : Boolean

+DerivedField

0..*

0..*

0..*

+InputValue

0..*

0..*

+Field

0..*

4

Figure 64 - Report Field Elements5

Open Information Model Meta Data Coalition

Database and Warehousing: Report Definitions 157

14.3.1 Report1

Each instance of this class describes a report used to represent a single set of information formatted to be2
understandable by a user. It can represent a printed, HTML, or dynamic on-line report.3

The source for reports can be files, relational databases, OLAP stores, etc.4

Specializes5

• Package (from Model Management)6

• Surrogate (from Generic Elements)7

Associations8

• Execution (ReportExecution) – Links a report to its executions.9

• Group (ReportGroup, from Namespace.ownedElement) – Describes the Report groups in a report.10

Constraints11

• Every report must have at least one ReportGroup to contain any fields on the report.12

14.3.2 ReportDerivation13

Each instance of this class describes a derivation for the report field. This is what columns, report fields,14
etc., the report fields value is derived from (if any). The source for reports can be files, relational databases,15
OLAP stores, etc.16

Specializes17

• Derivation (from Auxiliary Elements)18

Associations19

• DerivedField (ReportField, from Dependency.Client) – Defines the report field that is derived20
from another object.21

14.3.3 ReportElement22

Each instance of this class describes a single piece of information appearing on a report. Note that a report23
field may repeat on a report, as in the case of a tabular report, or it may be represented graphically as in a24
chart.25

Specializes26

• Attribute (from Auxiliary Elements)27

Attributes28

• ElementType (ReportElementType) – Indicates the type of the element. One of the following:29
ELEMENT_TYPE_FIELD = 130
ELEMENT_TYPE_TEXT = 231
ELEMENT_TYPE_GRAPHIC = 332
ELEMENT_TYPE_OTHER = 433

• Literal (String) – Literal or column heading used to describe the field on the report (if any). If the34
ElementType is text, will contain the text displayed.35

• ValueExpression (String) – Explains how a derived field is calculated, such as "(Extended Price *36
Quantity) - Discount"37

• PositionExpression (String) – Expression describing where this element exists within the group on38
the report.39

• StyleExpression (String) – Expression describing the formatting of the element. For example, the1
font or color.2

• IsHidden (Boolean) – Indicates that the field is not visible on the report.3

14.3.4 ReportElementType4

Enumeration indicating the type of the report element.5

Values6

• ELEMENT_TYPE_FIELD = 17

• ELEMENT_TYPE_TEXT = 28

• ELEMENT_TYPE_GRAPHIC = 39

• ELEMENT_TYPE_OTHER = 410

14.3.5 ReportExecution11

Each instance of this class describes an execution of a report. Can be used to track who is executing reports,12
or to store the location for saved reports.13

Specializes14

• Element (from Core)15

• Surrogate (from Generic Elements)16

Attributes17

• System (String) – Location where the report was executed, usually a machine name.18

14.3.6 ReportGroup19

Each instance of this class describes a grouping of fields on a report or a report section.20

A common use would be the results of an SQL statement displayed in one group. Additional groups could21
be embedded within, as in a group with invoice information and a subgroup with line item detail. Other22
examples would be a detail section or a footer section.23

Specializes24

• Classifier (from Core)25

Attributes26

• GroupType (ReportGroupType) – Describes the function of the group. May be one of the27
following:28
REPORT_GROUP_HEADER = 129
REPORT_GROUP_FOOTER = 230
REPORT_GROUP_DETAIL = 331
REPORT_GROUP_OTHER = 432

• PositionExpression (String) – An uninterpreted string describing the position of the group on the33
report.34

Associations35

• ChildGroup (ReportGroup, derived from Namespace.OwnedElement) – Used to links groups that36
are embedded in one another on the report.37

• Query (ReportQuery) – Used to relate the group to the query used to derive the data in the group.38

Open Information Model Meta Data Coalition

Database and Warehousing: Report Definitions 159

• InputValue (ReportField) – Used to show that a field (not directly owned by the current group)1
provides a value to the group for use in its query or calculation. As an example, an outer group2
displays customer information, and the customer ID is passed into an inner group to display3
invoice information.4

• Element (ReportField, from Classifier.Feature) – Defines the fields in this section of the report.5

14.3.7 ReportPackage6

Each instance of this class describes a grouping of reports. Many products or companies will group reports7
by subject area or topic. This can also be used to represent the physical packaging (i.e., the report file).8

Specializes9

• Package (from Model Management)10

• Surrogate (from Generic Elements)11

• SummaryInformation (from Generic Elements)12

• Component (from Core)13

Associations14

• Report (Report, from Namespace.OwnedElement) – Describes the Reports contained in a report15
package.16

14.3.8 ReportQuery17

Each instance of this class describes a query that is used by a report. The columns of the query can be used18
as the source for field derivations.19

Specializes20

• Query (from Schema Elements)21

22

Meta Data Coalition Open Information Model

160 Business Engineering: Organizational Elements

15 Business Engineering: Business Goals1

15.1 Overview2

Business goals describe the reason a business operates in a special market and why it operates in a specific3
way. The Business Goals Model enables the capture of unstructured information related to a business. It4
describes the goals of a business as well as the measures for their achievement.5

The Business Goals sub-model is linked to all of the other sub-models of the Business Engineering Model6
and explains the purpose of structures and processes. The main meta data type of this model is the Goal,7
which is linked into a semantic network with other goals and supporting elements.8

15.2 Semantics9

The Business Goals package provides a set of elements that describe the goals of a business.10

Vision and Mission are elements that document why a certain business and its processes and tasks exist.11
The Vision type is used to describe the purpose of a business or business process, while Mission documents12
the necessary achievements to fulfill the Vision.13

A Goal is a desired state of a business that an individual or organization wishes to achieve. A goal can be14
expressed as a measurable set of steps (objectives) or by general visions and mission directives. The model15
captures goals of a business in a hierarchy of Goal instances with more general ones at the top and more16
specific ones (sub-goals) at the bottom.17

The following figure shows goals for an Order Fulfillment Process.18

Goal And Objective Model

Order
Processing

Goal

Customer
Satisfaction

Goal

On-time
Delivery

Goal

Quality
Goal

Reduce Order
Handling

Goal

Reduce
In-Warehouse

Time
Goal

Objective : Increase next day
delivery rate to 80%
of all shipments.

Next Day Delivery
Goal

19

Figure 65: Goal and Objective Model20

Goals are associated with other elements of the model using the concept of dependency, which indicates21
that the achievement of the goal depends on the outcome of a process or the performance of an business22
unit.23

Goals can be structured in different ways. They may be decomposed into sub-goals to model the fact that24
abstract goals may be decomposed into or refined by more specific goals. Note that such decomposition can25
be a graph. In addition to the decomposition structure, the model allows the capturing of information about26
how different goals are related to each other. For example, a goal may support, may prevent the27
achievement of, or may be in conflict with, another goal.28

Objective and Measure types are used to drive a process and track the achievement or non-achievement of29
targets. This is typically done against the information stored in a data warehouse. An Objective is a30

Open Information Model Meta Data Coalition

Business Engineering: Business Goals 161

measurable step to achieve a Goal. An Objective uses Measures to quantify the achievement or non-1
achievement of the quantified result (Goal).2

A Measure in form of an Expression depends on one or more quantifiable business objects, which can be3
any of the Open Information Model meta data types that inherit from Classifier. Business objects therefore4
can be tables, OLAP cubes, components, executables, and so forth.5

15.3 Class Reference6

Dependency
(from Core)

ModelElement
(from Core)

Dependency
(f rom Core)

Classifier
(from Core)

MeasureExpressionDependency

* 0..*

+measurableObject

* 0..*

Measure

Expression : UML:Expression
* 0..*

+measure

* 0..*

GoalImpact

ImpactType : String

Objec tive
0..1 0..*0..1

+measures

0..*
{ordered}

Vision

Goal
Criticality : String
Priority : String

0..*

0..*

+subgoals

0..*

0..*

1..** 1..*

+impactingGoal

*

0..** 0..*

+impactedGoal

*

1..1 0..*1..1

+objectives

0..*

Mission 0..*

+missions

0..*

0..*+goals 0..*

7

Figure 66: Goal and Measures8

15.3.1 Goal9

Goal captures the major goals a business has to achieve in order to fulfill its Mission. Goals, beside the10
textual description, can be further classified by providing priority and criticality information.11

Specializes12

• ModelElement (from UML)13

Attributes14

• Name (String) – Name of the Goal.15

• Comments (String) – Additional unstructured information about the Goal.16

• ShortDescription (String) – Description of the Goal.17

• Criticality (String) – Describes the perceived criticality of the Goal (low, medium, high).18

• Priority (String) – The priority of the Goal (low, medium, high).19

Meta Data Coalition Open Information Model

162 Business Engineering: Organizational Elements

Associations1

• subgoals – Goals of which the Goal is composed.2

• objectives – Collection of Objectives that need to be fulfilled to achieve the Goal.3

15.3.2 GoalImpact4

The GoalImpact class captures the different ways in which goals may interact.5

Specializes6

• Dependency (from UML)7

Attributes8

• ImpactType (String) – One of the following:9

• Supports – A Goal supports other goals in the decomposition or refinement structure.10

• Impedes – A Goal impedes other goals if it has a negative influence on them.11

• Conflicts – A Goal conflicts with other Goals, i.e., it prevents achievement of other goals.12

Associations13

• ImpactingGoal (Goal, derived from Dependency.supplier) – Source of the interaction between two14
goals.15

• ImpactedGoal (Goal, derived from Dependency.client) – Destination of the interaction between16
goals, i.e., the Goal that is impacted by the source Goal.17

15.3.3 Measure18

Measure describes a quantifiable measure of an objective that can be based on the value of a classifier, for19
example, on the data maintained in a data warehouse.20

Specializes21

• ModelElement (from UML)22

Attributes23

• Name (String) – Name of the MeasureExpression.24

• Comments (String) – Additional unstructured information about the MeasureExpression.25

• ShortDescription (String) – Description of the MeasureExpression.26

• Expression (UML::Expression) –String that represents the Expression of the measure.27

15.3.4 MeasureExpressionDependency28

MeasureExpressionDependency describes the relationship that links a MeasureExpression to a set of29
measurable classifiers in the Open Information Model.30

Specializes31

• Dependency (from UML)32

Attributes33

• Name (String) – Identifier of the MeasureElementDependency.34

• Comments (String) – Additional unstructured information about the MeasureElementDependency.35

• ShortDescription (String) – Description of the MeasureElementDependency.36

Open Information Model Meta Data Coalition

Business Engineering: Business Goals 163

Associations1

• Measure – The quantifiable measure of the related business object.2

• MeasurableObject – The instance of a class, which inherits from Classifier and provides the result3
to be measured.4

15.3.5 Mission5

Mission describes at an abstract level the means by which the Vision of an organization can be fulfilled. A6
mission is usually expressed as a set of Goals.7

Specializes8

• ModelElement (from UML)9

Attributes10

• Name (String) – Name of the Mission.11

• Comments (String) – Additional unstructured information about the Mission.12

• ShortDescription (String) – Description of the Mission.13

Associations14

• Goals – Set of Goals required to achieve the Mission.15

15.3.6 Objective16

An Objective describes a measurable step to achieve a Goal.17

Specializes18

• ModelElement (from UML)19

Attributes20

• Name (String) – Identifier of the Objective.21

• Comments (String) – Additional unstructured information about the Objective.22

• ShortDescription (String) – Description of the Objective.23

Associations24

• Measures – The quantifiable measures (MeasuerExpression) of the fulfillment of the Objective.25

15.3.7 Vision26

Vision captures the ultimate purpose of an organization and the associated business processes. It is a very27
high-level statement that needs to be further detailed in related mission statements that explain how it can28
be fulfilled.29

Specializes30

• ModelElement (from UML)31

Attributes32

• Name (String) – Name of the Vision.33

• Comments (String) – Additional unstructured information about the Vision.34

• ShortDescription (String) – Description of the Vision.35

Meta Data Coalition Open Information Model

164 Business Engineering: Organizational Elements

Associations1

• Missions – Set of mission statements that indicate how the goal will be realized.2

Open Information Model Meta Data Coalition

Business Engineering: Organizational Elements 165

16 Business Engineering: Organizational1

Elements2

16.1 Overview3

The Organizational Elements package defines the resources and structures that are involved in the4
processes and activities of a business. Its main goal is to capture common information about organizational5
features relevant to business process and task modeling. The Organizational Elements package does not6
store or maintain complete organizational information, or serve as the model for extensive organizational7
research and analysis. Such functions are often performed by systems such as Enterprise Resource Planning8
(ERP) systems.9

16.2 Semantics10

The Organizational Model captures an organization’s structure, resources, and jobs and describes the11
relationships to its market and industry. The most generic meta data type in the package is a Resource,12
which can play a specific role in a business process or in a relationship to the business process itself. A13
Resource is an abstract type and as such is never instantiated. It serves to capture the common14
characteristics of its sub-types PhysicalResource, InformationResource, and BusinessUnit.15

Physical Resources are resources that exist in the real world, such as a conference room or an automobile.16
Information Resources carry information about business objects, such as a loan file or customer database.17
Note that both PhysicalResource and InformationResource types may play roles in a business and may be18
related to other resources, especially of BusinessUnit type. For example, a printer may belong to a specific19
department.20

A resource may play a role regarding other resources in different contexts, such as an engineer who21
performs the administrator’s role for a printer. The ResourceRole meta data type represents this kind or22
relationship.23

A Business Unit captures the topological aspects of a business, its division into organizational functions, its24
geographical distribution, or the context in which it operates. BusinessUnit is an abstract type that is25
specialized into Industry and Business Unit. Business Units may be arranged into a hierarchy with more26
general entities at the top and more specialized ones towards the bottom.27

A Business Unit may have a set of Policies that govern its activities. Policies may be decomposed into a28
hierarchy of sub-policies reflecting the fact that a Policy may consist of several other, more specific,29
Policies.30

A business operates in an environment such as the market, the competitive landscape, the legal31
environment, and so forth. Industry is the generic meta data type that allows modeling of the business32
environment or market, such as its trading partners. Industries are Business Units and can therefore be33
arranged in a hierarchy with industries lower in the hierarchy being increasingly more detailed.34

A Business Unit can model every organizational structure of a business such as a subsidiary, department,35
division, group, or team. Business Units can be arranged into hierarchies to reflect the reporting and36
management hierarchy found in a company. An business unit may contain other units or may contain the37
actual resources that perform Organizational Roles. The following figure shows an example organization38
with units and roles.39

Meta Data Coalition Open Information Model

166 Business Engineering: Organizational Elements

Company A

Sales Marketing Finance HROperations

Research Production Development

Assembly Shiping Quality

InspectorWorker SupervisorClerk

Order

Business Unit
Organizational Role

Organizational Model

1

Figure 67: Organizational Model2

A Resource can play one or more roles in an organization. For example, a software developer may also3
play the hardware administrator role. OrganizationalRole captures the specific jobs in a business and as4
such may have a Person assigned. The Person performs the OrganizationalRole.5

BusinessUnits, OrganizationalRoles, and Persons can be related to Skills. Skill is a meta data type that6
describes required or offered abilities to perform tasks. A BusinessUnit may offer a set of skills, (e.g., a7
consulting company focused on a vertical market), whereas an Organizational Role may require a set of8
specific skills from its owner, (e.g., a bank teller must be able to count). The Person that owns a role or is9
part of a unit ultimately has to have the skills required or offered. The model allows the capturing and10
matching of skills at different levels.11

Authority is a meta data type that captures the different authorities Business Units, Organizational Roles,12
and Persons may have assigned or exercise in an organization. Authority can be used to describe rights13
such as signing authority as well as more abstract things such as power and influence.14

Key Persons or individuals are usually included in a business model to clarify roles and add meaning. The15
model is not intended to serve as a generic structure for maintaining the organizational information of a16
business in an operational environment.17

The Organizational Model offers a core set of types to structure a business and to capture actors and18
resources. Business may have more detailed and specialized organizational types to model their structures.19
Such types can be captured using the extensibility mechanism (stereotypes) of the UML or by introducing20
new types that inherit from the core Organizational Model.21

Open Information Model Meta Data Coalition

Business Engineering: Organizational Elements 167

16.3 Class Reference1

PhysicalResource

InformationResource

ModelElement
(fromCore)

Dependency
(from Core)

Classifier
(from Core)

Person

FirstName : String
MiddleName : String
LastName : String
Title : StringOrganizationalRole

0..* 0..*

+Performs

0..* 0..*

ResourceRole

Policy0..*

0..1

+SubPolicies

0..*

0..1

Skill

0..*0..* 0..*

+HasSkills

0..*

0..*0..*

+RequiredSkills

0..*0..*

Authority

1..*0..* 1..*

+Authorit ies

0..*

0..*0..*

+Authorities

0..*0..*

Resource
1..1*

+perfomedBy

1..1* /client

1..1*

+performedFor

1..1* /supplier

Industry0..*
0..1

0..*

+SubIndustries

0..1

BusinessUnit

LineOfBusiness : Text

1..1

0..*

1..1

+Policies

0..*

0..* 0..*0..*

+OfferedSkills

0..*

0..* 0..*0..*

+Authorit ies

0..*

0..*

0.. *

+Subunits

0..*

0.. *

0..1

0.. *

+industry

0..1

0.. *

2

Figure 68: Organizational Definitions3

16.3.1 Authority4

Authority describes the type of authorization required to perform a Task, access rights for resources,5
responsibilities for specific tasks, or any combination of these elements. It also captures the more abstract6
definitions such as the power and influence a unit, role, or person may have.7

Specializes8

• Classifier (from UML)9

Attributes10

• Name (String) – Name of the Authority, such as Read or Write.11

• Comments (String) – Additional unstructured information about the Authority.12

• ShortDescription (String) – Description of the Authority.13

16.3.2 BusinessUnit14

BusinessUnit characterizes an industry, an organization, or department that has a goal of performing15
business activities. BusinessUnits can be arranged into a hierarchy to reflect the structure of industries or16
organizations. Because they are Resources, BusinessUnits may play specific ResourceRoles in relationship17
to other Resources.18

Specializes19

• Resource20

Attributes21

• LineOfBusiness (String) – Characterization of the major line of business for the BusinessUnit.22

Associations23

• Subunits – Set of BusinessUnits, Industries, or OrganizationalRole objects a BusinessUnit24
contains.25

Meta Data Coalition Open Information Model

168 Business Engineering: Organizational Elements

• Policies – Set of Policies defined for this BusinessUnit.1

• Authorities – Set of Authorities this BusinessUnit has or requires.2

• OfferedSkills – Set of Skills this BusinessUnit offers.3

• Industry – Describes the industry in which the BusinessUnit participates.4

16.3.3 Industry5

An Industry describes a market segment. Each industry usually has a set of business processes that are6
typical for that industry. For example, the health care industry registers patients, confirms medical benefits,7
records medical histories, and tracks health care specialists. Within an industry, a process specific to the8
industry may be performed differently by individual businesses even though the basic process is the same.9
Therefore, an industry may have a set of business process templates that can be customized to specific10
companies.11

Specializes12

• Classifier (from UML)13

16.3.4 InformationResource14

Information resources carry information about business objects, such as a loan file or customer database.15

Specializes16

• Resource17

16.3.5 OrganizationalRole18

An OrganizationalRole represents one or more human resources exhibiting a specific set of skills within an19
organization. Typically any resource assigned to a particular OrganizationalRole can undertake a task or20
work item that requires a resource with the same set of skills.21

OrganizationalRole forms a leaf node of an organizational hierarchy. It represents jobs that are performed22
by a Person linked to perform tasks. A role may be generic, such as a position or title, or more specific,23
such as a job description. OrganizationalRole captures the static knowledge about the tasks that a resource24
can perform. This knowledge is described by the set of Skills a role requires.25

For example, the roles of an electronic technician can include:26

• Troubleshooting to locate problems.27

• Repairing faulty equipment.28

• Reading and understanding wiring diagrams.29

Specializes30

• BusinessUnit31

Associations32

• Policies – The Policy set defined for this OrganizationalRole.33

• Authorities – The Authority set this OrganizationalRole has or requires.34

• RequiredSkills – The set of Skills an OrganizationalRole requires.35

16.3.6 Person36

Person describes a human actor that participates in a Business Process in one or more roles. Example37
individuals with specific skills and authorities are commonly included in a business process model for38

Open Information Model Meta Data Coalition

Business Engineering: Organizational Elements 169

clarification and in order to support simulation. Typically, the actual instances of Person will be contained1
in ERP systems or network directories.2

Specializes3

• ModelElement (from UML)4

Attributes5

• Name (String) – Identifier of the Person.6

• Comments (String) – Additional unstructured information about the Person.7

• ShortDescription (String) – Description of the Person.8

• FirstName (String) – First part of the name of a Person.9

• MiddleName (String) – Middle part or initial of the name of a Person.10

• LastName (String) – Last part of the name of a Person.11

• Title (String) – Title, such as PhD or Dr., of a Person.12

Associations13

• HasAuthorities – The Authority set a Person has.14

• HasSkills – The Skill set a Person has.15

• Performs (OrganizationalRole) – The set of roles a Person performs in an organizational structure.16

16.3.7 PhysicalResource17

PhysicalResource is a representation of an entity from the physical world, such as a conference room or an18
automobile.19

Specializes20

• Resource21

16.3.8 Policy22

Policy describes the rules that govern the actions of a Business Unit. It is also used to express policies from23
the outside world that affect industries or individual organizations. Policies can be recursively decomposed24
into a set of supporting sub-policies. Note that Policies may overlap with BusinessRules, which can also25
express policies within an organization.26

Specializes27

• Classifier (from UML)28

Attributes29

• Name (String) – Identifier of the Policy.30

• Comments (String) – Additional unstructured information about the Policy.31

• ShortDescription (String) – Description of the Policy.32

Associations33

• composedOf – Collection of sub-Policies of which the Policy is composed.34

Meta Data Coalition Open Information Model

170 Business Engineering: Organizational Elements

16.3.9 Resource1

Resource describes an entity that participates in the tasks that constitute a Business Process or which may2
be related to the Business Process itself. Resource is an abstract type and therefore cannot be instantiated. It3
captures common features for its sub-types.4

A resource may play a specific ResourceRole in relationship to other Resources, such as an administrator5
role for a physical resource such as a printer.6

Specializes7

• Classifier (from UML)8

Attributes9

• Name (String) – Name of the Resource.10

• Comments (String) – Additional unstructured information about the Resource.11

• ShortDescription (String) – Description of the function of the Resource.12

16.3.10 ResourceRole13

• ResourceRole describes the role played by a Resource in a context. For example, an Engineer14
organizational role may play the Administrator role for a Printer resource.15

Specializes16

• Dependency (from UML)17

Associations18

• PerformedBy (Resource, derived from UML:Dependency.supplier) – The Resource that performs19
the ResourceRole.20

• PerformedFor (Resource, derived from UML:Dependency.client) – The Resource for which a21
specific ResourceRole is performed.22

16.3.11 Skill23

Skill describes the specific skills each role an organization requires or offers, or the specific skills a person24
has.25

Specializes26

• Classifier (from UML)27

Attributes28

• Name (String) – Identifier of the Skill.29

• Comments (String) – Additional unstructured information about the Skill.30

• ShortDescription (String) – Description of the Skill.31

Open Information Model Meta Data Coalition

Business Engineering: Business Processes 171

17 Business Engineering: Business Processes1

17.1 Overview2

The Business Process package provides meta data types to capture the semantic content of process models3
and associated structures in an object-oriented environment. Business processes are described by activities4
performed by resources and by transitions between activities.5

Business Processes can be either long-lived, such as the budget supervision for a financial year, or6
relatively short-lived, such as the approval of an expense report.7

Examples of business processes are:8

• Software Development9

• Project Management and Scheduling10

• Order Entry or Fulfillment11

• Resource and Product Planning12

The Business Processes package extends UML 1.3 and therefore supports the more generic concepts of13
dynamic modeling in a seamlessly integrated way. This makes the model highly adaptable to individual14
methodologies and allows the use of UML concepts to develop more specialized models such as business15
interaction diagrams, and the use of case models and system decomposition diagrams.16

The Business Process package includes concepts derived from the following sources:17

• Deloitte & Touche’s Notation (IndustryPrint)18

• Ernst & Young’s Notation19

• UML (Unified Modeling Language) and the BPM extensions20

• Flow Chart21

• Gane-Sarson DFD (Data Flow Diagram)22

• IDEF023

• Petri Net24

• SAP EPC (Event Process Chain)25

• SAD Actigram26

• ISAC Activity Graph27

• ICN (Information Control Nets)28

17.2 Semantics29

A Business Process representation for a specific application domain can be structured into a model of the30
tasks, a model of the available business processes, and the behavioral representation of the business process31
as graph of states and transitions.32

Tasks and Business Processes are modeled as services provided by some higher-level structure such as an33
Industry or Business Unit. In terms of the UML, both types of services are described as operations exposed34
by a Classifier. Industry and Business Units are specializations of Classifier.35

Meta Data Coalition Open Information Model

172 Business Engineering: Business Processes

Tasks are services exposed by Industries or BusinessUnits. Tasks can be either Manual Tasks or Automated1
Tasks depending on whether they are to be executed manually or performed by computer. Tasks can be2
decomposed into sub-tasks along different dimensions such as time, goal, or resources.3

Tasks are clearly separated from the state/transition graph that represents the behavior of the Business4
Process. This separation allows the reuse of tasks by one or more Business Processes.5

A Task is usually an activity that is performed with a specific Goal in mind. The operation, “deleting a file”6
could be the task of “cleaning one’s hard-drive” or the task of “protecting confidential information”.7
Depending on the granularity of the task model and the level of reuse, tasks and goals can be separated and8
the structures of the Business Goal Model used to represent and associate goals.9

Business Processes may correspond to services provided by Industries or BusinessUnits. A Business10
Process (like an Operation) represents the signature or entry point and can have multiple implementations11
in form of Business Process Methods. A BusinessProcessGraph, i.e. the graph of states and transitions,12
defines the behavior of this implementation.13

A BusinessProcessGraph is represented by a set of Task States and the Transition of control as well as the14
Data Flow between these states. The individual states refer to the Tasks to be performed and the Resources15
that perform the Tasks. A process is initiated with a well-defined state, i.e. the flow begins with a single16
Initiator state. From this pseudostate the flow follows Transitions to other states or pseudo states. A17
Transition may be guarded by Boolean expressions allowing it to fire or not. Depending on the result (True18
or False), a path through a Transition is taken or not taken. States can be the source of many guarded19
transitions, which allow control of the execution path through a process.20

The following figure shows a business process model expressed using the meta data types discussed in this21
section:22

Order product
by transmitting
order

Receive order;
assign to clerk

Enter order; check
production status

Notify customer
of delay

Produce ordered
product

Ship product
to customer

Production slot
not available

Production
slot available

Customer Order Order
Entry

System

Customer

TaskState

Information
Resource

Transition

Dependency

Physical
Resource

Business Process Model

Organizational
Role

Product

23

Figure 69: Business Process Model24

Process flow can be influenced by two special meta data types, Fork and Join, which allow one to create25
and combine parallel execution of tasks. In a Business Process Graph, States can be either production26
activities or coordinating activities. Production activities (Data Flow) modify the environment and27
manipulate information or materials whereas Coordinating activities (Task States) control the flow of the28
process and do not change the environment.29

A Business Process Graph terminates after all its TaskStates have been completed, i.e. all parallel process30
flows have reached a Terminator.31

Open Information Model Meta Data Coalition

Business Engineering: Business Processes 173

A Process Partition is a clustering of Task States that constitutes a business process graph. This figure1
shows the partitioning of an example business process graph.2

Organization Role
Customer

Organization Unit
Sales

Organization Unit
Production

Order product
by mailing
order form

Receive order;
assign to clerk

Enter order;
check production
status

Notify customer
of delay

Produce ordered
product

Ship product
to customer

Production slot
not available

Production
slot available

3

Figure 70: Process Partition4

Each partition represents the responsibilities of a Business Unit in performing the tasks. Process Partitions5
separate the tasks performed by separate Business Units into concurrent flows loosely synchronized by6
transitions. The Business Process Model allows Task States to belong to multiple Partitions.7

17.3 Class Reference8

Method
(from Core)

Operation
(from Core) *1 *

+specificat ion

1

Act ivityGraph
(from Activity Graphs)

BusinessProcessGraph

PerformanceMetrics : String

BusinessActivity

PerformanceMetric : String
EffectivePeriod : String
Frequency : String
CompletionType : String

BusinessProcessMethod

IsManual : Boolean
EnablingTechnology : String
Decomposit ionReason : String

*0..1

+Graph

*0..1

1..1 0..*

+Process

1..1 0..*

0..*

0..*

+SubMethod

0..*

0..*

9

Figure 71: Process Definitions10

Meta Data Coalition Open Information Model

174 Business Engineering: Business Processes

Operation
(f rom Core)

CallAction
(from Common Behavior)

1*

+operation

1*ActionSequence
(from Common Behavior)

Action
(from Common Behavior)

0.. *

0..1

+action

0.. *

0..1

{ordered}

State
(from State Mac hines)

0..10..1

+entry

0..10..1

0..10..1

+exit

0..10..1

0..10..1

+doActivity

0..10..1

SimpleState
(f ro m State Ma chi nes)

ActionState
(from Activity Graphs)

CallState
(from Activity Graphs)

TaskState

TaskStateActivity
BusinessActivity

PerformanceMetric : String
EffectivePeriod : String
Frequency : String
CompletionType : String

* 1*

+Activity

1

1

Figure 72: Task Definitions2

TaskState

ActionState
(from Activity Graphs)

ResourceFlowState

SubactivityState
(from Activity Graphs)

Terminator

ActivityGraph
(from Activity Graphs)

SimpleState
(from State Machines)

FinalState
(from Sta te Machin es)

ObjectFlowState
(from Activity Graphs)

Classifier
(from Core)

* 1*

+type

1

SubmachineState
(f rom St ate Machi nes)

CompositeState
(from State Machines)

State
(f ro m State Ma chi nes)

SubtaskState

BusinessProcessGraph
+subprocess

Resource
(from Organizational Elements)

CallState
(from Activi ty Graphs)

3

Figure 73: State Definitions4

Open Information Model Meta Data Coalition

Business Engineering: Business Processes 175

Classifier
(f rom Core)

State
(from State Machines)

ResourceStateRole

+TaskState

clientResource
(from Organizational Model) +Resource

supplier

BusinessProcess
ResourceProcessRole

+Resource

supplier

+BusinessProcess

/client

Namespace
(f ro m Core)

Dependency
(fromCore)

ModelElement
(f rom Core)

*

0..1

+ownedElement

*

+namespace

0..1

1..*

* +clientDependency

1..*+client

*

1..*

* +supplierDependency

1..*+supplier

*

1

Figure 74: Resource Role Definitions2

Dependency
(f ro mCore)

ModelElement
(from Core)

1..**

+clientDependency

1..*

+client

*

1..**

+supplierDependency

1..*

+supplier

*

Partition
(from Activity Graphs)

*

*

*

+contents

*

ActivityGraph
(from Activity Gra phs)

0..*1

+partition

0..*1 State
(from State Machines)

Transition
(from State Machines)

StateVertex
(f rom State Mach ine s)

Resource
(from Organizational Elements)

Partit ionResourceRole

+Resource

BusinessProcessGraph

PerformanceMetrics : String
ProcessPartition

+Partit ion

+Partition

3

Figure 75: Process Partitions4

Meta Data Coalition Open Information Model

176 Business Engineering: Business Processes

Connector

Fork

Join

Initiator

Pseudostate
(from State Machines)

Branch

Merge

1

Figure 76: Pseudostates2

17.3.1 BusinessActivity3

A business activity is a service offered by a business object (e.g. Industry or BusinessUnit). If a4
BusinessActivity is represented by a process graph, the activity may references one or more5
implementations by BusinessProcessMethods, which in turn link to the BusinessProcessGraph that6
specifies the behavior as states and transitions.7

A BusinessActivity may also be the specification of a logical work item within a BusinessProcessGraph. It8
forms the operation for a specific TaskState and related TaskStateActivity.9

Specializes10

• Operation (from UML)11

Attributes12

• Name (String) – Name or identifier of the activity.13

• Comments (String) – Additional unstructured information about the activity.14

• ShortDescription (String) – Description of the activity or what problem it addressees.15

• Frequency (String) – Provides information about the frequency of execution of the activity. The16
might be an absolute – “every morning” – or relative – “with every shipment”.17

• PerformanceMetrics (String) – Information relating to cost, cycle time, and other performance18
requirements. These may be related to a specified Goal.19

• CompletionTime (String) – Information about the estimated, permissible, or typical time for the20
completion of this Task.21

• EffectivePeriod (String) – Indicates when this activity becomes effective and for how long.22

17.3.2 BusinessProcessGraph23

A BusinessProcessGraph is defined by a network of TaskStates. TaskStates are linked by Transitions that24
may have Guards to control the flow of execution. Task States reference BusinessActivities through a25
TaskStateActivity, and a BusinessActivity can be referenced by multiple TaskStates. Special nodes in the26
process graph act as Initiator and Terminator of the process flow, or Fork and Join of parallel execution27
threads. TaskStates also relate resources in a specific role in the execution of the process.28

Specializes29

• ActivityGraph (from UML)30

Open Information Model Meta Data Coalition

Business Engineering: Business Processes 177

Attributes1

• Name (String) – Name of the BusinessProcessGraph.2

• Comments (String) – Additional unstructured information about the BusinessProcessGraph.3

• ShortDescription (String) – Description of the BusinessProcessGraph.4

Associations5

• Partitions (ProcessPartition, derived from ActivityGraph.Partition) – The set of partitions6
contained within this BusinessProcessGraph.7

17.3.3 BusinessProcessMethod8

A BusinessProcessMethod can be executed automatically or manually. Automated methods can be9
performed by information systems and may have their implementation specified in a10
BusinessProcessGraph.11

Attributes12

• DeompositionReason (String) – Provides a rational for the decomposition of the method into sub-13
methods.14

• EnablingTechnology (String) – Identifies the underling system that enables processing, e.g., a15
specific ERP system.16

• IsManual (Boolean) – Whether the method is performed by a computer system. A process17
definition may include such types to provide a complete description, but the execution of the18
method is outside the scope of an automatic system, i.e., it is assumed that the specified resources19
perform the method.20

Associations21

• SubMethod (BusinessProcessMethod) – Set of child methods that decompose the method.22

17.3.4 Branch23

Indicates a decision point for flow-of-control within a business process graph. Unlike a fork, only a single24
path will be taken.25

Specializes26

• Pseudostate27

17.3.5 ResourceFlowState28

A ResourceFlowState describes the flow of information or physical resources associated with the flow of29
control through Activities and Transitions. A transition from a TaskState to a ResourceFlowState indicates30
that the Resource is the product of the task. A transition from a ResourceFlowState to a TaskState indicates31
that the resource is used as the input to the task.32

Specializes33

• ObjectFlowState (from UML)34

Attributes35

• Name (String) – Name of the ResourceFlowState.36

• Comments (String) – Additional unstructured information about the ResourceFlowState.37

• ShortDescription (String) – Description of the ResourceFlowState.38

Meta Data Coalition Open Information Model

178 Business Engineering: Business Processes

Associations1

• outgoing – Specifies the Transition departing from the ResourceFlowState to an Activity.2

• incoming – Specifies the Transitions entering the ResourceFlowState emanating from an Activity.3

• Container (CompositeState, derived from StateVertex.Container) – The SubProcess that contains4
this ResourceFlowState, if any.5

17.3.6 Fork6

Fork describes the split of control flow into several parallel execution threads. A Fork is the target of a7
single Transition and is the source of two or more outgoing Transitions.8

Specializes9

• Pseudostate (from UML)10

17.3.7 Initiator11

Initiator is a pseudo state in a process that describes the single start point for the execution. An Initiator has12
no incoming Transitions.13

Specializes14

• Pseudostate (from UML)15

17.3.8 Join16

Join describes the junction of several parallel threads of execution in a process flow. A Join is the target of17
two or more Transitions and the source of a single outgoing Transition.18

Specializes19

• Pseudostate (from UML)20

17.3.9 Merge21

Describes the combination of two paths of execution into a single path. Unlike a join, it is not synchronous,22
it can join non parallel thread paths. It is the opposite of the Branch pseudostate.23

Specializes24

• Pseudostate (from UML)25

17.3.10 PageConnector26

A PageConnector describes a simple node between Transitions. It allows tools to have a process diagram27
span multiple pages or sections. An instance of the PageConnector pseudostate could tell the tool to28
continue the model on the next page starting with the transition after the connector (i.e., a page break).29
Tools that are not concerned with pagination can simply ignore the connector.30

Specializes31

• Pseudostate (from UML)32

17.3.11 PartitionResourceRole33

PartitionResourceRole associates one or more Resources to a Partition in different roles. For example, an34
OrganizationalRole may be the owner of a set of activities that are owned by a Partition.35

Open Information Model Meta Data Coalition

Business Engineering: Business Processes 179

Specializes1

• Dependency (from UML)2

Attributes3

• Name (String) – Name of the PartitionResourceRole.4

• Comments (String) – Additional unstructured information about the PartitionResourceRole.5

• ShortDescription (String) – Description of the PartitionResourceRole.6

Associations7

• Partition – Partition with which the specific Resource is associated.8

• Resource – Resource that is associated with a Partition.9

17.3.12 ProcessPartition10

A ProcessPartition groups TaskStates, normally with respect to their responsibility. ProcessPartitions are11
used for several different purposes, for example, to group a set of actions functionally or to show in which12
part of an organization an action is performed.13

Specializes14

• Partition (from UML)15

Attributes16

• Name (String) – Name of the ProcessPartition.17

• Comments (String) – Additional unstructured information about the ProcessPartition.18

• ShortDescription (String) – Description of the ProcessPartition.19

Associations20

• contents – The set of process elements (State types) associated with this ProcessPartition.21

17.3.13 ResourceProcessRole22

ResourceProcessRole describes the role a Resource has regarding a Business Process Graph. This might23
include roles such as owner, steward, contact person, or administrator (if the process is automated).24

Specializes25

• Dependency (from UML)26

Attributes27

• Name (String) – Identifier of the ResourceProcessRole.28

• Comments (String) – Additional unstructured information about the ResourceProcessRole.29

• ShortDescription (String) – Description of the ResourceProcessRole.30

Associations31

• BusinessProcess – The BusinessProcess that the Resource is related to in a specific Role.32

• Resource – The Resource that is associated with a BusinessProcess in a specific Role.33

Meta Data Coalition Open Information Model

180 Business Engineering: Business Processes

17.3.14 ResourceStateRole1

ResourceStateRole associates workflow participants (Resources) to a collection of business process2
TaskStates. The role defines the context in which the Resource participates in a particular activity such as3
responsibility or authority.4

Specializes5

• Dependency (from UML)6

Attributes7

• Name (String) – Identifier of the ResourceStateRole.8

• Comments (String) – Additional unstructured information about the ResourceStateRole.9

• ShortDescription (String) – Description of the ResourceStateRole.10

Associations11

• TaskState – The TaskState (State) that the Resource is related to in a specific Role.12

• Resource – The Resource that participate in a TaskState (State) in a specific Role.13

17.3.15 SubTaskState14

SubTaskState represents the execution of sub-process within a parent process graph. It is a structuring15
mechanism enabling hierarchically structured complex flows and facilitates the reuse of predefined16
processes. A SubTaskState may reference either the composition of other states and transitions or a defined17
BusinessProcessGraph.18

Specializes19

• SubactivityState (from UML)20

Attributes21

• Name (String) – Name of the SubTaskState.22

• Comments (String) – Additional unstructured information about the SubTaskState.23

• ShortDescription (String) – Description text about the SubTaskState or what problem it addresses.24

• PerformanceMetrics (String) – Information relating to cost, cycle time, and other performance25
requirements.26

• EnablingTechnology (String) – Identifies the underlying system that enables processing, e.g., a27
specific transaction of an ERP system.28

• EffectivityPeriod (String) – Indicates when this process SubTaskState becomes effective and for29
how long.30

Associations31

• subprocess (BusinessProcessGraph, derived from UML:SubmachineState.submachine)– The32
business process graph to be substituted in place of this state.33

• subvertex – The set of subprocess elements (TaskState, SubTaskState, DataFlow, etc.) owned by34
the SubTaskState if it is a composition.35

17.3.16 TaskState36

A TaskState models a state of a business process. A State becomes active when it is entered because of37
incoming transitions. The state executes the related TaskActions and passes control to its outgoing38
Transitions it the actions have been completed.39

Open Information Model Meta Data Coalition

Business Engineering: Business Processes 181

Specializes1

• ActionState CallState (from UML)2

Attributes3

• Name (String) – Name or identifier of the Task.4

• ShortDescription (String) – Description of the Task or what problem it addressees.5

Associations6

• incoming – Set of incoming Transitions for the TaskState.7

• outgoing – Set of outgoing Transitions for the TaskState.8

17.3.17 TaskStateActivity9

TaskStateActivity represents the execution of a BusinessActivity in a specific TaskState. A10
BusinessActivity can be re-used by multiple TaskActions, i.e. may be related to multiple different Task11
States. The invocation of the Task may be either synchronous or asynchronous, indicating whether the12
TaskState waits for the execution to be finished or not.13

Specializes14

• CallAction (from UML)15

Attributes16

• Name (String) – Name or identifier of the activity.17

• IsAsynchronous (Boolean) – Indicates if the related BusinessActivity is activated synchronously18
(True) or asynchronously (False).19

Associations20

• Activity (BusinessActivity, derived from CallAction.Operation)– The business activity that is21
invoked by the TaskStateActivity.22

17.3.18 Terminator23

Terminator is a pseudo state in a process that identifies one of the possible end points. A business process24
terminates when all parallel flows have reached a Terminator.25

Specializes26

• FinalState (from UML)27

Attributes28

• Name (String) – Name of the Terminator.29

• Comments (String) – Additional unstructured information about the Terminator.30

• ShortDescription (String) – Description of the Terminator.31

Associations32

• incoming – Specifies the Transition entering the Terminator.33

• container – The SubProcess that contains this Terminator, if any.34

Constraints35

• A Terminator has no outgoing Transitions.36

Meta Data Coalition Open Information Model

182 Business Engineering: Business Processes

17.3.19 Transition1

Transition is a directed relationship between a source TaskState and a target TaskState.2

Specializes3

• ModelElement (from UML)4

Associations5

• guard – The Guard or logical expression that determines if the transition is taken.6

Open Information Model Meta Data Coalition

Business Engineering: Business Rules 183

18 Business Engineering: Business Rules1

18.1 Overview2

A business rule is a statement that controls or defines some aspect of a business. It either asserts the3
structure of a business or governs its business processes. The Business Rules package provides meta data4
types to capture, classify, and store business rules. Scenarios supported by the package are:5

• Capturing tools used by analysts to describe and document the rules of a business.6

• Interchanging business rule definitions between capturing tools, business process modeling7
environments, and back-ends such as workflow engines8

The package is an integrated part of the Business Engineering Sub-model of the Open Information Model.9
This makes the model highly adaptable to individual methodologies and allows the use of UML concepts to10
develop more specialized models.11

The Business Rules package includes concepts derived from the following sources:12

• UML 1.313

• GUIDE Business Rule Project14

18.2 Semantics15

A business rule describes how to transition from one state to another or how to prohibit such a transition.16
As such it is a declarative statement rather than a procedural description. Business rules are highly17
structured atomic statements that are usually extracted from informal documentation found in a business.18

The business rambling has been introduced in the model to support the process of isolating business rules.19
It is the starting point for deriving business rules and as such may contain more than a single rule, may be20
inconsistent, contradict other ramblings, and even be untrue. The model allows specifying the source of a21
business rambling by relating it to a resource, a meta-data type defined in the Organizational Model.22

A formalized representation of a Business Rule can be categorized into the following types:23

• Term Rule – Introduces the definition of a term into a business term dictionary. It is used to define24
the vocabulary of a business.25

• Fact Rule – Documents the connections between items. Examples are relationships between26
entities, e.g., the “belongs to” relationship between an attribute and an entity.27

• Action Rule – Action rules are concerned with the invocation of actions. They state the conditions28
under which actions must be taken; this includes pre-conditions, post-conditions, and triggering29
conditions.30

• Inference Rule – Describes the inference or derivation of a business rule from other rules or by31
mathematical calculations. Inference rules are sometimes called derived rules or Derivation Rules32
because they capture knowledge that is dynamically derived instead of explicitly stored.33

Business Rules may be grouped into Business Rule Sets that reflect a simple sequencing, a specific34
business area, implementation considerations, or organizational as well as project structures. Sets organize35
business rules into manageable groups.36

A BusinessRule may interact with other rules by supporting, conflicting, or subsuming them. This fact is37
modeled by the Impacts Rule relationship, which can be used to define a network of semantic relationships38
in-between rules.39

BusinessRules are extracted from the informal knowledge that governs a business. They usually have one40
or more sources, a steward, and one or more supporters. A Resource in an organization may play different41

Meta Data Coalition Open Information Model

184 Business Engineering: Business Rules

roles regarding a Business Rule. These roles are captured by the relationship type, ResourceRuleRole. This1
relationship also allows a resource to register interest in a rule and how it evolves, and information that can2
be used by a system to send out notifications.3

The abstract meta-data type BusinessRule has RuleTypes that capture the different types of business rules4
listed above. A DefinitionRule is an expression that introduces a business term into the vocabulary of a5
business model in a specific context. The context in which a term may exist controls its definition. For6
example, the term “Table” may have a vastly different meaning in the context “Data Warehouse” than in7
the context “Furniture Warehouse”. The Knowledge Representation Model presents a meta-data type Term8
that fits the context-to-term framework used by DefinitionRule and could be referenced by standard UML9
Dependency instances.10

A FactRule establishes a form of relationship between two or more business terms. Types of relationships11
include Aggregation, Association, Generalization, and so forth. A Fact Rule, for example, may state the12
fact that a rental car (term) has a license plate (term).13

ActionRules are statements that are concerned with the invocation of actions. Action Rules capture the14
condition under which an activity has to occur, i.e., the events, pre-conditions, and post-conditions that15
must hold before and after the rule has been applied.16

A constraint is a special type of Action Rule. A constraint is a condition that must evaluate to True.17
Constraints may be static or transitional. Static constraints are structural and time independent; they must18
hold at any point in time. Transition constraints assert the dynamic integrity of a system; they are19
behavioral in nature and restrict the transitions from one state of the system to another.20

InferenceRules are statements that express knowledge in terms of information items that are already present21
in the model of a business. InferenceRules capture structural domain knowledge that does not need to be22
stored explicitly because it can be dynamically derived from existing or other derived information. For23
example, if a person’s birth date is known, then the person’s age can be calculated (mathematical24
derivation). Another example is that a student with 32 to 64 credits is known as a “sophomore” (logical25
derivation).26

Open Information Model Meta Data Coalition

Business Engineering: Business Rules 185

18.3 Class Reference1

Resou rce
(from Organizational Model)

ResourceRuleRole

Notification : Str ing
K ind : String

1*

+Res ource

Business Ram bling

Rambling : Text

1..**

+Source

RuleImpact

ImpactType : String

Package
(f rom Mode l Management)

* 1

1..**

Bus ines sRuleSet

GroupingReason : String
EffectiveDate : Datetime
ExpirationDate : Datetime

ModelElement
(from Core)

BusinessRule

Status : String
EffectiveDate : Datetime
ExpirationDate : Datetime
CreationDate : Datetime
UpdateDate : Datetime
His tory : Text
RuleType : String *1 *

+Rule

1

1 *1

+Ramblings

*

*
*

+ImpactingRule

*

*

0..*

+Mem bers
*

{Ordered}

0..* +OwningSets

+Im pactedRule

*

As sociationClas s
(f rom Core)

2

Figure 77: Core Definitions3

FactRule

FactType : String

ActionRuleInferenceRule TermRule

BusinessRuleGramm ar

GrammarRule
(from Gram m ar Elem ents)

Grammar
(from Gram m ar Elements)

1

1.. *

1

+Rules

1.. *

BusinessRuleSet

GroupingReason : String
EffectiveDate : Datetime
ExpirationDate : Datetime * 1*

+Definit ion

1

BusinessRule

St atus : S tring
Ef fectiveDate : Datetime
ExpirationDat e : Dat etime
CreationDat e : Dat etime
UpdateDat e : Dat etime
History : Text
RuleType : S tring

0..*

*

+OwningSets0..*

+Members
{Ordered}*

BusinessGrammarRule

0..11 0..11

4

Figure 78: Rule Type Definitions5

Meta Data Coalition Open Information Model

186 Business Engineering: Business Rules

The following sections describe the different meta-data types of the Business Rule Model in alphabetical1
order.2

18.3.1 ActionRule3

ActionRule describes actions and their conditional invocation as well as the special case of constraints.4

Specializes5

• BusinessRule6

18.3.2 BusinessRambling7

BusinessRambling is an unstructured piece of information about a business. It is the starting point for8
deriving business rules, and may contain more than a single rule, be inconsistent, contradict other9
ramblings, or even be untrue.10

Specializes11

• ModelElement (from UML)12

Attributes13

• Rambling – A textual representation of the business rambling as stated by a source.14

Associations15

• Source – The Resources that state the business rambling. It is important to record these sources of16
the rambling so that details can be clarified.17

18.3.3 BusinessRule18

BusinessRule is a statement of a rule under which a business operates. Its classification is further defined19
by RuleType.20

Specializes21

• Constraint (from UML)22

Attributes23

• Name – An English phrase that describes the purposed of the business rule. The name should be24
worded in noun form (Order Number Validation) rather than verb form (Validate Order Number).25

• ShortDescription – A declarative expression of the business policy that the rule enforces. For26
example, “All prescriptions for schedule 2 drugs shall be verified with the prescribing doctor.”27

• Status – The status of the rule. Valid values for the rule status are the following:28

• Proposed – A potential rule that has been discovered by any of the normal means, such as29
code scan, extraction from business ramblings, interviews, and so forth.30

• Validated – Indication that the potential rule has been reviewed by a business analyst and31
determined preliminarily to be valid.32

• Approved – Indication that the business owner or steward has approved the rule. The33
implication of an “approved” status is that a business owner or steward has been assigned.34

• Archived – Business rules can change. When they do, the old rule should be kept around, but35
put into an “archived” status. The archived status should be connected to the new version of36
the business rule via the “version of” link.37

• EffectiveDate – The date on which the business rule becomes effective. The primary purpose of38
this field is to indicate when business rules will become effective at a future date (perhaps due to39

Open Information Model Meta Data Coalition

Business Engineering: Business Rules 187

pending legislation). A blank value indicates that the business rule was effective prior to being put1
into the repository.2

• ExpirationDate – Business rules may expire, i.e., become no longer effective. This attribute3
documents the date on which the business rule is no longer valid.4

• CreationDate – The date on which the rule was entered into the business model.5

• UpdatedDate – The date on which the rule was last updated.6

• History – Documentation of the evolution of the rule to its present state.7

• RuleType - The intended use of Rule. Valid values for the RuleType are:8

• DefinitionRule – Introduces the definition of a term into a business term dictionary. It is used9
to define the vocabulary of a business.10

• FactRule – Documents the connections between items. Examples are relationships between11
entities, such as Aggregation, Association, Generalization and Feature.12

• ActionRule – Action Rules are concerned with the invocation of actions. They state the13
conditions under which actions must be taken, this includes pre-conditions, post-conditions,14
and triggering conditions.15

• InferenceRule – Describes the inference or derivation of a business rule from other rules or by16
mathematical calculations. InferenceRules capture knowledge that is dynamically derived17
instead of explicitly stored.18

Associations19

• Ramblings – Set of BusinessRamblings from which the rule was extracted.20

• ImpactedRule – A set of rules affected by this rule.21

• ImpactingRule – A set of rules that affect this rule.22

18.3.4 BusinessRuleSet23

BusinessRuleSet is a grouping of related BusinessRules into meaningful sets. The grouping might reflect a24
simple sequencing, a specific business area, implementation considerations, organizational structures, or25
project structures.26

Specializes27

• ModelElement (from UML)28

Attributes29

• GroupingReason (String) – A descriptor that denotes the reason why the rules were grouped30
together. Possible values might include:31

• Order – The rules must be tested or executed in a certain sequence.32

• Business Area – The rules are all related to a particular line or area of the business.33

• System Implementation – The rules are all implemented within a certain system.34

• Project Implementation – The rules are all implemented within a certain project.35

• Organization Implementation – The rules are all implemented within a certain project.36

• EffectiveDate – The date on which the rule grouping became effective.37

• ExpirationDate – The date on which the rule grouping is no longer valid. This might occur38
because the grouping was due to a project, and the project has been completed.39

Meta Data Coalition Open Information Model

188 Business Engineering: Business Rules

Associations1

• Rules (BusinessRule) – Set of ordered business rules grouped into the rule set.2

18.3.5 FactRule3

A FactRule establishes a form of relationships between two or more terms. Types of relationships include4
Aggregation, Association, Generalization, etc., and they are indicated by a property of the FactRule.5

Specializes6

• BusinessRule7

Attributes8

• FactType – The following lists the most generic relationship types:9

• Aggregation – (part-of) Expresses the fact that one Term is a component of the other one and10
that they form a whole.11

• Association – (associated-with) Expresses a generic type of relationship between Terms.12

• Generalization – (is-a) Expresses a specialization of a Term by another Term.13

• Feature – (member-of) Expresses that an attribute or operation belongs to an entity.14

18.3.6 InferenceRule15

An InferenceRule is a rule that describes how information is derived from existing structures and terms of a16
business. It allows capturing domain knowledge that is computed rather than persisted. For example, if a17
person’s birth date is known, then the person’s age can be calculated. Another example is that a student18
with 32 to 64 credits is known as a “sophomore”.19

Specializes20

• BusinessRule21

18.3.7 ResourceRuleRole22

ResourceRuleRole describes the role a Resource plays for a specific business rule.23

Specializes24

• ModelElement (from UML)25

Attributes26

• Kind – Type of the role:27

• RuleSource – An InformationResource maybe the source of the business rule or rambling.28
This is normally a document (such as a manual, program code, or official policy) or an29
OrganizationalRole, such as CTO. OrganizationalRoles can be related to Persons, i.e.,30
BusinessRules may be related to individuals through their specific organizational role.31

• RuleSteward – The responsibility that a BusinessUnit (or a related Person) has for a business32
rule. For a given rule, either an OrganizationalRole or an BusinessUnit can fulfill this33
particular role.34

• RuleRequestor – The BusinessUnit that requested that the rule be added to the repository. This35
may not be known or may be redundant to the rule source, in which case no requestor should36
be defined.37

Open Information Model Meta Data Coalition

Business Engineering: Business Rules 189

• RuleAdministrator – OrganizationalRole (and related Person) that entered the rule into the1
repository. This is the OrganizationalRole to which questions can be directed concerning the2
way in which the rule was entered.3

• Notification – Type of notification a Resource wants to receive if the state of the related4
BusinessRule changes:5

• Approval – The rule cannot be changed or deleted without the approval of the resource.6

• Notify – The resource needs to be notified before the rule is modified.7

• Interested – The resource can be notified after the rule is modified8

• Validate – A resource that needs to be notified before a rule is activated. This second resource9
has to agree that the rule is correct.10

Associations11

• Rule – The BusinessRule for which a Resource plays a specific role.12

• Resource – Resource that plays a specific role for a BusinessRule.13

18.3.8 RuleImpact14

The RuleImpact class describes semantic relationships between BusinessRules. For example, a rule may15
support or conflict with another rule.16

Specializes17

• ModelElement (from UML)18

Attributes19

• ImpactType (String) – The reason for the relationship between the rules. Valid reasons are:20

• Redundant – A rule is covered by one or more other business rules.21

• Supports – A rule is decomposed into several supporting rules.22

• Conflicts – A rule has a negative impact on another rule.23

• Subsumed – A rule has been replaced by another business rule.24

• Variant – A business rule has been customized and is a variant of an existing one.25

Associations26

• ImpactingRule – The BusinessRule that impacts another rule.27

• ImpactedRule – The BusinessRule that is impacted by another rule.28

18.3.9 TermRule29

A TermRule defines a term, a symbol, word or phrase that has a specific meaning for a business. A term is30
defined by a term rule in a specific context, which makes the meaning unique. Process, for example, has31
vastly different meanings in operating system environments and car manufacturing businesses.32

Specializes33

• BusinessRule34

Meta Data Coalition Open Information Model

190 Knowledge Management: Knowledge Descriptions

19 Knowledge Management: Knowledge1

Descriptions2

19.1 Overview3

Knowledge Management (KM) is the systematic approach of capturing, organizing, and using the4
information resources of an enterprise to add business value and achieve strategic market advantages. A5
KM environment usually consists of a combination of different systems, such as Enterprise Resource6
Planning (ERP) systems, Data Warehouses (DW), Document Management (DM) systems, Groupware7
applications, and Intranets.8

Sharing and collaboration of knowledge amassed in information systems across organizational and9
geographical boundaries of an enterprise requires an efficient mechanism to find and access relevant data.10
Knowledge portals, which in their simplest form can be viewed as giant resource directories, offer the entry11
points into information resources for users, groups, and communities with common interests.12

At the core of a Knowledge Portal lies the cataloging and categorization of information using a consistent13
taxonomy that reflects a business or user specific view. A taxonomy is a description of domain specific14
concepts and their relationships, covering such areas as financial services, health care, commodities, sales15
and marketing and including such concepts as Bond, Benefit, Country, and Product.16

A consistently applied taxonomy can be used to improve upon the usual keyword and full text based17
techniques. It allows a knowledge worker to retrieve information using business standard terminology and18
avoids problems of poor selectivity and quality of results caused by missing, inconsistent, or conflicting19
terminology.20

As an example, a simple textual search for the term “table” may yield a result set that covers furniture items21
as well as relational database definitions, e.g. the order entry table. It would be up to the user to sort22
through the set of items and determine their relevance. However, if “table” items had been classified either23
as furniture or data definitions, then the retrieval results would have been of much higher quality for the24
end user.25

Additional information such as synonyms (Customer ~ Client), abbreviations (Department ~ DEP), or26
preferred terms provided by the taxon would allow the system to offer an even higher degree of precision27
and user-friendliness. Information about the semantic relationships between different search terms enables28
the system to automatically adjust the query to include or exclude certain concepts.29

A more significant benefit of a taxon is that it often reflects the dimensions a business uses to track30
unstructured as well as structured information. For example, a taxon for the support department might31
define product, problem, and resolution. A support person may search for the resolution of a specific32
problem for an individual product and then pivot the view to search for related problems in other products33
that are also solved by the fix.34

The introduction of business terminology and taxonomies in an enterprise requires the alignment of35
categorizations and controlled vocabularies between its information systems. The first step in this process is36
to enable the interchange of such definitions through a standard format. The goals of the Knowledge37
Description Model are to provide the basic mechanisms to define or interchange:38

• Representations of a basic meta data schema for knowledge, i.e. schemas for the representation of39
meta data about unstructured or semi-structured data.40

• Structures to classify content into sets of related concepts that describe the meaning of real world41
entities.42

• Descriptions of taxons or controlled vocabulary. The representation of the controlled vocabulary43
consists of sets of terms arranged into a hierarchy of glossaries.44

Open Information Model Meta Data Coalition

Knowledge Management: Knowledge Descriptions 191

Note that the Knowledge Description Model does not define the schema or the vocabulary in a specific or1
vertical knowledge domain. The model instead provides the basic mechanisms to describe such schema and2
vocabulary in order to maintain them by or interchange them between computer systems.3

The Knowledge Description Model package includes concepts derived from the following sources:4

• Resource Description Framework (RDF)5

• Knowledge Interchange Format (KIF)6

• UML (Unified Modeling Language)7

19.2 Semantics8

The Knowledge Descriptions package provides meta data types to describe and categorize information9
managed by computer systems. It deals with topics interesting to humans modeled as concepts. Users can10
then choose familiar terms to refer to these concepts. Most likely, the terms a user chooses to identify an11
individual concept will be a domain-specific subset of a larger set of terms that can refer to the same12
concept.13

The definition of a controlled vocabulary for a set of concepts reduces ambiguity and complexity for the14
user. The package provides three main structural features to express a controlled vocabulary and the related15
semantics:16

• Thesaurus – is a collection of Concepts that provide the context for the intended meaning of a17
particular term.18

• Glossary – is a collection of Term definitions and various related forms of the term.19

• Index – is a collection of Words or Phrases that are related to internal or external definitions.20

A thesaurus is a collection of concepts. Concepts are identified by Terms, which in turn are manifested by21
a word or phrase. Note that Terms used in normal language may create ambiguity by describing the same22
Concepts (e.g. they might have different meanings in different contexts). What differentiates the meaning is23
the semantic relationship of a Term (i.e. a word or phrase) to a specific Concept. As such Concepts are24
placeholders for semantic information and relationships, which will be modeled in further detail at a later25
time.26

A glossary is a collection of terms that are related through implicit or explicit relationships. The27
Knowledge Representation Model provides Glossary and Term meta data types and a set of relationships28
that model Concept synonyms, hierarchically correlated terms, and related “See Also” terms. These29
relationships allow modeling the most common relationship types found in taxonomies, i.e. between Terms.30
In reality, such relationships are much more complex and extensive, but this would make a glossary too31
hard to construct or maintain. The model therefore separates the semantic modeling features of the32
Thesaurus from the more narrowly scoped Glossary.33

A term has a definition and may reference one or more words or phrases denoted by index entries.34

Terms may be preferred (the term best representing its Concept), and as such represent the vocabulary of a35
user or domain, or non-preferred. Non-preferred Terms are synonyms and point at the preferred Term that36
should be used instead. The synonym’s relationship between a preferred Term and several non-preferred37
Terms represents the fact that several Terms describe the same concept, although they might do it with38
different shades of meaning. Synonyms need to be identified in order to make a vocabulary useful.39

Terms may be arranged into a hierarchy of more generic and more specific entries. This Broader/Narrower40
type of relationship allows substituting “USA” with “Country” or “State” with “Region”. This relationship41
allows the development of Glossaries without using the, as yet undeveloped, more complex semantic42
modeling features of the Thesaurus.43

Sets of Terms may be related to each other through occurrences. The result of the analysis of the strength of44
the inter-term co-occurrences in a specific domain is captured by the Related Term relationship. For any45
particular Term, the relationship captures how strongly the Term is related to a set of other Terms.46

Meta Data Coalition Open Information Model

192 Knowledge Management: Knowledge Descriptions

An Index organizes Terms into collections. It is a mechanism that provides the entry point into a Glossary1
or Taxonomy. An index consists of a set of index entries represented by the meta data type IndexEntry. An2
IndexEntry represents a word, acronym, abbreviation, phrase, or PartOfSpeech that serves as a hook for a3
reference to a definition or a relationship to a Term. Indexes might be nested to allow structuring of indexes4
or the grouping of entries into sets meaningful to the user.5

19.3 Class Reference6

VocabularyElement

Example : Text
UsageDescription : Text

KnowledgeElement

Author : String
Date : Date

IndexEntry

Symbol : String
Language : String
IsCaseSensitive : boolean
EntryType : IndexEntryType

Index

Language : String

0..*

1

+Entries

0..*

{ordered}

1

Thesaurus

Language : String

Glossary

Language : String

0..*0..*

+Glossaries

0..*0..*

0..*

0..1

+SubGlossary0..*

{ordered}

0..1

0..*0..*

+Indexes

0..*0..*

Concept

FormalDescription : Text

0.. *1..1

+Concepts

0.. *

{ordered}

1..1

Term

Definition : Text

1..1

0..*

1..1

+Terms
0..* {ordered}

0..1 0..*0..1

+Represents

0..*

ModelElement
(from Core)

ModelElement
(from Core)

7

Figure 79: Core Elements8

Open Information Model Meta Data Coalition

Knowledge Management: Knowledge Descriptions 193

KnowledgeElement
Author : String
Date : Date VocabularyElement

Example : Text
UsageDescription : Text

Thesaurus

Language : String

0..*

0..1

+SubThesaurus0..*

{ordered}

0..1

Concept

FormalDescription : Text 0..*

0..*

0..*

+RelatedConcepts0..*

1..1

0..*

1..1
+Concepts

0..*

{ordered}

Glossary

Language : String0..* 0..*0..*

+Glossaries

0..*

0..*

0..1

+SubGlossary

0..* {ordered}

0..1

Term

Definition : Text

0..1

0..*

0..1

+Represents

0..*

1..1

0..*

1..1
+Terms

0..*

{ordered}

1

Figure 80: Thesaurus Elements2

KnowledgeElement

Author : String
Date : Date

Glossary

Language : String

0.. *

0..1

+SubGlossary
0.. *{ordered}

0..1

Term

Definition : Text

1..1 0..*1..1

+Terms

0..*

{ordered}

0..*

0..*

+NarrowerTerms

0..*

+BroaderTerms

0..*

0..*

0..1

+Synonyms

0..*

+PreferredTerm

0..1

0..*

0..1

+RelatedTerms

0..*

+BaseTerms

0..1

Concept

FormalDescription : Text

0..*

0..1

+Represents0..*

0..1

VocabularyElement

Example : Text
UsageDescript ion : Text

RelatedTerm

Weight : Long

3

Figure 81: Glossary Elements4

Meta Data Coalition Open Information Model

194 Knowledge Management: Knowledge Descriptions

KnowledgeElement

Author : String
Date : Date

EntryTypeEnum:
- Word
- Acronym
- Abbreviation
- PartOfSpeech

VocabularyElement

Example : Text
UsageDescription : Text

Surrogate
(f rom Generic Elements)

Index

Language : String

0..*

0..*

+SubIndex0..*

{ordered}

0..*
IndexEntry

Symbol : String
Language : String
IsCaseSensitive : boolean
EntryType : EntryTypeEnum

1

0..*

1 +Entries

0..*{ordered}

0..1

0..*

0..1

+SubEntry

0..* {Ordered}

Term

Definition : Text

IndexRef

Icon

IndexUsage

1

*

+DescribedEntry
1

+U sages
*

0..1

*

+RelatedTerm0..1

+Entries *

0..*1

+Refs

0..*1

1

Figure 82: Index Elements2

The following describes the different meta data types of the Knowledge Description Model in alphabetical3
order.4

19.3.1 Concept5

A Concept represents a semantic type or relationship in a taxon. Semantic types are nodes and relationships6
are links in a network that represent knowledge at the conceptual level. The purpose of a semantic network7
is to categorize and relate information in a Thesaurus, i.e. it talks about the topics a user is interested in.8

Concepts are represented by Terms. Users choose the Terms that are familiar to them in their environment9
and that represent a subset of the larger set of Terms that could be used to represent the specific concept.10
The combination of Context and Term unambiguously defines the topic a user has selected.11

Concept is a very broad type, allowing for the semantic categorization of a wide range of terminology in12
multiple domains. Using the extension mechanisms of the OIM, stereotyping or sub-classing, developers13
may specialize Concept into more domain specific types.14

Concepts are placeholders for the future introduction of relationship semantics.15

Example Concept: “Patty” having the FormalDescription of “a Flat food product” could represent the16
following Terms “Beef Patty”, “Chicken Patty”, “Mint Patty”.17

Specializes18

• VocabularyElement19

Attributes20

• FormalDescription (String) – Formal description of the Concept.21

Open Information Model Meta Data Coalition

Knowledge Management: Knowledge Descriptions 195

Associations1

• Represents – A Concept both represents and is further defined by its associated Terms.2

19.3.2 Glossary3

A Glossary is a collection of Terms and their various usage forms. A Glossary may contain sub-glossaries,4
i.e. it may be nested. Nesting of Glossaries may be used for assembly of a large Glossary from several5
smaller glossaries or for grouping of related Terms. Such a grouping may label a set of Terms for better6
representation at the user level.7

The Glossary is a container for Terms. Terms can also be organized into broader-narrower Term structures8
or by synonymous and related term relationships that capture non-hierarchical related meanings (for9
example “See Also” references). This allows the navigation of a Glossary by starting with a Term and10
following relationships to the set of linked Terms.11

Example Glossary: “Food products” with contained Terms such as “Hamburger” and “Hamburger Patty”.12

Specializes13

• KnowledgeElement14

Attributes15

• Language (String) – Language of the Glossary. Note that the Language definition, if provided,16
applies hierarchically to all contained Index and IndexEntry objects that have no local Language17
definition. It is recommended to avoid multi-lingual Glossaries and rather use a Glossary or18
Taxonomy as context for a specific language.19

Associations20

• SubGlossaries – Set of Glossary objects that are contained and as such form the Glossary.21

• Terms – Set of Term objects that define the entries of the Glossary.22

19.3.3 Index23

An Index is a collection of IndexEntry items that represents words or multi-words and references to their24
definitions. Indexes may be nested to group the entries in a meaningful way. An Index represents the set of25
entry points into a taxon. Once such a point is chosen, the user can navigate through Terms and Concepts26
(if defined) or access the referenced internal and external information.27

For example, the index “Cooking” could have sub-indexes of “Food Products”, “Cooking Implements”,28
and “Cooking Techniques”.29

Specializes30

• KnowledgeElement31

Attributes32

• Language (String) – Language of the Index. Note that the Language definition, if provided,33
applies hierarchically to all contained IndexEntry objects that have no local Language definition.34

Associations35

• SubIndex – Set of Index objects that are contained and as such form the Index. Example usage: an36
MSDN Index of “Visual Programming Language References” could have a set of SubIndex’s such37
as VC++, VJ++. To support this semantic, a particular Index can be contained by several Index’s.38

• Entries – Set of IndexEntry objects that isolate document references for this index. To reduce39
problems resulting from updating documents, an IndexEntry may be contained by only one Index.40

Meta Data Coalition Open Information Model

196 Knowledge Management: Knowledge Descriptions

19.3.4 IndexEntry1

An IndexEntry identifies the text from which an entry in the index is made. Each IndexEntry is a word or2
multi-word representation that may have sub entries further narrowing the entry. An IndexEntry can be of3
type Word, Abbreviation, Acronym, Phrasing, or PartOfSpeech.4

Example IndexEntry: “Patty”, with no associated IndexUsage’s but with SubEntry’s “Melt”, “Hamburger”5
each having IndexUsage’s representing their locations within documents.6

Usage observation. Indexes could be kept “semantically pure” but blended by the presentation interface7
with IndexEntry’s linked by their Term’s (via Synonyms, RelatedTerms and NarrowerTerms). Conversely,8
IndexEntry could have SubEntry’s who’s related Term’s were from widely varied Concepts such as “Patty”9
sub “Melt” and sub “Hearst”.10

Specializes11

• ModelElement12

Attributes13

• Symbol (Text) – Value of the IndexEntry.14

• Language (String) – Language of the IndexEntry. Note that if no language is defined, a definition15
may be inherited from the Index, Glossary, or Taxonomy objects the entry is contained in.16

• IsCaseSensitive (Boolean) – Indicates if the value of the IndexEntry – symbol attribute – is case17
sensitive or not (default).18

• EntryType (IndexEntryType) – Type of the IndexEntry:19

Associations20

• SubEntry – Set of IndexEntry objects that are contained and as such form the Index.21

19.3.5 IndexEntryType22

Values23

• Word – is a string of characters that represent the Term at the linguistic level. = 124

• Acronym – a set of characters or symbols that represent a Term in addition to its representation as25
word or multi-word phrase.26

• Abbreviation – is the representation of a Term by omitting one of more characters from the word27
or multi-word representation.28

• Phrasing – a multi word representation of a Term.29

• PartOfSpeech – any part of speech that represents a Term.30

19.3.6 IndexUsage31

An IndexUsage provides semantic encapsulation of a particular example of an IndexEntry, the particular32
document references and any associated Term.33

Example: The Term “Hamburger Patty” could have two associated IndexUsage’s, one referencing the34
IndexEntry “Hamburger, sub Patty” and another with an IndexEntry of “Patty, sub Hamburger”, and each35
IndexUsage could have several IndexRef’s. The set of IndexRef’s would more than likely be the same for36
each IndexUsage, but that may not be true for all cases.37

Open Information Model Meta Data Coalition

Knowledge Management: Knowledge Descriptions 197

Specializes1

• VocabularyElement – Since an IndexEntry/IndexUsage doesn’t need an associated Term. Note2
this actually provides the user an opportunity to create a more focused example related to this3
IndexUsage.4

Associations5

• Refs – Set of IndexRef objects representing specific document locations where this IndexEntry is6
located. The back cardinality on this association is one to simplify index updates when the7
associated document changes.8

• DescribedEntry – The IndexEntry being described by this IndexUsage.9

• RelatedTerm –The Term that is being isolated by this IndexEntry/IndexUsage pair. Semantically10
speaking the example used by IndexUsage can only apply to one Term. Although there may be11
other related Terms (Synonyms, NarrowerTerms, RelatedTerms), to be effective an Index should12
represent these as additional IndexEntry’s or rely upon the referenced Term’s related Term13
collections.14

19.3.7 IndexRef15

An IndexRef identifies a specific document location where the IndexEntry is mentioned.16

Specializes17

• Surrogate (From Generic Elements)18

Attributes19

• Icon –The Icon from the referenced document’s “reader” application.20

Associations21

• IndexUsage – The IndexUsage this IndexRef is elaborating. The cardinality is one to ease the22
problem of updating Index’s when the Document changes.23

19.3.8 KnowledgeElement24

KnowledgeElement is an abstract type that serves as common super type for the Knowledge Representation25
Model elements. It defines administration information such as Author and Date.26

Specializes27

• ModelElement28

Attributes29

• Author (String) - Name of the person or tool that created the KnowledgeElement.30

• Date (Date) – Date and time when the KnowledgeElement was created or last updated.31

19.3.9 RelatedTerm32

RelatedTerm is an association class relating Terms outside the current Concept. A common use of the33
related term relationship is to establish “See Also” links to other Terms based on the strength of the inter-34
term occurrence. The related instance in the RelatedTerm association class provides the strength or Weight35
factor.36

Example: The Term “Hamburger Patty” within the Concept of “flattened food products”, could have a37
RelatedTerm for “Patty Hearst” within the Concept of “Famous People”.38

Meta Data Coalition Open Information Model

198 Knowledge Management: Knowledge Descriptions

Specializes1

• ModelElement2

Attributes3

• Weight (Long) – Weight factor or strength of the relationship between the Terms.4

19.3.10 Term5

A Term captures words, phrases, etc. and their definition as a formal entry in a Glossary. Terms are very6
context dependent, e.g. Table in the furniture business has a completely different meaning than table in7
database technology. The word “Table” therefore may be used by multiple Terms (Furniture or Database8
Table) to represent different Concepts (“Thing to put things on” or “Relation”).9

A Term references one or more IndexUsage’s and may have a definition in a specific context. The context10
is provided by a related Concept that describes the underlying semantics and makes the Term unique.11

Terms may be grouped into preferred (best representing its Concept) or non-preferred Terms. A non-12
preferred Term is one that is invalid to use from a perspective of its related Glossary and therefore should13
lead to a preferred or valid Term. PreferredTerm’s are the ones that make up a valid vocabulary and all14
non-preferred Terms from the set of synonyms.15

Terms also can be grouped into broader/narrower term hierarchies capturing the fact that a Term may be of16
more generic meaning then another Term.17

Terms may be related to other terms based on occurrences through the Related Term relationship.18

Specializes19

• VocabularyElement20

Attributes21

• Definition (String) – Textual representation of the definition of a Term.22

Associations23

• Synonyms (Term) – Set of synonymous Terms for the preferred Term. For a Term to be a true24
Synonym, it must be contained by the same Concept as the preferred Term.25

• NarrowerTerms (Term) – Set of Terms with a narrower meaning then the Term. These are Terms26
whose related Concepts denote a hierarchical relationship such as County within State within27
Country.28

• RelatedTerms (Term) – Set of Terms that are related to the Term through similar Concepts.29
Example usage would be for “See Also” references.30

• Entries (IndexUsage) – Set of IndexUsages for the given term.31

19.3.11 Thesaurus32

A Thesaurus is a collection of Concepts that form an ontology. Concepts are the entities and relationships33
of a semantic network. Thesauruses may be nested to construct larger entities from existing ones or to34
group Concepts into sets with user meaningful labels.35

Concepts are related to the Terms that identify them. Terms are words or phrases used by humans to refer36
to the Concepts.37

Specializes38

• KnowledgeElement39

Open Information Model Meta Data Coalition

Knowledge Management: Knowledge Descriptions 199

Attributes1

• Language (String) – Language of the Thesaurus. Note that the Language definition, if provided,2
applies hierarchically to all contained Glossary and Index objects that have no local Language3
definition.4

Associations5

• SubThesaurus – Set of Thesaurus objects from which the Thesaurus is constructed.6

• Glossary – Glossary object that contains the Terms that are related to the Concepts of the7
Thesaurus.8

• Concepts – Set of Concept contained in the Thesaurus.9

19.3.12 VocabularyElement10

VocabularyElement is an abstract class that servers as general meta data type that captures common11
properties for Concepts, Terms, and IndexEntry’s.12

Specializes13

• Element (from UML)14

Attributes15

• Example (String) – Textual representation of a sample of the VocabularyElement, i.e. Concept,16
Term, or Word.17

• UsageDescription (String) – Textual description of the usage scenarios for the18
VocabularyElement, i.e. Concept, Term, or Word.19

Meta Data Coalition Open Information Model

200 Knowledge Management: Semantic Definitions

20 Knowledge Management: Semantic1

Definitions2

20.1 Overview3

The Semantic Definitions package accommodates conceptual models of user information. The models are4
conceptual in that they are independent of any storage structure or programming structure (DBMS schema,5
object model, etc.). Instead, they conform to canonical and linguistic expressions of categories of data and6
the interactions among those categories.7

With a semantic or linguistic processor, users can interact with data in databases without learning data8
manipulation languages. Before a linguistic processor can interact with a database, however, an analyst9
must articulate the mappings between the database schema and the semantic constructs familiar to the10
users. The Semantic Definition Elements information model accommodates such schema-to-semantic11
mappings.12

The model derives from the UML model and the Database Schema package.13

20.2 Semantics14

The UML Package class is a general-purpose mechanism for establishing containment hierarchies. The15
Semantic Elements package uses instances of the UML Package class to organize the information in a16
semantic model. Each instance of Model can own several other packages, named “Entities,”17
“Relationships,” and “Dictionary.”18

Each of these packages in turn can owns other UML ModelElements:19

• The “Entities” package owns instances of the Entity class.20

• The “Relationships” package owns instances of the Relationship class.21

• The “Dictionary” package owns instances of the DictionaryEntry class.22

The “Relationships” package can also own a package named “PhrasingGroups.” The “PhrasingGroups”23
package owns instances of the PhrasingGroup class.24

Here is a summary of the package hierarchy:25

SimModel26
Entities package27

Entity128
Entity229
…30

Relationships package31
Relationship132
Relationship233
…34
PhrasingGroups package35

PhrasingGroup136
PhrasingGroup137
…38

Dictionary package39
DictionaryEntry140

DictEntryIrregularity41
DictionaryEntry242

DictEntryIrregularity43

Open Information Model Meta Data Coalition

Knowledge Management: Semantic Definitions 201

The semantic information model honors the way humans (and communities as a whole) speak about the1
information that is important to them. There are a few fundamental principles that apply:2

• There are entities.3
4

An entity is a named category, such as “Author” or “Book.” Entities have instances, such as5
“Mark Twain”, or Huckleberry Finn.” Most (but not all) entities correspond to a database table, a6
database field, or a set of fields.7

8

• There are relationships.9
10

A relationship is a type of association that exists between entities. For example, one relationship11
indicates that authors write books. Relationships also have instances, such as “Mark Twain wrote12
Huckleberry Finn.” There can be several relationships between the same pair of entities. For13
example another relationship can indicate that authors review books.14

15
A relationship can include more than two entities. For example “Authors write Books for16
Publishers.” (The third entity is “Publisher.”)17

18
Some relationships include only one entity. For example, “Authors are important.”19

20
A relationship can include the same entity in several different roles. For example, “Authors21
admire Authors.” An instance of this relationship might be “S.J. Perleman admires Mark Twain.”22

23

• Relationships have phrasings.24
25

A phrasing is a syntactic template that formalizes one way that people talk about a particular26
relationship. For example, one phrasing for the relationship between authors and the books they27
write is “Authors write Books.”28

29
A relationship can have several phrasings (because people can talk about a relationship in several30
different ways.) For example, all the following phrasings apply to the same relationship:31

32
Authors write Books.33
Books are by Authors.34
Books have Authors.35
Authors are the Creators of Books.36

37

Through their syntactic and semantic structure, phrasings allow linguistic processors to interpret38
relationships.39

40
Each phrasing conforms to a particular syntactic and semantic structure. That is, each phrasing is a41
particular type of phrasing: Verb Phrasing, Adjective Phrasing, Trait Phrasing, Subset Phrasing, Command42
Phrasing, Prepositional Phrasing, or Name Phrasing. For example “Authors write Books” is a verb43
phrasing; it is of the form <SubjectEntity> <Verb> <ObjectEntity>. The subject entity is “Author”; the44
object entity is “Book.” A linguistic processor can harvest two important facts from this verb phrasing.45
First, the verb is “write” (rather than “review,” or “dislike,” or “burn.”) Second, the relationship is that46
“Authors write Books” (rather than “Books write Authors”). Because the syntactic structure of the47
phrasing type (verb phrasing) distinguishes between the subject entity and the object entity, a linguistic48
processor can understand which entity acts upon the other.49

50
Every relationship must have at least one phrasing. Without at least one phrasing for a relationship, a51
linguistic processor could not interpret the relationship.52

53

Meta Data Coalition Open Information Model

202 Knowledge Management: Semantic Definitions

Note that the various phrasings of a relationship need not be phrasings of the same type. For example,1
“Authors write Books” is a verb phrasing, whereas “Books are by Authors” is a prepositional phrasing.2

20.3 Class Reference3

This section describes the classes of the Semantic Definitions package in detail.4

AdjectivePhrasing

SignOfRestatementAdjective : SignOfRestatementAdjective
PlusThreshold : String
MinusThreshold : String

CommandPhrasing

NamePhrasing

PrepPhrasing SubsetPhrasing

TraitPhrasing

VerbPhrasing

Relationship

Phrasing

ID : String

1..1

0..*

1..1

+OwnedPhrasings0..*

PhrasingGroup

PresenceOfPhrasingInPhrasingGroup

Mandatory : Boolean

+PresentPhrasing

+PresencesInGroups

+IncludingGroup

+IncludedPhrasings

Dependency
(from Core)

5

Figure 83: Phrasing Groups and Types of Phrasing6

7

Open Information Model Meta Data Coalition

Knowledge Management: Semantic Definitions 203

1

2

3

4

5

6

7

This page is intentionally blank.8

9

10

20
4

K
no

w
le

dg
e

M
an

ag
em

en
t:

S
em

an
tic

D
ef

in
iti

on
s

C
la

ss
ifi

er
(fr

om
C

o
re

)

D
ep

en
de

nc
y

(fr
om

C
o

re
)

D
ep

en
de

nc
y

(fr
om

C
o

re
)

E
nt

ity
O

w
ne

dW
o

rd

W
or

d
:

S
tr

in
g

Is
P

rim
ar

yE
ow

:
B

oo
le

an

N
am

eS
yn

on
ym

P
ai

r

N
am

e
:

S
tr

in
g

S
yn

on
ym

:
S

tr
in

g

W
or

dV
al

ue
P

ai
r

W
or

d
:

S
tr

in
g

V
al

:
S

tr
in

g

W
or

d

W
o

rd
:

S
tr

in
g

U
sa

ge
Ty

pe
:

W
or

dU
sa

ge
Ty

pe
Is

P
rim

ar
y

:
B

oo
le

an

P
re

pP
hr

as
e

Is
P

rim
ar

yP
re

pP
hr

as
e

:
B

oo
le

an

P
re

po
si

tio
n

W
or

d
:

S
tr

in
g

1.
.1

0.
.*

1.
.1+

O
w

ne
dP

re
po

si
tio

ns
0.

.*

Th
in

gT
ha

tC
an

R
ef

er
To

E
nt

iti
es

E
nt

ity
O

w
ne

dT
hi

ng

U
se

O
fE

nt
ity

O
rE

nt
In

R
el

A
sW

or
d

U
sa

ge
Ty

pe
:

S
tr

in
g

0.
.*

1.
.1

+
E

nt
ity

R
ef

er
en

ce
s

+
R

ef
er

rin
gT

hi
ng

E
nt

ity

ID
:

S
tr

in
g

E
nt

ity
Ty

pe
:

E
nt

ity
Ty

pe
H

el
pT

ex
t

:
S

tr
in

g
S

ta
nd

sA
lo

ne
F

la
g

:
B

oo
le

an
M

em
or

iz
eN

am
es

F
la

g
:

B
oo

le
an

0.
.*

0.
.1

+
E

nt
ity

A
sW

or
dR

ef
er

en
ce

s

+
R

ef
er

re
dT

oE
nt

ity
1.

.1 0.
.*

1.
.1

+
O

w
ne

dT
hi

ng
s

0.
.*

E
nt

In
R

el

ID
:

S
tr

in
g

N
on

D
B

Ty
pe

:
N

o
nD

B
Ty

pe
A

lw
ay

s
S

ho
w

F
la

g
:

B
oo

le
an

A
m

ou
nt

F
la

g
:

B
oo

le
an

Q
ua

nt
it

yF
la

g
:

B
oo

le
an 0.

.*

0.
.1

+
E

nt
In

R
el

A
sW

or
dR

ef
er

en
ce

s

+
R

ef
er

re
dT

oE
nt

In
R

el

0.
.*

1.
.1

+
E

nt
In

R
el

+
E

nt
ity

R
el

at
io

ns
hi

p

ID
:S

tr
in

g
M

os
tR

ec
en

tF
la

g
:

B
oo

le
an

H
e

lp
Te

x
t

:
S

tr
in

g

0.
.*

1.
.1

+
E

nt
In

R
el

+
R

sh
ip

P
hr

as
in

g

ID
:

S
tr

in
g

1.
.1

0.
.*1.
.1

+
O

w
ne

dP
hr

as
in

gs
0.

.*

P
h

ra
si

ng
O

w
ne

dT
hi

ng

1.
.1

0.
.*

1.
.1

+
O

w
ne

dT
hi

ng
s

0.
.*

0.
.*

1.
.1

0.
.*

1.
.1

1.
.1 0.
.*

0.
.1

0.
.*

0.
.1

0.
.*

1

F
ig

ur
e

84
:

R
el

at
io

ns
hi

ps
an

d
P

hr
as

in
gs

2

20
5

K
no

w
le

dg
e

M
an

ag
em

en
t:

S
em

an
tic

D
ef

in
iti

on
s

1

D
at

ab
as

eR
sh

ip

R
el

at
io

ns
hi

p
E

nt
ity

E
nt

In
R

el

0.
.*

1.
.1

0.
.*

+
E

nt
ity 1.

.1
0.

.*
1.

.1
0.

.*

+
R

sh
ip

1.
.1

C
om

m
an

d

C
om

m
an

dN
am

e
:

S
tr

in
g

U
s

eO
fE

nt
it

yO
rE

nt
In

R
el

A
sC

m
dA

rg

+
U

se
dE

nt
ity

+
C

om
m

an
dA

rg
D

ep
en

de
nc

ie
s

+
U

se
dE

nt
In

R
el

+
C

om
m

an
dA

rg
D

ep
en

de
nc

ie
s

C
om

m
an

dA
rg

um
en

t

P
os

iti
on

:
Lo

ng
C

m
dA

rg
Ty

pe
:

C
om

m
an

dA
rg

um
en

tT
yp

e

1.
.1 0.

.*

1.
.1

+
C

om
m

a
nd

A
rg

um
en

ts
0.

.*

{o
rd

er
ed

}
+

E
nt

ity
D

ep
en

de
nc

ie
s

+
U

si
ng

C
om

m
an

dA
rg

um
en

t

D
ep

en
de

nc
y

(f
ro

m
C

o
re

)

M
od

el
E

le
m

en
t

(f
ro

m
C

o
re

)

D
ep

en
de

nc
y

(f
ro

m
C

o
re

)

2

F
ig

ur
e

85
:

C
om

m
an

d
A

rg
um

en
ts

3

Meta Data Coalition Open Information Model

206 Knowledge Management: Semantic Definitions

Dependency
(from Core)

Dependency
(from Core)

UseOfRshipForSubjectObjectEntityPair

SubjectObjectEntityPair

1..1

0..*

+UsingSOEPair1..1

+DefaultRshipDependencies0..*

Relat ionship

0..*

1..1

+SOEPairDependencies

0..*

+UsedRelationship

1..1

Entity

0..*

1..1

+PairAsSubject

0..*

+SubjectEntity1..1

0.. *

1..1

+PairAsObject

0.. *

+ObjectEnti ty

1..1

DateResolutionForEntByRship 1..1

0.. *
+DateResolvingRship

1..1

+DateResolvingDependency

0.. *

1..1

0..1

+ResolvedForEntit y1..1

+DateResolvingDependency0..1

1

Figure 86: Default Relationships and Date Resolution2

NameEntity
NameType : NameEntityNameType

UseOfFieldByEntity

CorrespondenceOfTableToTableRef

TableRef
ID : String

+CorrespondenceToDbTable

CorrespondenceOfTableRefToEntity

+CorrespondencesToSemanticEntit ies

Entity

+CorrespondencesToTableRefs

CorrespondenceOfFieldToFieldRef

CorrespondenceOfFieldRefToEntity
SequenceNumber : Long

+FieldCorrespondences

FieldRef

ID : St ring
DataType : FieldDataType
Capita lizationType : St ring
KeyFlag : Boolean
DateType : DateType
Computation : String
NameStructure : NameStructureType
WildCardFlag : Boolean
Units : String
Caption : String
DenormCopyFlag : Boolean

+CorrespondenceToDatabaseColumn

+Ent ityCorrespondences

Dependency
(from Core)

Dependency
(from Core)

3

Figure 87: Entity-To-Database Links4

Open Information Model Meta Data Coalition

Knowledge Management: Semantic Definitions 207

SortingOfEntityByField

AscendingFlag : Boolean
SequenceNumber : Long

DisplayOfEntityByField

SequenceNumber : Long

CorrespondenceOfFieldRefToEntity

SequenceNumber : Long

Dependency
(from Core)

FieldRef

Ent ity

UseOfFieldByEntity
+EntityUseDependencies

+UsedField

+UsingEntity

+UsedField

TableSet

InclusionOfTableSetInSchema

+SemanticTableSet

+InclusionInDbSchema

Package
(from Model Managem ent)

1

Figure 88: More Database Links2

Dependency
(from Core)

CorrespondenceOfTableToTableRef

TableRef
ID : String

+TableRef

UseOfJoinTableRefByRship

+UsedJoinTable

Relat ionship

ID : String
MostRecentFlag : Boolean
HelpText : String

+UsingRship

Entity
ID : String
EntityType : EntityType
HelpText : String
StandsAloneFlag : Boolean
MemorizeNamesFlag : Boolean

EntInRel
ID : String
NonDBType : NonDBType
AlwaysShowFlag : Boolean
AmountFlag : Boolean
QuantityFlag : Boolean

0..*1..1 0..*

+Rship

1..1 0..* 1..10..*

+Entity

1..1

CorrespondenceOfJoinToJoinRef

JoinRoleRef
ID : String

0..1

0..*

0..1

+SequenceOfJoinPathItems

0..*

{ordered}

+JoinDependencies

+JoinRole

3

Figure 89: Semantics and Database Joins4

5

20.3.1 AdjectivePhrasing6

Each instance of this class describes an AdjectivePhrasing. There are three kinds of adjective phrasing:7

• Single-entity adjective phrasings8

• Two-entity adjective phrasings9

Meta Data Coalition Open Information Model

208 Knowledge Management: Semantic Definitions

• Measurement phrasings.1

Each of these is described in a subsequent section.2

Specializes3

• Phrasing4

Attributes5

• SignOfRestatementAdjective (SignOfRestatementAdjective) – Controls tool restatement of6
adjective phrasings containing measurement words (PlusWords or MinusWords). That is, when a7
linguistic processor paraphrases a user-entered sentence involving a measurement phrasing, does8
the processor rephrase using the primary PlusWord or the primary MinusWord?9

• PlusThreshold (String) – The minimum value that a linguistic tool considers a high value for a10
measurement adjective (e.g., what is the minimum age at which a person is considered old?).11

• MinusThreshold (String) – The maximum value that a linguistic tool considers a low value for a12
measurement adjective (e.g., what is the maximum age at which a person is considered young?).13

20.3.1.1 Single-entity adjective phrasings14

Some adjective phrasings are of the form:15

X are Y.16

For example, Customers are Important.17

In such a phrasing, there is an instance of UseOfEntOrEntInRelAsWord (with UsageType = subject)18
referring to the EntInRel characterizing the Customer entity’s participation in the relationship. “Important”19
is stored as an instance of Word in the phrasing’s OwnedThings collection; the string is “Important” and the20
UsageType is WordUsageType_Adjective.21

Notice that in this relationship, there is only one EntInRel; only one entity participates in the relationship.22

20.3.1.2 Two-entity adjective phrasings23

Some adjective phrasings are of the form:24

The values of Y yield adjectives describing the instances of X.25

For example, BranchTypes describe Branches.26

In such a phrasing, BranchType is an entity, and there is an EntInRel describing the participation of it in the27
relationship. This is different from a single-entity adjective phrasing, because here there are two EntInRels.28
One EntInRel corresponds to X’s participation as the described thing, and the other corresponds to Z’s29
participation as entity containing the describing adjectives.30

Note that the values of Y might not be adjectives – they could be codes that yield adjectives when applied31
to some lookup table. For example, the possible values of Y could be {1,2,3} corresponding to the32
adjectives {Good, Fair, Poor} respectively. For information about expressing (code,adjective) pairs, see33
the section about the WordValuePair class.34

20.3.1.3 Measurement phrasings35

Some adjective phrasings are of the form:36

Ys indicate how Z X are.37

…where Y is an entity corresponding to a numeric field, Z is an adjective, and X is an entity to38
which the adjective can apply.39

For example, “Ages indicate how old customers are.”40

Open Information Model Meta Data Coalition

Knowledge Management: Semantic Definitions 209

There can be several adjectives associated with Y. For example, two such adjectives are “old” and1
“elderly.”2

The measurement adjectives can correspond to opposite ends of the spectrum of the numeric attribute.3
(e.g., “old” and “young”.) Thus, these measurement adjectives can be characterized as PlusWords and4
MinusWords. PlusWords are the adjectives associated with high values of the measurement. MinusWords5
are associated with low values. There is no semantic requirement that the plus words be favorable and the6
minus words be unfavorable. For example, if the phrasing is “Scores indicate how good golfers are,” the7
PlusWords could be “bad” and “poor.” Likewise, the MinusWords could be “good,” “skillful,” and8
“talented.”9

To indicate an Adjective, the model includes an instance of Word in the phrasing’s OwnedThings10
collection. The value of the WordUsageType is WordUsageType_PlusWord or11
WordUsageType_MinusWord.12

Sample Data13

Consider the adjective phrasing “Ages indicate how old customers are.” This phrasing belongs to a14
relationship (called, say, “AgesOfCustomers”) with two EntInRels:15

• One EntInRel describes the participation of the Customer entity as the characterized thing.16

• One EntInRel describes the participation of the Age entity as the characterizing thing.17

What’s more, the relationship has an adjective phrasing:18

• PhrasingName: AgesIndicateHowOldCustomersAre19
SignOfRestatementAdjective: SignOfRestatementAdjective_Plus20
PlusThreshold: 7021
MinusThreshold: 1022

The phrasing can have several Words in its OwnedThings collection:23

• PlusWord: “Old” (IsPrimary = TRUE)24

• PlusWord: “Aged” (IsPrimary = FALSE)25

• PlusWord: “Elderly” (IsPrimary = FALSE)26

• PlusWord: “Young” (IsPrimary = TRUE)27

• PlusWord: “Youthful” (IsPrimary = FALSE)28

The phrasing also has two instances of UseOfEntityOrEntInRelAsWord:29

• UsageType: Subject30
ReferredToEntInRel: Customer(AsCharacterizedThing)31

• UsageType: ObjectOfMeasurement32
ReferredToEntInRel: Age(AsCharacterizingThing)33

20.3.2 Command34

Each instance of this class describes a command – an imperative statement. Typical commands are “Run35
the Quarterly Financial Report” or “Buy n of the best-selling book.”36

Specializes37

• Relationship38

Attributes39

• CommandName (String) – The name of the command.40

Meta Data Coalition Open Information Model

210 Knowledge Management: Semantic Definitions

Associations1

• CommandArguments (CommandArgument) – The set of arguments of the command. A command2
can have zero or more command arguments.3

Note also that Command is a specialization of Relationship.4

Constraint: Within a command’s OwnedPhrasings collection, every phrasing must be a CommandPhrasing5
(rather than a VerbPhrasing, TraitPhrasing, etc.).6

Sample Data7

A command is kind of relationship. Thus, it can have all the properties and members of relationships, such8
a phrasings and EntInRels. For example, the instance of Command corresponding to “Send 5000 light9
bulbs to the Chicago office” would have two instances of EntInRel:10

• One instance of EntInRel describes the participation of the InventoryItem entity in the relationship11
as the to-be-sent thing. (In the database, “light bulb” is an instance of the InventoryItem entity.)12

• One instance of EntInRel describes the participation of the Office entity in the relationship as the13
send-to destination. (In the database, “Chicago” is an instance of the Office entity.)14

The command would also have a phrasing, a command phrasing.15

20.3.3 CommandArgument16

Each instance of this class describes an argument of a particular command. In the command “Buy n copies17
of the latest book written by author” there are two instances of CommandArgument. One instance18
corresponds to n – the number of copies to be bought. The other corresponds to author – the author whose19
most recent book is to be bought.20

Specializes21

• ModelElement (from UML)22

Attributes23

• Position (Long) – The ordinal position of the command argument.24

• CmdArgType (CommandArgumentType) – One of {Entity, Amount, Quantity}.25

Associations26

• EntityDependencies (UseOfEntityOrEntInRelAsCmdArg) – A set containing one instance of27
UseOfEntityOrEntInRelAsCmdArg.28

• Command (Command) – A set containing one instance of Command – The command to which29
this CommandArgument contributes.30

20.3.4 CommandArgumentType31

An enumeration whose values indicate the type of a command argument.32

Values33

• COMMANDARGUMENTTYPE_ENTITY = 134

• COMMANDARGUMENTTYPE_AMOUNT = 235

• COMMANDARGUMENTTYPE_QUANTITY = 336

20.3.5 CommandPhrasing37

Each instance of this class describes a phrasing that consists of:38

Open Information Model Meta Data Coalition

Knowledge Management: Semantic Definitions 211

• An imperative verb.1

• Zero, one, or two nouns.2

• Zero or more PrepPhrases.3

Specializes4

• Phrasing5

Examples6

• Zero nouns: “Reboot.”7

• One noun: “Send notifications.”8

• Two nouns: “Send customers products.”9

• Two nouns and one PrepPhrase: “Send customers products via shippers.”10

Sample Data11

Consider the command phrasing “Send customers products via shippers.” This phrasing belongs to a12
Command with three EntInRels:13

• One EntInRel describes the participation of the Product entity as the to-be-sent thing.14

• One EntInRel describes the participation of the Customer entity as the receiving thing.15

• One EntInRel describes the participation of the Shipper entity as the object of the preposition16
“via.”17

Within its OwnedThings collection, the phrasing can have at least one instance of the Word class and one18
instance of the PrepPhrase class In this example, the OwnedThings collection contains these instances of19
the Word class:20

• Type = Verb, Word = “Send,” IsPrimary = TRUE21

• Type = Verb, Word = “Transmit,” IsPrimary = FALSE22

• Type = Verb, Word = “Ship,” IsPrimary = FALSE23

The PrepPhrase corresponds to the “via shippers” part of the sentence. The PrepPhrase can have within its24
OwnedPrepositions role at least one Preposition. In this example, the OwnedThings collection contains25
these instances of the Preposition class:26

• Word = “via”27

• Word = “through”28

The phrasing has two instances of UseOfEntityOrEntInRelAsWord:29

• UsageType: FirstObject30
ReferredToEntInRel: Customer(AsReceivingThing)31

• UsageType: SecondObject32
ReferredToEntInRel: Product(AsToBeSentThing)33

In addition, the PrepPhrase (corresponding to “via shippers”) has one UseOfEntityOrEntInRelAsWord:34

• UsageType: FirstObject35
ReferredToEntInRel: Shipper(AsObjectOfPrepositionVia)36

20.3.6 CorrespondenceOfFieldRefToEntity37

Each instance of this class indicates that a particular FieldRef corresponds to a particular entity.38

Meta Data Coalition Open Information Model

212 Knowledge Management: Semantic Definitions

Specializes1

• UseOfFieldByEntity2

Attributes3

• SequenceNumber (Long) – Establishes the ordering of FieldRefs within an entity.4

20.3.7 CorrespondenceOfFieldToFieldRef5

Each instance of this class indicates that a particular FieldRef corresponds to a particular Column. Note6
that this dependency crosses a package boundary, from the Semantic Elements package to the Schema7
Elements package.8

Specializes9

• Dependency (from UML)10

20.3.8 CorrespondenceOfJoinToJoinRef11

Each instance of this class indicates that a particular JoinRoleRef corresponds to a particular Join. Note12
that this dependency crosses a package boundary, from the Semantic Elements package to the Schema13
Elements package.14

Specializes15

• Dependency (from UML)16

20.3.9 CorrespondenceOfTableRefToEntity17

Each instance of this class indicates that a particular TableRef corresponds to a particular entity.18

Specializes19

• Dependency (from UML)20

20.3.10 CorrespondenceOfTableToTableRef21

Each instance of this class indicates that a particular TableRef corresponds to a particular LogicalTable.22
Note that this dependency crosses a package boundary, from the Semantic Elements package to the Schema23
Elements package.24

20.3.11 DatabaseRship25

Each instance of this class describes a relationship that uses a join table (see UseOFJoinTableRefByRship)26
to link the related entities.27

Specializes28

• Relationship29

Associations30

• JoinTableRefDependencies (UseOFJoinTableRefByRship) – A set of instances of the31
UseOFJoinTableRefByRship class.32

20.3.12 DateResolutionForEntByRship33

Each instance of this class indicates that a particular entity uses a particular relationship situate its instances34
in time. That is, each instance indicates that a linguistic tool can use a particular relationship to resolve35
unexpressed (assumed) dates in user expressions.36

Open Information Model Meta Data Coalition

Knowledge Management: Semantic Definitions 213

Specializes1

• Dependency (from UML)2

Example3

Suppose that there are two relationships involving the entity Author:4

• Authors write books on dates.5

• Authors are born on dates.6

If a linguistic processor encounters the question “Who are the 1998 authors?” it must determine whether7
the question means the authors born in 1998 or the authors who have published books in 1998. If the8
semantic model includes an instance of DateResolutionForEntByRship where the resolved-for entity is9
Author, the processor knows to use the date from the resolving relationship.10

20.3.13 DateType11

An enumeration whose values indicate the type of a date.12

Values13

• DATETYPE_DATE = 114

• DATETYPE_TIME = 215

• DATETYPE_DATETIME = 316

• DATETYPE_INTYEAR = 417

• DATETYPE_INTMONTH = 518

• DATETYPE_MONTHNAME = 619

• DATETYPE_MMM = 720

• DATETYPE_DAY = 821

• DATETYPE_NONE = 022

20.3.14 DictEntryIrregularity23

Each instance of this class describes an irregular form of a dictionary entry. Some verbs have unusual past-24
tense forms – forms that do not conform to standard grammatical rules. For example, the past tense of sell25
is sold (rather than selled). Similarly, some nouns have unusual plural forms. For example, the plural of26
alumnus is alumni (rather than alumnuses).27

Specializes28

• Feature (from UML)29

Attributes30

• Type (IrregularType) – One of {IrregularType_PastTense, IrregularType_Plural}.31

• Form (String) – The plural form of the noun or the past-tense form of the verb.32

20.3.15 DictionaryEntry33

Each instance of this class describes a word.34

Specializes35

• Classifier (from UML)36

Meta Data Coalition Open Information Model

214 Knowledge Management: Semantic Definitions

Attributes1

• ID (String) – An arbitrary identifier.2

• PartOfSpeech (PartOfSpeech) – One of the following:3

• PartOfSpeech_Pnoun (proper noun)4

• PartOfSpeech_Noun5

• PartOfSpeech_Verb6

• PartOfSpeech_Preposition7

• PartOfSpeech_Adjective8

• PartOfSpeech_Adverb9

• PartOfSpeech_Pronoun10

Associations11

• Irregularities (DictEntryIrregularity) – A set of instances of DictEntryIrregularity.12

20.3.16 DisplayOfEntityByField13

Each instance of this class indicates that an entity depends on a field; specifically that when a tool displays14
instances of the entity, values of this field are included in the display.15

Specializes16

• UseOfFieldByEntity17

Attributes18

• SequenceNumber (Long) – Sequences the display fields of an entity.19

20.3.17 EntInRel20

Each instance of this class describes a particular entity’s participation in a particular relationship.21

Specializes22

• Dependency (from UML)23

Attributes24

• ID (String) – An arbitrary identifier of the EntInRel.25

• NonDBType (enumerated data type) – A coarse characterization of the data type of the entity. The26
enumeration is NonDBType, with domain of values {NonDBType_Numeric, NonDBType_Text,27
NonDBType_Date}.28

• AlwaysShowFlag (Boolean) – TRUE indicates that each time the relationship is used to answer a29
question, the entity is considered to be part of the query result.30

• AmountFlag (Boolean) – TRUE only if this EntInRel can have an amount applied to it.31

• QuantityFlag (Boolean) – TRUE only if this EntInRel can have a quantity applied to it.32

Associations33

• SequenceOfJoinPathItems – This is the JoinPath from the Relationship’s JoinTable to the34
Database object that corresponds to the entity (of this EntInRel).35

Open Information Model Meta Data Coalition

Knowledge Management: Semantic Definitions 215

Examples1

The AmountFlag and QuantityFlag indicate whether an entity can have a quantity or amount associated2
with it when a user-entered sentence uses this relationship. For example, consider an instance of the3
CommandPhrasing class: “Send customers products.” The command associated with this phrasing has4
two EntInRels:5

• An EntInRel (corresponding to the participation of the Customer entity in the relationship). This6
EntInRel has QuantityFlag = FALSE and AmountFlag = FALSE.7

• An EntInRel (corresponding to the participation of the Product entity in the relationship). This8
EntInRel as QuantityFlag = TRUE and AmountFlag = FALSE.9

The following user-entered sentence conforms to this relationship. “Send Hank’s Hotel 1000 light bulbs.”10
Light bulb is an instance of the Product entity and Hank’s Hotel is an instance of the Customer entity.11
Because the second EntInRel has the QuantityFlag = TRUE, the number “1000” is appropriate.12

20.3.18 Entity13

Each instance of this class describes a type of thing. Note that an entity can correspond to any of the14
following:15

• A single database column16

• An ordered set of database columns17

• A single database table18

What’s more, an entity might be freestanding – corresponding to no database construct whatsoever.19

Specializes20

• Classifier (from UML)21

Attributes22

• ID (String) – An arbitrary identifier.23

• EntityType (EntityType) – Person, Geographic, DateOrTime, or None.24

• HelpText (Text) – Explanatory text for the Semantic entity.25

• StandsAloneFlag (Boolean) – TRUE indicates that a linguistic process can display a field entity26
independently, without the context of the attendant table entity. For many field entities, it makes27
no sense to display them alone. For example, “Show the ages” should not simply return a column28
of numbers, since “age” is inherently dependent on what it is the age of. By default, field entities29
are shown in the context of the table entity they are most directly related to (if any). For example,30
“Show the ages” would be interpreted as “Show the people and their ages.” Certain field entities,31
however, can be displayed alone. This flag marks such entities, instructing the linguistic processor32
to not automatically include the major entity (and associated relationship).33

• MemorizeNamesFlag (Boolean) – TRUE only if the linguistic processor should load this entity’s34
values from the database into memory whenever the model is loaded.35

Associations36

• OwnedThings37

20.3.19 EntityOwnedThing38

Each instance of this class describes either an EntityOwnedWord or NameSynonymPair.39

Specializes40

• ModelElement (from UML)41

Meta Data Coalition Open Information Model

216 Knowledge Management: Semantic Definitions

20.3.20 EntityOwnedWord1

Each instance of this class describes a word that can be used to refer to an entity.2

Specializes3

• EntityOwnedThing4

Attributes5

• Word (String) – The text of the word that can refer to the entity.6

• IsPrimaryEow (Boolean) – TRUE only if this word is the preferred word for the entity.7
(Linguistic processors typically use the preferred word when paraphrasing user-entered sentences.)8
Each entity will have at most one preferred word.9

20.3.21 EntityType10

An enumeration whose values indicate the type of an entity.11

Values12

• ENTITYTYPE_PERSON = 113

• ENTITYTYPE_GEOGRAPHIC = 214

• ENTITYTYPE_DATEORTIME = 315

• ENTITYTYPE_NONE = 016

20.3.22 FieldDataType17

An enumeration whose values indicate the type of a field.18

Values19

• FIELDDATATYPE_INTEGER = 120

• FIELDDATATYPE_FLOAT = 221

• FIELDDATATYPE_DATE = 322

• FIELDDATATYPE_STRING = 423

• FIELDDATATYPE_BIT = 524

• FIELDDATATYPE_TEXT = 625

• FIELDDATATYPE_BINARY = 726

• FIELDDATATYPE_OTHER = 027

20.3.23 FieldRef28

Each instance of this class is a simplified, abbreviated description of a database column; the description is29
limited to those things of interest to a semantic or linguistic processor. That is, a FieldRef is a not a30
complete description of a database column. For a complete description of any column corresponding to the31
FieldRef, see CorrespondenceOfFieldToFieldRef.32

Specializes33

• ModelElement (from UML)34

Attributes35

• ID (String) – An arbitrary identifier.36

Open Information Model Meta Data Coalition

Knowledge Management: Semantic Definitions 217

• DataType (FieldDataType) – Integer, Float, Date, String, Bit, Text, Binary, or Other.1

• CapitalizationType (String) – Upper, Lower, or FirstLetter2

• KeyFlag (Boolean) – TRUE only if the field contributes to the table’s key.3

• Computation (String) – For computed fields, Computation contains the SQL computation.4

• NameStructure (NameStructure) – FirstName, LastName, FirstAndMiddleAndLast,5
LastAndFirstAndMiddle, or Middle.6

• WildCardFlag (Boolean) – TRUE only if searches against this field should be automatically7
wildcarded. For example, “table.field = 'ABC'” becomes “table.field like '*ABC*'.”8

• Units (String) – The unit of measure for a (generally numeric) field. Allows questions referring to9
units of measure (e.g., “How many feet tall is Abraham?”) including known conversions (e.g.,10
“How many inches tall is Abraham?”)11

• Caption (String) – The caption to put on the field in the displayed result set. DenormCopyFlag is12
set to TRUE only if this FieldRef refers to a denormalized copy of a field.13

20.3.24 InclusionOfTableSetInSchema14

Each instance indicates that a TableSet exists within a particular Schema object.15

Specializes16

• Dependency (from UML)17

20.3.25 InheritanceOfEntityFromEntity18

Each instance indicates that one entity inherits from another.19

Specializes20

• Dependency (from UML)21

20.3.26 IrregularType22

An enumeration whose values indicate the type (part of speech) of an instance of the DictEntryIrregularity23
class.24

Values25

• IRREGULARTYPE_PASTTENSE = 126

• IRREGULARTYPE_PLURAL = 227

20.3.27 JoinRoleRef28

Each instance indicates that a particular EntInRel uses a particular database join as part of its29
SequenceOfJoinPathItems.30

Specializes31

• ModelElement (from UML)32

Attributes33

• ID (String) – An arbitrary identifier.34

Meta Data Coalition Open Information Model

218 Knowledge Management: Semantic Definitions

Associations1

• JoinDependencies (CorrespondenceOfJoinToJoinRef, derived from2
UML:ModelElement.clientDependency) – a set of instances of the3
CorrespondenceOfJoinToJoinRef class.4

20.3.28 Model5

Each instance of this class describes an individual semantic model.6

Specializes7

• Package (from UML)8

20.3.29 NameEntity9

Each instance of this class describes a naming entity –an entity that contains names of things.10

Specializes11

• Entity12

Attributes13

• NameType (NameEntityNameType) – One of the following:14

• EntityType_ProperNoun15

• EntityType_CommonNoun16

• EntityType_ClassifierNoun17

• EntityType_ModelNoun18

• EntityType_UniqueID19

• EntityType_None20

20.3.30 NameEntityNameType21

An enumeration whose values indicate the type of names contained in an instance of the NameEntity class.22

Values23

• ENTITYTYPE_PROPERNOUN = 124

• ENTITYTYPE_COMMONNOUN = 225

• ENTITYTYPE_CLASSIFIERNOUN = 326

• ENTITYTYPE_MODELNOUN = 427

• ENTITYTYPE_UNIQUEID = 528

• ENTITYTYPE_NONE = 029

20.3.31 NamePhrasing30

Each instance of this class describes a NamePhrasing – a phrasing that describes how things are named,31
such as “Titles are the Names of Books.”32

A NamePhrasing consists of the following:33

• A subject (e.g., Books) – Stored as an instance of UseOfEntityOrEntInRelAsWord with34
UsageType = “Subject.”35

Open Information Model Meta Data Coalition

Knowledge Management: Semantic Definitions 219

• An object (e.g., Titles) – Stored as an instance of UseOfEntityOrEntInRelAsWord with1
UsageType = “FirstObject.”2

Specializes3

• Phrasing4

20.3.32 NameStructureType5

An enumeration whose values indicate the structure of names.6

Values7

• NAMESTRUCTURETYPE_FIRSTNAME = 18

• NAMESTRUCTURETYPE_LASTNAME = 29

• NAMESTRUCTURETYPE_FIRSTANDMIDDLEANDLAST = 310

• NAMESTRUCTURETYPE_LASTANDFIRSTANDMIDDLE = 411

• NAMESTRUCTURETYPE_MIDDLE = 512

20.3.33 NameSynonymPair13

Each instance of this class describes a pair of equivalent entity values. For example, the author surname14
“Twain” is paired with the author surname “Clemens.”15

Note that name-synonym pairs indicate synonymy between entity VALUES (Twain = Clemens) rather than16
between entity NAMES (e.g., Author = Writer).17

Specializes18

• EntityOwnedThing19

Attributes20

• InstanceName (String, derived from UML:ModelElement.name) – The Name part of a Name-21
Synonym pair.22

• Synonym (String) – The Synonym part of a Name-Synonym pair.23

20.3.34 NonDBType24

An enumeration whose values provide a generic, coarse data type for a field.25

Values26

• NONDBTYPE_NUMERIC = 127

• NONDBTYPE_TEXT = 228

• NONDBTYPE_DATE = 329

20.3.35 PartOfSpeech30

An enumeration whose values indicate the part of speech of a word.31

Values32

• PARTOFSPEECH_PNOUN = 1 (proper noun)33

• PARTOFSPEECH_NOUN = 234

• PARTOFSPEECH_VERB = 335

Meta Data Coalition Open Information Model

220 Knowledge Management: Semantic Definitions

• PARTOFSPEECH_PREPOSITION = 41

• PARTOFSPEECH_ADJECTIVE = 52

• PARTOFSPEECH_ADVERB = 63

• PARTOFSPEECH_PRONOUN = 74

20.3.36 Phrasing5

Each instance of this class describes an AdjectivePhrasing, CommandPhrasing, NamePhrasing,6
PrepPhrasing, SubsetPhrasing, TraitPhrasing, or VerbPhrasing. Each type of phrasing is described in7
another section of this chapter.8

Specializes9

• ThingThatCanReferToEntities10

Attributes11

• ID (String) – An arbitrary identifier.12

Associations13

• OwnedThings (PhrasingOwnedThing)14

20.3.37 PhrasingGroup15

Each instance of this class describes a group of phrasings that can be used together as a unit.16

Sometimes, multiple phrasings are required to work together to describe a single relationship. For17
example, consider a database that contains people and their hair color. One phrasing which describes this18
relationship is the trait phrasing “people have hair color.” However, this will not be sufficient to answer19
questions such as “What is the color of John’s hair?” For this, we need the phrasings “people have hair”20
and “hair has color.” (In this case, “hair” is an entity that is not represented by a database object). These21
two phrasings collectively describe the relationship between people and hair color. These two phrasings22
need to be grouped so that a linguistic processor knows to treat them as a logical unit.23

Specializes24

• ModelElement (from UML)25

20.3.38 PhrasingOwnedThing26

Each instance of this class describes a WordValuePair, a Word, or a PrepPhrase. Each of these classes is27
described elsewhere within this chapter.28

Specializes29

• ModelElement (from UML)30

20.3.39 Preposition31

Each instance of this class describes a preposition that is owned by a PrepPhrase. Note that if two different32
PrepPhrases use the same preposition, there will be two different instances of PrepPhrase.33

Specializes34

• ModelElement (from UML)35

Attributes36

• Word (String) – the text of the word that is the preposition.37

Open Information Model Meta Data Coalition

Knowledge Management: Semantic Definitions 221

20.3.40 PrepPhrase1

Each instance of this class describes a prepositional phrase that is attached to a phrasing.2

(Note: Do not confuse PrepPhrase with PrepPhrasing, described in the next section. Also note that some3
prepositional phrases are better stored in another way – not as instances of the PrepPhrase class. For more4
information, see ThingThatCanReferToEntities: Relationship.)5

Grammatically, a prepositional phrase is a preposition (in, out, above, below, of, from, to, through, within,6
etc.) followed by a noun.7

Within the Semantic Elements package, each PrepPhrase has these parts:8

• The OwnedPrepositions role. A single PrepPhrase can have multiple prepositions because in9
some situations, certain prepositions are interchangeable. (For example, “…in years” and10
“…during years” are equivalent.) Note that two prepositions are not interchangeable in all11
situations. (For example, “…in cities” and “…during cities” are not equivalent.)12

• A UseOfEntityOrEntInRelAsWord. (PrepPhrase is a specialization of13
ThingThatCanReferToEntities.) The UseOfEntityOrEntInRelAsWord indicates which EntInRel14
serves as the object of the preposition.15

Specializes16

• Phrasing17

Attributes18

• IsPrimaryPrepPhrase (Boolean) – TRUE only if the prepositional phrase is the primary19
prepositional phrase of its owning phrasing.20

20.3.41 PrepPhrasing21

(Note: Do not confuse PrepPhrasing with PrepPhrase, described in the previous section.)22

Each instance of this class describes a Prepositional Phrasing – a phrasing that relates a subject to a23
prepositional phrase, such as “People are on medications.”24

A PrepPhrasing consists of the following:25

• A subject (e.g., People) – Stored as an instance of UseOfEntityOrEntInRelAsWord with26
UsageType = “Subject.”27

• One or more prepositions (e.g., on) – Each stored as an instance of Word with UsageType –28
WordUsageType = WordUsageType_Preposition. Exactly one of the prepositions will have the29
IsPrimary flag set to TRUE.30

• An object of the preposition (e.g., medications) – Stored as an instance of31
UseOfentityOrEntInRelAsWord with UsageType = “FirstObject.”32

• Zero or more prepositional phrases (e.g., “People are on medications for conditions”) – Each33
stored as an instance of PrepPhrase in the PrepPhrasing’s OwnedThings collection.34

Specializes35

• ThingThatCanReferToEntities36

• PhrasingOwnedThing37

Associations38

• OwnedPrepositions (Preposition)39

Meta Data Coalition Open Information Model

222 Knowledge Management: Semantic Definitions

20.3.42 PresenceOfPhrasingInPhrasingGroup1

Each instance of this class indicates that a particular phrasing group includes a particular phrasing.2

Specializes3

• Dependency (from UML)4

Attributes5

• Mandatory (Boolean) – TRUE only if the phrasing is a required part of the phrasing group.6
It might be senseless to ask about some phrasings in a group without also including other required7
phrasings. For example, you may wish to ask the question “List the colors of the parts” to always8
be interpreted as “List the colors of the parts that suppliers supply,” so the user clearly understands9
that colors of parts are known only in the context of suppliers supplying them.10

11
If the phrasing group includes the verb phrasing “suppliers supply parts” and the adjective12
phrasing “parts have colors,” mark the verb phrasing as mandatory and the adjective phrasing as13
not mandatory.14

20.3.43 Relationship15

Each instance of this class describes a semantic relationship.16

Specializes17

• ThingThatCanReferToEntities18

Attributes19

• ID (String) – An arbitrary identifier.20

• MostRecentFlag (Boolean) – TRUE only if the linguistic processor should show only the most21
recent data when this relationship is used. For example, if the user asks the question “Show the22
blood pressure of patient 123,” the linguistic processor would interpret the question as “Show the23
most recent blood pressure of patient 123.”24

• HelpText (String) – Explanatory text about the Relationship.25

Associations26

• OwnedPhrasings (Phrasing)27

Examples28

One phrasing describing a relationship is “Authors write Books.” This phrasing is a verb phrasing. That29
means it is of the form <SUBJECT> <VERB> <OBJECT>. (Some verb phrasings are of the form30
<SUBJECT> <VERB> <OBJECT><OBJECT>, like “Professors give students grades.”)31

The verb phrasing has in its OwnedThings collection an instance of Word, where:32

• Word.Word = "write"33

• Word.UsageType = VERB34

The verb phrasing also has two instances of UseOfEntityOrEntInRelAsWord (which is a Dependency).35
The first instance connects the verb phrasing to the particular instance of EntInRel describing the36
AUTHORS’s participation in the relationship. It has this property value:37

• UseOfEntityOrEntInRelAsWord.UsageType = SUBJECT38

The second instance of UseOfEntityOrEntInRelAsWord connects the verb phrasing to the particular39
instance of EntInRel describing the BOOK’s participation in the relationship. It has this property value:40

• UseOfEntityOrEntInRelAsWord.UsageType = OBJECT41

Open Information Model Meta Data Coalition

Knowledge Management: Semantic Definitions 223

20.3.44 SignOfRestatementAdjective1

An enumeration whose values indicate whether an adjective of measurement uses the primary PlusWord or2
the primary MinusWord in ordinary discourse.3

Values4

• SIGNOFRESTATEMENTADJECTIVE_PLUS = 05

• SIGNOFRESTATEMENTADJECTIVE_MINUS = 16

20.3.45 SortingOfEntityByField7

Each instance of this class indicates the contribution of a field to an entity’s sort order (whenever instances8
of that entity are displayed).9

Specializes10

• UseOfFieldByEntity11

Attributes12

• AscendingFlag (Boolean) – TRUE only if the field’s values are arranged in ascending order in the13
entity’s display.14

• SequenceNumber (Long) – Indicates the significance of this field among all of this entity’s sorting15
fields: 1 = most significant; n = least significant..16

20.3.46 SubjectObjectEntityPair17

Each instance of this class describes a pair of entities for which some default relationship is declared.18

In a semantic model two entities (e.g., Author and Book) could have several relationships between them19
(e.g., Authors-Write-Books and Authors-Review-Books and Authors-Own-Books). The designer of the20
semantic model can declare one of these relationships to be the default relationship for connecting instances21
of the two entities to each other. In this example, the designer would probably declare Author-Write-Books22
to be the default relationship. This means that if the query is “Show me the books and their authors,” the23
linguistic processor will assume that user means “... the books and the authors who wrote them,” rather than24
“...the books and the authors who reviewed them.”25

Specializes26

• Dependency (from UML)27

Associations28

• DefaultRshipDependencies (UseOfRshipForSubjectObjectEntityPair) – An instance of the class29
UseOfRshipForSubjectObjectEntityPair.30

Note31

Note that (subject entity, object entity) is an ordered pair. This makes sense, and an example will show32
why. Consider the two phrases:33

• Authors and their books – The designer of the semantic model might want this phrase to be34
interpreted as “the authors and the books they own.”35

• Books and their authors – The designer of the semantic model might want this phrase to be36
interpreted as “the books and the authors who wrote them.”37

In other words, the default relationship for (Author, Book) is not the same as the default relationship for38
(Book, Author).39

Meta Data Coalition Open Information Model

224 Knowledge Management: Semantic Definitions

20.3.47 SubsetPhrasing1

Each instance of this class describes a subset phrasing.2

Specializes3

• Phrasing4

Note5

There are two kinds of subset phrasing:6

• Some X are Y.7
8

For example, Some Authors are Poets.9
10

In such a phrasing, there is an instance of UseOfEntOrEntInRelAsWord (with UsageType =11
subject) referring to the EntInRel characterizing the Author’s participation in the relationship.12
Poet is stored as an instance of Word in the phrasing’s OwnedThings collection; the string is Poet13
(singular; not “Poets”) and the UsageType is “SubsetWord.”14

15
Notice that in this relationship, there is only one EntInRel – only one entity participates in the16
relationship.17

18

• Each X is characterized by the value of Z.19
20

For example, each author is characterized by the value of genre.21
22

In such a phrasing, genre is an entity, and there is an EntInRel describing the participation of the23
genre entity in the relationship. This is different from the other kind of subset phrasing, because24
in this kind, there are two EntInRels. One EntInRel corresponds to X’s participation as the25
superset, and the other corresponds to Z’s participation as the classifying axis.26

20.3.48 TableRef27

Each instance of this class is a simplified, abbreviated description of a database table; the description is28
limited to those things of interest to a semantic or linguistic processor. That is, a TableRef is a not a29
complete description of a database table. For a complete description of any table corresponding to the30
TableRef, see CorrespondenceOfTableToTableRef.31

Specializes32

• ModelElement (from UML)33

Attributes34

• ID (String) – An arbitrary identifier.35

20.3.49 TableSet36

Each instance of this class is a set of database tables all existing within the same database catalog. This is37
simply a grouping mechanism for convenience to the designers of Semantic models. A TableSet does not38
have to include all the tables defined in a catalog. Within a semantic model, there can be several TableSets39
referring to tables from the same catalog. (Within any semantic model, however, each table can appear in40
at most one TableSet.)41

Specializes42

• Package (from UML)43

Open Information Model Meta Data Coalition

Knowledge Management: Semantic Definitions 225

20.3.50 ThingThatCanReferToEntities1

Each instance of this class describes a Phrasing, PrepPhrase, or Relationship.2

Specializes3

• ModelElement (from UML)4

20.3.50.1 ThingThatCanReferToEntities: Phrasing5

A Phrasing is a thing that can refer to entities because a phrasing can use an entity – or more typically, an6
EntInRel – as a noun. For example, one possible form for a verb phrasing is <SUBJECT> <VERB>7
<OBJECT> (e.g., “Customers buy Products.”).8

The <VERB> (e.g., “buy”) is stored as an instance of Word in the VerbPhrasing’s OwnedThings collection.9

The <SUBJECT> (Customers) is stored as an instance of UseOfEntOrEntInRelAsWord (with UsageType =10
“Subject”), in the VerbPhrasing’s EntityReferences collection. The VerbPhrasing has an EntityReferences11
collection because it specializes Phrasing, which specializes ThingThatCanReferToEntities.12

Similarly, the <OBJECT> (e.g., Products) is stored as an instance of UseOfEntOrEntInRelAsWord (with13
UsageType = “FirstObject”).14

20.3.50.2 ThingThatCanReferToEntities: PrepPhrase15

A PrepPhrase is a thing that can refer to entities because a prepositional phrase can use an entity – or more16
typically, an EntInRel – as a noun. A prepositional phrase is of the form <PREPOSITION> <NOUN>.17
For example a typical prepositional phrase is “through shippers,” as in “Branches send Customers Products18
through Shippers.”19

The <PREPOSITION> (in this example, “through”) is stored as an instance of Preposition in the20
PrepPhrase’s OwnedPrepositions collection.21

Similarly, the <NOUN> (in this example, “Shippers”) is stored as an instance of22
UseOfEntOrEntInRelAsWord (with UsageType = “FirstObject”)23

20.3.50.3 ThingThatCanReferToEntities: Relationship24

In some cases, what is grammatically a prepositional phrase is stored differently (that is, it is not stored as25
an instance of PrepPhrase) to take advantage of the semantic capabilities of linguistic processors. For26
example, consider “Authors write books during years.” The phrase “…during years” is not stored as a27
prepositional phrase. Rather, there is an instance of UseOfEntOrEntInRelAsWord whose ReferringThing is28
the relationship itself and whose ReferredToEntity is some entity whose instance describes a year. This29
particular instance of UseOfEntOrEntInRelAsWord has UsageType = “RELATIONSHIP_WHEN.” By30
storing the relationship this way, a linguistic process could answer questions like “what author wrote books31
before 1974?”32

In this context, there are five noteworthy values of UseOfEntityOrEntInRelAsWord.Usage_Type:33

• RELATIONSHIP_WHEN34
This UsageType applies when an entity’s participation in a relationship indicates when the35
relationship occurred (e.g., “Authors write books during years.”).36

• RELATIONSHIP_WHERE37
This UsageType applies when an entity’s participation in a relationship indicates where the38
relationship occurred (e.g., “Authors write books in cities.”).39

• RELATIONSHIP_START40
This UsageType applies when an entity’s participation in a relationship indicates when the41
relationship started (e.g., “Employees work on projects from dates until dates.”).42

Meta Data Coalition Open Information Model

226 Knowledge Management: Semantic Definitions

• RELATIONSHIP_END1
This UsageType applies when an entity’s participation in a relationship indicates when the2
relationship ended (e.g., “Employees work on projects from dates until dates.”).3

• RELATIONSHIP_DURATION4
This UsageType applies when an entity’s participation in a relationship indicates for how long the5
relationship occurred (e.g., “Employees commute to work for time_periods.”).6

20.3.51 TraitPhrasing7

Each instance of this class describes a TraitPhrasing – a phrasing between entities in which the instances of8
one entity describe a characteristic of instances of the other entity.9

For example, a trait phrasing is “Employees have PhoneNumbers.” The values of the entity PhoneNumber10
describe a characteristic of the instances of the entity Employee.11

Each instance of TraitPhrasing must indicate the characterized entity (e.g., “Employee”) and the12
characterizing entity (e.g., “PhoneNumber”). To indicate the characterized entity, the model includes an13
instance of UseOfEntityOrEntInRelAsWord whose usage type is “Subject” and whose referred-to thing is14
either:15

• The entity describing “Employee.”16

• The EntInRel describing the participation of the “Employee” entity in the relationship to which the17
TraitPhrasing belongs. (Remember, each phrasing belongs to a particular relationship.)18

To indicate the characterizing entity, the model includes an instance of UseOfEntityOrEntInRelAsWord19
whose usage type is “FirstObject” and whose referred-to thing is either:20

• The entity describing “Employee.”21

• The EntInRel describing the participation of the “Employee” entity in the relationship to which the22
TraitPhrasing belongs.23

Specializes24

• Phrasing25

20.3.52 UseOfEntityOrEntInRelAsCmdArg26

Each instance of this class indicates that a particular CommandArgument uses a particular entity or27
EntInRel.28

20.3.53 UseOfEntityOrEntInRelAsWord29

Each instance indicates that a semantic entity is used in some phrasing, relationship, or prepositional30
phrase.31

Specializes32

• Dependency (from UML)33

Attributes34

• UsageType (String) – Indicates how the entity participates (e.g., as Subject or Object,) in the35
semantic construct that uses it.36

• Entity (Entity, derived from Dependency.Supplier) – The Entity referred to.37

• EntInRel (EntInRel, derived from Dependency.Supplier) – The EntInRel referred to.38

Open Information Model Meta Data Coalition

Knowledge Management: Semantic Definitions 227

20.3.54 UseOfFieldByEntity1

Each instance of this class indicates that a semantic entity uses a field.2

Specializes3

• Dependency (from UML)4

20.3.55 UseOfJoinTableRefByRship5

Each instance indicates that a Semantic Relationship uses a database table as the starting table for the6
various join paths leading to each of the database objects corresponding to the various EntInRels.7

Specializes8

• Dependency (from UML)9

20.3.56 UseOfRshipForSubjectObjectEntityPair10

Each instance indicates that a Semantic Relationship is the default relationship for a particular (subject11
entity, object entity) pair. For more information, see “SubjectObjectEntityPair.”12

Specializes13

• Dependency (from UML)14

20.3.57 VerbPhrasing15

Each instance of this class describes a VerbPhrasing – a phrasing indicating a verb-based relationship16
between entities. For example, in the phrasing “Salespeople sell customers books,” the verb is “sell.”17

Specializes18

• Phrasing19

Notes20

Each instance of VerbPhrasing must indicate the subject entity (e.g., “Salesperson”), the verb (“sell”), the21
direct object (“book”), and potentially the indirect object (“customer”).22

To indicate the subject entity, the model includes an instance of UseOfEntityOrEntInRelAsWord whose23
usage type is “Subject” and whose referred-to thing is either:24

• The Entity describing “Salesperson.”25

• The EntInRel describing the participation of the “Salesperson” entity in the relationship to which26
the VerbPhrasing belongs. (Remember, each phrasing belongs to a particular relationship.)27

To indicate the Verb, the model includes an instance of Word in the phrasing’s OwnedThings collection.28
The value of the WordUsageType is WordUsageType_Verb.29

To indicate the object or objects, the model includes one or two instances of30
UseOfEntityOrEntInRelAsWord. There are two cases:31

• Case 1: If there is a direct object only, the model includes an instance of32
UseOfEntityOrEntInRelAsWord whose UsageType is “FirstObject” and whose referred-to thing is33
the EntInRel describing the direct object’s participation in the relationship.34

• Case 2: If there is a direct object and an indirect object, the model includes:35

o For the indirect object: An instance of UseOfEntityOrEntInRelAsWord whose UsageType is36
“FirstObject” and whose referred-to thing is the EntInRel describing the indirect object’s37
participation in the relationship.38

Meta Data Coalition Open Information Model

228 Knowledge Management: Semantic Definitions

o For the direct object: An instance of UseOfEntityOrEntInRelAsWord whose UsageType is1
“SecondObject” and whose referred-to thing is the EntInRel describing the direct object’s2
participation in the relationship.3

20.3.58 Word4

Each instance of this class describes a word that is used in a phrasing.5

Specializes6

• PhrasingOwnedThing7

Attributes8

• Word (String) – The text of the word.9

• UsageType (WordUsageType)10

• IsPrimary (Boolean) – TRUE if the word is the preferred word.11

IsPrimary is used because some phrasings can have several interchangeable words – all of the same12
UsageType. For example, there can be a single verb phrasing that allows several different verbs, such as:13

• “Authors write books.”14

• “Authors pen books.”15

• “Authors author books.”16

In such a situation, the verb phrasing has three instances of Word in its OwnedThings collection. The17
following table describes:18

19

Word UsageType IsPrimary

Write WordUsageType_Verb TRUE

Pen WordUsageType_Verb FALSE

Author WordUsageType_Verb FALSE

20

A linguistic processor might use the preferred word when paraphrasing user-entered sentences for21
clarification.22

20.3.59 WordUsageType23

An enumeration whose values indicate what syntactic role an entity or EntInRel plays in a particular24
phrasing.25

Values26

• WORDUSAGETYPE_ADJECTIVE = 127

• WORDUSAGETYPE_MINUSWORD = 228

• WORDUSAGETYPE_PLUSWORD = 329

• WORDUSAGETYPE_SUBSETWORD = 430

• WORDUSAGETYPE_VERB = 531

• WORDUSAGETYPE_PREPOSITION = 632

Open Information Model Meta Data Coalition

Knowledge Management: Semantic Definitions 229

20.3.60 WordValuePair1

Each instance of this class describes an (Adjective, StoredEncoding) pair.2

In two-entity adjective phrasings, the object entity sometimes contains codes instead of adjectives. Such a3
phrasing can have any number of (Word, Value) pairs to equate the adjectives to their stored encoding. For4
example, an adjective phrasing might have three word value pairs: (Agree, 1); (Disagree, -1); (NoOpinion,5
0).6

Specializes7

• PhrasingOwnedThing8

Attributes9

• Word (String) – The Word of a Word-Value pair.10

• Val (String) – The Value of a Word-Value pair.11

Meta Data Coalition Open Information Model

230 Glossary

Glossary1

2

aggregate3

A total created from smaller units. For example, the population of a county is an aggregate of the4
populations of the cities, rural areas, etc. that comprise the county.5

application6

A program or set of programs designed to assist in the performance of a task, for example, an order7
entry system.8

architecture9

An organized framework consisting of principles, rules, conventions, and standards that serve to guide10
development and construction activities such that all components of the intended structure will work11
together to satisfy the ultimate objective of the structure.12

13

BPR14

Business process reengineering. A radical improvement approach that critically examines, rethinks,15
and redesigns mission product and service processes within a political environment. It achieves16
dramatic mission performance gains from multiple customer and stakeholder perspectives. BPR is a17
key part of a process management approach that continually evaluates, adjusts or removes processes to18
achieve optimal performance.19

business20

An organization or group of people that have formed to perform a specific mission and to achieve21
specific goals and objectives.22

business object23

An object that is modeled after a business concept, such as a person, place, event, or process. Business24
objects represent real world things such as employees, products, invoices, or payments.25

cleansing26

A process that checks data quality for adherence to standards, internal consistency, referential integrity,27
domain validity, and replaces incorrect data with correct data. For example, an invalid zip code can be28
replaced by a zip code derived from the state/city/address information. Cleansing methods can include29
combinations of: look-up against valid data (e.g. a list of mailing addresses), look-up against domain30
values (e.g. a list of valid State, Province, or Territory codes), domain range checks (e.g. Employees31
less than 15 or greater than 90 years old), consistency checks among table data, pattern analysis of32
exceptions, correlation, and frequency distributions.33

condition34

Sufficient prerequisite for an object to enter, transfer, or exit a state.35

constant36

A language element that specifies an unchanging value. Constants are classified as string constants or37
numeric constants. The opposite of a constant is a variable.38

constraint39

A statement that must hold or not hold in a system. Constraints most often are logical properties of40
objects or transitions between objects that must apply for a system to function correctly.41

Open Information Model Meta Data Coalition

Glossary 231

data warehouse1

A special database assembled from data extracted from operational databases and other data sources.2
Often used for analysis and decision support.3

decomposition4

The process of breaking down an activity into more detailed component activities.5

6

expression7

An operand or a collection of operators and operands that yields a single return value.8

extraction9

The process that selects data from various data sources in preparation of a copy to a target database.10
Extraction includes the selection of the data to be copied and the access to the physical storage that11
manages the data.12

fact13

A relationship between objects that hold in the actual world.14

field15

An atomic piece of information in a file or database. A field has a format such as character, number, or16
date and its presence can be optional or mandatory.17

file18

A complete, named collection of information. The basic unit of storage that enables a computer to19
distinguish one set of information from another.20

IDEF21

Integrated Definition Language22

IDEF modeling techniques23

A combination of graphic and narrative symbols and rules designed to capture the processes and24
structure of information in an organization. IDEF0 is an activity, or behavior, modeling technique;25
IDEF1X is a rule, or data, modeling technique.26

27

information28

Data in context related to a specific purpose.29

information pump30

A tool that extracts data from source systems, such as mainframe or client/server systems, performs31
cleansing and transformations, and loads the resulting information into another database.32

knowledge33

The sum of what has been perceived, discovered, or learned through experience or study.34

35

36

meta data37

Descriptive information about data.38

Meta Data Coalition Open Information Model

232 Glossary

model1

A representation of a complex, real-world phenomenon that can answer questions about the real-world2
phenomenon within some acceptable and predictable tolerance.3

object4

A distinct entity.5

object-oriented6

Of, pertaining to, or being a system or language that supports the use of objects.7

relational database8

A database that can be perceived as a set of tables and manipulated in accordance with the relational9
model of data.10

11

repository12

A model-driven facility for the storage of meta data.13

14

15

scrubbing16

See cleansing.17

skill18

The ability to perform a task or function to an agreed-upon criterion.19

20

UML21

The Unified Modeling Language.22

variable23

A data element that is a container for a value that can be changed.24

25

Open Information Model Meta Data Coalition

Class Index 233

Class Index1

2

3
— A —3

AccessorKind...754
ActionRule ...1885
AdjectivePhrasing ..2096
Aggregation..1297
Alias ..438
Application...259
Array..4610
ArrayDimension ...14211
AssociationEndProjection2512
Attribute... 26, 55, 7513
AttributeExe...7614
AttributeReference15115
AttributeType ...15216
Authority..16917

— B —18

BeforeAfter ..9419
Binary ..46, 11020
Bit..11021
Blob ...11122
Boolean..4723
Branch..17924
BusinessActivity...17825
BusinessProcessGraph..................................17826
BusinessProcessMethod................................17927
BusinessRambling ..18828
BusinessRule..18829
BusinessRuleSet ...18930
BusinessUnit ..16931

— C —32

Call ..2633
Catalog...94, 13034
Char ...11135
CharacterType ..4736
ClassDiagram...2637
Clob ...11138
CodeDecodeColumn.....................................12139
CodeDecodeSet ..12140
CodeDecodeValue..12141
CollectionType...4742
Column ..9443
ColumnConstraint ..9544
ColumnSet ...9645
ColumnType ..9646
ColumnTypeSet..9747
Command...21148
CommandArgument21249

CommandArgumentType............................. 21250
CommandPhrasing....................................... 21251
Component .. 7652
ComponentCategory 7653
ComponentDiagram....................................... 2654
ComponentElement.. 7655
ComponentSpec... 7756
ComponentType .. 7757
Concept ... 19658
Connection ...95, 13059
ConnectionSet.. 9660
ContactInfo.. 3661
CopyLib .. 14262
CopyLibContains... 14263
CorrespondenceOfFieldRefToEntity 21364
CorrespondenceOfFieldToFieldRef 21465
CorrespondenceOfJoinToJoinRef................. 21466
CorrespondenceOfTableRefToEntity............ 21467
CorrespondenceOfTableToTableRef 21468
Cube.. 13069

— D —70

DatabaseConstraint .. 9871
DatabaseRship ... 21472
DataSource .. 9873
DataType... 5574
Date..47, 11175
DateResolutionForEntByRship 21476
Datetime.. 4777
DateType... 21578
Decimal ... 4879
DeployedCatalog ... 9880
DeployedColumn... 9881
DeployedField ... 14382
DeployedGroup ... 14383
DeployedIndex .. 9984
DeployedMaterializedView............................ 9985
DeployedOLAPDatabase 13086
DeployedRecord .. 14387
DeployedSchema ... 9988
DeployedTable .. 9989
DeployedTrigger.. 9990
DeployedView... 9991
Derivation.. 2792
DescriptionSource.. 3693
Diagram... 2794
DictEntryIrregularity.................................... 21595
Dictionary.. 2796
DictionaryEntry ... 21597
Dimension ... 13098
DimensionHierarchy.................................... 13199

Meta Data Coalition Open Information Model

234 Class Index

DimensionLevel ... 1311
DimensionType.. 1322
DisplayOfEntityByField............................... 2163
Domain.. 564
Double ... 48, 1125

— E —6

ElementContent ... 1527
ElementReference .. 1528
ElementType.. 1539
ElementTypeContent.................................... 15310
ElementTypeModel...................................... 15311
EMailID... 3712
EntInRel .. 21613
Entity... 56, 21714
EntityOwnedThing....................................... 21715
EntityOwnedWord 21816
EntityType ... 21817
Enumeration... 4318
EnumerationLiteral .. 4319
EventModel ... 7820
EventSourceSpec ... 7821
Exception... 7822
Expression ... 2723
ExpressionOrder .. 2724

— F —25

FactRule .. 19026
Field .. 132, 14327
FieldDataType ... 21828
FieldRef... 21829
FieldToFieldDerivation 13530
FieldValueExpression 14431
File .. 2832
Float .. 4833
Font ... 2834
FontAlignment... 2835
FontStyle ... 2836
ForeignKey.. 9937
ForeignKeyRole... 10038
Fork... 18039
FormatOf ... 14440
Frequency .. 10041

— G —42

Glossary... 19743
Goal... 16344
GoalImpact .. 16445
Grammar.. 2846
GraphicElement ... 2947
GraphicFeature... 5748
Group .. 144, 15349
GroupDef... 14550

— H —51

Handler ..4052
HelpSource...3753

— I —54

Icon..3755
Import ..2956
InclusionOfTableSetInSchema......................21957
Index.. 100, 19758
IndexColumn..10159
IndexEntry ...19860
IndexEntryType..19861
IndexRef ..19962
IndexUsage ..19863
Industry..17064
InferenceRule ...19065
InformationResource17066
InheritanceOfEntityFromEntity.....................21967
Initiator ..18068
Integer..48, 11269
Interface ...7870
InterfaceImplication..7971
InterfaceSupport ...7972
Interval...11273
IntrinsicType ..4874
IrregularType ...21975

— J —76

Join .. 101, 18077
JoinRole ... 101, 13278
JoinRoleRef..21979

— K —80

Key ..57, 10181
KeyType ..5782
Keyword ..3783
KnowledgeElement19984

— L —85

LanguageFunction ..14586
Library ...2987
Line..2988
LineContainer...2989
LineProperties ..2990
Location ...3791
LogicalCatalog ...10292
LogicalColumn...10293
LogicalField ...14594
LogicalGroup ...14595
LogicalIndex ..10296
LogicalMaterializedView..............................10297
LogicalOLAPDatabase13298
LogicalRecord..14699

Open Information Model Meta Data Coalition

Class Index 235

LogicalSchema...1021
LogicalTable ..1022
LogicalTrigger..1033
LogicalView...1034
LongInt ..495

— M —6

Mapping...1327
MappingLevelPair ..1328
MatchType ...1039
Measure ...13310
MeasureExpression.......................................16411
MeasureExpressionDependency....................16412
Member..7913
MemberExe..7914
MemberVariable...3015
Menu..4016
MenuContainer...4117
Merge...18018
Mission ..16519
Model...58, 22020
ModelLibrary ...5821
Module...3022
ModuleOperation......................................30, 8023
ModuleOperationExe......................................8024
ModuleSpec ...3025
Money..11326
MultiplicityProjection.....................................3027

— N —28

NamedVersion..3829
NameEntity ..22030
NameEntityNameType22031
NamePhrasing ..22032

4333
NameStructureType......................................22134
NameSynonymPair.......................................22135
NChar ..11236
NonDBType...22137
NonTerminalSymbol3138
Note ...1839
Nulls ..10340
Numeric ...49, 11341
NVarChar...11242

— O —43

Objective..16544
ObjectType...4445
ObjectTypeMapping.......................................4446
OLAPDatabase...13347
OLAPMode..13348
OLAPServer...13349
Operation ...8050
OperationExe ...8151

OrganizationalRole 17052

— P —53

Package ... 3854
PackageExecution.. 12155
PageConnector... 18056
Parameter .. 8157
Partition... 13458
PartitionResourceRole.................................. 18059
PartOfSpeech... 22160
Person.. 17061
Phrasing... 22262
PhrasingGroup... 22263
PhrasingOwnedThing................................... 22264
PhysicalCube ... 13465
PhysicalResource ... 17166
Point.. 3167
PointContainer ... 3168
Pointer ... 4969
Policy .. 17170
Preposition... 22271
PrePostPair .. 8172
PrepPhrase... 22373
PrepPhrasing.. 22374
PresenceOfPhrasingInPhrasingGroup 22475
Primitive.. 4476
ProcessPartition ... 18177
Project ... 3178
Projection .. 3179
Provider... 10380
ProviderDataType.. 10481
ProviderTypeMapping 10482
ProviderTypeSet .. 10483

— Q —84

QuadInt ..49, 11385
Query .. 10586

— R —87

Real ... 11388
Record... 14689
RecordFormat.. 14790
RecordItem.. 14891
Redefines... 14892
ReferentialConstraint 10593
ReferentialRole.. 10594
ReferentialRule.. 10595
RelatedTerm .. 19996
Relationship..59, 22497
RelationshipProjection 3298
RelationshipRole.. 5999
Renames.. 148100
RenamesThru... 149101
Report.. 159102

Meta Data Coalition Open Information Model

236 Class Index

ReportDerivation.. 1591
ReportElement ... 1592
ReportElementType 1603
ReportExecution .. 1604
ReportGroup .. 1605
ReportPackage ... 1616
ReportQuery .. 1617
Resource .. 1728
ResourceFlowState....................................... 1799
ResourceProcessRole 18110
ResourceRole... 17211
ResourceRuleRole.. 19012
ResourceStateRole 18213
RowSet .. 10614
Rule ... 3215
RuleImpact .. 19116

— S —17

Scalar... 5018
Schema .. 106, 15419
Searchable ... 10620
Server .. 8221
ServerApplication .. 8222
ServerLibrary... 8223
ShortInt.. 5024
SignOfRestatementAdjective........................ 22525
Single .. 5026
Skill... 17227
SmallInt ... 11328
SmallMoney... 11429
SortingOfEntityByField 22530
SourcedEvent... 8231
Statement... 3232
StepExecution .. 12233
StepPrecedence .. 12234
StepPrecedenceBasis 12335
Storage... 3936
Store .. 13437
StoredDisplay .. 6038
StoredProcedure... 10739
StoredProcedureParameter 10740
String... 5041
Structure .. 4442
SubjectArea ... 6043
SubjectObjectEntityPair 22544
SubsetPhrasing... 22645
SubTaskState ... 18246
SubType .. 6147
SummaryInformation 3848
Surrogate ... 3949
Symbol .. 3350
Syntax.. 3351
System ... 1852

— T —53

Table..10754
TableConstraint ..10855
TableRef ..22656
TableSet ...22657
TableSynonym ...10858
TaggedValue..3359
TaggedValueSet ...3360
TaskAction...18361
TaskState..18262
TaskStateActivity ...18363
TelephoneNumber ..3964
TemporaryField..12365
Term ..20066
TerminalSymbol...3367
Terminator ...18368
TermRule ...19169
Text..6170
Thesaurus...20071
ThingThatCanReferToEntities22772
Time ..50, 11473
TimePrecision ..5174
TimeStamp...11475
TinyInt ...49, 11476
TraitPhrasing..22877
TransformableObject12678
TransformableObjectSet12379
Transformation...12380
TransformationConversion12481
TransformationDependency..........................12482
TransformationPackage12483
TransformationStep12584
TransformationTask......................................12585
TransformationTaskDependency...................12586
Transition...18487
Trigger ...10888
Type...8389
TypeDef ...4190
TypeLibrary ...8391
TypeSet ..4492

— U —93

Union ...4594
UnionMember ..4595
UniqueKey...10996
UniqueKeyRole..10997
UseOfEntityOrEntInRelAsCmdArg22898
UseOfEntityOrentInRelAsWord22899
UseOfFieldByEntity229100
UseOfJoinTableRefByRship.........................229101
UseOfRshipForSubjectObjectEntityPair........229102
UsesConnection..109103

Open Information Model Meta Data Coalition

Class Index 237

— V —1

ValidationRule ...612
Value ...623
VarBinary ..1144
VarChar ...1155
VariantTaggedValue.......................................336
VerbPhrasing..2297
View ..1098
ViewElement..349
VirtualCube..13410
Vision ..16511

VocabularyElement...................................... 20112
Void .. 5113

— W —14

Word ... 23015
WordUsageType.. 23016
WordValuePair .. 23117

— X —18

XMLDataType .. 15419

20

Meta Data Coalition Open Information Model

238 Table of Figures

Table of Figures1

2
Figure 1: Shared Meta Data Environment ..23
Figure 2: Deliverable Generation from the UML..104
Figure 3: UML Modeling Framework..115
Figure 4: Sample Logical Database Model...176
Figure 5: Sample Physical Database Model..177
Figure 6: OIM 1.0 Compatibility ...188
Figure 7: Auxiliary Elements...219
Figure 8: Additional Auxiliary Elements..2210
Figure 9: View Elements ...2311
Figure 10: Projections ...2412
Figure 11: Syntax Elements...2513
Figure 12: Generic Elements ...3514
Figure 13: Contact Information..3615
Figure 14: OIM 1.0 Compatibility Classes ...4016
Figure 15: Data Types ...4217
Figure 16: Common Data Types (OIM 1.0 compatibility) ..4518
Figure 17: Entities and Relationships...5319
Figure 18: Attributes ...5320
Figure 19: Domains...5421
Figure 20: Diagrams..5422
Figure 21: Model Packaging..5523
Figure 22: CORBA and COM Component Models...6524
Figure 23: Component Specifications and Interfaces ..6625
Figure 24: Instance Diagram showing component specifications and interfaces ..6626
Figure 25: Interface Implication...6727
Figure 26: Specification Type Models ...6728
Figure 27: Library Interface Example ..6829
Figure 28: Attributes and Operations ...6830
Figure 29: Pre/Post Condition Pairs and Exceptions ...6931
Figure 30: Operation Factoring..7032
Figure 31: Event Modeling..7033
Figure 32: Executable Layer..7134
Figure 33: Component Specification..7235
Figure 34: Features and Events..7336
Figure 35: Execution Elements ..7537
Figure 36: Sample database schema...8638
Figure 37: Meta data Interchange Specification Metamodel ...8739
Figure 38: MDIS Example...8840
Figure 39: Schema Elements ...8941
Figure 40: Tables, Columns, and Views...9042
Figure 41: Constraints ...9043
Figure 42: Triggers and Stored Procedures...9144
Figure 43: Indexes...9145
Figure 44: Referential Integrity..9246
Figure 45: Keys...9247
Figure 46 - Catalogs and Connections..9348
Figure 47: Data Type Mappings ..9349
Figure 48: OIM 1.0 Data Types ...11050
Figure 49: A Sample Transformation Package ...11851
Figure 50: Transformation Packaging ...11952
Figure 51: Transformation Tasks ...12053

Open Information Model Meta Data Coalition

Table of Figures 239

Figure 52: Constraints and Conversions .. 1201
Figure 53: A Typical OLAP Cube... 1272
Figure 54: OLAP Servers and Databases... 1283
Figure 55: Stores, Cubes, and Partitions .. 1294
Figure 56: Hierarchy and Levels ... 1295
Figure 57: Field-to-Field Derivation.. 1356
Figure 58: Records, Groups, Fields, and Formats... 1397
Figure 59: CopyLibs ... 1418
Figure 60: Constraints and Dependencies .. 1419
Figure 61: XML Schema .. 15110
Figure 62 - Sample Report .. 15711
Figure 63- Report Grouping Elements... 15812
Figure 64 - Report Field Elements... 15813
Figure 65: Goal and Objective Model.. 16214
Figure 66: Goal and Measures... 16315
Figure 67: Organizational Model .. 16816
Figure 68: Organizational Definitions ... 16917
Figure 69: Business Process Model ... 17418
Figure 70: Process Partition .. 17519
Figure 71: Process Definitions .. 17520
Figure 72: Task Definitions .. 17621
Figure 73: State Definitions .. 17722
Figure 74: Resource Role Definitions.. 17723
Figure 75: Process Partitions... 17824
Figure 76: Pseudostates .. 17825
Figure 77: Core Definitions .. 18726
Figure 78: Rule Type Definitions.. 18727
Figure 79: Core Elements ... 19428
Figure 80: Thesaurus Elements ... 19529
Figure 81: Glossary Elements ... 19530
Figure 82: Index Elements .. 19631
Figure 83: Phrasing Groups and Types of Phrasing.. 20432
Figure 84: Relationships and Phrasings ... 20633
Figure 85: Command Arguments .. 20734
Figure 86: Default Relationships and Date Resolution ... 20835
Figure 87: Entity-To-Database Links .. 20836
Figure 88: More Database Links ... 20937
Figure 89: Semantics and Database Joins .. 20938

39

40

