
X-Ray - Towards Integrating
XML and Relational Database Systems

Gerti Kappel, Elisabeth Kapsammer, Stefan Rausch-Schott, Werner Retschitzegger

Institute of Applied Computer Science, Department of Information Systems (IFS)
University of Linz, Altenbergerstraße 69, A-4040 Linz, Austria

{gk, ek, srs, wr}@ifs.uni-linz.ac.at

Abstract. Relational databases get more and more employed in order to store
the content of a web site. At the same time, XML is fast emerging as the domi-
nant standard at the hypertext level of web site management describing pages
and links between them. Thus, the integration of XML with relational database
systems to enable the storage, retrieval and update of XML documents is of
major importance. This paper presents X-Ray, a generic approach for integrat-
ing XML with relational database systems. The key idea is that mappings may
be defined between XML DTDs and relational schemata while preserving their
autonomy. This is made possible by introducing a meta schema and meta
knowledge for resolving data model heterogeneity and schema heterogeneity.
Since the mapping knowledge is not hard-coded but rather reified within the
meta schema, maintainability and changeability is enhanced. The meta schema
provides the basis for X-Ray to automatically compose XML documents out of
the relational database when requested and decompose them when they have to
be stored.

1 Introduction

Web-based information systems no longer aim at purely providing read-only access
to their content, which is simply represented in terms of web pages stored in the web
server’s directory. Nowadays, not least due to new requirements emerging from sev-
eral application areas such as electronic commerce, the employment of databases to
store the content of a web site turns out to be worthwhile [11], [20]. This allows to
easily handle both retrieval and update of large amounts of data in a consistent way
on a large distributed scale [9]. Besides using databases at the content level, the Ex-
tensible Markup Language (XML) [28] is fast emerging as the dominant standard for
representing the hypertext level of a web site, i.e., the logical composition of web
pages and the navigation structure [1], [6], [27]. XML is a subset of SGML. As such,
an XML document consists of possibly nested elements rooted in a single element.
Elements, whose boundaries are delimited by start-tags and end-tags, may comprise
attributes, whereby both are able to contain values. An XML document can be asso-
ciated with a type specification called document type definition (DTD), containing
user-defined element types and attribute specifications which allow to describe the
meaning of the content. Note, that there are already several efforts to replace DTDs
by means of richer XML schema definition languages [28]. However, since there is
no standard up to now, the rest of the paper builds on DTDs.

Because of the increasing importance of XML and database systems (DBS), the
integration of them with respect to storage, retrieval, and update is a major need [7],
[27]. Regarding the kind of DBS used for the integration, one can distinguish four
different approaches [2], [12]. First, special-purpose DBS are particularly tailored to
store, retrieve, and update XML documents. Examples thereof are research prototypes
such as Rufus [25], Lore [14], Strudel [11] and Natix [15] as well as commercial
systems such as eXcelon [19] and Tamino [23]. Second, because of the rich data
modeling capabilities of object-oriented DBS, they are well-suited for storing hyper-
text documents [4], [29]. Object-oriented DBS and special-purpose DBS, however,
are neither in wide-spread use nor mature enough to handle large scale data in an
efficient way. Object-relational DBS would be also appropriate for mapping to and
from XML documents since the nested structure of the object-relational model blends
well with XML’s nested document model. Similar arguments as above, however, hold
against their short-term usage. Thus, the more promising alternative to store XML
documents are relational database systems (RDBS). Such an integration would pro-
vide several advantages such as reusing a mature technology, seamlessly querying
data represented in XML documents and relations, and the possibility to make legacy
data already stored within an RDBS available for the web.

Concerning the kind of storage within an RDBS, there exist three basic alterna-
tives. The most straightforward approach would be to store XML documents as a
whole within a single database attribute. Another possibility would be to interpret
XML documents as graph structures and provide a relational schema allowing to store
arbitrary graph structures [12], [13], [22], [26]. The third approach is that the struc-
ture of XML documents in terms of, e.g., a DTD is mapped to a corresponding rela-
tional schema wherein XML documents are stored according to the mapping [3], [5],
[8], [10], [18], [24]. Only the last of these alternatives allows to really exploit the
features of RDBS such as querying mechanisms, optimization, concurrency control
and the like. Thus, this approach is further investigated in the paper.

Despite of the benefits of the mapping approach, the problem is that when defining
the mapping between an XML DTD and a relational schema, one has to cope with
data model heterogeneity and schema heterogeneity. Data model heterogeneity refers
to the fact that there are fundamental differences between concepts provided by XML
and those provided by RDBS, which have to be considered when defining a certain
mapping. These differences concern, e.g., structuring, typing and identification is-
sues, relationships, default declarations, and the order of stored instances [17].
Schema heterogeneity in our context means that, even if the DTD and the relational
schema to which the DTD should be mapped represent the same part of the universe
of discourse, the design of both is likely to be different. This could be because of
different goals pursued during design like redundant representation of information
versus normalization [17].

Existing approaches deal with these heterogeneity problems in various rather re-
stricted ways. First, to reduce the heterogeneity a priori it is assumed that at least one
of the schemata to be mapped to can be adapted to the other one [8]. This, however,
contradicts the requirement of autonomy. Second, there is only a certain pre-defined
way of mapping provided [24], thereby preventing user-defined mappings which

might eventually better resolve a certain heterogeneity with respect to, e.g., space or
performance issues. Third, the mapping knowledge is often hard-coded within appli-
cations thus making maintenance in case of changes very difficult. With respect to
these drawbacks, this paper proposes X-Ray, a generic approach for integrating XML
with RDBS. The key idea is that mappings can be dynamically defined between
DTDs and relational schemata thus coping with data model heterogeneity and
schema heterogeneity. The integration fully preserves the autonomy of both the DTD
and the relational schema, which in turn ensures the continuity of already existing
applications working with the XML documents or the RDBS. This is made possible
by introducing a meta schema storing information about the DTD, the relational
schema and the mapping knowledge itself. The meta schema is responsible for me-
diation with respect to data model heterogeneity and schema heterogeneity and thus
represents the core component of X-Ray. Since the mapping knowledge is not hard-
coded but rather reified within the meta schema, maintainability and changeability is
enhanced. This meta schema provides the basis for X-Ray to automatically compose
XML documents out of the relational database when requested and decompose them
when they have to be stored.

XML-DBMS introduced in [3] is closely related to X-Ray. Whereas in X-Ray the
mapping knowledge may be specified in terms of tuples of the predefined meta
schema, XML-DBMS provides a mapping language DTD. A specific user-defined
XML document obeying this mapping language DTD, represents the mapping knowl-
edge for yet another DTD and a relational schema. Based on our previous experience,
however, using also a meta schema approach for mapping between objects and rela-
tions [16], working with a meta schema is quite intuitive and, thus, also suggested for
X-Ray.

The remainder of the paper is organized as follows. Section 2 introduces different
mapping possibilities between XML and RDBS. Based on these mapping possibili-
ties, Section 3 defines a set of reasonable mappings to mediate between the different
structuring mechanisms supported by XML and RDBS. The design of the meta
schema is discussed in Section 4. Finally, Section 5 concludes the paper with a short
summary and gives an outlook to future work.

2 Basic Kinds of Mappings Between XML and RDBS

There are several possibilities for mapping a DTD to a relational schema. A straight-
forward way would be to map each element type to a relation and each XML attribute
to an attribute of the respective relation. Due to data model heterogeneity and schema
heterogeneity, however, such a one to one mapping is neither always possible nor
desirable. For example, in the presence of deep element nesting directly mapping
elements to tuples of different relations would lead to excessive fragmentation of the
document over various relations, thus decreasing performance. This section proposes
some basic mapping possibilities representing a prerequisite both for determining
which kind of mapping is reasonable in a certain situation (cf. Section 3) and for
designing the meta schema (cf. Section 4).

When considering the structuring mechanisms of XML and RDBS, three basic
kinds of mappings may be distinguished, which are denoted in Fig. 1 together with an
example. Note, that XML elements and attributes are represented in terms of UML
objects [21].

XML
Concepts

Mapping
Possibilities

RDBS
Concepts

Relation

Attribute

ElementType Attribute

Attribute Attribute

Accommodation

Name

Accommodation
: ElementType

Id
: Attribute

AccID

Name
: ElementType

E
xa

m
pl

e
:

ET_R ET_A A_A ET_R ET_A A_A

Fig. 1. Basic Kinds of Mappings

ET_R. An element type (ET) is mapped to a relation (R), furtheron called base re-
lation. Note, that several element types can be mapped to one base relation.

ET_A. An element type is mapped to a relational attribute (A), whereby the relation
of the attribute represents the base relation of the element type. Note, that
several element types can be mapped to the attributes of one base relation.

A_A. An XML attribute is mapped to a relational attribute whose relation repre-
sents the base relation of the XML attribute. Again, several XML attributes
can be mapped to the attributes of one base relation.

It has to be emphasized that both element types and attributes can be mapped to a
single base relation and a single attribute, only. Another point is that ET_A and A_A
mappings determine that values of database attributes are mapped to values of XML
elements or attributes. Thus, it makes sense that ET_R mappings occur together with
ET_A and A_A mappings. Furthermore, it is not mandatory that all element types and
attributes of a DTD as well as all relations and attributes of a relational schema have a
mapping. An example at the relational side could be a foreign key that serves for
establishing a relationship but might not be relevant within the XML document and
therefore requires no mapping. The omission of mappings is imaginable not only in
case that both DTD and relational schema have been developed independently from
each other, but also if one has been derived from the other one. However, there are
cases where a mapping is mandatory, e.g., if a certain constraint requires the exis-
tence of a value within the XML document (cf. Section 3.2).

The three basic kinds of mappings introduced above can be further refined with re-
spect to the determination of an element type’s base relation. For this, one has to look
at the nesting hierarchy built by element types containing other element types. The
former are furtheron called composite element types, the latter component element
types. First, if an element type should be mapped, one has to consider the first of its
direct or indirect composite element types that is mapped to a relation or an attribute,
thus having a base relation. This base relation constitutes the parent base relation of
the XML element type which should be mapped and is a candidate for being its base
relation, too. If none of its composite element types is mapped, an arbitrary relation
can be chosen as base relation. Concerning the example in Fig. 2 (cf. also the more

comprehensive example given in Fig. 3), the element types address , street , and
country all have the same parent base relation, namely Accommodation , which repre-
sents the base relation of the composite element type accommodation . Note, that
aiming at an intuitive presentation, Fig. 2 depicts mappings between XML element
types and relations in terms of a UML class diagram. To be able to distinguish be-
tween element types and relations, they are depicted as instances of the corresponding
‘meta class’ ElementType and Relation , respectively.

address
: ElementType

street
: ElementType

Accommodation
: Relation

base relation

parent base relation

has no mapping,
and consequently
no base relation

base relation

parent b
ase

 re
latio

n

first ET
being mapped, and
consequently has no
parent base relation

accommodations
: ElementType

component ET

component ET

component ET

Country
: Relation

root ET
has no mapping,
and consequently
no base relation

accommodation
: ElementType

country
: ElementType

component ET

base
 re

latio
n

pa
re

nt
 b

as
e

re
la

tio
n

Direct
Mapping

Village
: Relation Indirect

Mapping

DTD Relational Schema

Fig. 2. Exemplary Mappings

Second, if an XML attribute should be mapped, its element type has to be consid-
ered first. If the attribute’s element type is not mapped, its direct and indirect com-
posite element types have to be considered as done for element types discussed
above. Again, the relation which the first of these element types is mapped to repre-
sents the parent base relation of the XML attribute, thus being a candidate for being
its base relation, too.

The parent base relation constitutes also the base relation, if the XML element type
or the attribute, respectively, can be mapped to the relation or one of its attributes,
which is furtheron called direct mapping. For an example, confer to the element type
street in Fig. 2, which is directly mapped to an attribute of its parent base relation
Accommodation . Otherwise, a proper base relation may be one of those relations,
reachable by the parent base relation via foreign key relationships, which is furtheron
called indirect mapping. For an example, consider the element type country , which is
indirectly mapped to an attribute of relation Country reachable by its parent base
relation Accommodation . Indirect mapping is reasonable in case that the relational
attribute, which should be the mapping target, is factored out from the parent base
relation, e.g., due to normalization reasons or because of vertical partitioning. Note,
that element type address is used to group address data and thus has no relational
counterpart and no base relation at all.

Both direct and indirect mapping is applicable to the three basic mapping possi-
bilities introduced above thus resulting in ET_Rdirect/indirect, ET_Adirect/indirect, and
A_Adirect/indirect mappings. Furthermore, the possibility of a direct mapping always im-
plies the possibility of an indirect mapping due to vertical partitioning.

3 Determining Reasonable Mappings Between XML and RDBS

After introducing the basic kinds of mappings, this section discusses reasonable map-
pings. The determining factors can be categorized into characteristics of the XML
element type (cf. Section 3.1) and characteristics of the XML attribute (cf. Section
3.2). In order to illustrate the subsequent investigations we provide a comprehensive
running example building on the ones given in the previous section. The example is
intended to show as many mapping possibilities as possible. Fig. 3 depicts the run-
ning example in terms of a DTD and in terms of a relational schema.

DTD

<!ELEMENTaccommodations (accommodation*)> <!-- Composite ET with Element Content -->

<!ELEMENTaccommodation (name, address,

email*, phone+, acceptsCreditCard?,
facilities, sauna, pool*, description?)> <!-- Composite ET with Element Content -->

<!ELEMENT name (#PCDATA)> <!-- Atomic ET -->

<!ELEMENT address (street, village, country)> <!-- Composite ET with Element Content -->

<!ELEMENT street (#PCDATA)> <!-- Atomic ET -->

<!ELEMENT village (#PCDATA)> <!-- Atomic ET -->

<!ELEMENT country (#PCDATA)> <!-- Atomic ET -->

<!ELEMENT email (#PCDATA)> <!-- Atomic ET -->

<!ELEMENT phone EMPTY> <!-- Empty ET -->

<!ELEMENT acceptsCreditCard EMPTY> <!-- Empty ET -->

<!ELEMENT facilities EMPTY> <!-- Empty ET -->

<!ELEMENT sauna EMPTY> <!-- Empty ET -->

<!ELEMENT pool EMPTY> <!-- Empty ET -->

<!ELEMENT description (#PCDATA | rating)*> <!-- Composite ET with Mixed Content -->

<!ELEMENT rating (#PCDATA)> <!-- Atomic ET -->

<!ATTLIST accommodation id CDATA #REQUIRED
state CDATA #FIXED “Austria“
kind (hotel | motel) “hotel“>

<!ATTLIST address postalCode CDATA #REQUIRED>
<!ATTLIST village yearOfFoundation CDATA #IMPLIED>
<!ATTLIST phone number CDATA #REQUIRED>
<!ATTLIST sauna available CDATA #REQUIRED>

UML Class Diagram

*
1

*

Phone
@AccID
@Number

1

*

1

*

1

*

11

1..*

*1

EmailAddress
@AccID
@Email

ActualRating
@AccID
@RatingID
RatingOrder

RatingDescription
@AccID
@RatingOrder
Description

Pool
@AccID
@Name

Village
@Name
PostalCode
CountryID

Country
@CountryID
Name

Accommodation
@AccID
Name
Kind
Street
VillageName
AcceptsCreditCard
Sauna

*
1

0..1 History
@VillageName
YearFound

*

PossibleRating
@RatingID
Rating

1

Relational Schema

Accommodation

@AcID Name Kind Street VillageName AcceptsCreditCard Sauna

Village

@Name PostalCode CountryID

Phone

@AccID @Number

ActualRating

@AccID @RatingID RatingOrder

History

@VillageName YearFound

EmailAddress

@AccID @Email

PossibleRating

@RatingID Rating

Country

@CountryID Name

Pool

@AccID @Name

RatingDescription

@AccID @RatingOrder Description

Fig. 3. Exemplary DTD, Relational Schema, and UML Class Diagram

The latter is depicted with a table structure and as UML class diagram better visu-
alizing relationships. Concerning the relational schema, primary keys are prefixed
with ‘@’ and foreign keys are depicted using italic type. Even this small example
shows that data model heterogeneity and schema heterogeneity prevent a simple one

to one mapping. The description of this example is given from a mapping viewpoint
throughout the forthcoming subsections.

3.1 Element Type Characteristics

As already mentioned, choosing a certain mapping is based on characteristics of the
element type to be mapped. As illustrated in Fig. 4, these decisive characteristics can
be categorized into three orthogonal dimensions comprising the kind of element type,
if it contains attributes, and its cardinality.

Kind of Element Type

Contains Attributes

Cardinality

No Yes
?

1
*

+

Composite ET with
Mixed Content

Atomic ET

Empty ET

Composite ET with
 Element Content

Fig. 4. Orthogonal Dimensions Characterizing XML Element Types

The most simple kind of element type contains an atomic domain (#PCDATA), only,
and is furtheron called atomic element type. Composite element types (cf. Section 2)
may have an atomic domain in addition to component element types, and thus are
further distinguished into composite element types with mixed content and composite
element types with element content. Concerning the latter, it has to be specified
whether component element types occur in a sequence (“ , ”), or in a choice (“ | ”)
meaning that they are mutual exclusive. This is not applicable to the former since in
this case component element types are allowed to occur in a choice with cardinality
‘ * ’, only.

Element types that neither contain component element types nor have an atomic
domain are called empty element types. Each element type no matter if it is an atomic,
composite, or empty element type may contain attributes. Finally, cardinality con-
straints specify how often elements of a certain element type occur as component
elements of its composite element. Since element types may be components of more
than one composite element type, each of its occurrences as component element type
can exhibit another cardinality. The cardinality symbols are ‘?’ (null or 1), ‘* ’ (null
or more), ‘+’ (1 or more) and no symbol (exactly 1). Depending on the combination
of these characteristics, certain reasonable mappings can be determined as shown in
Table 1. In the following, these mappings are discussed by means of the running
example.

First, we consider composite element types with element content. Mapping this
kind of element type is neither influenced by cardinality nor whether it contains any
attributes. Since there are no values associated with elements of this type, the only
reasonable mapping possibility is ET_R. Depending on whether the element type can

be mapped to its parent base relation or not, ET_Rdirect or ET_Rindirect mapping can be
used. In fact, the lack of any mapping would not result in a loss of information, since
elements of this type contain no values which could be stored in the database.

Concerning our running example, whereas the root element type accommodations

does not require any mapping, the element type accommodation is mapped to the
relation Accommodation (ET_R mapping). Since accommodation does not have a
parent base relation, we do not distinguish between a direct and an indirect mapping
in this case.

Table 1. Reasonable Mappings of XML Element Types

Kind of Element Type Contains Attributes Cardinality Reasonable Mapping

Composite ET with element content No influence No influence ET_Rdirect/indirect; No mapping

Atomic ET No influence ?, 1 ET_Adirect/indirect

Atomic ET No influence +, * ET_Aindirect

Empty ET No 1 No mapping

Empty ET Yes 1 ET_Rdirect/indirect; No mapping

Empty ET No influence ? ET_Adirect

Empty ET No influence *, + ET_Aindirect

Composite ET with mixed content No influence No influence ET_Aindirect

Next, let us consider the mapping of an atomic element type. The reasonable map-
pings of such element types depend on the cardinality, only, and are not influenced by
the existence of XML attributes. Since atomic element types contain values they al-
ways require a mapping to relational attributes, i.e., an ET_A mapping. In case of
cardinality ‘?’ and ‘1’, an ET_Adirect mapping is possible, since no more than one ele-
ment may occur. However, also an ET_Aindirect mapping may be necessary, when the
relational attribute which the atomic element type should be mapped to is not part of
the parent base relation. In case of cardinality ‘* ’ and ‘+’, ET_Aindirect mapping is re-
quired due to normalization.

Concerning our running example, the most simple case is represented by element
type name which has cardinality ‘1’ and is mapped to attribute Name of base relation
Accommodation representing an ET_Adirect mapping. Accommodation is mapped to
element type accommodation , the direct composite element type of element type name,
i.e., the base relation and the parent base relation are the same. This kind of mapping
also applies to element type street . In this case the direct composite element type
address has no mapping (cf. Section 2) and the indirect composite element type ac-

commodation is mapped to the relation that contains the relational counterpart Street .
The element types village and country require ET_Aindirect mappings, since their
relational counterparts are stored in base relations different to the parent base relation
Accommodation due to normalization reasons. The relational counterparts are attribute
Name of base relation Village and attribute Name of base relation Country , respec-
tively. This kind of mapping is possible, since Accommodation and Village , as well
as Village and Country are directly connected via foreign key relationships. Element
type email has cardinality ‘* ’ requiring an ET_Aindirect mapping and therefore is

mapped to attribute Email of relation EmailAddress . The same holds true for element
type rating with the difference that the parent base relation Accommodation and the
base relation PossibleRating containing an attribute Rating are indirectly connected
via the relation ActualRating .

Regarding empty element types with a cardinality ‘1’, no matter if there are attrib-
utes or not, no mapping is required since a corresponding element occurs exactly
once without carrying any value. However, if there were attributes, it would make
sense to employ a direct or indirect ET_R mapping since the base relation could serve
as the base relation for the attributes. In case of any other cardinality, the existence of
attributes does not influence the reasonable mappings. An ET_A mapping is required
in any case. It depends on the particular cardinality whether a direct or indirect map-
ping is reasonable.

Referring to our example, the empty element types facilities without attributes
and sauna including a single attribute represent the most simple case both having a
cardinality of one thus requiring no mapping. The attribute available of element
type sauna is mapped to the relational attribute Sauna of the parent base relation of
the element type sauna , namely Accommodation . The optional empty element type
acceptsCreditCard contains no attributes and is mapped directly to the relational
attribute AcceptsCreditCard of its parent base relation Accommodation . Finally, the
empty element types phone and pool having a cardinality of ‘+’ and ‘* ’, respectively,
are mapped via ET_ Aindirect to the relational attribute Number of the relation Phone and
the relational attribute Name of the relation Pool , respectively.

Considering composite element types with mixed content, neither the existence of
attributes nor the cardinality have any influence on the reasonable mappings. Since at
the instance level, several values may occur within a single element, an ET_Aindirect

mapping is required. Our example contains one composite element type with mixed
content, namely description , which is mapped to the attribute Description of the
relation RatingDescription . The attributes RatingOrder of the two relations Actu-

alRating and RatingDescription , which are not mapped to any XML concept, since
they express an absolute order over both rating descriptions and actual ratings with
respect to a certain accommodation.

3.2 XML Attribute Characteristics

The mapping of XML attributes depends on two orthogonal dimensions comprising
the type of the XML attribute and its default declaration.

Default Declaration

Attribute Type
CDATA ID

Default

Implied

Required

Fixed

IDREF IDREFS Enum.

Fig. 5. Orthogonal Dimensions Characterizing XML Attributes

The type of the XML attribute may be a string type (CDATA), an enumeration type,
or some special type including, e.g., ID and IDREF(S) responsible for unique identifi-
cation of elements within an XML document and for referencing an element (IDREF)
or several elements (IDREFS) having an attribute of type ID , respectively. For the sake
of readability and space restrictions, we do not consider all possible types of XML
attributes but rather the more important ones. The default declaration expresses
whether a value is required (#REQUIRED), optional (#IMPLIED), fixed (#FIXED

<ConstValue>) or default (<DefaultValue>).
For XML attributes with default declaration being #FIXED, no mapping is neces-

sary independent of the type of the XML attribute. In our example, the XML attribute
state of the element type accommodation has the constant value Austria . Regarding
XML attributes which are not specified to be #FIXED, it has to be distinguished
whether they are single-valued like CDATA or multi-valued defined by IDREFS. Single-
valued attributes can be directly mapped to relational attributes (A_Adirect) or may re-
quire indirect mapping due to normalization reasons (A_Aindirect), whereas multi-valued
attributes may be mapped indirectly (A_Aindirect), only. Considering ID and IDREF(S) , it
seems conceivable to map them to primary key attributes and foreign key attributes,
respectively, of the relational schema. Due to data model heterogeneity, however, this
is not always feasible, since there are differences concerning scope and composite
keys [17].

Table 2. Reasonable Mappings of XML Attributes

Attribute Type Default Declaration Reasonable Mapping

No influence #FIXED No mapping

CDATA, ID, IDREF, enumeration #REQUIRED, #IMPLIED, Default Value A_Adirect/indirect

IDREFS #REQUIRED, #IMPLIED, Default Value A_Aindirect

In our example, directly mapped single-valued attributes comprise id and kind of
element type accommodation , number of element type phone , and available of ele-
ment type sauna . Single-valued attributes which have to be mapped indirectly are
postalCode of element type address , and yearOfFoundation of element type vil-

lage . Multi-valued attributes are not part of our example. It has to be emphasized that
with one exception the reasonable mappings of an attribute are independent of the
kind of mapping of its element type. In case that the element type of the attribute is
not mapped and any of its composite element types that is not mapped depicts a car-
dinality of ‘* ’, the attribute can be mapped via A_Aindirect, only.

4 The X-Ray Meta Schema

The different kinds of mappings proposed in the previous sections provide the basis
for the design of the meta schema of X-Ray. The meta schema is the key mechanism
for the genericity of X-Ray allowing to map DTDs and relational schemata. It medi-
ates between heterogeneous concepts and provides the basis for X-Ray to automati-

cally compose XML documents out of the relational database when requested and
decompose them when they have to be stored. The mapping knowledge is not hard-
coded within an application but rather reified and centrally stored within the meta
schema, thus enhancing maintainability and changeability.

The meta schema consists of three components describing the relevant meta
knowledge, namely DBSchema, XMLDTD and XMLDBSchemaMapping (cf. top part of Fig.
9). The DBSchema component is responsible for storing information about relational
schemata that shall be mapped to DTDs to make their data available to XML docu-
ments or that shall be used to store XML documents. Analogously, the XMLDTD com-
ponent stores schema information about XML documents as specified by means of
DTDs. Finally, the XMLDBSchemaMapping component stores the mapping knowledge
between DBSchema and XMLDTD. The goal of XMLDBSchemaMapping is to bridge both
data model heterogeneity and schema heterogeneity in order to support a lossless
mapping. This means that if an XML document is stored within the database, it
should be possible to reconstruct it by retrieving the corresponding data out of the
database and vice versa. It has to be emphasized that although the meta schema is
designed on the basis of the concepts provided by DTDs, X-Ray does not require the
existence of an explicit DTD. However, there must be at least a common implicit
structure of the XML documents, which can be used by an administrator as input for
XMLDTD and XMLDBSchemaMapping.

Concerning the storage of the meta knowledge itself, X-Ray comprises both a re-
lational representation of the meta schema stored within the relational database and an
object-oriented representation for main memory mapping. The latter is being initial-
ized with the content of the relational meta schema at the beginning of an X-Ray
session, herewith allowing an efficient composition and decomposition of XML
documents at runtime. The object-oriented representation in terms of UML class
diagrams is also used throughout this section to concisely and precisely depict the
various meta schema components.

4.1 Database Schema Component

Concerning the database schema component, it has to be emphasized that it is not
necessary to store meta knowledge about the complete relational schema, but only
about those relations and attributes being relevant for the mapping to the DTD. How-
ever, not only base relations and their attributes are relevant, but also non-base rela-
tions which are the connecting relations between two base relations. As illustrated in
Fig. 6 DBSchema contains at least one DBRelation , which consists of at least one
DBAttribute . DBAttribute stores among others its atomic domain and whether it
represents a primary key attribute. DBRelation and DBAttribute are generalized to
DBConcept . Relationships (DBRelationship) connect two relations and specify one or
more join segments (DBJoinSegment) comprising the join attributes, i.e., primary key
and foreign key attributes of two relations that realize the relationship. The relation-
ship comprises more than one join segment in case that the primary key is composed

of two or more attributes. In case that parts of an XML document are stored within
different relations, information about the proper join paths (DBJoinPath) is necessary.

DBSchema

DBRelation

DBConcept

1..*1

1

DBJoinSegmentDBJoinPath

11

* *
DBRelationship

11

**

DBAttribute

1 1..*

1..*

* 1..*

Fig. 6. Meta Schema of the Relational Schema

A DBJoinPath consists of one or more relationships. It comprises more than one
relationship if more than two relations have to be joined for composing or decom-
posing a particular part of an XML document.

4.2 XML DTD Component

Similar to the database schema component, it is not necessary to store meta knowl-
edge about the complete DTD, but only about those parts being relevant for the map-
ping to the relational schema. The meta knowledge specifies that a DTD (XMLDTD, cf.
Fig. 7) has a certain element type (XMLElemType) that serves as root. For element
types with attributes, XMLAttribute stores information about their atomic domains
and their default declaration.

XMLCompositeET

*1
XMLElemType

XMLAtomicET XMLEmptyET

XMLAttribute

XMLAttValEnum

*XMLCompositeET
MixedContent

XMLCompositeET
ElemContent

CompositionStructure::
XMLContentParticle

1..*

1

has root elem type
1

0..1

XMLDTD

*

*

1

XMLMain

Composition
Structure

<<access>>

<<access>>

XMLConcept

Fig. 7. Meta Schema of the DTD

Similar to the database schema component, XMLElemType and XMLAttribute are
generalized to XMLConcept . For enumeration attributes the possible values are stored
within XMLAttValEnum . According to the kinds of element types described in Section
2 and 3, XMLElemType is specialized into XMLAtomicET , XMLEmptyET, and XMLCompo-

siteET . The latter is further specialized into XMLCompositeETMixedContent and
XMLCompositeETElemContent .

The nesting structure of an XMLCompositeETElemContent is described by the pack-
age CompositionStructure (cf. Fig. 8). For an XMLCompositeETMixedContent the
nesting structure needs not to be represented in the meta schema, since, as already

mentioned, component element types are allowed to occur in a choice with cardinality
‘ * ’, only.

XMLMain::XMLElemType

**

*XMLMain::
XMLCompositeETElemContent

XMLContentParticle

XMLSequence XMLChoice

1..*

1

1..*

1

Position

CompositionStructure

has outer most
content particle

Fig. 8. Meta Schema of the XML Composition Structure

For component element types occurring in an XMLSequence or in an XMLChoice , the
cardinality of the element type and in case of a sequence its position have to be
stored. Furthermore, arbitrary combinations of sequences and choices can be de-
scribed.

4.3 Mapping Knowledge

The mapping knowledge is expressed by various associations between the object
classes of the XML DTD component and the database schema component. Fig. 9
illustrates these mapping relationships denoting them with bold lines.

XMLCompositeET

1* XMLElemType

XMLAtomicET XMLEmptyET

XMLAttribute

0..1

0..1

XMLCompositeET
ElemContent

DBSchema

has root
elem type

1

0..1

DBRelation

DBConcept

1..*

1

1

1..*

0..1

**XMLDTD

0..1 0..1

XMLDBSchemaMapping

1

0..1

DBAttribute

XMLCompositeET
MixedContent

0..1

0..1

0..1

0..1

XMLConcept

{OR}
0..1

0..1

Fig. 9. Meta Schema Describing the Mapping Knowledge

For representation convenience, only those object classes are shown which are part
of a mapping relationship. In order to meet the requirement that the meta schema is
able to store mappings between different DTDs (XMLDTD) and different database
schemata (DBSchema), the mapping between the class XMLConcept and the class
DBConcept takes part in a ternary relationship with the association class
XMLDBSchemaMapping. As discussed in Section 3, deciding on the exact kind of ele-
ment type is a prerequisite for deciding a reasonable mapping to a database concept.
Consequently, the leaf classes of the XMLElemType hierarchy are mapped to DBAt-

tribute with two exceptions. The class XMLCompositeETElemContent is mapped to

DBRelation , and the mapping of class XMLEmptyET is not further refined, since it
inherits the (ternary) association to DBConcept . Besides the mapping relationships
depicted in Fig. 9 there are also relationships to class DBJoinPath (cf. Fig. 6) which
are not illustrated for representation convenience. Due to space restrictions, the at-
tributes of the various object classes are also not shown. An example mapping in
terms of the filled-in meta schema is given in [17].

5 Conclusion and Future Work

The main contribution of this paper is to describe X-Ray, an approach for mapping
between XML DTDs and relational schemata. The mapping knowledge is not hard-
coded but rather reified in terms of instances of a meta schema thus supporting
autonomy of the participating DTDs and relational schemata as well as a generic
integration thereof. On the basis of the meta schema, XML documents may be auto-
matically composed out of data stored within an RDBS and vice versa decomposed
into relational data without any loss of information. The X-Ray prototype builds on
former experience in the area of data model heterogeneity and schema heterogeneity
[16], and is currently used for case studies to investigate the validity of the developed
meta schema.

Future work comprises short-term tasks such as supporting the whole set of XML
concepts like implicit ordering and entity definitions, as well as long-term tasks such
as integrating the XML Linking Language (XLink) and the XML Pointer Language
(XPointer) [28]. The latter will support the mapping of several XML documents and
links between them to relational structures and vice versa. Another important aspect
will be the investigation for simplifying the mapping between heterogeneous DTDs
and relational schemata by, e.g., simplifying the given DTDs before mapping them
[24]. In this respect it will be also analyzed, how far the definition of the mapping
knowledge may be automated on the basis of the reasonable mapping patterns de-
scribed above. Leaving optimization issues aside, an automatically generated default
mapping should be possible. If both legacy DTDs and legacy relational schemata are
involved, however, schema heterogeneity will impede an automatic mapping.

References

[1] Abiteboul, S., Buneman, P., Suciu, D.: Data on the Web: From Relations to Semistructured Data and
XML. Morgan Kaufmann Publishers, 2000

[2] Bourret, R.: XML and Databases. Technical University of Darmstadt, http://www.informatik.tu-
darmstadt.de/DVS1/staff/bourret/xml/XMLAndDatabases.htm, June, 2000

[3] Bourret, R., Bornhövd, C., Buchmann, A.P.: A Generic Load/Extract Utility for Data Transfer Be-
tween XML Documents and Relational Databases. 2nd Int. Workshop on Advanced Issues of EC and
Web-based Information Systems (WECWIS), San Jose, California, June, 2000

[4] Böhm, K., Aberer, K.: HyperStorM - Administering Structured Documents Using Object-Oriented
Database Technology. Proc. of the ACM SIGMOD Int. Conf. on Management of Data, Montreal,
Canada, June 1996

[5] Carey, M., Florescu, D., Ives, Z., Lu, Y., Shanmugasundaram, J., Shekita, E., Subramanian, S.:
XPERANTO: Publishing Object-Relational Data as XML. Int. Workshop on the Web and Databases
(WebDB), Dallas, May, 2000

[6] Ceri, S., Fraternali, P., Paraboschi, S.: Design Principles for Data-Intensive Web Sites. ACM SIG-
MOD Record, Vol. 24, No. 1, March 1999

[7] Ceri, S., Fraternali, P., Paraboschi, S.: XML: Current Developments and Future Challenges for the
Database Community. Proc. of the 7th Int. Conf. on Extending Database Technology (EDBT),
Springer, LNCS 1777, Konstanz, March, 2000

[8] Deutsch, A., Fernandez, M., Suciu, D.: Storing Semistructured Data in Relations. Workshop on
Query Processing for Semistructured Data and Non-Standard Data Formats, Jerusalem, Jan., 1999

[9] Ehmayer, G., Kappel, G., Reich, S.: Connecting Databases to the Web - A Taxonomy of Gateways.
Proc. of the 8th Int. Conf. on Database and Expert Systems Applications (DEXA), Springer LNCS
1308, Toulouse, September, 1997

[10] Fernandez, M., Tan, W-C., Suciu, D.: SilkRoute: Trading between Relations and XML. 9th Int. World
Wide Web Conf. (WWW), Amsterdam, May, 2000

[11] Florescu, D., Levy, A., Mendelzon, A.: Database Techniques for the World Wide Web: A Survey.
ACM SIGMOD Record, Vol. 27, No. 3, September, 1998

[12] Florescu, D., Kossmann, D.: Storing and Querying XML Data Using an RDBMS. IEEE Data Engi-
neering Bulletin, Special Issue on XML, Vol. 22, No. 3, September, 1999

[13] Gardarin, G., Sha, F., Dang-Ngoc, T.-T.: XML-based Components for Federating Multiple Heteroge-
neous Data Sources. Proc. of the 18th Int. Conf. on Conceptual Modeling (ER), Paris, Nov., 1999

[14] Goldman, R., McHugh, J., Widom, J.: From Semistructured Data to XML: Migrating the Lore Data
Model and Query Language. Proc. of the 2nd Int. Workshop on the Web and Databases (WebDB),
Philadelphia, June, 1999

[15] Kanne, C.-C., Moerkotte, G.: Efficient Storage of XML Data. Proc. Of the 16th Int. Conf. On Data
Engineering (ICDE), San Diego, March, 2000

[16] Kappel, G., Preishuber, S., Pröll, E., Rausch-Schott, S., Retschitzegger, W., Wagner, R.R., Gierlinger,
Ch.: COMan - Coexistence of Object-Oriented and Relational Technology. Proc. of the 13th Int. Conf.
on the Entity-Relationship Approach (ER), Manchester, December, 1994

[17] Kappel, G., Kapsammer, E., Retschitzegger, W.: X-Ray – Towards Integrating XML and Relational
Database Systems. Technical Report, Department of Information Systems (IFS), JKU Linz,
http://www.ifs.uni-linz.ac.at/ifs/research/publications/papers00.html, July, 2000

[18] Klettke, M., Meyer, H.: XML and Object-Relational Database Systems - Enhancing StructuralMap-
pings Based on Statistics. Int. Workshop on the Web and Databases (WebDB), Dallas, May, 2000

[19] Object Design, Inc.: An XML Data Server for Building Enterprise Web Applications.
http://www.odi.com/excelon/XMLResource/build_ent_web_apps.pdf, 1999

[20] Pröll, B., Sighart, H., Retschitzegger, W., Starck, H.: Ready for Prime Time - Pre-Generation of Web
Pages in TIScover. Proc. of the 8th Int. ACM Conference on Information and Knowledge Management
(CIKM), Kansas City, Missouri, November, 1999

[21] Raumbaugh, J., Jacobson, I., Booch, G.: The Unified Modeling Language Reference Manual.
Addison-Wesley, 1999

[22] Schmidt, A. R., Kersten, M. L., Windhouwer, M. A., Waas, F.: Efficient Relational Storage and
Retrieval of XML Documents. Workshop on the Web and Databases (WebDB), Dallas, May, 2000

[23] Schöning, H., Wäsch, J.: Tamino – An Internet Database System. Proc. of the 7th Int. Conf. on Ex-
tending Database Technology (EDBT), Springer, LNCS 1777, Konstanz, March, 2000

[24] Shanmugasundaram, J., et al.: Relational Databases for Querying XML Documents: Limitations and
Opportunities. Proc. of the 25th Int. Conf. On Very Large Data Bases (VLDB), Edinburgh, 1999

[25] Shoens, K., et al.: The Rufus system: Information organization for semi-structured data. Proc. of the
Int. Conf. On Very Large Data Bases (VLDB), Dublin, Ireland, 1993

[26] Surjanto, B., Ritter, N., Loeser, H.: XML Content Management based on Object-Relational Database
Technology. Proc. Of the 1st Int. Conf. On Web Information Systems Engineering (WISE), Hong-
kong, June 2000

[27] Widom, J.: Data Management for XML - Research Directions. IEEE Data Engineering Bulletin,
Special Issue on XML, Vol. 22, No. 3, September, 1999

[28] W3C - World-Wide-Web Consortium. http://www.w3.org, 2000
[29] VanZwol, R., Apers, P., Wilschutz, A.: Implementing Semi Structured Data with Moa. Workshop on

Query Processing for Semistructured Data and Non-Standard Data Formats, Jerusalem, Jan., 1999

