1 OGC Simple Features Geometry Model

1.1 Geometry object model

This subclause describes the object model for simple feature geometry; Annex A provides a mapping of geometry object model with the Spatial Schema defined in ISO 19107.It is Distributed Computing Platform neutral and uses OMT notation. The object model for geometry is shown in Figure 1. The base Geometry class has subclasses for Point, Curve, Surface and GeometryCollection. Each geometric object is associated with a Spatial Reference System, which describes the coordinate space in which the geometric object is defined.

Figure 1 is based on an extended Geometry model with specialized 0, 1 and two-dimensional collection classes named MultiPoint, MultiLineString and MultiPolygon for modeling geometries corresponding to collections of Points, LineStrings and Polygons respectively. MultiCurve and MultiSurface are introduced as abstract superclasses that generalize the collection interfaces to handle Curves and Surfaces. Figure 1 shows aggregation lines between the leaf collection classes and their element classes; the aggregation lines for non-leaf collection classes are described in the text.

The attributes, methods and assertions for each Geometry class are described below. In describing methods, this is used to refer to the receiver of the method (the object being messaged).

[image: image1.wmf]MultiPoint

Surface

Curve

Point

LinearRing

LineString

Line

GeometryCollection

SpatialReferenceSystem

Geometry

MultiCurve

MultiLineString

MultiSurface

MultiPolygon

Polygon

1+

1+

1+

1+

2+

Figure 0\IF >= 1 "A."

SEQ figure
1
 — Geometry class hierarchy

1.1.1 Geometry

1.1.1.1 Description

Geometry is the root class of the hierarchy. Geometry is an abstract (non-instantiable) class.

The instantiable subclasses of Geometry defined in this International Standard are restricted to 0, 1 and two-dimensional geometric objects that exist in two-dimensional coordinate space ((2).
All instantiable Geometry classes described in this International Standard are defined so that valid instances of a Geometry class are topologically closed, i.e. all defined geometries include their boundary.

1.1.1.2 Basic methods on geometry

· Dimension ():Integer—The inherent dimension of this Geometry object, which must be less than or equal to the coordinate dimension. This specification is restricted to geometries in two-dimensional coordinate space.

· GeometryType ():String —Returns the name of the instantiable subtype of Geometry of which this Geometry instance is a member. The name of the instantiable subtype of Geometry is returned as a string.

· SRID ():Integer—Returns the Spatial Reference System ID for this Geometry.

· Envelope():Geometry—The minimum bounding box for this Geometry, returned as a Geometry. The polygon is defined by the corner points of the bounding box ((MINX, MINY), (MAXX, MINY), (MAXX, MAXY), (MINX, MAXY), (MINX, MINY)).

· AsText():String — Exports this Geometry to a specific Well-known Text Representation of Geometry.

· AsBinary():Binary — Exports this Geometry to a specific Well-known Binary Representation of Geometry.

· IsEmpty():Integer — Returns 1 (TRUE) if this Geometry is the empty Geometry. If true, then this Geometry represents the empty point set, (, for the coordinate space.

· IsSimple():Integer — Returns 1 (TRUE) if this Geometry has no anomalous geometric points, such as self intersection or self tangency. The description of each instantiable geometric class will include the specific conditions that cause an instance of that class to be classified as not simple.

· Boundary():Geometry — Returns the closure of the combinatorial boundary of this Geometry([1], section 3.12.2). Because the result of this function is a closure, and hence topologically closed, the resulting boundary can be represented using representational Geometry primitives ([1], section 3.12.2).

1.1.1.3 Methods for testing spatial relations between geometric objects

The methods in this subclause are defined and described in more detail following the description of the sub types of Geometry.

· Equals(anotherGeometry:Geometry):Integer — Returns 1 (TRUE) if this Geometry is ‘spatially equal’ to anotherGeometry.

· Disjoint(anotherGeometry:Geometry):Integer — Returns 1 (TRUE) if this Geometry is ‘spatially disjoint’ from anotherGeometry.

· Intersects(anotherGeometry:Geometry):Integer — Returns 1 (TRUE) if this Geometry ‘spatially intersects’ anotherGeometry.

· Touches(anotherGeometry:Geometry):Integer — Returns 1 (TRUE) if this Geometry ‘spatially touches’ anotherGeometry.

· Crosses(anotherGeometry:Geometry):Integer — Returns 1 (TRUE) if this Geometry ‘spatially crosses’ anotherGeometry.

· Within(anotherGeometry:Geometry):Integer — Returns 1 (TRUE) if this Geometry is ‘spatially within’ anotherGeometry.

· Contains(anotherGeometry:Geometry):Integer — Returns 1 (TRUE) if this Geometry ‘spatially contains’ anotherGeometry.

· Overlaps(anotherGeometry:Geometry):Integer — Returns 1 (TRUE) if this Geometry ‘spatially overlaps’ anotherGeometry.

· Relate(anotherGeometry:Geometry, intersectionPatternMatrix:String):Integer — Returns 1 (TRUE) if this Geometry is spatially related to anotherGeometry by testing for intersections between the interior, boundary and exterior of the two geometries as specified by the values in the intersectionPatternMatrix.

1.1.1.4 Methods that support spatial analysis

· Distance(anotherGeometry:Geometry):Double — Returns the shortest distance between any two Points in the two geometries as calculated in the spatial reference system of this Geometry.

· Buffer(distance:Double):Geometry — Returns a Geometry that represents all Points whose distance from this Geometry is less than or equal to distance. Calculations are in the Spatial Reference System of this Geometry.

· ConvexHull():Geometry — Returns a Geometry that represents the convex hull of this Geometry.

· Intersection(anotherGeometry:Geometry):Geometry — Returns a Geometry that represents the Point set intersection of this Geometry with anotherGeometry.

· Union(anotherGeometry:Geometry):Geometry — Returns a Geometry that represents the Point set union of this Geometry with anotherGeometry.

· Difference(anotherGeometry:Geometry):Geometry — Returns a Geometry that represents the Point set difference of this Geometry with anotherGeometry.

· SymDifference(anotherGeometry:Geometry):Geometry — Returns a Geometry that represents the Point set symmetric difference of this Geometry with anotherGeometry.

1.1.2 GeometryCollection

1.1.2.1 Description

A GeometryCollection is a Geometry that is a collection of 1 or more geometries.

All the elements in a GeometryCollection shall be in the same Spatial Reference. This is also the Spatial Reference for the GeometryCollection.

GeometryCollection places no other constraints on its elements. Subclasses of GeometryCollection may restrict membership based on dimension and may also place other constraints on the degree of spatial overlap between elements.

1.1.2.2 Methods

· NumGeometries():Integer—Returns the number of geometries in this GeometryCollection.

· GeometryN(N:integer):Geometry—Returns the Nth geometry in this GeometryCollection.

1.1.3 Point

1.1.3.1 Description

A Point is a 0-dimensional geometry and represents a single location in coordinate space. A Point has an x-coordinate value and a y-coordinate value.

The boundary of a Point is the empty set.

1.1.3.2 Methods

· X():Double — The x-coordinate value for this Point.

· Y():Double — The y-coordinate value for this Point.

1.1.4 MultiPoint

A MultiPoint is a 0 dimensional GeometryCollection. The elements of a MultiPoint are restricted to Points. The Points are not connected or ordered.

A MultiPoint is simple if no two Points in the MultiPoint are equal (have identical coordinate values).

The boundary of a MultiPoint is the empty set.

1.1.5 Curve

1.1.5.1 Description

A Curve is a one-dimensional geometric object usually stored as a sequence of Points, with the subtype of Curve specifying the form of the interpolation between Points. This International Standard defines only one subclass of Curve, LineString, which uses linear interpolation between Points.

A Curve is a one-dimensional geometric object that is the homeomorphic image of a real, closed, interval D = [a, b] = {x (R (a <= x <= b} under a mapping f:[a,b] ((2.

A Curve is simple if it does not pass through the same Point twice ([1], section 3.12.7.3):

(c (Curve, [a, b] = c.Domain,

c.IsSimple (((x1, x2 ((a, b] x1 (x2 (f(x1) (f (x2)) (((x1, x2 ([a, b) x1 (x2 (f(x1) (f(x2))
A Curve is closed if its start Point is equal to its end Point ([1], section 3.12.7.3).

The boundary of a closed Curve is empty.

A Curve that is simple and closed is a Ring.

The boundary of a non-closed Curve consists of its two end Points ([1], section 3.12.3.2).

A Curve is defined as topologically closed.

1.1.5.2 Methods

· Length():Double — The length of this Curve in its associated spatial reference.

· StartPoint():Point — The start Point of this Curve.

· EndPoint():Point — The end Point of this Curve.

· IsClosed():Integer — Returns 1 (TRUE) if this Curve is closed (StartPoint () = EndPoint ()).

· IsRing():Integer — Returns 1 (TRUE) if this Curve is closed (StartPoint () = EndPoint ()) and this Curve is simple (does not pass through the same Point more than once).

1.1.6 LineString, Line, LinearRing

1.1.6.1 Description

A LineString is a Curve with linear interpolation between Points. Each consecutive pair of Points defines a Line segment.

A Line is a LineString with exactly 2 Points.

A LinearRing is a LineString that is both closed and simple. The Curve in Figure 2 — (3) is a closed LineString that is a LinearRing. The Curve in Figure 2 — (4) is a closed LineString that is not a LinearRing.

[image: image2.wmf]s

e

s

e

s

e

s

e

(1)

simple

(2)

non-simple

(3)

closed

simple

(4)

closed

non-simple

Figure 0\IF >= 1 "A."

SEQ figure
2
 — (1) a simple LineString, (2) a non-simple LineString, (3) a simple, closed LineString (a LinearRing), (4) a non-simple closed LineString

1.1.6.2 Methods

· NumPoints():Integer — The number of Points in this LineString.

· PointN(N:Integer):Point — Returns the specified Point N in this Linestring.

1.1.7 MultiCurve

1.1.7.1 Description

A MultiCurve is a one-dimensional GeometryCollection whose elements are Curves as in Figure 3.

MultiCurve is a non-instantiable class in this specification; it defines a set of methods for its subclasses and is included for reasons of extensibility.

A MultiCurve is simple if and only if all of its elements are simple and the only intersections between any two elements occur at Points that are on the boundaries of both elements.

The boundary of a MultiCurve is obtained by applying the “mod 2” union rule: A Point is in the boundary of a MultiCurve if it is in the boundaries of an odd number of elements of the MultiCurve ([1], section 3.12.3.2).

A MultiCurve is closed if all of its elements are closed. The boundary of a closed MultiCurve is always empty.

A MultiCurve is defined as topologically closed.

1.1.7.2 Methods

· IsClosed():Integer — Returns 1 (TRUE) if this MultiCurve is closed (StartPoint () = EndPoint () for each Curve in this MultiCurve)

· Length():Double — The Length of this MultiCurve which is equal to the sum of the lengths of the element Curves.

1.1.8 MultiLineString

A MultiLineString is a MultiCurve whose elements are LineStrings.

[image: image3.wmf]s

2

e

2

s

1

e

1

(2)

non-simple

(1)

simple

s

s

2

e

1

e

2

(3)

closed

simple

s

2

e

2

s

1

e

1

Figure 0\IF >= 1 "A."

SEQ figure
3
 — (1) a simple MultiLineString, (2) a non-simple MultiLineString with 2 elements, (3) a non simple, closed MultiLineString with 2 elements

The boundaries for the MultiLineStrings in Figure 3 are (1)({s1, e2}, (2)({s1, e1}, (3)((.

1.1.9 Surface

1.1.9.1 Description

A Surface is a two-dimensional geometric object.

A simple Surface consists of a single ‘patch’ that is associated with one ‘exterior boundary’ and 0 or more ‘interior’ boundaries. Simple Surfaces in three-dimensional space are isomorphic to planar Surfaces. Polyhedral Surfaces are formed by ‘stitching’ together simple Surfaces along their boundaries, polyhedral Surfaces in three-dimensional space may not be planar as a whole ([1], section 3.12.9.1, 3.12.9.3).

The boundary of a simple Surface is the set of closed Curves corresponding to its ‘exterior’ and ‘interior’ boundaries ([1], section 3.12.9.4).

The only instantiable subclass of Surface defined in this specification, Polygon, is a simple Surface that is planar.

1.1.9.2 Methods

· Area():Double — The area of this Surface, as measured in the spatial reference system of this Surface.

· Centroid():Point — The mathematical centroid for this Surface as a Point. The result is not guaranteed to be on this Surface.

· PointOnSurface():Point — A Point guaranteed to be on this Surface.

1.1.10 Polygon

1.1.10.1 Description

A Polygon is a planar Surface defined by 1 exterior boundary and 0 or more interior boundaries. Each interior boundary defines a hole in the Polygon.

The assertions for Polygons (the rules that define valid Polygons) are as follows:

a) Polygons are topologically closed;

b) The boundary of a Polygon consists of a set of LinearRings that make up its exterior and interior boundaries;

c) No two Rings in the boundary cross and the Rings in the boundary of a Polygon may intersect at a Point but only as a tangent e.g. (P (Polygon, (c1, c2 (P.Boundary(), c1 (c2, (p, q (Point, p, q (c1, p (q, [p (c2 (q (c2];
d) A Polygon may not have cut lines, spikes or punctures e.g. .(P (Polygon, P = Closure(Interior(P));
e) The interior of every Polygon is a connected point set;

f) The exterior of a Polygon with 1 or more holes is not connected. Each hole defines a connected component of the exterior.

In the above assertions, interior, closure and exterior have the standard topological definitions. The combination of (a) and (c) make a Polygon a regular closed Point set.

Polygons are simple geometries.

Figure 4 shows some examples of Polygons. Figure 5 shows some examples of geometric objects that violate the above assertions and are not representable as single instances of Polygon.

[image: image4.wmf](1)

(2)

(3)

Figure 0\IF >= 1 "A."

SEQ figure
4
 — Examples of Polygons with 1, 2 and 3Rings respectively

[image: image5.wmf](1)

(2)

(3)

(4)

Figure 0\IF >= 1 "A."

SEQ figure
5
 — Examples of objects not representable as a single instance of Polygon.

1.1.10.2 Methods

· ExteriorRing():LineString—Returns the exteriorRing of this Polygon.

· NumInteriorRing():Integer—Returns the number of interiorRings in this Polygon.

· InteriorRingN(N:Integer):LineString—Returns the Nth interiorRing for this Polygon as a LineString.

1.1.11 MultiSurface

1.1.11.1 Description

A MultiSurface is a two-dimensional GeometryCollection whose elements are Surfaces. The interiors of any two Surfaces in a MultiSurface may not intersect. The boundaries of any two elements in a MultiSurface may intersect, at most, at a finite number of Points.

MultiSurface is a non-instantiable class in this International Standard. It defines a set of methods for its subclasses and is included for reasons of extensibility. The instantiable subclass of MultiSurface is MultiPolygon, corresponding to a collection of Polygons.

1.1.11.2 Methods

· Area():Double—The area of this MultiSurface, as measured in the Spatial Reference System of this MultiSurface.

· Centroid():Point—The mathematical centroid for this MultiSurface. The result is not guaranteed to be on this MultiSurface.

· PointOnSurface():Point—A Point guaranteed to be on this MultiSurface.

1.1.12 MultiPolygon

A MultiPolygon is a MultiSurface whose elements are Polygons.

The assertions for MultiPolygons are as follows:

g) The interiors of 2 Polygons that are elements of a MultiPolygon may not intersect.

(M (MultiPolygon, (Pi, Pj (M.Geometries(), i(j, Interior(Pi) (Interior(Pj) = (;
h) The boundaries of any 2 Polygons that are elements of a MultiPolygon may not ‘cross’ and may touch at only a finite number of Points.

(M (MultiPolygon, (Pi, Pj (M.Geometries(), (ci (Pi.Boundaries(), cj (Pj.Boundaries()
ci (cj = {p1, ….., pk | pi (Point, 1 <= i <= k};
NOTE
Crossing is prevented by assertion (a) above.

i) A MultiPolygon is defined as topologically closed;

j) A MultiPolygon may not have cut lines, spikes or punctures, a MultiPolygon is a regular closed Point set:

[image: image6.wmf](M (MultiPolygon, M = Closure(Interior(M))

k) The interior of a MultiPolygon with more than 1 Polygon is not connected, the number of connected components of the interior of a MultiPolygon is equal to the number of Polygons in the MultiPolygon.

The boundary of a MultiPolygon is a set of closed Curves (LineStrings) corresponding to the boundaries of its element Polygons. Each Curve in the boundary of the MultiPolygon is in the boundary of exactly 1 element Polygon, and every Curve in the boundary of an element Polygon is in the boundary of the MultiPolygon.

Th reader is referred to works by Worboys, et. Al. [7,8] and Clementini, et.al. [5,6] for the definition and specification of MultiPolygons.

Figure 6 shows 4 examples of valid MultiPolygons with 1, 3, 2 and 2 Polygon elements respectively.

[image: image7.wmf](3)

(2)

(1)

(4)

Figure 0\IF >= 1 "A."

SEQ figure
6
 — Examples of MultiPolygons

Figure 7 shows examples of geometric objects not representable as single instances of MultiPolygons.

NOTE 2
The subclass of Surface named Polyhedral Surface as described in [1], is a faceted Surface whose facets are Polygons. A Polyhedral Surface is not a MultiPolygon because it violates the rule for MultiPolygons that the boundaries of the element Polygons intersect only at a finite number of Points.

[image: image8.wmf](1)

(2)

(3)

Figure 0\IF >= 1 "A."

SEQ figure
7
 — Geometric objects not representable as a single instance of a MultiPolygon

1.1.13 Relational operators

1.1.13.1 Background

The Relational Operators are Boolean methods that are used to test for the existence of a specified topological spatial relationship between two geometries. Topological spatial relationships between two geometric objects have been a topic of extensive study [4,5,6,7,8,9,10]. The basic approach to comparing two geometries is to make pair-wise tests of the intersections between the interiors, boundaries and exteriors of the two geometries and to classify the relationship between the two geometries based on the entries in the resulting ‘intersection’ matrix.

The concepts of interior, boundary and exterior are well defined in general topology [4]. These concepts can be applied in defining spatial relationships between two-dimensional objects in two-dimensional space ((2). In order to apply the concepts of interior, boundary and exterior to 1 and 0 dimensional objects in (2, a combinatorial topology approach shall be applied ([1], section 3.12.3.2).. This approach is based on the accepted definitions of the boundaries, interiors and exteriors for simplicial complexes [12] and yields the following results:

The boundary of a Geometry is a set of geometries of the next lower dimension. The boundary of a Point or a MultiPoint is the empty set. The boundary of a non-closed Curve consists of its two end Points, the boundary of a closed Curve is empty. The boundary of a MultiCurve consists of those Points that are in the boundaries of an odd number of its element Curves. The boundary of a Polygon consists of its set of Rings. The boundary of a MultiPolygon consists of the set of Rings of its Polygons. The boundary of an arbitrary collection of geometries whose interiors are disjoint consists of geometries drawn from the boundaries of the element geometries by application of the “mod 2” union rule ([1], section 3.12.3.2)..

The domain of geometric objects considered is those that are topologically closed. The interior of a Geometry consists of those Points that are left when the boundary Points are removed. The exterior of a Geometry consists of Points not in the interior or boundary.

Studies on the relationships between two geometries both of maximal dimension in (1 and (2 considered pair-wise intersections between the interior and boundary sets and led to the definition of a four intersection model [8]. The model was extended to consider the exterior of the input geometries, resulting in a nine intersection model [11] and further extended to include information on the dimension of the results of the pair-wise intersections resulting in a dimensionally extended nine intersection model [5]. These extensions allow the model to express spatial relationships between points, lines and areas, including areas with holes and multi component lines and areas [6].

1.1.13.2 The Dimensionally Extended Nine-Intersection Model (DE-9IM)

Given a Geometry a, let I(a), B(a) and E(a) represent the interior, boundary and exterior of a respectively.

Let dim(x) return the maximum dimension (-1, 0, 1, or 2) of the geometries in x, with a numeric value of -1 corresponding to dim(().

The intersection of any two of I(a), B(a) and E(a) can result in a set of geometries, x, of mixed dimension. For example, the intersection of the boundaries of two Polygons may consist of a point and a line.

Table 1 shows the general form of the dimensionally extended nine-intersection matrix (DE-9IM).

Table 0\IF >= 1 "A."

SEQ table
1
 — The DE-9IM

Interior
Boundary
Exterior

Interior
dim(I(a)(I(b))
dim(I(a)(B(b))
dim(I(a)(E(b))

Boundary
dim(B(a)(I(b))
dim(B(a)(B(b))
dim(B(a)(E(b))

Exterior
dim(E(a)(I(b))
dim(E(a)(B(b))
dim(E(a)(E(b))

For regular, topologically closed input geometries, computing the dimension of the intersection of the interior, boundary and exterior sets does not have, as a prerequisite, the explicit computation and representation of these sets. To compute if the interiors of two regular closed Polygons intersect, and to ascertain the dimension of this intersection, it is not necessary to explicitly represent the interior of the two Polygons, which are topologically open sets, as separate geometries.In most cases the dimension of the intersection value at a cell is highly constrained given the type of the two geometries. In the Line-Area case the only possible values for the interior-interior cell are drawn from {-1, 1} and in the Area-Area case the only possible values for the interior-interior cell are drawn from {-1, 2}. In such cases no work beyond detecting the intersection is required.

Figure 8 shows an example DE-9IM for the case where a and b are two Polygons that overlap.

[image: image9.wmf]Interior

Boundary

Exterior

Interior

2

1

2

Boundary

1

0

1

Exterior

2

1

2

(a)

(b)

Figure 0\IF >= 1 "A."

SEQ figure
8
 — An example instance and its DE-9IM

A spatial relationship predicate can be formulated on two geometries that take as input a pattern matrix representing the set of acceptable values for the DE-9IM for the two geometries. If the spatial relationship between the two geometries corresponds to one of the acceptable values as represented by the pattern matrix, then the predicate returns TRUE.

The pattern matrix consists of a set of 9 pattern-values, one for each cell in the matrix. The possible pattern-values p are {T, F, *, 0, 1, 2} and their meanings for any cell where x is the intersection set for the cell are as follows:

p = T => dim(x) ({0, 1, 2}, i.e. x ((
p = F => dim(x) = -1, i.e. x = (
p = * => dim(x) ({-1, 0, 1, 2}, i.e. Don’t Care

p = 0 => dim(x) = 0

p = 1 => dim(x) = 1

p = 2 => dim(x) = 2

The pattern matrix can be represented as an array or list of nine characters in row major order. As an example the following code fragment could be used to test for “Overlap” between two areas:

char * overlapMatrix = “T*T***T**”;

Geometry* a, b;

Boolean b = a->Relate(b, overlapMatrix);
1.1.13.3 Named spatial relationship predicates based on the DE-9IM

The Relate predicate based on the pattern matrix has the advantage that clients can test for a large number of spatial relationships and fine tune the particular relationship being tested. It has the disadvantage that it is a lower level building block and does not have a corresponding natural language equivalent. Users of the proposed system include IT developers using the COM API from a language such as Visual Basic, and interactive SQL users who may wish, for example, to select all features ‘spatially within’ a query Polygon, in addition to more spatially ‘sophisticated’ GIS developers.

To address the needs of such users a set of named spatial relationship predicates has been defined for the DE-9IM [5,6]. The five predicates are named Disjoint, Touches, Crosses, Within and Overlaps. The definition of these predicates [5,6] is given below. In these definitions the term P is used to refer to 0 dimensional geometries (Points and MultiPoints), L is used to refer to one-dimensional geometries (LineStrings and MultiLineStrings) and A is used to refer to two-dimensional geometries (Polygons and MultiPolygons).

Disjoint

Given two (topologically closed) geometries a and b,

a.Disjoint(b) (a (b = (
Expressed in terms of the DE-9IM

a.Disjoint(b) ((I(a)(I(b) = () ((I(a) (B(b) = () ((B(a) (I(b) = () ((B(a) (B(b) = ()
(a.Relate(b, “FF*FF****”)
Touches

The Touches relationship between two geometries a and b applies to the A/A, L/L, L/A, P/A and P/L groups of relationships but not to the P/P group. It is defined as

a.Touch(b) ((I(a)(I(b) = () ((a (b) ((
Expressed in terms of the DE-9IM

a.Touch(b) ((I(a)(I(b) = () (((B(a) (I(b) (() ((I(a) (B(b) (() ((B(a)(B(b) (())
(a.Relate(b, “FT*******”) (a.Relate(b, “F**T*****”) (a.Relate(b, “F***T****”)

Figure 9 shows some examples of the Touches relationship.

[image: image10.wmf]Polygon/Polygon

Polygon/LineString

Polygon/Point

LineString/Point

LineString/LineString

(a)

(b)

1

2

1

2

(a)

(b)

Figure 0\IF >= 1 "A."

SEQ figure
9
 — Examples of the Touches relationship

Crosses

The Crosses relationship applies to P/L, P/A, L/L and L/A situations. It is defined as

a.Cross(b) ((dim(I(a) (I(b) < max(dim(I(a)), dim(I(b)))) ((a (b (a) ((a (b (b)

Expressed in terms of the DE-9IM

Case a (P, b (L or Case a (P, b (A or Case a (L, b (A:

a.Cross(b) ((I(a) (I(b) (() ((I(a) (E(b) (() (a.Relate(b, “T*T******”)

Case a (L, b (L:

a.Cross(b) (dim(I(a)(I(b)) = 0 (a.Relate(b, “0********”);

Figure 10 shows some examples of the Crosses relationship.

[image: image11.wmf]Polygon/LineString

LineString/LineString

Figure 0\IF >= 1 "A."

SEQ figure
10
 — Examples of the Crosses relationship

Within
The Within relationship is defined as

a.Within(b) ((a (b = a) ((I(a) (E(b) (()

Expressed in terms of the DE-9IM

a.Within(b) ((I(a)(I(b) (() ((I(a) (E(b) =() ((B(a)(E(b) =()) (a.Relate(b, “TF*F*****”)

Figure 11 shows some examples of the Within relationship.

[image: image12.wmf]Polygon/Polygon

Polygon/LineString

Polygon/Point

LineString/LineString

Figure 0\IF >= 1 "D."

SEQ figure
11
 — Examples of the Within relationship

Overlaps
The Overlaps relationship is defined for A/A, L/L and P/P situations.

It is defined as

a.Overlap(b) ((dim(I(a)) = dim(I(b)) = dim(I(a) (I(b))) ((a (b (a) ((a (b (b)

Expressed in terms of the DE-9IM

Case a (P, b (P or Case a (A, b (A:

a.Overlap(b) ((I(a) (I(b)(() ((I(a) (E(b)(() ((E(a) (I(b)(() (a.Relate(b, “T*T***T**”)

Case a (L, b (L:

a.Overlap(b) ((dim(I(a) (I(b) = 1) ((I(a) (E(b)(() ((E(a) (I(b)(() (a.Relate(b, “1*T***T**”)

Figure 12 shows some examples of the Overlaps relationship.

[image: image13.wmf]Polygon/LineString

LineString/LineString

Figure 0\IF >= 1 "A."

SEQ figure
12
 — Examples of the Overlaps relationship

The following additional named predicates are also defined for user convenience:

Contains
a.Contains(b) (b.Within(a)

Intersects
a.Intersects(b) ((a.Disjoint(b)

Based on the above operators the following methods are defined on Geometry:

· Equals(anotherGeometry:Geometry):Integer — Returns 1 (TRUE) if this Geometry is ‘spatially equal’ to anotherGeometry.

· Disjoint(anotherGeometry:Geometry):Integer — Returns 1 (TRUE) if this Geometry is ‘spatially disjoint’ from anotherGeometry.

· Intersects(anotherGeometry:Geometry):Integer — Returns 1 (TRUE) if this Geometry ‘spatially intersects’ anotherGeometry.

· Touches(anotherGeometry:Geometry):Integer — Returns 1 (TRUE) if this Geometry ‘spatially touches’ anotherGeometry.

· Crosses(anotherGeometry:Geometry):Integer — Returns 1 (TRUE) if this Geometry ‘spatially crosses’ anotherGeometry.

· Within(anotherGeometry:Geometry):Integer — Returns 1 (TRUE) if this Geometry is ‘spatially within’ anotherGeometry.

· Contains(anotherGeometry:Geometry):Integer — Returns 1 (TRUE) if this Geometry ‘spatially contains’ anotherGeometry.

· Overlaps(anotherGeometry:Geometry):Integer — Returns 1 (TRUE) if this Geometry ‘spatially overlaps’ anotherGeometry.

· Relate(anotherGeometry:Geometry, intersectionPatternMatrix:String):Integer— Returns 1 (TRUE) if this Geometry is spatially related to anotherGeometry, by testing for intersections between the interior, boundary and exterior of the two geometries.

_1001582706.ppt

(1)

(2)

(3)

(4)

1

_1001582713.ppt

Polygon/Polygon

Polygon/LineString

Polygon/Point

LineString/Point

LineString/LineString

(a)

(b)

(a)

(b)

1

2

1

2

1

_1005390348.unknown

_1013895015.doc

MultiPoint

Surface

Curve

Point

LinearRing

LineString

Line

GeometryCollection

SpatialReferenceSystem

Geometry

MultiCurve

MultiLineString

MultiSurface

MultiPolygon

Polygon

1+

1+

1+

1+

2+

_1001582716.ppt

Polygon/Polygon

Polygon/LineString

Polygon/Point

LineString/LineString

1

_1001582717.ppt

Polygon/LineString

LineString/LineString

1

_1001582714.ppt

Polygon/LineString

LineString/LineString

1

_1001582710.ppt

(1)

(2)

(3)

1

_1001582711.ppt

(a)

(b)

1

Interior

Boundary

Exterior

Interior

2

1

2

Boundary

1

0

1

Exterior

2

1

2

Interior

Boundary

Exterior

Interior

2

1

2

Boundary

1

0

1

Exterior

2

1

2

_1001582708.ppt

(3)

(2)

(1)

(4)

_1001582704.ppt

(2)

non-simple

(1)

simple

(3)

closed

simple

s2

e2

s1

e1

s

s2

e1

e2

s2

e2

s1

e1

1

_1001582705.ppt

(1)

(2)

(3)

1

_1001582702.ppt

(1)

simple

(2)

non-simple

(3)

closed

simple

(4)

closed

non-simple

s

e

s

e

s

e

s

e

1

