Geography Markup Language (GML) v1.0
OGC Document Number: 00-029
Date: 25-April-2000

Thisversion: 1.0
Latest version: 1.0
Previous version: thisisthefirst public release

Editors: Ron Lake, Galdos Systems Inc. <rlake@agaldosinc.com>
Adrian Cuthbert, Laser-Scan Ltd. <adrian@lsl.co.uk>

Authors: Adrian Cuthbert, Laser-Scan Ltd. <adrian@lsl.co.uk>
Barry O'Rourke, Compusult Ltd. <barry@compusult.nf.ca>
Edric Keighan, Cubewerx Inc. <ekeighan@cubewerx.com>
Jayant Sharma, Oracle Corporation <jsharma@us.oracle.com>
Paul Daisey, U.S. Census Bureau <pdaisey(@geo.census.gov>
Ron Lake, Galdos Systems Inc. <rlake@galdosinc.com>
Sandra Johnson, Maplnfo Ltd. <sandra_johnson@mapinfo.com>

Abstract

The Geography Markup Language (GML) isan XML encoding for the transport and
storage of geographic information, including both the geometry and properties of
geographic features. This specification defines the mechanisms and syntax that GML uses
to encode geographic information in XML. It is anticipated that GML will make a
significant impact on the ability of organizations to share geographic information with one
another, and to enable linked geographic datasets. The initial release of this specification is
concerned with the XML encoding of what the OpenGIS® Consortium (OCG) calls'Simple
Features.

Status of this document

This document is an OpenGIS® Consortium Recommendation Paper. It issimilar to a
proposed recommendation in other organizations. While it reflects a public statement of the
official view of the OGC, it does not have the status of a OGC Technology Specification. It
is anticipated that the position stated in this document will develop in response to changes

Geography Markup Language (GML) v1.0 Page 1 of 78
OGC Document Number 00-029

in the underlying technology. Although changes to this document are governed by a
comprehensive review procedure, it is expected that some of these changes may be
significant.

The OGC explicitly invites comments on this document. Please send them to
gml.rfc@opengis.org

Available formats
This GML specification is available in the following formats.

« on-line(HTML)
« asazpfile
+ asaPDFfile

In case of adiscrepancy between the various forms of the specification, the on-line version
is considered the definitive version.

Theselinkswill be made live once the document is adopted and being placed on the
OGC site.

Available languages

The English version of this specification is the only normative version.

Table of Contents

1. An Introduction to Geographic Features

2. GML Overview

« 3. Geometry

« 4. Profilel - Fixed Feature DTD

« 5. Profile 2 - User Defined Feature DTD

+ 6. Profile 3 - RDF Foundations of GML

« 7. Spatial Reference Systems (informative)

« Appendix A: Geometry DTD

« Appendix B: Spatial Reference Systems DTD’s (informative)
« Appendix C: RDF Schema Definition of GML
« Appendix D: References

Copyright © 2000 OGC All Rights Reserved.

Geography Markup Language (GML) v1.0 Page 2 of 78
OGC Document Number 00-029

1. An Introduction to Geographic Features

1.1. Overview

This section provides an introduction to the key concepts required to understand how
Geography Markup Language (GML) models the world. It is based on the OpenGIS®
Abstract Specification (go to http://www.opengis.org/ and then follow the link to OpenGIS
Specifications and look for OpenGI S Abstract Specification) which defines a geographic
feature as:

"Afeatureisan abstraction of a real world phenomenon; it is a geographic
featureif it is associated with a location relative to the Earth.”

Thus adigital representation of the real world can be thought of as a set of features. The
state of afeatureis defined by a set of properties, where each property can be thought of
asa{name, type, value} triple. The number of properties a feature may have, together with
their names and types, are determined by its featur e type. Geographic features are those
with properties whose values may be a geometry. A feature collection is a collection of
features that can itself be regarded as a feature. Consequently a feature collection has a
feature type and thus may have properties of its own, in addition to the featuresit contains.

This definition of GML is concerned with what the OpenGIS Consortium (OGC) calls
'simple features. These are features whose geometry properties are restricted to holding
'simple geometry’ (for example, coordinates are defined in two dimensions and the path of
acurve between coordinates is assumed to be interpolated linearly). The term 'simple
features was originally coined to describe the functionality defined in a set of OpenGIS®
Implementation Specifications (go to http://www.opengis.org/ and then follow the link to
OpenGI S Specifications and look for OpenGI S Implementation Specifications).

GML follows the geometry model defined in those specifications. For example, the
traditional 0, 1 and 2-dimensional geometries defined in atwo-dimensional spatial

refer ence system (SRS) are represented by points, line strings and polygons. In addition
the geometry model for simple features also allows geometries that are collections of other
geometries (either homogeneous, multi point, multi line string and multi polygon, or
heterogeneous, geometry collection). In all cases the 'top-most’ geometry is responsible
for indicating in which SRS the measurements have been made.

Consider the example of somebody wishing to build a digital representation of the city of
Cambridge in England. This could be represented as a feature collection where the
individual features represent such things as rivers, roads and colleges. This classification of
real world phenomena determines the feature types that need to be defined. The choice of
classification is related to the task to which the digital representation will ultimately be put.

The 'River’ feature type might have a property called 'name’ whose value should be of the
type 'string’. It is common to refer to the typed property. Thus, in the previous example, the
‘River’ feature typeis said to have a string property called 'name’. Similarly the 'Road’
feature type might have a string property called ‘classification’ and an integer property

Geography Markup Language (GML) v1.0 Page 3 of 78
OGC Document Number 00-029

called 'number’. Properties with simple types (integers, strings, reals, booleans) are
collectively referred to as simple properties.

The features required to model Cambridge might have geometry properties aswell as
simple properties. Just like other properties, geometry properties must be named. So the
‘River’ feature type might have a geometry property called 'centerLineOf’ and the 'Road’
feature type might have a geometry property called 'linearGeometry’. It is possible to be
more precise about the type of geometry that can be used as a property value. Thusin the
'River’ and 'Road’ exampl es the geometry property could be specialised to be aline string
property. Just as it is common to have multiple simple properties defined on asingle
feature type (for example, the 'College’ feature type might have integer properties
'numberOfUndergraduates’ and 'number Of Postgraduates’), so too a feature type may have
multiple geometry properties.

Finally the entire model of Cambridge can be expressed as a single feature collection. This
feature collection might have a feature type of 'CityModel’ which is interpreted ro mean it
has a string property called ‘model Date’, giving the date when it was constructed, and a
geometry property called 'boundedBY’ giving the extent over which the model isvalid.

1.2 Examples

This document makes use of a simple example to demonstrate how GML can be used to
encode information about the real world. This example is based on the Cambridge model
described above, and shall be referred to as the 'Cambridge example'. A more precise
definition is given below:

The Cambridge example has a single feature collection of type 'CityModel’ and
contains two features using a containment relationship called 'modelMember’. The
feature collection has a string property called 'model Date’ with the value 'Feb 2000’
and a geometry property called 'boundedBY’ with a Box value. The Box geometry is
expressed in the SRSidentified by the name 'EPSG:4326'. It represents the
'bounding box’ of the feature collection.

Thefirst of the featuresis of type 'River’ with the name’Cam’ and description 'The
river that runs through Cambridge’. It has a geometric property called
‘centerLineOf’ with a LineString value. This LineString geometry is expressed in the
same SRS as used by the bounding box.

The second of the featuresis of type 'Road’ with description 'M11'. It has a string
property called 'classification’ with value 'motorway’ and an integer property called
'number’ with value "11'. It has a geometric property called 'linear Geometry’ with a
LineString value. This LineString geometry is also expressed in the same SRS as
used by the bounding box.

In the example the first feature uses only 'standard’ property names defined by GML,
whereas the second feature uses application specific property names. Thus this example

Geography Markup Language (GML) v1.0 Page 4 of 78
OGC Document Number 00-029

will demonstrate how GML is capable of being used by any application specific model.
The example is not designed to provide examples of how the various types of geometry are
encoded.

We introduce a second example to illustrate how GML can be used to encode a hierarchy
of feature collections. Thiswill be referred to as the 'Schools example'.

The Schools example has a root feature collection of type 'State’ that contains two
features collections of type 'SchoolDistrict’ using the containment relationship
'featureMember’. Each of the 'SchoolDistrict’ feature collections contains two
features from the type 'School’ or 'College’ using the containment relationship
"districtMember’.

The 'District’ feature type has a string property called 'districtName’ and a polygon
property called "extentOf’.

The ’School’ feature type has a string property called 'principalName’ and a point
property called 'location’.

The 'College’ feature type has a string property called "prinicpalName' and a point
property called 'pointProperty’.

1.3. Object Models

The Feature Model used by the OpenGIS Consortium is shown in Figure 1.

Featire Collection

ahstract ™
i
[] I [
Feamze Iistaces Feammwe Sclenn Prrgert S hetma
abstract ahstract
L L & 1 Lameal Separbos
P'n:vper’q.;Ne_mENa]ua Geotretry 5 clena A thribarte Schema Featire Tirpe Mames
'alr
See Section3 8.8 A
& | Y
OGS Geonehor Spatial Refererve Festime T Project Senmtics:
System R Cmality, Cune riness
Methods
‘ ‘ Reféirerce & Cortact
Earrrers PropertyManes Feamze Collecfion
Wahue Type e niification
Fax -
: | | Whewr? What?
bterded Usa Whe? When?
How? Wn?
Symbolozy "
Geography Markup Language (GML) v1.0 Page 5 of 78

OGC Document Number 00-029

Figure 1. The OGC Feature Model

It is common practice in the Geospatial Information (GI) community to refer
to the properties of a feature as attributes. However, for the purposes of
avoiding confusion with attributes in XML, this document refers to them as
properties.

The 'Simple Features model represents a simplification of the more general model
described in the OpenGIS Abstract Specification. This simplification was the result of
developing a number of implementation specifications. There are two major
simplifications:

+ Features are assumed to have either simple properties (booleans, integers, reals,
strings) or geometric properties.

+ Geometries are assumed to be defined in atwo-dimensional SRS and use linear
interopolation between coordinates.

There are a number of consequences that follow from these simplifications; for example
simple features only provide support for 'vector’ data, nor are simple features sufficiently
expressive to model topology explicitly. It isintended to redress some of these limitations
in future versions of GML.

The 'simplified’ geometry model is central to a number of specifications and documents.
Consequently it is avail able as a separate document at
http://www.opengis.org/geometry.html. The'simplified’ geometry document should be
read in conjunction with this document.

The’'Simple Features Geometry’ document isbeing worked on in parallel and the link
will befixed for final release (probably after adoption).

Copyright © 2000 OGC All Rights Reserved.

Geography Markup Language (GML) v1.0 Page 6 of 78
OGC Document Number 00-029

2. GML Overview

2.1. GML Profiles

This section discusses the approach to the encoding of OGC Simple Featuresin XML.

While this version of GML is concerned only with the XML encoding of OGC Simple
Features, future versions of the GML Specification will deal with more elaborate OGC
geometry models.

It is anticipated that GML will appeal to abroad class of users who will in turn wish to
employ avariety of XML technologies. GML isthus presented in the form of three
profiles as follows:

« Profile 1: for those who wish to use a pure DTD based solution and are not
prepared to develop application specific DTD’s, or wish data to be returned against
afixed set of DTD’s. This profile requires the use of GML Feature, and GML
Geometry DTD'’s.

« Profile 2: for those who wish to use a pure DTD based solution but are prepared to
develop their own application specific DTD’s, or are prepared to accept data
encoded with areferenced DTD. This profile requires the user to create an
application specific Feature DTD that uses the GML Geometry DTD.

« Profile 3: for those who are prepared to make use of RDF and RDF Schema. These
users will typically require stronger control of the geospatial typing framework (e.g.
they must be able to relate atype name to an actual schema definition). This profile
requires the user to create an application specific RDF Schema definition that uses
the GML RDF Schema definition. Alternatively Profile 3 users may employ DTD’s
which are derived in some fashion from an RDF Schema or which can trace their
elements to types defined in an associated RDF Schema.

Geography Markup Language (GML) v1.0 Page 7 of 78
OGC Document Number 00-029

The three profiles are summarized in Figure 2.

GML SRSDTD GML SRS
rdf
A A A
Profile 1 Profile 2 Profile 3
Example Example Example
XML XML rdf
Application Application
Specific Specific
Feature DTD rdfs
GML
Feature DTD + +
v GML

rdfs
GML Geometry DTD

Figure2. Thethreeprofilesof GML

The arrows indicate a reference; the dotted arrows indicate an optional reference. The light
green boxes are pre-defined GML definitions. The light brown boxes represent application
specific definitions built according to the appropriate GML profile rules. Finally the light

purple boxes represent geospatia information encoded using the appropriate GML profile.

GML iscurrently XML V1.0 compliant and for this reason uses Document
Type Definitions (DTD’s) rather than XML Schemas. When the W3C's XML
Schema Structures [XML SCHEMA] and Data Types [XML DATATYPE]
specifications have reached Recommendation status, it is expected that this
specification will be modified to include use of XML Schemas.

GML has also been developed so as to be consistent with the W3C Resource Description
Format (RDF) Model and Syntax. GML geometry encoding can be used to describe the
geometric properties of any RDF resource such as its extent, coverage or location. This

Geography Markup Language (GML) v1.0 Page 8 of 78
OGC Document Number 00-029

enables GML to be used in awide variety of applications that are not inherently spatial in
nature.

GML has also been developed to be consistent with the XML Namespaces
Recommendation ((XMLNAME]) . In GML Profile 2 and 3, XML Namespaces can be
used to distinguish the definitions of geographic features and properties defined in
application-specific domains from one another and from those defined by OGC GML.

2.2 Propertiesand Classesin GML

GML isan XML encoding for geographic features. In order to correctly interpret a GML
datafileit is necessary to understand the conceptual model that underlies GML. A
geographic feature in the OGC Abstract Specification is essentially a named list of
properties. Thus we can consider a property as afunction that maps a feature onto a
property value. A property is characterised by the input feature type and the type of the
value that is returned.

For example, if the feature type House has a String property called addr ess then we might
write:

address(House) --> String

If, in addition, the House feature type has a Polygon property called extentOf then we
could write:

extentOf(House) --> Polygon
More generally we might regard all the possible types of feature, together with all types of
property value (Strings, Integers, Polygons etc), asaset of classes. Then we can
characterise a property as afunction with adomain (input) class and arange (output) class.
We are not restricted to talking about features and their properties, we can aso talk about
the properties of a geometry, since geometry defines a class. Consider a geometry as a
named list of properties, then the Polygon class might have an outer Boundaryl s property
so that one could write:

outer Boundaryls(Polygon) --> LinearRing
We are then able to compose two functions to obtain:

outer Boundaryl s(extentOf(House)) --> LinearRing
This approach can also be applied to items bigger than features. For example, a
FeatureCollection can be considered to have multiple named properties (albeit al with the

same name) that have as their values the Featur esin the collection. Thus we can write:

featureM ember (FeatureCollection) --> Feature

Geography Markup Language (GML) v1.0 Page 9 of 78

OGC Document Number 00-029

Thisforms the theoretical basis for GML. These ideas are stated more formally in the
W3C'’s Resource Description Format Schema (RDF Schema), which GML Profile 3 uses
directly. However GML Profiles 1 and 2 can be used without any further consideration of
RDF.

When we write GML tags we will distinguish between properties and classes. Tags that
represent instances of GML classes will start with an uppercase letter (e.g. Polygon) while
tags that represent properties will start with alowercase letter which subsequent embedded
words starting with uppercase letters (e.g. extentOf).

2.3. Geography and Graphics

Simple Features are intended to describe the geography of entitiesin thereal world. As
such, the encoding is not concerned with the visualization of geographic features asin the
drawing of maps. To draw amap with GML it is necessary to transform the GML into a
graphic format, either by direct rendering, or preferably by transforming the XML encoded
Simple Features into XML encoded graphics elements such as SVG (Scalable Vector
Graphics) [SVG], VML (Vector Markup Language) [VML], or Virtual Reality Markup
Language [VRML]. Such atransformation can be done anywhere in the processing chain
between the data store and the visualization device.

GML can be considered in relation to POIX [POIX] GML isintended to model the
structure and relationships for real world geography. Although not connected to GML,
POIX isamuch ssimplified model for position and direction information. POIX data such as
might be required in a Portable Digital Assistant (PDA) can be generated from GML data.

GML encoding is intended to support both data storage and data transport. Implementors
may decide to store geographic information in GML, or they may decide to convert from
some other storage format on demand and use GML only for data transport.

GML isdistinct from, and not dependent on any other graphical specification. GML
contains no information about how the features it encodes might appear. Y et the visual
rendering of a GML structure is dependent on the use of one of several possible vector
graphics formats. Transforming GML into SVG (Scalable Vector Graphics), VML (Vector
Graphics Markup Language), or VRML (Virtua Reality Markup Language) is strongly
recommended for data visualization.

Many different graphical symbolic representations might be generated from asingle GML
file. These different representations could include both different graphical formats and
different symbolizations. A single GML file might thus give rise to multiple types of maps.

In some applications there will be no graphical data display at all. Geographic data might
be ssimply be routed to a numerical model (e.g. aflood prediction model) for processing.
The output of this numerical model may also be expressed in GML.

Coordinates of pointsin a GML-encoded structure are specified relative to a named Spatial
Reference System whose description can also encoded in GML. A data server can supply
dataencoded in GML but not supply the description of the Spatial Reference System,

Geography Markup Language (GML) v1.0 Page 10 of 78
OGC Document Number 00-029

provided that a named reference to such adescription isincluded. Spatial Reference
System descriptions are thus always connected to the geographic data by means of a named
reference.

Copyright © 2000 OGC All Rights Reserved.

Geography Markup Language (GML) v1.0 Page 11 of 78
OGC Document Number 00-029

3. Geometry

3.1. Overview

This section describes how GML encodes Geometry into XML. It also introduces the GML
Geometry DTD that supports this encoding. Thisis used explicitly by GML Profiles 1 and
2 (the complete GML Geometry DTD isgiven in Appendix A). However the XML
encoding is aso consistent with the RDF Schema definition of Geometry used by GML
Profile 3. Consequently the material in this section should be read by all prospective
GML users.

Conforming to the OGC Simple Features model, GML provides geometry elements
corresponding to the following Geometry Classes.

+ Point

« LineString

+ LinearRing

« Polygon

« MultiPoint

« MultiLineString
+ MultiPolygon

« GeometryCollection

In addition it provides a coordinates element for encoding coordinates, and a Box element
for defining extents. The following sections describe in detail the encoding of each of these
types of geometries.

3.2. coordinates Element

A coordinate list isasimplelist of coordinate tuples. The separators used to parse the
coordinate list are encoded as attributes of the <coordinates> tag. In the example below, the
coordinates in atuple are separated by commas, and the successive tuplesin the
<coordinates> are separated by whitespace. A coordinate list is not ageometry in the
Simple Features sense, merely the coordinate content. All tuplesin the string must have the
same dimension. A coordinate list is given by the following grammar.

<deci mal >:: =" ."’

<D>: =[0- 9]

<cs>::=","

<ts>::=whitespace (see XM. 1.0 [XM]
<coor di nate>:: =" -’ <D>+(<deci mal ><D>+) ?

<ct upl e>: : =<ct upl e>| <coor di nat e><cs><ct upl e>
<coor di nat el i st >:: =<coordi nat el i st >| <ct upl e><t s><coordi nat el i st >

Note that the value of decimal, cs, and ts are
determ ned by the GWML encodi ng of <coordi nat es>.

Geography Markup Language (GML) v1.0 Page 12 of 78
OGC Document Number 00-029

The grammar is illustrated for default val ues
of decimal, cs and ts.

To find the coordinates of any Geometry class instance we introduce the coordinate
property. We think of this as a function on the Geometry class instance that returns the
coordinates as a coordinate list. The coordinate property has the associated DTD fragment:

<! ELEMENT coor di nat es (#PCDATA) >
<I ATTLI ST coordi nat es

deci mal CDATA #!| MPLI ED

cs CDATA #| MPLI ED

ts CDATA #| MPLI| ED>

Note that the coordinate value is given by <coordinate>="-'<D>+(<decimal><D>+)?, hence
we can encode coordinates as 1.45 or 1,45 etc. depending on the values assigned to the
<coordinates> attributes. Note that the default for decimal is’.’, for csis’, and for tsis
whitespace.

Example

<coordi nates decimal ="." cs="," ts="whitespace">
1.03,2.167 4.167,2.34 4.87,3.0 1.06, 2.3
</ coor di nat es>

3.3. Point Element

The Point Element is used to encode instances of the Point geometry class. Each Point
Element encloses a single coordinates element, the latter containing one and only one
coordinate tuple. A Point geometry must specify a SRS in which its coordinates are
measured. Thisis referenced by name. Thus the Point element has an srsName attribute.
However thisis defined to be optional. Thisisto allow the Point element to be contained in
other elements which might have already specified a SRS. Similar considerations apply to
the other geometry elements. The Point element also has an optional 1D attribute. The DTD
fragment for the Point element is as follows:

<! ELEMENT Poi nt (coordi nates) >
<I ATTLI ST Poi nt
I D CDATA #| MPLI ED
srsName CDATA #l MPLI ED>

Example

<Poi nt srsName="EPSG 4326" >
<coor di nat es>
56. 1, 0. 45
</ coor di nat es>
</ Poi nt >

3.4. Box Element

The Box Element is used to encode extents. Each Box Element encloses asingle
coordinates element, the latter containing precisely two coordinate tuples. The first of these

Geography Markup Language (GML) v1.0 Page 13 of 78
OGC Document Number 00-029

is constructued from the minimum values measured along for all the axes, and the second is
constructed from the maximum values measured along al the axes. The Box element also
has a mandatory srsName, since it cannot be contained by other Geometry classes. It has an
optional ID attribute. The DTD fragment for the Box element is as follows:

<! ELEMENT Box (coordi nates) >
<! ATTLI ST Box
I D CDATA #| MPLI ED
srsName CDATA #REQUI RED>

Example

<Box srsNane="EPSG 4326" >
<coor di nat es>
0.0,0.0 100.0,100.0
</ coor di nat es>
</ Box>

3.5. LineString Element

A Line String is a piece-wise linear path. The path is defined by alist of coordinates that
are then assumed to be connected by straight line segments. A closed path isindicated by
having coincident first and last coordinates. At least two coordinates are required. The
DTD fragment is asfollows:

<I ELEMENT LineString (coordi nates) >
<I' ATTLI ST LineString

I D CDATA #| MPLI ED

srsName CDATA #l| VPLI ED >

Example

<Li neString srsNanme="EPSG 4326" >
<coor di nat es>
0.0,0.0
100. 0, 100. 0
</ coordi nat es>
</ Li neString>

3.6. Linear Ring Element

A Linear Ringisaclosed, simple piece-wise linear path. The path is defined by alist of
coordinates that are then assumed to be connected by straight line segments. The last
coordinate must be coincident with the first coordinate. At least four coordinates are
required (the three to define aring and the fourth duplicated one). Since aLinearRing is
used in the construction of Polygons, which define their own SRS, it has no need to define
aSRS. The DTD fragment is as follows:

<I ELEMENT Li near R ng (coordi nates) >
<! ATTLI ST Li near Ri ng
| D CDATA #| MPLI ED >

Geography Markup Language (GML) v1.0 Page 14 of 78
OGC Document Number 00-029

Example

<Li near Ri ng>
<coor di nat es>
0.0,0.0
100.0,0.0
50. 0, 100. 0
0.0,0.0
</ coor di nat es>
</ Li near Ri ng>

3.7. Polygon Element

A Polygon is a connected surface. Any pair of pointsin the polygon can be connected to
one another by a path. The boundary of the Polygon is a set of Linear Rings. We
distinguish the outer (exterior) boundary and the inner (interior) boundaries. The Linear
Rings of the interior boundary cannot cross one another and cannot be contained within one
another. There must be at most one exterior boundary and zero or more interior boundary
elements. The ordering of Linear Rings, whether they form clockwise or anti-clockwise
paths, is not important. A Polygon is encoded viathe DTD fragment:

<! ELEMENT Pol ygon (outer Boundaryls, innerBoundaryls*) >
<! ATTLI ST Pol ygon

I D CDATA #| MPLI ED

srsNanme CDATA #| MPLI ED >

<! ELEMENT out er Boundaryls (LinearRi ng) >

<!l ELEMENT i nner Boundaryls (LinearRi ng) >

Example

<Pol ygon srsName="EPSG 4326" >
<out er Boundar yl s>
<Li near Ri ng>
<coor di nat es>
0.0,0.0 100.0,0.0 100.0,100.0 0.0,100.0 0.0,0.0
</ coor di nat es>
</ Li near Ri ng>
</ out er Boundar yl s>
<i nner Boundar yl s>
<Li near Ri ng>
<coor di nat es>
10. 0, 10.0 10.0, 40.0 40.0,40.0 40.0,10.0 10.0,10.0
</ coor di nat es>
</ Li near Ri ng>
</i nner Boundaryl s>
<i nner Boundar yl s>
<Li near Ri ng>
<coor di nat es>
60. 0, 60.0 60.0,90.0 90.0,90.0 90.0,60.0 60.0,60.0
</ coor di nat es>
</ Li near Ri ng>
</i nner Boundar yl s>
</ Pol ygon>

Geography Markup Language (GML) v1.0 Page 15 of 78
OGC Document Number 00-029

3.8. GeometryCollection Element

The GeometryCollection element can be used as a container for arbitrary geometry
elements. A GeometryCollection might contain any of the geometry elements such as
Points, LineStrings, Polygons, MultiPoints, MultiLineStrings, MultiPolygons and even
other GeometryCollections. The GeometryCollection Element has the property
geometryMember which returns the next Geometry element in the collection. The
geometryMember element can contain any of the GML geometry elements. It should be
noted that the srsName attribute can ONLY occur on the outermost GeometryCollection
and must not appear as an attribute of any of the enclosed geometry elements. The DTD
fragment for the GeometryCollection element is as follows:

<IENTITY % Ceonetryd asses " (
Point | LineString | Pol ygon |
Mul ti Point | MiltiLineString | MiltiPolygon |
CeonetryCol | ection)">

<! ELEMENT GeonetryCol | ecti on (geonetryMenber) +>
<! ATTLI ST CeonetryCol | ecti on

I D CDATA #| MPLI ED

srsName CDATA #l MPLI ED>

<! ELEMENT geonet ryMenber (%=onetryd asses;)>

Example

<CGeoretryCol | ecti on srsName="EPSG 4326" >
<geonet r yMenber >
<Poi nt >
<coor di nat es>
50.0,50.0
</ coor di nat es>
</ Poi nt >
</ geonet r yMenber >
<geomet r yMenber >
<Li neStri ng>
<coor di nat es>
0.0,0.0 0.0,50.0 100.0,50.0 100.0,100.0
</ coor di nat es>
</ Li neString>
</ geonet r yMenber >
<geormet r yMenber >
<Pol ygon>
<out er Boundar yl s>
<Li near Ri ng>
<coor di nat es>
0.0,0.0 100.0,0.0 50.0,100.0 0.0,0.0
</ coor di nat es>
</ Li near Ri ng>
</ out er Boundar yl s>
</ Pol ygon>
</ geonet r yMenber >
</ Geonet ryCol | ecti on>

3.9. MultiPointElement

Geography Markup Language (GML) v1.0 Page 16 of 78
OGC Document Number 00-029

A MultiPoint is a collection of Points. It should be noted that the srsName attribute can
ONLY occur on the enclosing MultiPoint and must not appear as an attribute of any of the
enclosed Points. The DTD fragment for encoding a MultiPoint is as follows:

<l ELEMENT Ml ti Poi nt (poi nt Menber*) >
<I ATTLI ST Mul ti Poi nt

I D CDATA #| MPLI ED

srsName CDATA #l MPLI ED >

<! ELEMENT poi nt Menber (Point) >

Example

<Mul ti Poi nt srsName="EPSG 4326" >
<poi nt Menmber >
<Poi nt >
<coor di nat es>56. 1, 0. 45</ coor di nat es>
</ Poi nt >
</ poi nt Menber >
<poi nt Menber >
<Poi nt >
<coor di nat es>46. 71, 9. 25</ coor di nat es>
</ Poi nt >
</ poi nt Menber >
<poi nt Menmber >
<Poi nt >
<coor di nat es>56. 88, 10. 44</ coor di nat es>
</ Poi nt >
</ poi nt Menber >
</ Ml tiPoint >

3.10. MultiLineString

A MultiLineString is a collection of Line Strings. It should be noted that the srsName
attribute can ONLY occur on the enclosing MultiLineString and must not appear as an
attribute of any of the enclosed LineStrings. The DTD fragment for MultiLineString is as
follows:

<I'ELEMENT Mul tiLineString (lineStringMenber*) >
<! ATTLI ST Mul ti Li neString

| D CDATA #| MPLI ED

srsNanme CDATA #| MPLI ED >

<! ELEMENT | i neStringMenber (LineString) >

Example

<Mul ti Li neString srsNane="EPSG 4326" >

<li neStri ngMenber >

<Li neStri ng>
<coordi nat es>56. 1, 0. 45 67. 23, 0. 67</ coor di nat es>

</ Li neString>

</lineStringMenber>

<li neStri ngMenber >
<Li neStri ng>

Geography Markup Language (GML) v1.0 Page 17 of 78
OGC Document Number 00-029

<coordi nat es>46. 71, 9. 25 56. 88, 10. 44</ coor di nat es>
</ LineString>
</lineStringMenber>
<l i neStringMenber >
<Li neStri ng>
<coordi nat es>324. 1, 219. 7 0. 45, 0. 56</ coor di nat es>
</ LineString>
</lineStringMenber>
</MultiLineString>

3.11. MultiPolygon Element

A MultiPolygon is an OGC geometry. It should be noted that the srsName attribute can
ONLY occur on the enclosing MultiPolygon and must not appear as an attribute of any of
the enclosed Polygons. The GML MultiPolygon is encoded using the following DTD
fragment:

<! ELEMENT Ml ti Pol ygon (pol ygonMenber*) >
<I ATTLI ST Mul ti Pol ygon

I D CDATA #| MPLI ED

srsNanme CDATA #l MPLI ED >

<! ELEMENT pol ygonMenber (Pol ygon) >

Example

<Mul ti Pol ygon sr sName="EPSG 4326" >
<pol ygonMenber >
<Pol ygon>
<out er Boundar yl s>
<Li near Ri ng>
<coor di nat es>
0.0,0.0 10.0,0.0 10.0,10.0 0.0,10.0 0.0,0.0
</ coor di nat es>
</ Li near Ri ng>
</ out er Boundar yl s>
</ Pol ygon>
</ pol ygonMenber >
<pol ygonMenber >
<Pol ygon>
<out er Boundar yl s>
<Li near Ri ng>
<coor di nat es>
40. 0, 40. 0 50.0,40.0 50.0,50.0 40.0,50.0 40.0,40.0
</ coor di nat es>
</ Li near Ri ng>
</ out er Boundar yl s>
</ Pol ygon>
</ pol ygonMenber >
</ Mul ti Pol ygon>

Copyright © 2000 OGC All Rights Reserved.

Geography Markup Language (GML) v1.0 Page 18 of 78
OGC Document Number 00-029

4. Profile1 - Fixed Feature DTD

4.1 Overview

This section describes the ssmplest GML Profile. Thisis defined by three main DTD’s,
namely:

+ GML Feature DTD (gmlfeature.dtd)
+ GML Geometry DTD (gmlgeometry.dtd)
+ GML Spatial Reference System DTD (ebcsdictionary.dtd)

Using these DTD'’s one can encode a wide variety of geospatial information. Note that the
Geometry DTD (gmlgeometry.dtd) and the Spatial Reference System DTD are shared in
common with Profile 2.

This profile is directed at users who do not wish to define their own feature DTD’s and who
are not going to use RDF (Resource Description Format). For these users, profile 1
provides a standard feature DTD.

4.2. Encoding Geometry
Geometry values are encoded using the GML Geometry DTD introduced in Section 3.
4.3. Encoding Geometry Properties

The GML Geometry DTD not only provides the definition to alow the encoding of
Geometry values, it also provides the defintions to encode geometry properties. The
encoding of a geographic feature (see next section) relies on these to 'tie’ geometry values
to afeature. The GML Geometry DTD introduces two geometry properties; boundedByYy
and geometryProperty.

The boundedBY element is used to indicate the extent of a geographic feature and maps the
Feature class onto the Box class. Thisis 'standard’ name in GML and is used by other
profiles. The DTD fragment that defines boundedBYy is given below and comes from the
GML Geometry DTD:

<! ELEMENT boundedBy (Box) >

The geometricProperty element is used to give ageometric property to afeature. It includes
amandatory typeName attribute to 'name’ the geometricProperty. There are no restrictions
on the name of the property, nor does GML Profile 1 endorse any specific names for
geometryProperties other than boundedBY. This use of an attribute to name a property is
peculiar to GML Profile 1 and substitutes for more generic methods used in other profiles
(for example providing the name as an element in an application specific DTD in GML
Profile 2). The geometricProperty can contain any geometry class, and a feature can

contain any number of geometryProperties. The DTD fragment that defines
geometricProperty is given below and comes from the GML Feature DTD:

Geography Markup Language (GML) v1.0 Page 19 of 78
OGC Document Number 00-029

<! ELEMENT geonetricProperty (%onetryd asses;) >
<I ATTLI ST geonetri cProperty
t ypeName CDATA #REQUI RED >

4.4. Encoding Geogr aphic Features

This section describes the encoding of geographic features using GML Profile 1. The
material in this section is unique to Profile 1 and can be omitted by readers who employ
Profiles 2 or 3.

A geographic feature in the OGC Abstract Specification is anamed list of properties. In
GML Profile 1 such a geographic feature is represented by a <Feature> tag that encloses
zero or more simple or geometry properties. A simple property is any property that can be
encoded using parsed character dta. Currently GML Profile 1 restricts ssimple properties to
booleans, integers, reals and strings. More complex data types need to be encoded using a
XML encoding of their own and required an appropriately typed property element.
Currently GML Profile 1 only provides support for one type of complex data type, namely
Geometry, with the geometricProperty element.

GML encourages the use of 'standard’ user-friendly names by pre-defining them (see
boundedBy above). GML defines name and description elements as pre-defined elements
to hold string properties. These are used across all profiles and are defined in the GML
Geometry DTD by the following fragment:

<! ELEMENT nane (#PCDATA) >

<! ELEMENT descri pti on (#PCDATA) >

Including these 'feature metadata’ elementsin the GML Geometry DTD isa
matter of convenience, since GML Profiles 1 and 2 are required to include
it.

These concepts are best explained using the Cambridge example we introduced in Section
1. First consider how the two individual features are encoded.

River example

<Feature typeNane="Ri ver">
<nane>
Cam
</ nane>
<descri pti on>
The river that runs through Canbridge.
</ descri pti on>
<geometri cProperty typeNanme="centerLineC ">
<Li neString srsNane="EPSG 4326" >
<coor di nat es>
0.0,50.0 100.0,50.0
</ coor di nat es>
</ Li neString>
</ geonetri cProperty>
</ Feat ur e>

Geography Markup Language (GML) v1.0 Page 20 of 78
OGC Document Number 00-029

Road example

<Feat ure typeNane="Road" >
<descri pti on>
ML1
</ descri ption>
<property typeNane="cl assification">
not or way
</ property>
<property typeNanme="nunmber" type="integer">
11
</ property>
<geonetri cProperty typeNane="I|i near Ceonetry" >
<Li neStri ng srsName="EPSG 4326" >
<coor di nat es>
0.0, 100.0 100.0,0.0
</ coor di nat es>
</ LineString>
</ geonetricProperty>
</ Feat ur e>

In these exampl es we have geographic features with the type names 'River’ and 'Road’. In
the road example we have a geometry property called 'linearGeometry’ and a couple of
simple properties that can be encoded as parsed character data; a string property called
‘classification’ and an integer property called 'number’. Note that GML Profile 1 does not
provide a means to describe the feature type, instead it relies on the name of the feature
type. Similarly GML Profile 1 cannot describe the type of simple properties, other than to
specify its name and state its value type. Currently GML Profile 1 only supports the value

types:
+ boolean
« integer
« red
« string

In these examples the values of the geometricProperty is aLineString. However GML
Profile 1 cannot provide an explicit connection between the typeName of the
geometricProperty and the type of the enclosed geometry element.

In GML Profile 1, GML datais stored or exchanged using feature collection documents. A
FeatureCollection is a collection of GML Profile 1 Features, as described in the above
example fragments. Elements in the FeatureCollection are selected using the
featureMember property which isinterpreted as returning the next Feature in the collection.
A FeatureCollection thus consists of a set of featureM ember tags each enclosing Feature
elements similar to the above example.

The name of the containment rel ationship between FeatureCollection and Feature is
specified by the typeName attribute on the featureM ember tag. It should be noted that, in
many ways, the featureMember and FeatureCollection tags should be considered as
different parts of the definition of afeature collection. Thusthe typeName attribute for
all thefeatureM ember tagsin a FeatureCollection should be the same. If anumber of
different typeNames are used, then each would correspond to a different interpretation of

Geography Markup Language (GML) v1.0 Page 21 of 78
OGC Document Number 00-029

the feature collection. Thiswould move the definition of the feature collection down from
the FeatureCollection class to the featureM ember property. This not only defies the
intended distinction of class and property, it makes the interpretation of the boundedBy
property of the FeatureCollection ambiguous.

The full GML Feature DTD is:;

<?xm version="1.0" encodi ng="UTF-8"?>

<| - - s s s s s s ——————————}
->

<!-- Geogr aphy

-->

<I-- Mar kup

-->

<I-- Language

-->

<l--

-->

<!-- (GML)

-->

<I--

-->

<I-- FEATURE DTD

-->

<I--

-->

<I-- Copyright (c) 2000 OGC All Ri ghts Reserved.
-->

<! - - /T T C [
-->

<l-- The GW Feature DTD incl udes the GW Geonetry DID as an
external entity reference. --->

<IENTITY % GMLGEOVETRYDTD SYSTEM "gml geonetry. dtd">
%ML GEOVETRYDTD;

<I-- A feature contains a set of properties (sinple and/or
geonetric). In addition a feature can optionally contain a
description. A feature nmust specify its feature type by name
(typeNane). It may optionally provide an identifier for use within
its containing feature collection (identifier) -->

<! ELEMENT Feature (
descri ption?, nane?, boundedBy?,
property*, geonetricProperty*)>

<! ATTLI ST Feature
t ypeNane CDATA #REQUI RED
i dentifier CDATA #|l MPLI ED >

<l-- A feature collection has the sane definition as a feature, but
in addition a feature collection nmay contain featureMenbers. The
boundedBy el enent is nmandatory for feature collections. -->

<! ELEMENT Feat ureCol | ection (

Geography Markup Language (GML) v1.0 Page 22 of 78
OGC Document Number 00-029

description?, nanme?, boundedBy,
property*, geonetricProperty*,
f eat ureMenber*)>

<! ATTLI| ST Feat ureCol | ecti on
typeName CDATA #REQUI RED
identifier CDATA #l MPLI ED >

<I-- A featureMenber can be a Feature or a FeatureCollection. The
name of the contai nment relationship between the containing

Feat ureCol | ecti on and contai ned Features is specified by the
typeNane attribute. -->

<! ELEMENT f eat ureMenber (Feature | FeatureCollection)>

<! ATTLI ST f eat ur eMenber
t ypeNane CDATA #REQUI RED >

<lI-- Sinple properties hold the property val ue as parsed charact er
data. The type of the value is specified by the type attri bute,
whi ch defaults to the "string’ type. The nane of the property is
specified by the typeName attribute. -->

<!l ELEMENT property (#PCDATA) >
<! ATTLI ST property
typeName CDATA #REQUI RED
type (boolean | integer | real | string) "string" >

<l-- Geonetric properties hold the property value as a contai ned
geonetry elenment. The nane of the property is specified by the
typeNane attribute. -->

<!l ELEMENT geonetri cProperty (%eonetryC asses;) >
<I ATTLI ST geonetri cProperty
t ypeNane CDATA #REQUI RED >

Download this GML Feature DTD (gmifeature.dtd)

Note that the GML Feature DTD references the GML Geometry DTD. Note further that, as
written, the GML Geometry DTD (gmlgeometry.dtd) must reside in the same directory as
the GML Feature DTD (gmlfeature.dtd).

Note that a FeatureCollection element contains optional name and description elements, a
mandatory boundedBY element, zero or more property elements, zero or more geometry
elements and zero or more featureMembers. The property and geometry property elements
refer to the FeatureCollection as awhole. The Box geometry element enclosed by the
boundedBY element defines a maximum bounding rectangle in the specified spatial
reference system (srsName attribute of the Box element) for all of the featuresin the
feature collection.

Note that a Feature element contains optional name and description elements, an optional
boundedBY element defining a minimum bounding rectangle for the Feature, zero or more
properties and zero or more geometry properties. The properties (non-geometry properties)
can have any type name but must have a value type which is one of boolean, integer, real or

Geography Markup Language (GML) v1.0 Page 23 of 78
OGC Document Number 00-029

string. The interpretation of these value typesis up to the application reading the GML
Profile 1 datafile. It is anticipated that these will be mapped to XML Schematype
definitionsin a subsequent revision of this specification.

The XML document below provides a complete encoding of the Cambridge example using
GML Profile 1. Note that the sections marked in light blue represent the encoding of the
feature collection itself. The encoding of the individual features (light green) is the same as
described earlier in this section.

<?xm version="1.0" encodi ng="UTF-8"?>
<I DOCTYPE Feat ureCol | ecti on SYSTEM "gm feature.dtd" >

<FeatureCol | ection typeNane="C tyMdel ">
<boundedBy>
<Box srsNanme="EPSG 4326" >
<coor di nat es>
0.0,0.0 100.0, 100.0
</ coor di nat es>
</ Box>
</ boundedBy>
<property typeNanme="nodel Dat e" >
Feb 2000.
</ property>
<f eat ureMenber typeName="nodel Menber" >
<Feature typeNane="Ri ver">
<nane>
Cam
</ nanme>
<descri pti on>
The river that runs through Canbridge.
</ descri pti on>
<geonetri cProperty typeNane="centerlLineC ">
<Li neStri ng srsNanme="EPSG 4326" >
<coor di nat es>
0.0,50.0 100.0,50.0
</ coor di nat es>
</ Li neString>
</ geonetri cProperty>
</ Feat ur e>
</ f eat ur eMenber >
<f eat ureMenber typeNanme="nodel Menber " >
<Feat ure typeNane="Road">
<descri pti on>
ML1
</ descri ption>
<property typeNane="cl assification">
not or way
</ property>
<property typeNanme="nunber" type="integer">
11
</ property>
<geonetri cProperty typeNane="Ilinear Geonetry">
<Li neStri ng srsNanme="EPSG 4326" >
<coor di nat es>
0.0, 100.0 100.0,0.0
</ coor di nat es>

Geography Markup Language (GML) v1.0 Page 24 of 78
OGC Document Number 00-029

</ LineString>
</ geonetricProperty>
</ Feat ur e>
</ f eat ur eMenber >
</ Feat ureCol | ecti on>

Download this example XML (example_profilel.xml)

The namesin blue bold are those taken from the example and are 'extending’ the standard
set of names defined by GML.

The XML document below provides a complete encoding of the Schools example using
GML Profile 1.

<?xm version="1.0" encodi ng="UTF- 8" ?>
<! DOCTYPE Feat ureCol | ecti on SYSTEM "gm feature. dtd" >

<Feat ureCol | ecti on typeNane="St at e" >
<boundedBy>
<Box srsNanme="EPSG 4326" >
<coor di nat es>0. 0, 0. 0 50. 0, 50. 0</ coor di nat es>
</ Box>
</ boundedBy>
<f eat ureMenber typeNanme="feat ureMenber">
<Feat ureCol | ecti on typeNane="School Di strict">
<property typeNanme="di strictNanme">111</property>
<boundedBy>
<Box srsNanme="EPSG 4326" >
<coor di nat es>0. 0, 0. 0 50. 0, 40. 0</ coor di nat es>
</ Box>
</ boundedBy>
<geonetri cProperty typeNanme="extentOf ">
<Pol ygon srsNanme="EPSG 4326" >
<out er Boundar yl s>
<Li near Ri ng>
<coor di nat es>0. 0, 0. 0 50. 0, 0.0 50. 0, 40. 0,
0. 0, 0. 0</ coor di nat es>
</ Li near Ri ng>
</ out er Boundar yl s>
</ Pol ygon>
</ geonetri cProperty>
<f eat ureMenber typeNanme="di strictMenber" >
<Feat ure typeNanme="School ">
<property typeNanme="princi pal Name">111- 1</ property>
<geonetri cProperty typeNanme="I| ocati on">
<Poi nt srsNane="EPSG 4326" >
<coor di nat es>20. 0, 5. 0</ coor di nat es>
</ Poi nt >
</ geonetri cProperty>
</ Feat ur e>
</ f eat ur eMenber >
<f eat ureMenber typeNanme="di strictMenber" >
<Feat ure typeNanme="School ">
<property typeNanme="princi pal Name">111- 2</ property>
<geonetri cProperty typeNanme="I| ocati on">
<Poi nt srsNane="EPSG 4326" >

Geography Markup Language (GML) v1.0 Page 25 of 78
OGC Document Number 00-029

<coor di nat es>40. 0, 5. 0</ coor di nat es>
</ Poi nt >
</ geonetri cProperty>
</ Feat ur e>
</ f eat ur eMenber >
</ Feat ur eCol | ecti on>
</ f eat ur eMenber >
<f eat ureMenber typeNanme="feat ureMenber">
<Feat ureCol | ecti on typeNanme="School Di strict">
<property typeNanme="di strictNanme">222</property>
<boundedBy>
<Box srsNanme="EPSG 4326" >
<coor di nat es>0. 0, 0. 0 40. 0, 50. 0</ coor di nat es>
</ Box>
</ boundedBy>
<geonetri cProperty typeNanme="extentOf ">
<Pol ygon srsName="EPSG 4326" >
<out er Boundar yl s>
<Li near Ri ng>
<coor di nat es>0.0, 0.0 40.0,50.0 0.0,50.0
0. 0, 0. 0</ coor di nat es>
</ Li near Ri ng>
</ out er Boundar yl s>
</ Pol ygon>
</ geonetri cProperty>
<f eat ureMenber typeNanme="di strictMenber" >
<Feat ure typeNane="School ">
<property typeNanme="princi pal Name">222- 1</ property>
<geonetri cProperty typeNanme="|ocation">
<Poi nt srsNane="EPSG 4326" >
<coor di nat es>5. 0, 20. 0</ coor di nat es>
</ Poi nt >
</ geonetri cProperty>
</ Feat ur e>
</ f eat ur eMenber >
<f eat ureMenber typeNanme="di strictMenber" >
<Feat ure typeNane="Col | ege" >
<property typeNanme="princi pal Nanme">222- 2</ property>
<geonetryPropety typeNane="poi nt Property">
<Poi nt srsNane="EPSG 4326" >
<coor di nat es>5. 0, 40. 0</ coor di nat es>
</ Poi nt >
</ geonetri cProperty>
</ Feat ur e>
</ f eat ur eMenber >
</ Feat ur eCol | ecti on>
</ f eat ur eMenber >
</ Feat ur eCol | ecti on>

4.5. Encoding Spatial Reference Systems (infor mative)

This section describes the encoding of Spatial Reference Systems, sometimes referred to by
the more general phrase 'Coordinate Systems, for the Profile 1 User.

The GML Profile 1 user should note that the optional srsName attribute on each of the
Geometry elements takes simply a string value. In GML Profile 1 the value of this attribute
istreated as aname only, and it is not required that this attribute point to a spatial reference

Geography Markup Language (GML) v1.0 Page 26 of 78
OGC Document Number 00-029

system dictionary entry. The GML Profile 1 user can thus decide to ignore the encoding of
Spatial Reference Systems altogether.

For the reader interested in building spatial reference system dictionaries please see Section
7.0.

Copyright © 2000 OGC All Rights Reserved.

Geography Markup Language (GML) v1.0 Page 27 of 78
OGC Document Number 00-029

5. Profile2 - User Defined Feature DTD

5.1. Overview

GML Profile 2 uses the same Geometry DTD (gmlgeometry.dtd) and Spatial Reference
System DTD’'s as GML Profile 1. These are augmented with an application specific Feature
DTD:

Application Specific Feature DTD (e.g. example_profile2_schema.dtd)
« GML Geometry DTD (gmlgeometry.dtd)
GML Spatial Reference System DTD (ebcsdictionary.dtd)

Unlike GML Profile 1, GML Profile 2 does not have afixed GML Feature DTD. Instead
the user can construct their own application specific feature DTD following normative
rules of the GML specification.

The GML Geometry DTD provides the user with a predefined set of geometry properties
that they can use to describe geographic features by including them in their application
specific Feature DTD. These geometry properties include common properties of
geographic entities such as location and extent.

In addition GML Profile 2 also provides the user with some basic metadata for describing
geographic features including name and description.

5.2. Encoding Geometry

Geometry values are encoded using the GML Geometry DTD introduced in Section 3.

5.3. Encoding Geometry Properties

This section describes the geometry properties that are provided as part of the GML
Geometry DTD. These properties are used by the GML Profile 2 users when they construct
their own application specific Feature DTD. The GML Geometry DTD provides a number
of 'descriptive names for geometry properties. These are encoded in the English language
currently. Subsequent tranglations of this specification into other languages will provide
these geometry propertiesin other languages as well using the xmllang attribute.

There are three levels of naming geometry propertiesin GML:

1. Formal names: these name geometry propertiesin aformal manner based on the
type of geometry alowed as a property value.

2. Descriptive names: these provide a set of GML endorsed synonyms for the formal
names. Although these offer no additional functionality, they represent a more user-
fiendly set of names. Later releases of GML will provide more information on their

use.
3. User-defined names: thereis aways a need to allow users their own choice of
names.
Geography Markup Language (GML) v1.0 Page 28 of 78

OGC Document Number 00-029

GML Profile 2 introduces a number of formal names. These can be described using the
notation from Section 2.2:

geonetryProperty(Feature) --> Ceonetry
boundedBy(Feature) --> Box

poi nt Property(Feature) --> Point
lineStringProperty(Feature) --> LineString
pol ygonProperty(Feature) --> Pol ygon

mul i Poi nt Property(Feature) --> Milti Point
mul ti Li neStringProperty(Feature) --> MiultiLineString
mul ti Pol ygonProperty(Feature) --> Milti Polygon

geonetryCol | ecti onProperty(Feature) --> GeonetryColl ection

Note that GML Profile 2 can make use of geometryProperty which is defined in the GML
Geometry DTD. Thisisdifferent from the geometricProperty defined as part of GML
Feature DTD in GML Profile 1, although the role they play is similar. Different names
were required to avoid a name clash.

GML Profile 2 also introduces descriptive names for these properties dependent on the type
of geometry they map onto:

+ pointProperty: location, position, centerOf

« lineStringProperty: centerLineOf, edgeOf

+ polygonProperty: extentOf, coverage

« multiPointProperty: multiLocation, multiPosition, multiCenterOf
« multiLineStringProperty: multiCenterLineOf, multiEdgeOf

« multiPolygonProperty: multiExtentOf, multiCoverage

The precise semantics of these geometry properties (e.g. "What does position of an object
mean?' or "Are location and position synonymous?') is not currently part of the GML
specification, however, it is anticipated that these will be defined in a subsequent release.

It should be noted that there are no inherent restrictions in the type of geometry property a
feature type may have. For example, the 'Radio Tower’ feature type could have a geometry
property called 'location’ that returns a Point geometry to identify its location, and have
another geometry property called 'extentOf’ that returns a Polygon geometry describing its
physical structure. Thereisno requirement or al these geometry return typesto be the
same.

5.3.1. Point Properties
A point property is a geometry property that takes values in the class of Points. It might be

used for example to express the location of afeature. In GML Profile 2 the domain of
point property is Feature.

Geography Markup Language (GML) v1.0 Page 29 of 78
OGC Document Number 00-029

GML defines the following explicit point properties which are sub-properties of
pointProperty:

. center Of
« location
+ position

Exampl e using descriptive name 'center Of’

<centerOf >
<Poi nt srsNanme="EPSG 4326" >
<coor di nat es>

0.0,0.0
</ coor di nat es>
</ Poi nt >

</centerO >
5.3.2. Line String Properties

A line string property is a geometry property that takes valuesin the class of LineStrings.
It might be used for example to express the centerline or edges of afeature. In GML the
domain of line string property is Feature.

GML defines the following explicit line string properties which are sub-properties of
lineStringProperty:

. centerLineOf
+ edgeOf

Example using formal name 'lineStringProperty’

<l ineStringProperty>
<Li neStri ng srsName="EPSG 4326" >
<coor di nat es>
0.0,0.0 100.0, 100.0
</ coor di nat es>
</ Li neString>
</lineStringProperty>

5.3.3. Polygon Properties

A polygon property is a geometry property that takes values in the class of Polygons. It
might be used for example to express the extent or coverage of afeature. In GML the
domain of polygon property is Feature

GML defines the following explicit polygon properties which are sub-properties of

polygonProperty:

Geography Markup Language (GML) v1.0 Page 30 of 78
OGC Document Number 00-029

. extentOf
« coverage

Example using descriptive name 'extentOf’

<ext ent O >
<Pol ygon srsName="ESPG 4326" >
<out er Boundar yl s>
<Li near Ri ng>
<coor di nat es>
0.0,0.0 100.0,0.0 50.0,100.0 0.0, 10.0
</ coor di nat es>
</ Li near Ri ng>
</ out er Boundar yl s>
</ Pol ygon>
</ extent Of >

5.3.4. Multi Geometry Properties

There are corresponding geometry properties defined for the ‘'multi-geometries. A
complete definition of the GML Geometry DTD, which includes the geometry property
definitions, can be found in Appendix A.

5.4. Encoding Geographic Features

GML Profile 2 allows the user to construct an application specific Feature DTD. Before
looking at the rules that govern this DTD, it isillustrative to note how it significantly
Improves the readability of the resulting feature encoding. Consider the XML fragments
from encoding our standard River and Road examples (compare with Section 4.4):

River example

<Ri ver >
<name>
Cam
</ nane>
<descri pti on>
The river that runs through Canbri dge.
</ descri pti on>
<cent er Li neOX >
<Li neStri ng srsName="EPSG 4326">
<coor di nat es>
0.0,50.0 100.0,50.0
</ coor di nat es>
</ LineString>
</ cent er Li neCf >
</ Ri ver>

Road example

<Road>
<descri pti on>

Geography Markup Language (GML) v1.0 Page 31 of 78
OGC Document Number 00-029

ML1
</ descri pti on>
<cl assi ficati on>
not or way
</cl assification>
<nunber >
11
</ nunber >
<l i near Geonet ry>
<Li neString srsName="EPSG 4326" >
<coor di nat es>
0.0,100.0 100.0,0.0
</ coor di nat es>
</ Li neString>
</l inear Geonetry>
</ Road>

The parts marked in blue bold indicate changes from the GML Profile 1 encoding. Note
that this approach is more consistent with the XML Namespace Specification [XMLNS] as
we can more clearly write the road example fragment with namespaces gml and camb (for
Cambridge) as:

<canb: Road>
<gm : descri pti on>
ML1
</ gmnl : descri pti on>
<canb: cl assi ficati on>
not or way
</ canb: cl assi fi cati on>
<canb: nunber >
11
</ canb: nunber >
<canb: | i near Geonetry>
<gm : Li neString srsName="EPSG 4326" >
<gml : coor di nat es>
0.0, 100.0 100.0,0.0
</ gm : coor di nat es>
</ gm : LineString>
</ canb: | i near Geonet ry>
</ canb: Road>

Addition of the namespace references makesit clear that description, LineString etc. are
defined in the gml namespace, while Road and number are defined in the camb
namespace.

The fragment from the application specific Feature DTD that defines the Road and River
feature typesis given below:

<! ELEMENT Ri ver (
descri ption?, nane?, boundedBy?,
centerlLined>) >

<! ELEMENT Road (
descri ption?, nane?, boundedBy?,
cl assification, nunber, |inearGeonetry) >

Geography Markup Language (GML) v1.0 Page 32 of 78
OGC Document Number 00-029

<l ELEMENT cl assi ficati on (#PCDATA) >
<! ELEMENT nunber (#PCDATA) >

<I ELEMENT | i near Geonetry (LineString) >

(where the names in bold are those that come from the example and are not defined by
GML.)

The rules governing the defintion of application specific feature types are:

+ For each application specific feature type define a new element with the appropriate
name (in this example River and Road). These elements should allow for the
optional containment of name, description and boundedBy elements (all of these are
defined in the GML Geometry DTD).

+ For each application specific property define a new element with the appropriate
name (in this example classification, number and linear Geometry). These
elements should each be defined to contain the appropriate data type. In this
example the simple data types (string and integer) are held as parsed character data.
The geometry datatype is held as a geometry element of the correct type (in this
example LineString) which are defined in the GML Geometry DTD.

« The application specific feature type elements should allow the containment of the
relevant property elements. These can be either GML defined properties (for
example centerLineOf) or application specific properties (for example
classification, linear Geometry). In this example the River element can contain a
centerLineOf element.

In addition it is necessary to define a featue collection that can contain the roads and rivers.
Thisis done with the DTD fragment:

<! ELEMENT CityModel (
description?, nanme?, boundedBy,
nodel Dat e,
nodel Menber *) >

<! ELEMENT nodel Date (#PCDATA) >

<! ELEMENT nodel Menber (Road | River) >

(where the names in bold are those that come from the example and are not defined by
GML.)

Since afeature collection is atype of feature, al the previous rules apply. However there
are additional rules governing the definition of the feature type representing the feature
collection:

« Thefeature collection element (in this example CityM odel) must contain a
boundedBY element. The Box contained by the boundedBy property defines the
gpatial extent of all of the featuresin the feature collection.

Geography Markup Language (GML) v1.0 Page 33 of 78
OGC Document Number 00-029

« Thefeature collection element references the contained features through an
appropriate 'member’ property, which is defined as an element (in this example
modelM ember). It is possible to enforce some cardinality constraints on the
number of features in the feature collection, since the feature collection element
must contain the member property element. In this example a CityModel can
contain zero or more modelMembers.

« The member property element is defined to contain one of the application specific
feature types (in this example either aRoad or aRiver).

« There should only be one member property defined per feature collection.

The final rule reflects the fact that the feature collection and member property elements
define the FeatureCollection together. If more than one member property element were
allowed per feature collection element, the definition of the collection effectively moves
from the feature collection class to the member property. This breaks the unified concept of
a FeatureCollection which requires both. For example a FeatureCollection has a
boundedBy property. It should be stressed that FeatureCollections are not designed to solve
the general problem of relationships between features. Clearly thislevel of encoding in

XML can, at best, describe a ssimple hierarchy of FeatureCollections and does not allow a
Feature to participate in more than one FeatureCollection. Perhaps more surprisingly, it
does not allow the description of 'structures whereby a FeatureCollection like a 'State’
might be expected to refer to asingle 'Capital’ Feature and a set of ‘County’ Features. In this
example the set of 'County’ Features is itself a FeatureCollection.

It isimportant to note that this level of flexibility poses some technical
problems. For exampleit isvery difficult for an application to mechanically
determine the set of allowable feature types for featuresin a feature
collection. In those circumstances where there is no requirement for a
hierarchy of feature collections, the problem can be reduced by requiring a
fixed name member property (for example featureMember) and inspecting
its definition.

Finally the application specific feature DTD must reference the GML Geometry DTD,
typically through an external entity reference. The full application specific feature DTD for
the Cambridge example is given below:

<?xm version="1.0" encodi ng="UTF-8"?>

<IENTITY % GMLGEOVETRYDTD SYSTEM "gmi geonetry. dt d">
YEM_CEOVETRYDTD;

<! ELEMENT CityModel (
description?, nanme?, boundedBy,
nodel Dat e,
nodel Menber *) >

<! ELEMENT nodel Date (#PCDATA) >

<! ELEMENT nodel Menber (Road | River) >

Geography Markup Language (GML) v1.0 Page 34 of 78
OGC Document Number 00-029

<! ELEMENT Ri ver (
description?, nanme?, boundedBy?,
centerLi neCf) >

<! ELEMENT Road (
description?, nanme?, boundedBy?,
classification, nunber, |inearGeonetry) >

<! ELEMENT cl assi fication (#PCDATA) >
<! ELEMENT nunber (#PCDATA) >

<I ELEMENT | i near Geonetry (LineString) >

Download this example schema (example profile2_schema.dtd)

Note that in this example it is assumed that the application specific Feature DTD and the
GML Geometry DTD are in the same directory. It also explains why it was convenient to
place the feature metadata elements (name and description) in the GML Geometry DTD.

The following XML document encodes the Cambridge example using the application

specific Feature DTD defined above. The sections in light blue represent the encoding of
the feature collection, while those in light green represent the individual feature encodings
given earlier in this section. The partsin blue bold represent differences with the GML

Profile 1 encoding.
<?xm version="1.0" encodi ng="UTF-8"?>
<I DOCTYPE Ci t yMbdel SYSTEM "exanpl e _profil e2_schena. dtd">

<Ci t yModel >
<boundedBy>
<Box srsNane="EPSG 4326" >
<coor di nat es>
0.0,0.0 100.0,100.0
</ coor di nat es>
</ Box>
</ boundedBy>
<nodel Dat e>
Feb 2000.
</ nodel Dat e>
<nodel Menber >
<Ri ver >
<nane>
Cam
</ nane>
<descri pti on>
The river that runs through Canbri dge.
</ descri ption>
<cent er Li neCr >
<Li neStri ng srsNanme="EPSG 4326" >
<coor di nat es>
0.0,50.0 100.0,50.0
</ coor di nat es>
</ LineString>
</ cent er Li neCf >
</Ri ver>

Geography Markup Language (GML) v1.0
OGC Document Number 00-029

Page 35 of 78

</ nodel Menber >
<nodel Menber >
<Road>
<descri pti on>
ML1
</ descri ption>
<cl assi fi cati on>
not or way
</ cl assification>
<nunber >
11
</ nunber >
<l i near Geonet ry>
<Li neStri ng srsNanme="EPSG 4326" >
<coor di nat es>
0.0, 100.0 100.0,0.0
</ coor di nat es>
</ Li neString>
</linear Geonetry>
</ Road>
</ nodel Menber >
</ Ci t yModel >

Download this example XML (example_profile2_external_schema.xml)

Note that the application specific Feature DTD does not have to be external. The following
example uses an internal application specific Feature DTD and references the GML
geometry DTD through an external entity reference:

<?xm version="1.0" standal one="yes"?>
<! DOCTYPE Feat ureCol | ection [

<IENTITY % GMLGEOVETRYDTD SYSTEM "gml geonetry. dtd">
Y%EMLGEOVETRYDTD;

<! ELEMENT Feat ureCol | ection (
description?, boundedBy, f eat ureMenber*) >

<! ELEMENT f eat ur eMenber (Road)>
<! ELEMENT Road (description?,centerLined)>

1>

<Feat ureCol | ecti on>
<descri pti on>
A coupl e of roads around Canbri dge.
</ descri pti on>
<boundedBy>
<Box srsNane="EPSG 4326" >
<coor di nat es>
0.0,0.0 100.0, 100.0
</ coor di nat es>
</ Box>

Geography Markup Language (GML) v1.0 Page 36 of 78
OGC Document Number 00-029

</ boundedBy>
<f eat ur eMenber >
<Road>
<descri pti on>
ML1
</ descri pti on>
<cent er Li neCF >
<Li neString srsName="EPSG 4326" >
<coor di nat es>
0.0, 100.0 100.0,0.0
</ coor di nat es>
</ LineString>
</ cent er Li ne¥ >
</ Road>
</ f eat ur eMenber >
<f eat ur eMenber >
<Road>
<descri pti on>
Al4
</ descri pti on>
<cent er Li neCF >
<Li neStri ng srsNanme="EPSG 4326" >
<coor di nat es>
0.0,50.0 0.0, 100.0
</ coor di nat es>
</ LineString>
</ cent er Li neCf >
</ Road>
</ f eat ur eMenber >
</ Feat ur eCol | ecti on>

Download this example XML (example profile2_interna _schema.xml)

The XML document below provides a complete encoding of the Schools example using
GML Profile 2 with an internal schema. Note that it is necessary to define two member
properties (featureMember and districtMember) to support the feature collections classes
(State and District). Furthermore note that it is possible to require a School District to have
at least one School or College within it. Namesin bold in the schema defintion are specific
to the Schools example.

<?xm version="1.0" standal one="yes" ?>
<I DOCTYPE State [

<IENTITY % GMLGEOVETRYDTD SYSTEM "gml geonetry. dt d">
YEM_CEOVETRYDTD;

<IELEMENT State (nane?, description?, boundedBy,
f eat ureMenber *) >

<! ELEMENT f eat ur eMenber (School Di strict)>

<I ELEMENT School Di strict (name?, description?, boundedBy,
di strictName, extentOf, districtMnber+)>

<! ELEMENT di strict Name (#PCDATA) >

<I'ELEMENT di strict Menber (College | School)>

<l ELEMENT School (name?, description?, boundedBy?,
princi pal Name, |ocation)>

<I ELEMENT Col | ege (nane?, description?, boundedBy?,

Geography Markup Language (GML) v1.0 Page 37 of 78
OGC Document Number 00-029

princi pal Name, point Property)>
<! ELEMENT pri nci pal Name (#PCDATA) >

1>

<St at e>
<boundedBy>
<Box sr sNanme="EPSG 4326" >
<coor di nat es>0. 0, 0. 0 50. 0, 50. 0</ coor di nat es>
</ Box>
</ boundedBy>
<f eat ur eMenber >
<School Di strict>
<di strict Name>111</di stri ct Nane>
<boundedBy>
<Box sr sNane="EPSG 4326" >
<coor di nat es>0. 0, 0. 0 50. 0, 40. 0</ coor di nat es>
</ Box>
</ boundedBy>
<ext ent Of >
<Pol ygon srsNanme="EPSG 4326" >
<out er Boundar yl s>
<Li near Ri ng>
<coordi nates>0.0,0.0 50.0,0.0 50.0, 40.0,
0.0, 0. 0</ coor di nat es>
</ Li near Ri ng>
</ out er Boundaryl s>
</ Pol ygon>
</ extent O >
<di strict Menber >
<School >
<princi pal Name>111- 1</ pri nci pal Name>
<l ocati on>
<Poi nt srsNane="EPSG 4326" >
<coor di nat es>20. 0, 5. 0</ coor di nat es>
</ Poi nt >
</l ocation>
</ School >
</ district Menber >
<di strict Menber >
<School >
<princi pal Name>111- 2</ pri nci pal Name>
<l ocati on>
<Poi nt srsNane="EPSG 4326" >
<coor di nat es>40. 0, 5. 0</ coor di nat es>
</ Poi nt >
</l ocation>
</ School >
</ district Menber >
</ School D strict>
</ f eat ur eMenber >
<f eat ur eMenber >
<School Di strict>
<di stri ct Name>222</di stri ct Nane>
<boundedBy>
<Box sr sNane="EPSG 4326" >
<coor di nat es>0. 0, 0. 0 40. 0, 50. 0</ coor di nat es>
</ Box>
</ boundedBy>
<ext ent Of >

Geography Markup Language (GML) v1.0 Page 38 of 78
OGC Document Number 00-029

<Pol ygon srsNanme="EPSG 4326" >
<out er Boundar yl s>
<Li near Ri ng>
<coordi nat es>0.0,0.0 40.0,50.0 0.0,50.0
0.0, 0. 0</ coor di nat es>
</ Li near Ri ng>
</ out er Boundaryl s>
</ Pol ygon>
</ extent O >
<di strict Menber >
<School >
<pri nci pal Name>222- 1</ pri nci pal Name>
<l ocati on>
<Poi nt srsNane="EPSG 4326" >
<coor di nat es>5. 0, 20. 0</ coor di nat es>
</ Poi nt >
</l ocation>
</ School >
</ district Menber >
<di strict Menber >
<Col | ege>
<pri nci pal Name>222- 2</ pri nci pal Nanme>
<poi nt Property>
<Poi nt srsNane="EPSG 4326" >
<coor di nat es>5. 0, 40. 0</ coor di nat es>
</ Poi nt >
</ poi nt Property>
</ Col | ege>
</district Menber >
</ School Di strict>
</ f eat ur eMenber >
</ St at e>

5.5. Encoding Spatial Reference Systems (informative)

This section describes the encoding of Spatial Reference Systems, sometimes referred to by
the more general phrase 'Coordinate Systems, for the Profile 2 User.

The GML Profile 2 user should note that the optional srsName attribute on each of the
Geometry elements takes simply a string value. In GML Profile 2 the value of this attribute
istreated as aname only, and it is not required that this attribute point to a spatial reference
system dictionary entry. The GML Profile 2 user can thus decide to ignore the encoding of
Spatial Reference Systems altogether.

For the reader interested in building spatial reference system dictionaries please see Section
7.0.

Copyright © 2000 OGC All Rights Reserved.

Geography Markup Language (GML) v1.0 Page 39 of 78
OGC Document Number 00-029

6. Profile 3 - RDF Foundations of GM L

6.1. Overview

One of the most important challenges facing the users of geospatial information isto
understand the meaning of the data. Much of this meaning was captured in legacy systems
by encoding it in non-standard ways within the structure of the datarecords. A particular
datalayer, for example, might within a particular GIS environment be used "most of the
time" to represent roads and highways. In another system the same roads might be
represented by particular numeric feature codes. Trand ating between such systemsis often
problematic because the inherent meaning of the datais not captured as part of the data
itself but rather in terms of a set of conventions or rules of practice. Theresult isthat data
trandation, when it happens, must then be accompanied by a painstaking manual process to
restore the meaning in the new environment. Knowledge of these and similar problems has
been a major motivating factor in the development of GML.

One of the objectives of GML has been to provide a means of encoding geospatial
information (e.g. feature types) in such away that the types employed can be referenced to
an external typing framework. Given a GML class instance such as a<Road> (asin GML
Profile 2) it should be possible to look up the definition of the class Road in a suitable
namespace. Furthermore it should be possible to build feature type definitions from other
feature and geometry type definitions.

In the spatial world thereis of course no possibility of universal agreement on a set of
feature types. The notion of road, for example, typically differs from one geographic
region to another. Even within the same geographic region the notion of road required by
an ambulance driver may be radically different than that of an insurance investigator, even
when they are referring to the same road in the real world. We thus require a means not
only to relate different spatial concepts to one another, but also to be able to distribute the
description of these concepts in an organized manner.

GML Profile 1 provides an easy to learn XML based encoding for geospatial information.
It does not, however, provide a means to relate feature type names to the actua type
definitions. This same shortcoming applies also to GML Profile 2. While the use of
namespaces in Profile 2 can clearly discriminate what might be ambiguous typeName
valuesin Profile 1, (we can for example write <gc:Road> and <usgs:Road> to discriminate
two different road definitions) there is no requirement even with Profile 2 that thereisa
type definition at the referenced namespace "location”.

To resolve these problems GML has been built on the W3C Resource Description Format
(RDF). Doing so provides the devel oper with both athird Profile (GML Profile 3) for
encoding geospatial information using RDF, and aformal set of definitions (using RDF
Schema) for GML itself.

To make this clearer we refer the reader to Figure 2. With the exception of the GML
Feature DTD in GML Profile 1, al of the DTD’s used in Profile 2 can be mechanically
generated from the GML RDF Schema definitions.

Geography Markup Language (GML) v1.0 Page 40 of 78
OGC Document Number 00-029

6.2. Encoding Geometry

This section discusses the RDF Schema definitions for the GML Geometry Classes. Note
that these definitions are entirely consistent with the GML Geometry DTD of GML
Profiles 1 and 2. Consequently this Section does not include examples of geometry class
encodings. For these the reader is referred back to Section 3. This Section provides an
aternative basis for the encodings using RDF Schema rather than aDTD. It might be noted
that sections of the GML Geometry DTD can be mechanically generated from the RDF
Schema definitions for the GML Geometry Classes.

6.2.1. Geometry Class

We define an abstract class from which all geometry classes can sub-class. All geometries
have a Spatial Reference System, identified by name. The RDF Schema definition for the
Geometry classisasfollows:

<rdfs:Class rdf: 1D = "Ceonetry" >
<rdf s: comrent >

Geonetry is the root class of the hierarchy. Geonetry is an abstract
(non-instantiable) class. Al instantiable geonmetry classes referenced
in this specification are defined so that valid instances of a geonetry
class are topologically closed (i.e. all defined geonetries include
their boundary).

</ rdf s: cooment >
</rdfs:Cl ass>

<rdf:Property ID = "srsNane"
<rdfs: domai n rdf:resource
<rdfs:range rdf:resource

19990303#Li teral " />

</rdf:Property>

"#Geonmetry" />
"http://ww.w3. org/ TR/ 1999/ PR-r df - schema-

I v

6.2.2. Point Class

The Point classis defined in RDF Schema as;

<rdfs:Class rdf:1D = "Point" >
<rdfs:subd assOf rdf:resource = "#Geonetry" />
</rdfs:C ass>

The Point classis capable of referencing coordinate data using the coor dinates property
defined below.

6.2.2. Box Class

The Box classis defined in RDF Schema as;

Geography Markup Language (GML) v1.0 Page 41 of 78
OGC Document Number 00-029

<rdfs: ass rdf:1 D = "Box" >

<rdf s: subCl assOF rdf:resource = "#Geonetry" />
</rdfs:C ass>

The Box classis capable of referencing coordinate data using the coor dinates property
defined below.

6.2.4. Curve Class

The Curve classis defined in RDF Schema as:

<rdfs:Class rdf:ID = "Curve" >
<rdf s: subCl assOf rdf:resource = "#Geonetry" />
<rdf s: corment >

A Curve is a one-dinensional geonetric object usually stored as a
sequence of points, with the subtype of Curve specifying the formof the
i nterpol ati on between points. This specification defines only one

subcl ass of Curve, LineString, which uses linear interpolation between

points. This is the only 1-D Geonetry class which appears in the GWL
DTD.

</ rdfs: comment >
</rdfs:Cl ass>

The Curveclassis capable of referencing coordinate data using the coor dinates property
defined below.

6.2.5. Line String Class

The LineString classis defined in RDF Schema as.

<rdfs:Cass rdf:1D = "LineString" >
<rdfs: subCl assO rdf:resource = "#Curve" [>
<rdf s: conment >

Li nes, LineStrings and LinearRings are all Curves. A Line String is a
Curve with linear interpolation between points. Each consecutive pair of
poi nts defines a line segnent. ALine is a LineString with exactly 2
points. In GWL the points of a LineString are defined by a coordinate
list and are not defined by GV Points.

</ rdfs: comment >
</rdfs:C ass>

The LineString class is capable of referencing coordinate data using the coor dinates
property (defined below) since it sub-classes the Curve class.

6.2.6. Linear Ring Class

Geography Markup Language (GML) v1.0 Page 42 of 78
OGC Document Number 00-029

The LinearRing classis defined in RDF Schema as:

<rdfs:Class rdf:1D = "LinearR ng" >
<rdf s: subCl assO rdf:resource = "#Curve" />
<rdf s: comment >

A LinearRing is a LineString that is both closed and sinple. In GW,
the points of a LinearRing are defined by a coordinate |list and are not
defined by GW Points.

</ rdf s: cooment >
</rdfs:C ass>

The Linear Ring classis capable of referencing coordinate data using the coor dinates
property (defined below) since it sub-classes the Curve class.

6.2.7. Polygon Class

The Polygon classis defined as a subclass of GML Geometry on which are defined two
properties, namely outer Boundaryl s and inner Boundaryl s. These two properties return
respectively elements of the inner and outer boundary of the polygon. These are, in trun,
represented by Linear Rings. The outer boundary property can appear only once as a
property of a polygon classinstance. The inner boundary property can appear zero or more
times on a given polygon class instance. The RDF Schema definition for the Polygon class

isthus:
<rdfs:Class rdf:ID = "Surface" >
<rdf s: subCl assOf rdf:resource = "#Ceonetry" />

</rdfs:C ass>

<rdfs:Class rdf:1D = "Polygon" >
<rdf s: subCl assO rdf:resource
</rdfs:Cl ass>

"#Sur f ace" />

<rdf: Property I D = "outerBoundaryls" >
<rdfs:range resource = "#LinearRing" />
<rdfs: domai n resource = "#Pol ygon" />

</rdf: Property>

<rdf:Property ID = "innerBoundaryls" >
<rdfs:range resource = "#LinearRi ng" />
<rdfs: domai n resource = "#Pol ygon" />

</rdf: Property>

6.2.8. Geometry Collection Class

The GeometryCaollection class has a geometryM ember property that returns the next
Geometry in the GeometryCollection. The GeometryCollection classis defined in RDF
Schemaas:

Geography Markup Language (GML) v1.0 Page 43 of 78
OGC Document Number 00-029

<rdfs:Cl ass rdf:|D="CGeonetryCol | ecti on">

<rdf s: subCl assOf rdf:resource="#Geonetry"/>

<rdf s: subd assOf rdf:resource = "http://ww. w3. org/ TR/ 1999/ PR- r df -
schema- 19990303#Cont ai ner" />

<rdf s: commrent >

A CeonetryCollection is a geonetry that is a collection of 1 or nore
geonetries. Al the elenents in a GeonetryColl ection nmust be in the sane
Spatial Reference System This is also the Spatial Reference System for
the GeonetryCol |l ection. GeonetryColl ection places no other constraints
on its elenments. Subclasses of CeonetryCollection may restrict
menber shi p based on di nension and nay al so place ot her constraints on
the degree of spatial overlap between el ements.

</ rdfs: comment >
</rdfs:Cl ass>

<rdf:Property ID = "geonetryMenber" >
<rdfs:range rdf:resource "#CGeonetry" />
<rdfs: domai n rdf:resource "#Geonet ryCol | ection" />
<rdf s: comrent >

Sel ects next nenber, a Geonetry, in the GeonetryCol | ection
(Plays sane role as the |li tag in rdf).

</ rdfs: comment >
</rdf:Property

6.2.9. MultiPoint Class

The MultiPoint classis defined in RDF Schema as:

<rdfs:Class rdf:ID = "Ml tiPoint">
<rdf s: subCl assOf rdf:resource = "#GeonetryCol |l ection" />
<rdf s: comrent >

A MiltiPoint is a O dinmensional geonetric collection. The el enments of a
Mul ti Point are restricted to Points. The points are not connected or
ordered. A MiltiPoint is sinple if no two Points in the MiltiPoint are
equal (have identical coordinate values). The boundary of a Multi Point
is the enpty set.

</ rdfs: comment >
</rdfs:Cl ass>

<rdf: Property | D="point Menber" >
<rdfs:range rdf:resource="#Point"/>
<rdfs:domain rdf:resource="#Milti Point"/>
<rdf s: coment >

Returns the next Point in a Miulti Point.

</ rdfs: comment >
</rdf: Property>

Geography Markup Language (GML) v1.0 Page 44 of 78
OGC Document Number 00-029

6.2.10. MultiLineString Class

The MultiLineString classis defined in RDF Schema as:

<rdfs:Cass rdf:1D = "Ml tiCurve">
<rdf s: subCl assOf rdf:resource = "#GeonetryCol |l ecti on" />
<rdf s: comment >

A MiultiCurve is a sub-class of CGeonetryColl ection.

</ rdfs: comment >
</rdfs:Cl ass>

<rdfs:Class rdf:ID = "MultiLineString">
<rdfs:subC assOf rdf:resource = "#Multi Curve" />
<rdfs: coment >

A MiultiLineString is a Miulti Curve whose el enents are LineStrings.

</ rdf s: cooment >
</rdfs:C ass>

<rdf:Property ID = "lineStringMenber">
<rdfs:range rdf:resource = "#LineString" />
<rdf s: domai n rdf:resource "#Mul tiLineString" />
<rdf s: comment >

Returns the next LineString in a MiltilLineString.

</ rdfs: comment >
</rdf:Property>

6.2.11. MultiPolygon Class

The MultiPolygon class is defined in RDF Schema as:

<rdfs:Class rdf:ID = "Ml ti Surface">
<rdfs:subd assOf rdf:resource = "#GeonetryCol |l ection" />
<rdf s: comrent >

A Multi Surface is a sub-class of GeonetryColl ection.

</ rdf s: cooment >
</rdfs:C ass>

<rdfs:Class rdf: 1D = "Ml ti Pol ygon">
<rdf s: subCl assO rdf:resource = "#Mil ti Surface" />
<rdf s: cormment >

A MultiPolygon is a MiultiSurface whose el enents are Pol ygons.

</ rdfs: comment >
</rdfs:Cl ass>

Geography Markup Language (GML) v1.0 Page 45 of 78
OGC Document Number 00-029

<rdf:Property ID = "pol ygonMenber" >
<rdfs:range rdf:resource = "#Polygon" />
<rdf s: domai n rdf:resource = "#Mul ti Pol ygon" />
<rdf s: comment >

Returns the next Polygon in a nultiPolygon

</ rdfs: comment >
</rdf:Property>

6.2.12. coordinates Property

In order to assign coordinates to geometry class instances GML provides the coordinates
property. In this release the coordinates property has arange of Literal. In asubsequent
revision thisis expected to be an XML Schema representation of coordinate array. The
coor dinates property is defined in RDF Schema as:

<rdf:Property ID = "coordi nates" >
<rdf s: domain rdf:resource = "#Curve" />
<rdf s: domain rdf:resource = "#Box" [>
<rdf s: dommi n rdf:resource = "#Point" />

<rdfs:range rdf:resource
schema- 19990303#Literal " />
</rdf: Property>

"http://ww. w3. org/ TR 1999/ PR-r df -

Note that this definition also permits the Point, Box, LineString and L inear Ring classes
to have a coor dinates property.

6.3. Encoding Geometry Properties

This section discusses the RDF Schema definitions for the GML Geometry Properties.
Note that these definitions are entirely consistent with the GML Geometry DTD of GML
Profile 2. Consequently this Section does not include examples of geometry class
encodings. For these the reader is referred back to Section 5.3. This Section provides an
aternative basis for the encodings using RDF Schema rather than a DTD. It might be noted
that sections of the GML Geometry DTD can be mechanically generated from the RDF
Schema definitions for the GML Geometry Properties.

6.3.1 Geometry Properties

We distinguish geometry properties from geometry classes. A geometry property isa
function on a Feature that takes it values in a corresponding geometry class. The domain of
all of the geometry properties is Feature (see the next Section for a more complete
definition of Feature using RDF Schema).

The relationships between the Featur e and Geometry classes and the geometryProperty
property are defined using RDF Schema as:

Geography Markup Language (GML) v1.0 Page 46 of 78
OGC Document Number 00-029

<rdf s: cormment >

Abstract feature class. Features can take zero or nore geonetry
properties

</ rdf s: cooment >
</rdfs:Cl ass>

<rdf:Property |ID = "geonetryProperty">
<rdfs:range resource = "#Ceonetry" />
<rdfs:domai n resource = "#Feature" [>
<rdf s: corment >

Abstract geonetry property of a feature.

</ rdfs: comment >
</rdf: Property>

This says that any Feature can have a geometryProperty whose value is a Geometry.
However if one wishes to be more specific about either the type of geometry that can be

held as a property or the naming of the property then one can create sub-properties of
geometryProperty.

6.3.2 Point Properties

A Point property isaspecial case of a Geometry property where the range of the property is
restricted to a sub-class of Geometry, namely a Point. When defining this using RDF
Schemaiit is not necessary to respecify the domain since that is inherited from
geometryProperty. Thusthe pointProperty is defined in GML using RDF Schema as:

<rdf: Property ID = "pointProperty">
<rdf s: range rdf:resource= "#Point" />

<rdf s: subPropertyOd rdf:resource = "#geonetryProperty" />
<rdf s: comrent >

Abstract property function that returns a point of the selected feature.
The coordi nate values of the point if present are to be interpreted in
the coordinate system associ ated with the pointproperty.

</ rdfs: comment >
</rdf: Property>

Thisjust says that pointProperty isageometryProperty (via subPropertyOf) whose range
is Point and whose domain is Feature.

GML defines three additional sub-properties of pointProperty, namely:

+ position
+ location
+ centerOf
Geography Markup Language (GML) v1.0 Page 47 of 78

OGC Document Number 00-029

These just represent additional descriptive names that mean the same as pointProperty.
These names might be considered more suitable for everyday usage. Thisis achieved in
RDF Schema by creating a sub-property with the relevant name, no other details are
required since they are inherited. The complete set of definitionsis given in Appendix C,
but the basic RDF Schema definition of the sub-properties of pointProperty are given
below:

<rdf:Property ID = "position">
<rdfs: subPropertyOf rdf:resource
</rdf:Property>

"#poi nt Property" />

<rdf:Property ID = "l ocation">
<rdfs: subPropertyOf rdf:resource = "#pointProperty" />
</rdf: Property>

<rdf:Property ID = "centerOf ">
<rdf s: subPropertyOX rdf:resource = "#pointProperty" />
</rdf: Property>

6.3.3. LineString Properties

A linestring property is a geometryProperty that takes valuesin the class of LineStrings.
It might be used for example to express the centerline or edges of afeature. The definition
of the lineStringProperty in GML isasfollows:

<rdf:Property ID = "lineStringProperty">
<rdfs:range rdf:resource = "#LineString" />
<rdf s: subPropertyOX rdf:resource = "#geonetryProperty" />
<rdf s: comrent >

Abstract property function that returns a linestring of the sel ected
feature. The coordinate values of the linestring if present are to be
interpreted in the coordinate system associ ated with the

l'i nestringproperty.

</ rdfs: comment >
</rdf:Property>

GML provides two additional lineStringProperties:

« centerLineOf
« edgeOf

6.3.4. Polygon Properties
A polygon property is a geometryProperty that takes valuesin the class of Polygons. It

might be used for example to express the extent or coverage of afeature. The definition of
the polygonProperty in GML isasfollows:

Geography Markup Language (GML) v1.0 Page 48 of 78
OGC Document Number 00-029

<rdf s: range rdf:resource = "#Pol ygon" />
<rdf s: subPropertyOX rdf:resource = "#geonetryProperty" />
<rdf s: comrent >

Abstract property function that returns a pol ygon of the sel ected
feature. The coordi nate values of the polygon if present are to be
interpreted in the coordinate system associ ated with the

pol ygonpr operty.

</ rdfs: comment >
</rdf:Property>

GML provides two additional polygonProperties:

. extentOf
« coverage

6.3.5. MultiPoint Properties

A MultiPoint property is ageometryProperty which takes valuesin the class of
MultiPoints. It might be used for example to express the extent or coverage of a discrete
point feature. The definition of multiPointProperty in GML isasfollows:

<rdf:Property ID = "nmnul ti PointProperty">
<rdfs:range rdf:resource = "#Milti Point" />
<rdfs:subPropertyOf rdf:resource = "#geonetryProperty" />
<rdf s: comment >

Abstract property function that returns a nultipoint of the selected
feature.

</ rdfs: comment >
</rdf:Property>

Severa multiPoint properties are provided in GML. Note that these are like the
pointProperties with the prefix multi. Thisisrequired in GML since RDF does not
support polymorphism. Thismay be revised in afuture release. The currently supported
multiPointProperties are:

+ multiL ocation
+ multiCenter Of
« multiPosition

6.3.6. MultiLineString Properties
A MultiLineString property is a geometryProperty which takes valuesin the class of

MultiLines. It might be used for example to express the edges of a complex feature. The
definition of multiLineStringProperty in GML isasfollows:

Geography Markup Language (GML) v1.0 Page 49 of 78
OGC Document Number 00-029

<rdf:Property ID = "nultilLineStringProperty">
<rdfs:range rdf:resource = "#MiltiLineString" />
<rdfs:subPropertyOf rdf:resource = "#geonetryProperty" />
<rdf s: comrent >

Abstract property function that returns a nultilinestring of the
sel ected feature.

</ rdfs: comment >
</rdf: Property>

GML provides two additional multiLineStringProperties:

« multiCenter LineOf
« multiEdgeOf.

6.3.7. MultiPolygon Properties

A multiPolygonProperty is a geometryProperty which takes valuesin the class of
MultiPolygons. It might be used for example to express the extent of a complex feature.
The definition of multiPolygonProperty in GML isasfollows:

<rdf:Property ID = "nultiPol ygonProperty">
<rdfs:range rdf:resource = "#Muil ti Pol ygon" />
<rdfs:subPropertyOf rdf:resource = "#geonetryProperty" />
<rdf s: comrent >

Abstract property function that returns a MiltiPolygon of the sel ected
feature.

</ rdfs: comment >
</rdf: Property>

GML provides two additional multiPolygonProperties:

« multiExtentOf
« multiCoverage

6.4. Encoding Geographic Features
This section describes the RDF Schema classes for GML Features and FeaturCollections.
We note that the Profile 3 developer can use these classes to derive additional feature types
or geometry classes in their application namespace.

The Feature classis defined in RDF Schema as;

<rdfs:C ass rdf:1 D = "Feature">
</rdfs:Cl ass>

Geography Markup Language (GML) v1.0 Page 50 of 78
OGC Document Number 00-029

<rdf:Property ID = "nane" >
<rdfs:range rdf:resource
19990303#Li teral " />
<rdfs:domai n rdf:resource = "#Feature" />
</rdf: Property>

"http://ww. w3. org/ TR/ 1999/ PR- r df - schena-

<rdf:Property ID = "description" >

<rdfs:range rdf:resource = "http://ww. w3. org/ TR/ 1999/ PR-r df - schema-
19990303#Literal " />

<rdfs: domai n rdf:resource
</rdf: Property>

"#Feature" [>

<rdf:Property |ID = "boundedBy" >
<rdfs:range rdf:resource
<rdfs: domai n rdf:resource
</rdf: Property>

Box"/ >
Feature" />

"#
"H#

This says athat a Feature may have name and description simple properties whose range
are Literal. In addition a Feature may have a boundedBy geometry property whose range
isaBox.

In GML Features are typically grouped into FeatureCollections. While thereis no set
construct in RDF Schema we introduce the Featur eCollection classin GML using the
following RDF Schema.

<rdfs: C ass rdf: | D="FeatureCol | ection">
<rdf s: subCl assO rdf: resource="#Feature"/>
<rdf s: corment >

A collection (set) of Features.

</ rdfs: comment >
</rdfs: Cl ass>

<rdf:Property ID = "featureMenber" >
<rdfs:range rdf:resource = "#Feature" />
<rdf s: domai n rdf:resource "#Feat ureCol | ection" />
<rdf s: cormment >

Functi on which returns next Feature in a FeatureColl ection.

</ rdfs: comment >
</rdf: Property>

This says that a FeatureCollection is a sub-class of Feature and thus inherits name,
description and boundedBY properties. In addition it has afeatureM ember property which
IS to used to select Features from the FeatureCollection.

Note that we do NOT define a Property Class to encode simple properties since thisis
already part of RDF. Using RDF we can define any number of properties for any RDF
Class. We have merely added a geometryProperty with the domain Feature (see previous
Section on 'Encoding Geometry properties). Application specific RDF Schema defintions
are then expected to subclass from Feature (using RDF Schema subClassOf) to create

Geography Markup Language (GML) v1.0 Page 51 of 78
OGC Document Number 00-029

application specific feature types such as Road, Building or River. Such derived subclasses
can then automatically use the geometryProperty sinceit is inherited from Feature.

GML Profile 3 provides the ability to add new feature and geometry typesin a clearer and
more formal manner than is possible with GML Profile 1 or Profile 2. Thisisillustrated by
considering the Cambridge example. The application specific RDF Schemafor the
Cambridge exampleis as follows:

<?xm version="1.0" encodi ng="UTF-8"?>

<rdf: RDF xm : | ang="en"
xm ns: gm "http://ww. opengi s. org/gm #"
xm ns: r df "http://ww. w3. org/ 1999/ 02/ 22- r df - synt ax- ns#"
xmns:rdfs = "http://ww. wW3. org/ TR/ 1999/ PR- r df - schena- 19990303#" >

<rdfs:C ass rdf: 1D = "Ci tyMdel " >
<rdfs:subd assOf rdf:resource =
“http://ww. opengi s. or g/ gnl #Feat ureCol | ecti on" />
</rdfs: C ass>

<rdfs:Cass rdf: 1D = "River" >
<rdfs:subC assOf rdf:resource =
"http://ww. opengi s. org/ gm #Feature" />
</rdfs:C ass>

<rdfs:Cl ass rdf:ID = "Road" >
<rdf s: subCl assOf rdf:resource =
"http://ww. opengi s. org/ gm #Feature" />
</rdfs:C ass>

<rdf:Property ID = "nodel Date" >
<rdf s: domai n rdf:resource "#C tyModel " />
<rdfs:range rdf:resource "http://ww.w3. org/ TR/ 1999/ PR-r df -
schema- 19990303#Li teral " />
</rdf:Property>

<rdf: Property ID = "classification" >
<rdfs:domai n rdf:resource = "#Road" />
<rdfs:range rdf:resource = "http://ww. w3. org/ TR/ 1999/ PR-r df -
schema- 19990303#Literal " />
</rdf: Property>

<rdf:Property ID = "nunber" >
<rdfs: domai n rdf:resource
<rdfs:range rdf:resource
schema- 19990303#Literal " />
</rdf: Property>

"#Road" />
"http://ww.w3. org/ TR/ 1999/ PR-r df -

<rdf:Property ID = "linearCeonetry" >
<rdfs:domain rdf:resource = "#Road" />
<rdf s: subPropertyOd rdf:resource =
“http://ww. opengis.org/gm # i neStringProperty" />
</rdf:Property>

Geography Markup Language (GML) v1.0 Page 52 of 78
OGC Document Number 00-029

<rdf s: domain rdf:resource = "#C tyMdel" />
<rdfs:range rdf:resource = "#Road" />
<rdfs:range rdf:resource = "#River" />
<rdfs: subPropertyOf rdf:resource =
"http://ww. opengi s. or g/ gml #f eat ureMenber” />
</rdf: Property>

</ r df : RDF>

Download this example schema (example_profile3 schemarrdfs)

where the names in blue bold are specific to the example and not already defined by GML.
Using this RDF Schema definition it is possible to encode the Cambridge example as a set
of RDF records, as show below:

<?xm version="1.0" encodi ng="UTF-8"?>

<rdf: RDF xm : | ang="en"
xm ns: canb="htt p://ww. xyzcor p. com canb/ exanpl e_profil e3_schena. r df #"
xm ns: gm ="http://ww. opengi s.org/gm /gm . rdf#"
xm ns: rdf ="http://ww. w3. or g/ 1999/ 02/ 22- r df - synt ax- ns#"
xm ns: rdf s="http://ww. w3. org/ TR/ 1999/ PR- r df - schena- 19990303#" >

<canb: G t yModel >
<gnl : boundedBy>
<gm : Box srsName="EPSG 4326" >
<gml : coor di nat es>
0.0,0.0 100.0, 100.0
</ gm : coor di nat es>
</ gm : Box>
</ gm : boundedBy>
<canb: nodel Dat e>
Feb 2000.
</ canb: nodel Dat e>
<canb: nodel Menber >
<canb: R ver >
<gm : nane>
Cam
</ gm : name>
<gml : descri pti on>
The river that runs through Canbri dge.
</ gm : descri pti on>
<gml : cent er Li neOf >
<gml : Li neString srsNanme="EPSG 4326" >
<gml : coor di nat es>
0.0,50.0 100.0,50.0
</ gm : coor di nat es>
</gm : LineString>
</ gm : centerLi ne(X >
</ canb: Ri ver >
</ canb: nodel Menber >
<canb: nodel Menber >
<canb: Road>
<gml : descri pti on>

Geography Markup Language (GML) v1.0 Page 53 of 78
OGC Document Number 00-029

</ gm : descri pti on>
<canb: cl assification>
not or way
</ canb: cl assi fi cati on>
<canb: nunber >
11
</ canb: nunber >
<canb: | i near Geonetry>
<gm : Li neString srsNanme="EPSG 4326" >
<gml : coor di nat es>
0.0, 100.0 100.0,0.0
</ gm : coor di nat es>
</ gm : LineString>
</ canb: | i near Geonet ry>
</ canb: Road>
</ canb: nodel Menber >
</ camb: Ci t yModel >
</ r df : RDF>

Download this example RDF (example_profile3.rdf)

To make use of this example it will be necessary to alter the URLs for the
gml and camb namespaces. The RDF Schema files that are referred to are
the GML definition (see Appendix C) and the example schema defined
previoudly.

It might be noted that, if one ignores the <rdf:RDF> tag and the namespace prefixes, the
encoding of the FeatureCollection isidentical to that for GML Profile 2 (see Section 5.4).
The above example uses four namespaces:

rdf: Resource Description Format from W3C

rdfs: RDF Schemafrom W3C

gml: Geography Markup Language RDF Schema definition from OGC

camb: application specific Cambridge RDF Schema definition from the fictitious
company Xyzcorp.

PWDNPE

In might be noted that GML Profile 3 can be used in writing conventional RDF meta-data
descriptions as shown in the following example:

<?xm version="1.0" encodi ng="UTF-8"?>

<rdf: RDF xnml:lang = "en"
xm ns: st=""
xm ns: gm ="http://ww. opengi s.org/gm /gm .rdf"
xm ns: rdf ="http://ww. w3. org/ 1999/ 02/ 22- r df - synt ax- ns#"
xm ns: rdf s="http://ww. wW3. org/ TR/ 1999/ PR- r df - schena- 19990303#" >

<rdf: Description about = "http://ww. nasa. gov/shuttl eradarmap. htm" >

Geography Markup Language (GML) v1.0 Page 54 of 78
OGC Document Number 00-029

Shuttl e SST-99
</ st: MappedBy>
<st:vehicl e>
Endeavour
</ st:vehicl e>
<st: | aunchedOn>
Februrary 11 2000
</ st: | aunchedOn>

<gml : cover age>
<Pol ygon srsNanme = "LtLong" >
<out er Boundar yl s>
<Li near Ri ng>
<coor di nat es>

-180,-54 -180, 60 180,60 180, -54

</ coor di nat es>
</ Li near Ri ng>
</ out er Boundaryl s>
</ Pol ygon>
</ gm : cover age>

</rdf: Description>
</ r df : RDF>

The application specific RDF Schema for the Schools example is shown below, the names
in blue bold are specific to the Schools example. The application specific classes (State,
SchoolDistrict and School) inherit basic simple and geomtery properties from the base
GML classes. Note that the member property between State and School District (namely
featureMember) is also inherited from the standard GML Feature and FeatureCollection

classes.

<?xm version="1.0" encodi ng="UTF-8"?>

<rdf: RDF xm : | ang="en"
xm ns: g
xm ns: rdf
xm ns:rdfs =

<rdfs:Class rdf:I1D = "State" >
<rdf s: subCl assO rdf:resource =

“http://ww. opengi s. or g/ gm #Feat ureCol | ecti on"

</rdfs: Cl ass>

<rdfs:Class rdf:1 D = "School District" >
<rdf s: subCl assOf rdf:resource =

“http://ww. opengi s. or g/ gm #Feat ureCol | ecti on"

</rdfs: Cl ass>

<rdfs:Cass rdf:1 D = "School " >
<rdfs:subC assOf rdf:resource =
“http://ww. opengi s. or g/ gm #Feature" />
</rdfs:C ass>

—~ (s [N

Geography Markup Language (GML) v1.0
OGC Document Number 00-029

"http://ww. opengi s. org/ gm #"
"http://ww.w3.org/ 1999/ 02/ 22- r df - synt ax- ns#"
"http://ww. w3. org/ TR/ 1999/ PR- r df - schena- 19990303#" >

/>

/>

Page 55 of 78

<rdf s: subCl assO rdf:resource =
"http://ww. opengi s. or g/ gm #Feature" />
</rdfs: Cl ass>

<rdf:Property ID = "districtNane" >
<rdf s: domai n rdf:resource = "#School Di strict" />
<rdfs:range rdf:resource = "http://ww. w3. org/ TR/ 1999/ PR-r df -
schema- 19990303#Literal " />
</rdf:Property>

<rdf:Property ID = "principal Nane" >
<rdfs: domai n rdf:resource "#School " />
<rdfs: domai n rdf:resource "#Col | ege" />
<rdfs:range rdf:resource "http://ww.w3. org/ TR/ 1999/ PR-r df -
schema- 19990303#Literal " />
</rdf:Property>

<rdf:Property ID = "districtMnber"” >
<rdfs:domain rdf:resource = "#School Di strict" />
<rdfs:range rdf:resource "#School " />
<rdfs:range rdf:resource = "#College" />
<rdfs: subPropertyOf rdf:resource =
"http://ww. opengi s. or g/ gml #f eat ureMenber” />
</rdf: Property>

</ r df : RDF>

6.6. Using Profile 3 in conjunction with Profile 2

The fact that the encodings generated by GML Profiles 2 and 3 are more or lessidentical is
no accident. We anticipate that many users will want to use RDF Schemato define their
initial feature types (and possibly new geometry classes and properties as well) and then
mechanically generate aDTD to be used asin GML Profile 2. This enables them to have
formal definitions for their feature types and at the same time employ widely available
XML 1.0 validating parsers. This approach can be summarized as:

« Write application specific schemain RDF Schema building on the GML RDF
Schema definition (the gml namespace of the previous Section). A user might
define schemas for roads, rivers, buildings, railways, mountain peaks, valleys etc.
These RDF Schemawould then live in the users application namespace (for
example the camb namespace in the previous Section).

« Generate an application specific Feature DTD from the above RDF Schemas
following the rules of GML Profile 2 (See Section 5.4). This can be done
mechanically, for example using an XSLT script [XSLT].

+ Writeyour GML dataasfor GML Profile 2.

6.7. Spatial Refer ence Systems (infor mative)

Geography Markup Language (GML) v1.0 Page 56 of 78
OGC Document Number 00-029

This section describes the encoding of Spatial Reference Systems, sometimes referred to by
the more general phrase 'Coordinate Systems, for the Profile 3 User.

The GML Profile 3 user should note that the optional srsName attribute on each of the
Geometry elements takes simply a string value. In GML Profile 3 the value of this attribute
istreated as aname only, and it is not required that this attribute point to a spatial reference
system dictionary entry. The GML Profile 3 user can thus decide to ignore the encoding of
Spatial Reference Systems altogether.

For the reader interested in building spatial reference system dictionaries please see Section
7.0.

6.8. Feature ldentity (informative)

All GML Geometry Classes have an optional 1D attribute. Its value must be an RDF IDRef
as described in the RDF Model and Syntax Specification [RDFM).

If aGeometry inafilewith URI ="ht t p: // www. xyzcor p. cont nydat a. xm " hastheID =
"p143", then any reference to this geometry external to the file would be =

"http://wwmw. xyzcor p. com mydat a. xni #p143". If a FeatureCollection is requested from
a FeatureCollection server database and copied to a client side file, the Geometry ID’s are
not altered. The geometry with ID ="p143" in"htt p: / / www. xyzcor p. com nydat a. xm "
remains "p143" when copied to the client, unless the client wishes to refer to the geometry
which resides on the server. This aso applies to Features defined through application
DTD’s. All RDF Schema class instances can have an optional ID attribute that is resolved
asaURI in this manner.

6.9. Feature and Geometry References: (informative)

In RDF the resource attribute can be used to refer to aresource. This same mechanism is
used in GML as shown by the following example:

<Feature resource = "http://ww. xyzcorp. com nydat a#house23"
/>

Thisis equivalent to including the referenced feature in-line in the document. The same
mechanism can be applied to geometry class instances. The following example encodes the
fact that "your house" and "nyhouse" have the same location.

<Buil ding I D = "your house" .. >
<l ocati on>
<Point ID = "134">
<coor di nat es>
2455. 12, 3443.78
</ coor di nat es>

-

Geography Markup Language (GML) v1.0 Page 57 of 78

OGC Document Number 00-029

</| ocati on>

</ Bui | di ng>
<Building ID = "nyhouse" .. >

<l ocati on>

<Poi nt resource = "#134" />

</l ocati on>

</ Bui | di ng>
Copyright © 2000 OGC All Rights Reserved.
Geography Markup Language (GML) v1.0 Page 58 of 78

OGC Document Number 00-029

7. Spatial Reference Systems (infor mative)

7.1. Overview

The material in this section is still under review and is expected to change substantially
over the next several revisions. Both RDF Schema definitions and DTD’s are presented
in this section. These are not wholly consistent with one another at the present time.

Spatial Reference Systems (SRS) are encoded using a separate DTD. ThisDTD is based on
the OGC SQL V1.1 Simple Features Specification (OGC 99-036) that isin turn partly
based on the EPSG (European Petroleum Standard Group) web site and tables for spatial
reference systems.

The encoding of Spatial Reference Systems is intended to support:

+ Client validation of a server specified Spatial Reference System. The client can
request the SRS description (an XML document) and compare it to its own
specifications or show it to a user for verification.

+ Client display of aserver specified Spatial Reference System.

« Use by a Coordinate Transformation Service to validate an input data source’s
Spatial Reference System. A Coordinate Transformation Service can compare the
SRS description with its own specifications to seeif the SRS is consistent with the
selected transformation.

« To control automated coordinate transformation by supplying input and output
reference system names and argument values.

In this model, Spatial Reference Systems (Earth Based Coordinate Systems) are divided
into three types namely:

+ Projected (2D)
+ Geographic (2D)
+ Geocentric

Editor’s Note:

Terminology for reference systems in the geospatial community isinconsistent. The
OGC has been using Spatial Reference System for what isreally a subset of possible
coordinate systems. All OGC Spatial Reference Systemsin the Implementation
Soecifications (e.g. OGC SQL V1.1) arereally Earth-Based Coordinate Systems.

To change terminology will require change orders to multiple specifications!!

This document will use the following terms that conflict with the current OGC
usage.

. Spatlal Reference System - any means of providing a relative or absolute

...... A mall mim md A A matr T jomaliidad ccAfnal aciiiall am acv e ad
i | | 171 | |

Geography Markup Language (GML) v1.0 Page 59 of 78
OGC Document Number 00-029

measur es.
« Coordinate System - a mapping from the points of a spatial region to a
Euclidean vector space. Multiple Coordinate systems are required to cover
planetary bodies.
» EarthBasedCoordinate System - A Coordinate System that provides
coordinates for a point on the Earth relative to the Earth itself. Thisis
accomplished using some model for the figure of the Earth.

Since a change order to ater these naming conventions has not been drafted, we will
continue to use the term Spatia Reference System. Except where explicitly noted we mean
an EarthBasedCoordinateSystem.

All of these Spatial Reference Systems refer only to locations on the earth relative to the
earth itself.

Projected (2D) systems are based on a Projection and a (2D) Geographic spatial reference
system.

Geographic Systems (2D) provide a means of assigning angular coordinates to locations on
the surface of the earth and depends in turn on a geodetic datum and ellipsoid for the earth
model.

Geocentric Systems provide a means of assigning rectangular coordinates (relative to the
earth’s center) to points on the earth’s surface (or above) based on model of the earth based
on adatum and spheroid.

Mixed angular and rectangular coordinate systems are not currently supported.

XML DTD’s are not well suited to maintenance of a complex structure like a spatial
reference system dictionary. To assist in this process we have broken thelogical DTD into
several DTD’s each of which are used to define a number of sub-dictionaries, including:

Earth Based Coordinate System Dictionary (ebcsdictionary.dtd)
« Geodetic Datum Dictionary (geodeticdatumdictionary.dtd)
+ Ellipsoid Dictionary (ellipsoiddictionary.dtd)
« Projection Parameter Dictionary (projectionparameterdictionary)
» Projection Dictionary (projectiondictionary.dtd)
+ UnitsDictionary (unitsdictionary.dtd)

7.2. Geocentric Systems

A Geocentric system is encoded in terms of a datum, spheroid (ellipsoid) , alinear unit of
measure, and a choice of Prime Meridian.

The datum is specified as aname only.

7.2.1. Geographic Systems

Geography Markup Language (GML) v1.0 Page 60 of 78
OGC Document Number 00-029

Geographic Systems use angular coordinates to specify the location of point on the surface
of the earth. In order that such coordinates be convertible to other systems, the Geographic
System also provides a Prime Meridian, a datum surface and a spheroid (ellipsoid).

The following example is drawn from dictionary of Earth Based Coordinate Systems.

Example

<EBCS | D="4326" Di nensi on="2">
<Geogr aphi c2D>
<Name>
WGS 84
</ Nanme>
<Aut hority>
EPSG
</ Aut hori ty>
<Ceodeti cDatum | D="htt p: // ww. opengi s. or g/ dat uns/ epsg#6326" />
<PrimeMeridian ID="http://ww. opengi s. org/prinmeneridi an/ epsg#8901"
/>
<Coordi nateAxi s I D="Lat" Unit="
http://ww. opengi s. org/ uni t s/ epsg#9108" />
<Coor di nat eAxi s | D="Long" Unit="
http://ww. opengi s. org/ uni ts/epsg#9801" />
</ Geogr aphi c2D>
</ EBCS>

Note from the example that the definitions of GeodeticDatum, PrimeMeridian, and
CoordinateUnits are not coded in-line.Thisisin order to allow for separate dictionaries of
these items and to minimize maintenance problems.It will be up to the application to locate
the referenced item (e.g. PrimeMeridian) and fetch it for processing if required.

7.2.2. Projected Systems

Projected systems provide a means of mapping from the surface of the earth onto a flat
surface (Euclidean Plane or surface homemorphic to the Euclidean plane (e.g. Cylinder).
So that the project system coordinates can be related to other systems, the Projected Spatial
Reference System (Earth Based Coordinate System) provides an underlying Geographic
Reference System with a datum, ellipsoid, and Prime Meridian.

Each projected coordinate system can have zero or more parameters associated with it.
Standard parameter names can be found in an associated dictionary of Parameter names.

Example

<EBCS | D="27700" Di nensi on="2">
<Pr oj ect ed2D>
<nane>
OS@ 1936 / British National Gid
</ nane>
<abbr evi ati on>
British National Gid
</ abbrevi ati on>
<aut hority>
EPSG

Geography Markup Language (GML) v1.0 Page 61 of 78
OGC Document Number 00-029

</aut hority>
<Proj ecti on
| D="http://ww. opengi s. or g/ proj ecti ons/ epsg#Transver seMer cat or" >
<l atitude_of origin>49</|atitude_of origin>
<central _neridi an>-2</central _meri di an>
<scal e_f act or >0. 999601272</ scal e_f act or >
<f al se_easti ng>400000</f al se_easti ng >
<f al se_nort hi ng>- 100000</f al se_northing >
</ Pr oj ecti on>
<geogr aphi c2dused>
http://ww. opengi s. or g/ ebcsdi cti onary/ epsg#4277
</ geogr aphi c2dused>
<Coordi nateAxi s | D="FE"
Unit="http://ww. opengi s. org/ units/epsg#9001" />
<Coordi nateAxi s | D="N'
Unit="http://ww. opengi s. org/ uni ts/ epsg#9001" />
</ Pr oj ect ed2D>
</ EBCS>

7.2.3. Supporting Dictionaries (DTD)

Themain DTD (ebcsdictionary.dtd) is supported in GML by a set of DTD’s which define
the encoding of supporting dictionaries for items such as geodetic datums, ellipsoids, and
units. These supporting dictionaries are NOT encoded into the earth-based coordinate
system dictionary for reasons of maintainability and dataintegrity.

Note that the elements in these dictionaries are referenced from one another as shown in
Figure 10. At present it is up to the application to decide how to use these references.An
application might, for example, import the referenced elements and assemble a complete
encoding of aparticular coordinate system, or it might simply check the value of a
particular data field.

Geography Markup Language (GML) v1.0 Page 62 of 78
OGC Document Number 00-029

Figure 3. Supporting Dictionariesfor Earth Based Coordinate Systems

Each of these dictionariesis defined by a separate DTD. These are attached below:

+ Geodetic Datums (Horizontal Datum)
+ Ellipsoids
« Standard Parameters
Prime Meridians
+ Units (note that this combines both Linear and Angular Units)

When Xpointer/Xlink technology becomes available (Xpointer reached recommendation
status in December 1999), arange reference will enable an XML file to retrieve any
dictionary element (or elements) in asingle reference statement.

Copyright © 2000 OGC All Rights Reserved.

Geography Markup Language (GML) v1.0 Page 63 of 78
OGC Document Number 00-029

Appendix A: Geometry DTD

<!-- e -2
<l-- Geogr aphy -->
<I-- Mar kup -->
<I-i- Language o>

<l -- - =
<I-- (GML) -->
<I-- -->
<I-- GEOMETRY DTD -->

<l -- - =
<l-- Copyright (c) 2000 OGC All Rights Reserved. -->
<!-- e -2
<l-- the coordinate elenment holds a |ist of coordi nates as parsed character
data. Note that it does not reference a SRS and does not constitute a proper
geonetry class. -->

<! ELEMENT coor di nat es (#PCDATA) >
<! ATTLI ST coor di nat es
deci mal CDATA #| VPLI ED

cs CDATA #| MPLI ED

ts CDATA #| MPLI ED >
<I-- the Box el enent defines an extent using a pair of coordinates and a SRS
name. -->

<! ELEMENT Box (coordi nates) >

<I ATTLI ST Box
I D CDATA #| MPLI ED
srsName CDATA #REQUI RED >

<!-- e -2
<l-- GEOMETRY CLASS Def i niti ons -->
<!-- s s s s s s s s s -->
<l-- a Point is defined by a single coordinate. -->

<! ELEMENT Poi nt (coordi nates) >
<! ATTLI ST Poi nt
I D CDATA #1 MPLI ED
srsNanme CDATA #| MPLI ED >

<I-- a LineString is defined by two or nore coordi nates, with |inear
i nteropl ati on between them -->
<! ELEMENT Li neString (coordi nates) >
<! ATTLI ST Li neStri ng
I D CDATA #| MPLI ED
srsName CDATA #| MPLI ED >

<l-- a Polygon is defined by an outer boundary and zero or nore inner
boundari es. These boundari es are thensel ves defined by LinerR ngs. -->
<! ELEMENT Pol ygon (out erBoundaryls, innerBoundaryls*) >
<I ATTLI ST Pol ygon

I D CDATA #1 MPLI ED

srsName CDATA #| MPLI ED >
<! ELEMENT out er Boundaryls (LinearRi ng) >

Geography Markup Language (GML) v1.0 Page 64 of 78
OGC Document Number 00-029

<! ELEMENT i nner Boundaryl s (LinearRi ng) >

<l-- a LinearRing is defined by four or nore coordinates, with |inear
i nterpol ati on between them The first and | ast coordi nates nust be
coi nci dent. -->

<I ELEMENT Li near Ri ng (coordi nates) >
<I ATTLI ST Li near Ri ng

I D CDATA #| MPLI ED >
<l-- a MiultiPoint is defined by zero or nore Points, referenced through a
poi nt Menber el enent. -->

<! ELEMENT Mul ti Poi nt (poi nt Menmber+) >
<I ATTLI ST Mul ti Poi nt

I D CDATA #| MPLI ED

srsName CDATA #| MPLI ED >
<! ELEMENT poi nt Menber (Point) >

<I-- a MiltiLineString is defined by zero or nore LineStrings, referenced
through a IineStringMenber el enent. -->
< ELEMENT MultiLineString (lineStringMenber+) >
<I ATTLI ST Mul ti Li neString
I D CDATA #| MPLI ED
srsName CDATA #| MPLI ED >
<l ELEMENT | i neStringMenber (LineString) >

<l-- a MiltiPolygon is defined by zero or nore Pol ygons, referenced through
a pol ygonMenber el enment. -->
<! ELEMENT Mul ti Pol ygon (pol ygonMenber+) >
<I' ATTLI ST Mul ti Pol ygon
I D CDATA #1 MPLI ED
srsName CDATA #| MPLI ED >
<! ELEMENT pol ygonMenber (Pol ygon) >

<l-- a GeonetryCollection is defined by zero or nore geonetries, referenced
through a geonetryMenber el ement. A geonetryMenber el ement nmay be any one of
the geonetry cl asses. -->

<IENTI TY % Ceonetryd asses "(
Point | LineString | Polygon |
MultiPoint | MultiLineString | MiltiPolygon |
CeonetryCol | ection)" >

<I ELEMENT GeonetryCol | ecti on (geonetryMenber+) >
<I ATTLI ST CeonetryCol | ection

ID CDATA #| MPLI ED

srsNane CDATA #| MPLI ED >
<! ELEMENT geonet ryMenber % econetryC asses; >

<| - - S S o o o o o o o S S S -—>

<I-- GEOMETRY PROPERTY Definitions -->

<| - - S S o o o o o o o S S S -—>

<I-- GWL provides an 'endorsed’ nane to define the extent of a feature. The
extent is defined by a Box el enent, the nanme of the property is boundedBy. -
->

<! ELEMENT boundedBy (Box) >

<l-- the generic geonetryProperty can accept a geonetry of any class. -->

Geography Markup Language (GML) v1.0 Page 65 of 78
OGC Document Number 00-029

<! ELEMENT geonetryProperty (%onetryC asses;) >

<l-- the pointProperty has three descriptive nanes: centerCOf, |ocation and
position. -->

<! ELEMENT poi nt Property (Point) >

<! ELEMENT centerO (Point) >

<! ELEMENT | ocati on (Point) >

<! ELEMENT position (Point) >

<I-- the lineStringProperty has two descriptive names: centerlLined and
edgeCf. -->

<I ELEMENT | i neStri ngProperty (LineString) >

<! ELEMENT centerLi neO (LineString)>

<! ELEMENT edgeOf (LineString)>

<I-- the pol ygonProperty has two descriptive nanes: coverage and extentCOf. -
->

<! ELEMENT pol ygonProperty (Polygon) >

<! ELEMENT cover age (Pol ygon) >

<! ELEMENT ext ent Of (Pol ygon) >

<l-- the multiPointProperty has three descriptive names: nulti CenterCf,
mul ti Location and nulti Position. -->

<! ELEMENT nul ti Poi nt Property (Milti Point) >

<I ELEMENT mul ti CenterOf (Multi Point) >

<l ELEMENT mul ti Location (MiltiPoint) >

<l ELEMENT mul ti Position (MiultiPoint) >

<l-- the multiLineStringProperty has two descriptive nanes:
mul ti CenterLi neO* and mul ti EdgeOf. -->

<! ELEMENT rmul ti Li neStringProperty (MiultiLineString) >

<! ELEMENT nul ti CenterLi neO&f (MultiLineString) >

<! ELEMENT nul ti EdgeOF (Ml ti Li neString) >

<l-- the multi Pol ygonProperty has two descriptive nanmes: nulti Coverage and
mul ti ExtentOf . -->

<! ELEMENT mul ti Pol ygonProperty (Milti Pol ygon) >

<I ELEMENT mul ti Coverage (Milti Pol ygon) >

<I ELEMENT mul ti ExtentOf (Mul ti Pol ygon) >

<! ELEMENT geonetryCol | ecti onProperty (GeonetryCollection) >

<! - - e -2
<I-- FEATURE METADATA Definitions -->
<| - - s s s s s s s s s - - >
<l-- Feature netadata, included in GWML Geonetry DITD for conveni ence; namne
and description are two 'standard’ string properties defined by G\ML.. -->

<! ELEMENT name (#PCDATA) >
<! ELEMENT descri pti on (#PCDATA) >

Download this GML Geometry DTD (gmlgeometry.dtd)

Copyright © 2000 OGC All Rights Reserved.

Geography Markup Language (GML) v1.0 Page 66 of 78
OGC Document Number 00-029

Appendix B: Spatial Reference Systems DTD’s (informative)

<! ELEMENT EBCS_DI CTI ONARY (EBCS*) >

<I ELEMENT EBCS (Projected2D | GCeographic2D | CGeocentric) >
<! ATTLI ST EBCS

I D CDATA #REQUI RED

Di mensi on CDATA #REQUI RED >

<! ELEMENT Pr oj ect ed2X
Name?,
Abbr evi ati on?,
Alias?,
Aut hority?,
Proj ecti ond ass,
Ceogr aphi c2DUsed,
Coor di nat eAxi s*,
Oigin?) >

<! ELEMENT Geogr aphi c2D (
Name?,
Abbr evi ati on?,
Alias?,
Aut hority?,
CGeodet i cDat um
Pri meMeri di an,
Coor di nat eAxi s*,
Oigin?) >

<! ELEMENT Geocentric (
Nane?,
Abbr evi ati on?,

Alias?,

Aut hority?,
CGeodet i cDat um
Pri meMeri di an,
Coor di nat eAxi s*,
Oigin?) >

<! ELEVMENT Nane (#PCDATA) >

<! ELEMENT Abbrevi ati on (#PCDATA) >
<! ELEMENT Alias (#PCDATA) >

<I ELEMENT Aut hority (#PCDATA) >

<I ELEMENT Proj ectionCl ass (Paraneter*) >
<I ATTLI ST Proj ectionCl ass
I D CDATA #REQUI RED >

<! ELEMENT Ceogr aphi c2DUsed EMPTY >
<I ATTLI ST Geogr aphi c2DUsed

Geography Markup Language (GML) v1.0 Page 67 of 78
OGC Document Number 00-029

I D CDATA #REQUI RED >

<! ELEMENT Par anet er (#PCDATA) >
<! ATTLI ST Par anet er

I D CDATA #REQUI RED

Units CDATA #l MPLI ED >

<! ELEMENT Coor di nat eAxi s EMPTY >
<! ATTLI ST Coor di nat eAxi s

I D CDATA #REQUI RED

Uni t CDATA #REQUI RED >

<I ELEMENT Origin (coordinates?) >
<I ATTLI ST Origin
I D CDATA #REQUI RED >

<! ELEMENT Ceodeti cDat um EMPTY >
<! ATTLI| ST Geodeti cDat um
I D CDATA #REQUI RED >

<! ELEMENT Pri neMeri di an EMPTY >
<! ATTLI ST Pri neMeri di an
I D CDATA #REQUI RED >

<! ELEMENT coor di nat es (#PCDATA) >

ThisDTD isused by itself (does not require the other DTD’s) to construct alibrary of
spatial reference systems. These are then referenced by the geometry class instances
defined within the GML Geometry DTD (See Appendix A). Thetop level SRSDTD isas
follows:

Note that the current release of GML supports the definition of entries for Earth Based
Coordinate System Dictionaries only. Subsequent revisions of the GML Specification will
provide as well for other types of reference systems.

Copyright © 2000 OGC All Rights Reserved.

Geography Markup Language (GML) v1.0 Page 68 of 78
OGC Document Number 00-029

Appendix C: RDF Schema Definition of GM L

<?xm version="1.0" encodi ng="UTF-8"?>

<! - - e -
<l-- Geography -->
<l-- Mar kup >
<I-- Language -->
<l-- -
<I-- (GML) -->
<l -- oS
<l-- RDF Schema Def i niti ons -->
<l-- -
<I-- Copyright (c) 2000 OGC All Rights Reserved. -->
<! - - e -

<rdf: RDF xnl:lang="en"
xm ns:rdf ="http://ww. w3. org/ 1999/ 02/ 22- r df - synt ax- ns#"
xm ns: rdf s="http://ww. w3. org/ TR/ 1999/ PR- r df - schenma- 19990303#" >

<rdfs:C ass rdf:|D="CGeonetry">
<rdfs: comment >
Ceonetry is the root class of the hierarchy. Geonetry is an abstract (non-instantiable)
class. Al instantiable geonetry classes referenced in this specification are defined
so that valid instances of a geonetry class are topologically closed (i.e. all defined
geonetries include their boundary).
</rdf s: conment >
</rdfs:Cl ass>

<rdfs:C ass rdf:|D="Feature">
<rdf s: comrent >
A Feature is a Property List, some of whose properties are of type geonetry. Specific
cl asses of geographic feature are created by subtyping fromthe GW Feature class in
the application nanespace.
</rdf s: conment >
</rdfs: Cl ass>

<rdfs:C ass rdf: | D="CGeonetryCol | ecti on">

<rdf s: subCl assOf rdf:resource="#Geonetry"/>

<rdf s: subCl assOf rdf:resource="http://ww.w3. org/ TR/ 1999/ PR- r df - schema-
19990303#Cont ai ner"/ >

<rdfs: comment >
A GeonetryCollection is a geonetry that is a collection of 1 or nore geonetries. Al
the elements in a GeonetryCol |l ection nust be in the sane Spatial Reference. This is
al so the Spatial Reference for the GeometryCol |l ection. GeonetryColl ection places no

Geography Markup Language (GML) v1.0 Page 69 of 78
OGC Document Number 00-029

other constraints on its el enents. Subcl asses of GeonetryCollection may restrict
menber shi p based on di nensi on and nay al so pl ace other constraints on the degree of
spatial overlap between el ements.
</rdf s: conment >
</rdfs:Cl ass>

<rdfs: d ass rdf:|D="Box">
<rdfs: subCl assOf rdf:resource="#Geonetry"/>
<rdfs: comment >
A rectangul ar area defined by two points and the four orthogonal geodesic curves
defined by these two points
</rdf s: conment >
</rdfs:Cl ass>

<rdf:Property |D="geonetryMemnber">
<rdf s:range rdf:resource="#Ceonetry"/>
<rdf s: domai n rdf:resource="#GeonetryCol |l ecti on"/>
<rdfs: comment >
sel ects next menber in the geonetry collection. Plays sane role as |i tag in rdf
</rdfs: coment >
</rdf:Property>

<rdf: Property | D="geonetryProperty">
<rdfs:range rdf:resource="#Ceonetry"/>
<rdfs: domai n rdf:resource="#Feature"/>
<rdfs: comment >
Abstract property which is the parent of all geospatial properties. Wile OGC provides
sonme standard geonetry properties users can create additional properties by using the
subProperty relationship and deriving fromthe OGC properties.
</rdf s: conment >
</rdf: Property>

<rdfs:d ass rdf:|D="FeatureCollection">
<rdfs:subC assO rdf:resource="#Feature"/>
<rdf s: cooment >
A collection (set) of Features
</ rdfs: conment >
</rdfs:d ass>

<rdf: Property |D="featureMenber">
<rdf s: range rdf:resource="#Feature"/>
<rdfs:domai n rdf:resource="#FeatureCol | ecti on"/>
<rdfs: coment >
Functi on which returns next Feature in a FeatureColl ection
</ rdfs: conment >
</rdf:Property>

<| s s p—— e —_——————) >
<l --============== Thi s next section defines conmon netadata properties =========-->
<! CC e S =s. - D>

<rdf:Property |ID="name">
<rdfs:range rdf:resource="http://ww. w3. org/ TR/ 1999/ PR- r df - schena-
19990303#Li teral "/ >
<rdfs: domai n rdf:resource="#Feature"/>
</rdf:Property>

<rdf: Property |D="boundedBy">

Geography Markup Language (GML) v1.0 Page 70 of 78
OGC Document Number 00-029

<rdfs:range rdf:resource="#Box"/>
<rdfs:domai n rdf:resource="#Feature"/>
</rdf: Property>

<rdf:Property |ID="description">
<rdfs:range rdf:resource="http://ww.w3. org/ TR/ 1999/ PR- r df - schena-
19990303#Li teral "/ >
<rdfs: domai n rdf:resource="#Feature"/>
</rdf: Property>

<rdf: Property | D="srsNanme">
<rdfs:range rdf:resource="http://ww. w3. org/ TR/ 1999/ PR- r df - schena-
19990303#Li teral "/ >
<rdfs: domai n rdf:resource="#Geonetry"/>
</rdf: Property>

<rdf: Property | D="coordi nates">
<rdfs: domai n rdf:resource="#Curve"/>
<rdfs: domai n rdf:resource="#Box"/>
<rdfs: domai n rdf:resource="#Point"/>
<rdfs:range rdf:resource="http://ww.w3.org/ TR/ 1999/ PR-r df - schema-
19990303#Li teral "/ >
</rdf: Property>

<! CC e S =s. - D>
<l--======= This next section defines the GW Geonetry C asses =================-->
<! CC e S =s. - D>

<rdfs:C ass rdf:|D="Point">
<rdfs: subCl assOf rdf:resource="#Geonetry"/>
<rdfs: comment >
Poi nt geonetry class. A Point is a 0O-di nensional geonmetry and represents a single
| ocation in coordinate space. A Point has an x-coordinate value and a y-coordinate
val ue. Note that GWL is nore general than the OGC SQ. v1.1 specification and does all ow
Points of 0-4 (or larger) dinmension. The boundary of a Point is the enpty set.
</rdf s: conment >
</rdfs: Cl ass>

<rdfs:C ass rdf:|D="Curve">

<rdf s: subCl assOf rdf:resource="#Geonetry"/>

<rdf s: comrent >
A Curve is a one-dinensional geonetric object usually stored as a sequence of points,
with the subtype of Curve specifying the formof the interpolation between points. This
speci fication defines only one subclass of Curve, LineString, which uses |inear
i nterpol ati on between points. This is the only 1-D CGeonetry class which appears in the
GWL DTD. Topologically a Curve is a one-di nensional geonetric object that is the
homeonor phic i mage of a real, closed, interval D[a, b] {x in R ale x e b} under a
mapping f:[a,b] --- R2 as defined in [1], section 3.12.7.2.

A Curve is sinple if it does not pass through the sane point twice ([1], section
3.12.7.3).

A Curve is closed if its start point is equal to its end point. ([1], section
3.12.7.3).

The boundary of a closed Curve is enpty.

Geography Markup Language (GML) v1.0 Page 71 of 78
OGC Document Number 00-029

A Curve that is sinple and closed is a Ring.

The boundary of a non-closed Curve consists of its two end points. ([1], section
3.12.3.2).

A Curve is defined as topol ogically closed.
</rdf s: conment >
</rdfs:Cl ass>

<rdfs:C ass rdf:|D="LineString">
<rdfs:subC assOf rdf:resource="#Curve"/>
<rdfs: comment >
Li nes, LineStrings and LinearRings are all Curves. A Line String is a Curve with linear
i nterpol ati on between points. Each consecutive pair of points defines a line segnent. A
Line is a LineString with exactly 2 points. In GW the points of a LineString are
defined by a coordinate |ist and are not defined by GWL. Points.
</rdf s: conment >
</rdfs: Cl ass>

<rdfs: C ass rdf:|D="Li nearRi ng">
<rdfs:subC assOf rdf:resource="#Curve"/>
<rdfs: comment >
A LinearRing is a LineString that is both closed and sinple. In GW, the points of a
LinearRing are defined by a coordinate list and are not defined by GWL Points.
</rdf s: conment >
</rdfs:Cl ass>

<rdfs:d ass rdf:|D="Surface">
<rdfs: subCl assOf rdf:resource="#Geonetry"/>
<rdf s: coment >
Abstract geonetry class for 2D geonetries
</rdf s: conment >
</rdfs:Cl ass>

<rdfs: d ass rdf: | D="Pol ygon">
<rdfs: subd assOf rdf:resource="#Surface"/>
<rdfs: comment >
A Polygon is a planar Surface, defined by 1 exterior boundary and O or nore interior
boundari es. Each interior boundary defines a hole in the Polygon. The assertions for
pol ygons (the rules that define valid pol ygons) are:

1. Polygons are topologically closed.

2. The boundary of a Pol ygon consists of a set of LinearRings that make up its
exterior and interior boundaries. Note that these are captured in GW via the
eboundaryi s and i boundaryis properties of the Pol ygon

3. No two rings in the boundary cross, the rings in the boundary of a Pol ygon may
intersect at a Point but only as a tangent.

4. A Polygon nay not have cut |ines, spikes or punctures:
5. The Interior of every Polygon is a connected point set.

6. The Exterior of a Polygon with 1 or nore holes is not connected. Each hol e defi nes
a connected conponent of the Exterior.

Geography Markup Language (GML) v1.0 Page 72 of 78
OGC Document Number 00-029

In the above assertions, Interior, Closure and Exterior have the standard topol ogi ca
definitions. The conbination of 1 and 3 nmake a Pol ygon a Regul ar Cl osed point set.
Pol ygons are sinple geonetries in accordance with the term nol ogy of the OGC Abstract
Speci fifcation 99-101
</rdf s: conment >
</rdfs:Cl ass>

<rdf: Property |D="outerBoundaryls">
<rdf s:range rdf:resource="#Li nearRi ng"/>
<rdfs: domai n rdf:resource="#Pol ygon"/>
<rdfs: comment >
This property returns the outer boundary of a pol ygon
</rdf s: conment >
</rdf: Property>

<rdf: Property |D="innerBoundaryls">
<rdf s:range rdf:resource="#Li nearRi ng"/>
<rdf s: domai n rdf:resource="#Pol ygon"/ >
<rdfs: comment >
This property returns a connected conponent of the interior boundary of a polygon. A
pol ygon can have zero or nore iboundaryis properties
</rdf s: conment >
</rdf: Property>

<rdfs:Cass rdf:ID="MiltiPoint">
<rdf s: subCl assOF rdf:resource="#GeonetryCol |l ecti on"/>
<rdfs: comment >
A MiltiPoint is a O dinensional geonetric collection. The elenents of a Milti Point are
restricted to Points. The points are not connected or ordered. A MiltiPoint is sinple
if notw Points in the MiultiPoint are equal (have identical coordinate values). The
boundary of a MiultiPoint is the enpty set.
</rdf s: conment >
</rdfs: Cl ass>

<rdf: Property | D="poi nt Menber ">
<rdf s: range rdf:resource="#Point"/>
<rdfs: domai n rdf:resource="#MiltiPoint"/>
<rdfs: comment >
Returns the next point in a nmultipoint
</rdf s: conment >
</rdf: Property>

<rdfs:Cass rdf:ID="MiltiCurve">

<rdfs:subd assOf rdf:resource="#CGeonetryCol |l ecti on"/>

<rdfs: comment >
A MultiCurve is a one-di nensional eometryColl ection whose el enents are Curves.
Mul ti Curve is present in this specification only to provide the context for the
definition of a Multi-Line String. MiltiCurve is sinple if and only if all of its
elenents are sinple, the only intersections between any two el ements occur at points
that are on the boundary. The boundary of a Multi Curve is obtained by applying the
"mod 2 union rule: A point is in the boundary of a MultiCurve if it is in the
boundari es of an odd nunber of elenents of the Miulti Curve ([1], section 3.12.3.2).

MultiCurve is closed if all of its elenents are cl osed.

The boundary of a closed MultiCurve is always enpty. MiltiCurve is defined as
topol ogi cal |l y cl osed.
</rdf s: conment >

Geography Markup Language (GML) v1.0 Page 73 of 78
OGC Document Number 00-029

</rdfs:d ass>

<rdfs:Class rdf:ID="Mul tiLineString">
<rdf s: subCl assOF rdf:resource="#GeonetryCol |l ection"/>
<rdfs: comment >
A MiltiLineString is a Miulti Curve whose el ements are LineStrings
</rdf s: conment >
</rdfs:Cl ass>

<rdf:Property ID="lineStringMenmber">
<rdfs:range rdf:resource="#LineString"/>
<rdf s:domai n rdf:resource="#Mul tiLineString"/>
<rdfs: comment >
Returns the next linestring in a nultilinestring
</rdfs: coment >
</rdf: Property>

<rdfs:Cass rdf:ID="Milti Surface">
<rdfs:subd assOf rdf:resource="#CGeonetryCol |l ection"/>
<rdfs: comment >
Abstract class for conplex 2-D geonetries
</rdf s: conment >
</rdfs:Cl ass>

<rdfs:C ass rdf:ID="MiltiPol ygon">
<rdfs:subd assOf rdf:resource="#Mil ti Surface"/>
<rdfs: comment >
A MiltiPolygon is a MiultiSurface whose el enents are Pol ygons. The assertions for
Mul ti Pol ygons are:

1. The interiors of 2 Polygons that are el enents of a Miulti Polygon may not intersect.

2. The Boundaries of any 2 Polygons that are el enents of a Multi Pol ygon nay not
‘cross’ and may touch at only a finite nunber of points. (Note that crossing is
prevented by assertion 1 above).

3. A MultiPolygon is defined as topol ogically closed.

4. A MultiPolygon may not have cut |ines, spikes or punctures; a MultiPolygon is a
Regul ar, C osed point set:

5. The interior of a MultiPolygon with nore than 1 Polygon is not connected, the
nunmber of connected conponents of the interior of a MiultiPolygon is equal to the nunber
of Pol ygons in the MiltiPol ygon

The boundary of a MultiPolygon is a set of closed curves (LinearRings) corresponding to
the boundaries of its el enent Polygons. Each Curve in the boundary of the Milti Pol ygon
is in the boundary of exactly 1 elenment Polygon, and every Curve in the boundary of an
el enent Pol ygon is in the boundary of the Milti Polygon
</rdf s: conment >
</rdfs:Cl ass>

<rdf: Property |D="pol ygonMenber" >
<rdfs:range rdf:resource="#Pol ygon"/>
<rdfs: domai n rdf:resource="#Mil ti Pol ygon"/>
<rdfs: comment >
Ret urns the next polygon in a mrultipolygon
</rdf s: conment >

Geography Markup Language (GML) v1.0 Page 74 of 78
OGC Document Number 00-029

</rdf:Property>

<l --============= Thi s section defines the GV geonetry properties. =================--

<l--========== Al| of these properties are sub-Properties of geonetryproperty =======--

<rdf: Property | D="point Property">
<rdf s: range rdf:resource="#Point"/>
<rdfs: subPropertyOf rdf:resource="#geonetryProperty"/>
<rdfs: comment >
Abstract property function that returns a point of the selected feature.
</rdf s: conment >
</rdf: Property>

<rdf:Property ID="lineStringProperty">
<rdfs:range rdf:resource="#LineString"/>
<rdf s: subPropertyOX rdf:resource="#geonetryProperty"/>
<rdfs: comment >
Abstract property function that returns a linestring of the selected feature.
</rdf s: conment >
</rdf: Property>

<rdf: Property |D="pol ygonProperty">
<rdfs:range rdf:resource="#Pol ygon"/>
<rdf s: subPropertyOX rdf:resource="#geonetryProperty"/>
<rdfs: comment >
Abstract property function that returns a polygon of the selected feature.
</ rdfs: coment >
</rdf: Property>

<rdf:Property ID="I|ocation">
<rdfs: subPropertyOf rdf:resource="#poi ntProperty"/>
<rdfs: comment >
Returns a point of the selected feature.
</rdf s: conment >
</rdf:Property>

<rdf:Property ID="position">
<rdf s: subPropertyOX rdf:resource="#pointProperty"/>
<rdfs: comment >
Returns a point of the selected feature.
</ rdfs: coment >
</rdf:Property>

<rdf:Property ID="centerOF">
<rdf s: subPropertyOf rdf:resource="#poi nt Property"/>
<rdfs: comment >
Returns the center point of the selected feature.
</rdf s: conment >
</rdf:Property>

<rdf:Property ID="centerlLineO">
<rdf s: subPropertyOX rdf:resource="#lineStringProperty"/>

Geography Markup Language (GML) v1.0 Page 75 of 78
OGC Document Number 00-029

<rdf s: comrent >
Returns a linestring which is the centerline of the selected feature.
</rdf s: conment >
</rdf: Property>

<rdf:Property | D="edgeCf">
<rdfs: subPropertyOX rdf:resource="#lineStringProperty"/>
<rdfs: comment >
Returns a linestring which is an edge of the sel ected feature.
</rdf s: conment >
</rdf: Property>

<rdf:Property |ID="extentOf">
<rdfs: subPropertyOf rdf:resource="#pol ygonProperty"/>
<rdfs: comment >
Returns a polygon which is the centerline of the selected feature.
</rdf s: conment >
</rdf: Property>

<rdf: Property |ID="coverage">
<rdf s: subPropertyOX rdf:resource="#pol ygonProperty"/>
<rdfs: comment >
Returns a pol ygon which is the centerline of the selected feature.
</ rdfs: coment >
</rdf: Property>

<rdf: Property ID="nulti Poi nt Property">
<rdfs:range rdf:resource="#Milti Point"/>
<rdfs: subPropertyCOf rdf:resource="#geonetryProperty"/>
<rdfs: comment >
Abstract property function that returns a nultipoint of the selected feature.
</rdf s: conment >
</rdf:Property>

<rdf:Property ID="nul tiLineStringProperty">
<rdfs:range rdf:resource="#MiltiLineString"/>
<rdfs: subPropertyOf rdf:resource="#geonetryProperty"/>
<rdfs: comment >
Abstract property function that returns a nmultilinestring of the selected feature.
</rdf s: conment >
</rdf:Property>

<rdf:Property ID="multi Pol ygonProperty">
<rdf s: range rdf:resource="#Milti Pol ygon"/>
<rdf s: subPropertyOX rdf:resource="#geonetryProperty"/>
<rdfs: comment >
Abstract property function that returns a MiltiPol ygon of the selected feature.
</rdf s: conment >
</rdf:Property>

<rdf:Property ID="nultiLocation">
<rdfs: subPropertyOX rdf:resource="#nulti Poi nt Property"/>
<rdfs: comment >
Returns a multipoint of the selected feature.
</rdf s: conment >
</rdf:Property>

<rdf:Property ID="nulti Position">

Geography Markup Language (GML) v1.0 Page 76 of 78
OGC Document Number 00-029

<rdfs: subPropertyX rdf:resource="#nulti Poi nt Property"/>
<rdf s: comrent >
Returns a multipoint of the selected feature.
</rdf s: conment >
</rdf:Property>

<rdf:Property ID="nmulti CenterCOf ">
<rdf s: subPropertyOX rdf:resource="#nmulti Poi ntProperty"/>
<rdfs: comment >
Returns the multi-center point of the selected feature.
</rdf s: conment >
</rdf:Property>

<rdf:Property ID="nulti CenterlLineO">
<rdfs: subPropertyOf rdf:resource="#multiLineStringProperty"/>
<rdfs: comment >
Returns a multilinestring which is the nmulticenterline of the selected feature.
</rdf s: conment >
</rdf: Property>

<rdf:Property ID="nul ti EdgeCf ">
<rdf s: subPropertyOX rdf:resource="#nmultiLineStringProperty"/>
<rdf s: comrent >
Returns a multilinestring which is a set of edges of the selected feature.
</rdfs: coment >
</rdf: Property>

<rdf:Property ID="nulti ExtentOf ">
<rdfs: subPropertyOf rdf:resource="#nmulti Pol ygonProperty"/>
<rdfs: comment >
Returns a Multi Pol ygon which is the extent of the selected feature.
</rdf s: conment >
</rdf:Property>

<rdf: Property ID="nul ti Cover age">
<rdf s: subPropertyO rdf:resource="#multi Pol ygonProperty"/>
<rdf s: comrent >
Returns a Multi Pol ygon which is the coverage of the selected feature.
</rdf s: conment >
</rdf:Property>
</ r df : RDF>

Download this GML RDF Schema Definition (gml.rdfs)

Copyright © 2000 OGC All Rights Reserved.

Geography Markup Language (GML) v1.0 Page 77 of 78
OGC Document Number 00-029

Appendix D: References

[POIX] Point of Interest Exchange Language Specification. Available at
http://www.w3.0rg/ TR/poix/

[QNAME] QNAME specification. Available at http://18.29.1.23:80/TR/REC-xml-
names/#NT-QName

[RDFMS] Resource Description Framework (RDF) Model and Syntax. Available at
http://www.w3.0rg/TR/REC-rdf-syntax

[RDFSchema] Resource Description Framework (RDF) Schemas; Brickley, Guha, Layman
eds., World Wide Web Consortium Working Draft; http://www.w3.org/TR/PR-rdf-schema

[SVG] Scaable Vector Graphics. Available at http://www.w3.org/ TR/SVG/

[URI] Uniform Resource Identifiers (URI): Generic Syntax; Berners-Lee, Fielding,
Masinter, Internet Draft Standard August, 1998; RFC2396.

[VML] Vector Markup Language. Available at: http://www.w3.0rg/ TR/INOTE-VML

[VRML] Virtual Reality Markup Language. Available at:
http://www.vrml.org/VRML2.0/FINAL

[XML SCHEMA] XML Schema Part 1: Structures. Available at
http://www.w3.org/TR/xmlschema-1

[XML SCHEMA DATATYPES] XML Schema Part 2: DataTypes. Available at
http://www.w3.org/TR/xmlschema-2

[XML] XML 1.0 Recommendation from the W3C. Available at
http://www.w3.0rg/ TR/REC-xml

[XMLNS] XML Namespace specification. Available at http://18.29.1.23:80/TR/REC-xml-
names

[XSLT] XSL Transformations. Available at http://www.w3.org/TR/xslt

Copyright © 2000 OGC All Rights Reserved.

Geography Markup Language (GML) v1.0 Page 78 of 78
OGC Document Number 00-029

