

Geography Markup Language (GML) v1.0 Page 1 of 78
OGC Document Number 00-029

Geography Markup Language (GML) v1.0

OGC Document Number: 00-029

Date: 25-April-2000

This version: 1.0
Latest version: 1.0
Previous version: this is the first public release

Editors: Ron Lake, Galdos Systems Inc. <rlake@galdosinc.com>

 Adrian Cuthbert, Laser-Scan Ltd. <adrian@lsl.co.uk>

Authors: Adrian Cuthbert, Laser-Scan Ltd. <adrian@lsl.co.uk>

 Barry O’Rourke, Compusult Ltd. <barry@compusult.nf.ca>

 Edric Keighan, Cubewerx Inc. <ekeighan@cubewerx.com>

 Jayant Sharma, Oracle Corporation <jsharma@us.oracle.com>

 Paul Daisey, U.S. Census Bureau <pdaisey@geo.census.gov>

 Ron Lake, Galdos Systems Inc. <rlake@galdosinc.com>

 Sandra Johnson, MapInfo Ltd. <sandra_johnson@mapinfo.com>

Abstract

The Geography Markup Language (GML) is an XML encoding for the transport and
storage of geographic information, including both the geometry and properties of
geographic features. This specification defines the mechanisms and syntax that GML uses
to encode geographic information in XML. It is anticipated that GML will make a
significant impact on the ability of organizations to share geographic information with one
another, and to enable linked geographic datasets. The initial release of this specification is
concerned with the XML encoding of what the OpenGIS® Consortium (OCG) calls ’Simple
Features’.

Status of this document

This document is an OpenGIS® Consortium Recommendation Paper. It is similar to a
proposed recommendation in other organizations. While it reflects a public statement of the
official view of the OGC, it does not have the status of a OGC Technology Specification. It
is anticipated that the position stated in this document will develop in response to changes

Geography Markup Language (GML) v1.0 Page 2 of 78
OGC Document Number 00-029

in the underlying technology. Although changes to this document are governed by a
comprehensive review procedure, it is expected that some of these changes may be
significant.

The OGC explicitly invites comments on this document. Please send them to
gml.rfc@opengis.org

Available formats

This GML specification is available in the following formats.

• on-line (HTML)
• as a zip file
• as a PDF file

In case of a discrepancy between the various forms of the specification, the on-line version
is considered the definitive version.
These links will be made live once the document is adopted and being placed on the
OGC site.

Available languages

The English version of this specification is the only normative version.

Table of Contents

• 1. An Introduction to Geographic Features
• 2. GML Overview
• 3. Geometry
• 4. Profile 1 - Fixed Feature DTD
• 5. Profile 2 - User Defined Feature DTD
• 6. Profile 3 - RDF Foundations of GML
• 7. Spatial Reference Systems (informative)
• Appendix A: Geometry DTD
• Appendix B: Spatial Reference Systems DTD’s (informative)
• Appendix C: RDF Schema Definition of GML
• Appendix D: References

Copyright © 2000 OGC All Rights Reserved.

Geography Markup Language (GML) v1.0 Page 3 of 78
OGC Document Number 00-029

1. An Introduction to Geographic Features

1.1. Overview

This section provides an introduction to the key concepts required to understand how
Geography Markup Language (GML) models the world. It is based on the OpenGIS®
Abstract Specification (go to http://www.opengis.org/ and then follow the link to OpenGIS
Specifications and look for OpenGIS Abstract Specification) which defines a geographic
feature as:

"A feature is an abstraction of a real world phenomenon; it is a geographic
feature if it is associated with a location relative to the Earth."

Thus a digital representation of the real world can be thought of as a set of features. The
state of a feature is defined by a set of properties, where each property can be thought of
as a {name, type, value} triple. The number of properties a feature may have, together with
their names and types, are determined by its feature type. Geographic features are those
with properties whose values may be a geometry. A feature collection is a collection of
features that can itself be regarded as a feature. Consequently a feature collection has a
feature type and thus may have properties of its own, in addition to the features it contains.

This definition of GML is concerned with what the OpenGIS Consortium (OGC) calls
’simple features’. These are features whose geometry properties are restricted to holding
’simple geometry’ (for example, coordinates are defined in two dimensions and the path of
a curve between coordinates is assumed to be interpolated linearly). The term ’simple
features’ was originally coined to describe the functionality defined in a set of OpenGIS®
Implementation Specifications (go to http://www.opengis.org/ and then follow the link to
OpenGIS Specifications and look for OpenGIS Implementation Specifications).

GML follows the geometry model defined in those specifications. For example, the
traditional 0, 1 and 2-dimensional geometries defined in a two-dimensional spatial
reference system (SRS) are represented by points, line strings and polygons. In addition
the geometry model for simple features also allows geometries that are collections of other
geometries (either homogeneous, multi point, multi line string and multi polygon, or
heterogeneous, geometry collection). In all cases the ’top-most’ geometry is responsible
for indicating in which SRS the measurements have been made.

Consider the example of somebody wishing to build a digital representation of the city of
Cambridge in England. This could be represented as a feature collection where the
individual features represent such things as rivers, roads and colleges. This classification of
real world phenomena determines the feature types that need to be defined. The choice of
classification is related to the task to which the digital representation will ultimately be put.

The ’River’ feature type might have a property called ’name’ whose value should be of the
type ’string’. It is common to refer to the typed property. Thus, in the previous example, the
’River’ feature type is said to have a string property called ’name’. Similarly the ’Road’
feature type might have a string property called ’classification’ and an integer property

Geography Markup Language (GML) v1.0 Page 4 of 78
OGC Document Number 00-029

called ’number’. Properties with simple types (integers, strings, reals, booleans) are
collectively referred to as simple properties.

The features required to model Cambridge might have geometry properties as well as
simple properties. Just like other properties, geometry properties must be named. So the
’River’ feature type might have a geometry property called ’centerLineOf’ and the ’Road’
feature type might have a geometry property called ’linearGeometry’. It is possible to be
more precise about the type of geometry that can be used as a property value. Thus in the
’River’ and ’Road’ examples the geometry property could be specialised to be a line string
property. Just as it is common to have multiple simple properties defined on a single
feature type (for example, the ’College’ feature type might have integer properties
’numberOfUndergraduates’ and ’numberOfPostgraduates’), so too a feature type may have
multiple geometry properties.

Finally the entire model of Cambridge can be expressed as a single feature collection. This
feature collection might have a feature type of ’CityModel’ which is interpreted ro mean it
has a string property called ’modelDate’, giving the date when it was constructed, and a
geometry property called ’boundedBy’ giving the extent over which the model is valid.

1.2 Examples

This document makes use of a simple example to demonstrate how GML can be used to
encode information about the real world. This example is based on the Cambridge model
described above, and shall be referred to as the ’Cambridge example’. A more precise
definition is given below:

The Cambridge example has a single feature collection of type ’CityModel’ and
contains two features using a containment relationship called ’modelMember’. The
feature collection has a string property called ’modelDate’ with the value ’Feb 2000’
and a geometry property called ’boundedBy’ with a Box value. The Box geometry is
expressed in the SRS identified by the name ’EPSG:4326’. It represents the
’bounding box’ of the feature collection.

The first of the features is of type ’River’ with the name ’Cam’ and description ’The
river that runs through Cambridge’. It has a geometric property called
’centerLineOf’ with a LineString value. This LineString geometry is expressed in the
same SRS as used by the bounding box.

The second of the features is of type ’Road’ with description ’M11’. It has a string
property called ’classification’ with value ’motorway’ and an integer property called
’number’ with value ’11’. It has a geometric property called ’linearGeometry’ with a
LineString value. This LineString geometry is also expressed in the same SRS as
used by the bounding box.

In the example the first feature uses only ’standard’ property names defined by GML,
whereas the second feature uses application specific property names. Thus this example

Geography Markup Language (GML) v1.0 Page 5 of 78
OGC Document Number 00-029

will demonstrate how GML is capable of being used by any application specific model.
The example is not designed to provide examples of how the various types of geometry are
encoded.

We introduce a second example to illustrate how GML can be used to encode a hierarchy
of feature collections. This will be referred to as the ’Schools example’.

The Schools example has a root feature collection of type ’State’ that contains two
features collections of type ’SchoolDistrict’ using the containment relationship
’featureMember’. Each of the ’SchoolDistrict’ feature collections contains two
features from the type ’School’ or ’College’ using the containment relationship
’districtMember’.

The ’District’ feature type has a string property called ’districtName’ and a polygon
property called ’extentOf’.

The ’School’ feature type has a string property called ’principalName’ and a point
property called ’location’.

The ’College’ feature type has a string property called ’prinicpalName’ and a point
property called ’pointProperty’.

1.3. Object Models

The Feature Model used by the OpenGIS Consortium is shown in Figure 1.

Geography Markup Language (GML) v1.0 Page 6 of 78
OGC Document Number 00-029

Figure 1. The OGC Feature Model

It is common practice in the Geospatial Information (GI) community to refer
to the properties of a feature as attributes. However, for the purposes of
avoiding confusion with attributes in XML, this document refers to them as
properties.

The ’Simple Features’ model represents a simplification of the more general model
described in the OpenGIS Abstract Specification. This simplification was the result of
developing a number of implementation specifications. There are two major
simplifications:

• Features are assumed to have either simple properties (booleans, integers, reals,
strings) or geometric properties.

• Geometries are assumed to be defined in a two-dimensional SRS and use linear
interopolation between coordinates.

There are a number of consequences that follow from these simplifications; for example
simple features only provide support for ’vector’ data, nor are simple features sufficiently
expressive to model topology explicitly. It is intended to redress some of these limitations
in future versions of GML.

The ’simplified’ geometry model is central to a number of specifications and documents.
Consequently it is available as a separate document at
http://www.opengis.org/geometry.html. The ’simplified’ geometry document should be
read in conjunction with this document.

The ’Simple Features Geometry’ document is being worked on in parallel and the link
will be fixed for final release (probably after adoption).

Copyright © 2000 OGC All Rights Reserved.

Geography Markup Language (GML) v1.0 Page 7 of 78
OGC Document Number 00-029

2. GML Overview

2.1. GML Profiles

This section discusses the approach to the encoding of OGC Simple Features in XML.
While this version of GML is concerned only with the XML encoding of OGC Simple
Features, future versions of the GML Specification will deal with more elaborate OGC
geometry models.

It is anticipated that GML will appeal to a broad class of users who will in turn wish to
employ a variety of XML technologies. GML is thus presented in the form of three
profiles as follows:

• Profile 1: for those who wish to use a pure DTD based solution and are not
prepared to develop application specific DTD’s, or wish data to be returned against
a fixed set of DTD’s. This profile requires the use of GML Feature, and GML
Geometry DTD’s.

• Profile 2: for those who wish to use a pure DTD based solution but are prepared to
develop their own application specific DTD’s, or are prepared to accept data
encoded with a referenced DTD. This profile requires the user to create an
application specific Feature DTD that uses the GML Geometry DTD.

• Profile 3: for those who are prepared to make use of RDF and RDF Schema. These
users will typically require stronger control of the geospatial typing framework (e.g.
they must be able to relate a type name to an actual schema definition). This profile
requires the user to create an application specific RDF Schema definition that uses
the GML RDF Schema definition. Alternatively Profile 3 users may employ DTD’s
which are derived in some fashion from an RDF Schema or which can trace their
elements to types defined in an associated RDF Schema.

Geography Markup Language (GML) v1.0 Page 8 of 78
OGC Document Number 00-029

The three profiles are summarized in Figure 2.

Figure 2. The three profiles of GML

The arrows indicate a reference; the dotted arrows indicate an optional reference. The light
green boxes are pre-defined GML definitions. The light brown boxes represent application
specific definitions built according to the appropriate GML profile rules. Finally the light
purple boxes represent geospatial information encoded using the appropriate GML profile.

GML is currently XML V1.0 compliant and for this reason uses Document
Type Definitions (DTD’s) rather than XML Schemas. When the W3C’s XML
Schema Structures [XML SCHEMA] and Data Types [XML DATATYPE]
specifications have reached Recommendation status, it is expected that this
specification will be modified to include use of XML Schemas.

GML has also been developed so as to be consistent with the W3C Resource Description
Format (RDF) Model and Syntax. GML geometry encoding can be used to describe the
geometric properties of any RDF resource such as its extent, coverage or location. This

Profile 1
Example

XML

Profile 2
Example

XML

GML SRS DTD

GML Geometry DTD

GML

Feature DTD

Application
Specific

Feature DTD

Application
Specific

rdfs

Profile 3
Example

rdf

GML
rdfs

GML SRS
rdf

Geography Markup Language (GML) v1.0 Page 9 of 78
OGC Document Number 00-029

enables GML to be used in a wide variety of applications that are not inherently spatial in
nature.

GML has also been developed to be consistent with the XML Namespaces
Recommendation ([XMLNAME]) . In GML Profile 2 and 3, XML Namespaces can be
used to distinguish the definitions of geographic features and properties defined in
application-specific domains from one another and from those defined by OGC GML.

2.2 Properties and Classes in GML

GML is an XML encoding for geographic features. In order to correctly interpret a GML
data file it is necessary to understand the conceptual model that underlies GML. A
geographic feature in the OGC Abstract Specification is essentially a named list of
properties. Thus we can consider a property as a function that maps a feature onto a
property value. A property is characterised by the input feature type and the type of the
value that is returned.

For example, if the feature type House has a String property called address then we might
write:

address(House) --> String

If, in addition, the House feature type has a Polygon property called extentOf then we
could write:

extentOf(House) --> Polygon

More generally we might regard all the possible types of feature, together with all types of
property value (Strings, Integers, Polygons etc), as a set of classes. Then we can
characterise a property as a function with a domain (input) class and a range (output) class.

We are not restricted to talking about features and their properties, we can also talk about
the properties of a geometry, since geometry defines a class. Consider a geometry as a
named list of properties, then the Polygon class might have an outerBoundaryIs property
so that one could write:

outerBoundaryIs(Polygon) --> LinearRing

We are then able to compose two functions to obtain:

outerBoundaryIs(extentOf(House)) --> LinearRing

This approach can also be applied to items bigger than features. For example, a
FeatureCollection can be considered to have multiple named properties (albeit all with the
same name) that have as their values the Features in the collection. Thus we can write:

featureMember(FeatureCollection) --> Feature

Geography Markup Language (GML) v1.0 Page 10 of 78
OGC Document Number 00-029

This forms the theoretical basis for GML. These ideas are stated more formally in the
W3C’s Resource Description Format Schema (RDF Schema), which GML Profile 3 uses
directly. However GML Profiles 1 and 2 can be used without any further consideration of
RDF.

When we write GML tags we will distinguish between properties and classes. Tags that
represent instances of GML classes will start with an uppercase letter (e.g. Polygon) while
tags that represent properties will start with a lowercase letter which subsequent embedded
words starting with uppercase letters (e.g. extentOf).

2.3. Geography and Graphics

Simple Features are intended to describe the geography of entities in the real world. As
such, the encoding is not concerned with the visualization of geographic features as in the
drawing of maps. To draw a map with GML it is necessary to transform the GML into a
graphic format, either by direct rendering, or preferably by transforming the XML encoded
Simple Features into XML encoded graphics elements such as SVG (Scalable Vector
Graphics) [SVG], VML (Vector Markup Language) [VML], or Virtual Reality Markup
Language [VRML]. Such a transformation can be done anywhere in the processing chain
between the data store and the visualization device.

GML can be considered in relation to POIX [POIX] GML is intended to model the
structure and relationships for real world geography. Although not connected to GML,
POIX is a much simplified model for position and direction information. POIX data such as
might be required in a Portable Digital Assistant (PDA) can be generated from GML data.

GML encoding is intended to support both data storage and data transport. Implementors
may decide to store geographic information in GML, or they may decide to convert from
some other storage format on demand and use GML only for data transport.

GML is distinct from, and not dependent on any other graphical specification. GML
contains no information about how the features it encodes might appear. Yet the visual
rendering of a GML structure is dependent on the use of one of several possible vector
graphics formats. Transforming GML into SVG (Scalable Vector Graphics), VML (Vector
Graphics Markup Language), or VRML (Virtual Reality Markup Language) is strongly
recommended for data visualization.

Many different graphical symbolic representations might be generated from a single GML
file. These different representations could include both different graphical formats and
different symbolizations. A single GML file might thus give rise to multiple types of maps.

In some applications there will be no graphical data display at all. Geographic data might
be simply be routed to a numerical model (e.g. a flood prediction model) for processing.
The output of this numerical model may also be expressed in GML.

Coordinates of points in a GML-encoded structure are specified relative to a named Spatial
Reference System whose description can also encoded in GML. A data server can supply
data encoded in GML but not supply the description of the Spatial Reference System,

Geography Markup Language (GML) v1.0 Page 11 of 78
OGC Document Number 00-029

provided that a named reference to such a description is included. Spatial Reference
System descriptions are thus always connected to the geographic data by means of a named
reference.

Copyright © 2000 OGC All Rights Reserved.

Geography Markup Language (GML) v1.0 Page 12 of 78
OGC Document Number 00-029

3. Geometry

3.1. Overview

This section describes how GML encodes Geometry into XML. It also introduces the GML
Geometry DTD that supports this encoding. This is used explicitly by GML Profiles 1 and
2 (the complete GML Geometry DTD is given in Appendix A). However the XML
encoding is also consistent with the RDF Schema definition of Geometry used by GML
Profile 3. Consequently the material in this section should be read by all prospective
GML users.

Conforming to the OGC Simple Features model, GML provides geometry elements
corresponding to the following Geometry Classes.

• Point
• LineString
• LinearRing
• Polygon
• MultiPoint
• MultiLineString
• MultiPolygon
• GeometryCollection

In addition it provides a coordinates element for encoding coordinates, and a Box element
for defining extents. The following sections describe in detail the encoding of each of these
types of geometries.

3.2. coordinates Element

A coordinate list is a simple list of coordinate tuples. The separators used to parse the
coordinate list are encoded as attributes of the <coordinates> tag. In the example below, the
coordinates in a tuple are separated by commas, and the successive tuples in the
<coordinates> are separated by whitespace. A coordinate list is not a geometry in the
Simple Features sense, merely the coordinate content. All tuples in the string must have the
same dimension. A coordinate list is given by the following grammar.

<decimal>::=’.’

<D>:=[0-9]

<cs>::=","
<ts>::=whitespace (see XML 1.0 [XML]
<coordinate>::=’-’<D>+(<decimal><D>+)?
<ctuple>::=<ctuple>|<coordinate><cs><ctuple>
<coordinatelist>::=<coordinatelist>|<ctuple><ts><coordinatelist>

Note that the value of decimal, cs, and ts are
determined by the GML encoding of <coordinates>.

Geography Markup Language (GML) v1.0 Page 13 of 78
OGC Document Number 00-029

The grammar is illustrated for default values
of decimal, cs and ts.

To find the coordinates of any Geometry class instance we introduce the coordinate
property. We think of this as a function on the Geometry class instance that returns the
coordinates as a coordinate list. The coordinate property has the associated DTD fragment:

<!ELEMENT coordinates (#PCDATA) >
<!ATTLIST coordinates
 decimal CDATA #IMPLIED
 cs CDATA #IMPLIED
 ts CDATA #IMPLIED>

Note that the coordinate value is given by <coordinate>=’-’<D>+(<decimal><D>+)?, hence
we can encode coordinates as 1.45 or 1,45 etc. depending on the values assigned to the
<coordinates> attributes. Note that the default for decimal is ’.’, for cs is ’,’ and for ts is
whitespace.

Example

<coordinates decimal="." cs="," ts="whitespace">
 1.03,2.167 4.167,2.34 4.87,3.0 1.06,2.3
</coordinates>

3.3. Point Element

The Point Element is used to encode instances of the Point geometry class. Each Point
Element encloses a single coordinates element, the latter containing one and only one
coordinate tuple. A Point geometry must specify a SRS in which its coordinates are
measured. This is referenced by name. Thus the Point element has an srsName attribute.
However this is defined to be optional. This is to allow the Point element to be contained in
other elements which might have already specified a SRS. Similar considerations apply to
the other geometry elements. The Point element also has an optional ID attribute. The DTD
fragment for the Point element is as follows:

<!ELEMENT Point (coordinates) >
<!ATTLIST Point
 ID CDATA #IMPLIED
 srsName CDATA #IMPLIED>

Example

<Point srsName="EPSG:4326">
 <coordinates>
 56.1,0.45
 </coordinates>
</Point>

3.4. Box Element

The Box Element is used to encode extents. Each Box Element encloses a single
coordinates element, the latter containing precisely two coordinate tuples. The first of these

Geography Markup Language (GML) v1.0 Page 14 of 78
OGC Document Number 00-029

is constructued from the minimum values measured along for all the axes, and the second is
constructed from the maximum values measured along all the axes. The Box element also
has a mandatory srsName, since it cannot be contained by other Geometry classes. It has an
optional ID attribute. The DTD fragment for the Box element is as follows:

<!ELEMENT Box (coordinates) >
<!ATTLIST Box
 ID CDATA #IMPLIED
 srsName CDATA #REQUIRED>

Example

<Box srsName="EPSG:4326">
 <coordinates>
 0.0,0.0 100.0,100.0
 </coordinates>
</Box>

3.5. LineString Element

A Line String is a piece-wise linear path. The path is defined by a list of coordinates that
are then assumed to be connected by straight line segments. A closed path is indicated by
having coincident first and last coordinates. At least two coordinates are required. The
DTD fragment is as follows:

<!ELEMENT LineString (coordinates) >
<!ATTLIST LineString
 ID CDATA #IMPLIED
 srsName CDATA #IMPLIED >

Example

<LineString srsName="EPSG:4326">
 <coordinates>
 0.0,0.0
 100.0,100.0
 </coordinates>
</LineString>

3.6. LinearRing Element

A Linear Ring is a closed, simple piece-wise linear path. The path is defined by a list of
coordinates that are then assumed to be connected by straight line segments. The last
coordinate must be coincident with the first coordinate. At least four coordinates are
required (the three to define a ring and the fourth duplicated one). Since a LinearRing is
used in the construction of Polygons, which define their own SRS, it has no need to define
a SRS. The DTD fragment is as follows:

<!ELEMENT LinearRing (coordinates) >
<!ATTLIST LinearRing
 ID CDATA #IMPLIED >

Geography Markup Language (GML) v1.0 Page 15 of 78
OGC Document Number 00-029

Example

<LinearRing>
 <coordinates>
 0.0,0.0
 100.0,0.0
 50.0,100.0
 0.0,0.0
 </coordinates>
</LinearRing>

3.7. Polygon Element

A Polygon is a connected surface. Any pair of points in the polygon can be connected to
one another by a path. The boundary of the Polygon is a set of Linear Rings. We
distinguish the outer (exterior) boundary and the inner (interior) boundaries. The Linear
Rings of the interior boundary cannot cross one another and cannot be contained within one
another. There must be at most one exterior boundary and zero or more interior boundary
elements. The ordering of Linear Rings, whether they form clockwise or anti-clockwise
paths, is not important. A Polygon is encoded via the DTD fragment:

<!ELEMENT Polygon (outerBoundaryIs, innerBoundaryIs*) >
<!ATTLIST Polygon
 ID CDATA #IMPLIED
 srsName CDATA #IMPLIED >

<!ELEMENT outerBoundaryIs (LinearRing) >

<!ELEMENT innerBoundaryIs (LinearRing) >

Example

<Polygon srsName="EPSG:4326">
 <outerBoundaryIs>
 <LinearRing>
 <coordinates>
 0.0,0.0 100.0,0.0 100.0,100.0 0.0,100.0 0.0,0.0
 </coordinates>
 </LinearRing>
 </outerBoundaryIs>
 <innerBoundaryIs>
 <LinearRing>
 <coordinates>
 10.0,10.0 10.0,40.0 40.0,40.0 40.0,10.0 10.0,10.0
 </coordinates>
 </LinearRing>
 </innerBoundaryIs>
 <innerBoundaryIs>
 <LinearRing>
 <coordinates>
 60.0,60.0 60.0,90.0 90.0,90.0 90.0,60.0 60.0,60.0
 </coordinates>
 </LinearRing>
 </innerBoundaryIs>
</Polygon>

Geography Markup Language (GML) v1.0 Page 16 of 78
OGC Document Number 00-029

3.8. GeometryCollection Element

The GeometryCollection element can be used as a container for arbitrary geometry
elements. A GeometryCollection might contain any of the geometry elements such as
Points, LineStrings, Polygons, MultiPoints, MultiLineStrings, MultiPolygons and even
other GeometryCollections. The GeometryCollection Element has the property
geometryMember which returns the next Geometry element in the collection. The
geometryMember element can contain any of the GML geometry elements. It should be
noted that the srsName attribute can ONLY occur on the outermost GeometryCollection
and must not appear as an attribute of any of the enclosed geometry elements. The DTD
fragment for the GeometryCollection element is as follows:

<!ENTITY % GeometryClasses "(
 Point | LineString | Polygon |
 MultiPoint | MultiLineString | MultiPolygon |
 GeometryCollection)">

<!ELEMENT GeometryCollection (geometryMember)+>
<!ATTLIST GeometryCollection
 ID CDATA #IMPLIED
 srsName CDATA #IMPLIED>

<!ELEMENT geometryMember (%GeometryClasses;)>

Example

<GeometryCollection srsName="EPSG:4326">
 <geometryMember>
 <Point>
 <coordinates>
 50.0,50.0
 </coordinates>
 </Point>
 </geometryMember>
 <geometryMember>
 <LineString>
 <coordinates>
 0.0,0.0 0.0,50.0 100.0,50.0 100.0,100.0
 </coordinates>
 </LineString>
 </geometryMember>
 <geometryMember>
 <Polygon>
 <outerBoundaryIs>
 <LinearRing>
 <coordinates>
 0.0,0.0 100.0,0.0 50.0,100.0 0.0,0.0
 </coordinates>
 </LinearRing>
 </outerBoundaryIs>
 </Polygon>
 </geometryMember>
</GeometryCollection>

3.9. MultiPointElement

Geography Markup Language (GML) v1.0 Page 17 of 78
OGC Document Number 00-029

A MultiPoint is a collection of Points. It should be noted that the srsName attribute can
ONLY occur on the enclosing MultiPoint and must not appear as an attribute of any of the
enclosed Points. The DTD fragment for encoding a MultiPoint is as follows:

<!ELEMENT MultiPoint (pointMember*) >
<!ATTLIST MultiPoint
 ID CDATA #IMPLIED
 srsName CDATA #IMPLIED >

<!ELEMENT pointMember (Point) >

Example

<MultiPoint srsName="EPSG:4326">
 <pointMember>
 <Point>
 <coordinates>56.1,0.45</coordinates>
 </Point>
 </pointMember>
 <pointMember>
 <Point>
 <coordinates>46.71,9.25</coordinates>
 </Point>
 </pointMember>
 <pointMember>
 <Point>
 <coordinates>56.88,10.44</coordinates>
 </Point>
 </pointMember>
</MultiPoint >

3.10. MultiLineString

A MultiLineString is a collection of Line Strings. It should be noted that the srsName
attribute can ONLY occur on the enclosing MultiLineString and must not appear as an
attribute of any of the enclosed LineStrings. The DTD fragment for MultiLineString is as
follows:

<!ELEMENT MultiLineString (lineStringMember*) >
<!ATTLIST MultiLineString
 ID CDATA #IMPLIED
 srsName CDATA #IMPLIED >

<!ELEMENT lineStringMember (LineString) >

Example

<MultiLineString srsName="EPSG:4326">
 <lineStringMember>
 <LineString>
 <coordinates>56.1,0.45 67.23,0.67</coordinates>
 </LineString>
 </lineStringMember>
 <lineStringMember>
 <LineString>

Geography Markup Language (GML) v1.0 Page 18 of 78
OGC Document Number 00-029

 <coordinates>46.71,9.25 56.88,10.44</coordinates>
 </LineString>
 </lineStringMember>
 <lineStringMember>
 <LineString>
 <coordinates>324.1,219.7 0.45,0.56</coordinates>
 </LineString>
 </lineStringMember>
</MultiLineString>

3.11. MultiPolygon Element

A MultiPolygon is an OGC geometry. It should be noted that the srsName attribute can
ONLY occur on the enclosing MultiPolygon and must not appear as an attribute of any of
the enclosed Polygons. The GML MultiPolygon is encoded using the following DTD
fragment:

<!ELEMENT MultiPolygon (polygonMember*) >
<!ATTLIST MultiPolygon
 ID CDATA #IMPLIED
 srsName CDATA #IMPLIED >

<!ELEMENT polygonMember (Polygon) >

Example

<MultiPolygon srsName="EPSG:4326">
 <polygonMember>
 <Polygon>
 <outerBoundaryIs>
 <LinearRing>
 <coordinates>
 0.0,0.0 10.0,0.0 10.0,10.0 0.0,10.0 0.0,0.0
 </coordinates>
 </LinearRing>
 </outerBoundaryIs>
 </Polygon>
 </polygonMember>
 <polygonMember>
 <Polygon>
 <outerBoundaryIs>
 <LinearRing>
 <coordinates>
 40.0,40.0 50.0,40.0 50.0,50.0 40.0,50.0 40.0,40.0
 </coordinates>
 </LinearRing>
 </outerBoundaryIs>
 </Polygon>
 </polygonMember>
</MultiPolygon>

Copyright © 2000 OGC All Rights Reserved.

Geography Markup Language (GML) v1.0 Page 19 of 78
OGC Document Number 00-029

4. Profile 1 - Fixed Feature DTD

4.1 Overview

This section describes the simplest GML Profile. This is defined by three main DTD’s,
namely:

• GML Feature DTD (gmlfeature.dtd)
• GML Geometry DTD (gmlgeometry.dtd)
• GML Spatial Reference System DTD (ebcsdictionary.dtd)

Using these DTD’s one can encode a wide variety of geospatial information. Note that the
Geometry DTD (gmlgeometry.dtd) and the Spatial Reference System DTD are shared in
common with Profile 2.

This profile is directed at users who do not wish to define their own feature DTD’s and who
are not going to use RDF (Resource Description Format). For these users, profile 1
provides a standard feature DTD.

4.2. Encoding Geometry

Geometry values are encoded using the GML Geometry DTD introduced in Section 3.

4.3. Encoding Geometry Properties

The GML Geometry DTD not only provides the definition to allow the encoding of
Geometry values, it also provides the defintions to encode geometry properties. The
encoding of a geographic feature (see next section) relies on these to ’tie’ geometry values
to a feature. The GML Geometry DTD introduces two geometry properties; boundedBy
and geometryProperty.

The boundedBy element is used to indicate the extent of a geographic feature and maps the
Feature class onto the Box class. This is ’standard’ name in GML and is used by other
profiles. The DTD fragment that defines boundedBy is given below and comes from the
GML Geometry DTD:

<!ELEMENT boundedBy (Box) >

The geometricProperty element is used to give a geometric property to a feature. It includes
a mandatory typeName attribute to ’name’ the geometricProperty. There are no restrictions
on the name of the property, nor does GML Profile 1 endorse any specific names for
geometryProperties other than boundedBy. This use of an attribute to name a property is
peculiar to GML Profile 1 and substitutes for more generic methods used in other profiles
(for example providing the name as an element in an application specific DTD in GML
Profile 2). The geometricProperty can contain any geometry class, and a feature can
contain any number of geometryProperties. The DTD fragment that defines
geometricProperty is given below and comes from the GML Feature DTD:

Geography Markup Language (GML) v1.0 Page 20 of 78
OGC Document Number 00-029

<!ELEMENT geometricProperty (%GeometryClasses;) >
<!ATTLIST geometricProperty
 typeName CDATA #REQUIRED >

4.4. Encoding Geographic Features

This section describes the encoding of geographic features using GML Profile 1. The
material in this section is unique to Profile 1 and can be omitted by readers who employ
Profiles 2 or 3.

A geographic feature in the OGC Abstract Specification is a named list of properties. In
GML Profile 1 such a geographic feature is represented by a <Feature> tag that encloses
zero or more simple or geometry properties. A simple property is any property that can be
encoded using parsed character dta. Currently GML Profile 1 restricts simple properties to
booleans, integers, reals and strings. More complex data types need to be encoded using a
XML encoding of their own and required an appropriately typed property element.
Currently GML Profile 1 only provides support for one type of complex data type, namely
Geometry, with the geometricProperty element.

GML encourages the use of ’standard’ user-friendly names by pre-defining them (see
boundedBy above). GML defines name and description elements as pre-defined elements
to hold string properties. These are used across all profiles and are defined in the GML
Geometry DTD by the following fragment:

<!ELEMENT name (#PCDATA) >

<!ELEMENT description (#PCDATA) >

Including these ’feature metadata’ elements in the GML Geometry DTD is a
matter of convenience, since GML Profiles 1 and 2 are required to include
it.

These concepts are best explained using the Cambridge example we introduced in Section
1. First consider how the two individual features are encoded.

River example

<Feature typeName="River">
 <name>
 Cam
 </name>
 <description>
 The river that runs through Cambridge.
 </description>
 <geometricProperty typeName="centerLineOf">
 <LineString srsName="EPSG:4326">
 <coordinates>
 0.0,50.0 100.0,50.0
 </coordinates>
 </LineString>
 </geometricProperty>
</Feature>

Geography Markup Language (GML) v1.0 Page 21 of 78
OGC Document Number 00-029

Road example

<Feature typeName="Road">
 <description>
 M11
 </description>
 <property typeName="classification">
 motorway
 </property>
 <property typeName="number" type="integer">
 11
 </property>
 <geometricProperty typeName="linearGeometry">
 <LineString srsName="EPSG:4326">
 <coordinates>
 0.0,100.0 100.0,0.0
 </coordinates>
 </LineString>
 </geometricProperty>
</Feature>

In these examples we have geographic features with the type names ’River’ and ’Road’. In
the road example we have a geometry property called ’linearGeometry’ and a couple of
simple properties that can be encoded as parsed character data; a string property called
’classification’ and an integer property called ’number’. Note that GML Profile 1 does not
provide a means to describe the feature type, instead it relies on the name of the feature
type. Similarly GML Profile 1 cannot describe the type of simple properties, other than to
specify its name and state its value type. Currently GML Profile 1 only supports the value
types:

• boolean
• integer
• real
• string

In these examples the values of the geometricProperty is a LineString. However GML
Profile 1 cannot provide an explicit connection between the typeName of the
geometricProperty and the type of the enclosed geometry element.

In GML Profile 1, GML data is stored or exchanged using feature collection documents. A
FeatureCollection is a collection of GML Profile 1 Features, as described in the above
example fragments. Elements in the FeatureCollection are selected using the
featureMember property which is interpreted as returning the next Feature in the collection.
A FeatureCollection thus consists of a set of featureMember tags each enclosing Feature
elements similar to the above example.

The name of the containment relationship between FeatureCollection and Feature is
specified by the typeName attribute on the featureMember tag. It should be noted that, in
many ways, the featureMember and FeatureCollection tags should be considered as
different parts of the definition of a feature collection. Thus the typeName attribute for
all the featureMember tags in a FeatureCollection should be the same. If a number of
different typeNames are used, then each would correspond to a different interpretation of

Geography Markup Language (GML) v1.0 Page 22 of 78
OGC Document Number 00-029

the feature collection. This would move the definition of the feature collection down from
the FeatureCollection class to the featureMember property. This not only defies the
intended distinction of class and property, it makes the interpretation of the boundedBy
property of the FeatureCollection ambiguous.

The full GML Feature DTD is:

<?xml version="1.0" encoding="UTF-8"?>

<!-- ==-
->
<!-- G e o g r a p h y
-->
<!-- M a r k u p
-->
<!-- L a n g u a g e
-->
<!--
-->
<!-- (G M L)
-->
<!--
-->
<!-- F E A T U R E D T D
-->
<!--
-->
<!-- Copyright (c) 2000 OGC All Rights Reserved.
-->
<!-- ==
-->

<!-- The GML Feature DTD includes the GML Geometry DTD as an
external entity reference. --->

<!ENTITY % GMLGEOMETRYDTD SYSTEM "gmlgeometry.dtd">
%GMLGEOMETRYDTD;

<!-- A feature contains a set of properties (simple and/or
geometric). In addition a feature can optionally contain a
description. A feature must specify its feature type by name
(typeName). It may optionally provide an identifier for use within
its containing feature collection (identifier) -->

<!ELEMENT Feature (
 description?, name?, boundedBy?,
 property*, geometricProperty*)>

<!ATTLIST Feature
 typeName CDATA #REQUIRED
 identifier CDATA #IMPLIED >

<!-- A feature collection has the same definition as a feature, but
in addition a feature collection may contain featureMembers. The
boundedBy element is mandatory for feature collections. -->

<!ELEMENT FeatureCollection (

Geography Markup Language (GML) v1.0 Page 23 of 78
OGC Document Number 00-029

 description?, name?, boundedBy,
 property*, geometricProperty*,
 featureMember*)>

<!ATTLIST FeatureCollection
 typeName CDATA #REQUIRED
 identifier CDATA #IMPLIED >

<!-- A featureMember can be a Feature or a FeatureCollection. The
name of the containment relationship between the containing
FeatureCollection and contained Features is specified by the
typeName attribute. -->

<!ELEMENT featureMember (Feature | FeatureCollection)>

<!ATTLIST featureMember
 typeName CDATA #REQUIRED >

<!-- Simple properties hold the property value as parsed character
data. The type of the value is specified by the type attribute,
which defaults to the ’string’ type. The name of the property is
specified by the typeName attribute. -->

<!ELEMENT property (#PCDATA)>
<!ATTLIST property
 typeName CDATA #REQUIRED
 type (boolean | integer | real | string) "string" >

<!-- Geometric properties hold the property value as a contained
geometry element. The name of the property is specified by the
typeName attribute. -->

<!ELEMENT geometricProperty (%GeometryClasses;)>
<!ATTLIST geometricProperty
 typeName CDATA #REQUIRED >

Download this GML Feature DTD (gmlfeature.dtd)

Note that the GML Feature DTD references the GML Geometry DTD. Note further that, as
written, the GML Geometry DTD (gmlgeometry.dtd) must reside in the same directory as
the GML Feature DTD (gmlfeature.dtd).

Note that a FeatureCollection element contains optional name and description elements, a
mandatory boundedBy element, zero or more property elements, zero or more geometry
elements and zero or more featureMembers. The property and geometry property elements
refer to the FeatureCollection as a whole. The Box geometry element enclosed by the
boundedBy element defines a maximum bounding rectangle in the specified spatial
reference system (srsName attribute of the Box element) for all of the features in the
feature collection.

Note that a Feature element contains optional name and description elements, an optional
boundedBy element defining a minimum bounding rectangle for the Feature, zero or more
properties and zero or more geometry properties. The properties (non-geometry properties)
can have any type name but must have a value type which is one of boolean, integer, real or

Geography Markup Language (GML) v1.0 Page 24 of 78
OGC Document Number 00-029

string. The interpretation of these value types is up to the application reading the GML
Profile 1 data file. It is anticipated that these will be mapped to XML Schema type
definitions in a subsequent revision of this specification.

The XML document below provides a complete encoding of the Cambridge example using
GML Profile 1. Note that the sections marked in light blue represent the encoding of the
feature collection itself. The encoding of the individual features (light green) is the same as
described earlier in this section.

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE FeatureCollection SYSTEM "gmlfeature.dtd" >

<FeatureCollection typeName="CityModel">
 <boundedBy>
 <Box srsName="EPSG:4326">
 <coordinates>
 0.0,0.0 100.0,100.0
 </coordinates>
 </Box>
 </boundedBy>
 <property typeName="modelDate">
 Feb 2000.
 </property>
 <featureMember typeName="modelMember">
 <Feature typeName="River">
 <name>
 Cam
 </name>
 <description>
 The river that runs through Cambridge.
 </description>
 <geometricProperty typeName="centerLineOf">
 <LineString srsName="EPSG:4326">
 <coordinates>
 0.0,50.0 100.0,50.0
 </coordinates>
 </LineString>
 </geometricProperty>
 </Feature>
 </featureMember>
 <featureMember typeName="modelMember">
 <Feature typeName="Road">
 <description>
 M11
 </description>
 <property typeName="classification">
 motorway
 </property>
 <property typeName="number" type="integer">
 11
 </property>
 <geometricProperty typeName="linearGeometry">
 <LineString srsName="EPSG:4326">
 <coordinates>
 0.0,100.0 100.0,0.0
 </coordinates>

Geography Markup Language (GML) v1.0 Page 25 of 78
OGC Document Number 00-029

 </LineString>
 </geometricProperty>
 </Feature>
 </featureMember>
</FeatureCollection>

Download this example XML (example_profile1.xml)

The names in blue bold are those taken from the example and are ’extending’ the standard
set of names defined by GML.

The XML document below provides a complete encoding of the Schools example using
GML Profile 1.

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE FeatureCollection SYSTEM "gmlfeature.dtd" >

<FeatureCollection typeName="State">
 <boundedBy>
 <Box srsName="EPSG:4326">
 <coordinates>0.0,0.0 50.0,50.0</coordinates>
 </Box>
 </boundedBy>
 <featureMember typeName="featureMember">
 <FeatureCollection typeName="SchoolDistrict">
 <property typeName="districtName">111</property>
 <boundedBy>
 <Box srsName="EPSG:4326">
 <coordinates>0.0,0.0 50.0,40.0</coordinates>
 </Box>
 </boundedBy>
 <geometricProperty typeName="extentOf">
 <Polygon srsName="EPSG:4326">
 <outerBoundaryIs>
 <LinearRing>
 <coordinates>0.0,0.0 50.0,0.0 50.0,40.0,
0.0,0.0</coordinates>
 </LinearRing>
 </outerBoundaryIs>
 </Polygon>
 </geometricProperty>
 <featureMember typeName="districtMember">
 <Feature typeName="School">
 <property typeName="principalName">111-1</property>
 <geometricProperty typeName="location">
 <Point srsName="EPSG:4326">
 <coordinates>20.0,5.0</coordinates>
 </Point>
 </geometricProperty>
 </Feature>
 </featureMember>
 <featureMember typeName="districtMember">
 <Feature typeName="School">
 <property typeName="principalName">111-2</property>
 <geometricProperty typeName="location">
 <Point srsName="EPSG:4326">

Geography Markup Language (GML) v1.0 Page 26 of 78
OGC Document Number 00-029

 <coordinates>40.0,5.0</coordinates>
 </Point>
 </geometricProperty>
 </Feature>
 </featureMember>
 </FeatureCollection>
 </featureMember>
 <featureMember typeName="featureMember">
 <FeatureCollection typeName="SchoolDistrict">
 <property typeName="districtName">222</property>
 <boundedBy>
 <Box srsName="EPSG:4326">
 <coordinates>0.0,0.0 40.0,50.0</coordinates>
 </Box>
 </boundedBy>
 <geometricProperty typeName="extentOf">
 <Polygon srsName="EPSG:4326">
 <outerBoundaryIs>
 <LinearRing>
 <coordinates>0.0,0.0 40.0,50.0 0.0,50.0
0.0,0.0</coordinates>
 </LinearRing>
 </outerBoundaryIs>
 </Polygon>
 </geometricProperty>
 <featureMember typeName="districtMember">
 <Feature typeName="School">
 <property typeName="principalName">222-1</property>
 <geometricProperty typeName="location">
 <Point srsName="EPSG:4326">
 <coordinates>5.0,20.0</coordinates>
 </Point>
 </geometricProperty>
 </Feature>
 </featureMember>
 <featureMember typeName="districtMember">
 <Feature typeName="College">
 <property typeName="principalName">222-2</property>
 <geometryPropety typeName="pointProperty">
 <Point srsName="EPSG:4326">
 <coordinates>5.0,40.0</coordinates>
 </Point>
 </geometricProperty>
 </Feature>
 </featureMember>
 </FeatureCollection>
 </featureMember>
</FeatureCollection>

4.5. Encoding Spatial Reference Systems (informative)

This section describes the encoding of Spatial Reference Systems, sometimes referred to by
the more general phrase ’Coordinate Systems’, for the Profile 1 User.

The GML Profile 1 user should note that the optional srsName attribute on each of the
Geometry elements takes simply a string value. In GML Profile 1 the value of this attribute
is treated as a name only, and it is not required that this attribute point to a spatial reference

Geography Markup Language (GML) v1.0 Page 27 of 78
OGC Document Number 00-029

system dictionary entry. The GML Profile 1 user can thus decide to ignore the encoding of
Spatial Reference Systems altogether.

For the reader interested in building spatial reference system dictionaries please see Section
7.0.

Copyright © 2000 OGC All Rights Reserved.

Geography Markup Language (GML) v1.0 Page 28 of 78
OGC Document Number 00-029

5. Profile 2 - User Defined Feature DTD

5.1. Overview

GML Profile 2 uses the same Geometry DTD (gmlgeometry.dtd) and Spatial Reference
System DTD’s as GML Profile 1. These are augmented with an application specific Feature
DTD:

• Application Specific Feature DTD (e.g. example_profile2_schema.dtd)
• GML Geometry DTD (gmlgeometry.dtd)
• GML Spatial Reference System DTD (ebcsdictionary.dtd)

Unlike GML Profile 1, GML Profile 2 does not have a fixed GML Feature DTD. Instead
the user can construct their own application specific feature DTD following normative
rules of the GML specification.

The GML Geometry DTD provides the user with a predefined set of geometry properties
that they can use to describe geographic features by including them in their application
specific Feature DTD. These geometry properties include common properties of
geographic entities such as location and extent.

In addition GML Profile 2 also provides the user with some basic metadata for describing
geographic features including name and description.

5.2. Encoding Geometry

Geometry values are encoded using the GML Geometry DTD introduced in Section 3.

5.3. Encoding Geometry Properties

This section describes the geometry properties that are provided as part of the GML
Geometry DTD. These properties are used by the GML Profile 2 users when they construct
their own application specific Feature DTD. The GML Geometry DTD provides a number
of ’descriptive names’ for geometry properties. These are encoded in the English language
currently. Subsequent translations of this specification into other languages will provide
these geometry properties in other languages as well using the xmllang attribute.

There are three levels of naming geometry properties in GML:

1. Formal names: these name geometry properties in a formal manner based on the
type of geometry allowed as a property value.

2. Descriptive names: these provide a set of GML endorsed synonyms for the formal
names. Although these offer no additional functionality, they represent a more user-
fiendly set of names. Later releases of GML will provide more information on their
use.

3. User-defined names: there is always a need to allow users their own choice of
names.

Geography Markup Language (GML) v1.0 Page 29 of 78
OGC Document Number 00-029

GML Profile 2 introduces a number of formal names. These can be described using the
notation from Section 2.2:

geometryProperty(Feature) --> Geometry

boundedBy(Feature) --> Box

pointProperty(Feature) --> Point
lineStringProperty(Feature) --> LineString
polygonProperty(Feature) --> Polygon

muliPointProperty(Feature) --> MultiPoint
multiLineStringProperty(Feature) --> MultiLineString
multiPolygonProperty(Feature) --> MultiPolygon

geometryCollectionProperty(Feature) --> GeometryCollection

Note that GML Profile 2 can make use of geometryProperty which is defined in the GML
Geometry DTD. This is different from the geometricProperty defined as part of GML
Feature DTD in GML Profile 1, although the role they play is similar. Different names
were required to avoid a name clash.

GML Profile 2 also introduces descriptive names for these properties dependent on the type
of geometry they map onto:

• pointProperty: location, position, centerOf
• lineStringProperty: centerLineOf, edgeOf
• polygonProperty: extentOf, coverage
• multiPointProperty: multiLocation, multiPosition, multiCenterOf
• multiLineStringProperty: multiCenterLineOf, multiEdgeOf
• multiPolygonProperty: multiExtentOf, multiCoverage

The precise semantics of these geometry properties (e.g. "What does position of an object
mean?" or "Are location and position synonymous?") is not currently part of the GML
specification, however, it is anticipated that these will be defined in a subsequent release.

It should be noted that there are no inherent restrictions in the type of geometry property a
feature type may have. For example, the ’Radio Tower’ feature type could have a geometry
property called ’location’ that returns a Point geometry to identify its location, and have
another geometry property called ’extentOf’ that returns a Polygon geometry describing its
physical structure. There is no requirement or all these geometry return types to be the
same.

5.3.1. Point Properties

A point property is a geometry property that takes values in the class of Points. It might be
used for example to express the location of a feature. In GML Profile 2 the domain of
point property is Feature.

Geography Markup Language (GML) v1.0 Page 30 of 78
OGC Document Number 00-029

GML defines the following explicit point properties which are sub-properties of
pointProperty:

• centerOf
• location
• position

Example using descriptive name ’centerOf’

<centerOf>
 <Point srsName="EPSG:4326">
 <coordinates>
 0.0,0.0
 </coordinates>
 </Point>
</centerOf>

5.3.2. Line String Properties

A line string property is a geometry property that takes values in the class of LineStrings.
It might be used for example to express the centerline or edges of a feature. In GML the
domain of line string property is Feature.

GML defines the following explicit line string properties which are sub-properties of
lineStringProperty:

• centerLineOf
• edgeOf

Example using formal name ’lineStringProperty’

<lineStringProperty>
 <LineString srsName="EPSG:4326">
 <coordinates>
 0.0,0.0 100.0,100.0
 </coordinates>
 </LineString>
</lineStringProperty>

5.3.3. Polygon Properties

A polygon property is a geometry property that takes values in the class of Polygons. It
might be used for example to express the extent or coverage of a feature. In GML the
domain of polygon property is Feature

GML defines the following explicit polygon properties which are sub-properties of
polygonProperty:

Geography Markup Language (GML) v1.0 Page 31 of 78
OGC Document Number 00-029

• extentOf
• coverage

Example using descriptive name ’extentOf’

<extentOf>
 <Polygon srsName="ESPG:4326">
 <outerBoundaryIs>
 <LinearRing>
 <coordinates>
 0.0,0.0 100.0,0.0 50.0,100.0 0.0,10.0
 </coordinates>
 </LinearRing>
 </outerBoundaryIs>
 </Polygon>
</extentOf>

5.3.4. Multi Geometry Properties

There are corresponding geometry properties defined for the ’multi-geometries’. A
complete definition of the GML Geometry DTD, which includes the geometry property
definitions, can be found in Appendix A.

5.4. Encoding Geographic Features

GML Profile 2 allows the user to construct an application specific Feature DTD. Before
looking at the rules that govern this DTD, it is illustrative to note how it significantly
improves the readability of the resulting feature encoding. Consider the XML fragments
from encoding our standard River and Road examples (compare with Section 4.4):

River example

<River>
 <name>
 Cam
 </name>
 <description>
 The river that runs through Cambridge.
 </description>
 <centerLineOf>
 <LineString srsName="EPSG:4326">
 <coordinates>
 0.0,50.0 100.0,50.0
 </coordinates>
 </LineString>
 </centerLineOf>
</River>

Road example

<Road>
 <description>

Geography Markup Language (GML) v1.0 Page 32 of 78
OGC Document Number 00-029

 M11
 </description>
 <classification>
 motorway
 </classification>
 <number>
 11
 </number>
 <linearGeometry>
 <LineString srsName="EPSG:4326">
 <coordinates>
 0.0,100.0 100.0,0.0
 </coordinates>
 </LineString>
 </linearGeometry>
</Road>

The parts marked in blue bold indicate changes from the GML Profile 1 encoding. Note
that this approach is more consistent with the XML Namespace Specification [XMLNS] as
we can more clearly write the road example fragment with namespaces gml and camb (for
Cambridge) as:

<camb:Road>
 <gml:description>
 M11
 </gml:description>
 <camb:classification>
 motorway
 </camb:classification>
 <camb:number>
 11
 </camb:number>
 <camb:linearGeometry>
 <gml:LineString srsName="EPSG:4326">
 <gml:coordinates>
 0.0,100.0 100.0,0.0
 </gml:coordinates>
 </gml:LineString>
 </camb:linearGeometry>
</camb:Road>

Addition of the namespace references makes it clear that description, LineString etc. are
defined in the gml namespace, while Road and number are defined in the camb
namespace.

The fragment from the application specific Feature DTD that defines the Road and River
feature types is given below:

<!ELEMENT River (
 description?, name?, boundedBy?,
 centerLineOf) >

<!ELEMENT Road (
 description?, name?, boundedBy?,
 classification, number, linearGeometry) >

Geography Markup Language (GML) v1.0 Page 33 of 78
OGC Document Number 00-029

<!ELEMENT classification (#PCDATA) >
<!ELEMENT number (#PCDATA) >

<!ELEMENT linearGeometry (LineString) >

(where the names in bold are those that come from the example and are not defined by
GML.)

The rules governing the defintion of application specific feature types are:

• For each application specific feature type define a new element with the appropriate
name (in this example River and Road). These elements should allow for the
optional containment of name, description and boundedBy elements (all of these are
defined in the GML Geometry DTD).

• For each application specific property define a new element with the appropriate
name (in this example classification, number and linearGeometry). These
elements should each be defined to contain the appropriate data type. In this
example the simple data types (string and integer) are held as parsed character data.
The geometry data type is held as a geometry element of the correct type (in this
example LineString) which are defined in the GML Geometry DTD.

• The application specific feature type elements should allow the containment of the
relevant property elements. These can be either GML defined properties (for
example centerLineOf) or application specific properties (for example
classification, linearGeometry). In this example the River element can contain a
centerLineOf element.

In addition it is necessary to define a featue collection that can contain the roads and rivers.
This is done with the DTD fragment:

<!ELEMENT CityModel (
 description?, name?, boundedBy,
 modelDate,
 modelMember*) >

<!ELEMENT modelDate (#PCDATA) >

<!ELEMENT modelMember (Road | River) >

(where the names in bold are those that come from the example and are not defined by
GML.)

Since a feature collection is a type of feature, all the previous rules apply. However there
are additional rules governing the definition of the feature type representing the feature
collection:

• The feature collection element (in this example CityModel) must contain a
boundedBy element. The Box contained by the boundedBy property defines the
spatial extent of all of the features in the feature collection.

Geography Markup Language (GML) v1.0 Page 34 of 78
OGC Document Number 00-029

• The feature collection element references the contained features through an
appropriate ’member’ property, which is defined as an element (in this example
modelMember). It is possible to enforce some cardinality constraints on the
number of features in the feature collection, since the feature collection element
must contain the member property element. In this example a CityModel can
contain zero or more modelMembers.

• The member property element is defined to contain one of the application specific
feature types (in this example either a Road or a River).

• There should only be one member property defined per feature collection.

The final rule reflects the fact that the feature collection and member property elements
define the FeatureCollection together. If more than one member property element were
allowed per feature collection element, the definition of the collection effectively moves
from the feature collection class to the member property. This breaks the unified concept of
a FeatureCollection which requires both. For example a FeatureCollection has a
boundedBy property. It should be stressed that FeatureCollections are not designed to solve
the general problem of relationships between features. Clearly this level of encoding in
XML can, at best, describe a simple hierarchy of FeatureCollections and does not allow a
Feature to participate in more than one FeatureCollection. Perhaps more surprisingly, it
does not allow the description of ’structures’ whereby a FeatureCollection like a ’State’
might be expected to refer to a single ’Capital’ Feature and a set of ’County’ Features. In this
example the set of ’County’ Features is itself a FeatureCollection.

It is important to note that this level of flexibility poses some technical
problems. For example it is very difficult for an application to mechanically
determine the set of allowable feature types for features in a feature
collection. In those circumstances where there is no requirement for a
hierarchy of feature collections, the problem can be reduced by requiring a
fixed name member property (for example featureMember) and inspecting
its definition.

Finally the application specific feature DTD must reference the GML Geometry DTD,
typically through an external entity reference. The full application specific feature DTD for
the Cambridge example is given below:

<?xml version="1.0" encoding="UTF-8"?>

<!ENTITY % GMLGEOMETRYDTD SYSTEM "gmlgeometry.dtd">
%GMLGEOMETRYDTD;

<!ELEMENT CityModel (
 description?, name?, boundedBy,
 modelDate,
 modelMember*) >

<!ELEMENT modelDate (#PCDATA) >

<!ELEMENT modelMember (Road | River) >

Geography Markup Language (GML) v1.0 Page 35 of 78
OGC Document Number 00-029

<!ELEMENT River (
 description?, name?, boundedBy?,
 centerLineOf) >

<!ELEMENT Road (
 description?, name?, boundedBy?,
 classification, number, linearGeometry) >

<!ELEMENT classification (#PCDATA) >
<!ELEMENT number (#PCDATA) >

<!ELEMENT linearGeometry (LineString) >

Download this example schema (example_profile2_schema.dtd)

Note that in this example it is assumed that the application specific Feature DTD and the
GML Geometry DTD are in the same directory. It also explains why it was convenient to
place the feature metadata elements (name and description) in the GML Geometry DTD.

The following XML document encodes the Cambridge example using the application
specific Feature DTD defined above. The sections in light blue represent the encoding of
the feature collection, while those in light green represent the individual feature encodings
given earlier in this section. The parts in blue bold represent differences with the GML
Profile 1 encoding.

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE CityModel SYSTEM "example_profile2_schema.dtd">

<CityModel>
 <boundedBy>
 <Box srsName="EPSG:4326">
 <coordinates>
 0.0,0.0 100.0,100.0
 </coordinates>
 </Box>
 </boundedBy>
 <modelDate>
 Feb 2000.
 </modelDate>
 <modelMember>
 <River>
 <name>
 Cam
 </name>
 <description>
 The river that runs through Cambridge.
 </description>
 <centerLineOf>
 <LineString srsName="EPSG:4326">
 <coordinates>
 0.0,50.0 100.0,50.0
 </coordinates>
 </LineString>
 </centerLineOf>
 </River>

Geography Markup Language (GML) v1.0 Page 36 of 78
OGC Document Number 00-029

 </modelMember>
 <modelMember>
 <Road>
 <description>
 M11
 </description>
 <classification>
 motorway
 </classification>
 <number>
 11
 </number>
 <linearGeometry>
 <LineString srsName="EPSG:4326">
 <coordinates>
 0.0,100.0 100.0,0.0
 </coordinates>
 </LineString>
 </linearGeometry>
 </Road>
 </modelMember>
</CityModel>

Download this example XML (example_profile2_external_schema.xml)

Note that the application specific Feature DTD does not have to be external. The following
example uses an internal application specific Feature DTD and references the GML
geometry DTD through an external entity reference:

<?xml version="1.0" standalone="yes"?>

<!DOCTYPE FeatureCollection [

<!ENTITY % GMLGEOMETRYDTD SYSTEM "gmlgeometry.dtd">
%GMLGEOMETRYDTD;

<!ELEMENT FeatureCollection (
 description?, boundedBy,featureMember*)>

<!ELEMENT featureMember (Road)>

<!ELEMENT Road (description?,centerLineOf)>

]>

<FeatureCollection>
 <description>
 A couple of roads around Cambridge.
 </description>
 <boundedBy>
 <Box srsName="EPSG:4326">
 <coordinates>
 0.0,0.0 100.0,100.0
 </coordinates>
 </Box>

Geography Markup Language (GML) v1.0 Page 37 of 78
OGC Document Number 00-029

 </boundedBy>
 <featureMember>
 <Road>
 <description>
 M11
 </description>
 <centerLineOf>
 <LineString srsName="EPSG:4326">
 <coordinates>
 0.0,100.0 100.0,0.0
 </coordinates>
 </LineString>
 </centerLineOf>
 </Road>
 </featureMember>
 <featureMember>
 <Road>
 <description>
 A14
 </description>
 <centerLineOf>
 <LineString srsName="EPSG:4326">
 <coordinates>
 0.0,50.0 0.0,100.0
 </coordinates>
 </LineString>
 </centerLineOf>
 </Road>
 </featureMember>
</FeatureCollection>

Download this example XML (example_profile2_internal_schema.xml)

The XML document below provides a complete encoding of the Schools example using
GML Profile 2 with an internal schema. Note that it is necessary to define two member
properties (featureMember and districtMember) to support the feature collections classes
(State and District). Furthermore note that it is possible to require a SchoolDistrict to have
at least one School or College within it. Names in bold in the schema defintion are specific
to the Schools example.

<?xml version="1.0" standalone="yes"?>

<!DOCTYPE State [

<!ENTITY % GMLGEOMETRYDTD SYSTEM "gmlgeometry.dtd">
%GMLGEOMETRYDTD;

<!ELEMENT State (name?, description?, boundedBy,
 featureMember*)>
<!ELEMENT featureMember(SchoolDistrict)>
<!ELEMENT SchoolDistrict (name?, description?, boundedBy,
 districtName, extentOf, districtMember+)>
<!ELEMENT districtName (#PCDATA)>
<!ELEMENT districtMember (College | School)>
<!ELEMENT School (name?, description?, boundedBy?,
 principalName, location)>
<!ELEMENT College (name?, description?, boundedBy?,

Geography Markup Language (GML) v1.0 Page 38 of 78
OGC Document Number 00-029

 principalName, pointProperty)>
<!ELEMENT principalName (#PCDATA)>

]>

<State>
 <boundedBy>
 <Box srsName="EPSG:4326">
 <coordinates>0.0,0.0 50.0,50.0</coordinates>
 </Box>
 </boundedBy>
 <featureMember>
 <SchoolDistrict>
 <districtName>111</districtName>
 <boundedBy>
 <Box srsName="EPSG:4326">
 <coordinates>0.0,0.0 50.0,40.0</coordinates>
 </Box>
 </boundedBy>
 <extentOf>
 <Polygon srsName="EPSG:4326">
 <outerBoundaryIs>
 <LinearRing>
 <coordinates>0.0,0.0 50.0,0.0 50.0,40.0,
0.0,0.0</coordinates>
 </LinearRing>
 </outerBoundaryIs>
 </Polygon>
 </extentOf>
 <districtMember>
 <School>
 <principalName>111-1</principalName>
 <location>
 <Point srsName="EPSG:4326">
 <coordinates>20.0,5.0</coordinates>
 </Point>
 </location>
 </School>
 </districtMember>
 <districtMember>
 <School>
 <principalName>111-2</principalName>
 <location>
 <Point srsName="EPSG:4326">
 <coordinates>40.0,5.0</coordinates>
 </Point>
 </location>
 </School>
 </districtMember>
 </SchoolDistrict>
 </featureMember>
 <featureMember>
 <SchoolDistrict>
 <districtName>222</districtName>
 <boundedBy>
 <Box srsName="EPSG:4326">
 <coordinates>0.0,0.0 40.0,50.0</coordinates>
 </Box>
 </boundedBy>
 <extentOf>

Geography Markup Language (GML) v1.0 Page 39 of 78
OGC Document Number 00-029

 <Polygon srsName="EPSG:4326">
 <outerBoundaryIs>
 <LinearRing>
 <coordinates>0.0,0.0 40.0,50.0 0.0,50.0
0.0,0.0</coordinates>
 </LinearRing>
 </outerBoundaryIs>
 </Polygon>
 </extentOf>
 <districtMember>
 <School>
 <principalName>222-1</principalName>
 <location>
 <Point srsName="EPSG:4326">
 <coordinates>5.0,20.0</coordinates>
 </Point>
 </location>
 </School>
 </districtMember>
 <districtMember>
 <College>
 <principalName>222-2</principalName>
 <pointProperty>
 <Point srsName="EPSG:4326">
 <coordinates>5.0,40.0</coordinates>
 </Point>
 </pointProperty>
 </College>
 </districtMember>
 </SchoolDistrict>
 </featureMember>
</State>

5.5. Encoding Spatial Reference Systems (informative)

This section describes the encoding of Spatial Reference Systems, sometimes referred to by
the more general phrase ’Coordinate Systems’, for the Profile 2 User.

The GML Profile 2 user should note that the optional srsName attribute on each of the
Geometry elements takes simply a string value. In GML Profile 2 the value of this attribute
is treated as a name only, and it is not required that this attribute point to a spatial reference
system dictionary entry. The GML Profile 2 user can thus decide to ignore the encoding of
Spatial Reference Systems altogether.

For the reader interested in building spatial reference system dictionaries please see Section
7.0.

Copyright © 2000 OGC All Rights Reserved.

Geography Markup Language (GML) v1.0 Page 40 of 78
OGC Document Number 00-029

6. Profile 3 - RDF Foundations of GML

6.1. Overview

One of the most important challenges facing the users of geospatial information is to
understand the meaning of the data. Much of this meaning was captured in legacy systems
by encoding it in non-standard ways within the structure of the data records. A particular
data layer, for example, might within a particular GIS environment be used "most of the
time" to represent roads and highways. In another system the same roads might be
represented by particular numeric feature codes. Translating between such systems is often
problematic because the inherent meaning of the data is not captured as part of the data
itself but rather in terms of a set of conventions or rules of practice. The result is that data
translation, when it happens, must then be accompanied by a painstaking manual process to
restore the meaning in the new environment. Knowledge of these and similar problems has
been a major motivating factor in the development of GML.

One of the objectives of GML has been to provide a means of encoding geospatial
information (e.g. feature types) in such a way that the types employed can be referenced to
an external typing framework. Given a GML class instance such as a <Road> (as in GML
Profile 2) it should be possible to look up the definition of the class Road in a suitable
namespace. Furthermore it should be possible to build feature type definitions from other
feature and geometry type definitions.

In the spatial world there is of course no possibility of universal agreement on a set of
feature types. The notion of road, for example, typically differs from one geographic
region to another. Even within the same geographic region the notion of road required by
an ambulance driver may be radically different than that of an insurance investigator, even
when they are referring to the same road in the real world. We thus require a means not
only to relate different spatial concepts to one another, but also to be able to distribute the
description of these concepts in an organized manner.

GML Profile 1 provides an easy to learn XML based encoding for geospatial information.
It does not, however, provide a means to relate feature type names to the actual type
definitions. This same shortcoming applies also to GML Profile 2. While the use of
namespaces in Profile 2 can clearly discriminate what might be ambiguous typeName
values in Profile 1, (we can for example write <gc:Road> and <usgs:Road> to discriminate
two different road definitions) there is no requirement even with Profile 2 that there is a
type definition at the referenced namespace "location".

To resolve these problems GML has been built on the W3C Resource Description Format
(RDF). Doing so provides the developer with both a third Profile (GML Profile 3) for
encoding geospatial information using RDF, and a formal set of definitions (using RDF
Schema) for GML itself.

To make this clearer we refer the reader to Figure 2. With the exception of the GML
Feature DTD in GML Profile 1, all of the DTD’s used in Profile 2 can be mechanically
generated from the GML RDF Schema definitions.

Geography Markup Language (GML) v1.0 Page 41 of 78
OGC Document Number 00-029

6.2. Encoding Geometry

This section discusses the RDF Schema definitions for the GML Geometry Classes. Note
that these definitions are entirely consistent with the GML Geometry DTD of GML
Profiles 1 and 2. Consequently this Section does not include examples of geometry class
encodings. For these the reader is referred back to Section 3. This Section provides an
alternative basis for the encodings using RDF Schema rather than a DTD. It might be noted
that sections of the GML Geometry DTD can be mechanically generated from the RDF
Schema definitions for the GML Geometry Classes.

6.2.1. Geometry Class

We define an abstract class from which all geometry classes can sub-class. All geometries
have a Spatial Reference System, identified by name. The RDF Schema definition for the
Geometry class is as follows:

<rdfs:Class rdf:ID = "Geometry" >
 <rdfs:comment>

Geometry is the root class of the hierarchy. Geometry is an abstract
(non-instantiable) class. All instantiable geometry classes referenced
in this specification are defined so that valid instances of a geometry
class are topologically closed (i.e. all defined geometries include
their boundary).

 </rdfs:comment>
</rdfs:Class>

<rdf:Property ID = "srsName" >
 <rdfs:domain rdf:resource = "#Geometry" />
 <rdfs:range rdf:resource = "http://www.w3.org/TR/1999/PR-rdf-schema-
19990303#Literal" />
</rdf:Property>

6.2.2. Point Class

The Point class is defined in RDF Schema as:

<rdfs:Class rdf:ID = "Point" >
 <rdfs:subClassOf rdf:resource = "#Geometry" />
</rdfs:Class>

The Point class is capable of referencing coordinate data using the coordinates property
defined below.

6.2.2. Box Class

The Box class is defined in RDF Schema as:

Geography Markup Language (GML) v1.0 Page 42 of 78
OGC Document Number 00-029

<rdfs:Class rdf:ID = "Box" >
 <rdfs:subClassOf rdf:resource = "#Geometry" />
</rdfs:Class>

The Box class is capable of referencing coordinate data using the coordinates property
defined below.

6.2.4. Curve Class

The Curve class is defined in RDF Schema as:

<rdfs:Class rdf:ID = "Curve" >
 <rdfs:subClassOf rdf:resource = "#Geometry" />
 <rdfs:comment>

A Curve is a one-dimensional geometric object usually stored as a
sequence of points, with the subtype of Curve specifying the form of the
interpolation between points. This specification defines only one
subclass of Curve, LineString, which uses linear interpolation between
points. This is the only 1-D Geometry class which appears in the GML
DTD.

 </rdfs:comment>
</rdfs:Class>

The Curve class is capable of referencing coordinate data using the coordinates property
defined below.

6.2.5. Line String Class

The LineString class is defined in RDF Schema as:

<rdfs:Class rdf:ID = "LineString" >
 <rdfs:subClassOf rdf:resource = "#Curve" />
 <rdfs:comment>

Lines, LineStrings and LinearRings are all Curves. A Line String is a
Curve with linear interpolation between points. Each consecutive pair of
points defines a line segment. A Line is a LineString with exactly 2
points. In GML the points of a LineString are defined by a coordinate
list and are not defined by GML Points.

 </rdfs:comment>
</rdfs:Class>

The LineString class is capable of referencing coordinate data using the coordinates
property (defined below) since it sub-classes the Curve class.

6.2.6. Linear Ring Class

Geography Markup Language (GML) v1.0 Page 43 of 78
OGC Document Number 00-029

The LinearRing class is defined in RDF Schema as:

<rdfs:Class rdf:ID = "LinearRing" >
 <rdfs:subClassOf rdf:resource = "#Curve" />
 <rdfs:comment>

A LinearRing is a LineString that is both closed and simple. In GML,
the points of a LinearRing are defined by a coordinate list and are not
defined by GML Points.

 </rdfs:comment>
</rdfs:Class>

The LinearRing class is capable of referencing coordinate data using the coordinates
property (defined below) since it sub-classes the Curve class.

6.2.7. Polygon Class

The Polygon class is defined as a subclass of GML Geometry on which are defined two
properties, namely outerBoundaryIs and innerBoundaryIs. These two properties return
respectively elements of the inner and outer boundary of the polygon. These are, in trun,
represented by LinearRings. The outer boundary property can appear only once as a
property of a polygon class instance. The inner boundary property can appear zero or more
times on a given polygon class instance. The RDF Schema definition for the Polygon class
is thus:

<rdfs:Class rdf:ID = "Surface" >
 <rdfs:subClassOf rdf:resource = "#Geometry" />
</rdfs:Class>

<rdfs:Class rdf:ID = "Polygon" >
 <rdfs:subClassOf rdf:resource = "#Surface" />
</rdfs:Class>

<rdf:Property ID = "outerBoundaryIs" >
 <rdfs:range resource = "#LinearRing" />
 <rdfs:domain resource = "#Polygon" />
</rdf:Property>

<rdf:Property ID = "innerBoundaryIs" >
 <rdfs:range resource = "#LinearRing" />
 <rdfs:domain resource = "#Polygon" />
</rdf:Property>

6.2.8. Geometry Collection Class

The GeometryCollection class has a geometryMember property that returns the next
Geometry in the GeometryCollection. The GeometryCollection class is defined in RDF
Schema as:

Geography Markup Language (GML) v1.0 Page 44 of 78
OGC Document Number 00-029

<rdfs:Class rdf:ID="GeometryCollection">
 <rdfs:subClassOf rdf:resource="#Geometry"/>
 <rdfs:subClassOf rdf:resource = "http://www.w3.org/TR/1999/PR-rdf-
schema-19990303#Container" />
 <rdfs:comment>

A GeometryCollection is a geometry that is a collection of 1 or more
geometries. All the elements in a GeometryCollection must be in the same
Spatial Reference System. This is also the Spatial Reference System for
the GeometryCollection. GeometryCollection places no other constraints
on its elements. Subclasses of GeometryCollection may restrict
membership based on dimension and may also place other constraints on
the degree of spatial overlap between elements.

 </rdfs:comment>
</rdfs:Class>

<rdf:Property ID = "geometryMember">
 <rdfs:range rdf:resource = "#Geometry" />
 <rdfs:domain rdf:resource = "#GeometryCollection" />
 <rdfs:comment>

Selects next member, a Geometry, in the GeometryCollection.
(Plays same role as the li tag in rdf).

 </rdfs:comment>
</rdf:Property

6.2.9. MultiPoint Class

The MultiPoint class is defined in RDF Schema as:

<rdfs:Class rdf:ID = "MultiPoint">
 <rdfs:subClassOf rdf:resource = "#GeometryCollection" />
 <rdfs:comment>

A MultiPoint is a 0 dimensional geometric collection. The elements of a
MultiPoint are restricted to Points. The points are not connected or
ordered. A MultiPoint is simple if no two Points in the MultiPoint are
equal (have identical coordinate values). The boundary of a MultiPoint
is the empty set.

 </rdfs:comment>
</rdfs:Class>

<rdf:Property ID="pointMember">
 <rdfs:range rdf:resource="#Point"/>
 <rdfs:domain rdf:resource="#MultiPoint"/>
 <rdfs:comment>

Returns the next Point in a MultiPoint.

 </rdfs:comment>
</rdf:Property>

Geography Markup Language (GML) v1.0 Page 45 of 78
OGC Document Number 00-029

6.2.10. MultiLineString Class

The MultiLineString class is defined in RDF Schema as:

<rdfs:Class rdf:ID = "MultiCurve">
 <rdfs:subClassOf rdf:resource = "#GeometryCollection" />
 <rdfs:comment>

A MultiCurve is a sub-class of GeometryCollection.

 </rdfs:comment>
</rdfs:Class>

<rdfs:Class rdf:ID = "MultiLineString">
 <rdfs:subClassOf rdf:resource = "#MultiCurve" />
 <rdfs:comment>

A MultiLineString is a MultiCurve whose elements are LineStrings.

 </rdfs:comment>
</rdfs:Class>

<rdf:Property ID = "lineStringMember">
 <rdfs:range rdf:resource = "#LineString" />
 <rdfs:domain rdf:resource = "#MultiLineString" />
 <rdfs:comment>

Returns the next LineString in a MultiLineString.

 </rdfs:comment>
</rdf:Property>

6.2.11. MultiPolygon Class

The MultiPolygon class is defined in RDF Schema as:

<rdfs:Class rdf:ID = "MultiSurface">
 <rdfs:subClassOf rdf:resource = "#GeometryCollection" />
 <rdfs:comment>

A MultiSurface is a sub-class of GeometryCollection.

 </rdfs:comment>
</rdfs:Class>

<rdfs:Class rdf:ID = "MultiPolygon">
 <rdfs:subClassOf rdf:resource = "#MultiSurface" />
 <rdfs:comment>

A MultiPolygon is a MultiSurface whose elements are Polygons.

 </rdfs:comment>
</rdfs:Class>

Geography Markup Language (GML) v1.0 Page 46 of 78
OGC Document Number 00-029

<rdf:Property ID = "polygonMember">
 <rdfs:range rdf:resource = "#Polygon" />
 <rdfs:domain rdf:resource = "#MultiPolygon" />
 <rdfs:comment>

Returns the next Polygon in a multiPolygon.

 </rdfs:comment>
</rdf:Property>

6.2.12. coordinates Property

In order to assign coordinates to geometry class instances GML provides the coordinates
property. In this release the coordinates property has a range of Literal. In a subsequent
revision this is expected to be an XML Schema representation of coordinate array. The
coordinates property is defined in RDF Schema as:

<rdf:Property ID = "coordinates" >
 <rdfs:domain rdf:resource = "#Curve" />
 <rdfs:domain rdf:resource = "#Box" />
 <rdfs:domain rdf:resource = "#Point" />
 <rdfs:range rdf:resource = "http://www.w3.org/TR/1999/PR-rdf-
schema-19990303#Literal" />
</rdf:Property>

Note that this definition also permits the Point, Box, LineString and LinearRing classes
to have a coordinates property.

6.3. Encoding Geometry Properties

This section discusses the RDF Schema definitions for the GML Geometry Properties.
Note that these definitions are entirely consistent with the GML Geometry DTD of GML
Profile 2. Consequently this Section does not include examples of geometry class
encodings. For these the reader is referred back to Section 5.3. This Section provides an
alternative basis for the encodings using RDF Schema rather than a DTD. It might be noted
that sections of the GML Geometry DTD can be mechanically generated from the RDF
Schema definitions for the GML Geometry Properties.

6.3.1 Geometry Properties

We distinguish geometry properties from geometry classes. A geometry property is a
function on a Feature that takes it values in a corresponding geometry class. The domain of
all of the geometry properties is Feature (see the next Section for a more complete
definition of Feature using RDF Schema).

The relationships between the Feature and Geometry classes and the geometryProperty
property are defined using RDF Schema as:

df Cl df ID "F t "

Geography Markup Language (GML) v1.0 Page 47 of 78
OGC Document Number 00-029

 <rdfs:comment>

Abstract feature class. Features can take zero or more geometry
properties

 </rdfs:comment>
</rdfs:Class>

<rdf:Property ID = "geometryProperty">
 <rdfs:range resource = "#Geometry" />
 <rdfs:domain resource = "#Feature" />
 <rdfs:comment>

Abstract geometry property of a feature.

 </rdfs:comment>
</rdf:Property>

This says that any Feature can have a geometryProperty whose value is a Geometry.
However if one wishes to be more specific about either the type of geometry that can be
held as a property or the naming of the property then one can create sub-properties of
geometryProperty.

6.3.2 Point Properties

A Point property is a special case of a Geometry property where the range of the property is
restricted to a sub-class of Geometry, namely a Point. When defining this using RDF
Schema it is not necessary to respecify the domain since that is inherited from
geometryProperty. Thus the pointProperty is defined in GML using RDF Schema as:

<rdf:Property ID = "pointProperty">
 <rdfs:range rdf:resource= "#Point" />
 <rdfs:subPropertyOf rdf:resource = "#geometryProperty" />
 <rdfs:comment>

Abstract property function that returns a point of the selected feature.
The coordinate values of the point if present are to be interpreted in
the coordinate system associated with the pointproperty.

 </rdfs:comment>
</rdf:Property>

This just says that pointProperty is a geometryProperty (via subPropertyOf) whose range
is Point and whose domain is Feature.

GML defines three additional sub-properties of pointProperty, namely:

• position
• location
• centerOf

Geography Markup Language (GML) v1.0 Page 48 of 78
OGC Document Number 00-029

These just represent additional descriptive names that mean the same as pointProperty.
These names might be considered more suitable for everyday usage. This is achieved in
RDF Schema by creating a sub-property with the relevant name, no other details are
required since they are inherited. The complete set of definitions is given in Appendix C,
but the basic RDF Schema definition of the sub-properties of pointProperty are given
below:

<rdf:Property ID = "position">
 <rdfs:subPropertyOf rdf:resource = "#pointProperty" />
</rdf:Property>

<rdf:Property ID = "location">
 <rdfs:subPropertyOf rdf:resource = "#pointProperty" />
</rdf:Property>

<rdf:Property ID = "centerOf">
 <rdfs:subPropertyOf rdf:resource = "#pointProperty" />
</rdf:Property>

6.3.3. LineString Properties

A linestring property is a geometryProperty that takes values in the class of LineStrings.
It might be used for example to express the centerline or edges of a feature. The definition
of the lineStringProperty in GML is as follows:

<rdf:Property ID = "lineStringProperty">
 <rdfs:range rdf:resource = "#LineString" />
 <rdfs:subPropertyOf rdf:resource = "#geometryProperty" />
 <rdfs:comment>

Abstract property function that returns a linestring of the selected
feature. The coordinate values of the linestring if present are to be
interpreted in the coordinate system associated with the
linestringproperty.

 </rdfs:comment>
</rdf:Property>

GML provides two additional lineStringProperties:

• centerLineOf
• edgeOf

6.3.4. Polygon Properties

A polygon property is a geometryProperty that takes values in the class of Polygons. It
might be used for example to express the extent or coverage of a feature. The definition of
the polygonProperty in GML is as follows:

df P t ID " l P t "

Geography Markup Language (GML) v1.0 Page 49 of 78
OGC Document Number 00-029

 <rdfs:range rdf:resource = "#Polygon" />
 <rdfs:subPropertyOf rdf:resource = "#geometryProperty" />
 <rdfs:comment>

Abstract property function that returns a polygon of the selected
feature. The coordinate values of the polygon if present are to be
interpreted in the coordinate system associated with the
polygonproperty.

 </rdfs:comment>
</rdf:Property>

GML provides two additional polygonProperties:

• extentOf
• coverage

6.3.5. MultiPoint Properties

A MultiPoint property is a geometryProperty which takes values in the class of
MultiPoints. It might be used for example to express the extent or coverage of a discrete
point feature. The definition of multiPointProperty in GML is as follows:

<rdf:Property ID = "multiPointProperty">
 <rdfs:range rdf:resource = "#MultiPoint" />
 <rdfs:subPropertyOf rdf:resource = "#geometryProperty" />
 <rdfs:comment>

Abstract property function that returns a multipoint of the selected
feature.

 </rdfs:comment>
</rdf:Property>

Several multiPoint properties are provided in GML. Note that these are like the
pointProperties with the prefix multi. This is required in GML since RDF does not
support polymorphism. This may be revised in a future release. The currently supported
multiPointProperties are:

• multiLocation
• multiCenterOf
• multiPosition

6.3.6. MultiLineString Properties

A MultiLineString property is a geometryProperty which takes values in the class of
MultiLines. It might be used for example to express the edges of a complex feature. The
definition of multiLineStringProperty in GML is as follows:

Geography Markup Language (GML) v1.0 Page 50 of 78
OGC Document Number 00-029

<rdf:Property ID = "multiLineStringProperty">
 <rdfs:range rdf:resource = "#MultiLineString" />
 <rdfs:subPropertyOf rdf:resource = "#geometryProperty" />
 <rdfs:comment>

Abstract property function that returns a multilinestring of the
selected feature.

 </rdfs:comment>
</rdf:Property>

GML provides two additional multiLineStringProperties:

• multiCenterLineOf
• multiEdgeOf.

6.3.7. MultiPolygon Properties

A multiPolygonProperty is a geometryProperty which takes values in the class of
MultiPolygons. It might be used for example to express the extent of a complex feature.
The definition of multiPolygonProperty in GML is as follows:

<rdf:Property ID = "multiPolygonProperty">
 <rdfs:range rdf:resource = "#MultiPolygon" />
 <rdfs:subPropertyOf rdf:resource = "#geometryProperty" />
 <rdfs:comment>

Abstract property function that returns a MultiPolygon of the selected
feature.

 </rdfs:comment>
</rdf:Property>

GML provides two additional multiPolygonProperties:

• multiExtentOf
• multiCoverage

6.4. Encoding Geographic Features

This section describes the RDF Schema classes for GML Features and FeaturCollections.
We note that the Profile 3 developer can use these classes to derive additional feature types
or geometry classes in their application namespace.

The Feature class is defined in RDF Schema as:

<rdfs:Class rdf:ID = "Feature">
</rdfs:Class>

Geography Markup Language (GML) v1.0 Page 51 of 78
OGC Document Number 00-029

<rdf:Property ID = "name" >
 <rdfs:range rdf:resource = "http://www.w3.org/TR/1999/PR-rdf-schema-
19990303#Literal" />
 <rdfs:domain rdf:resource = "#Feature" />
</rdf:Property>

<rdf:Property ID = "description" >
 <rdfs:range rdf:resource = "http://www.w3.org/TR/1999/PR-rdf-schema-
19990303#Literal" />
 <rdfs:domain rdf:resource = "#Feature" />
</rdf:Property>

<rdf:Property ID = "boundedBy" >
 <rdfs:range rdf:resource = "#Box"/ >
 <rdfs:domain rdf:resource = "#Feature" />
</rdf:Property>

This says a that a Feature may have name and description simple properties whose range
are Literal. In addition a Feature may have a boundedBy geometry property whose range
is a Box.

In GML Features are typically grouped into FeatureCollections. While there is no set
construct in RDF Schema we introduce the FeatureCollection class in GML using the
following RDF Schema.

<rdfs:Class rdf:ID="FeatureCollection">
 <rdfs:subClassOf rdf:resource="#Feature"/>
 <rdfs:comment>

A collection (set) of Features.

 </rdfs:comment>
</rdfs:Class>

<rdf:Property ID = "featureMember" >
 <rdfs:range rdf:resource = "#Feature" />
 <rdfs:domain rdf:resource = "#FeatureCollection" />
 <rdfs:comment>

Function which returns next Feature in a FeatureCollection.

 </rdfs:comment>
</rdf:Property>

This says that a FeatureCollection is a sub-class of Feature and thus inherits name,
description and boundedBy properties. In addition it has a featureMember property which
is to used to select Features from the FeatureCollection.

Note that we do NOT define a Property Class to encode simple properties since this is
already part of RDF. Using RDF we can define any number of properties for any RDF
Class. We have merely added a geometryProperty with the domain Feature (see previous
Section on ’Encoding Geometry properties’). Application specific RDF Schema defintions
are then expected to subclass from Feature (using RDF Schema subClassOf) to create

Geography Markup Language (GML) v1.0 Page 52 of 78
OGC Document Number 00-029

application specific feature types such as Road, Building or River. Such derived subclasses
can then automatically use the geometryProperty since it is inherited from Feature.

GML Profile 3 provides the ability to add new feature and geometry types in a clearer and
more formal manner than is possible with GML Profile 1 or Profile 2. This is illustrated by
considering the Cambridge example. The application specific RDF Schema for the
Cambridge example is as follows:

<?xml version="1.0" encoding="UTF-8"?>

<rdf:RDF xml:lang="en"
 xmlns:gml = "http://www.opengis.org/gml#"
 xmlns:rdf = "http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:rdfs = "http://www.w3.org/TR/1999/PR-rdf-schema-19990303#">

 <rdfs:Class rdf:ID = "CityModel" >
 <rdfs:subClassOf rdf:resource =
"http://www.opengis.org/gml#FeatureCollection" />
 </rdfs:Class>

 <rdfs:Class rdf:ID = "River" >
 <rdfs:subClassOf rdf:resource =
"http://www.opengis.org/gml#Feature" />
 </rdfs:Class>

 <rdfs:Class rdf:ID = "Road" >
 <rdfs:subClassOf rdf:resource =
"http://www.opengis.org/gml#Feature" />
 </rdfs:Class>

 <rdf:Property ID = "modelDate" >
 <rdfs:domain rdf:resource = "#CityModel" />
 <rdfs:range rdf:resource = "http://www.w3.org/TR/1999/PR-rdf-
schema-19990303#Literal" />
 </rdf:Property>

 <rdf:Property ID = "classification" >
 <rdfs:domain rdf:resource = "#Road" />
 <rdfs:range rdf:resource = "http://www.w3.org/TR/1999/PR-rdf-
schema-19990303#Literal" />
 </rdf:Property>

 <rdf:Property ID = "number" >
 <rdfs:domain rdf:resource = "#Road" />
 <rdfs:range rdf:resource = "http://www.w3.org/TR/1999/PR-rdf-
schema-19990303#Literal" />
 </rdf:Property>

 <rdf:Property ID = "linearGeometry" >
 <rdfs:domain rdf:resource = "#Road" />
 <rdfs:subPropertyOf rdf:resource =
"http://www.opengis.org/gml#lineStringProperty" />
 </rdf:Property>

df P t ID " d lM b "

Geography Markup Language (GML) v1.0 Page 53 of 78
OGC Document Number 00-029

 <rdfs:domain rdf:resource = "#CityModel" />
 <rdfs:range rdf:resource = "#Road" />
 <rdfs:range rdf:resource = "#River" />
 <rdfs:subPropertyOf rdf:resource =
"http://www.opengis.org/gml#featureMember" />
 </rdf:Property>

</rdf:RDF>

Download this example schema (example_profile3_schema.rdfs)

where the names in blue bold are specific to the example and not already defined by GML.
Using this RDF Schema definition it is possible to encode the Cambridge example as a set
of RDF records, as show below:

<?xml version="1.0" encoding="UTF-8"?>

<rdf:RDF xml:lang="en"
 xmlns:camb="http://www.xyzcorp.com/camb/example_profile3_schema.rdf#"
 xmlns:gml="http://www.opengis.org/gml/gml.rdf#"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:rdfs="http://www.w3.org/TR/1999/PR-rdf-schema-19990303#">

 <camb:CityModel>
 <gml:boundedBy>
 <gml:Box srsName="EPSG:4326">
 <gml:coordinates>
 0.0,0.0 100.0,100.0
 </gml:coordinates>
 </gml:Box>
 </gml:boundedBy>
 <camb:modelDate>
 Feb 2000.
 </camb:modelDate>
 <camb:modelMember>
 <camb:River>
 <gml:name>
 Cam
 </gml:name>
 <gml:description>
 The river that runs through Cambridge.
 </gml:description>
 <gml:centerLineOf>
 <gml:LineString srsName="EPSG:4326">
 <gml:coordinates>
 0.0,50.0 100.0,50.0
 </gml:coordinates>
 </gml:LineString>
 </gml:centerLineOf>
 </camb:River>
 </camb:modelMember>
 <camb:modelMember>
 <camb:Road>
 <gml:description>

M11

Geography Markup Language (GML) v1.0 Page 54 of 78
OGC Document Number 00-029

 </gml:description>
 <camb:classification>
 motorway
 </camb:classification>
 <camb:number>
 11
 </camb:number>
 <camb:linearGeometry>
 <gml:LineString srsName="EPSG:4326">
 <gml:coordinates>
 0.0,100.0 100.0,0.0
 </gml:coordinates>
 </gml:LineString>
 </camb:linearGeometry>
 </camb:Road>
 </camb:modelMember>
 </camb:CityModel>
</rdf:RDF>

Download this example RDF (example_profile3.rdf)

To make use of this example it will be necessary to alter the URLs for the
gml and camb namespaces. The RDF Schema files that are referred to are
the GML definition (see Appendix C) and the example schema defined
previously.

It might be noted that, if one ignores the <rdf:RDF> tag and the namespace prefixes, the
encoding of the FeatureCollection is identical to that for GML Profile 2 (see Section 5.4).
The above example uses four namespaces:

1. rdf: Resource Description Format from W3C
2. rdfs: RDF Schema from W3C
3. gml: Geography Markup Language RDF Schema definition from OGC
4. camb: application specific Cambridge RDF Schema definition from the fictitious

company xyzcorp.

In might be noted that GML Profile 3 can be used in writing conventional RDF meta-data
descriptions as shown in the following example:

<?xml version="1.0" encoding="UTF-8"?>

<rdf:RDF xml:lang = "en"
 xmlns:st=""
 xmlns:gml="http://www.opengis.org/gml/gml.rdf"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:rdfs="http://www.w3.org/TR/1999/PR-rdf-schema-19990303#">

 <rdf:Description about = "http://www.nasa.gov/shuttleradarmap.html" >

t M dB

Geography Markup Language (GML) v1.0 Page 55 of 78
OGC Document Number 00-029

 Shuttle SST-99
 </st:MappedBy>
 <st:vehicle>
 Endeavour
 </st:vehicle>
 <st:launchedOn>
 Februrary 11 2000
 </st:launchedOn>

 <gml:coverage>
 <Polygon srsName = "LtLong" >
 <outerBoundaryIs>
 <LinearRing>
 <coordinates>
 -180,-54 -180,60 180,60 180,-54
 </coordinates>
 </LinearRing>
 </outerBoundaryIs>
 </Polygon>
 </gml:coverage>

 </rdf:Description>
</rdf:RDF>

The application specific RDF Schema for the Schools example is shown below, the names
in blue bold are specific to the Schools example. The application specific classes (State,
SchoolDistrict and School) inherit basic simple and geomtery properties from the base
GML classes. Note that the member property between State and SchoolDistrict (namely
featureMember) is also inherited from the standard GML Feature and FeatureCollection
classes.

<?xml version="1.0" encoding="UTF-8"?>

<rdf:RDF xml:lang="en"
 xmlns:gml = "http://www.opengis.org/gml#"
 xmlns:rdf = "http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:rdfs = "http://www.w3.org/TR/1999/PR-rdf-schema-19990303#">

 <rdfs:Class rdf:ID = "State" >
 <rdfs:subClassOf rdf:resource =
"http://www.opengis.org/gml#FeatureCollection" />
 </rdfs:Class>

 <rdfs:Class rdf:ID = "SchoolDistrict" >
 <rdfs:subClassOf rdf:resource =
"http://www.opengis.org/gml#FeatureCollection" />
 </rdfs:Class>

 <rdfs:Class rdf:ID = "School" >
 <rdfs:subClassOf rdf:resource =
"http://www.opengis.org/gml#Feature" />
 </rdfs:Class>

df Cl df ID " ll "

Geography Markup Language (GML) v1.0 Page 56 of 78
OGC Document Number 00-029

 <rdfs:subClassOf rdf:resource =
"http://www.opengis.org/gml#Feature" />
 </rdfs:Class>

 <rdf:Property ID = "districtName" >
 <rdfs:domain rdf:resource = "#SchoolDistrict" />
 <rdfs:range rdf:resource = "http://www.w3.org/TR/1999/PR-rdf-
schema-19990303#Literal" />
 </rdf:Property>

 <rdf:Property ID = "principalName" >
 <rdfs:domain rdf:resource = "#School" />
 <rdfs:domain rdf:resource = "#College" />
 <rdfs:range rdf:resource = "http://www.w3.org/TR/1999/PR-rdf-
schema-19990303#Literal" />
 </rdf:Property>

 <rdf:Property ID = "districtMember" >
 <rdfs:domain rdf:resource = "#SchoolDistrict" />
 <rdfs:range rdf:resource = "#School" />
 <rdfs:range rdf:resource = "#College" />
 <rdfs:subPropertyOf rdf:resource =
"http://www.opengis.org/gml#featureMember" />
 </rdf:Property>

</rdf:RDF>

6.6. Using Profile 3 in conjunction with Profile 2

The fact that the encodings generated by GML Profiles 2 and 3 are more or less identical is
no accident. We anticipate that many users will want to use RDF Schema to define their
initial feature types (and possibly new geometry classes and properties as well) and then
mechanically generate a DTD to be used as in GML Profile 2. This enables them to have
formal definitions for their feature types and at the same time employ widely available
XML 1.0 validating parsers. This approach can be summarized as:

• Write application specific schema in RDF Schema building on the GML RDF
Schema definition (the gml namespace of the previous Section). A user might
define schemas for roads, rivers, buildings, railways, mountain peaks, valleys etc.
These RDF Schema would then live in the users application namespace (for
example the camb namespace in the previous Section).

• Generate an application specific Feature DTD from the above RDF Schemas
following the rules of GML Profile 2 (See Section 5.4). This can be done
mechanically, for example using an XSLT script [XSLT].

• Write your GML data as for GML Profile 2.

6.7. Spatial Reference Systems (informative)

Geography Markup Language (GML) v1.0 Page 57 of 78
OGC Document Number 00-029

This section describes the encoding of Spatial Reference Systems, sometimes referred to by
the more general phrase ’Coordinate Systems’, for the Profile 3 User.

The GML Profile 3 user should note that the optional srsName attribute on each of the
Geometry elements takes simply a string value. In GML Profile 3 the value of this attribute
is treated as a name only, and it is not required that this attribute point to a spatial reference
system dictionary entry. The GML Profile 3 user can thus decide to ignore the encoding of
Spatial Reference Systems altogether.

For the reader interested in building spatial reference system dictionaries please see Section
7.0.

6.8. Feature Identity (informative)

All GML Geometry Classes have an optional ID attribute. Its value must be an RDF IDRef
as described in the RDF Model and Syntax Specification [RDFMS].

If a Geometry in a file with URI = "http://www.xyzcorp.com/mydata.xml" has the ID =
"p143", then any reference to this geometry external to the file would be =
"http://www.xyzcorp.com/mydata.xml#p143". If a FeatureCollection is requested from
a FeatureCollection server database and copied to a client side file, the Geometry ID’s are
not altered. The geometry with ID = "p143" in "http://www.xyzcorp.com/mydata.xml"
remains "p143" when copied to the client, unless the client wishes to refer to the geometry
which resides on the server. This also applies to Features defined through application
DTD’s. All RDF Schema class instances can have an optional ID attribute that is resolved
as a URI in this manner.

6.9. Feature and Geometry References: (informative)

In RDF the resource attribute can be used to refer to a resource. This same mechanism is
used in GML as shown by the following example:

<Feature resource = "http://www.xyzcorp.com/mydata#house23"
/>

This is equivalent to including the referenced feature in-line in the document. The same
mechanism can be applied to geometry class instances. The following example encodes the
fact that "yourhouse" and "myhouse" have the same location.

<Building ID = "yourhouse" .. >
 <location>
 <Point ID = "134">
 <coordinates>
 2455.12, 3443.78
 </coordinates>

/P i t

Geography Markup Language (GML) v1.0 Page 58 of 78
OGC Document Number 00-029

 </location>
</Building>

<Building ID = "myhouse" .. >
 <location>
 <Point resource = "#134" />
 </location>
</Building>

Copyright © 2000 OGC All Rights Reserved.

Geography Markup Language (GML) v1.0 Page 59 of 78
OGC Document Number 00-029

7. Spatial Reference Systems (informative)

7.1. Overview

The material in this section is still under review and is expected to change substantially
over the next several revisions. Both RDF Schema definitions and DTD’s are presented
in this section. These are not wholly consistent with one another at the present time.

Spatial Reference Systems (SRS) are encoded using a separate DTD. This DTD is based on
the OGC SQL V1.1 Simple Features Specification (OGC 99-036) that is in turn partly
based on the EPSG (European Petroleum Standard Group) web site and tables for spatial
reference systems.

The encoding of Spatial Reference Systems is intended to support:

• Client validation of a server specified Spatial Reference System. The client can
request the SRS description (an XML document) and compare it to its own
specifications or show it to a user for verification.

• Client display of a server specified Spatial Reference System.
• Use by a Coordinate Transformation Service to validate an input data source’s

Spatial Reference System. A Coordinate Transformation Service can compare the
SRS description with its own specifications to see if the SRS is consistent with the
selected transformation.

• To control automated coordinate transformation by supplying input and output
reference system names and argument values.

In this model, Spatial Reference Systems (Earth Based Coordinate Systems) are divided
into three types namely:

• Projected (2D)
• Geographic (2D)
• Geocentric

Editor’s Note:

Terminology for reference systems in the geospatial community is inconsistent. The
OGC has been using Spatial Reference System for what is really a subset of possible
coordinate systems. All OGC Spatial Reference Systems in the Implementation
Specifications (e.g. OGC SQL V1.1) are really Earth-Based Coordinate Systems.
To change terminology will require change orders to multiple specifications !!

This document will use the following terms that conflict with the current OGC
usage.

• Spatial Reference System - any means of providing a relative or absolute
location direction or extent This includes ordinal as well as cardinal

Geography Markup Language (GML) v1.0 Page 60 of 78
OGC Document Number 00-029

measures.
• Coordinate System - a mapping from the points of a spatial region to a

Euclidean vector space. Multiple Coordinate systems are required to cover
planetary bodies.

• EarthBasedCoordinate System - A Coordinate System that provides
coordinates for a point on the Earth relative to the Earth itself. This is
accomplished using some model for the figure of the Earth.

Since a change order to alter these naming conventions has not been drafted, we will
continue to use the term Spatial Reference System. Except where explicitly noted we mean
an EarthBasedCoordinateSystem.

All of these Spatial Reference Systems refer only to locations on the earth relative to the
earth itself.

Projected (2D) systems are based on a Projection and a (2D) Geographic spatial reference
system.

Geographic Systems (2D) provide a means of assigning angular coordinates to locations on
the surface of the earth and depends in turn on a geodetic datum and ellipsoid for the earth
model.

Geocentric Systems provide a means of assigning rectangular coordinates (relative to the
earth’s center) to points on the earth’s surface (or above) based on model of the earth based
on a datum and spheroid.

Mixed angular and rectangular coordinate systems are not currently supported.

XML DTD’s are not well suited to maintenance of a complex structure like a spatial
reference system dictionary. To assist in this process we have broken the logical DTD into
several DTD’s each of which are used to define a number of sub-dictionaries, including:

• Earth Based Coordinate System Dictionary (ebcsdictionary.dtd)
• Geodetic Datum Dictionary (geodeticdatumdictionary.dtd)
• Ellipsoid Dictionary (ellipsoiddictionary.dtd)
• Projection Parameter Dictionary (projectionparameterdictionary)
• Projection Dictionary (projectiondictionary.dtd)
• UnitsDictionary (unitsdictionary.dtd)

7.2. Geocentric Systems

A Geocentric system is encoded in terms of a datum, spheroid (ellipsoid) , a linear unit of
measure, and a choice of Prime Meridian.

The datum is specified as a name only.

7.2.1. Geographic Systems

Geography Markup Language (GML) v1.0 Page 61 of 78
OGC Document Number 00-029

Geographic Systems use angular coordinates to specify the location of point on the surface
of the earth. In order that such coordinates be convertible to other systems, the Geographic
System also provides a Prime Meridian, a datum surface and a spheroid (ellipsoid).

The following example is drawn from dictionary of Earth Based Coordinate Systems.

Example

<EBCS ID="4326" Dimension="2">
 <Geographic2D>
 <Name>
 WGS 84
 </Name>
 <Authority>
 EPSG
 </Authority>
 <GeodeticDatum ID="http://www.opengis.org/datums/epsg#6326" />
 <PrimeMeridian ID="http://www.opengis.org/primemeridian/epsg#8901"
/>
 <CoordinateAxis ID="Lat" Unit="
http://www.opengis.org/units/epsg#9108" />
 <CoordinateAxis ID="Long" Unit="
http://www.opengis.org/units/epsg#9801" />
 </Geographic2D>
</EBCS>

Note from the example that the definitions of GeodeticDatum, PrimeMeridian, and
CoordinateUnits are not coded in-line.This is in order to allow for separate dictionaries of
these items and to minimize maintenance problems.It will be up to the application to locate
the referenced item (e.g. PrimeMeridian) and fetch it for processing if required.

7.2.2. Projected Systems

Projected systems provide a means of mapping from the surface of the earth onto a flat
surface (Euclidean Plane or surface homemorphic to the Euclidean plane (e.g. Cylinder).
So that the project system coordinates can be related to other systems, the Projected Spatial
Reference System (Earth Based Coordinate System) provides an underlying Geographic
Reference System with a datum, ellipsoid, and Prime Meridian.

Each projected coordinate system can have zero or more parameters associated with it.
Standard parameter names can be found in an associated dictionary of Parameter names.

Example

<EBCS ID="27700" Dimension="2">
 <Projected2D>
 <name>
 OSGB 1936 / British National Grid
 </name>
 <abbreviation>
 British National Grid
 </abbreviation>
 <authority>
 EPSG

Geography Markup Language (GML) v1.0 Page 62 of 78
OGC Document Number 00-029

 </authority>
 <Projection
ID="http://www.opengis.org/projections/epsg#TransverseMercator">
 <latitude_of_origin>49</latitude_of_origin>
 <central_meridian>-2</central_meridian>
 <scale_factor>0.999601272</scale_factor>
 <false_easting>400000</false_easting >
 <false_northing>-100000</false_northing >
 </Projection>
 <geographic2dused>
 http://www.opengis.org/ebcsdictionary/epsg#4277
 </geographic2dused>
 <CoordinateAxis ID="E"
Unit="http://www.opengis.org/units/epsg#9001" />
 <CoordinateAxis ID="N"
Unit="http://www.opengis.org/units/epsg#9001" />
 </Projected2D>
</EBCS>

7.2.3. Supporting Dictionaries (DTD)

The main DTD (ebcsdictionary.dtd) is supported in GML by a set of DTD’s which define
the encoding of supporting dictionaries for items such as geodetic datums, ellipsoids, and
units. These supporting dictionaries are NOT encoded into the earth-based coordinate
system dictionary for reasons of maintainability and data integrity.

Note that the elements in these dictionaries are referenced from one another as shown in
Figure 10. At present it is up to the application to decide how to use these references.An
application might, for example, import the referenced elements and assemble a complete
encoding of a particular coordinate system, or it might simply check the value of a
particular data field.

Geography Markup Language (GML) v1.0 Page 63 of 78
OGC Document Number 00-029

Figure 3. Supporting Dictionaries for Earth Based Coordinate Systems

Each of these dictionaries is defined by a separate DTD. These are attached below:

• Geodetic Datums (Horizontal Datum)
• Ellipsoids
• Standard Parameters
• Prime Meridians
• Units (note that this combines both Linear and Angular Units)

When Xpointer/Xlink technology becomes available (Xpointer reached recommendation
status in December 1999), a range reference will enable an XML file to retrieve any
dictionary element (or elements) in a single reference statement.

Copyright © 2000 OGC All Rights Reserved.

Geography Markup Language (GML) v1.0 Page 64 of 78
OGC Document Number 00-029

Appendix A: Geometry DTD

<!-- == -->
<!-- G e o g r a p h y -->
<!-- M a r k u p -->
<!-- L a n g u a g e -->
<!-- -->
<!-- (G M L) -->
<!-- -->
<!-- G E O M E T R Y D T D -->
<!-- -->
<!-- Copyright (c) 2000 OGC All Rights Reserved. -->
<!-- == -->

<!-- the coordinate element holds a list of coordinates as parsed character
data. Note that it does not reference a SRS and does not constitute a proper
geometry class. -->
<!ELEMENT coordinates (#PCDATA) >
<!ATTLIST coordinates
 decimal CDATA #IMPLIED
 cs CDATA #IMPLIED
 ts CDATA #IMPLIED >

<!-- the Box element defines an extent using a pair of coordinates and a SRS
name. -->
<!ELEMENT Box (coordinates) >
<!ATTLIST Box
 ID CDATA #IMPLIED
 srsName CDATA #REQUIRED >

<!-- == -->
<!-- G E O M E T R Y C L A S S D e f i n i t i o n s -->
<!-- == -->

<!-- a Point is defined by a single coordinate. -->
<!ELEMENT Point (coordinates) >
<!ATTLIST Point
 ID CDATA #IMPLIED
 srsName CDATA #IMPLIED >

<!-- a LineString is defined by two or more coordinates, with linear
interoplation between them. -->
<!ELEMENT LineString (coordinates) >
<!ATTLIST LineString
 ID CDATA #IMPLIED
 srsName CDATA #IMPLIED >

<!-- a Polygon is defined by an outer boundary and zero or more inner
boundaries. These boundaries are themselves defined by LinerRings. -->
<!ELEMENT Polygon (outerBoundaryIs, innerBoundaryIs*) >
<!ATTLIST Polygon
 ID CDATA #IMPLIED
 srsName CDATA #IMPLIED >
<!ELEMENT outerBoundaryIs (LinearRing) >

Geography Markup Language (GML) v1.0 Page 65 of 78
OGC Document Number 00-029

<!ELEMENT innerBoundaryIs (LinearRing) >

<!-- a LinearRing is defined by four or more coordinates, with linear
interpolation between them. The first and last coordinates must be
coincident. -->
<!ELEMENT LinearRing (coordinates) >
<!ATTLIST LinearRing
 ID CDATA #IMPLIED >

<!-- a MultiPoint is defined by zero or more Points, referenced through a
pointMember element. -->
<!ELEMENT MultiPoint (pointMember+) >
<!ATTLIST MultiPoint
 ID CDATA #IMPLIED
 srsName CDATA #IMPLIED >
<!ELEMENT pointMember (Point) >

<!-- a MultiLineString is defined by zero or more LineStrings, referenced
through a lineStringMember element. -->
<!ELEMENT MultiLineString (lineStringMember+) >
<!ATTLIST MultiLineString
 ID CDATA #IMPLIED
 srsName CDATA #IMPLIED >
<!ELEMENT lineStringMember (LineString) >

<!-- a MultiPolygon is defined by zero or more Polygons, referenced through
a polygonMember element. -->
<!ELEMENT MultiPolygon (polygonMember+) >
<!ATTLIST MultiPolygon
 ID CDATA #IMPLIED
 srsName CDATA #IMPLIED >
<!ELEMENT polygonMember (Polygon) >

<!-- a GeometryCollection is defined by zero or more geometries, referenced
through a geometryMember element. A geometryMember element may be any one of
the geometry classes. -->
<!ENTITY % GeometryClasses "(
 Point | LineString | Polygon |
 MultiPoint | MultiLineString | MultiPolygon |
 GeometryCollection)" >

<!ELEMENT GeometryCollection (geometryMember+) >
<!ATTLIST GeometryCollection
 ID CDATA #IMPLIED
 srsName CDATA #IMPLIED >
<!ELEMENT geometryMember %GeometryClasses; >

<!-- == -->
<!-- G E O M E T R Y P R O P E R T Y D e f i n i t i o n s -->
<!-- == -->

<!-- GML provides an ’endorsed’ name to define the extent of a feature. The
extent is defined by a Box element, the name of the property is boundedBy. -
->
<!ELEMENT boundedBy (Box) >

<!-- the generic geometryProperty can accept a geometry of any class. -->

Geography Markup Language (GML) v1.0 Page 66 of 78
OGC Document Number 00-029

<!ELEMENT geometryProperty (%GeometryClasses;) >

<!-- the pointProperty has three descriptive names: centerOf, location and
position. -->
<!ELEMENT pointProperty (Point) >
<!ELEMENT centerOf (Point) >
<!ELEMENT location (Point) >
<!ELEMENT position (Point) >

<!-- the lineStringProperty has two descriptive names: centerLineOf and
edgeOf. -->
<!ELEMENT lineStringProperty (LineString) >
<!ELEMENT centerLineOf (LineString)>
<!ELEMENT edgeOf (LineString)>

<!-- the polygonProperty has two descriptive names: coverage and extentOf. -
->
<!ELEMENT polygonProperty (Polygon) >
<!ELEMENT coverage (Polygon)>
<!ELEMENT extentOf (Polygon)>

<!-- the multiPointProperty has three descriptive names: multiCenterOf,
multiLocation and multiPosition. -->
<!ELEMENT multiPointProperty (MultiPoint) >
<!ELEMENT multiCenterOf (MultiPoint) >
<!ELEMENT multiLocation (MultiPoint) >
<!ELEMENT multiPosition (MultiPoint) >

<!-- the multiLineStringProperty has two descriptive names:
multiCenterLineOf and multiEdgeOf. -->
<!ELEMENT multiLineStringProperty (MultiLineString) >
<!ELEMENT multiCenterLineOf (MultiLineString) >
<!ELEMENT multiEdgeOf (MultiLineString) >

<!-- the multiPolygonProperty has two descriptive names: multiCoverage and
multiExtentOf. -->
<!ELEMENT multiPolygonProperty (MultiPolygon) >
<!ELEMENT multiCoverage (MultiPolygon) >
<!ELEMENT multiExtentOf (MultiPolygon) >

<!ELEMENT geometryCollectionProperty (GeometryCollection) >

<!-- == -->
<!-- F E A T U R E M E T A D A T A D e f i n i t i o n s -->
<!-- == -->

<!-- Feature metadata, included in GML Geometry DTD for convenience; name
and description are two ’standard’ string properties defined by GML. -->

<!ELEMENT name (#PCDATA)>
<!ELEMENT description (#PCDATA)>

Download this GML Geometry DTD (gmlgeometry.dtd)

Copyright © 2000 OGC All Rights Reserved.

Geography Markup Language (GML) v1.0 Page 67 of 78
OGC Document Number 00-029

Appendix B: Spatial Reference Systems DTD’s (informative)

<!ELEMENT EBCS_DICTIONARY (EBCS*) >

<!ELEMENT EBCS (Projected2D | Geographic2D | Geocentric) >
<!ATTLIST EBCS
 ID CDATA #REQUIRED
 Dimension CDATA #REQUIRED >

<!ELEMENT Projected2D(
 Name?,
 Abbreviation?,
 Alias?,
 Authority?,
 ProjectionClass,
 Geographic2DUsed,
 CoordinateAxis*,
 Origin?) >

<!ELEMENT Geographic2D (
 Name?,
 Abbreviation?,
 Alias?,
 Authority?,
 GeodeticDatum,
 PrimeMeridian,
 CoordinateAxis*,
 Origin?) >

<!ELEMENT Geocentric (
 Name?,
 Abbreviation?,
 Alias?,
 Authority?,
 GeodeticDatum,
 PrimeMeridian,
 CoordinateAxis*,
 Origin?) >

<!ELEMENT Name (#PCDATA) >

<!ELEMENT Abbreviation (#PCDATA) >

<!ELEMENT Alias (#PCDATA) >

<!ELEMENT Authority (#PCDATA) >

<!ELEMENT ProjectionClass (Parameter*) >
<!ATTLIST ProjectionClass
 ID CDATA #REQUIRED >

<!ELEMENT Geographic2DUsed EMPTY >
<!ATTLIST Geographic2DUsed

Geography Markup Language (GML) v1.0 Page 68 of 78
OGC Document Number 00-029

 ID CDATA #REQUIRED >

<!ELEMENT Parameter (#PCDATA) >
<!ATTLIST Parameter
 ID CDATA #REQUIRED
 Units CDATA #IMPLIED >

<!ELEMENT CoordinateAxis EMPTY >
<!ATTLIST CoordinateAxis
 ID CDATA #REQUIRED
 Unit CDATA #REQUIRED >

<!ELEMENT Origin (coordinates?) >
<!ATTLIST Origin
 ID CDATA #REQUIRED >

<!ELEMENT GeodeticDatum EMPTY >
<!ATTLIST GeodeticDatum
 ID CDATA #REQUIRED >

<!ELEMENT PrimeMeridian EMPTY >
<!ATTLIST PrimeMeridian
 ID CDATA #REQUIRED >

<!ELEMENT coordinates (#PCDATA) >

This DTD is used by itself (does not require the other DTD’s) to construct a library of
spatial reference systems. These are then referenced by the geometry class instances
defined within the GML Geometry DTD (See Appendix A). The top level SRS DTD is as
follows:

Note that the current release of GML supports the definition of entries for Earth Based
Coordinate System Dictionaries only. Subsequent revisions of the GML Specification will
provide as well for other types of reference systems.

Copyright © 2000 OGC All Rights Reserved.

Geography Markup Language (GML) v1.0 Page 69 of 78
OGC Document Number 00-029

Appendix C: RDF Schema Definition of GML

<?xml version="1.0" encoding="UTF-8"?>

<!-- == -->
<!-- G e o g r a p h y -->
<!-- M a r k u p -->
<!-- L a n g u a g e -->
<!-- -->
<!-- (G M L) -->
<!-- -->
<!-- R D F S c h e m a D e f i n i t i o n s -->
<!-- -->
<!-- Copyright (c) 2000 OGC All Rights Reserved. -->
<!-- == -->

<rdf:RDF xml:lang="en"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:rdfs="http://www.w3.org/TR/1999/PR-rdf-schema-19990303#">

<!--
==-
->
<!--=== This section describes the abstract classes and properties for core GML
=========-->
<!--
==-
->

 <rdfs:Class rdf:ID="Geometry">
 <rdfs:comment>
Geometry is the root class of the hierarchy. Geometry is an abstract (non-instantiable)
class. All instantiable geometry classes referenced in this specification are defined
so that valid instances of a geometry class are topologically closed (i.e. all defined
geometries include their boundary).
 </rdfs:comment>
 </rdfs:Class>

 <rdfs:Class rdf:ID="Feature">
 <rdfs:comment>
A Feature is a Property List, some of whose properties are of type geometry. Specific
classes of geographic feature are created by subtyping from the GML Feature class in
the application namespace.
 </rdfs:comment>
 </rdfs:Class>

 <rdfs:Class rdf:ID="GeometryCollection">
 <rdfs:subClassOf rdf:resource="#Geometry"/>
 <rdfs:subClassOf rdf:resource="http://www.w3.org/TR/1999/PR-rdf-schema-
19990303#Container"/>
 <rdfs:comment>
A GeometryCollection is a geometry that is a collection of 1 or more geometries. All
the elements in a GeometryCollection must be in the same Spatial Reference. This is
also the Spatial Reference for the GeometryCollection. GeometryCollection places no

Geography Markup Language (GML) v1.0 Page 70 of 78
OGC Document Number 00-029

other constraints on its elements. Subclasses of GeometryCollection may restrict
membership based on dimension and may also place other constraints on the degree of
spatial overlap between elements.
 </rdfs:comment>
 </rdfs:Class>

 <rdfs:Class rdf:ID="Box">
 <rdfs:subClassOf rdf:resource="#Geometry"/>
 <rdfs:comment>
A rectangular area defined by two points and the four orthogonal geodesic curves
defined by these two points
 </rdfs:comment>
 </rdfs:Class>

 <rdf:Property ID="geometryMember">
 <rdfs:range rdf:resource="#Geometry"/>
 <rdfs:domain rdf:resource="#GeometryCollection"/>
 <rdfs:comment>
selects next member in the geometry collection. Plays same role as li tag in rdf
 </rdfs:comment>
 </rdf:Property>

 <rdf:Property ID="geometryProperty">
 <rdfs:range rdf:resource="#Geometry"/>
 <rdfs:domain rdf:resource="#Feature"/>
 <rdfs:comment>
Abstract property which is the parent of all geospatial properties. While OGC provides
some standard geometry properties users can create additional properties by using the
subProperty relationship and deriving from the OGC properties.
 </rdfs:comment>
 </rdf:Property>

 <rdfs:Class rdf:ID="FeatureCollection">
 <rdfs:subClassOf rdf:resource="#Feature"/>
 <rdfs:comment>
A collection (set) of Features
 </rdfs:comment>
 </rdfs:Class>

 <rdf:Property ID="featureMember">
 <rdfs:range rdf:resource="#Feature"/>
 <rdfs:domain rdf:resource="#FeatureCollection"/>
 <rdfs:comment>
Function which returns next Feature in a FeatureCollection
 </rdfs:comment>
 </rdf:Property>

<!--===-->
<!--============== This next section defines common metadata properties =========-->
<!--===-->

 <rdf:Property ID="name">
 <rdfs:range rdf:resource="http://www.w3.org/TR/1999/PR-rdf-schema-
19990303#Literal"/>
 <rdfs:domain rdf:resource="#Feature"/>
 </rdf:Property>

 <rdf:Property ID="boundedBy">

Geography Markup Language (GML) v1.0 Page 71 of 78
OGC Document Number 00-029

 <rdfs:range rdf:resource="#Box"/>
 <rdfs:domain rdf:resource="#Feature"/>
 </rdf:Property>

 <rdf:Property ID="description">
 <rdfs:range rdf:resource="http://www.w3.org/TR/1999/PR-rdf-schema-
19990303#Literal"/>
 <rdfs:domain rdf:resource="#Feature"/>
 </rdf:Property>

 <rdf:Property ID="srsName">
 <rdfs:range rdf:resource="http://www.w3.org/TR/1999/PR-rdf-schema-
19990303#Literal"/>
 <rdfs:domain rdf:resource="#Geometry"/>
 </rdf:Property>

 <rdf:Property ID="coordinates">
 <rdfs:domain rdf:resource="#Curve"/>
 <rdfs:domain rdf:resource="#Box"/>
 <rdfs:domain rdf:resource="#Point"/>
 <rdfs:range rdf:resource="http://www.w3.org/TR/1999/PR-rdf-schema-
19990303#Literal"/>
 </rdf:Property>

<!--===-->
<!--======= This next section defines the GML Geometry Classes =================-->
<!--===-->

 <rdfs:Class rdf:ID="Point">
 <rdfs:subClassOf rdf:resource="#Geometry"/>
 <rdfs:comment>
Point geometry class. A Point is a 0-dimensional geometry and represents a single
location in coordinate space. A Point has an x-coordinate value and a y-coordinate
value. Note that GML is more general than the OGC SQL v1.1 specification and does allow
Points of 0-4 (or larger) dimension. The boundary of a Point is the empty set.
 </rdfs:comment>
 </rdfs:Class>

 <rdfs:Class rdf:ID="Curve">
 <rdfs:subClassOf rdf:resource="#Geometry"/>
 <rdfs:comment>
A Curve is a one-dimensional geometric object usually stored as a sequence of points,
with the subtype of Curve specifying the form of the interpolation between points. This
specification defines only one subclass of Curve, LineString, which uses linear
interpolation between points. This is the only 1-D Geometry class which appears in the
GML DTD. Topologically a Curve is a one-dimensional geometric object that is the
homeomorphic image of a real, closed, interval D [a, b] {x in R2| a le x le b} under a
mapping f:[a,b] --- R2 as defined in [1], section 3.12.7.2.

A Curve is simple if it does not pass through the same point twice ([1], section
3.12.7.3).

A Curve is closed if its start point is equal to its end point. ([1], section
3.12.7.3).

The boundary of a closed Curve is empty.

Geography Markup Language (GML) v1.0 Page 72 of 78
OGC Document Number 00-029

A Curve that is simple and closed is a Ring.

The boundary of a non-closed Curve consists of its two end points. ([1], section
3.12.3.2).

A Curve is defined as topologically closed.
 </rdfs:comment>
 </rdfs:Class>

 <rdfs:Class rdf:ID="LineString">
 <rdfs:subClassOf rdf:resource="#Curve"/>
 <rdfs:comment>
Lines, LineStrings and LinearRings are all Curves. A Line String is a Curve with linear
interpolation between points. Each consecutive pair of points defines a line segment. A
Line is a LineString with exactly 2 points. In GML the points of a LineString are
defined by a coordinate list and are not defined by GML Points.
 </rdfs:comment>
 </rdfs:Class>

 <rdfs:Class rdf:ID="LinearRing">
 <rdfs:subClassOf rdf:resource="#Curve"/>
 <rdfs:comment>
A LinearRing is a LineString that is both closed and simple. In GML, the points of a
LinearRing are defined by a coordinate list and are not defined by GML Points.
 </rdfs:comment>
 </rdfs:Class>

 <rdfs:Class rdf:ID="Surface">
 <rdfs:subClassOf rdf:resource="#Geometry"/>
 <rdfs:comment>
Abstract geometry class for 2D geometries
 </rdfs:comment>
 </rdfs:Class>

 <rdfs:Class rdf:ID="Polygon">
 <rdfs:subClassOf rdf:resource="#Surface"/>
 <rdfs:comment>
A Polygon is a planar Surface, defined by 1 exterior boundary and 0 or more interior
boundaries. Each interior boundary defines a hole in the Polygon. The assertions for
polygons (the rules that define valid polygons) are:

1. Polygons are topologically closed.

2. The boundary of a Polygon consists of a set of LinearRings that make up its
exterior and interior boundaries. Note that these are captured in GML via the
eboundaryis and iboundaryis properties of the Polygon.

3. No two rings in the boundary cross, the rings in the boundary of a Polygon may
intersect at a Point but only as a tangent.

4. A Polygon may not have cut lines, spikes or punctures:

5. The Interior of every Polygon is a connected point set.

6. The Exterior of a Polygon with 1 or more holes is not connected. Each hole defines
a connected component of the Exterior.

Geography Markup Language (GML) v1.0 Page 73 of 78
OGC Document Number 00-029

In the above assertions, Interior, Closure and Exterior have the standard topological
definitions. The combination of 1 and 3 make a Polygon a Regular Closed point set.
Polygons are simple geometries in accordance with the terminology of the OGC Abstract
Specififcation 99-101.
 </rdfs:comment>
 </rdfs:Class>

 <rdf:Property ID="outerBoundaryIs">
 <rdfs:range rdf:resource="#LinearRing"/>
 <rdfs:domain rdf:resource="#Polygon"/>
 <rdfs:comment>
This property returns the outer boundary of a polygon
 </rdfs:comment>
 </rdf:Property>

 <rdf:Property ID="innerBoundaryIs">
 <rdfs:range rdf:resource="#LinearRing"/>
 <rdfs:domain rdf:resource="#Polygon"/>
 <rdfs:comment>
This property returns a connected component of the interior boundary of a polygon. A
polygon can have zero or more iboundaryis properties
 </rdfs:comment>
 </rdf:Property>

 <rdfs:Class rdf:ID="MultiPoint">
 <rdfs:subClassOf rdf:resource="#GeometryCollection"/>
 <rdfs:comment>
A MultiPoint is a 0 dimensional geometric collection. The elements of a MultiPoint are
restricted to Points. The points are not connected or ordered. A MultiPoint is simple
if no two Points in the MultiPoint are equal (have identical coordinate values). The
boundary of a MultiPoint is the empty set.
 </rdfs:comment>
 </rdfs:Class>

 <rdf:Property ID="pointMember">
 <rdfs:range rdf:resource="#Point"/>
 <rdfs:domain rdf:resource="#MultiPoint"/>
 <rdfs:comment>
Returns the next point in a multipoint
 </rdfs:comment>
 </rdf:Property>

 <rdfs:Class rdf:ID="MultiCurve">
 <rdfs:subClassOf rdf:resource="#GeometryCollection"/>
 <rdfs:comment>
A MultiCurve is a one-dimensional eometryCollection whose elements are Curves.
MultiCurve is present in this specification only to provide the context for the
definition of a Multi-Line String. MultiCurve is simple if and only if all of its
elements are simple, the only intersections between any two elements occur at points
that are on the boundary. The boundary of a MultiCurve is obtained by applying the
’mod 2’ union rule: A point is in the boundary of a MultiCurve if it is in the
boundaries of an odd number of elements of the MultiCurve ([1], section 3.12.3.2).

MultiCurve is closed if all of its elements are closed.

The boundary of a closed MultiCurve is always empty. MultiCurve is defined as
topologically closed.
 </rdfs:comment>

Geography Markup Language (GML) v1.0 Page 74 of 78
OGC Document Number 00-029

 </rdfs:Class>

 <rdfs:Class rdf:ID="MultiLineString">
 <rdfs:subClassOf rdf:resource="#GeometryCollection"/>
 <rdfs:comment>
A MultiLineString is a MultiCurve whose elements are LineStrings
 </rdfs:comment>
 </rdfs:Class>

 <rdf:Property ID="lineStringMember">
 <rdfs:range rdf:resource="#LineString"/>
 <rdfs:domain rdf:resource="#MultiLineString"/>
 <rdfs:comment>
Returns the next linestring in a multilinestring
 </rdfs:comment>
 </rdf:Property>

 <rdfs:Class rdf:ID="MultiSurface">
 <rdfs:subClassOf rdf:resource="#GeometryCollection"/>
 <rdfs:comment>
Abstract class for complex 2-D geometries
 </rdfs:comment>
 </rdfs:Class>

 <rdfs:Class rdf:ID="MultiPolygon">
 <rdfs:subClassOf rdf:resource="#MultiSurface"/>
 <rdfs:comment>
A MultiPolygon is a MultiSurface whose elements are Polygons. The assertions for
MultiPolygons are:

1. The interiors of 2 Polygons that are elements of a MultiPolygon may not intersect.

2. The Boundaries of any 2 Polygons that are elements of a MultiPolygon may not
’cross’ and may touch at only a finite number of points. (Note that crossing is
prevented by assertion 1 above).

3. A MultiPolygon is defined as topologically closed.

4. A MultiPolygon may not have cut lines, spikes or punctures; a MultiPolygon is a
Regular, Closed point set:

5. The interior of a MultiPolygon with more than 1 Polygon is not connected, the
number of connected components of the interior of a MultiPolygon is equal to the number
of Polygons in the MultiPolygon.

The boundary of a MultiPolygon is a set of closed curves (LinearRings) corresponding to
the boundaries of its element Polygons. Each Curve in the boundary of the MultiPolygon
is in the boundary of exactly 1 element Polygon, and every Curve in the boundary of an
element Polygon is in the boundary of the MultiPolygon.
 </rdfs:comment>
 </rdfs:Class>

 <rdf:Property ID="polygonMember">
 <rdfs:range rdf:resource="#Polygon"/>
 <rdfs:domain rdf:resource="#MultiPolygon"/>
 <rdfs:comment>
Returns the next polygon in a multipolygon
 </rdfs:comment>

Geography Markup Language (GML) v1.0 Page 75 of 78
OGC Document Number 00-029

 </rdf:Property>

<!--===--
>
<!--============= This section defines the GML geometry properties. =================--
>
<!--========== All of these properties are sub-Properties of geometryproperty =======--
>
<!--===--
>

 <rdf:Property ID="pointProperty">
 <rdfs:range rdf:resource="#Point"/>
 <rdfs:subPropertyOf rdf:resource="#geometryProperty"/>
 <rdfs:comment>
Abstract property function that returns a point of the selected feature.
 </rdfs:comment>
 </rdf:Property>

 <rdf:Property ID="lineStringProperty">
 <rdfs:range rdf:resource="#LineString"/>
 <rdfs:subPropertyOf rdf:resource="#geometryProperty"/>
 <rdfs:comment>
Abstract property function that returns a linestring of the selected feature.
 </rdfs:comment>
 </rdf:Property>

 <rdf:Property ID="polygonProperty">
 <rdfs:range rdf:resource="#Polygon"/>
 <rdfs:subPropertyOf rdf:resource="#geometryProperty"/>
 <rdfs:comment>
Abstract property function that returns a polygon of the selected feature.
 </rdfs:comment>
 </rdf:Property>

 <rdf:Property ID="location">
 <rdfs:subPropertyOf rdf:resource="#pointProperty"/>
 <rdfs:comment>
Returns a point of the selected feature.
 </rdfs:comment>
 </rdf:Property>

 <rdf:Property ID="position">
 <rdfs:subPropertyOf rdf:resource="#pointProperty"/>
 <rdfs:comment>
Returns a point of the selected feature.
 </rdfs:comment>
 </rdf:Property>

 <rdf:Property ID="centerOf">
 <rdfs:subPropertyOf rdf:resource="#pointProperty"/>
 <rdfs:comment>
Returns the center point of the selected feature.
 </rdfs:comment>
 </rdf:Property>

 <rdf:Property ID="centerLineOf">
 <rdfs:subPropertyOf rdf:resource="#lineStringProperty"/>

Geography Markup Language (GML) v1.0 Page 76 of 78
OGC Document Number 00-029

 <rdfs:comment>
Returns a linestring which is the centerline of the selected feature.
 </rdfs:comment>
 </rdf:Property>

 <rdf:Property ID="edgeOf">
 <rdfs:subPropertyOf rdf:resource="#lineStringProperty"/>
 <rdfs:comment>
Returns a linestring which is an edge of the selected feature.
 </rdfs:comment>
 </rdf:Property>

 <rdf:Property ID="extentOf">
 <rdfs:subPropertyOf rdf:resource="#polygonProperty"/>
 <rdfs:comment>
Returns a polygon which is the centerline of the selected feature.
 </rdfs:comment>
 </rdf:Property>

 <rdf:Property ID="coverage">
 <rdfs:subPropertyOf rdf:resource="#polygonProperty"/>
 <rdfs:comment>
Returns a polygon which is the centerline of the selected feature.
 </rdfs:comment>
 </rdf:Property>

 <rdf:Property ID="multiPointProperty">
 <rdfs:range rdf:resource="#MultiPoint"/>
 <rdfs:subPropertyOf rdf:resource="#geometryProperty"/>
 <rdfs:comment>
Abstract property function that returns a multipoint of the selected feature.
 </rdfs:comment>
 </rdf:Property>

 <rdf:Property ID="multiLineStringProperty">
 <rdfs:range rdf:resource="#MultiLineString"/>
 <rdfs:subPropertyOf rdf:resource="#geometryProperty"/>
 <rdfs:comment>
Abstract property function that returns a multilinestring of the selected feature.
 </rdfs:comment>
 </rdf:Property>

 <rdf:Property ID="multiPolygonProperty">
 <rdfs:range rdf:resource="#MultiPolygon"/>
 <rdfs:subPropertyOf rdf:resource="#geometryProperty"/>
 <rdfs:comment>
Abstract property function that returns a MultiPolygon of the selected feature.
 </rdfs:comment>
 </rdf:Property>

 <rdf:Property ID="multiLocation">
 <rdfs:subPropertyOf rdf:resource="#multiPointProperty"/>
 <rdfs:comment>
Returns a multipoint of the selected feature.
 </rdfs:comment>
 </rdf:Property>

 <rdf:Property ID="multiPosition">

Geography Markup Language (GML) v1.0 Page 77 of 78
OGC Document Number 00-029

 <rdfs:subPropertyOf rdf:resource="#multiPointProperty"/>
 <rdfs:comment>
Returns a multipoint of the selected feature.
 </rdfs:comment>
 </rdf:Property>

 <rdf:Property ID="multiCenterOf">
 <rdfs:subPropertyOf rdf:resource="#multiPointProperty"/>
 <rdfs:comment>
Returns the multi-center point of the selected feature.
 </rdfs:comment>
 </rdf:Property>

 <rdf:Property ID="multiCenterLineOf">
 <rdfs:subPropertyOf rdf:resource="#multiLineStringProperty"/>
 <rdfs:comment>
Returns a multilinestring which is the multicenterline of the selected feature.
 </rdfs:comment>
 </rdf:Property>

 <rdf:Property ID="multiEdgeOf">
 <rdfs:subPropertyOf rdf:resource="#multiLineStringProperty"/>
 <rdfs:comment>
Returns a multilinestring which is a set of edges of the selected feature.
 </rdfs:comment>
 </rdf:Property>

 <rdf:Property ID="multiExtentOf">
 <rdfs:subPropertyOf rdf:resource="#multiPolygonProperty"/>
 <rdfs:comment>
Returns a MultiPolygon which is the extent of the selected feature.
 </rdfs:comment>
 </rdf:Property>

 <rdf:Property ID="multiCoverage">
 <rdfs:subPropertyOf rdf:resource="#multiPolygonProperty"/>
 <rdfs:comment>
Returns a MultiPolygon which is the coverage of the selected feature.
 </rdfs:comment>
 </rdf:Property>
</rdf:RDF>

Download this GML RDF Schema Definition (gml.rdfs)

Copyright © 2000 OGC All Rights Reserved.

Geography Markup Language (GML) v1.0 Page 78 of 78
OGC Document Number 00-029

Appendix D: References

[POIX] Point of Interest Exchange Language Specification. Available at
http://www.w3.org/TR/poix/

[QNAME] QNAME specification. Available at http://18.29.1.23:80/TR/REC-xml-
names/#NT-QName

[RDFMS] Resource Description Framework (RDF) Model and Syntax. Available at
http://www.w3.org/TR/REC-rdf-syntax

[RDFSchema] Resource Description Framework (RDF) Schemas; Brickley, Guha, Layman
eds., World Wide Web Consortium Working Draft; http://www.w3.org/TR/PR-rdf-schema

[SVG] Scalable Vector Graphics. Available at http://www.w3.org/TR/SVG/

[URI] Uniform Resource Identifiers (URI): Generic Syntax; Berners-Lee, Fielding,
Masinter, Internet Draft Standard August, 1998; RFC2396.

[VML] Vector Markup Language. Available at: http://www.w3.org/TR/NOTE-VML

[VRML] Virtual Reality Markup Language. Available at:
http://www.vrml.org/VRML2.0/FINAL

[XML SCHEMA] XML Schema Part 1: Structures. Available at
http://www.w3.org/TR/xmlschema-1

[XML SCHEMA DATATYPES] XML Schema Part 2: DataTypes. Available at
http://www.w3.org/TR/xmlschema-2

[XML] XML 1.0 Recommendation from the W3C. Available at
http://www.w3.org/TR/REC-xml

[XMLNS] XML Namespace specification. Available at http://18.29.1.23:80/TR/REC-xml-
names

[XSLT] XSL Transformations. Available at http://www.w3.org/TR/xslt

Copyright © 2000 OGC All Rights Reserved.

