OASIS

OASIS eXtensible Access Control
Markup Language (XACML)

Working Draft 15, 12 July 2002

Document identifier: draft-xacml-specification-15.doc
Location: http://www.oasis-open.org/committees/xacml/docs/

Send comments to: xacml-comment@lists.oasis-open.org

Editors:

Simon Godik, Simon Godik (simon@godik.com)
Tim Moses, Entrust (tim.moses@entrust.com)

Contributors:

Anne Anderson, Sun Microsystems
Bill Parducci, Bill Parducci

Carlisle Adams, Entrust

Daniel Engovatov, Crosslogix

Don Flinn, Hitachi

Ernesto Damiani, University of Milan
James MacLean, Affinitex

Hal Lockhart, Entegrity

Ken Yagen, Crosslogix

Konstantin Besnozov, Hitachi
Michiharu Kudo, IBM, Japan
Pierangela Samarati, University of Milan
Polar Humenn, Syracuse University
Sekhar Vajjhala, Sun Microsystems
Gerald Brose, Xtradyne

Abstract:
This specification defines an XML schema for a common access-control policy language.
Status:

This version of the specification is a working draft of the committee. As such, it is expected
to change prior to adoption as an OASIS standard.

If you are on the xacml@lists.oasis-open.org list for committee members, send comments
there. If you are not on that list, subscribe to the xacml-comment@lists.oasis-open.org list
and send comments there. To subscribe, send an email message to xacml-comment-
request@lists.oasis-open.org with the word "subscribe" as the body of the message.

draft-xacml-specification-15.doc

37 Copyright © 2001, 2002 The Organization for the Advancement of Structured Information
38 Standards [OASIS]

draft-xacml-specification-15.doc

39

40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

Table of contents

Glossary (non-normative)
1.1 Preferred terms
1.2 Related terms
Introduction (non-normative)
2.1 Background
211 Rule combining
21.2 Policy combining
21.3 Combining algorithm
214 Decision indication
21.5 Names or attributes
2.1.6 Specifying actions
2.1.7 Expression of predicates
21.8 Abstraction layer
219 Policy attachment
2.2 References
2.3 Notation
2.4 Schema Organization and Namespaces
Example (non-normative)
3.1 Introduction to the example
3.2 Example medical record instance
3.3 Example authorization decision request
3.4 Example plain-language rules
3.5 Example XACML rule instances
3.5.1 Rule 1
3.5.2 Rule 2
353 Rule 3
354 Rule 4
Models (non-normative)
4.1 Data-flow model
4.2 XACML Context
4.3 Policy language model
4.31 Rule
4.3.2 Policy statement

4.3.3 Policy set statement

Policy syntax (normative, with the exception of the schema fragments)

draft-xacml-specification-15.doc

© © © 00 00 0o N N

10
10
10
10
10
10
11
11
11
12
13
14
15
15
15
17
18
19
19
20
21
22
24
27
28

75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111

5.1 Element <PolicySetStatement>
5.2 Element <PolicyStatement>
5.3 Element <Rule>
5.4 Complex type PolicySetStatementType
5.5 Complex type PolicyStatementType
5.6 Complex type RuleType
5.7 Complex type EffectType
5.8 Complex type TargetType
5.9 Complex type MatchType
5.10 Complex type ObligationsType
5.11 Complex type ObligationType
5.12 Element <Function>
5.13 Complex type ConditionType
5.14 Complex type FunctionType
5.15 Element <Attribute>
5.16 Complex type AttributeType
5.17 Element <AttributeDesignator>
5.18 Complex type AttributeDesignatorType
5.19 Complex type AttributeAssignmentType
5.20 Complex type PolicySetType
5.21 Complex type RuleSetType
5.22 Complex type RuleDesignatorType
6 Function names and legal type combinations
6.1 Functions
7 Context syntax (normative, with the exception of the schema fragments)
7.1 Element <Request>
7.2 Element <Response>
7.3 Complex type RequestType
7.4 Complex type ResponseType
7.5 Complex type ResultType
7.6 Complex type SubjectType
7.7 Complex type SubjectldType
7.8 Complex type AuthenticationinfoType
7.9 Complex type AttributeType
7.10 Complex type ResourceType
7.11 Complex type ResourceSpecifierType
7.12 Complex type SpecifierScopeType

draft-xacml-specification-15.doc

28
28
28
28
29
30
30
30
31
31
31
31
31
32
32
32
33
33
33
33
34
34
34
34
39
39
39
39
40
40
40
41
41
41
42
42
42

112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148

7.13
7.14
7.15
7.16
7.17

Complex type ResourceContentType
Complex type ActionType

Complex type DecisionType
Complex type EnvironmentType

Complex type AdviceType

8 XACML identifiers (normative)

8.1 Access Subject
8.2 Time of day
8.3 Attributes

8.3.1 Role

8.3.2 RFC822 Name
8.3.3 X.500 distinguished name
8.34 Unix file-system path

8.3.5 Uniform resource identifier

8.4
8.5
8.6
8.7
8.8

Authentication locality

Deny-overrides rule-combining algorithm
Deny-overrides policy-combining algorithm
Permit-overrides rule-combining algorithm

Permit-overrides policy-combining algorithm

9 Combining algorithms (normative)

9.1
9.2

10 Profiles (normative but not mandatory to implement)

10.1
10.2
10.3
10.4

Deny-overrides

Permit-overrides

XACML

SAML

XML Digital Signature
LDAP

10.4.1 Directory information tree (DIT)

10.4.2 Policy combination

10.4.3 Directory schema

10.4.4 Object Class Definitions
10.4.5 Attribute Definitions
10.4.6 Matching Rule Definitions

11 Operational Model (normative)

1.1

Policy Decision Point (PDP)

12 XACML extensibility points (non-normative)

12.1

URIs

draft-xacml-specification-15.doc

42
43
43
43
43
44
44
44
44
44
44
44
44
44
45
45
45
45
45
45
45
46
48
48
48
50
50
50
51
51
52
52
53
53
53
54
54

149
150
151
152
153
154
155
156
157
158
159
160
161
162
163

13 Security and privacy (non-normative)
13.1 Authentication
13.2 Confidentiality
13.21 Communication Confidentiality
13.2.2 Statement Level Confidentiality
13.3 Policy Integrity
13.4 Elements included by reference
13.5 Trust Model
13.6 Privacy
14 Conformance (normative)
15 References
Appendix A. Acknowledgments
Appendix B. Revision History
Appendix C. Notices

draft-xacml-specification-15.doc

54
54
55
55
55
55
56
56
56
57
58
59
60
61

164

165 1 Glossary (non-normative)

166 1.1 Preferred terms

167 Access - Performing an action

168 Access control - Controlling access in accordance with a policy

169 Action - An operation on a resource

170 Applicable policy - The complete set of rules that governs access for a specific decision request

171 Attribute - Characteristic of a subject, resource, action or environment that may be referenced
172 in a predicate

173 Authorization decision - The result of evaluating an applicable policy. A function that evaluates
174 to "permit, deny or indeterminate"”, and (optionally) a set of obligations

175 Condition - An expression of predicates. A function that evaluates to "true or false"

176 Context - The canonical representation of decision request and authorization decision
177 Decision request - The request by a PEP to a PDP to render an authorization decision
178 Effect - The intended consequence of a satisfied condition (either permit or deny)

179 Environment - The set of attributes that are independent of a particular subject, resource or
180 action

181 Information request - The request by a PDP to a PIP for attributes

182 Obligation - An action specified in a policy or policy set that should be performed in conjunction
183 with the issuance of an authorization decision

184 Policy - A set of rules and an identifier for the rule-combining algorithm
185 Policy administration point (PAP) - The system entity that creates a policy or policy set

186 Policy-combining algorithm - The procedure for combining the target, obligations and rules
187 from multiple policies

188 Policy decision point (PDP) - The system entity that evaluates applicable policy and renders an
189 authorization decision

190 Policy enforcement point (PEP) - The system entity that performs access control, by enforcing
191 authorization decisions

192 Policy information point (PIP) - The system entity that acts as a source of attribute values

draft-xacml-specification-15.doc 7

193
194

195

196

197

198

199
200

201

202
203

204
205

206

207
208

209

210
211

212
213

214

215

216
217
218
219
220
221
222
223
224
225

Policy retrieval point (PRP) - The system entity that locates and retrieves applicable policy for a
particular decision request

Policy set - A set of policies and other policy sets and a policy-combining algorithm
Predicate - A statement about attributes whose truth can be evaluated

Resource - Data, service or system component

Rule - A target, an effect and a set of conditions

Rule-combining algorithm - The procedure for combining the target, effect and conditions from
multiple rules

Subject - An actor whose attributes may be referenced by a predicate

Target - The set of decision requests, identified by definitions for resource, subject and action,
that a rule, policy or policy set is intended to evaluate

Target mapping - The process of confirming that a rule, policy or policy set is applicable to an
authorization decision request

1.2 Related terms

In the field of access control and authorization there are several closely related terms in common
use. For purposes of precision and clarity, certain of these terms are not used in this specification.

For instance, the term attribute is used in place of the terms: group and role.

In place of the terms: privilege, permission, authorization, entitlement and right, we use the
term rule.

The term object is also in common use, but we use the term resource in this specification.

Requestors and initiators are covered by the term subject.

2 Introduction (non-normative)

2.1 Background

The modern enterprise is pervaded by information systems and devices. Economies of scale have
driven vendors to provide increasingly general-purpose solutions that must be configured to
address the specific needs of each situation in which they are applied. This leads to constantly
increasing complexity and configurability. Furthermore, the devices and systems may be
distributed widely in a global enterprise. The task of analyzing and controlling system and device
configuration in a consistent manner across an entire enterprise is an enormous challenge,
compounded by the fact that, even when systems and devices support configuration by a remote
console, there is no common interface standard. Consequently, it is becoming increasingly difficult
for an enterprise to obtain a consolidated view of the policy in effect across its many and diverse
systems and devices or to enforce a single policy that affects many of those devices and systems.

draft-xacml-specification-15.doc 8

226
227

228
229
230
231
232

233
234

235

236
237

238
239

240
241

242
243

244
245

246
247

248

249
250

251
252

253
254

255
256

The objective of XACML is to address this need by defining a language capable of expressing
policy statements for a wide variety of information systems and devices

The approach taken by XACML is to draw together long-established techniques for access-control
and then to extend a platform-independent language (XML) with suitable syntax and semantics for
expressing those techniques in the form of policy statements.

XACML exploits long-established techniques, such as:

Combining independent rules to form a single policy.

Combining independent policies, optionally from different policy-writers, to form a single policy
set.

The parameterization of the algorithm to be used for combining rules and policies.

Attaching an indication of the set of decisions that a rule or policy is intended to render to the
rule or policy.

Defining the set of decisions that the rule or policy is intended to render in terms of the name or
attributes of the subject, resource and action identified in the decision request.

Specifying in a policy statement a set of actions that must be performed in conjunction with the
rendering of a decision.

Stating rule conditions as a logical expression of predicates of functions of attributes of the
resource and/or subject.

Providing an abstraction layer between the policy language and the environment to which it
applies.

The communication of policies, either attached to the resources they are intended to protect, or
separately.

The following sections describe how to understand the rest of this specification.

2.1.1 Rule combining

Ref 5,

2.1.2 Policy combining

Ref 5, 8

2.1.3 Combining algorithm

Ref 7,

2.1.4 Decision indication

draft-xacml-specification-15.doc 9

257
258

259
260

261
262

263
264

265
266

267

268
269
270
271

272
273
274

275
276

277
278

279
280

281

282
283

284
285
286

287
288

2.1.5 Names or attributes

Ref2, 6

2.1.6 Specifying actions

Ref 1,

2.1.7 Expression of predicates

Ref 4,

2.1.8 Abstraction layer

2.1.9 Policy attachment

Ref1, 3

2.2 References

1.

2
3
4.
5

Perritt; Knowbots, Headers & Contract Law; 1993.
Orange book

Trusted Network Interpretation

X.500 filter

J Moffett and M Sloman. Policy hierarchies for distributed system management. IEEE Journal
on Selected areas in communications, pages 1404-1414, December 1993. Special Issue on
network management.

R Sandhu, E Coyne, H Feinstein and C Youman. Role-based access control models. IEEE
Computer, 9(2); 38-47, 1996.

S Jajodia, P Samarati, V S Subrahmanian and E Bertino. A unified framework for enforcing
multiple access control policies. Proceedings of ACM SIGMOD, 1997

N Minsky, V Ungureanu. Unified support for heterogeneous distributed systems. 7™ USENIX
security symposium, San Antonio, Texas, January, 1998..

2.3 Notation

This specification contains schema conforming to W3C XML Schema and normative text to
describe the syntax and semantics of XML-encoded policy statements.

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",
"SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this specification are to be
interpreted as described in IETF RFC 2119 rfc2119:

"they MUST only be used where it is actually required for interoperation or to limit
behavior which has potential for causing harm (e.g., limiting retransmissions)"

draft-xacml-specification-15.doc 10

289
290
291
292

293

294
295

296
297
298

299

300

301

302
303

304
305
306

307
308

309
310

311
312

313
314

315

316

317

318

319
320

These keywords are thus capitalized when used to unambiguously specify requirements over
protocol and application features and behavior that affect the interoperability and security of
implementations. When these words are not capitalized, they are meant in their natural-language
sense.

Listings of XACML schemas appear like this.

Example code listings appear like this.

Conventional XML namespace prefixes are used throughout the listings in this specification to
stand for their respective namespaces as follows, whether or not a namespace declaration is
present in the example:

e The prefix saml : stands for the SAML assertion namespace.

e The prefix ds: stands for the W3C XML Signature namespace.

e The prefix xs : stands for the W3C XML Schema namespace.
This specification uses the following typographical conventions in text: <XACMLElement>,
<ns:ForeignElement>, Attribute, Datatype, OtherCode.

2.4 Schema Organization and Namespaces

The XACML policy syntax is defined in a schema associated with the following XML namespace:

urn:oasis:names:tc:xacml:0.15i:policy

The XACML context syntax is defined in a schema associated with the following XML namespace:

urn:oasis:names:tc:xacml:0.151i:context

XACML functions have the following namespace prefix.

urn:oasis:names:tc:xacml:0.15i:function

Note: The XACML namespace names are temporary and may change when
XACML 1.0 is finalized.

The SAML assertion schema is imported into the XACML schema. Also imported is the schema for
XML Signature XMLSigXSD, which is associated with the following XML namespace:

http://www.w3.0rg/2000/09/xmldsig#

3 Example (non-normative)

This section contains an example use of XACML for illustrative purposes.

3.1 Introduction to the example

This section contains an example XML document, an example request context and example
XACML rules. The XML document is a medical record. Four separate rules are defined.

draft-xacml-specification-15.doc 11

321

322
323

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380

3.2 Example medical record instance

Following is an instance of a medical record to which the example XACML rules can be applied.
The <record> schema is defined in the registered namespace administered by "//medico.com".

draft-xacml-specification-15.doc

12

381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405

406

407
408
409
410

411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432

3.3 Example authorization decision request

The following exampile illustrates a request context to which the example rules are intended to be
applicable. It represents a request by the physician Julius Hibbert to read the patient date of birth in
the record of Bartholomew Simpson. It includes an authentication assertion and an attribute
assertion containing the role of the requestor.

draft-xacml-specification-15.doc 13

433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479

480

481
482

483
484

485
486

487

3.4 Example plain-language rules

The following plain-language rules are to be enforced:
1. A person may read any record for which he or she is the designated patient.

2. A person may read any record for which he or she is the designated parent or guardian, and for
which the patient is under 16 years of age.

3. A physician may write any medical element for which he or she is the designated primary care
physician, provided an email is sent to the patient,

4. An administrator shall not be permitted to read or write medical elements of a patient record.

draft-xacml-specification-15.doc 14

488

489

490

491
492

493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537

538

539
540

These rules may be written by different PAPs, operating independently, or by a single PAP.

3.5 Example XACML rule instances

3.5.1 Rule 1

Rule 1 illustrates a simple rule with a single condition. The following XACML <Rule> instance
expresses Rule 1.

3.5.2 Rule 2

Rule 2 illustrates the use of a mathematical function, i.e. the <Minus> function to calculate age. It

also illustrates the use of predicate expressions, with the <and> and <Not> elements.

draft-xacml-specification-15.doc

15

541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601

draft-xacml-specification-15.doc

16

602

603
604
605

606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661

3.5.3 Rule 3

Rule 3 illustrates the use of an obligation. The XACML <Rule> element syntax does not include

an element suitable for carrying an obligation, therefore Rule 3 has to be formatted as a
<PolicyStatement> element, which is a type of SAML assertion.

draft-xacml-specification-15.doc

17

662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687

688

689

690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720

3.5.4 Rule4

Rule 4 illustrates the use of the "Deny" effect value, and a rule with no <Condition> element.

draft-xacml-specification-15.doc

18

721
722
723
724

725

726
727
728

729

730

731

732
733
734
735
736

<Attribute DataType="xs:string">read write</Attribute>
</Actions>
</Target>
</Rule>

4 Models (non-normative)

The context and schema of XACML are described in two models. These models are: the data-flow
model and the policy language model. They are described in the following sub-sections.

4.1 Data-flow model

The major actors in the XACML domain are shown in the data-flow diagram of Figure 1.
PEP 9. obligations
service

2. request 8. response
context context

r3. target PDP 7. attribute

6b. attribute

A 4
PRP 4. policy 5. ngﬁ;te—’ PIP

* A
6a. attribute

1. policy 6¢. attribute

PAP subject resource

Figure 1 - Data-flow diagram

Note: some of the data-flows shown in the diagram may be facilitated by a repository. For instance,
the communications between the PDP and the PIP or the communications between the PDP and
the PRP or the communication between the PAP and the PRP may be facilitated by a repository.
The XACML specification is not intended to place restrictions on the location of any such repository,
or indeed to prescribe a particular communication protocol for any of the data-flows.

draft-xacml-specification-15.doc 19

737

738
739
740
741
742

743
744
745
746
747

748

749
750
751

752
753
754
755

756
757
758

759
760
761
762
763
764

765
766
767

768

769
770
771
772
773
774

775

776
777
778
779
780
781
782

The model operates by the following steps.

1.

9.

PAPs write policies and make them available to the PRP. From the point of view of an
individual PAP, its policies represent the complete policy for a particular target. However, the
PDP may be aware of other PAPs that it considers authoritative for the same target. In which
case, it is the PDP's job to obtain all the policies and combine them in accordance with a
policy-combining algorithm. The result should be a self-consistent policy set.

The PEP sends request ciontext to the PDP, perhaps in the form of a SAML [SAML] request.
The request context contains some or all of the attributes required by the PDP to render an
authorization decision, in accordance with applicable policy. The decision request and all
attributes relevant to that request are converted to an XACML input context
(“xacmlContext:request”) by the PDP or by another entity that it trusts to do this conversion.

The PDP locates and retrieves the policy applicable to the request context from the PRP.

The PRP returns the applicable policy to the PDP in the form of an XACML
<PolicyStatement> or <PolicySetStatement>. The PDP ensures that the input
context is in the scope of the <PolicyStatement> or <PolicySetStatement>.

The PDP examines the authorization input context and the policy to ascertain whether it has
all the attribute values required to render an authorization decision. If it does not, then it
requests attributes from suitable PIPs, perhaps in the form of SAML requests of the attribute
query type [SAML].

The PIP (which may be a SAML attribute authority) locates and retrieves the requested
attributes from other systems by a means, and in a form, that is out of scope for this
specification.

The PIP returns the requested attributes to the PDP, perhaps in the form of SAML responses
containing SAML attribute assertions. The PDP (or another trusted entity) incorporates these
attribute values into the input context and evaluates the policy with respect to this input
context. The result of this evaluation is a decision encoded in an output context
(“xacmlContext:response”) document. The response context is converted to an authorization
decision protocol message by the PDP or by another entity trusted to do that conversion.

If the policy were to evaluate to TRUE, then the PDP returns a response context, perhaps in
the form of a SAML response, to the PEP containing the "Permit" saml : Decision attribute
and (optional) obligations.

The PEP fulfills the obligations.

The input context and output contexts are the environment-agnostic inputs/outputs for an XACML-
conformant PDP. For any specific environment (e.g., SAML, J2SE, CORBA) conversion processes
will be needed to transform from the environment-specific inputs to the xacmlContext:request, and
from the xacmlContext:response to the environment-specific outputs. These conversions may be
done by the PDP or by another entity. Having them done by another entity ensures that a given
PDP implementation may be deployed in any environment without modification.

4.2 XACML Context

XACML is designed to be applicable to a variety of application environments. The core language is
insulated from the application environment by the XACML context. The XACML context is an XML
schema describing a canonical representation for the inputs and outputs of the PDP. Attributes
referenced by an instance of XACML SHALL be in the form of XPath expressions on the context.
Implementations must convert between the attribute representations in the application environment
(e.g., SAML, J2SE, CORBA, and so on) and the attribute representations in the XACML context.
How this is achieved is outside the scope of the XACML specification. In some cases, such as

draft-xacml-specification-15.doc

20

783
784

785
786

787
788
789
790
791
792

SAML, this conversion may be accomplished in an automated way through the use of an XSLT

transformation.
xacml.xml

domain-specific xacmlContext/ PDP xacmlContext/ domain-specific
inputs request.xml response.xml outputs

Figure 2 - Context

4.3 Policy language model

The policy language model is shown in Figure 3. The main components of the model are:
e Rule;

e Policy statement, and

e Policy set statement.

These are described in the following sub-sections.

draft-xacml-specification-15.doc 21

793
794

795

796
797
798
799
800

policy set statement|

’1T’

policy statement

() T ¢

rule obligations
1 F 1 T
T
1 1 1
target condition effect
T 1 Q1 1
subject resource action
1 1 1
function

attribute

I

Figure 3 - Policy language model

4.3.1 Rule

The main components of a rule are:
e a target,
¢ an effect, and

e a condition.

These are discussed in the following sub-sections.

draft-xacml-specification-15.doc

801

802
803
804
805

806
807
808
809
810

811
812
813
814
815
816
817

818
819

820

821
822

823
824
825
826
827

4.3.1.1 Target

The target defines the set of:
e resources;

e subjects; and

e actions

to which the rule is intended to apply. If the rule is intended to apply to all entities of a particular
type, then the target definition is the root of the applicable name space. An XACML PDP verifies
that the resources, subjects and actions identified in the request context are each included in the
target of the rules that it uses to evaluate the decision request. Target definitions are discrete, in
order that they may be indexed by the PDP.

4.3.1.2 Effect

The effect indicates the rule-writer's intended consequence of a true evaluation for the rule. Two
values are allowed: permit and deny.

4.3.1.3 Condition

Condition is a general expression of predicates of attributes. It should not duplicate the exact
predicates implied by the target. Therefore, it may be null.

4.3.1.4 Rule evaluation

A rule has a value that can be calculated by evaluating its contents. Rule evaluation involves
separate evaluation of the rule's target and condition. The rule truth table is shown in Table 1.

Target Condition Rule

Match True Effect

Match False Not applicable
Match Indeterminate Indeterminate
No-match True Not applicable
No-match False Not applicable
No-match Indeterminate Not applicable

Table 1 - Rule truth table

The target value is Match if the resource, subject and action specified in the request context are
each in the target defined in the rule. Otherwise, its value is No-match.

The condition value is True if the <Condition> element is null, or if it evaluates True for the
attribute values supplied in, or referenced by, the request context. Its value is False if the
<Condition> element evaluates False for the attribute values supplied in, or referenced by, the
request context. If any attribute value referenced in the condition cannot be obtained, then the
condition evaluates Indeterminate.

draft-xacml-specification-15.doc 23

828

829
830

831
832
833
834

835

836
837
838

839
840

841
842

843
844

845
846
847

848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869

870

871
872
873
874

4.3.2 Policy statement

From the data-flow model one can see that rules are not exchanged amongst system entities.
Therefore, a PAP combines rules in a policy. A policy comprises four main components:

e atarget;
e a rule-combining algorithm-identifier;
e asetof rules; and

e obligations.

4.3.2.1 Target

The target of a policy must include all the decision requests that it is intended to evaluate. The
target may be declared by the writer of the policy, or computed from the targets of its component
rules.

If the target of the policy statement is computed from the targets of the component rules, two
approaches are permitted:

o the target of the policy may be the union of the target definitions for resource, subject and
action that are contained in the component rules; or

o the target of the policy may be the intersection of the target definitions for resource, subject
and action that are contained in the component rules.

In the former case, the target may be omitted from the individual rules, and the targets from the
component rules must be included in the form of conditions in their respective rules. As an
example, the following rule target and condition may be merged in a single condition.

<Target>
<Subjects MatchId="function:rfc822Name-equal"
DataType="xs:boolean">
<AttributeDesignator
Designator="//xacmlContext/Request/Subject/Attribute[@DataType="iden

tifier:rfc822Name']" DataType="identifier:rfc822Name"/>
<Attribute DataType="identifier:rfc822Name">Q@</Attribute>
</Subjects>

<Resources MatchId="function:string-match" DataType="xs:boolean">
<AttributeDesignator
Designator="//xacmlContext/Request/Resource/@ResourceURI"
DataType="xs:anyURI"/>
<Attribute
DataType="xs:anyURI">//medico.com/record.*</Attribute>
</Resources>
<Actions MatchId="function:subset" DataType="xs:boolean">
<AttributeDesignator
Designator="//xacmlContext/Action[@Namespace=]"
DataType="xs:string"/>
<Attribute DataType="xs:string">read</Attribute>
</Actions>
</Target>

<Condition FunctionId="function:string-equal" DataType="xs:boolean">

<AttributeDesignator
Designator="//xacmlContext/Request/Subject/Attribute[@DataType="iden
tifier:patientName']" DataType="xs:string"/>

draft-xacml-specification-15.doc 24

875
876
877
878

879

880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904

905
906

907
908

909

910
911

912
913
914

915

916

917
918

919
920
921

<AttributeDesignator
Designator="//xacmlContext/Request/Resource/patientName"
DataType="xs:string"/>
</Condition>

Following is the merged condition.

<Condition FunctionId="function:and" DataType="xs:boolean">
<Function FunctionId="function:string-match"
DataType="xs:boolean">
<AttributeDesignator
Designator="//xacmlContext/Request/Resource/@ResourceURI"
DataType="xs:anyURI"/>
<Attribute
DataType="xs:anyURI">//medico.com/record.*</Attribute>
</Function>
<Function FunctionId="function:subset" DataType="xs:boolean">
<AttributeDesignator
Designator="//xacmlContext/Action[@Namespace=]"
DataType="xs:string"/>
<Attribute DataType="xs:string">read</Attribute>
</Function>
<Function FunctionId="function:string-equal"
DataType="xs:boolean">
<AttributeDesignator
Designator="//xacmlContext/Request/Subject/Attribute[@DataType="iden
tifier:patientName']" DataType="xs:string"/>
<AttributeDesignator
Designator="//xacmlContext/Request/Resource/patientName"
DataType="xs:string"/>
</Function>
</Condition>

In the case where the policy target is computed as the intersection of the targets of the individual
rules, the targets may be omitted from the individual rules.

In the case that a rule target is present, the rule is evaluated according to the truth table of Table
1.

4.3.2.2 Rule-combining algorithm

The rule-combining algorithm specifies the algorithm by which the results of evaluating the
component rules are combined, when evaluating the policy.

The result of evaluating the policy is defined by the rule-combining algorithm. In the case that
the PDP uses a policy to determine its response to a decision request, the saml : Decision
value is the value of the policy, as defined by the rule-combining algorithm.

See Section 8.5 for an example of a rule-combining algorithm.

4.3.2.3 Obligations

The XACML <Rule> syntax does not contain an element suitable for carrying obligations,
therefore, if required in a policy, obligations must be added by the writer of the policy.

When a PDP evaluates a policy containing obligations, it returns certain of those obligations to
the PEP in its response context. The obligations that it returns to the PEP are those whose
xacml : Ful £110n attributes have the same value as the result of evaluating the policy.

draft-xacml-specification-15.doc 25

922

923
924
925

926
927
928
929

930
931

932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975

4.3.2.4 Example policy statement

This section uses the example of Section 3 to illustrate the process of combining rules. The policy
governing read access to medical elements of a record is formed from each of the four rules. In
plain language, the combined rule is:

o Either the requestor is the patient; or

¢ the requestor is the parent or guardian and the patient is under 16; or

e the requestor is the primary care physician and a notification is sent to the patient; and
o the requestor is not an administrator.

The following XACML <PolicyStatement> illustrates the combined rules. Rules 1 and 4 are
included by reference, rule 2 is included as a digest, and rule 3 is explicitly included.

draft-xacml-specification-15.doc 26

976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017

1018
1019
1020
1021
1022
1023
1024

1025

1026
1027

4.3.3 Policy set statement

A policy set comprises four main components:
e a target,

e aset of policy statements;

e obligations; and

e a policy-combining algorithm-identifier.

The target and policy statement components are to be interpreted as described above.

4.3.3.1 Obligations

The writer of a policy set statement MAY add obligations to the policy set, in addition to those
contained in the component policies and policy sets.

draft-xacml-specification-15.doc 27

1028

1029
1030
1031
1032

1033
1034
1035
1036

1037
1038

1039

1040
1041

1042

1043

1044
1045

1046

1047

1048
1049

1050

1051
1052

1053

1054
1055
1056
1057

1058
1059
1060
1061
1062

4.3.3.2 Policy-combining algorithm

The policy-combining algorithm is the algorithm by which the results of evaluating the component
policies are combined to form the value of the policy set. In the case that the PDP uses a policy
set to determine its response to a decision request, the saml : Decision value is the result of
evaluating the policy set.

When a PDP evaluates a policy set containing obligations, it returns certain of those obligations
to the PEP in its response context. The XACML <obligation> elements that are returned to the PEP
are those whose xacml : Ful £110n attributes have the same value as the result of evaluating the
policy set.

As a consequence of this procedure, no obligations are returned to the PEP if the policies from
which they are drawn are not evaluated or their evaluated result is Indeterminate or Not applicable.

See Section 8.8 for an example of a policy-combining algorithm.

5 Policy syntax (normative, with the exception of
the schema fragments)

5.1 Element <PolicySetStatement>

The <PolicySetStatement> elementis a top-level element in the XACML schema.

<xs:element name="PolicySetStatement"
type="xacml:PolicySetStatementType" />

5.2 Element <PolicyStatement>

The <PolicyStatement> elementis a top-level element in the XACML schema.

<xs:element name="PolicyStatement"
type="xacml:PolicyStatementType" />

5.3 Element <Rule>

The <Rule> element is a top-level element in the XACML schema.

<xs:element name="Rule" type="xacml:RuleType"/>

5.4 Complex type PolicySetStatementType

Elements of type PolicySetStatementType extend the saml:StatementAbstractType so that they
MAY be included in a <saml :Assertion> element. The <saml:Assertion> element contains
some policy meta-data, such as the identity of the PAP that issued the policy set statement and the
date and time at which it was issued.

The main elements of this type definition are the <Target>, <PolicySet>and <Obligations>
elements and the policyCombiningAlgId attribute. The <PolicySet> element SHALL contain
references to the set of policies that are to be combined in the policy set. The <Target> element
MAY be declared by the creator of elements of this type, or it MAY be computed from the
<Target> elements of the referenced <PolicyStatement> elements, either as an intersection or

draft-xacml-specification-15.doc 28

1063
1064
1065
1066

1067

1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086

1087

1088
1089
1090
1091

1092
1093
1094
1095
1096
1097
1098
1099

1100

1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114

as a union. The <Obligations> element SHALL contain the set of <Obligation> elements

that MUST be discharged by the PEP. The PolicyCombiningAlgId attribute SHALL contain a

identifier of the policy-combining algorithm by which the referenced <PolicyStatement>

elements MUST be combined.

An instance of this type MAY be referenced by its PolicySetld attribute value.

<xs:complexType name="PolicySetStatementType">

<xs:complexContent>

<xs:extension base="saml:StatementAbstractType">

<xs:sequence>

<xs:element
minOccurs="0"/>

<xs:element

<xs:element

maxOccurs="unbounded" />

<xs:element

name="Description" type="xs:string"

name="Target" type="xacml:TargetType"/>
name="PolicySet" type="xacml:PolicySetType"

name="Obligations"

type="xacml:0bligationsType" minOccurs="0"/>

</xs:sequence>

<xs:attribute name="PolicySetId" type="xs:anyURI"

use="required"/>

<xs:attribute name="PolicyCombiningAlgId" type="xs:anyURI"

use="required"/>
</xs:extension>

</xs:complexContent>

</xs:complexType>

5.5 Complex type PolicyStatementType

Elements of type PolicyStatementType extend the saml:StatementAbstractType so that they MAY
be included in a <saml:Assertion> element. The <saml:Assertion> element contains some
policy meta-data, such as the identity of the PAP that issued the policy statement and the date and

time at which it was issued.

The main elements of this type definition are the <Target>, <RuleSet> and <Obligations>
elements and the RuleCombiningAlgId attribute. The <RuleSet> element SHALL contain
references to the <Rule> elements that are to be combined in a policy. The <Target> element

MAY be declared by the creator of elements of this type, or it MAY be computed from the

<Target> elements of the referenced <Rule> elements, either as an intersection or as a union.

The <Obligations> element SHALL contain the set of <Obligation> elements that MUST be
discharged by the PEP. The RuleCombiningAlgId attribute SHALL contain a reference to the
rule-combining algorithm by which the <Rule> elements MUST be combined.

An instance of this type MAY be referenced by its Policyld attribute value.

<xs:complexType name="PolicyStatementType">

<xs:complexContent>

<xs:extension base="saml:StatementAbstractType">

<xs:sequence>

<xs:element
minOccurs="0"/>

<xs:element

<xs:element

maxOccurs="unbounded" />

<xs:element

name="Description" type="xs:string"

name="Target" type="xacml:TargetType"/>
name="RuleSet" type="xacml:RuleSetType"

name="Obligations"

type="xacml:0bligationsType" minOccurs="0"/>

</xs:sequence>

<xs:attribute name="PolicyId" type="xs:anyURI"

use="required"/>

draft-xacml-specification-15.doc

29

1115
1116
1117
1118
1119

1120

1121
1122

1123

1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136

1137

1138
1139

1140
1141
1142
1143
1144
1145

1146

1147
1148
1149
1150
1151

1162
1153
1154
1155
1156
1157
1158
1159
1160
1161

<xs:attribute name="RuleCombiningAlgId" type="xs:anyURI"
use="required"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>

5.6 Complex type RuleType

The main elements of this type definition are the <Target> and <Condition> elements, and the
Effect attribute.

An instance of this type MAY be referenced by its Ruleld attribute value.

<xs:complexType name="RuleType">
<xs:sequence>
<xs:element name="Description" type="xs:string"
minOccurs="0"/>
<xs:element name="Target" type="xacml:TargetType"
minOccurs="0"/>
<xs:element name="Condition" type="xacml:ConditionType"
minOccurs="0"/>
</xXs:sequence>
<xs:attribute name="RuleId" type="xs:anyURI" use="required"/>
<xs:attribute name="Effect" type="xacml:EffectType"
use="required"/>
</xs:complexType>

5.7 Complex type EffectType

This type definition defines the values allowed for the effect of a rule and the circumstances under
which an obligation must be performed.

<xs:simpleType name="EffectType">
<xs:restriction base="xacmlContext:DecisionType">
<xs:enumeration value="Permit"/>
<xs:enumeration value="Deny"/>
</xs:restriction>
</xs:simpleType>

5.8 Complex type TargetType

Elements of this type identify the set of decision requests of type xacmIContext:RequestTYpe that
the parent element is intended to evaluate. It contains definition for subjects, resources and
actions. If the subject, resource and action identified in the request context match the definitions in
this element, then the policy MAY be used to evaluate the request. All matches MUST be satisfied.
If one or more element in the context satisfies each match, then the match is satisfied.

<xs:complexType name="TargetType">
<xs:sequence>
<xs:element name="Subjects" type="xacml:MatchType"
maxOccurs="unbounded" />
<xs:element name="Resources" type="xacml:MatchType"
maxOccurs="unbounded" />
<xs:element name="Actions" type="xacml:MatchType"
maxOccurs="unbounded" />
</xs:sequence>
</xs:complexType>

draft-xacml-specification-15.doc 30

1162

1163
1164
1165
1166
1167
1168

1169
1170
1171
1172
1173
1174
1175
1176
1177

1178

1179

1180
1181
1182
1183
1184
1185

1186

1187
1188
1189

1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200

1201

1202
1203

1204

1205

5.9 Complex type MatchType

Elements of type MatchType identify a set of entities by matching values in the context with values
embedded in the policy. The <xacml:AttributeDesignator> element identifies one or more
values in the <xacmlContext :Request> element. It MUST contain a URI that is a legal XPath
expression over the <xacmlContext:Request>. The <xacml:Attribute> MUST contain
a literal value. The types of the two attributes MUST be compatible with the function identified by
the MatchId attribute.

<xs:complexType name="MatchType">
<xs:sequence>
<xs:element ref="xacml:AttributeDesignator"/>
<xs:element ref="xacml:Attribute"/>
</xs:sequence>
<xs:attribute name="MatchId" type="xacml:MatchIdType"/>
<xs:attribute name="DataType" type="xs:anyURI"
fixed="xs:boolean"/>
</xs:complexType>

5.10 Complex type ObligationsType

Elements of type ObligationsType contain a set of <xacml : Obligation> elements.

<xs:complexType name="ObligationsType">
<xs:sequence>
<xs:element name="Obligation" type="xacml:0bligationType"
maxOccurs="unbounded" />
</xs:sequence>
</xs:complexType>

5.11 Complex type ObligationType

Elements of type ObligationType contain an identifier for the obligation and a set of attributes that
form arguments of the action defined by the obligation. The Ful fi10n attribute indicates the
decision value for which this obligation must be fulfilled.

<xs:complexType name="ObligationType">
<xs:choice maxOccurs="unbounded">
<xs:element ref="xacml:AttributeDesignator"/>
<xs:element name="AttributeAssignment"
type="xacml:AttributeAssignmentType" />
</xs:choice>
<xs:attribute name="ObligationId" type="xs:anyURI"
use="required"/>
<xs:attribute name="FulfilOn" type="xacml:EffectType"
use="required"/>
</xs:complexType>

5.12Element <Function>

<Function> elements reference a function of type FunctionType.

<xs:element name="Function" type="xacml:FunctionType"/>

5.13 Complex type ConditionType

Elements of type ConditionType are functions whose return type is boolean.

draft-xacml-specification-15.doc 31

1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220

1221

1222
1223
1224
1225

1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237

1238

1239
1240

1241

1242
1243
1244

1245
1246
1247
1248
1249
1250
1251
1252

<xs:complexType name="ConditionType">
<xs:complexContent>
<xs:restriction base="xacml:FunctionType">
<xs:choice maxOccurs="unbounded">
<xs:element ref="xacml:Function"/>
<xs:element ref="xacml:Attribute"/>
<xs:element ref="xacml:AttributeDesignator"/>
</xs:choice>
<xs:attribute name="ConditionId"
type="xacml:ConditionIdType" use="required"/>
<xs:attribute name="DataType" type="xs:anyURI"
fixed="xs:boolean"/>
</xs:restriction>
</xs:complexContent>
</xs:complexType>

5.14 Complex type FunctionType

Elements of type FunctionType define a function. Xacml-defined functions are described in the
accompanying table. Function definitions may take any combination of <Function>,
<Attribute> and <AttributeDesignator> as arguments. In addition, the function's return
type MUST be included in the DataType attribute.

<xs:complexType name="FunctionType">
<xs:choice minOccurs="0" maxOccurs="unbounded">
<xs:element ref="xacml:Function"/>
<xs:element ref="xacml:Attribute"/>
<xs:element ref="xacml:AttributeDesignator"/>
</xs:choice>
<xs:attribute name="FunctionId" type="xs:anyURI"
use="required"/>
<xs:attribute name="DataType" type="xs:anyURI" use="required"/>
<!-- Legal types for the first and subsequent operands are
defined in the accompanying table -->
</xs:complexType>

5.15Element <Attribute>

<Attribute> elements contain a literal attribute value.

<xs:element name="Attribute" type="xacml:AttributeType"/>

5.16 Complex type AttributeType

Elements of type Attribute Type contain a literal attribute value. The type of the value MUST be
contained in the DataType attribute. The attribute MAY be of one of the xml:schema embedded
types. Alternatively, it MAY be of a structured type defined in some other namespace.

<xs:complexType name="AttributeType">
<xs:complexContent>
<xs:extension base="xs:anyType">
<xs:attribute name="DataType" type="xs:anyURI"
use="required"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>

draft-xacml-specification-15.doc

1253

1254
1255
1256

1257
1258

1259

1260
1261

1262
1263
1264
1265
1266
1267

1268

1269
1270
1271

1272
1273
1274
1275
1276
1277
1278

1279

1280
1281
1282
1283
1284
1285
1286
1287

1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298

5.17 Element <AttributeDesignator>

<AttributeDesignator> elements reference an attribute value in <xacmlContext :Request>
by means of an XPath expression. The expected type of the attribute MUST be included in
the attributeDesignator.

<xs:element name="AttributeDesignator"
type="xacml:AttributeDesignatorType" />

5.18 Complex type AttributeDesignatorType

Elements of type AttributeDesignatorType reference an attribute value in
<xacmlContext:Request>.

<xs:complexType name="AttributeDesignatorType">
<xs:attribute name="Designator" type="xs:anyURI"/>
<xs:attribute name="DataType" type="xs:anyURI" use="required"/>
<!-- Designator must be a legal XPath expression over
xacmlContext:Request -->
</xs:complexType>

5.19 Complex type AttributeAssignmentType

Elements of type AttributeAssignmentType contain attribute contents and an AttributeId. The
AttributeId is part of attribute meta-data, and is used when an attribute cannot be referenced by
its location in <xacmlContext:Request>. This situation may arise in <Obligation>.

<xs:complexType name="AttributeAssignmentType">
<xs:complexContent>
<xs:extension base="xacml:AttributeType">
<xs:attribute name="AttributeId" type="xs:anyURI"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>

5.20 Complex type PolicySetType

Elements of type PolicySetType identify a set of policies. Members of the set MAY be identified by
any of the following: reference to a <PolicySetStatement> by its PolicySetId attribute,
reference to a <PolicyStatement> by its PolicyId attribute, inclusion of a
<PolicySetStatement>, inclusion of a <PolicyStatement>, inclusion of a
<saml:Assertion> containing a <PolicySetStatement> or inclusion of a

<saml :Assertion> containing a <PolicyStatement>. The referenced policies MUST be
combined as defined by the policy-combining algorithm identified by the PolicyCombiningaAlgId
attribute in the parent <PolicySetStatement>.

<xs:complexType name="PolicySetType">
<xs:choice maxOccurs="unbounded">
<xs:element name="PolicySetId" type="xs:anyURI"/>
<xs:element name="PolicyId" type="xs:anyURI"/>
<xs:element ref="xacml:PolicySetStatement"/>
<xs:element ref="xacml:PolicyStatement"/>
<xs:element name="PolicySetAssertion"
type="saml:AssertionType" />
<xs:element name="PolicyAssertion"
type="saml:AssertionType" />
</xs:choice>

draft-xacml-specification-15.doc 33

1299

1300

1301

1302
1303
1304
1305
1306
1307
1308

1309

1310

1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322

1323

1324

1325
1326
1327

</xs:complexType>

5.21 Complex type RuleSetType

Elements of type RuleSetType SHALL contain a set of <Rule> or <RuleDesignator> elements.

<xs:complexType name="RuleSetType">
<xs:choice maxOccurs="unbounded">
<xs:element ref="xacml:Rule"/>
<xs:element name="RuleDesignator"
type="xacml:RuleDesignatorType" />
</xs:choice>
</xs:complexType>

5.22 Complex type RuleDesignatorType

Elements of type RuleDesignatorType SHALL designate a rule by identifier or by digest.

<xs:complexType name="RuleDesignatorType">
<xs:sequence>
<xs:element name="RuleId" type="xs:anyURI" minOccurs="0"/>
<xs:element name="RuleDigest" minOccurs="0">
<xs:complexType>
<xs:attribute name="DigestAlgId" type="xs:string"
default="SHA-1"/>
<xs:attribute name="Base64Digest" type="xs:string"/>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>

6 Function names and legal type combinations

6.1 Functions

The table in this section lists the combinations of datatypes for which the various functions. For
each function name, the table indicates the valid combination of datatypes and the datatype of the
result.

Function Name Function First operand |Remaining

DataType DataType operands Operation

DataType

function:integer-add xs:integer xs:integer xs:integer A+ B
function:decimal-add xs:decimal xs:decimal xs:decimal A+ B
function:add-yearMonthDuration-|xs:date xs:date xs:yearMonthD A +B
to-date uration
function:add-yearMonthDuration-|xs:date xs:date xs:dayTimeDur A+B
to-date ation
function:add-dayTimeDuration- |xs:time xs:time xs:dayTimeDur A + B

draft-xacml-specification-15.doc 34

to-time ation
function:add-yearMonthDuration-|xs:dateTime [xs:datetime xs:yearMonthD A +B
to-dateTime uration
function:add-dayTimeDuration- [xs:dateTime [xs:datetime xs:dayTimeDur A +B
to-dateTime ation
function:add- xs:yearMonthD [xs:yearMonthD |xs:yearMonthD

. : : ; A+ B
yearMonthDurations uration uration uration

function:add-dayTimeDurations

xs:dayTimeDur
ation

xs:dayTimeDur
ation

xs:dayTimeDur
ation

A + B

dayTimeDuration-from-date

ation

function:integer-subtract Xs:integer xs:integer xs:integer A - B

function:decimal-subtract xs:decimal xs:decimal xs:decimal A - B

function:date-subtract xs:dayTimeDur [xs:date xs:date A - B (only two
ation operands

allowed)

function:subtract- xs:date xs:date xs:yearMonthD A-B

yearMonthDuration-from-date uration

function:subtract- xs:date xs:date xs:dayTimeDur

A - B

function:time-subtract

xs:dayTimeDur
ation

Xs:time

xs:time

A - B (only two
operands
allowed)

function:subtract-
dayTimeDuration-from-time

xs:time

xs:time

xs:dayTimeDur
ation

A - B

dayTimeDuration-from-dateTime

ation

function:datetime-subtract xs:dayTimeDur [xs:datetime xs:datetime A - B (only two
ation operands
allowed)
function:subtract- xs:dateTime [xs:datetime xs:yearMonthD
yearMonthDuration-from- uration A - B
dateTime
function:subtract- xs:dateTime [xs:datetime xs:dayTimeDur

A - B

function:subtract-
yearMonthDurations

xs:yearMonthD
uration

xs:yearMonthD
uration

xs:yearMonthD
uration

A - B

function:subtract-

xs:dayTimeDur

xs:dayTimeDur

xs:dayTimeDur

dayTimeDurations ation ation ation A-B
function:integer-multiply Xs:integer xs:integer xs:integer A * B
function:decimal-multiply xs:decimal xs:decimal xs:decimal A *

function:multiply- xs:yearMonthD |xs:yearMonthD [xs:decimal A * B

draft-xacml-specification-15.doc

35

ry

ry

yearMonthDurations uration uration
function:multiply- xs:dayTimeDur [xs:dayTimeDur |xs:decimal N
. g . : A * B
dayTimeDurations ation ation
function:integer-divide xs:integer xs:integer Xs:integer A div B
function:decimal-divide xs:decimal xs:decimal xs:decimal A div B
function:divide- xs:yearMonthD [xs:yearMonthD |xs:decimal .
. . . A div B
yearMonthDurations uration uration
function:divide- xs:dayTimeDur [xs:dayTimeDur [xs:decimal .
: . . . A div B
dayTimeDurations ation ation
function:integer-mod xs:integer xs:integer xs:integer A mod B
function:decimal-mod xs:decimal xs:decimal xs:decimal A mod B
function:round Xs:integer xs:decimal
function:integer xs:integer xs:decimal
function:decimal xs:decimal xs:integer
function:integer-equal Xs:boolean xs:integer xs:integer A eq B
function:decimal-equal xs:boolean xs:decimal xs:decimal A eq B
function:boolean-equal Xs:boolean Xs:boolean Xs:boolean A eq B
function:string-equal xs:boolean xs:string xs:string A eq B
function:rfc822Name-equal xs:boolean Identifier:rfc82 |ldentifier:rfc82
A eq B
2Name 2Name
function:x500Name-equal xs:boolean Identifier:x500 [ldentifier:x500 A
eqB
Name Name
function:date-equal xs:boolean xs:date Xs:date A eq B
function:time-equal Xs:boolean xs:time xs:time A eq B
function:datetime-equal xs:boolean xs:dateTime |xs:dateTime J|AeqB
function:yearMonthDuration- xs:boolean xs:yearMonthD |xs:yearMonthD A eq B
equal uration uration q
function:dayTimeDuration-equal |xs:boolean xs:dayTimeDur [xs:dayTimeDur A eq B
ation ation q
function:gregorian-equal xs:boolean Gregorian Gregorian A eq B
function:hex-binary-equal Xs:boolean xs:hexBinary |xs:hexBinary |AeqB
function:base64-binary-equal Xs:boolean xs:base64Bina |xs:base64Bina

A eq B

draft-xacml-specification-15.doc

36

function:anyURI-equal Xs:boolean xs:anyURI xs:anyURI A eq B
function:QName-equal xs:boolean xs:QName xs:QName A eq B
function:NOTATION-equal Xs:boolean xs:NOTATION [xs:NOTATION |A eq B
function:numeric-not-equal xs:boolean numeric numeric A ne B
function:boolean-not-equal Xs:boolean Xs:boolean Xs:boolean A ne B
function:string-not-equal xs:boolean Xs:string xs:string A ne B
function:date-not-equal xs:boolean xs:date xs:date A ne B
function:time-not-equal Xs:boolean xs:time Xs:time A ne B
function:datetime-not-equal Xs:boolean xs:dateTime |xs:dateTime |AneB
function:yearMonthDuration-not- |xs:boolean xs:ygarMonthD xs:y_earMonthD A ne B
equal uration uration
function:dayTimeDuration-not- |xs:boolean xs_:dayTimeDur x;:dayTimeDur A ne B
equal ation ation
function:gregorian-not-equal xs:boolean Gregorian Gregorian A ne B
function:hex-binary-not-equal xs:boolean xs:hexBinary [xs:hexBinary A neB
function:base64-binary-not-equal|xs:boolean xs:base64Bina [xs:base64Bina A ne B
ry ry
function:anyURI-not-equal xs:boolean xs:anyURI xs:anyURI A ne B
function:QName-not-equal xs:boolean xs:QName xs:QName A ne B
function:NOTATION-not-equal |xs:boolean XS:NOTATION [xs:NOTATION |A ne B
function:integer-greater-than Xs:boolean Xs:integer Xs:integer A gt B
function:decimal-greater-than Xs:boolean xs:decimal xs:decimal A gt B
function:boolean-greater-than |xs:boolean xs:boolean xs:boolean A gt B
function:string-greater-than xs:boolean xs:string Xs:string A gt B
function:date-greater-than xs:boolean xs:date xs:date A gt B
function:time-greater-than xs:boolean xs:time xs:time A gt B
function:datetime-greater-than |xs:boolean xs:dateTime |xs:dateTime |AgtB
function:yearMonthDuration- xs:boolean xs:y.earMonthD xs:y_earMonthD A gtB
greater-than uration uration
function:dayTimeDuration- xs:boolean xs_:dayTimeDur xg:dayTimeDur A gtB
greater-than ation ation
function:integer-less-than xs:boolean xs:integer Xs:integer A It B

draft-xacml-specification-15.doc

37

equal

function:decimal-less-than xs:boolean xs:decimal xs:decimal A It B
function:boolean-less-than Xs:boolean xs:boolean Xs:boolean A It B
function:string-less-than xs:boolean xs:string Xs:string A It B
function:date-less-than xs:boolean xs:date xs:date A It B
function:time-less-than xs:boolean xs:time Xs:time A It B
function:datetime-less-than Xs:boolean xs:dateTime |[xs:dateTime JAItB
function:yearMonthDuration- xs:boolean xs:yearMonthD [xs:yearMonthD ALt B
less-than uration uration
function:dayTimeDuration-less- |xs:boolean xs:dayTimeDur [xs:dayTimeDur A It B
than ation ation
function:integer-greater-than-or- |xs:boolean xs:integer xs:integer A ge B
equal 9
function:decimal-greater-than-or-|xs:boolean xs:decimal xs:decimal A ge B
equal 9
function:string-greater-than-or- |xs:boolean xs:string xs:string A ge B
equal 9
function:date-greater-than-or- |xs:boolean xs:date xs:date A
geB
equal
function:time-greater-than-or- xs:boolean xs:time xs:time A
geB
equal
function:datetime-greater-than- |xs:boolean xs:dateTime [xs:dateTime A
geB
or-equal
function:yearMonthDuration- xs:boolean xs:yearMonthD [xs:yearMonthD A ge B
greater-than-or-equal uration uration 9
function:dayTimeDuration- xs:boolean xs:dayTimeDur [xs:dayTimeDur A ge B
greater-than-or-equal ation ation 9
function:integer-less-than-or- Xs:boolean Xs:integer xs:integer Ale B
equal
function:decimal-less-than-or- |xs:boolean xs:decimal xs:decimal Ale B
equal
function:numeric-less-than-or- |xs:boolean Xs:string xs:string Ale B
equal
function:date-less-than-or-equal |xs:boolean xs:date xs:date A le B
function:time-less-than-or-equal |xs:boolean xs:time Xs:time Ale B
function:datetime-less-than-or- |xs:boolean xs:dateTime [xs:dateTime Ale B

draft-xacml-specification-15.doc

38

1328
1329

1330

1331
1332

1333

1334
1335

1336

1337
1338
1339

1340
1341

function:yearMonthDuration- xs:boolean xs:yearMonthD [xs:yearMonthD Ale B

less-than-or-equal uration uration

function:dayTimeDuration-less- |xs:boolean xs:dayTimeDur [xs:dayTimeDur Ale B

than-or-equal ation ation

function:string-match Xs:boolean xs:string xs:string

function:and xs:boolean xs:boolean xs:boolean A & B

function:or xs:boolean xs:boolean Xs:boolean A | B

function:ordered-or Xs:boolean Xs:boolean Xs:boolean A | B

function:n-of xs:boolean numeric xs:boolean

function:not xs:boolean xs:boolean (only one
operand
allowed)

function:present xs:boolean xs:anyURI

function:subset xs:boolean xs:list xs:list

function:superset xs:boolean xs:list xs:list

function:non-null-set-intersection |xs:boolean xs:list Xs:list

7 Context syntax (normative, with the exception of
the schema fragments)

7.1 Element <Request>

The <Request> element is a top-level element in the XACML context schema.

<xs:element name="Request" type="xacmlContext:RequestType"/>

7.2 Element <Response>

The <Resonse> element is a top-level element in the XACML context schema.

<xs:element name="Response" type="xacmlContext:ResponseType"/>

7.3 Complex type RequestType

Elements of type RequestType contain the data required by the PDP in order to render a decision.
This includes information about the subjects, resource and actions, as well as environmental
information that pertains to none of these.

<xs:complexType name="RequestType">
<xs:sequence>

draft-xacml-specification-15.doc 39

1342
1343
1344
1345
1346
1347
1348
1349
1350
1351

1352

1353

1354
1355
1356
1357
1358
1359

1360

1361
1362
1363

1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375

1376

1377
1378
1379

1380
1381
1382
1383
1384
1385
1386
1387
1388
1389

7.4 Complex type ResponseType

Elements of type ResponseType contain one or more results of a policy evlaution.

7.5 Complex type ResultType

Elements of type ResultType contain information related to a single decision, including the value of
the decision, the resource to which it relates, and any obligations and advice associated with the
decision.

7.6 Complex type SubjectType

Elements of type SubjectType identify a subject of a request context by means of an identifier or a
key. Optionally, attributes of the subject MAY be provided and information relating to the PEP's
authentication of the subject MAY be supplied.

draft-xacml-specification-15.doc 40

1390
1391
1392
1393
1394
1395
1396

1397

1398
1399
1400
1401
1402
1403
1404

1405
1406
1407
1408
1409
1410
1411
1412
1413
1414

1415

1416

1417
1418
1419
1420

1421

1422
1423

1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435

<xs:element name="AuthenticationInfo"
type="xacmlContext:AuthenticationInfoType" minOccurs="0"
maxOccurs="unbounded" />
</xs:sequence>
<xs:attribute name="SubjectCategory" type="xs:anyURI"
default="identifier:AccessSubject"/>
</xs:complexType>

7.7 Complex type SubjectidType

Elements of type SubjectldType contain information that identifies a subject. The identifier itself is a
string. However, Format and Qualifier attributes are included to assist with the interpretation of
the string. The Format attribute indicates the name-form of the identifier and hence the function by
which it MUST be matched. (Note: why not call this "DataType", to be consistent throughout?) The
qualifier indicates the security or administrative domain that qualifies the name of the subject. It
provides a means to federate names from disparate user stores without collision. (Note: Why isn't
this a name, with an accompanying DataType? Why isn'tit a list of names?).

<xs:complexType name="SubjectIdType">
<xs:simpleContent>
<xs:extension base="xs:string">
<xs:attribute name="Format" type="xs:anyURI"
use="optional"/>
<xs:attribute name="Qualifier" type="xs:string"
use="optional"/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>

7.8 Complex type AuthenticationinfoType

Elements of this type contain information related to the PEP's authentication of the subject.

<xs:complexType name="AuthenticationInfoType">
<xs:attribute name="Method" type="xs:anyURI" use="optional"/>
<xs:attribute name="Instant" type="xs:dateTime" use="optional"/>
</xs:complexType>

7.9 Complex type AttributeType

Elements of this type contain an attribute and attribute meta-data. It extends the xacml definition of
attribute with an AttributeId, and Issuer identity and an IssuelInstant.

<xs:complexType name="AttributeType">
<xs:complexContent>
<xs:extension base="xacml:AttributeType">
<xs:attribute name="AttributeId" type="xs:anyURI"
use="required"/>
<xs:attribute name="Issuer" type="xs:anyURI"
use="optional"/>
<xs:attribute name="Issuelnstant" type="xs:dateTime"
use="optional"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>

draft-xacml-specification-15.doc 41

1436

1437
1438
1439
1440

1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451

1452

1453
1454
1455
1456

1457
1458
1459
1460
1461
1462
1463

1464

1465
1466
1467
1468
1469

1470
1471
1472
1473
1474
1475
1476

1477

1478

1479
1480
1481
1482

7.10Complex type ResourceType

Elements of this type contain information about the resource for which access is being requested.
It MAY contain any combination of <ResourceSpecifier>, <ResourceContent> and
<ResourceAttribute> elements. If present, the <ResourceAttribute> elements contain a
an attribute of the resource.

<xs:complexType name="ResourceType">
<xs:sequence>
<xs:element name="ResourceSpecifier"
type="xacmlContext:ResourceSpecifierType" minOccurs="0"/>
<xs:element name="ResourceContent"
type="xacmlContext:ResourceContentType" minOccurs="0"/>
<xs:element name="ResourceAttribute"
type="xacmlContext:AttributeType" minOccurs="0"
maxOccurs="unbounded" />
</xs:sequence>
</xs:complexType>

7.11 Complex type ResourceSpecifierType

Elements of this type SHALL contain a Resourceld. This is in the form of a string. Interpretation of
the string depends upon the value of the Format attribute. (Note: Perhaps the format attribute
should be required). The scope attribute is used in the case where the resource is structured as a
hierarchy. It indicates which part of the resource the decision request applies to.

<xs:complexType name="ResourceSpecifierType">
<xs:attribute name="Format" type="xs:anyURI" use="optional"/>
<xs:attribute name="Scope"
type="xacmlContext:SpecifierScopeType" use="optional"/>
<xs:attribute name="ResourceId" type="xs:string"
use="required"/>
</xs:complexType>

7.12Complex type SpecifierScopeType

Elements of this type indicate which part of a resource a decision request applies to. The value
Immediate indicates the request applies just to the node of the resource identified by the
Resourceld in the parent element. The Children value indicates that the request applies to the
node identified in the parent element and its immediate children. The Descendants value indicates
that the request applies to the node identified in the parent element and all its descendants.

<xs:simpleType name="SpecifierScopeType">
<xs:restriction base="xs:string">
<xs:enumeration value="Immediate"/>
<xs:enumeration value="Children"/>
<xs:enumeration value="Descendants"/>
</xs:restriction>
</xs:simpleType>

7.13Complex type ResourceContentType

Elements of this type contain the resource to which access is requested.

<xs:complexType name="ResourceContentType">
<xs:sequence>
<xs:any namespace="##any" processContents="1lax" minOccurs="0"
maxOccurs="unbounded" />

draft-xacml-specification-15.doc 42

1483
1484
1485

1486

1487
1488

1489
1490
1491
1492
1493
1494
1495

1496

1497

1498
1499
1500
1501
1502
1503
1504

1505

1506
1507

1508
1509
1510
1511
1512
1513

1514

1515
1516
1517

1518
1519
1520
1521
1522
1523
1524
1525

</xs:sequence>
<xs:anyAttribute namespace="##any" processContents="lax"/>
</xs:complexType>

7.14Complex type ActionType

Elements of type ActionType contain a specification of the requested actions (Note: should this be
of type xs:list? It would mean that an individual action could not contain whitespace).

<xs:complexType name="ActionType">
<xs:simpleContent>
<xs:extension base="xs:string">
<xs:attribute name="Namespace" type="xs:anyURI"/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>

7.15Complex type DecisionType

Elements of type DecisionType contain the result of policy evaluation.

<xs:simpleType name="DecisionType">
<xs:restriction base="xs:string">
<xs:enumeration value="Permit"/>
<xs:enumeration value="Deny"/>
<xs:enumeration value="Indeterminate"/>
</xs:restriction>
</xs:simpleType>

7.16 Complex type EnvironmentType

Elements of type EnvironmentType contain a set of attributes of the environment. These attributes
MAY form part of policy evaluation.

<xs:complexType name="EnvironmentType">
<xs:sequence>
<xs:element name="EnvironmentAttribute"
type="xacmlContext:AttributeType" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>

7.17 Complex type AdviceType

Elements of type AdviceType contain information that MAY be used by the PEP. (Note: if we don't
have a specific use for this, why don't we leave it out in this version? Users of the specification will
still be able to extend the response schema to include advice, if they have a definite need for it).

<xs:complexType name="AdviceType">
<xs:sequence>
<xs:any namespace="##other" processContents="lax"
minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="AdviceId" type="xs:anyURI"/>
</xs:complexType>
</xs:schema>

draft-xacml-specification-15.doc 43

1526

1527
1528

1529

1530

1531
1532

1533

1534
1535

1536
1537

1538

1539
1540

1541

1542
1543

1544

1545
1546

1547

1548
1549

1550

1551
1552

8 XACML identifiers (normative)

This section defines standard identifiers for commonly-used entities. All XACML-defined identifiers
have the common base:

urn:oasis:names:tc:XACML:identifier

8.1 Access Subject

The identifier for the system entity that is requesting access.

urn:oasis:names:tc:xacml:identifier:AccessSubject

8.2 Time of day

8.3 Attributes

XACML-defined attributes are represented by an element of type <saml:AttributeDesignatorType>.
It has two attributes: AttributeNamespace and AttributeName. All XACML-defined attributes have
the following value for AttributeNamespace:

urn:oasis:names:tc:XACML:identifier:attributes/

8.3.1 Role

urn:oasis:names:tc:XACML:identifier:attributes/role

8.3.2 RFC822 Name

RFC822 name attributes have the following value of AttributeName:

urn:oasis:names:tc:XACML:identifier:rfc822Name

8.3.3 X.500 distinguished name

X.500 distinguished name attributes have the following value of AttributeName:

urn:oasis:names:tc:XACML:identifier:x500Name

8.3.4 Unix file-system path

UNIX file-system path attributes have the following value of AttributeName:

urn:oasis:names:tc:XACML:identifier:attribute:UFS

8.3.5 Uniform resource identifier

Uniform resource identifier attributes have the following value of AttributeName:

urn:ocasis:names:tc:XACML:identifier:attribute:URI

draft-xacml-specification-15.doc 44

1553

1554

1555
1556

15567

1558
1559

1560

1561
1562

1563

1564

1565
1566

1567

1568
1569

1570

1571
1572

1573
1574
1575
1576
1577
1578
1579

1580
1581

1582
1583
1584
1585
1586

8.4 Authentication locality

8.5 Deny-overrides rule-combining algorithm

The deny-overrides rule-combining algorithm has the following value for ruleCombiningAlgld:

urn:oasis:names:tc:XACML:identifier:ruleCombiningAlgorithms:denyOverrides

8.6 Deny-overrides policy-combining algorithm

The deny-overrides policy-combining algorithm has the following value for policyCombiningAlgld:

urn:oasis:names:tc:XACML:identifier:policyCombiningAlgorithms:denyOverrides

8.7 Permit-overrides rule-combining algorithm

The permit-overrides rule-combining algorithm has the following value for ruleCombiningAlgld:

urn:oasis:names:tc:XACML:identifier:ruleCombiningAlgorithms:permitOverrides

8.8 Permit-overrides policy-combining algorithm

The permit-overrides policy-combining algorithm has the following value for policyCombiningAlgld:

urn:oasis:names:tc:XACML:identifier:policyCombiningAlgorithms:permitOverride
s

9 Combining algorithms (normative)

This section contains a description of the rule-combining and policy-combining algorithms specified
by XACML.

9.1 Deny-overrides

The following is a specification for the "deny-overrides" rule-combining algorithm. The identifier for
this algorithm is given in Section 8.5.

In the entire set of rules to be evaluated, if any of the rules evaluates to “deny”, then the
rule combination is defined to evaluate to “deny” (that is, “deny” takes precedence,
regardless of how many rules evaluate to “permit”, and causes the whole combination to
return “deny”). Any rule that evaluates to “indeterminate” (that is, its return status cannot
be determined for any reason) has the same effect as a “deny” in that it causes the
combination to return “deny”. Finally, if none of the rules are found to be applicable to the
request, the rule combination returns “notApplicable”.

What follows is a pseudocode representation of how the above specification MAY be implemented.
This is provided for illustrative and explanatory purposes.

effect policy(rule[]) {
atLeastOnePermit = false;
for(i=0; i<=noOfRules; i++) {
if (rule[i] == deny) {
return (deny) ;

draft-xacml-specification-15.doc 45

1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601

1602
1603

1604
1605
1606
1607
1608
1609
1610

1611
1612

1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631

1632

1633

1634
1635

1636
1637
1638
1639

}
if (rule[i] == indeterminate) {
return (deny) ;
}
if (rule[i] == permit) {
atLeastOnePermit = true;
}
}
if atLeastOnePermit ({
return (permit) ;
}
else{
return (notApplicable) ;
}
}

The following is a specification for the "deny-overrides" policy-combining algorithm. The identifier
for this algorithm is given in Section 7.6.

In the entire set of policies to be evaluated, if any of the policies evaluates to “deny”, then
the policy combination is defined to evaluate to “deny” (that is, “deny” takes precedence,
regardless of how many policies evaluate to “permit”, and causes the whole combination to
return “deny”). Any policy that evaluates to “indeterminate” (that is, its return status cannot
be determined for any reason) has the same effect as a “deny” in that it causes the
combination to return “deny”. Finally, if none of the policies are found to be applicable to
the request, the policy combination returns “notApplicable”.

What follows is a pseudocode representation of how the above specification MAY be implemented.
This is provided for illustrative and explanatory purposes.

effect policySet (policyl[]) {
atLeastOnePermit = false;
for(i=0; i<=noOfPolicies; i++){
if (policy[i] == deny) {
return (deny) ;
}
if (policy[i] == indeterminate) {
return (deny) ;
}
if (policy[i] == permit) {
atLeastOnePermit = true;
}
}
if atLeastOnePermit ({
return (permit) ;
else{
return (notApplicable) ;
}
}

Obligations of the individual policies SHALL be combined as described in Section 4.3.2.3.

9.2 Permit-overrides

The following is a specification for the "permit-overrides” rule-combining algorithm. The identifier
for this algorithm is given in Section 8.7.

In the entire set of rules to be evaluated, if any of the rules evaluates to "permit", then the
rule combination is defined to evaluate to "permit" (that is, "permit" takes precedence,
regardless of how many rules evaluate to "deny" or "indeterminate", and causes the whole
combination to return "permit"). If all of the rules found to be applicable to the request

draft-xacml-specification-15.doc 46

1640
1641
1642

1643
1644

1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663

1664
1665

1666
1667
1668
1669
1670
1671
1672

1673
1674

1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693

1694

evaluate to "deny" or "indeterminate”, then the rule combination is defined to evaluate to
"deny". If none of the rules is found to be applicable to the request, the rule combination
returns "notApplicable™.

What follows is a pseudocode representation of how the above specification MAY be implemented.
This is provided for illustrative and explanatory purposes.

effect policy(rule[]) {
atLeastOneDenyOrIndeterminate = false;
for(i=0; i<=noOfRules; i++) {
if (rule[i] == permit) ({
return (permit) ;
}
if (rule[i] == indeterminate) {
atLeastOneDenyOrIndeterminate = true;
}
if (rule[i] == deny) {
atLeastOneDenyOrIndeterminate = true;

}

}

if atLeastOneDenyOrIndeterminate {
return (deny) ;

} else {
return (notApplicable) ;

}

}

The following is a specification for the "permit-overrides" policy-combining algorithm. The identifier
for this algorithm is given in Section 8.8.

In the entire set of policies to be evaluated, if any of the policies evaluates to "permit", then
the policy combination is defined to evaluate to "permit" (that is, "permit" takes precedence,
regardless of how many policies evaluate to "deny" or "indeterminate", and causes the
whole combination to return "permit"). If all of the policies found to be applicable to the
request evaluate to "deny" or "indeterminate”, then the policy combination is defined to
evaluate to "deny". If none of the policies is found to be applicable to the request, the
policy combination returns "notApplicable".

What follows is a pseudocode representation of how the above specification MAY be implemented.
This is provided for illustrative and explanatory purposes.

effect policySet (policyl[]) {
atLeastOneDenyOrIndeterminate = false;
for(i=0; 1<=noOfPolicies; i++) {
if (policy[i] == permit) {
return (permit) ;
}
if (policy[i] == indeterminate) {
atLeastOneDenyOrIndeterminate = true;
}
if (policy[i] == deny) {
atLeastOneDenyOrIndeterminate = true;
}
}
if atLeastOneDenyOrIndeterminate {
return (deny) ;
} else {
return (notApplicable) ;
}
}

Obligations of the individual policies SHALL be combined as described in Section 4.3.2.3.

draft-xacml-specification-15.doc 47

1695
1696

1697

1698

1699

1700
1701
1702
1703

1704
1705
1706

1707
1708
1709

1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742

10Profiles (normative but not mandatory to
implement)

10.1 XACML

Describes subsets of XACML appropriate to general classes of problem

10.2SAML

Describes the subset of SAML that is relevant to XACML
We need to specify SAML status codes for situations specific to XACML, such as:
e PDP has no policy for the requested target

e PDP cannot retrieve the required attributes

A compliant SAML-based PDP MUST reply to a SAML Authorization Decision Request with a
SAML Authorization Decision in accordance with operational semantics of the PDP stated in

Section 10.1.

The following XSLT defines the transformation from a saml:AuthorizationDecision request to the
xacml request context. (Note: This has not been updated in accordance with the latest context

schema.)

<xsl:stylesheet version = '1.0'
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform’
xmlns:saml="http://www.oasis-

open.org/committees/security/docs/draft-sstc-schema-assertion-

28.xsd' xmlns:samlp="http://www.oasis-
open.org/committees/security/docs/draft-sstc-schema-protocol-
28.xsd">

<xsl:template match="samlp:Request">
<Request>
<xsl:apply-templates
select="samlp:AuthorizationDecisionQuery/saml:Subject"/>
<xsl:apply-templates
select="samlp:AuthorizationDecisionQuery/saml:Action"/>

<xsl:apply-templates select="samlp:AuthorizationDecisionQuery"

mode="Resource" />
</Request>
</xsl:template>

<xsl:template match="saml:NameIdentifier">
<xsl:element name="Subject">
<xsl:attribute name="SubjectCategory">

<xsl:text>urn:oasis:names:tc:xacml:identifiers:AccessSubject</xsl:te

xt>
</xsl:attribute>
<xsl:element name="SubjectId">
<xsl:1f test="@NameQualifier">
<xsl:attribute name="NameQualifier">
<xsl:value-of select="@NameQualifier"/>
</xsl:attribute>
</xsl:if>
<xsl:if test="@Format">

draft-xacml-specification-15.doc

48

1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800

draft-xacml-specification-15.doc

49

1801

1802
1803
1804

1805

1806
1807
1808

1809

1810
1811
1812
1813
1814
1815
1816

1817

1818
1819
1820

1821
1822

1823
1824

10.3 XML Digital Signature

Describes how XACML instances shall be integrity-protected in the case where XML DSig is used.
PAPs MAY sign XACML <policyStatement> elements. When a PAP combines <policyStatement>
elements, it MAY sign the resulting <policySetStatement> element.

10.4LDAP

The <policyStatement> and <policySetStatement> elements MAY be distributed from the
PAP to the PDP by means of an LDAP repository. In this case, conformant implementations
SHALL behave as described in this section.

10.4.1 Directory information tree (DIT)

The <xacml : target> element conforms to a data model. XACML does not specify the target
data model, but it MUST be agreed between the PAP and the PDP. The data model MUST be
semi-hierarchical. That is, it MUST have one or more disjoint trees for resources and/or subjects.
Actions are leaf nodes of the resource node to which they apply (see Figure 4). Each level in the
tree is identified with an attribute name. A "path" in the tree is a list of attribute-name/value pairs
linking a node to the root. The form of a target is a set of paths, one or more for each tree in the
data model.

Medico resources

category

&

customers partners

employees

document

record account

action

Figure 4 - Medico Inc "resource” tree

Figure 4 gives an example of a resource tree. One path in this tree is defined by the following list of
attribute-name/value pairs:

Root = Medico resources: category = customer: document = record: action =
read

The Directory Information Tree of the repository SHALL be congruent with that of the target data
model. A <policyStatement> element shall be an LDAP attribute of the entry at the lowest

draft-xacml-specification-15.doc 50

1825
1826
1827

1828

1829
1830

1831
1832

1833
1834

1835
1836

1837
1838

1839

1840
1841
1842

1843
1844
1845

1846
1847

1848
1849

1850

1851
1852
1853
1854

1855

1856
1857
1858

1859
1860
1861
1862
1863

1864
1865
1866

node of every path in the DIT. In our example, the policy for reading a customer record SHALL be
an attribute of the entry defined by the above path. In practice, the policy statements may be
referenced from these entries rather than stored at them.

A node MAY have more than one target associated with it.

An authorization decision request also specifies a set of paths by (directly or indirectly) providing
resource, subject and action attribute values.

A policy statement is said to be applicable to a decision request if and only if every path in the
policy statement's <target> element is part of a path in the input context's <Request> element.

For instance, a policy statement whose target is:

Root = Medico resources: category = customer

is attached to that entry in the DIT and is applicable to an input context whose <Request> element
identifies the following resource/action:

Root = Medico resources: category = customer: document = record: action =
read

10.4.2 Policy combination

When policy statements are combined in a policy set statement, the policy set statement
target MUST be computed, and the repository must be updated. Policy statements that conform
to different target data models MUST NOT be combined.

The policy set statement target SHALL be computed by separately combining trees of the same
type from each of the original policy statement targets. The combination may be in the form of a
union or an intersection.

A union combination retains all of the original paths. If, as the result, all possible paths containing a
particular DIT node are retained, then the path may be truncated at that node.

An intersection combination retains a path from one target if and only if it includes a path from the
other target.

The policy set statement SHOULD be stored at the lowest node of every retained path.

Some attribute values may (themselves) have an internal tree structure (e.g. DNS names). Sub-
trees of such structures SHALL be represented by a regular expression (ref). When such an
attribute defines a level in a target tree, the sub-tree defined by each node at that level SHALL be
attached at that node.

10.4.3 Directory schema

This directory schema defines an auxiliary object class (xacmlPolicylnfo) for adding XACML policy
data to entries, as well as a directory attribute (xacmlPolicyData) to contain the policies or
references to entries containing policies.

Alternatively, XACML policies may be stored in policy-specific entries and referenced from the
resource, action and/or subject entries to which they relate. This schema defines a structural object
class (xacmlPolicyObject) for defining such entries, as well as a directory attribute
(xacmlIPolicyRDN) to contain the string used to name the policy-specific entry in the directory. The
xacmlPolicyData directory attribute is also used in these entries to contain the policies themselves.

A PDP uses an LDAP Directory User Agent (DUA) to search the resource/subject trees in the
directory to find the resource, action or subject of interest and retrieve the xacmlPolicyData
directory attribute from that entry. That attribute may contain the XACML policy or a pointer to

draft-xacml-specification-15.doc 51

1867
1868
1869
1870

1871
1872

1873
1874

1875

1876
1877
1878

1879
1880
1881
1882
1883

1884

1885
1886
1887

1888
1889
1890
1891
1892
1893

1894

1895
1896

1897
1898

1899

1900

1901

1902
1903
1904

1905

1906
1907

another directory entry that contains the XACML policy. If it contains only a pointer, the PDP must
query the directory again to retrieve the xacmlPolicyData directory attribute from the entry related
to the pointer. The content of the pointer is the value of the xacmIPolicyRDN directory attribute
that is the final Relative Distinguished Name (RDN) for the policy entry in the directory.

It is the PDP's responsibility to confirm that the retrieved policy is applicable to the decision
request (i.e., the input context) that it is processing.

10.4.4 Object Class Definitions

The following object classes are defined for the LDAP profile for XACML.

10.4.4.1 XACML Policy Info

The xacmlPolicylnfo object class is used in defining entries for objects that hold XACML policy
information in addition to other data (e.g., as part of a resource, action, or subject entry).

xacmlPolicyInfo OBJECT-CLASS ::= ({
SUBCLASS OF {top}
KIND auxiliary
MAY CONTAIN {xacmlPolicyData}
ID id-???-oc-xacmlPolicyInfo }

10.4.4.2 XACML Policy Object

The xacmlPolicyObject object class is used in defining entries for objects that hold only XACML
policy information.

xacmlPolicyObject OBJECT-CLASS ::= {
SUBCLASS OF {top}
KIND structural
MUST CONTAIN {xacmlPolicyRDN}
MAY CONTAIN {xacmlPolicyData}
ID id-???-oc-xacmlPolicyObject }

The xacmlIPolicyRDN directory attribute is used to name the entry and position it in a policy
subtree.

10.4.5 Attribute Definitions

The following directory attributes are defined for the LDAP profile for XACML.

10.4.5.1 XACML Policy Data

The xacmlPolicyData directory attribute is used to store XACML policy information.

xacmlPolicyData ATTRIBUTE ::= ({
WITH SYNTAX XacmlPolicySyntax
ID id-???-at-xacmlPolicyData }

XacmlPolicySyntax ::= SEQUENCE {
policyPointer [0] UTF8String OPTIONAL,

draft-xacml-specification-15.doc 52

1908
1909

1910

1911
1912
1913

1914
1915

1916

1917
1918

1919

1920
1921
1922
1923

1924

1925
1926

1927

1928
1929
1930

1931
1932
1933

1934

1935

1936

1937
1938
1939
1940
1941
1942
1943

1944

1945
1946
1947

policyData [1] UTF8String OPTIONAL
-- at least one of the optional elements must be present-- }

If policyPointer is present, it indicates the value of the xacmIPolicyRDN directory attribute that is
used to form the final Relative Distinguished Name (RDN) of the entry that contains the actual
policy information.

If policyData is present, it contains the XACML <policyStatement> or
<policySetStatement>.

10.4.5.2 XACML Policy RDN

The xacmlIPolicyRDN directory attribute is used to store the name of an xacmlPolicyObject entry
relative to its position in the directory hierarchy.

xacmlPolicyRDN ATTRIBUTE HEE |
WITH SYNTAX UTF8String
EQUALITY MATCHING RULE xacmlPolicyRDNMatch
D id-???-at-xacmlPolicyRDN }

10.4.6 Matching Rule Definitions

The xacmlIPolicyRDNMatch matching rule compares for equality a presented value with an
attribute value of type xacmIPolicyRDN.

xacmlPolicyRDNMatch MATCHING-RULE ::= ({
SYNTAX UTF8String
ID id-???-at-policyNameMatch }

This rule returns TRUE if the presented value is equal to the stored value of the xacmIPolicyRDN
directory attribute.

11Operational Model (normative)

This section describes the operational model for an XACML-based environment.

11.1Policy Decision Point (PDP)

Given a valid XACML "policy statement" or a "policy set statement", a compliant XACML PDP
MUST evaluate that statement in accordance to the semantics specified in Sections 5, 6, and 7
when applied to a specific input context. The PDP MUST return an output context, with one value of
"permit", "deny", or "indeterminate". The PDP MAY return decision of "indeterminate" with an error
code of "insufficient information"”, signifying that more information is needed. In this case, the
decision MAY list the names of any attributes of the subject and the resource that are needed by
the PDP to refine its decision.

Decision Convergence

A PEP MAY resubmit a refined request context in response to a decision of "indeterminate" with an
error code of "insufficient information" by adding attribute values for the attribute names that are
listed in the response.

draft-xacml-specification-15.doc 53

1948
1949
1950
1951

1952

1953

1954

1955

1956
1957
1958
1959
1960
1961

1962

1963
1964
1965
1966

1967

1968
1969

1970
1971
1972
1973

1974
1975
1976
1977

1978
1979
1980
1981

When the PDP returns an decision of "indeterminate" with an error code of "insufficient
information”, a PDP MUST NOT list the names of any attribute of the subject or the resource of the
request for which values were already supplied in the request. Note, this requirement forces the
PDP to eventually return a decision of "permit", "deny", or "indeterminate" with some other reason,

in response to successively-refined requests.

12 XACML extensibility points (non-normative)

Describes the points within the XACML model and schema where extensions can be added

12.1URIs

The following XML attributes are URlIs.
e Function,

e ruleCombiningAlgld,

e policyCombiningAlgld,

e saml:AttributeNameSpace and

e saml:AttributeName.

13 Security and privacy (non-normative)

This section identifies possible security and privacy vulnerabilities that should be considered when
implementing an XACML-based system. This section is strictly informative. It has been left to the
implementers to assess whether these vulnerabilities apply to their environment and to select the
appropriate safeguards.

13.1 Authentication

Authentication here means the ability of one party in a transaction to determine the identity of the
other party in the transaction. Authentication may be in one direction, or it may be bilateral.

Given the sensitive nature of access-control systems, it is important for a PEP to authenticate the
identity of the PDP to which it sends decision requests. Otherwise, there is a risk that another
process could provide false or invalid authorization decisions and compromise security of the
access-control system.

It is equally important for a PDP to authenticate the identity of its clients and assess the level of
trust to determine what, if any, sensitive data should be passed. One should keep in mind that
even simple permit or deny responses could be exploited if someone was allowed to make
unlimited requests to a PDP.

Many different techniques may be used to provide this authentication, such as co-located code, a
private network, a VPN, or digital signatures. Authentication may also be done as part of the
communication protocol used to exchange the contexts. In this case, the authentication may be
performed at the message level or at the session level.

draft-xacml-specification-15.doc 54

1982

1983
1984
1985
1986

1987

1988
1989
1990
1991
1992

1993
1994
1995
1996
1997

1998

1999
2000
2001

2002
2003

2004
2005
2006

2007

2008
2009
2010
2011
2012

2013
2014
2015

2016
2017
2018
2019
2020

2021
2022

13.2 Confidentiality

Confidentiality means that the contents of a message can be read only bg the desired recipients
and not by anyone else who encounters the message while it is in transit®. There are two areas in
which confidentiality should be considered: one is confidentiality during transmission; the other is
confidentiality within a <policyStatement>.

13.21 Communication Confidentiality

All data within an access-control system should be treated as confidential. This includes the
<policyStatement>, the XACML requests and responses, and any external data that may be
referenced as part of the decision-making process. If someone is able to eavesdrop on the
communication they may be able to understand under what circumstances access will be granted,
which may allow them to impersonate a valid request.

Any security concerns or requirements related to transmitting or exchanging XACML
<policyStatement> elements are outside the scope of the XACML standard. While it is often
important to ensure that the integrity and confidentiality of <policyStatement> elements is
maintained when they are exchanged between two parties, it is left to the implementers to
determine the appropriate mechanisms for their environment.

13.2.2 Statement Level Confidentiality

In some cases, an implementation may want to encrypt only parts of an XACML policy. For
instance, a PRP only needs access to the target elements in order to find the appropriate rules.
The other elements could be encrypted while they are stored in a repository.

The XML Encryption Syntax and Processing standard from W3C can be used to encrypt all or parts
of an XML document. This standard is recommend for use with XACML.

It should go without saying that if a repository is used to facilitate the communication of cleartext
(i.e., unencrypted) policy between the PAP and the PRP or between the PDP and the PIP, then a
secure repository should be used to store this sensitive data.

13.3 Policy Integrity

The XACML policy, used by the PDP to evaluate the request contexts, is the heart of the system.
There are two aspects in maintaining the integrity of the policy. One is to ensure that
<policyStatement> elements have not been altered since they were originally written or
generated by the PAP. The other is to ensure that <policyStatement> elements have not been
inserted or deleted from the set of policies.

In the many cases, this can be achieved by ensuring the integrity of the systems and implementing
session-level techniques to secure the communication between parties. The selection of the
appropriate techniques has been left to the implementers.

However, when policy is distributed between organizations to be acted on at a later time, or when
the policy travels with data, it would be useful to have a digital signature of the policy included with
the policy statements. In these cases, the XML Signature Syntax and Processing standard from
W3C is recommended to be used with this standard. See section 8.3 [??7?] for examples of using
XML digital signatures with XACML.

Digital signatures SHOULD only be used to ensure the integrity of the statements. Digital
signatures SHOULD NOT be use as a method of selecting or evaluating policy. The PDP SHOULD

draft-xacml-specification-15.doc 55

2023
2024

2025

2026
2027
2028
2029
2030

2031
2032
2033
2034
2035

2036
2037
2038
2039

2040

2041
2042
2043
2044
2045

2046
2047
2048
2049
2050

2051

2052
2053
2054
2055
2056
2057
2058
2059

2060
2061
2062

2063

2064
2065

NOT request a rule based on who signed the rule or whether or not it had been signed (as such a
basis for selection would, itself, be a matter of policy).

13.4Elements included by reference

There is a risk that references and extensions contained within a <policystatement> may have
been altered since the policy was originally created, thereby changing the intent of the
<policystatement>. Forinstance, if a <policyStatement> were to include a rule by
reference, then there is no guarantee that the rule has not been changed between the time that the
policy was written and the time that it is being evaluated.

A <ruleDigest> element can be used to uniquely identify a rule. The <ruleDigest> element
contains a digest of the original rule. If the rule changed, then the rule digest would also change.
Therefore, if the <policyStatement> is signed or integrity-protected in some other way (so that
the <ruleDigest> cannot be altered without detection), the PDP can be certain that the
referenced rules have not changed since the policy was created.

Alternatively, a digital signature of the source item could be included with the reference. [l don’t
see this in the schema. Can we do this?] This technique will also allow the PDP to ensure that a
rule or extension has not been altered (although integrity protection is still required on the policy
itself; otherwise, the included signatures may be removed or replaced).

13.5Trust Model

Discussions of authentication, integrity, and confidentiality mechanisms necessarily assume an
underlying trust model: how can one entity come to believe that a given key is uniquely associated
with a specific, identified entity so that the key can be used to encrypt data for that entity or verify
signatures (or other integrity structures) from that entity? Many different types of trust model exist,
including strict hierarchies, distributed authorities, the Web, the bridge, and so on.

All considerations with respect to choosing and establishing a suitable trust model for a given
environment are outside the scope of XACML. Suffice it to say, however, that a trust model MUST
be in place in order for any of the security mechanisms described in this section to be applied.
Secure access control is not possible in any environment until a trust model appropriate for that
environment has been established and implemented.

13.6 Privacy

It is important to be aware that any transactions that occur with respect to access control may
reveal private information about the participants. For example, if an XACML policy states that
certain data may only be read by individuals with “Gold Card Member” status, then any transaction
in which an entity is given access to that data leaks information to external observers about that
entity’s status. Privacy considerations may therefore lead to encryption or access control policies
surrounding XACML policy instances themselves, confidentiality-protected channels for the
request/response protocol messages, protection of user attributes in storage and in transit, and so
on.

Selection and use of privacy mechanisms appropriate for a given environment are outside the
scope of XACML. The decision regarding whether, how, and when to deploy such mechanisms is
left to the implementers associated with the environment.

Footnotes
1 - Security and Privacy Considerations for the OASIS Security Assertion Markup Language
(SAML) section 4.1

draft-xacml-specification-15.doc 56

2066
2067

2068

2069

2070
2071

2072
2073

2074
2075
2076

2077
2078

2079
2080

2081

2082
2083
2084
2085
2086

2087
2088

2089
2090

2091
2092

2093
2094
2095

2096
2097
2098

2099
2100
2101

2 - Security and Privacy Considerations for the OASIS Security Assertion Markup Language
(SAML) section 4.2

14 Conformance (normative)

Conformance claims MAY be made by either one of two components in the XACML model:

1. Animplementation of a policy administration points that produces policy statements that
conform with the XACML schema; and

2. Animplementation of a policy decision point that produces decisions in response to a request
context on the basis of XACML policy statements that conform with the XACML schema.

In the current version of the specification, implementations of a policy retrieval point that produce
policy statements that conform with the XACML schema by combining XACML applicable policies
are treated in the same way as policy administration points, from the point of view of conformance.

Policy administration points MAY claim conformance with the XACML specification provided merely
that they produce schema-compliant policy statements.

Policy decision points MAY claim conformance with the XACML specification provided that they
correctly execute the XACML conformance test suite provided at

http://www.oasis-open.org/ ...

XACML Test Suite

The test suite comprises three directories:
e Request context

e Policy

o Response context

The input context directory contains a set of text/xml/ xacmlContext:RequestType files that are
valid XACML input contexts.

The policy directory contains precisely one XACML policy file whose target is appropriate for each
of the input contexts.

The output context directory contains a set of text/xml/ xacmlContext:ResponseType files
containing the output contexts that correspond to the input contexts in the input context directory.

A conformant XACML PDP implementation shall create an output context in response to each and
every input context. The output contexts are linked to the corresponding input contexts by the
request context ID attribute. [There’s no such thing at the moment.]

XACML implementations that target a specific application domain (e.g., SAML or J2SE) may use a
tool or process that is not an integral part of the XACML implementation to convert between the
XACML contexts and its private data representation.

Disclaimer: Implementors SHALL NOT consider the test cases provided in the XACML
conformance test suite as providing 100% test coverage. OASIS does not represent that a
conformant implementation will operate correctly in all respects nor that it is fit for its purpose.

draft-xacml-specification-15.doc 57

2102

2103
2104

2105
2106

2107
2108

2109
2110

2111
2112

2113

15References

[RFC2119]

[RegEXx]
[LDAP]
[SAML]

[XMLSig]

[XMLSig-XSD]

S. Bradner, Key words for use in RFCs to Indicate Requirement Levels,
http://lwww.ietf.org/rfc/rfc2119.txt, IETF RFC 2119, March 1997

Security Assertion Markup Language available from http://www.oasis-
open.org/committees/security/#documents

D. Eastlake et al., XML-Signature Syntax and Processing,
http://www.w3.org/TR/xmldsig-core/, World Wide Web Consortium.

XML Signature Schema available from http://www.w3.0rg/TR/2000/CR-
xmldsig-core-20001031/xmldsig-core-schema.xsd.

draft-xacml-specification-15.doc

58

2114

2115
2116

2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134

Appendix A. Acknowledgments

The following individuals were voting members of the committee during the development of this
specification:

Affinitex James MacLean_JMaclean@affinitex.com

Self Simon Godik sgodik@crosslogix.com

Crosslogix Ken Yagen kyagen@crosslogix.com

Crosslogix Daniel Engovatov dengovatov@crosslogix.com

Entegrity Hal Lockhart hal.lockhart@entegrity.com

Entrust Carlisle Adams carlisle.adams@entrust.com

Entrust Tim Moses tim.moses@entrust.com

Hitachi Don Flinn Don.Flinn@hitachisoftware.com

Hitachi Konstantin Beznosov konstantin.beznosov@quadrasis.com
IBM Michiharu Kudoh kudo@ijp.ibm.com

Self Bill Parducci bill@parducci.net

Self Polar Humenn polar@syr.edu

Sterling Commerce Suresh Damodaran Suresh_Damodaran@stercomm.com
University of Milan Pierangela Samarati samarati@pinky.crema.unimi.it
University of Milan Ernesto Damiani_edamiani@crema.unimi.it

Sun Microsystems Sekhar Vajjhala sekhar.vajjhala@sun.com

Sun Microsystems Anne Anderson Anne.Anderson@Sun.com
Xtradyne Gerald Brose Gerald.Brose@xtradyne.com

draft-xacml-specification-15.doc

59

2135

2136

Appendix B. Revision History

Rev Date By whom What

V14 14 June 2002 Tim Moses Added the XACML context schema.
Added the Security and Privacy
section.

V15 18 July 2002 Tim Moses Changed the representation of

<Function>

draft-xacml-specification-15.doc

60

2137

2138
2139
2140
2141
2142
2143
2144
2145
2146

2147
2148
2149

2150
2151

2152
2153
2154
2155
2156
2157
2158
2159

2160
2161

2162
2163
2164
2165
2166

Appendix C. Notices

OASIS takes no position regarding the validity or scope of any intellectual property or other rights
that might be claimed to pertain to the implementation or use of the technology described in this
document or the extent to which any license under such rights might or might not be available;
neither does it represent that it has made any effort to identify any such rights. Information on
OASIS's procedures with respect to rights in OASIS specifications can be found at the OASIS
website. Copies of claims of rights made available for publication and any assurances of licenses to
be made available, or the result of an attempt made to obtain a general license or permission for
the use of such proprietary rights by implementors or users of this specification, can be obtained
from the OASIS Executive Director.

OASIS invites any interested party to bring to its attention any copyrights, patents or patent
applications, or other proprietary rights which may cover technology that may be required to
implement this specification. Please address the information to the OASIS Executive Director.

Copyright © The Organization for the Advancement of Structured Information Standards [OASIS]
2001. All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works
that comment on or otherwise explain it or assist in its implementation may be prepared, copied,
published and distributed, in whole or in part, without restriction of any kind, provided that the above
copyright notice and this paragraph are included on all such copies and derivative works. However,
this document itself may not be modified in any way, such as by removing the copyright notice or
references to OASIS, except as needed for the purpose of developing OASIS specifications, in
which case the procedures for copyrights defined in the OASIS Intellectual Property Rights
document must be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its
SUCCEeSSOrs or assigns.

This document and the information contained herein is provided on an “AS IS” basis and OASIS
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY
RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.

draft-xacml-specification-15.doc 61

