

Working Draft 01, 22 October 2003
Document identifier:
Location:
http://www.oasis-open.org/apps/org/workgroup/wsbpel/
Editors:
Ben Bloch <ben_b54@hotmail.com>
Francisco Curbera, IBM <curbera@us.ibm.com>
Yaron Goland, BEA <ygoland@bea.com>
Neelakantan Kartha, Sterling Commerce <N_Kartha@stercomm.com>
Canyang Kevin Liu, SAP <kevin.liu@sap.com>
Satish Thatte, Microsoft <satisht@microsoft.com>
Prasad Yendluri, webMethods <pyendluri@webmethods.com>
Editor’s Notes – KevinL – list needs to be updated to include all editors
Contributors:
{FirstName} {Last Name}, {Organization}
Editor’s Notes – KevinL – this section should be consolidated with
Appendix H
Abstract:
This document defines a notation for specifying business process behavior
based on Web Services. This notation is called Business Process
Execution Language for Web Services (abbreviated to BPEL4WS in the
rest of this document). Processes in BPEL4WS export and import
functionality by using Web Service interfaces exclusively.
Business processes can be described in two ways. Executable business
processes model actual behavior of a participant in a business interaction.
Business protocols, in contrast, use process descriptions that specify the
mutually visible message exchange behavior of each of the parties
involved in the protocol, without revealing their internal behavior. The
process descriptions for business protocols are called abstract processes.
BPEL4WS is meant to be used to model the behavior of both executable
and abstract processes.
BPEL4WS provides a language for the formal specification of business
processes and business interaction protocols. By doing so, it extends the
Web Services interaction model and enables it to support business
transactions. BPEL4WS defines an interoperable integration model that
should facilitate the expansion of automated process integration in both
the intra-corporate and the business-to-business spaces.
Status:
This is the very first draft version of the specification, converted to OASIS
TC draft format from the origninal BPEL4WS V1.1 specification dated
May 5, 2003 that was submitted to the WS BPEL TC. See:
http://www.oasis-

Formatted: French (France)

Field Code Changed

Formatted: French (France)

Formatted: French (France)

Formatted: French (France)

Formatted: French (France)

Field Code Changed

Field Code Changed

Formatted: French (France)

Formatted: French (France)

Field Code Changed

Formatted: French (France)

Formatted: French (France)

Field Code Changed

Formatted: French (France)

Formatted: French (France)

Field Code Changed

Formatted: French (France)

Formatted: French (France)

Field Code Changed

Formatted: French (France)

Formatted: French (France)

Field Code Changed

Formatted: French (France)

Formatted: French (France)

Deleted:

OASIS

Deleted: 16

open.org/apps/org/workgroup/wsbpel/download.php/2046/BPEL%20V1-
1%20May%205%202003%20Final.pdf
If you are on the <wsbpel@lists.oasis-open.org> list for committee
members, send comments there. If you are not on that list, subscribe to the
<wsbpel-comment@lists.oasis-open.org> list and send comments
there. To subscribe, send an email message to <mailto:wsbpel-
comment-request@lists.oasis-open.org> with the word
"subscribe"as the body of the message.
For information on whether any patents have been disclosed that may be
essential to implementing this specification, and any offers of patent
licensing terms, please refer to the Intellectual Property Rights section of
the WS-BPEL TC web page http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=wsbpel
Copyright © 2003 OASIS Open, Inc. All Rights Reserved.

Table of Contents

1. Introduction
2. Notational Conventions
3. Relationship with WSDL
4. What Changed from BPEL4WS 1.0
4.1. Core Concepts Clarification
4.2. Terminology Changes
4.3. Feature Changes
5. Core Concepts and Usage Patterns
6. Defining a Business Process
6.1. Initial Example
6.2. The Structure of a Business Process
6.3. Language Extensibility
6.4. The Lifecycle of a Business Process
7. Partner Link Types, Partner Links, and Endpoint References
7.1. Partner Link Types
7.2. Partner Links
7.3. Business Partners
7.4. Endpoint References
8. Message Properties
8.1. Motivation
8.2. Defining Properties
9. Data Handling
9.1. Expressions
9.2. Variables
9.3. Assignment
10. Correlation
10.1. Message Correlation
10.2. Defining and Using Correlation Sets
11. Basic Activities
11.1. Standard Attributes for Each Activity

Formatted: French (France)

Formatted: French (France)

Field Code Changed

Formatted: French (France)

Field Code Changed

Formatted: French (France)

Formatted: French (France)

Field Code Changed

Formatted: French (France)

Formatted: French (France)

Field Code Changed

Formatted: French (France)

Formatted: French (France)

Field Code Changed

Formatted: French (France)

Formatted: French (France)

11.2. Standard Elements for Each Activity
11.3. Invoking Web Service Operations
11.4. Providing Web Service Operations
11.5. Updating Variable Contents
11.6. Signaling Faults
11.7. Waiting
11.8. Doing Nothing
12. Structured Activities
12.1. Sequence
12.2. Switch
12.3. While
12.4. Pick
12.5. Flow
13. Scopes
13.1. Data Handling
13.2. Error Handling in Business Processes
13.3. Compensation Handlers
13.4. Fault Handlers
13.5. Event Handlers
13.6. Serializable Scopes
14. Extensions for Executable Processes
14.1. Expressions
14.2. Variables
14.3. Assignment
14.4. Correlation
14.5. Web Service Operations
14.6. Terminating a Service Instance
14.7. Compensation
14.8. Event Handlers
15. Extensions for Business Protocols
15.1. Variables
15.2. Assignment
16. Examples
16.1. Shipping Service
16.2. Loan Approval
16.3. Multiple Start Activities
17. Security Considerations

Appendixes
A. Standard Faults
B. Attributes and Defaults
C. Coordination Protocol
D. XSD Schemas
E. Notices
F. Intellectual Property Rights
G. Revision History
References

H. Committee Members (Non-Normative)

1. Introduction
The goal of the Web Services effort is to achieve universal interoperability
between applications by using Web standards. Web Services use a loosely
coupled integration model to allow flexible integration of heterogeneous
systems in a variety of domains including business-to-consumer, business-
to-business and enterprise application integration. The following basic
specifications originally defined the Web Services space: SOAP, Web
Services Description Language (WSDL), and Universal Description,
Discovery, and Integration (UDDI). SOAP defines an XML messaging
protocol for basic service interoperability. WSDL introduces a common
grammar for describing services. UDDI provides the infrastructure
required to publish and discover services in a systematic way. Together,
these specifications allow applications to find each other and interact
following a loosely coupled, platformindependent model.
Systems integration requires more than the ability to conduct simple
interactions by using standard protocols. The full potential of Web
Services as an integration platform will be achieved only when
applications and business processes are able to integrate their complex
interactions by using a standard process integration model. The interaction
model that is directly supported by WSDL is essentially a stateless model
of synchronous or uncorrelated asynchronous interactions. Models for
business interactions typically assume sequences of peer-to-peer message
exchanges, both synchronous and asynchronous, within stateful, long-
running interactions involving two or more parties. To define such
business interactions, a formal description of the message exchange
protocols used by business processes in their interactions is needed. The
definition of such business protocols involves precisely specifying the
mutually visible message exchange behavior of each of the parties
involved in the protocol, without revealing their internal implementation.
There are two good reasons to separate the public aspects of business
process behavior from internal or private aspects. One is that businesses
obviously do not want to reveal all their internal decision making and data
management to their business partners. The other is that, even where this
is not the case, separating public from private process provides the
freedom to change private aspects of the process implementation without
affecting the public business protocol.
Business protocols must clearly be described in a platform-independent
manner and must capture all behavioral aspects that have cross-enterprise
business significance. Each participant can then understand and plan for
conformance to the business protocol without engaging in the process of
human agreement that adds so much to the difficulty of establishing cross-
enterprise automated business processes today.

What are the concepts required to describe business protocols? And what
is the relationship of these concepts to those required to describe
executable processes? To answer these questions, consider the following::
• Business protocols invariably include data-dependent behavior.
For example, a supply-chain protocol depends on data such as the number
of line items in an order, the total value of an order, or a deliver-by
deadline. Defining business intent in these cases requires the use of
conditional and time-out constructs.
• Long-running interactions include multiple, often nested units of
work, each with its own data requirements. Business protocols frequently
require cross-partner coordination of the outcome (success or failure) of
units of work at various levels of granularity.
If we wish to provide precise predictable descriptions of service behavior
for crossenterprise business protocols, we need a rich process description
notation with many features reminiscent of an executable language. The
key distinction between public message exchange protocols and
executable internal processes is that internal processes handle data in rich
private ways that need not be described in public protocols.
In thinking about the data handling aspects of business protocols it is
instructive to consider the analogy with network communication protocols.
Network protocols define the shape and content of the protocol envelopes
that flow on the wire, and the protocol behavior they describe is driven
solely by the data in these envelopes. In other words, there is a clear
physical separation between protocol-relevant data and "payload" data.
The separation is far less clear cut in business protocols because the
protocol-relevant data tends to be embedded in other application data.
BPEL4WS uses a notion of message properties to identify protocol-
relevant data embedded in messages. Properties can be viewed as
"transparent" data relevant to public aspects as opposed to the "opaque"
data that internal/private functions use. Transparent data affects the public
business protocol in a direct way, whereas opaque data is significant
primarily to back-end systems and affects the business protocol only by
creating nondeterminism because the way it affects decisions is opaque.
We take it as a principle that any data that is used to affect the behavior of
a business protocol must be transparent and hence viewed as a property.
The implicit effect of opaque data manifests itself through
nondeterminism in the behavior of services involved in business protocols.
Consider the example of a purchasing protocol. The seller has a service
that receives a purchase order and responds with either acceptance or
rejection based on a number of criteria, including availability of the goods
and the credit of the buyer. Obviously, the decision processes are opaque,
but the fact of the decision must be reflected as behavior alternatives in the
external business protocol. In other words, the protocol requires something
like a switch activity in the behavior of the seller's service but the selection
of the branch taken is nondeterministic. Such nondeterminism can be
modeled by allowing the assignment of a nondeterministic or opaque
value to a message property, typically from an enumerated set of

possibilities. The property can then be used in defining conditional
behavior that captures behavioral alternatives without revealing actual
decision processes. BPEL4WS explicitly allows the use of
nondeterministic data values to make it possible to capture the essence of
public behavior while hiding private aspects.
The basic concepts of BPEL4WS can be applied in one of two ways. A
BPEL4WS process can define a business protocol role, using the notion of
abstract process. For example, in a supply-chain protocol, the buyer and
the seller are two distinct roles, each with its own abstract process. Their
relationship is typically modeled as a partner link. Abstract processes use
all the concepts of BPEL4WS but approach data handling in a way that
reflects the level of abstraction required to describe public aspects of the
business protocol. Specifically, abstract processes handle only protocol-
relevant data. BPEL4WS provides a way to identify protocol-relevant data
as message properties. In addition, abstract processes use nondeterministic
data values to hide private aspects of behavior.
It is also possible to use BPEL4WS to define an executable business
process. The logic and state of the process determine the nature and
sequence of the Web Service interactions conducted at each business
partner, and thus the interaction protocols. While a BPEL4WS process
definition is not required to be complete from a private implementation
point of view, the language effectively defines a portable execution format
for business processes that rely exclusively on Web Service resources and
XML data. Moreover, such processes execute and interact with their
partners in a consistent way regardless of the supporting platform or
programming model used by the implementation of the hosting
environment.
Even where private implementation aspects use platform-dependent
functionality, which is likely in many if not most realistic cases, the
continuity of the basic conceptual model between abstract and executable
processes in BPEL4WS makes it possible to export and import the public
aspects embodied in business protocols as process or role templates while
maintaining the intent and structure of the protocols. This is arguably the
most attractive prospect for the use of BPEL4WS from the viewpoint of
unlocking the potential of Web Services because it allows the
development of tools and other technologies that greatly increase the level
of automation and thereby lower the cost in establishing cross-enterprise
automated business processes.
In summary, we believe that the two usage patterns of business protocol
description and executable business process description require a common
core of process description concepts. In this specification we clearly
separate the core concepts from the extensions required specifically for the
two usage patterns. The BPEL4WS specification is focused on defining
the common core, and adds only the essential extensions required for each
usage pattern.

BPEL4WS defines a model and a grammar for describing the behavior of
a business process based on interactions between the process and its
partners. The interaction with each partner occurs through Web Service
interfaces, and the structure of the relationship at the interface level is
encapsulated in what we call a partner link. The BPEL4WS process
defines how multiple service interactions with these partners are
coordinated to achieve a business goal, as well as the state and the logic
necessary for this coordination. BPEL4WS also introduces systematic
mechanisms for dealing with business exceptions and processing faults.
Finally, BPEL4WS introduces a mechanism to define how individual or
composite activities within a process are to be compensated in cases where
exceptions occur or a partner requests reversal.
BPEL4WS is layered on top of several XML specifications: WSDL 1.1,
XML Schema 1.0, and XPath1.0. WSDL messages and XML Schema type
definitions provide the data model used by BPEL4WS processes. XPath
provides support for data manipulation. All external resources and partners
are represented as WSDL services. BPEL4WS provides extensibility to
accommodate future versions of these standards, specifically the XPath
and related standards used in XML computation.

2. Notational Conventions
The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL",
"SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED",
"MAY", and "OPTIONAL" in this document are to be interpreted as
described in [RFC 2119].
Namespace URIs of the general form "some-URI" represent some
application-dependent or context-dependent URI as defined in [RFC 2396].
This specification uses an informal syntax to describe the XML grammar
of the XML fragments that follow:
• The syntax appears as an XML instance, but the values indicate the
data types instead of values.
• <-- description --> is a placeholder for elements from some "other"
namespace (like ##other in XSD).
• Characters are appended to elements, attributes, and as follows: "?"
(0 or 1), "*" (0 or more), "+" (1 or more). The characters "[" and "]" are
used to indicate that contained items are to be treated as a group with
respect to the "?", "*", or "+" characters.
• Elements and attributes separated by "|" and grouped by "(" and ")"
are meant to be syntactic alternatives.
• The XML namespace prefixes (defined below) are used to indicate
the namespace of the element being defined.
• Examples starting with <?xml contain enough information to
conform to this specification; other examples are fragments and require
additional information to be specified in order to conform.
• XSD schemas and WSDL definitions are provided as a formal
definition of grammars [XML Schema Part 1] and [WSDL 1.1].

3. Relationship with WSDL
BPEL4WS depends on the following XML-based specifications: WSDL
1.1, XML Schema 1.0, XPath 1.0 and WS-Addressing.
Among these, WSDL has the most influence on the BPEL4WS language.
The BPEL4WS process model is layered on top of the service model
defined by WSDL 1.1. At the core of the BPEL4WS process model is the
notion of peer-to-peer interaction between services described in WSDL;
both the process and its partners are modeled as WSDL services. A
business process defines how to coordinate the interactions between a
process instance and its partners. In this sense, a BPEL4WS process
definition provides and/or uses one or more WSDL services, and provides
the description of the behavior and interactions of a process instance
relative to its partners and resources through Web Service interfaces. That
is, BPEL4WS defines the message exchange protocols followed by the
business process of a specific role in the interaction.
The definition of a BPEL4WS business process also follows the WSDL
model of separation between the abstract message contents used by the
business process and deployment information (messages and portType
versus binding and address information). In particular, a BPEL4WS
process represents all partners and interactions with these partners in terms
of abstract WSDL interfaces (portTypes and operations); no references are
made to the actual services used by a process instance.
However, the abstract part of WSDL does not define the constraints
imposed on the communication patterns supported by the concrete
bindings. Therefore a BPEL4WS process may define behavior relative to a
partner service that is not supported by all possible bindings, and it may
happen that some bindings are invalid for a BPEL4WS process definition.
A BPEL4WS process is a reusable definition that can be deployed in
different ways and in different scenarios, while maintaining a uniform
application-level behavior across all of them. Note that the description of
the deployment of a BPEL4WS process is out of scope for this
specification.
The dependency on [WS-Addressing] is meant to avoid inventing a private
BPEL4WS mechanism for web service endpoint references—such
references are obviously a very general requirement in the usage of web
services.

4. What Changed from BPEL4WS 1.0
The BPEL4WS 1.1 specification is an enhancement of the BPEL4WS 1.0
specification [15]. The 1.1 version has five new authors who brought a
fresh viewpoint and deep industry experience. Their contributions are
reflected in a number of enhancements in this version.
The 1.1 version incorporates numerous corrections and clarifications
based on the feedback received on the 1.0 version. In addition, the 1.1
version differs from the 1.0 version in the following substantive ways.

4.1. Core Concepts Clarification

We believe that the two usage patterns of business protocol
description and executable business process description require a
common core of process description concepts. In the 1.1 version of
the specification we clearly separate the core concepts from the
extensions required specifically for the two usage patterns. The
main body of the specification defines the core concepts. The
Extensions for Executable Processes and the Extensions for
Business Protocols are defined in separate sections at the end of
the specification. The separation of core concepts from extensions
allows features required for specific usage patterns to be defined in
a composable manner. It is conceivable that further extensions will
be developed over time as the usage of the specification matures.

4.2. Terminology Changes
The following terminology changes have occurred
• Service Links are now called Partner Links
• Service References are now called Endpoint References
• Containers are now called Variables
The formal syntax has also been changed to reflect these
terminology changes, including the replacement of the current
partner element with a partnerLink element to reflect the fact that
such a link is a conversational interface rather than reflective of a
business relationship. A partner element reflective of a business
relationship is added as described in the next section.

4.3. Feature Changes
The following changes have been made:
• The terminate activity is now strictly limited to executable
processes.
• A new partner element is added to allow grouping of
Partner Links based on expected business enterprise relationships.
• Endpoint references (formerly service references) are now
defined as given in [WS-Addressing]
• Message Properties are now limited to only be simple types.
• Web service interactions in abstract processes are now
permitted to omit references to variables for inbound and outbound
message data.
• Opaque assignment in abstract processes may now target
Boolean variables, and variables of simple but unbounded types. In
the latter case the semantics requires creation of a unique value
similar to a GUID.
• The syntax for defining variables has been changed to use
three mutually exclusive attributes messagetype, type and element.
The first points to a WSDL message type definition. The second
points to an XML Schema simple type. The third points to an
XML Schema global element definition. This allows one to define
variables using something other than WSDL message types. Only

variables that are defined using messagetypes can be used as input
or output targets in messaging operations.
• The ability to provide an in-line WSDL message type has
been removed, since the vast majority of the uses of this feature
will be replaced by the usage of XML Schema simple types and
global elements.
• Correlation sets have now been added to the uniqueness
requirement so that it is not legal to have two web service
interactions outstanding if they have the same partner, port type,
operation and correlation set(s).
• In case of activity termination, the activities wait, reply and
invoke are added to receive as being instantly terminated rather
than being allowed to finish.
• The variable provided as the value of the faultVariable
attribute in a catch handler to hold fault data is now scoped to the
fault handler itself rather than being inherited from the associated
scope.
• Variables and correlation sets can now be associated with
local scopes rather than with the process as a whole. This permits
easier management of visibility and lifetime for variables and
repeated initiation of local correlation sets to allow multiple
correlated conversations during, e.g., iterative behavior.
• Event handlers can now be associated with scopes, to
permit a process or scope to be prepared to receive external events
and requests concurrently with the main activity of the process or
scope. This is especially helpful for events and requests that cannot
be “scheduled” relative to the main activity, but may occur at
unpredictable times.
• The Future Directions section has been dropped since this
version forms the starting point for a formal standards process,
which will define those directions.

5. Core Concepts and Usage Patterns
As noted in the introduction, we believe that the two usage patterns of
business protocol description and executable business process description
require a common core of process description concepts. In this
specification we clearly separate the core concepts from the extensions
required specifically for the two usage patterns. The BPEL4WS
specification is focused on defining the common core, and adds only the
essential extensions required for each usage pattern. These extensions are
described in separate sections (Extensions for Executable Processes and
Extensions for Business Protocols).
In a number of cases, the behavior of a process in a certain combination of
circumstances is undefined, e.g., when a variable is used before being
initialized. In the definition of the core concepts we simply note that the
semantics in such cases is not defined.

BPEL4WS takes it as a general principle that compliant implementations
MAY choose to perform static analysis to detect and reject process
definitions that may have undefined semantics. Such analysis is
necessarily pessimistic and therefore might in some cases prevent the use
of processes that would not, in fact, create situations with undefined
semantics, either in specific uses or in any use.
In the executable usage pattern for BPEL4WS, situations of undefined
semantics always result in standard faults in the BPEL4WS namespace.
These cases will be described as part of the Extensions for Executable
Processes in the specification. However, it is important to note that
BPEL4WS uses two standard internal faults for its core control semantics,
namely, bpws:forcedTermination and bpws:joinFailure. These are the only
two standard faults that play a role in the core concepts of BPEL4WS. Of
course, the occurrence of faults specified in WSDL portType definitions
during web service invocation is accounted for in the core concepts as well.

6. Defining a Business Process
6.1. Initial Example

Before describing the structure of business processes in detail, this
section presents a simple example of a BPEL4WS process for
handling a purchase order. The aim is to introduce the most basic
structures and some of the fundamental concepts of the language.
The operation of the process is very simple, and is represented in
the following figure. Dotted lines represent sequencing. Free
grouping of sequences represents concurrent sequences. Solid
arrows represent control links used for synchronization across
concurrent activities. Note that this is not meant to be a definitive
graphical notation for BPEL4WS processes. It is used here
informally as an aid to understanding.
On receiving the purchase order from a customer, the process
initiates three tasks concurrently: calculating the final price for the
order, selecting a shipper, and scheduling the production and
shipment for the order. While some of the processing can proceed
concurrently, there are control and data dependencies between the
three tasks. In particular, the shipping price is required to finalize
the price calculation, and the shipping date is required for the
complete fulfillment schedule. When the three tasks are completed,
invoice processing can proceed and the invoice is sent to the
customer.

Initial Example Diagram

The WSDL portType offered by the service to its customers
(purchaseOrderPT) is shown in the following WSDL document.
Other WSDL definitions required by the business process are
included in the same WSDL document for simplicity; in particular,
the portTypes for the Web Services providing price calculation,
shipping selection and scheduling, and production scheduling
functions are also defined there. Observe that there are no bindings
or service elements in the WSDL document. A BPEL4WS process
is defined "in the abstract" by referencing only the portTypes of
the services involved in the process, and not their possible
deployments. Defining business processes in this way allows the
reuse of business process definitions over multiple deployments of
compatible services.
The partner link types included at the bottom of the WSDL
document represent the interaction between the purchase order
service and each of the parties with which it interacts (see Partner
Link Types, Partner Links, and Endpoint References). Partner link
types can be used to represent dependencies between services,
regardless of whether a BPEL4WS business process is defined for
one or more of those services. Each partner link type defines up to
two "role" names, and lists the portTypes that each role must
support for the interaction to be carried out successfully. In this
example, two partner link types, "purchasingLT" and

"schedulingLT", list a single role because, in the corresponding
service interactions, one of the parties provides all the invoked
operations: The "purchasingLT" partner link represents the
connection between the process and the requesting customer,
where only the purchase order service needs to offers a service
operation ("sendPurchaseOrder"); the "schedulingLT" partner link
represents the interaction between the purchase order service and
the scheduling service, in which only operations of the latter are
invoked. The two other partner link types, "invoicingLT" and
"shippingLT", define two roles because both the user of the
invoice calculation and the user of the shipping service (the invoice
or the shipping schedule) must provide callback operations to
enable asynchronous notifications to be asynchronously sent
("invoiceCallbackPT" and "shippingCallbackPT" portTypes).
The business process for the order service is defined next. There
are four major sections in this process definition:
• The <variables> section defines the data variables used by
the process, providing their definitions in terms of WSDL message
types, XML Schema simple types, or XML Schema elements.
Variables allow processes to maintain state data and process
history based on messages exchanged.
• The <faultHandlers> section contains fault handlers
defining the activities that must be performed in response to faults
resulting from the invocation of the assessment and approval
services. In BPEL4WS, all faults, whether internal or resulting
from a service invocation, are identified by a qualified name. In
particular, each WSDL fault is identified in BPEL4WS by a
qualified name formed by the target namespace of the WSDL
document in which the relevant portType and fault are defined, and
the ncname of the fault. It is important to note, however, that
because WSDL 1.1 does not require that fault names be unique
within the namespace where the operation is defined, all faults
sharing a common name and defined in the same namespace are
indistinguishable. In spite of this serious WSDL limitation,
BPEL4WS provides a uniform naming model for faults, in the
expectation that future versions of WSDL will provide a better
fault-naming model.
• The rest of the process definition contains the description
of the normal behavior for handling a purchase request. The major
elements of this description are explained in the section following
the process definition.
12345678901234567890123456789012345678901234567890123
45678901234567890
 1 2 3 4 5
6

<process name="purchaseOrderProcess"
 targetNamespace="http://acme.com/ws-

bp/purchase"
 xmlns="http://schemas.xmlsoap.org/ws/2003/03/bu
siness-process/"
 xmlns:lns="http://manufacturing.org/wsdl/purcha
se">

<partnerLinks>
 <partnerLink name="purchasing"
 partnerLinkType="lns:purchasingLT"
 myRole="purchaseService"/>
 <partnerLink name="invoicing"
 partnerLinkType="lns:invoicingLT"
 myRole="invoiceRequester"
 partnerRole="invoiceService"/>
 <partnerLink name="shipping"
 partnerLinkType="lns:shippingLT"
 myRole="shippingRequester"
 partnerRole="shippingService"/>
 <partnerLink name="scheduling"
 partnerLinkType="lns:schedulingLT"
 partnerRole="schedulingService"/>
</partnerLinks>

<variables>
 <variable name="PO"
messageType="lns:POMessage"/>
 <variable name="Invoice"
messageType="lns:InvMessage"/>
 <variable name="POFault"
messageType="lns:orderFaultType"/>
 <variable name="shippingRequest"
messageType="lns:shippingRequestMessage"/>
 <variable name="shippingInfo"
messageType="lns:shippingInfoMessage"/>
 <variable name="shippingSchedule"
messageType="lns:scheduleMessage"/>
</variables>

<faultHandlers>
 <catch faultName="lns:cannotCompleteOrder"
faultVariable="POFault">
 <reply partnerLink="purchasing"
 portType="lns:purchaseOrderPT"
 operation="sendPurchaseOrder"
 variable="POFault"
 faultName="cannotCompleteOrder"/>
 </catch>
</faultHandlers>

<sequence>
 <receive partnerLink="purchasing"
 portType="lns:purchaseOrderPT"
 operation="sendPurchaseOrder"
 variable="PO">
 </receive>

 <flow>

 <links>
 <link name="ship-to-invoice"/>
 <link name="ship-to-scheduling"/>
 </links>
 <sequence>
 <assign>
 <copy>
 <from variable="PO"
part="customerInfo"/>
 <to variable="shippingRequest"
 part="customerInfo"/>
 </copy>
 </assign>
 <invoke partnerLink="shipping"
 portType="lns:shippingPT"
 operation="requestShipping"
 inputVariable="shippingRequest"
 outputVariable="shippingInfo">
 <source linkName="ship-to-invoice"/>
 </invoke>
 <receive partnerLink="shipping"
 portType="lns:shippingCallbackPT"
 operation="sendSchedule"
 variable="shippingSchedule">
 <source linkName="ship-to-scheduling"/>
 </receive>
 </sequence>
 <sequence>
 <invoke partnerLink="invoicing"
 portType="lns:computePricePT"
 operation="initiatePriceCalculation"
 inputVariable="PO">
 </invoke>
 <invoke partnerLink="invoicing"
 portType="lns:computePricePT"
 operation="sendShippingPrice"
 inputVariable="shippingInfo">
 <target linkName="ship-to-invoice"/>
 </invoke>
 <receive partnerLink="invoicing"
 portType="lns:invoiceCallbackPT"
 operation="sendInvoice"
 variable="Invoice"/>
 </sequence>
 <sequence>
 <invoke partnerLink="scheduling"
 portType="lns:schedulingPT"
 operation="requestProductionScheduling"
 inputVariable="PO">
 </invoke>
 <invoke partnerLink="scheduling"
 portType="lns:schedulingPT"
 operation="sendShippingSchedule"
 inputVariable="shippingSchedule">
 <target linkName="ship-to-scheduling"/>
 </invoke>
 </sequence>

 </flow>
 <reply partnerLink="purchasing"
 portType="lns:purchaseOrderPT"
 operation="sendPurchaseOrder"
 variable="Invoice"/>
 </sequence>
</process>

6.2. The Structure of a Business Process
This section provides a quick summary of the BPEL4WS syntax. It
provides only a brief overview; the details of each language
construct are described in the rest of this document.
The basic structure of the language is:
The top-level attributes are as follows:
• queryLanguage. This attribute specifies the XML query
language used for selection of nodes in assignment, property
definition, and other uses. The default for this attribute is XPath
1.0, represented by the URI of the XPath 1.0 specification:
http://www.w3.org/TR/1999/REC-xpath-19991116.
• expressionLanguage. This attribute specifies the expression
language used in the process. The default for this attribute is XPath
1.0, represented by the URI of the XPath 1.0 specification:
http://www.w3.org/TR/1999/REC-xpath-19991116.
• suppressJoinFailure. This attribute determines whether the
joinFailure fault will be suppressed for all activities in the process.
The effect of the attribute at the process level can be overridden by
an activity using a different value for the attribute. The default for
this attribute is "no".
• enableInstanceCompensation. This attribute determines
whether the process instance as a whole can be compensated by
platform-specific means. The default for this attribute is "no".
• abstractProcess. This attribute specifies whether the process
being defined is abstract (rather than executable). The default for
this attribute is "no".
The token "activity" can be any of the following:
• <receive>
• <invoke>
• <assign>
• <throw>
• <terminate>
• <wait>
• <empty>
• <sequence>
• <switch>
• <while>
• <pick>
• <flow>
• <scope>
• <compensate>

The syntax of each of these elements, except <terminate>, is
considered in the following paragraphs. Although <terminate> is
permitted as an interpretation of the token activity, it is only
available in executable processes and as such is defined in the
section on Extensions for Executable Processes .
The <receive> construct allows the business process to do a
blocking wait for a matching message to arrive.
The <reply> construct allows the business process to send a
message in reply to a message that was received through a
<receive>. The combination of a <receive> and a <reply> forms a
request-response operation on the WSDL portType for the process.
12345678901234567890123456789012345678901234567890123
45678901234567890
 1 2 3 4 5
6

<reply partnerLink="ncname" portType="qname"
operation="ncname"
 variable="ncname"? faultName="qname"?
 standard-attributes>
 standard-elements
 <correlations>?
 <correlation set="ncname"
initiate="yes|no"?>+
 </correlations>
</reply>

The <invoke> construct allows the business process to invoke a
one-way or requestresponse operation on a portType offered by a
partner.
12345678901234567890123456789012345678901234567890123
45678901234567890
 1 2 3 4 5
6

<invoke partnerLink="ncname" portType="qname"
operation="ncname"
 inputVariable="ncname"? outputVariable="ncname"?
 standard-attributes>
 standard-elements
 <correlations>?
 <correlation set="ncname" initiate="yes|no"?
 pattern="in|out|out-in"/>+
 </correlations>
 <catch faultName="qname"
faultVariable="ncname"?>*
 activity
 </catch>
 <catchAll>?
 activity
 </catchAll>
 <compensationHandler>?
 activity
 </compensationHandler>
</invoke>

The <assign> construct can be used to update the values of
variables with new data. An <assign> construct can contain any
number of elementary assignments. The syntax of the assignment
activity is:
12345678901234567890123456789012345678901234567890123
45678901234567890
 1 2 3 4 5
6

<assign standard-attributes>
 standard-elements
 <copy>+
 from-spec
 to-spec
 </copy>
</assign>

The <throw> construct generates a fault from inside the business
process.
12345678901234567890123456789012345678901234567890123
45678901234567890
 1 2 3 4 5
6

<throw faultName="qname" faultVariable="ncname"?
standard-attributes>
 standard-elements
</throw>

The <wait> construct allows you to wait for a given time period or
until a certain time has passed. Exactly one of the expiration
criteria must be specified.
12345678901234567890123456789012345678901234567890123
45678901234567890
 1 2 3 4 5
6

<wait (for="duration-expr" | until="deadline-expr")
standard-attributes>
 standard-elements
</wait>

The <empty> construct allows you to insert a "no-op" instruction
into a business process. This is useful for synchronization of
concurrent activities, for instance.
12345678901234567890123456789012345678901234567890123
45678901234567890
 1 2 3 4 5
6

<empty standard-attributes>
 standard-elements
</empty>

The <sequence> construct allows you to define a collection of
activities to be performed sequentially in lexical order.
12345678901234567890123456789012345678901234567890123
45678901234567890

 1 2 3 4 5
6

<sequence standard-attributes>
 standard-elements
 activity+
</sequence>

The <switch> construct allows you to select exactly one branch of
activity from a set of choices.
12345678901234567890123456789012345678901234567890123
45678901234567890
 1 2 3 4 5
6

<switch standard-attributes>
 standard-elements
 <case condition="bool-expr">+
 activity
 </case>
 <otherwise>?
 activity
 </otherwise>
</switch>

The <while> construct allows you to indicate that an activity is to
be repeated until a certain success criteria has been met.
12345678901234567890123456789012345678901234567890123
45678901234567890
 1 2 3 4 5
6

<while condition="bool-expr" standard-attributes>
 standard-elements
 activity
</while>

The <pick> construct allows you to block and wait for a suitable
message to arrive or for a time-out alarm to go off. When one of
these triggers occurs, the associated activity is performed and the
pick completes.
12345678901234567890123456789012345678901234567890123
45678901234567890
 1 2 3 4 5
6

<pick createInstance="yes|no"? standard-attributes>
 standard-elements
 <onMessage partnerLink="ncname" portType="qname"
 operation="ncname" variable="ncname"?>+
 <correlations>?
 <correlation set="ncname"
initiate="yes|no"?>+
 </correlations>
 activity
 </onMessage>
 <onAlarm (for="duration-expr" | until="deadline-
expr")>*

 activity
 </onAlarm>
</pick>

The <flow> construct allows you to specify one or more activities
to be performed concurrently. Links can be used within concurrent
activities to define arbitrary control structures.
12345678901234567890123456789012345678901234567890123
45678901234567890
 1 2 3 4 5
6

<flow standard-attributes>
 standard-elements
 <links>?
 <link name="ncname">+
 </links>
 activity+
</flow>

The <scope> construct allows you to define a nested activity with
its own associated variables, fault handlers, and compensation
handler.
12345678901234567890123456789012345678901234567890123
45678901234567890
 1 2 3 4 5
6

<scope variableAccessSerializable="yes|no" standard-
attributes>
 standard-elements
 <variables>?
 ... see above under <process> for syntax ...
 </variables>
 <correlationSets>?
 ... see above under <process> for syntax ...
 </correlationSets>
 <faultHandlers>?
 ... see above under <process> for syntax ...
 </faultHandlers>
 <compensationHandler>?
 ... see above under <process> for syntax ...
 </compensationHandler>
 <eventHandlers>?
 ...
 </eventHandlers>
 activity
</scope>

12345678901234567890123456789012345678901234567890123
45678901234567890
 1 2 3 4 5
6

The <compensate> construct is used to invoke compensation on an
inner scope that has already completed normally. This construct
can be invoked only from within a fault handler or another
compensation handler.

12345678901234567890123456789012345678901234567890123
45678901234567890
 1 2 3 4 5
6

<compensate scope="ncname"? standard-attributes>
 standard-elements
</compensate>

Note that the "standard-attributes" referred to above are:
12345678901234567890123456789012345678901234567890123
45678901234567890
 1 2 3 4 5
6

name="ncname"?
joinCondition="bool-expr"?
suppressJoinFailure="yes|no"?

where the default values are as follows:
• name. No default value (that is, unnamed)
• suppressJoinFailure. No
and that the "standard-elements" referred to above are:
12345678901234567890123456789012345678901234567890123
45678901234567890
 1 2 3 4 5
6

<target linkName="ncname"/>*
<source linkName="ncname" transitionCondition="bool-
expr"?/>*

6.3. Language Extensibility
BPEL4WS contains constructs that are generally sufficient for
expressing abstract and executable business processes. In some
cases, however, it might be necessary to “extend” the BPEL4WS
language with additional constructs from other XML namespaces.
BPEL4WS supports extensibility by allowing namespace-qualified
attributes to appear on any BPEL4WS element and by allowing
elements from other namespaces to appear within BPEL4WS
defined elements. This is allowed in the XML Schema
specifications for BPEL4WS.
Extensions MUST NOT change the semantics of any element or
attribute from the BPEL4WS namespace.

6.4. The Lifecycle of a Business Process
As noted in the introduction, the interaction model that is directly
supported by WSDL is essentially a stateless client-server model
of synchronous or uncorrelated asynchronous interactions.
BPEL4WS, builds on WSDL by assuming that all external
interactions of the business process occur through Web Service
operations. However, BPEL4WS business processes represent
stateful long-running interactions in which each interaction has a
beginning, defined behavior during its lifetime, and an end. For

example, in a supply chain, a seller's business process might offer a
service that begins an interaction by accepting a purchase order
through an input message, and then returns an acknowledgement to
the buyer if the order can be fulfilled. It might later send further
messages to the buyer, such as shipping notices and invoices. The
seller's business process remembers the state of each such purchase
order interaction separately from other similar interactions. This is
necessary because a buyer might be carrying on many
simultaneous purchase processes with the same seller. In short, a
BPEL4WS business process definition can be thought of as a
template for creating business process instances.
The creation of a process instance in BPEL4WS is always implicit;
activities that receive messages (that is, receive activities and
pick activities) can be annotated to indicate that the occurrence of
that activity causes a new instance of the business process to be
created. This is done by setting the createInstance attribute of
such an activity to "yes". When a message is received by such an
activity, an instance of the business process is created if it does not
already exist (see Providing Web Service Operations and
Pick).
To be instantiated, each business process must contain at least one
such "start activity." This must be an initial activity in the sense
that there is no basic activity that logically precedes it in the
behavior of the process.
If more than one start activity is enabled concurrently, then all such
activities must use at least one correlation set and must use the
same correlation sets (see Correlation and the Multiple Start
Activities example).
If exactly one start activity is expected to instantiate the process,
the use of correlation sets is unconstrained. This includes a pick
with multiple onMessage branches; each such branch can use
different correlation sets or no correlation sets.
A business process instance is terminated in one of the following
ways:
• When the activity that defines the behavior of the process
as a whole completes. In this case the termination is normal.
• When a process instance is explicitly terminated by a
terminate activity (see Terminating the Service Instance).
In this case the termination is abnormal.
• If a compensation handler is specified for the business
process as a whole (see Compensation Handlers), a business
process instance can be compensated after normal completion by
platform-specific means. This functionality is enabled by setting
the enableInstanceCompensation attribute of the process to
"yes".

The structure of the main processing section is defined by the outer
<sequence> element, which states that the three activities
contained inside are performed in order. The customer request is
received (<receive> element), then processed (inside a <flow>
section that enables concurrent behavior), and a reply message
with the final approval status of the request is sent back to the
customer (<reply>). Note that the <receive> and <reply> elements
are matched respectively to the <input> and <output> messages of
the "sendPurchaseOrder" operation invoked by the customer, while
the activities performed by the process between these elements
represent the actions taken in response to the customer request,
from the time the request is received to the time the response is
sent back (reply).
The example makes the implicit assumption that the customer
request can be processed in a reasonable amount of time, justifying
the requirement that the invoker wait for a synchronous response
(because this service is offered as a request-response operation).
When that assumption does not hold, the interaction with the
customer is better modeled as a pair of asynchronous message
exchanges. In that case, the "sendPurchaseOrder" operation is a
one-way operation and the asynchronous response is sent by
invoking a second one-way operation on a customer "callback"
interface. In addition to changing the signature of
"sendPurchaseOrder" and defining a new portType to represent the
customer callback interface, two modifications need to be made in
the preceding example to support an asynchronous response to the
customer. First, the partner link type "purchasingLT" that
represents the process-customer connection needs to include a
second role ("customer") listing the customer callback portType.
Second, the <reply> activity in the process needs to be replaced by
an <invoke> on the customer callback operation.
The processing taking place inside the <flow> element consists of
three <sequence> blocks running concurrently. The
synchronization dependencies between activities in the three
concurrent sequences are expressed by using "links" to connect
them. The links are defined inside the flow and are used to connect
a source activity to a target activity. (Note that each activity
declares itself as the source or target of a link by using the nested
<source> and <target> elements.) In the absence of links, the
activities nested directly inside a flow proceed concurrently. In the
example, however, the presence of two links introduces control
dependencies between the activities performed inside each
sequence. For example, while the price calculation can be started
immediately after the request is received, shipping price can only
be added to the invoice after the shipper information has been
obtained; this dependency is represented by the link (named "ship-
to-invoice") that connects the first call on the shipping provider

("requestShipping") with sending shipping information to the price
calculation service ("sendShippingPrice"). Likewise, shipping
scheduling information can only be sent to the manufacturing
scheduling service after it has been received from the shipper
service; thus the need for the second link ("ship-to-scheduling").
Observe that information is passed between the different activities
in an implicit way through the sharing of globally visible data
variables. In this example, the control dependencies represented by
links are related to corresponding data dependencies, in one case
on the availability of the shipper rates and in another on the
availability of a shipping schedule. The information is passed from
the activity that generates it to the activity that uses it by means of
two global data variables ("shippingInfo" and "shippingSchedule").
Certain operations can return faults, as defined in their WSDL
definitions. For simplicity, it is assumed here that the two
operations return the same fault ("cannotCompleteOrder"). When a
fault occurs, normal processing is terminated and control is
transferred to the corresponding fault handler, as defined in the
<faultHandlers> section. In this example the handler uses a
<reply> element to return a fault to the customer (note the
"faultName" attribute in the <reply> element).
Finally, it is important to observe how an assignment activity is
used to transfer information between data variables. The simple
assignments shown in this example transfer a message part from a
source variable to a message part in a target variable, but more
complex forms of assignments are also possible.

7. Partner Link Types, Partner Links,
and Endpoint References

A very important, if not the most important, use case for BPEL4WS will
be in describing cross-enterprise business interactions in which the
business processes of each enterprise interact through Web Service
interfaces with the processes of other enterprises. An important
requirement for realistic modeling of business processing in this
environment is the ability to model the required relationship with a partner
process. WSDL already describes the functionality of a service provided
by a partner, at both the abstract and concrete levels. The relationship of a
business process to a partner is typically peer-to-peer, requiring a two-way
dependency at the service level. In other words, a partner represents both a
consumer of a service provided by the business process and a provider of a
service to the business process. This is especially the case when the
interactions are based on asynchronous messaging rather than on remote
procedure calls. The notion of Partner links is used to directly model peer-
to-peer conversational partner relationships. Partner links define the shape
of a relationship with a partner by defining the message and port types
used in the interactions in both directions. However, the actual partner

service may be dynamically determined within the process. BPEL4WS
uses a notion of endpoint reference [WS-Addressing] to represent the
dynamic data required to describe a partner service endpoint.
It is important to emphasize that the notions of partner link and endpoint
reference used here are preliminary. The specification for these concepts
as they relate to Web Services is still evolving, and we expect normative
definitions for them to emerge in future. The BPEL4WS specification will
be updated to conform to the expected future standards.

7.1. Partner Link Types
A partner link type characterizes the conversational relationship
between two services by defining the "roles" played by each of the
services in the conversation and specifying the portType provided
by each service to receive messages within the context of the
conversation. The following example illustrates the basic syntax of
a partner link type declaration:
Each role specifies exactly one WSDL portType.
In the common case, portTypes of the two roles originate from
separate namespaces. However, in some cases, both roles of a
partner link type can be defined in terms of portTypes from the
same namespace. The latter situation occurs for partner link types
that define "callback" relationships between services.
The partner link type definition can be a separate artifact
independent of either service's WSDL document. Alternatively, the
partner link type definition can be placed within the WSDL
document defining the portTypes from which the different roles
are defined.
The extensibility mechanism of WSDL 1.1 is used to define
partnerLinkType as a new definition type to be placed as an
immediate child element of a <wsdl:definitions> element in all
cases. This allows reuse of the WSDL target namespace
specification and, more importantly, its import mechanism to
import portTypes. For cases where a partnerLinkType declaration
is linking the portTypes of two different services, the
partnerLinkType declaration can be placed in a separate WSDL
document (with its own targetNamespace).
The syntax for defining a partnerLinkType is:
This defines a partner link type in the namespace indicated by the
value of the "targetNamespace" attribute of the WSDL document
element. The portTypes identified within roles are referenced by
using QNames as for all top-level WSDL definitions.
Note that in some cases it can be meaningful to define a partner
link type containing exactly one role instead of two. That defines a
partner linking scenario where one service expresses a willingness
to link with any other service, without placing any requirements on
the other service.

Examples of partnerLinkType declarations are found in various
business process examples in this specification.

7.2. Partner Links
The services with which a business process interacts are modeled
as partner links in BPEL4WS. Each partner link is characterized by
a partnerLinkType. More than one partner link can be
characterized by the same partnerLinkType. For example, a certain
procurement process might use more than one vendor for its
transactions, but might use the same partnerLinkType for all
vendors.
Each partnerLink is named, and this name is used for all service
interactions via that partnerLink. This is critical, for example, in
correlating responses to different partnerLinks for simultaneous
requests of the same kind (see Invoking Web Service Operations
and Providing Web Service Operations).
The role of the business process itself is indicated by the attribute
myRole and the role of the partner is indicated by the attribute
partnerRole. In the degenerate case where a partnerLinkType has
only one role, one of these attributes is omitted as appropriate.
Note that the partnerLink declarations specify the static shape of
the relationships that the BPEL4WS process will employ in its
behavior. Before operations on a partner's service can be invoked
via a partnerLink, the binding and communication data for the
partner service must be available. The relevant information about a
partner service can be set as part of business process deployment.
This is outside the scope of BPEL4WS. However, it is also
possible to select and assign actual partner services dynamically,
and BPEL4WS provides the mechanisms to do so via assignment
of endpoint references. In fact, because the partners are likely to be
stateful, the service endpoint information needs to be extended
with instance-specific information. BPEL4WS allows the endpoint
references implicitly present in partnerLinks to be both extracted
and assigned dynamically, and also to be set more than once. See
Assignment for the mechanisms used for dynamic assignment of
endpoint references to partner services.

7.3. Business Partners
While a partner link represents a conversational relationship
between two partner processes, relationships with a business
partner in general require more than a single conversational
relationship to be established. To represent the capabilities
required from a business partner, BPEL4WS uses the partner
element. A partner is defined as a subset of the partner links of the
process, as shown in the example below.
Partner definitions are optional and need not cover all the partner
links defined in the process. From the process perspective a partner
definition introduces a constraint on the functionality that a

business partner is required to provide. In the example above, the
partner definition states that the same business partner
(“SellerShipper”) is required to provide the services associated
with the the roles of seller and shipper. Partner definitions MUST
NOT overlap, that is, a partner link MUST NOT appear in more
than one partner definition.
The syntax for partner definitions is given below:

7.4. Endpoint References
WSDL makes an important distinction between portTypes and
ports. PortTypes define abstract functionality by using abstract
messages. Ports provide actual access information, including
communication endpoints and (by using extension elements) other
deploymentrelated information such as public keys for encryption.
Bindings provide the glue between the two. While the user of a
service must be statically dependent on the abstract interface
defined by portTypes, some of the information contained in port
definitions can typically be discovered and used dynamically.
The fundamental use of endpoint references is to serve as the
mechanism for dynamic communication of port-specific data for
services. An endpoint reference makes it possible in BPEL4WS to
dynamically select a provider for a particular type of service and to
invoke their operations. BPEL4WS provides a general mechanism
for correlating messages to stateful instances of a service, and
therefore endpoint references that carry instance-neutral port
information are often sufficient. However, in general it is
necessary to carry additional instance-identification tokens in the
endpoint reference itself.
BPEL4WS uses the notion of endpoint reference defined in [WS-
Addressing]. Every partner role in a partnerLink in a BPEL4WS
process instance is assigned a unique endpoint reference in the
course of the deployment of the process or dynamically by an
activity within the process.

8. Message Properties
8.1. Motivation

The data in a message consists conceptually of two parts:
application data and protocolrelevant data, where the protocols can
be business protocols or infrastructure protocols providing higher
quality of service. An example of business protocol data is the
correlation tokens that are used in correlation sets (see
Correlation). Examples of infrastructure protocols are security,
transaction, and reliable messaging protocols. The business
protocol data is usually found embedded in the application-visible
message parts, whereas the infrastructure protocols almost always
add implicit extra parts to the message types to represent protocol
headers that are separate from application data. Such implicit parts

are often called message context because they relate to security
context, transaction context, and other similar middleware context
of the interaction. Business processes might need to gain access to
and manipulate both kinds of protocol-relevant data. The notion of
message properties is defined as a general way of naming and
representing distinguished data elements within a message,
whether in application-visible data or in message context. For a
full accounting of the service description aspects of infrastructure
protocols, it is necessary to define notions of service policies,
endpoint properties, and message context. This work is outside the
scope of BPEL4WS. Message properties are defined here in a
sufficiently general way to cover message context consisting of
implicit parts, but the use in this specification focuses on properties
embedded in application-visible data that is used in the definition
of business protocols and abstract business processes.

8.2. Defining Properties
A property definition creates a globally unique name and
associates it with an XML Schema simple type. The intent is not to
create a new type. The intent is to create a name that has greater
significance than the type itself. For example, a sequence number
can be an integer, but the integer type does not convey this
significance, whereas a globally named sequence-number property
does. Properties can occur anywhere in a message, including in the
message context.
A typical use for a property in BPEL4WS is to name a token for
correlation of service instances with messages. For example, a
social security number might be used to identify an individual
taxpayer in a long-running multiparty business process regarding a
tax matter. A social security number can appear in many different
message types, but in the context of a tax-related process it has a
specific significance as a taxpayer ID. Therefore a global name is
given to this use of the type by defining a property, as in the
following example:
In correlation, the property name must have global significance to
be of any use. Properties such as price, risk, response latency, and
so on, which are used in conditional behavior in a business process,
have similar global and public significance. It is likely that they
will be mapped to multiple messages, and therefore they need to be
globally named as in the case of correlation properties. Such
properties are essential, especially in abstract processes.
The WSDL extensibility mechanism is used to define properties so
that the target namespace and other useful aspects of WSDL are
available.
The BPEL4WS standard namespace,
"http//schemas.xmlsoap.org/ws/2003/03/business-

process/", is used for property definitions. The syntax for a
property definition is a new kind of WSDL definition as follows:
Properties used in business protocols are typically embedded in
application-visible message data. The notion of aliasing is
introduced to map a global property to a field in a specific message
part. The property name becomes an alias for the message part and
location, and can be used as such in Expressions and Assignment
in abstract business processes.
12345678901234567890123456789012345678901234567890123
45678901234567890
 1 2 3 4 5
6

<definitions name="properties"
 targetNamespace="http://example.com/properties.
wsdl"
 xmlns:tns="http://example.com/properties.wsdl"
 xmlns:txtyp="http://example.com/taxTypes.xsd"
 xmlns:txmsg="http://example.com/taxMessages.wsd
l"
 xmlns:bpws="http://schemas.xmlsoap.org/ws/2003/
03/business-process/"
 xmlns="http://schemas.xmlsoap.org/wsdl/">

 <!-- define a correlation property -->
 <bpws:property name="taxpayerNumber"
type="txtype:SSN"/>
 ...
 <bpws:propertyAlias
propertyName="tns:taxpayerNumber"
 messageType="txmsg:taxpayerInfo"
part="identification"
 query="/socialsecnumber"/>
 </bpws:propertyAlias>
</definitions>

The bpws:propertyAlias defines a globally named property
tns:taxpayerNumber as an alias for a location in the
identification part of the message type txmsg:taxpayerInfo.
The syntax for a propertyAlias definition is:
The interpretation of the message, part, and query attributes is the
same as in the corresponding from-spec in copy assignments (see
Assignment).

9. Data Handling
Business processes model stateful interactions. The state involved consists
of messages received and sent as well as other relevant data such as time-
out values. The maintenance of the state of a business process requires the
use of state variables, which are called variables in BPEL4WS.
Furthermore, the data from the state needs to be extracted and combined in
interesting ways to control the behavior of the process, which requires data
expressions. Finally, state update requires a notion of assignment.

BPEL4WS provides these features for XML data types and WSDL
message types. The XML family of standards in these areas is still
evolving, and using the process-level attributes for query and expression
languages provides for the incorporation of future standards.
The extensions required for abstract and executable processes are
concentrated in the datahandling feature set. Executable processes are
permitted to use the full power of data selection and assignment but are
not permitted to use nondeterministic values. Abstract processes are
restricted to limited manipulation of values contained in message
properties but are permitted to use nondeterministic values to reflect the
consequences of hidden private behavior. Detailed differences are
specified in the following sections.

9.1. Expressions
BPEL4WS uses several types of expressions. The kinds of
expressions used are as follows (relevant usage contexts are listed
in parentheses):
• Boolean-valued expressions (transition conditions, join
conditions, while condition, and switch cases)
• Duration-valued expressions ("for" attribute of onAlarm
and wait)
• General expressions (assignment)
BPEL4WS provides an extensible mechanism for the language
used in these expressions. The language is specified by the
expressionLanguage attribute of the process element.
Compliant implementations of the current version of BPEL4WS
MUST support the use of XPath 1.0 as the expression language.
XPath 1.0 is indicated by the default value of the
expressionLanguage attribute, which is:
http://www.w3.org/TR/1999/REC-xpath-19991116
Given an expression language, it must be possible to query data
from variables, to extract property values, and to query the status
of links from within expressions. This specification defines those
functions for XPath 1.0 only, and it is expected that other
expressionlanguage bindings will provide equivalent functionality.
The rest of this section is specific to XPath 1.0.
BPEL4WS introduces several extension functions to XPath's built-
in functions to enable XPath 1.0 expressions to access information
from the process. The extensions are defined in the standard
BPEL4WS namespace
http://schemas.xmlsoap.org/ws/2003/03/businessprocess/. The
prefix "bpws:" is associated with this namespace.
Any qualified names used within XPath expressions are resolved
by using namespace declarations currently in scope in the
BPEL4WS document at the location of the expression.
The following functions are defined by this specification:

This function extracts global property values from variables. The
first argument names the source variable for the data and the
second is the qualified name (QName) of the global property to
select from that variable (see Message Properties). If the given
property does not appear in any of the parts of the variable's
message type, then the semantics of the process is undefined. The
return value of this function is a node set containing the single
node representing the property. If the given property definition
selects a node set of a size other than one, then the semantics of the
process is undefined.
bpws:getLinkStatus ('linkName')

This function returns a Boolean indicating the status of the link
(see Link Semantics). If the status of the link is positive the value
is true, and if the status is negative the value is false. This function
MUST NOT be used anywhere except in a join condition. The
linkName argument MUST refer to the name of an incoming link
for the activity associated with the join condition. These
restrictions MUST be statically enforced.
These BPEL4WS-defined extension functions are available for use
within all XPath 1.0 expressions.
The syntax of XPath 1.0 expressions for BPEL4WS is considered
in the following paragraphs.

9.1.1. Boolean Expressions
These are expressions that conform to the XPath 1.0 Expr
production where the evaluation results in Boolean values.

9.1.2. Deadline-Valued Expressions
These are expressions that conform to the XPath 1.0 Expr
production where the evaluation results in values that are of
the XML Schema types dateTime or date. Note that XPath
1.0 is not XML Schema aware. As such, none of the built-
in functions of XPath 1.0 are capable of producing or
manipulating dateTime or date values. However, it is
possible to write a constant (literal) that conforms to XML
Schema definitions and use that as a deadline value or to
extract a field from a variable (part) of one of these types
and use that as a deadline value. XPath 1.0 will treat that
literal as a string literal, but the result can be interpreted as
a lexical representation of a dateTime or date value.

9.1.3. Duration-Valued Expressions
These are expressions that conform to the XPath 1.0 Expr
production where the evaluation results in values that are of
the XML Schema type duration. The preceding discussion
about XPath 1.0's XML Schema unawareness applies here
as well.

9.1.4. General Expressions

These are expressions that conform to the XPath 1.0 Expr
production where the evaluation results in any XPath value
type (string, number, or Boolean).
Expressions with operators are restricted as follows:
• All numeric values including arbitrary constants are
permitted with the equality or relational operators (<, <=,
=, !=, >=, >").
• Only equality operators (=, !=) are permitted when
used with values of string type including constants.
These restrictions reflect XPath 1.0 syntax and semantics.
Future alternative standards in this space are expected to
provide stronger type systems and therefore support more
nuanced constraints. The restrictions are motivated by the
fact that XPath general expressions are meant to be used to
perform business protocol-related computation such as
retry loops, line-item counts, and so on, that must be
transparent in the process definition. They are not meant to
provide arbitrary computation. This is the motivation for
the constraint that numerical expressions deal only with
integer computation, and for disallowing arbitrary string
manipulation through expressions.

9.2. Variables
Business processes specify stateful interactions involving the
exchange of messages between partners. The state of a business
process includes the messages that are exchanged as well as
intermediate data used in business logic and in composing
messages sent to partners.
Variables provide the means for holding messages that constitute
the state of a business process. The messages held are often those
that have been received from partners or are to be sent to partners.
Variables can also hold data that are needed for holding state
related to the process and never exchanged with partners.
The type of each variable may be a WSDL message type, an XML
Schema simple type or an XML Schema element. The syntax of
the variables declaration is:
The name of a variable should be unique within its own scope. If a
local variable has the same name and same
messageType/type/element as a variable defined in an enclosing
scope, the local variable will be used in local assignments and/or
getVariableProperty functions. It is not permitted to have variables
with same name but different messageType/type/element within an
enclosing scope hierarchy. The behavior of such variables is not
defined.
The messageType, type or element attributes are used to specify
the type of a variable. Exactly one of these attributes must be used.
Attribute messageType refers to a WSDL message type definition.

Attribute type refers to an XML Schema simple type. Attribute
element refers to an XML Schema element. An XML Schema
complex type must beassociated with an element to be used by a
BPEL4WS variable.
An example of a variable declaration using a message type
declared in a WSDL document with the targetNamespace
"http://example.com/orders":
Variables associated with message types can be specified as input
or output variables for invoke, receive, and reply activities (see
Invoking Web Service Operations and Providing Web Service
Operations). When an invoke operation returns a fault message,
this causes a fault in the current scope. The fault variable in the
corresponding fault handler is initialized with the fault message
received (see Scopes and Fault Handlers).
Each variable is declared within a scope and is said to belong to
that scope. Variables that belong to the global process scope are
called global variables. Variables may also belong to other, non-
global scopes, and such variables are called local variables. Each
variable is visible only in the scope in which it is defined and in all
scopes nested within the scope it belongs to. Thus, global variables
are visible throughout the process. It is possible to "hide" a
variable in an outer scope by declaring a variable with an identical
name in an inner scope. These rules are exactly analogous to those
in programming languages with lexical scoping of variables.
A global variable is in an uninitialized state at the beginning of a
process. A local variable is in an uninitialized state at the start of
the scope it belongs to. Note that non-global scopes in general start
and complete their behavior more than once in the lifetime of the
process instance they belong to. Variables can be initialized by a
variety of means including assignment and receiving a message.
Variables can be partially initialized with property assignment or
when some but not all parts in the message type of the variable are
assigned values.

9.3. Assignment
Copying data from one variable to another is a common task
within a business process. The assign activity can be used to copy
data from one variable to another, as well as to construct and insert
new data using expressions. The use of expressions is primarily
motivated by the need to perform simple computation (such as
incrementing sequence numbers) that is required for describing
business protocol behavior. Expressions operate on message
selections, properties, and literal constants to produce a new value
for a variable property or selection. Finally, this activity can also
be used to copy endpoint references to and from partner links.
The assign assign contains one or more elementary assignments.

The assign activity copies a type-compatible value from the source
("from-spec") to the destination ("to-spec"). The from-spec
MUST be one of the following forms except for the opaque form
available in abstract processes:
<from variable="ncname" part="ncname"?/>
<from partnerLink="ncname"
endpointReference="myRole|partnerRole"/>
<from variable="ncname" property="qname"/>
<from expression="general-expr"/>
<from> ... literal value ... </from>

The to-spec MUST be one of the following forms:
<to variable="ncname" part="ncname"?/>
<to partnerLink="ncname"/>
<to variable="ncname" property="qname"/>

In the first from-spec and to-spec variants the variable attribute
provides the name of a variable. If the type of the variable is a
WSDL messge type the optional part attribute MAY be used to
provide the name of a part within that variable. When the variable
is defined using XML Schema simple type or element, the part
attribute MUST NOT be used.
The second from-spec and to-spec variants allow dynamic
manipulation of the endpoint references associated with partner
links. The value of the partnerLink attribute is the name of a
partnerLink declared in the process. In the case of from-specs, the
role must also be specified because a process might need to
communicate an endpoint reference corresponding to either its own
role or the partner's role within the partnerLink. The value
“myRole” means that the endpoint reference of the process with
respect to that partnerLink is the source, while the value
“partnerRole” means that the partner’s endpoint reference for the
partnerLink is the source. For the to-spec, the assignment is only
possible to the partnerRole, hence there is no need to specify the
role. The type of the value used in partnerLink-style from/to-specs
is always an endpoint reference (see Partner Link Types, Partner
Links, and Endpoint References).
The third from-spec and to-spec variants allow explicit
manipulation of message properties (see Message Properties)
occurring in variables. The property forms are especially useful for
abstract processes, because they provide a way to clearly define
how distinguished data elements in messages are being used.
The fourth ("expression") from-spec variant allows processes to
perform simple computations on properties and variables (for
example, increment a sequence number).
The fifth from-spec variant allows a literal value to be given as
the source value to assign to a destination. The type of the literal
value MUST be the type of the destination (to-spec). The type of
the literal value MAY be optionally indicated inline with the value
by using XML Schema's instance type mechanism (xsi:type).

9.3.1. Type Compatibility in Assignment
For an assignment to be valid, the data referred to by the
from and to specifications MUST be of compatible types.
The following points make this precise:
• The from-spec is a variable of a WSDL message
type and the to-spec is a variable of a WSDL message type.
In this case both variables MUST be of the same message
type, where two message types are said to be equal if their
qualified names are the same.
• In all other cases, the types of the source and
destination are XML Schema types or elements, and the
constraint is that the source value MUST possess the
element or type associated with the destination. Note that
this does not require the types associated with the source
and destination to be the same. In particular, the source
type MAY be a subtype of the destination type. In the case
of variables defined by reference to an element, moreover,
both the source and the target MUST be the same element.
The semantics of a process in which any of the matching
constraints above is violated is undefined.

9.3.2. Assignment Example
The example assumes the following complex type
definition in the namespace
"http://tempuri.org/bpws/example":
Assume that the following WSDL message definition exists
for the same target namespace:
<message name="person"
xmlns:x="http://tempuri.org/bpws/example">
 <part name="full-name" type="xsd:string"/>
 <part name="address" element="x:address"/>
</message>

Also assume the following BPEL4WS variable declarations:
<variable name="c1" messageType="x:person"/>
<variable name="c2" messageType="x:person"/>
<variable name="c3" element="x:address"/>

The example illustrates copying one variable to another as
well as copying a variable part to a variable of compatible
element type:
<assign>
 <copy>
 <from variable="c1"/>
 <to variable="c2"/>
 </copy>
 <copy>
 <from variable="c1" part =
“address”/>
 <to variable="c3"/>
 </copy>
</assign>

10. Correlation

The information provided so far suggests that the target for messages that
are delivered to a business process service is the WSDL port of the
recipient service. This is an illusion because, by their very nature, stateful
business processes are instantiated to act in accordance with the history
of an extended interaction. Therefore, messages sent to such processes
need to be delivered not only to the correct destination port, but also to the
correct instance of the business process that provides the port. The
infrastructure hosting the process must do this in a generic manner, to
avoid burdening every process implementation with the need to implement
a custom mechanism for instance routing. Messages, which create a new
business process instance, are a special case, as described in The
Lifecycle of a Business Process.
In the object-oriented world, such stateful interactions are mediated by
object references, which intrinsically provide the ability to reach a specific
object (instance) with the right state and history for the interaction. This
works reasonably well in tightly coupled implementations where a
dependency on the structure of the implementation is normal. In the
loosely coupled world of Web Services, the use of such references would
create a fragile web of implementation dependencies that would not
survive the independent evolution of business process implementation
details at each business partner. In this world, the answer is to rely on the
business data and communication protocol headers that define the
wirelevel contract between partners and to avoid the use of
implementation-specific tokens for instance routing whenever possible.
Consider the usual supply-chain situation where a buyer sends a purchase
order to a seller. Suppose that the buyer and seller have a stable business
relationship and are statically configured to send documents related to the
purchasing interaction to the URLs associated with the relevant WSDL
service ports. The seller needs to asynchronously return an
acknowledgement for the order, and the acknowledgement must be routed
to the correct business process instance at the buyer. The obvious and
standard mechanism to do this is to carry a business token in the order
message (such as a purchase order number) that is copied into the
acknowledgement for correlation. The token can be in the message
envelope in a header or in the business document (purchase order) itself.
In either case, the exact location and type of the token in the relevant
messages is fixed and instance independent. Only the value of the token is
instance dependent. Therefore, the structure and position of the correlation
tokens in each message can be expressed declaratively in the business
process description. The BPEL4WS notion of correlation set, described in
the following section, provides this feature. The declarative information
allows a BPEL4WS-compliant infrastructure to use correlation tokens to
provide instance routing automatically.
The declarative specification of correlation relies on declarative properties
of messages. A property is simply a "field" within a message identified by
a query—by default the query language is XPath 1.0. This is only possible
when the type of the message part or binding element is described by

using an XML Schema. The use of correlation tokens and endpoint
references is restricted to message parts described in this way. To be clear,
the actual wire format of such types can still be non-XML, for example,
EDI flat files, based on different bindings for port types.

10.1. Message Correlation
During its lifetime, a business process instance typically holds one
or more conversations with partners involved in its work.
Conversations may be based on sophisticated transport
infrastructure that correlates the messages involved in a
conversation by using some form of conversation identity and
routes them automatically to the correct service instance without
the need for any annotation within the business process. However,
in many cases correlated conversations involve more than two
parties or use lightweight transport infrastructure with correlation
tokens embedded directly in the application data being exchanged.
In such cases, it is often necessary to provide additional
application-level mechanisms to match messages and
conversations with the business process instances for which they
are intended.
Correlation patterns can become quite complex. The use of a
particular set of correlation tokens does not, in general, span the
entire interaction between a service instance and a partner
(instance), but spans a part of the interaction. Correlated exchanges
may nest and overlap, and messages may carry several sets of
correlation tokens. For example, a buyer might start a correlated
exchange with a seller by sending a purchase order (PO) and using
a PO number embedded in the PO document as the correlation
token. The PO number is used in the PO acknowledgement by the
seller. The seller might later send an invoice that carries the PO
number, to correlate it with the PO, and also carries an invoice
number so that future payment-related messages need to carry only
the invoice number as the correlation token. The invoice message
thus carries two separate correlation tokens and participates in two
overlapping correlated exchanges.
BPEL4WS addresses correlation scenarios by providing a
declarative mechanism to specify correlated groups of operations
within a service instance. A set of correlation tokens is defined as a
set of properties shared by all messages in the correlated group.
Such a set of properties is called a correlation set.
Correlation sets are declared within scopes and associated with
them in a manner that is analogous to variable declarations. Each
correlation set is declared within a scope and is said to belong to
that scope. Correlation sets that belong to the global process scope
are called global correlation sets. Correlation sets may also belong
to other, non-global scopes, and such correlation sets are called
local correlation sets. Each correlation set is only visible in the

scope in which it is defined and in all scopes nested within the
scope it belongs to. Thus, global correlation sets are visible
throughout the process. It is possible to "hide" a correlation set in
an outer scope by declaring a correlation set with an identical name
in an inner scope.
A global correlation set is in an uninitiated state at the beginning of
a process. A local correlation set is in an uninitiated state at the
start of the scope it belongs to. Note that non-global scopes in
general start and complete their behavior more than once in the
lifetime of the process instance they belong to.
Correlation sets resemble late-bound constants rather than
variables in their semantics. The binding of a correlation set is
triggered by a specially marked message send or receive operation.
A correlation set can be initiated only once during the lifetime of
the scope it belongs to. Thus, a global correlation set can only be
initiated at most once during the lifetime of the process instance.
Its value, once initiated, can be thought of as an alias for the
identity of the business process instance. A local correlation set is
available for binding each time the corresponding scope starts, but
once initiated must retain its value until the scope completes.
In multiparty business protocols, each participant process in a
correlated message exchange acts either as the initiator or as a
follower of the exchange. The initiator process sends the first
message (as part of an operation invocation) that starts the
conversation, and therefore defines the values of the properties in
the correlation set that tag the conversation. All other participants
are followers that bind their correlation sets in the conversation by
receiving an incoming message that provides the values of the
properties in the correlation set. Both initiator and followers must
mark the first activity in their respective groups as the activity that
binds the correlation set.

10.2. Defining and Using Correlation Sets
The examples in this section show correlation being used on
almost every messaging activity (receive, reply, and invoke). This
is because BPEL4WS does not assume the use of any sophisticated
conversational transport protocols for messaging. In cases where
such protocols are used, the explicit use of correlation in
BPEL4WS can be reduced to those activities that establish the
conversational connections.
Each correlation set in BPEL4WS is a named group of properties
that, taken together, serve to define a way of identifying an
application-level conversation within a business protocol instance.
A given message can carry multiple correlation sets. After a
correlation set is initiated, the values of the properties for a
correlation set must be identical for all the messages in all the
operations that carry the correlation set and occur within the

corresponding scope until its completion. The semantics of a
process in which this consistency constraint is violated is
undefined. Similarly undefined is the semantics of a process in
which an activity with the initiate attribute set to no attempts to
use a correlation set that has not been previously initiated.
As the following examples illustrate, a correlation set is initiated
when the activity within which it is used applies the attribute
initiate="yes" to the set.
Following is an extended example of correlation. It begins by
defining four message properties: customerID, orderNumber,
vendorID and invoiceNumber. All of these properties are defined
as part of the "http://example.com/supplyCorrelation.wsdl"
namespace defined by the document.
<definitions name="properties"
 targetNamespace="http://example.com/supplyCorre
lation.wsdl"
 xmlns:tns="http://example.com/supplyCorrelation
.wsdl"
 xmlns:bpws="http://schemas.xmlsoap.org/ws/2003/
03/business-process/"
 xmlns="http://schemas.xmlsoap.org/wsdl/">

 <!-- define correlation properties -->

 <bpws:property name="customerID"
type="xsd:string"/>
 <bpws:property name="orderNumber"
type="xsd:int"/>
 <bpws:property name="vendorID"
type="xsd:string"/>
 <bpws:property name="invoiceNumber"
type="xsd:int"/>
</definitions>

Note that these properties are global names with known (simple)
XMLSchema types. They are abstract in the sense that their
occurrence in messages needs to be separately specified (see
Message Properties). The example continues by defining
purchase order and invoice messages and by using the concept of
aliasing to map the abstract properties to fields within the message
data identified by selection.
<definitions name="correlatedMessages"
 targetNamespace="http://example.com/supplyMessa
ges.wsdl"
 xmlns:tns="http://example.com/supplyMessages.ws
dl"
 xmlns:cor="http://example.com/supplyCorrelation
.wsdl"
 xmlns:bpws="http://schemas.xmlsoap.org/ws/2003/
03/business-process/"
 xmlns="http://schemas.xmlsoap.org/wsdl/">

<!—define schema types for PO and invoice information

-->
<types>
 <xsd:schema>
 <xsd:complexType name="PurchaseOrder">
 <xsd:element name="CID"
type="xsd:string"/>
 <xsd:element name="order"
type="xsd:int"/>
 ...
 </xsd:complexType>
 <xsd:complexType name="PurchaseOrderResponse">
 <xsd:element name="CID"
type="xsd:string"/>
 <xsd:element name="order"
type="xsd:int"/>
 ...
 </xsd:complexType>
 <xsd:complexType name="PurchaseOrderReject">
 <xsd:element name="CID"
type="xsd:string"/>
 <xsd:element name="order"
type="xsd:int"/>
 <xsd:element name="reason"
type="xsd:string"/>
 ...
 </xsd:complexType>
 <xsd:complexType name="Invoice">
 <xsd:element name="VID"
type="xsd:string"/>
 <xsd:element name="invNum"
type="xsd:int"/>
 </xsd:complexType>
 </xsd:schema>
</types>
<message name="POMessage">
 <part name="PO" type="tns:PurchaseOrder"/>
</message>
<message name="POResponse">
 <part name="RSP"
type="tns:PurchaseOrderResponse"/>
</message>
<message name="POReject">
 <part name="RJCT"
type="tns:PurchaseOrderReject"/>
</message>
<message name="InvMessage">
 <part name="IVC" type="tns:Invoice"/>
</message>
<bpws:propertyAlias propertyName="cor:customerID"
 messageType="tns:POMessage" part="PO"
 query="/PO/CID"/>
<bpws:propertyAlias propertyName="cor:orderNumber"
 messageType="tns:POMessage" part="PO"
 query="/PO/Order"/>
<bpws:propertyAlias propertyName="cor:vendorID"
 messageType="tns:InvMessage" part="IVC"
 query="/IVC/VID"/>

<bpws:propertyAlias propertyName="cor:invoiceNumber"
 messageType="tns:InvMessage" part="IVC"
 query="/IVC/InvNum"/>
 ...
</definitions>

Finally, the portType used is defined, in a separate WSDL
document.
<definitions name="purchasingPortType"
 targetNamespace="http://example.com/puchasing.w
sdl"
 xmlns:smsg="http://example.com/supplyMessages.w
sdl"
 xmlns="http://schemas.xmlsoap.org/wsdl/">
 <portType name="PurchasingPT">
 <operation name="SyncPurchase">
 <input message="smsg:POMessage"/>
 <output message="smsg:POResponse"/>
 <fault name="tns:RejectPO"
message="smsg:POReject"/>
 </operation>
 <operation name="AsyncPurchase">
 <input message="smsg:POMessage"/>
 </operation>
 </portType>
 <portType name="BuyerPT">
 <operation name="AsyncPurchaseResponse">
 <input message="smsg:POResponse"/>
 <fault name="tns:RejectPO"
message="smsg:POReject"/>
 </operation>
 <operation name="AsyncPurchaseReject">
 <input message="smsg:POReject"/>
 </operation>
 </portType>
</definitions>

Both the properties and their mapping to purchase order and
invoice messages will be used in the following correlation
examples.
<correlationSets
 xmlns:cor="http://example.com/supplyCorrelation
.wsdl">

 <!-- Order numbers are particular to a customer,
 this set is carried in application data -
->
 <correlationSet name="PurchaseOrder"
 properties="cor:customerID
cor:orderNumber"/>
 <!-- Invoice numbers are particular to a vendor,
 this set is carried in application data -
->
 <correlationSet name="Invoice"
 properties="cor:vendorID
cor:invoiceNumber"/>
</correlationSets>

Correlation set names are used in invoke, receive, and reply
activities (see Invoking Web Service Operations and Providing
Web Service Operations), in the onMessage branches of pick
activities, and in the onEvent variant of event handlers (see Pick
and Message Events). These sets are used to indicate which
correlation sets (i.e., the corresponding property sets) occur in the
messages being sent and received. The initiate attribute is used
to indicate whether the set is being initiated. When the attribute is
set to "yes" the set is initiated with the values of the properties
occurring in the message being sent or received. Finally, in the
case of invoke, when the operation invoked is synchronous
request/response, a pattern attribute is used to indicate whether
the correlation applies to the outbound (request) message, the
inbound (response) message, or both. These ideas are explained in
more detail in the context of the use of correlation in the rest of this
example.
A message can carry the tokens of one or more correlation sets.
The first example shows an interaction in which a purchase order
is received in a one-way inbound request and a confirmation
including an invoice is sent in the asynchronous response. The
PurchaseOrder correlationSet is used in both activities so that the
asynchronous response can be correlated to the request at the buyer.
The receive activity initiates the PurchaseOrder correlationSet.
The buyer is therefore the initiator and the receiving business
process is a follower for this correlationSet. The invoke activity
sending the asynchronous response also initiates a new
correlationSet Invoice. The business process is the initiator of this
correlated exchange and the buyer is a follower. The response
message is thus a part of two separate conversations, and forms the
bridge between them.
In the following, the prefix SP: represents the namespace
"http://example.com/puchasing.wsdl".
Alternatively, the response might have been a rejection (such as an
"out-of-stock" message), which in this case terminates the
conversation correlated by the correlationSet PurchaseOrder
without starting a new one correlated with Invoice. Note that the
initiate attribute is missing. It therefore has the default value of
"no".
<invoke partnerLink="Buyer" portType="SP:BuyerPT"
 operation="AsyncPurchaseReject"
inputVariable="POReject">

 <correlations>
 <correlation set="PurchaseOrder"
pattern="out">
 </correlations>
</invoke>

Deleted

The use of correlation with synchronous Web Service invocation is
illustrated by the alternative synchronous purchasing operation
used by an invoke activity used in the buyer's business process.
<invoke partnerLink="Seller"
portType="SP:PurchasingPT"
 operation="SyncPurchase"
 inputVariable="sendPO"
 outputVariable="getResponse">

 <correlations>
 <correlation set="PurchaseOrder"
initiate="yes" pattern="out">
 <correlation set="Invoice" initiate="yes"
pattern="in">
 </correlations>

 <catch faultName="SP:RejectPO"
faultVariable="POReject">
 <!-- handle the fault -->
 </catch>
</invoke>

Note that an invoke consists of two messages: an outgoing request
message and an incoming reply message. The correlation sets
applicable to each message must be separately considered because
they can be different. In this case the PurchaseOrder correlation
applies to the outgoing request that initiates it, while the Invoice
correlation applies to the incoming reply and is initiated by the
reply. Because the PurchaseOrder correlation is initiated by an
outgoing message, the buyer is the initiator of that correlation but a
follower of the Invoice correlation because the values of the
correlation properties for Invoice are initiated by the seller in the
reply received by the buyer.

11. Basic Activities
11.1. Standard Attributes for Each Activity

Each activity has optional standard attributes: a name, a join
condition, and an indicator whether a join fault should be
suppressed if it occurs. A join condition is used to specify
requirements about concurrent paths reaching at an activity. See
Flow for a full discussion of the last two attributes. The default
value of suppressJoinFailure is no.
The value of the joinCondition attribute is a Boolean-valued
expression in the expression language indicated for this document
(see Expressions). The default value of the join condition for the
default expression language XPath is the logical OR of the link
status of all incoming links of this activity.

11.2. Standard Elements for Each Activity
Each BPEL4WS activity has optional nested standard elements
<source> and <target>. The use of these elements is required for
establishing synchronization relationships through links (see Flow).

Each link is defined independently and given a name. The link
name is used as value of the linkName attribute of the <source>
element. An activity MAY declare itself to be the source of one or
more links by including one or more <source> elements. Each
<source> element MUST use a distinct link name. Similarly, an
activity MAY declare itself to be the target of one or more links by
including one or more <target> elements. Each <source> element
associated with a given activity MUST use a link name distinct
from all other <source> elements at that activity. Each <target>
element associated with a given activity MUST use a link name
distinct from all other <target> elements at that activity. Each
<source> element MAY optionally specify a transition condition
that functions as a guard for following this specified link (see
Flow). If the transition condition is omitted, it is deemed to be
present with the constant value true.

11.3. Invoking Web Service Operations
Web Services provided by partners (see Partner Link Types,
Partner Links, and Endpoint References) can be used to
perform work in a BPEL4WS business process. Invoking an
operation on such a service is a basic activity. Recall that such an
operation can be a synchronous request/response or an
asynchronous one-way operation. BPEL4WS uses the same basic
syntax for both with some additional options for the synchronous
case.
An asynchronous invocation requires only the input variable of the
operation because it does not expect a response as part of the
operation (see Providing Web Service Operations). A
synchronous invocation requires both an input variable and an
output variable. One or more correlation sets can be specified to
correlate the business process instance with a stateful service at the
partner’s side (see Correlation). However, these attributes are
both syntactically optional since they are absolutely required only
in executable processes.
In the case of a synchronous invocation, the operation might return
a WSDL fault message. This results in a BPEL4WS fault. Such a
fault can be caught locally by the activity, and in this case the
specified activity will be performed. If a fault is not caught locally
by the activity it is thrown to the scope that encloses the activity
(see Scopes and Fault Handlers).
Note that a WSDL fault is identified in BPEL4WS by a qualified
name formed by the target namespace of the corresponding
portType and the fault name. This uniform naming mechanism
must be followed even though it does not accurately match
WSDL’s faultnaming model. Because WSDL does not require that
fault names be unique within the namespace where the service
operation is defined, all faults sharing a common name and defined

in the same namespace are indistinguishable in BPEL4WS. In
WSDL 1.1 it is necessary to specify a portType name, an operation
name, and the fault name to uniquely identify a fault. This limits
the ability to use fault-handling mechanisms to deal with
invocation faults. This is an important shortcoming of the WSDL
fault model that will be removed in future versions of WSDL.
Finally, an activity can be associated with another activity that acts
as its compensation action. This compensation handler can be
invoked either explicitly or by the default compensation handler of
the enclosing scope (see Scopes and Compensation Handlers).
Semantically, the specification of local fault and/or compensation
handlers is equivalent to the presence of an implicit scope
immediately enclosing the activity and providing those handlers.
The name of such an implicit scope is always the same as the name
of the activity it encloses.
See Correlation for an explanation of the correlation semantics.
The following example shows an invocation with a nested
compensation handler. Other examples are shown throughout the
specification.
<invoke partnerLink="Seller" portType="SP:Purchasing"
 operation="SyncPurchase"
 inputVariable="sendPO"
 outputVariable="getResponse">
 <compensationHandler>
 <invoke partnerLink="Seller"
portType="SP:Purchasing"
 operation="CancelPurchase"
 inputVariable="getResponse"
 outputVariable="getConfirmation">
 </compensationHandler>
</invoke>

11.4. Providing Web Service Operations
A business process provides services to its partners through receive
activities and corresponding reply activities. A receive activity
specifies the partner link it expects to receive from, and the port
type and operation that it expects the partner to invoke. In addition,
it may specify a variable that is to be used to receive the message
data received. However, this attribute is syntactically optional
since it is absolutely required only in executable processes.
In addition, receive activities play a role in the lifecycle of a
business process. The only way to instantiate a business process in
BPEL4WS is to annotate a receive activity with the
createInstance attribute set to "yes" (see Pick for a variant). The
default value of this attribute is "no". A receive activity annotated
in this way MUST be an initial activity in the process, that is, the
only other basic activities may potentially be performed prior to or
simultaneously with such a receive activity MUST be similarly
annotated receive activities.

It is permissible to have the createInstance attribute set to "yes"
for a set of concurrent initial activities. In this case the intent is to
express the possibility that any one of a set of required inbound
messages can create the process instance because the order in
which these messages arrive cannot be predicted. All such
receive activities MUST use the same correlation sets (see
Correlation). Compliant implementations MUST ensure that only
one of the inbound messages carrying the same correlation set
tokens actually instantiates the business process (usually the first
one to arrive, but this is implementation dependent). The other
incoming messages in the concurrent initial set MUST be delivered
to the corresponding receive activities in the already created
instance.
A business process instance MUST NOT simultaneously enable
two or more receive activities for the same partnerLink, portType,
operation and correlation set(s). Note that receive is a blocking
activity in the sense that it will not complete until a matching
message is received by the process instance. The semantics of a
process in which two or more receive actions for the same
partnerLink, portType, operation and correlation set(s) may be
simultaneously enabled is undefined. For the purposes of this
constraint, an onMessage clause in a pick and an onEvent event
handler are equivalent to a receive (see Pick and Message
Events).
A reply activity is used to send a response to a request previously
accepted through a receive activity. Such responses are only
meaningful for synchronous interactions. An asynchronous
response is always sent by invoking the corresponding one-way
operation on the partner link. A reply activity may specify a
variable that contains the message data to be sent in reply.
However, this attribute is syntactically optional since it is
absolutely required only in executable processes.
The correlation between a request and the corresponding reply is
based on the constraint that more than one outstanding
synchronous request from a specific partner link for a particular
portType, operation and correlation set(s) MUST NOT be
outstanding simultaneously. The semantics of a process in which
this constraint is violated is undefined. For the purposes of this
constraint, an onMessage clause in a pick is equivalent to a
receive (see Pick). Moreover, a reply activity must always be
preceded by a receive activity for the same partner link, portType
and (request/response) operation, such that no reply has been sent
for that receive activity. The semantics of a process in which this
constraint is violated is undefined.
Note that the <reply> activity corresponding to a given request has
two potential forms. If the response to the request is normal, the

Deleted

faultName attribute is not used and the variable attribute, when
present, will indicate a variable of the normal response message
type. If, on the other hand, the response indicates a fault, the
faultName attribute is used and the variable attribute, when
present, will indicate a variable of the message type for the
corresponding fault.

11.5. Updating Variable Contents
Variable update occurs through the assignment activity, which is
described in Assignment.

11.6. Signaling Faults
The throw activity can be used when a business process needs to
signal an internal fault explicitly. Every fault is required to have a
globally unique QName. The throw activity is required to provide
such a name for the fault and can optionally provide a variable of
data that provides further information about the fault. A fault
handler can use such data to analyze and handle the fault and also
to populate any fault messages that need to be sent to other
services.
BPEL4WS does not require fault names to be defined prior to their
use in a throw element. An application or process-specific fault
name can be directly used by using an appropriate QName as the
value of the faultName attribute and providing a variable with the
fault data if required. This provides a very lightweight mechanism
to introduce application-specific faults.
A simple example of a throw activity that does not provide a
variable of fault data is:
<throw xmlns:FLT="http://example.com/faults"
faultName="FLT:OutOfStock"/>

11.7. Waiting
The wait activity allows a business process to specify a delay for a
certain period of time or until a certain deadline is reached (see
Expressions for the grammar of duration expressions and deadline
expressions).
A typical use of this activity is to invoke an operation at a certain
time (in this case a constant, but more typically an expression
dependent on process state):
<sequence>
 <wait until="'2002-12-24T18:00+01:00'"/>
 <invoke partnerLink="CallServer"
portType="AutomaticPhoneCall"
 operation="TextToSpeech"
 inputVariable="seasonalGreeting">
 </invoke>
</sequence>

11.8. Doing Nothing
There is often a need to use an activity that does nothing, for
example when a fault needs to be caught and suppressed. The

empty activity is used for this purpose. The syntax is obvious and
minimal.

12. Structured Activities
Structured activities prescribe the order in which a collection of activities
take place. They describe how a business process is created by composing
the basic activities it performs into structures that express the control
patterns, data flow, handling of faults and external events, and
coordination of message exchanges between process instances involved in
a business protocol.
The structured activities of BPEL4WS include:
• Ordinary sequential control between activities is provided by
sequence, switch, and while.
• Nondeterministic choice based on external events is provided by
pick.

The set of structured activities in BPEL4WS is not intended
to be the minimal required set. There are cases where one
activity can replace another. For example, the sequence
activity, used to structure sequential processing, may be
emulated by a properly configured flow with additional
links. The purpose in providing what are, strictly speaking,
redundant activities is to make it easier for BPEL
programmers to both read and write BPEL programs by making
available familiar, if functionally redundant, programming
constructs.

Structured activities can be used recursively in the usual way. A key point
to understand is that structured activities can be nested and combined in
arbitrary ways. This provides a somewhat unusual but very attractive free
blending of the graph-like and program-like control regimes that have
traditionally been seen as alternatives rather than orthogonal composable
features. A simple example of such blended usage is found in the Initial
Example.
It is important to emphasize that the word activity is used throughout
the following to include both basic and structured activities.

12.1. Sequence
A sequence activity contains one or more activities that are
performed sequentially, in the order in which they are listed within
the <sequence> element, that is, in lexical order. The sequence
activity completes when the final activity in the sequence has
completed.
Example:
<sequence>
 <flow>
 ...
 </flow>
 <scope>
 ...
 </scope>

 <pick>
 ...
 </pick>
</sequence>

12.2. Switch
The switch structured activity supports conditional behavior in a
pattern that occurs quite often. The activity consists of an ordered
list of one or more conditional branches defined by case elements,
followed optionally by an otherwise branch. The case branches
of the switch are considered in the order in which they appear.
The first branch whose condition holds true is taken and provides
the activity performed for the switch. If no branch with a condition
is taken, then the otherwise branch is taken. If the otherwise
branch is not explicitly specified, then an otherwise branch with
an empty activity is deemed to be present. The switch activity is
complete when the activity of the selected branch completes.
Example:
<switch xmlns:inventory="http://supply-
chain.org/inventory"
 xmlns:FLT="http://example.com/faults">
 <case condition=
"bpws:getVariableProperty(stockResult,level) > 100">
 <flow>
 <!-- perform fulfillment work -->
 </flow>
 </case>
 <case
condition="bpws:getVariableProperty(stockResult,level)
>= 0">
 <throw faultName="FLT:OutOfStock"
 variable="RestockEstimate"/>
 </case>
 <otherwise>
 <throw faultName="FLT:ItemDiscontinued"/>
 </otherwise>
</switch>

12.3. While
The while activity supports repeated performance of a specified
iterative activity. The iterative activity is performed until the given
Boolean while condition no longer holds true.
Example:
 ...
<variable name="orderDetails" type="xsd:integer"/>
 ...
<while condition=
 "bpws:getVariableData(orderDetails) > 100">
 <scope>
 ...
 </scope>
</while>

12.4. Pick

The pick activity awaits the occurrence of one of a set of events
and then performs the activity associated with the event that
occurred. The occurrence of the events is often mutually exclusive
(the process will either receive an acceptance message or a
rejection message, but not both). If more than one of the events
occurs, then the selection of the activity to perform depends on
which event occurred first. If the events occur almost
simultaneously, there is a race and the choice of activity to be
performed is dependent on both timing and implementation.
The form of pick is a set of branches of the form event/activity,
and exactly one of the branches will be selected based on the
occurrence of the event associated with it before any others. Note
that after the pick activity has accepted an event for handling, the
other events are no longer accepted by that pick. The possible
events are the arrival of some message in the form of the
invocation of an inbound one-way or request/response operation,
or an "alarm" based on a timer (in the sense of an alarm clock).
A special form of pick is used when the creation of an instance of
the business process could occur as a result of receiving one of a
set of possible messages. In this case, the pick itself has a
createInstance attribute with a value of yes (the default value
of the attribute is no). In such a case, the events in the pick must
all be inbound messages and each of those is equivalent to a
receive with the attribute "createInstance=yes". No alarms are
permitted for this special case.
Each pick activity MUST include at least one onMessage event.
The semantics of the onMessage event is identical to a receive
activity regarding the optional nature of the variable attribute and
the constraint regarding simultaneous enablement of conflicting
receive actions. For the latter, recall that the semantics of a process
in which two or more receive actions for the same partner link,
portType, operation and correlation set(s) may be simultaneously
enabled is undefined (see Providing Web Service Operations).
Enablement of each onMessage handler is equivalent to
enablement of the corresponding receive activity for the purposes
of this constraint.
The pick activity completes when one of the branches is triggered
by the occurrence of its associated event and the corresponding
activity completes. The following example shows a typical usage
of pick. Such a pick activity can occur in a loop that is accepting
line items for a large order, but a completion action is enabled as
an alternative event.
<pick>
 <onMessage partnerLink="buyer"
 portType="orderEntry"
 operation="inputLineItem"
 variable="lineItem">

 <!-- activity to add line item to order -->
 </onMessage>
 <onMessage partnerLink="buyer"
 portType="orderEntry"
 operation="orderComplete"
 variable="completionDetail">
 <!-- activity to perform order completion -->
 </onMessage>
<!-- set an alarm to go after 3 days and 10 hours -->
 <onAlarm for="'P3DT10H'">
 <!-- handle timeout for order completion -->
 </onAlarm>
</pick>

12.5. Flow
The flow construct provides concurrency and synchronization. The
grammar for flow is:
The standard attributes and standard elements for activities
nested within a flow are especially significant because the
standard attributes and elements primarily exist to provide flow-
related semantics to activities.
The most fundamental semantic effect of grouping a set of
activities in a flow is to enable concurrency. A flow completes
when all of the activities in the flow have completed. Completion
of an activity in a flow includes the possibility that it will be
skipped if its enabling condition turns out to be false (see Dead-
Path-Elimination). Thus the simplest use of flow is equivalent to
a nested concurrency construct. In the following example, the two
invoke activities are enabled to start concurrently as soon as the
flow is started. The completion of the flow occurs after both the
seller and the shipper respond (assuming the invoke operations
were synchronous request/response). The bank is invoked only
after the flow completes.
More generally, a flow activity creates a set of concurrent activities
directly nested within it. It further enables expression of
synchronization dependencies between activities that are nested
directly or indirectly within it. The link construct is used to
express these synchronization dependencies. A link has a name
and all the links of a flow activity MUST be defined separately
within the flow activity. The standard source and target
elements of an activity are used to link two activities. The source
of the link MUST specify a source element specifying the link's
name and the target of the link MUST specify a target element
specifying the link's name. The source activity MAY also specify a
transition condition through the transitionCondition attribute
of the source element. If the transitionCondition attribute is
omitted, it is deemed to be present with a value of "true". Every
link declared within a flow activity MUST have exactly one
activity within the flow as its source and exactly one activity

within the flow as its target. The source and target of a link MAY
be nested arbitrarily deeply within the (structured) activities that
are directly nested within the flow, except for the boundary-
crossing restrictions.
The following example shows that links can cross the boundaries
of structured activities. There is a link named "CtoD" that starts at
activity C in sequence Y and ends at activity D, which is directly
nested in the enclosing flow. The example further illustrates that
sequence X must be performed prior to sequence Y because X is
the source of the link named "XtoY" that is targeted at sequence Y.
In general, a link is said to cross the boundary of a syntactic
construct if the source activity for the link is nested within the
construct but the target activity is not, or vice versa, if the target
activity for the link is nested within the construct but the source
activity is not.
A link MUST NOT cross the boundary of a while activity, a
serializable scope, an event handler or a compensation handler (see
Scopes for the specification of event, fault and compensation
handlers). In addition, a link that crosses a fault-handler boundary
MUST be outbound, that is, it MUST have its source activity
within the fault handler and its target activity within a scope that
encloses the scope associated with the fault handler. Finally, a link
MUST NOT create a control cycle, that is, the source activity must
not have the target activity as a logically preceding activity, where
an activity A logically precedes an activity B if the initiation of B
semantically requires the completion of A. Therefore, directed
graphs created by links are always acyclic.

12.5.1. Link Semantics
In the rest of this section, the links for which activity A is
the source will be referred to as A's outgoing links, and
the links for which activity A is the target will be referred
to as A's incoming links. If activity X is the target of a link
that has activity Y as the source, X has a synchronization
dependency on Y.
Every activity that is the target of a link has an implicit or
explicit joinCondition attribute associated with it. This
applies even when an activity has exactly one incoming
link. If the explicit joinCondition is missing, the implicit
condition requires the status of at least one incoming
link to be positive (see below for an explanation of link
status). A join condition is a Boolean expression (see
Expressions). The expression for a join condition for an
activity MUST be constructed using only Boolean
operators and the bpws:getLinkStatus function (see
Expressions) applied to incoming links at the activity.

Without considering links, the semantics of business
processes, scopes, and structured activities determine when
a given activity is ready to start. For example, the second
activity in a sequence is ready to start as soon as the first
activity completes. An activity that defines the behavior of
a branch in a switch is ready to start if and when that
branch is chosen. Similarly, an activity nested directly
within a flow is ready to start as soon as the flow itself
starts, because flow is fundamentally a concurrency
construct.
If an activity that is ready to start in this sense has incoming
links, then it does not start until the status of all its
incoming links has been determined and the (implicit or
explicit) join condition associated with the activity has been
evaluated. The precise semantics of link status evaluation
are as follows:
When activity A completes, the following steps are
performed to determine the effect of the synchronization
links on other activities:
• Determine the status of all outgoing links for A. The
status will be either positive or negative. To determine
the status for each link its transitionCondition is
evaluated. Note that the evaluation is carried out with the
actual values of the variables referenced in the transition
condition expression. If some of the variables are modified
in a concurrent behavior path, the result of the transition
condition evaluation may depend nondeterministically on
the timing of behavior among concurrent activities. If the
value is true the status is positive, otherwise it is negative.
• For each activity B that has a synchronization
dependency on A, check whether:
o The status of all incoming links for B has been
determined.
• If both these conditions are true, then evaluate the
join condition for B. If the join condition evaluates to false,
a standard bpws:joinFailure fault is thrown, otherwise
activity B is started.
If, during the performance of structured activity S, the
semantics of S dictate that activity X nested within S will
not be performed as part of the behavior of S, then the
status of all outgoing links from X is set to negative. An
example is an activity within a branch that is not taken in a
switch activity, or activities that were not completed in a
scope in which processing was halted due to a fault,
including a bpws:joinFailure (see Scopes and
Compensation Handlers).

Note that in general multiple target activities will be
enabled based on the completion of an activity with
multiple outgoing links; because of this, such an activity is
often called a fork activity.

12.5.2. Dead-Path-Elimination (DPE)
In cases where the control flow is largely defined by
networks of links, the normal interpretation of a false join
condition for activity A is that A should not be performed,
rather than that a fault has occurred. Moreover, there is a
need to propagate the consequences of this decision by
assigning a negative status to the outgoing links for A.
BPEL4WS makes it easy to express these semantics by
using an attribute suppressJoinFailure on an activity. A
value of "yes" for this attribute has the effect of suppressing
the bpws:joinFailure fault for the activity and all nested
activities, except where the effect is overridden by using
the suppressJoinFailure attribute with a value of "no" in
a nested activity. Suppressing the bpws:joinFailure is
equivalent to the fault being logically caught by a special
default handler attached to an implicit scope that
immediately encloses just the activity with the join
condition. The default handler behavior is an empty activity,
that is, the handler suppresses the fault and does nothing
about it. However, because the activity with the join
condition was not performed, its outgoing links are
automatically assigned a negative status according to the
rules of Link Semantics. Thus within an activity with the
value of the suppressJoinFailure attribute set to "yes",
the semantics of a join condition that evaluates to false are
to skip the associated activity and to set the status of all
outgoing links from that activity to negative. This is called
dead-pathelimination because in a graph-like interpretation
of networks of links with transition conditions, these
semantics have the effect of propagating negative link
status transitively along entire paths formed by consecutive
links until a join condition is reached that evaluates to true.
Note that the name of the implicit scope (created to
suppress the bpws:joinFailure) that immediately encloses
an activity with a join condition is exactly the same as the
name of the activity itself. In case this is an invoke activity
(see Invoking Web Service Operations) with an inlined
fault or compensation handler, the implicit scope for the
fault and compensation handlers is merged with the implicit
scope described here, which adds an additional fault
handler for the bpws:joinFailure.
The default value of the suppressJoinFailure attribute is
"no". This is to avoid unexpected behavior in simple use

cases where complex graphs are not involved and links
without transition conditions are used for synchronization.
The designers of such use cases are likely to be naive about
link semantics and are likely to be surprised by the
consequences of a default interpretation that suppresses a
well-defined fault. For example, consider the interpretation
of the Initial Example with the suppressJoinFailure
attribute set to "yes". Suppose further that the invocations
of the shippingProvider are enclosed in a scope that
provides a fault handler (see Scopes and Fault Handlers).
If one of these invocations were to fault, the status of the
outgoing link from the invocation would be negative, and
the (implicit) join condition at the target of the link would
be false, but the resulting bpws:joinFailure would be
implicitly suppressed and the target activity would be
silently skipped within the sequence instead of causing the
expected fault.
If universal suppression of the bpws:joinFailure is
desired, it is easy to achieve by using the
suppressJoinFailure attribute with a value of "yes" in
the overall process element at the root of the business
process definition.

12.5.3. Flow Graph Example
In the following example, the activities with the names
getBuyerInformation, getSellerInformation,
settleTrade, confirmBuyer, and confirmSeller are
nodes of a graph defined through the flow activity. The
following links are defined:
• The link named buyToSettle starts at
getBuyerInformation (specified through the
corresponding source element nested in
getBuyerInformation) and ends at settleTrade
(specified through the corresponding target element nested
in settleTrade).
• The link named toBuyConfirm starts at
settleTrade and ends at confirmBuyer.
• The link named toSellConfirm starts at
settleTrade and ends at confirmSeller.
Based on the graph structure defined by the flow, the
activities getBuyerInformation and
getSellerInformation can run concurrently. The
settleTrade activity is not performed before both of these
activities are completed. After settleTrade completes the
two activities, confirmBuyer and confirmSeller are
performed concurrently again.

<flow suppressJoinFailure="yes">
 <links>
 <link name="buyToSettle"/>
 <link name="sellToSettle"/>
 <link name="toBuyConfirm"/>
 <link name="toSellConfirm"/>
 </links>
 <receive name="getBuyerInformation">
 <source linkName="buyToSettle"/>
 </receive>
 <receive name="getSellerInformation">
 <source linkName="sellToSettle"/>
 </receive>
 <invoke name="settleTrade"

 joinCondition="bpws:getLinkStatus('buyToS
ettle') and

 bpws:getLinkStatus('sellToSettle')">
 <target
linkName="getBuyerInformation"/>
 <target
linkName="getSellerInformation"/>
 <source linkName="toBuyConfirm"/>
 <source linkName="toSellConfirm"/>
 </invoke>
 <reply name="confirmBuyer">
 <target linkName="toBuyConfirm"/>
 </reply>
 <reply name="confirmSeller">
 <target linkName="toSellConfirm"/>
 </reply>
</flow>

12.5.4. Links and Structured Activities
Links can cross the boundaries of structured activities.
When this happens, care must be taken to ensure the
intended behavior of the business process. The following
example illustrates the behavior when links target activities
within structured constructs.
The following flow is intended to perform the sequence of
activities A, B, and C. Activity B has a synchronization
dependency on the two activities X and Y outside of the
sequence, that is, B is a target of links from X and Y. The
join condition at B is missing, and therefore implicitly
assumed to be the default, which is the disjunction of the
status of the links targeted to B. The condition is therefore
true if at least one of the incoming links has a positive
status. In this case that condition reduces to the Boolean
condition P(X,B) OR P(Y,B) based on the transition
conditions on the links.
In the flow, the sequence S and the two receive activities X
and Y are all concurrently enabled to start when the flow

starts. Within S, after activity A is completed, B cannot
start until the status of its incoming links from X and Y is
determined and the implicit join condition is evaluated.
When activities X and Y complete, the join condition for B
is evaluated.
Suppose that the expression P(X,B) OR P(Y,B) evaluates
to false. In this case, the standard fault bpws:joinFailure
will be thrown, because the environmental attribute
suppressJoinFailure is set to "no". Thus the behavior of
the flow is interrupted and neither B nor C will be
performed.
If, on the other hand, the environmental attribute
suppressJoinFailure is set to "yes", then B will be
skipped but C will be performed because the
bpws:joinFailure will be suppressed by the implicit
scope associated with B.
Finally, assume that the preceding flow is slightly rewritten
by linking A, B, and C through links (with transition
conditions with constant truth-value of "true") instead of
putting them into a sequence. Now, B and thus C will
always be performed. Because the join condition is a
disjunction and the transition condition of link AtoB is the
constant "true", the join condition will always evaluate to
"true", independent from the values of P(X,B) and P(Y,B).
<flow suppressJoinFailure="no">
 <links>
 <link name="AtoB"/>
 <link name="BtoC"/>
 <link name="XtoB"/>
 <link name="YtoB"/>
 </links>
 <receive name="A">
 <source linkName="AtoB"/>
 </receive>
 <receive name="B">
 <target linkName="AtoB"/>
 <target linkName="XtoB"/>
 <target linkName="YtoB"/>
 <source linkName="BtoC"/>
 </receive>
 <receive name="C">
 <target linkName="BtoC"/>
 </receive>
 <receive name="X">
 <source linkName="XtoB"
transitionCondition="P(X,B)"/>
 </receive>
 <receive name="Y">
 <source linkName="YtoB"
transitionCondition="P(Y,B)"/>

 </receive>
</flow>

13. Scopes
The behavior context for each activity is provided by a scope. A scope
can provide fault handlers, event handlers, a compensation handler, data
variables, and correlation sets.
All scope elements are syntactically optional and some have default
semantics when omitted. The syntax and semantics of scopes are
explained in detail below.
Each scope has a primary activity that defines its normal behavior. The
primary activity can be a complex structured activity, with many nested
activities within it to arbitrary depth. The scope is shared by all the nested
activities. In the following example, the scope has a primary flow activity,
which contains two concurrent invoke activities. Either of the invoke
activities can receive one or more types of fault responses. The fault
handlers for the scope are shared by both invoke activities and can be used
to catch the faults caused by the possible fault responses.
<scope>
 <faultHandlers>?
 ...
 </faultHandlers>
 <flow>
 <invoke partnerLink="Seller"
portType="Sell:Purchasing"
 operation="SyncPurchase"
 inputVariable="sendPO"
 outputVariable="getResponse"/>
 <invoke partnerLink="Shipper"
 portType="Ship:TransportOrders"
 operation="OrderShipment"
 inputVariable="sendShipOrder"
 outputVariable="shipAck"/>
 </flow>
</scope>

13.1. Data Handling
A scope can have defined variables that live only within the scope.
For further information see the chapter about data handling.

13.2. Error Handling in Business Processes
Business processes are often of long duration and use
asynchronous messages for communication. They also manipulate
sensitive business data in back-end databases and line-of-business
applications. Error handling in this environment is both difficult
and business critical. The use of ACID transactions is usually
limited to local updates because of trust issues and because locks
and isolation cannot be maintained for the long periods during
which technical and business errors and fault conditions can occur
in a business process instance. As a result, the overall business
transaction can fail or be cancelled after many ACID transactions
have been committed during its progress, and the partial work done

must be undone as best as possible. Error handling in business
processes therefore relies heavily on the well-known concept of
compensation, that is, application-specific activities that attempt
to reverse the effects of a previous activity that was carried out as
part of a larger unit of work that is being abandoned. There is a
long history of work in this area regarding the use of Sagas [Sagas]
and open nested transactions [Trends]. BPEL4WS provides a
variant of such a compensation protocol by providing the ability
for flexible control of the reversal. BPEL4WS achieves this by
providing the ability to define fault handling and compensation in
an application-specific manner, resulting in a feature called Long-
Running (Business) Transactions (LRTs).
It is important to understand that the notion of LRT described here
is meant to be used purely within a platform-specific
implementation. There is no prescribed requirement that the
business process be distributed or span multiple vendors and
platforms. For such environments, it is expected that the WS-
Transaction specification [WS-Transaction] would be utilized to
register participants interested in the reversal notifications
provided by the LRT implementation. See Appendix C for a
detailed model of BPEL4WS LRTs based on WSTransaction
concepts.
Additionally, it is important to understand that the notion of LRT
described here is purely local and occurs within a single business
process instance. There is no distributed coordination regarding an
agreed-upon outcome among multiple-participant services. The
achievement of distributed agreement is an orthogonal problem
outside the scope of BPEL4WS, to be solved by using the
protocols described in the WS-Transaction specification. The need
to compose WS-transaction with BPEL4WS is recognized.
As an example of an LRT, consider the planning and fulfillment of
a travel itinerary. This can be viewed as an LRT in which
individual service reservations can use nested transactions within
the scope of the overall LRT. If the itinerary is cancelled, the
reservation transactions must be compensated for by cancellation
transactions, and the corresponding payment transactions must be
compensated accordingly. For ACID transactions in databases the
transaction coordinator(s) and the resources that they control know
all of the uncommitted updates and the order in which they must be
reversed, and they are in full control of such reversal. In the case of
business transactions, the compensation behavior is itself a part of
the business logic and protocol, and must be explicitly specified.
For example, there might be penalties or fees applied for
cancellation of an airline reservation depending on the class of
ticket and the timing. If a payroll advance has been given to pay
for the travel, the reservation must be successfully cancelled before

the payroll advance for it can be reversed in the form of a payroll
deduction. This means the compensation actions might need to run
in the same order as the original transactions, which is not the
standard or default in most transaction systems. Using activity
scopes as the definition of logical units of work, the LRT feature of
BPEL4WS addresses these requirements.

13.3. Compensation Handlers
Scopes can delineate a part of the behavior that is meant to be
reversible in an applicationdefined way by a compensation handler.
Scopes with compensation and fault handlers can be nested
without constraint to arbitrary depth.

13.3.1. Defining a Compensation Handler
A compensation handler in the current version of
BPEL4WS is simply a wrapper for a compensation activity
as shown below. It is recognized that in many scenarios the
compensation handler needs to receive data about the
current state of the world and return data regarding the
results of the compensation.
As explained in Invoking Web Service Operations, there
is a special shortcut for the invoke activity to inline a
compensation handler rather than explicitly using an
immediately enclosing scope. For example:
<invoke partnerLink="Seller"
portType="SP:Purchasing"
 operation="SyncPurchase"
 inputVariable="sendPO"
 outputVariable="getResponse">
 <correlations>
 <correlation set="PurchaseOrder"
initiate="yes"
 pattern="out"/>
 </correlations>
 <compensationHandler>
 <invoke partnerLink="Seller"
portType="SP:Purchasing"
 operation="CancelPurchase"
 inputVariable="getResponse"
 outputVariable="getConfirmation">
 <correlations>
 <correlation set="PurchaseOrder"
pattern="out"/>
 </correlations>
 </invoke>
 </compensationHandler>
</invoke>

In this example, the original invoke activity makes a
purchase and in case that purchase needs to be
compensated, the compensationHandler invokes a
cancellation operation at the same port of the same

partnerLink, using the response to the purchase request as
the input.
In standard syntax (without the invoke shortcut) this
example would be equivalently expressed as follows:
Note that the variable getResponse can be reused later for
other purposes before compensation is invoked. But the
compensation handler needs the specific response to the
invoke operation that is being reversed. BPEL4WS
semantics state that the compensation handler, if invoked,
will see a frozen snapshot of all variables, as they were
when the scope being compensated was completed. In other
words, if the compensation handler shown here is used, the
contents of getResponse that it will see and use are exactly
the contents at the time of the completion of the invoke
activity it compensates. This also means that compensation
handlers cannot update live data in the variables that the
business process is using. They live entirely in a snapshot
world. A compensation handler, once installed, can be
thought of as a completely self-contained action that is not
affected by, and does not affect, the global state of the
business process instance. It can only affect external
entities.
It is not realistic to expect compensation activities to
always be oblivious to the current state of the world. In fact,
compensation both affects and is affected by the current
state. However, the shape of the world within which
compensation is run is difficult to anticipate. It is therefore
necessary to allow the two-way interaction between
compensation activities and the live world to take place in a
tightly controlled manner. In the future, BPEL4WS will
add input and output parameters to compensation handlers
for this purpose.
As stated in The Lifecycle of a Process, if a compensation
handler is specified for the business process as a whole, a
business process instance can be compensated after
normal completion by platform-specific means. This
functionality is enabled by setting the
enableInstanceCompensation attribute of the process to
"yes".

13.3.2. Invoking a Compensation Handler
The compensation handler can be invoked by using the
compensate activity, which names the scope for which the
compensation is to be performed, that is, the scope whose
compensation handler is to be invoked. A compensation
handler for a scope is available for invocation only when
the scope completes normally. Invoking a compensation

handler that has not been installed is equivalent to the
empty activity (it is a no-op)—this ensures that fault
handlers do not have to rely on state to determine which
nested scopes have completed successfully. The semantics
of a process in which an installed compensation handler is
invoked more than once is undefined.
Note that in case an invoke activity has a compensation
handler defined inline, the name of the activity is the name
of the scope to be used in the compensate activity.
The ability to explicitly invoke the compensate activity is
the underpinning of the application-controlled error-
handling framework of BPEL4WS. This activity can be
used only in the following parts of a business process:
• In a fault handler of the scope that immediately
encloses the scope for which compensation is to be
performed.
Example:
<compensate scope="RecordPayment"/>

If a scope being compensated by name was nested in a loop,
the instances of the compensation handlers in the
successive iterations are invoked in reverse order.
If the compensation handler for a scope is absent, the
default compensation handler invokes the compensation
handlers for the immediately enclosed scopes in the reverse
order of the completion of those scopes.
The <compensate/> form, in which the scope name is
omitted in a compensate activity, causes this default
behavior to be invoked explicitly. This is useful when an
enclosing fault or compensation handler needs to perform
additional work, such as updating variables or sending
external notifications, in addition to performing default
compensation for inner scopes. Note that the
<compensate/> activity in a fault or compensation handler
attached to scope S causes the default-order invocation of
compensation handlers for completed scopes directly
nested within S. The use of this activity can be mixed with
any other user-specified behavior except the explicit
invocation of <compensate scope="Sx"/> for scope Sx
nested directly within S. Explicit invocation of
compensation for such a scope nested within S disables the
availability of default-order compensation, as expected.

13.4. Fault Handlers
Fault handling in a business process can be thought of as a mode
switch from the normal processing in a scope. Fault handling in
BPEL4WS is always treated as "reverse work" in that its sole aim
is to undo the partial and unsuccessful work of a scope in which a

fault has occurred. The completion of the activity of a fault handler,
even when it does not rethrow the fault handled, is never
considered successful completion of the attached scope and
compensation is never enabled for a scope that has had an
associated fault handler invoked.
The optional fault handlers attached to a scope provide a way to
define a set of custom fault-handling activities, syntactically
defined as catch activities. Each catch activity is defined to
intercept a specific kind of fault, defined by a globally unique fault
QName and a variable for the data associated with the fault. If the
fault name is missing, then the catch will intercept all faults with
the right type of fault data. The fault variable is specified using the
faultVariable attribute in a catch handler. The variable is deemed
to be declared by virtue of being used as the value of this attribute
and is local to the fault handler. It is not visible or usable outside
the fault handler in which it is declared. The fault variable is
optional because a fault might not have additional data associated
with it.
A fault response to an invoke activity is one source of faults, with
obvious name and data aspects based on the definition of the fault
in the WSDL operation. A programmatic throw activity is another
source, again with explicitly given name and data. The core
concepts and exexutable pattern extensions of BPEL4WS define
several standard faults with their names and data, and there might
be other platform-specific faults such as communication failures
that can occur in a business process instance. A catchAll clause
can be added to catch any fault not caught by a more specific catch
handler.
Because of the flexibility allowed in expressing the faults that a
catch activity can handle, it is possible for a fault to match more
than one fault handler. The following rules are used to select the
catch activity that will process a fault:
• If the fault has no associated fault data, a catch activity
that specifies a matching faultName value will be selected if
present. Otherwise, the default catchAll handler is selected if
present.
If no catch or catchall is selected, the fault is not caught by the
current scope and is rethrown to the immediately enclosing scope
(see Implicit Fault and Compensation Handlers for a more
complete description of the default fault and compensation
handling behavior). If the fault occurs in (or is rethrown to) the
global process scope, and there is no matching fault handler for the
fault at the global level, the process terminates abnormally, as
though a terminate activity had been performed.
Consider the following example:

Assume that a fault named ”x:foo” is thrown. The first catch will
be selected if the fault carries no fault data. If there is fault data
associated with the fault, the third catch will be selected if and
only if the type of the fault’s data matches the type of variable
“bar”, otherwise the default catchall handler will be selected.
Finally, a fault with a fault variable whose type matches the type of
“bar” and whose name is not “x:foo” will be processed by the
second catch. All other faults will be processed by the default
catchall handler.
Although the use of compensation can be a key aspect of the
behavior of fault handlers, each handler performs an arbitrary
activity, which can even be <empty/>. When a fault handler is
present, it is in charge of handling the fault. It might rethrow the
same fault or a different one, or it might handle the fault by
performing cleanup and allowing normal processing to continue in
the enclosing scope.
A scope in which a fault occurred is considered to have ended
abnormally, whether or not the fault was caught and handled
without rethrow by a fault handler. A compensation handler is
never installed for a scope in which a fault occurred.
When a fault handler for scope S handles a fault that occurred in S
without rethrowing, links that have S as the source will be subject
to regular evaluation of status after the fault has been handled,
because processing in the enclosing scope is meant to be continued.
As explained in Invoking Web Service Operations, there is a
special shortcut for the invoke activity to inline fault handlers
rather than explicitly using an immediately enclosing scope. For
example:
In this example, the original invoke makes a purchase and a fault
handler is inlined to handle the case where the purchase request
results in a fault response. In standard syntax (without the invoke
shortcut), this example would be equivalently expressed as follows:
<scope>
 <faultHandlers>
 <catch faultName="SP:POFault"
faultVariable="POFault">
 <!-- handle the fault -->
 </catch>
 </faultHandlers>
 <invoke partnerLink="Seller"
 portType="SP:Purchasing"
 operation="SyncPurchase"
 inputVariable="sendPO"
 outputVariable="getResponse">
 </invoke>
</scope>

The compensation handler for scope C becomes available for
invocation by the fault and compensation handlers for its
immediately enclosing scope exactly when scope C completes

normally. A fault handler for scope C is available for invocation
exactly when C has commenced but has not been completed. If the
scope faults before completion, then the appropriate fault handler
gets control and all other fault handlers are uninstalled. It is never
possible to run more than one fault handler for the same scope
under any circumstances.
Note that availability also applies to Implicit Fault and
Compensation Handlers.
The behavior of a fault handler for scope C begins by implicitly
terminating all activities that are currently active and directly
enclosed within C (see Semantics of Activity Termination). The
termination of these activities occurs before the specific behavior
of a fault handler is started. This also applies to the implicit fault
handlers described below. The activity of a fault handler is deemed
to occur in the scope to which the fault handler is attached.

13.4.1. Implicit Fault and Compensation Handlers
Because the visibility of scope names and therefore of
compensation handlers is limited to the next enclosing
scope, the ability to compensate a scope would be lost if the
enclosing scope did not have a compensation handler or
was missing a fault handler for some fault. Because many
faults are not programmatic or the result of operation
invocation, it is not reasonable to expect an explicit handler
for every fault in every scope. BPEL4WS therefore
provides default compensation and fault handlers when
these are missing. The behavior of these implicit handlers is
to run available compensation handlers in the reverse order
of completion of the corresponding scopes. This is defined
in more precise terms below.
Whenever a fault handler (for any fault) or the
compensation handler is missing for any given scope, they
are implicitly created with the following behavior:
Fault handler:
• Run all available compensation handlers for
immediately enclosed scopes in the reverse order of
completion of the corresponding scopes.
Compensation handler:
• Run all available compensation handlers for
immediately enclosed scopes in the reverse order of
completion of the corresponding scopes.
As stated above, the behavior of a fault handler for scope C
begins by implicitly terminating all activities directly
enclosed within C that are currently active. The following
paragraphs define what this means for all BPEL4WS
activity types.
The assign activities are sufficiently short-lived that they
are allowed to complete rather than being interrupted when

termination is forced. The evaluation of expressions when
already started is also allowed to complete. Each wait,
receive, reply and invoke activity is interrupted and
terminated prematurely. When a synchronous invoke
activity (corresponding to a request/reply operation) is
interrupted and terminated prematurely, the response (if
received) for such a terminated activity is silently discarded.
The notion of termination does not apply to empty,
terminate, and throw.
All structured activity behavior is interrupted. The iteration
of while is interrupted and termination is applied to the
loop body activity. If switch has selected a branch, then
the termination is applied to the activity of the selected
branch. The same applies to pick. If either of these
activities has not yet selected a branch, then the switch and
the pick are terminated immediately. The sequence and
flow constructs are terminated by terminating their
behavior and applying termination to all nested activities
currently active within them.
Scopes provide the ability to control the semantics of
forced termination to some degree. When the activity being
terminated is in fact a scope, the behavior of the scope is
interrupted and the fault handler for the standard
bpws:forcedTermination fault is run. Note that this
applies only if the scope is in normal processing mode. If
the scope has already experienced an internal fault and
invoked a fault handler, then as stated above, all other fault
handlers including the handler for
bpws:forcedTermination are uninstalled, and the forced
termination has no effect. The already active fault handler
is allowed to complete.
The fault handler for the bpws:forcedTermination fault
is designed like other fault handlers, but this fault handler
cannot rethrow any fault. Even if an uncaught fault occurs
during its behavior, it is not rethrown to the next enclosing
scope. This is because the enclosing scope has already
faulted, which is what is causing the forced termination of
the nested scope.
In other respects this is a normal fault handler. Its behavior
begins by implicitly (recursively) terminating all activities
directly enclosed within its associated scope that are
currently active. It can invoke compensate activities. And
when it is missing, it is provided by using the same implicit
behavior that is used for all other implicit fault handlers.
Note that forced termination of nested scopes occurs in
innermost-first order as a result of the rule (quoted above)

that the behavior of any fault handler begins by implicitly
(recursively) terminating all activities directly enclosed
within its associated scope that are currently active.

13.4.3. Handling Faults That Occur Inside Fault and
Compensation Handlers

Compensation handlers are always invoked directly or
indirectly as part of the processing of some fault handler E.
The behavior of a compensation handler invoked by E can
cause a fault to be thrown. Such a fault, if uncaught by
scopes within the chain of compensation handlers invoked
by E, is treated as being a fault within E.
If a fault occurs in a fault handler E for a scope C, the fault
can be caught through the use of a scope within E. If the
fault is not caught by a scope within E, it is immediately
thrown to the parent scope of C and the behavior of E
terminates prematurely. In effect, no distinction is made
between faults that E rethrows deliberately and faults that
occur as undesired faults in E.

13.5. Event Handlers
The whole process as well as each scope can be associated with a
set of event handlers that are invoked concurrently if the
corresponding event occurs. The actions taken within an event
handler can be any type of activity, such as sequence or flow, but
invocation of compensation handlers using the <compensate/>
activity is not permitted. As stated earlier, the <compensate/>
activity can only be used in fault and compensation handlers.
There are two types of events. First, events can be incoming
messages that correspond to a request/response or one-way
operation in WSDL. For instance, a status query is likely to be a
request /response operation, whereas a cancellation may be a
oneway operation. Second, events can be alarms, that go off after
user-set times. The grammar for the set of event handlers
associated with a scope or process is
It is important to emphasize that event handlers are considered a
part of the normal behavior of the scope, unlike fault and
compensation handlers.

13.5.1. Message Events
The onEvent tag indicates that the event specified is an
event that waits for a message to arrive. The interpretation
of this tag and its attributes is very similar to a receive
activity. The partnerLink attribute defines the partner link
on which the request is expected to arrive; the partnerLink
must be defined in the partnerLinks section. The portType
and operation attributes define the appropriate port type and
operation that is invoked by the partner in order to cause
the event. The variable attribute identifies a variable local

to the eventHandler that will contain the message received
from the partner. The messageType attribute specifies the
variable type by referencing the message type definition
using its QName. The variable type (as specified by the
messageType attribute) must be the same as the type of the
input message defined by operation referenced by the
operation attribute. The event handler declares a variable of
that name and type that is scoped local to the event handler
activity. Upon receipt of the input message the event
handler assigns the input message to the variable before
proceeding to perform the event handler activity. Since the
variable is scoped to that activity, two instances of the
activity (whether executed serially or concurrently) do not
operate on the same variable.
The semantics of the onEvent event is identical to a receive
activity regarding the optional nature of the variable
attribute and the constraint regarding simultaneous
enablement of conflicting receive actions. For the latter,
recall that the semantics of a process in which two or more
receive actions for the same partner link, portType,
operation and correlation set(s) may be simultaneously
enabled is undefined (see Providing Web Service
Operations). Enablement of each onEvent event handler is
equivalent to enablement of the corresponding receive
activity for the purposes of this constraint.
As specified in the grammar above, event handlers for
message events are not permitted to carry the
createInstance attribute. A business process instance cannot
be created by a message event. This is because the event
handler cannot be enabled until the instance is created.
When the message constituting an event arrives, the
activity specified in the corresponding handler is carried
out. The key point to understand is that the business
process is enabled to receive such messages concurrently
with the normal activity of the scope to which the event
handler is attached. This allows such events to occur (or not
occur) at arbitrary times and an arbitrary number of times
while the corresponding scope (which may be the entire
business process instance) is active.
The following example shows the usage of an event
handler to support the termination of a process instance
through an external message. Alternatively, the event
handler could throw a fault to cause the ongoing work to be
undone and compensated.
 messageType=“ns:cancelOrder”
 variable=“cancelDetails”>
 <terminate/>

 </onEvent>
 ...
 </eventHandlers>
 ...
</process>

In this example, if the buyer invokes the cancel operation
on the port type car, the terminate activity is carried out,
which results in immediate termination of the process
instance without the ongoing work being undone and
compensated. And this event is attached to the global
process scope and is therefore available during the lifetime
of the entire business process instance.

13.5.2. Alarm events
The onAlarm tag marks a timeout event. The for attribute
specifies the duration after which the event will be signaled.
The clock for the duration starts at the point in time when
the associated scope starts. The alternative until attribute
specifies the specific point in time when the alarm will be
fired. Exactly one of these two attributes must occur in any
onAlarm event.

13.5.3. Enablement of Events
The event handlers associated with a scope are enabled
when the associated scope starts .
If the event handler is associated with the global process
scope, the event handler is enabled as soon as the process
instance is created. The process instance is created when
the first receive activity that provides for the creation of a
process instance (indicated via the createInstance
attribute set to "yes") has received and processed the
corresponding message. This allows the alarm time for a
global alarm event to be specified using the data provided
within the message that creates a process instance, as
shown in the following example:
The message type above is used in
<process name=“orderCar”
 xmlns:def="http://www.example.com/wsdl/ex
ample" ...>
 ...
 <eventHandlers>
 <onAlarm for=

 “bpws:getVariableData(orderDetails,proces
sDuration)” >
 ...
 </onAlarm>
 ...
 </eventHandlers>
 ...
 <variable name=“orderDetails”
messageType="def:orderDetails"/>

 </variable>
 ...
 <receive name=“getOrder”
 partnerLink=“buyer”
 portType=“car”
 operation=“order”
 variable=“orderDetails”
 createInstance=“yes”/>

</process>

The onAlarm tag specifies a timer event that is fired when
the duration specified in the processDuration field in the
orderDetails variable is exceeded. The value of the field
is provided via the getOrder activity that receives message
containing the order details and causes the creation of a
process instance for that order.

13.5.4. Processing of Events
13.5.4.1. ALARM EVENTS

The counting of time for an alarm event with a
duration starts when the enclosing event handler is
activated. An alarm event goes off when the
specified time or duration has been reached. An
alarm event is carried out at most once while the
corresponding scope is active. The event is disabled
for the rest of the activity of the corresponding
scope after it has occurred and the specified
processing has been carried out.

13.5.4.2. MESSAGE EVENTS
A message event occurs when the appropriate
message is received on the specified partner link
using the specified port type and operation. When
such an event occurs, the corresponding activity is
carried out. However, the event remains enabled,
even for concurrent use. Thus a particular message
event can occur multiple times while the
corresponding scope is active. See below for
concurrency considerations.

13.5.5. Disablement of Events
All event handlers associated with a scope are disabled
when the normal processing of the scope is complete. The
already dispatched event handlers are allowed to complete.
The completion of the scope as a whole is delayed until all
active event handlers have completed.

13.5.6. Fault Handling Considerations
As we stated above, event handlers are considered a part of
the normal processing of the scope, i.e., active event
handlers are concurrent activities within the scope. Faults
within event handlers are therefore faults within the

associated scope. Moreover, if a fault occurs within a scope,
the behavior of the fault handler begins by implicitly
terminating all activities directly enclosed within the scope
that are currently active. This includes the activities within
currently active event handlers.

13.5.7. Concurrency Considerations
Multiple message and alarm events can occur concurrently
and they are treated as concurrent activities even if they are
request/response events representing the same partner link,
port type, operation and correlation sets. The constraint that
there can be at most one outstanding synchronous request
on a given partner link at a given port type and operation
applies here as well (see Providing Web Service
Operations). Concurrent invocation of event handlers
necessarily relies heavily on the use of serializable scoping
to ensure consistent access to shared variables.

13.6. Serializable Scopes
When the variableAccessSerializable attribute is set to "yes",
the scope provides concurrency control in governing access to
shared variables. Such a scope is called a serializable scope.
Serializable scopes must not be nested. A scope marked with
variableAccessSerializable="yes" must be a leaf scope.
Suppose two concurrent serializable scopes, S1 and S2, access a
common set of variables (external to them) for read or write
operations. The semantics of serializability ensure that the results
of their behavior would be no different if all conflicting activities
(read/write and write/write activities) on any shared variable were
conceptually reordered in such a way that either all activities
within S1 are completed before those in S2 or vice versa. The
actual mechanisms used to ensure serializability are
implementation dependent.
The use of error handling features in a serializable scope is
governed by the following rules:
• The fault handlers for a serializable scope share the
serializability domain of the associated scope, that is, in case a
fault occurs in a serializable scope, the behavior of the fault
handler is considered part of the serializable behavior (in
commonly used implementation terms, locks are not released when
making the transition to the fault handler). This is because the
repair of the fault needs a shared isolation environment to provide
predictable behavior.
• For a serializable scope with a compensation handler, the
creation of the state snapshot for compensation is part of the
serializable behavior. In other words, it is always possible to
reorder behavior steps as if the scope had sufficiently exclusive

access to the shared variables all the way to completion, including
the creation of the snapshot.
It is useful to note that the semantics of serializable scopes are very
similar to the standard isolation level "serializable" used in
database transactions.

14. Extensions for Executable
Processes

In this section we define the essential extensions required for the use of
BPEL4WS to define executable processes. The extensions are grouped by
the core concepts to which they apply.

14.1. Expressions
These extensions refer to the Expressions feature of BPEL4WS.
The first extension defines a standard fault for errorneous use of
the XPath 1.0 function defined for extracting global property
values from variables.
The first argument names the source variable for the data and the
second is the qualified name (QName) of the global property to
select from that variable (see Message Properties). If the given
property does not appear in any of the parts of the variable's
message type or the given property definition selects a node set of
a size other than one, then the standard fault
bpws:selectionFailure MUST be thrown by a compliant
implementation.
The second extension defines an additional XPath 1.0 function
usable only in executable processes. This function extracts
arbitrary values from variables.
The first argument names the source variable for the data, the
second and third arguments are optional. When present, the second
names the part to select from that variable, and the third optional
argument, when present, provides an absolute location path (with '/'
meaning the root of the document fragment representing the entire
part) to identify the root of a subtree within the document fragment
representing the part.
When only the first argument is present, the function extracts the
value of the variable, which in this case must be defined using an
XML Schema simple type or element. Otherwise, the return value
of this function is a node set containing the single node
representing either an entire part of a message type(if the second
argument is present and the third argument is absent) or the result
of the selection based on the locationPath (if both optional
arguments are present). If the given locationPath selects a node set
of a size other than one during execution, then the standard fault
bpws:selectionFailure MUST be thrown by a compliant
implementation.

14.2. Variables

These extensions apply to the Variables feature of BPEL4WS.
An attempt during process execution to use any part of a variable
before it is initialized MUST result in the standard
bpws:uninitializedVariable fault.

14.3. Assignment
These extensions apply to the Assignment feature of BPEL4WS.
The first extension adds an additional assignment form.
In the first from-spec and to-spec variants of assignment, an
optional query attribute may be used in executable processes,
yielding the forms
The value of the query attribute is a query string to identify a
single value within a source or target variable part. BPEL4WS
provides an extensible mechanism for the language used in these
queries. The language is specified by the attribute
"queryLanguage" of the <process> element. Compliant
implementations of the current version of BPEL4WS MUST
support the use of XPath 1.0 as the query language. XPath 1.0 is
indicated by the default value of the queryLanguage attribute,
which is:
http://www.w3.org/TR/1999/REC-xpath-19991116
For XPath 1.0, the value of the query attribute MUST be an
absolute locationPath (with '/' meaning the root of the document
fragment representing the entire part). It is used to identify the root
of a subtree within the document fragment representing the part.
The location path MUST select exactly one node. If the location
path selects zero nodes or more than one node during execution,
then the standard fault bpws:selectionFailure MUST be thrown
by a compliant implementation.
The second extension defines a standard fault for violation of type
matching constraints. If any of the matching constraints defined in
the section Type Compatibility in Assignment is violated during
execution, the standard fault
bpws:mismatchedAssignmentFailure MUST be thrown by a
compliant implementation.
The second extension defines the behavior of assignment in the
presence of failure during execution. An important characteristic of
assignment in BPEL4WS is that assignment activities are atomic.
If there is any fault during the execution of an assignment activity,
the destination variables are left unchanged as they were at the
start of the activity. This applies regardless of the number of
assignment elements within the overall assignment activity.

14.4. Correlation
After a correlation set is initiated, the values of the properties
for a correlation set must be identical for all the messages in all the
operations that carry the correlation set and occur within the
corresponding scope until its completion. If at execution time this

constraint is violated, the standard fault
bpws:correlationViolation MUST be thrown by a compliant
implementation. The same fault MUST be thrown if an activity
with the initiate attribute set to no attempts to use a correlation
set that has not been previously initiated.

14.5. Web Service Operations
The first extension defines a standard fault for the case where
multiple conflicting receive activities create ambiguity about
message delivery.
If during the execution of a business process instance, two or more
receive activities for the same partner link, portType, operation and
correlation set(s) are in fact simultaneously enabled, then the
standard fault bpws:conflictingReceive MUST be thrown by a
compliant implementation.
The second extension defines a standard fault for the case where
multiple outstanding synchronous requests create an ambiguity
about response correlation.
If more than one outstanding synchronous request on a specific
partner link for a particular portType, operation and correlation
set(s) is outstanding simultaneously during the execution of a
business process instance, then the standard fault
bpws:conflictingRequest MUST be thrown by a compliant
implementation. Note that this is semantically different from the
bpws:conflictingReceive, because it is possible to create the
conflictingRequest by consecutively receiving the same request
on a specific partner link for a particular portType, operation and
correlation set(s). If a reply activity is being carried out during the
execution of a business process instance and no synchronous
request is outstanding for the specified partnerLink, portType,
operation and correlation set(s), then the standard fault
bpws:invalidReply MUST be thrown by a compliant
implementation.
The third extension specifies that the inputVariable attribute for
invoke and the variable attribute for receive and replyactivities
are not optional in executable processes. In addition, the
outputVariable attribute is not optional for invokewhen the
operation concerned is a request/response operation.

14.6. Terminating a Service Instance
The terminate activity can be used to immediately terminate the
behavior of a business process instance within which the
terminate activity is performed. All currently running activities
MUST be terminated as soon as possible without any fault
handling or compensation behavior.

14.7. Compensation

If an installed compensation handler is invoked more than once
during the execution of a process instance, a compliant
implementation MUST throw the standard
bpws:repeatedCompensation fault.
This extension explains the relationship of onEvent event handlers
to the standard fault extension in Web Service Operations for
multiple conflicting receive activities create ambiguity about
message delivery Enablement of an onEvent event handler is
equivalent to enablement of a receive activity for the semantics of
the occurrence of the bpws:conflictingReceiveFault fault (see
Providing Web Service Operations).
The variable (inputVariable) attribute of onEvent handlers is not
optional. In addition, the outputVariable attribute is not optional
for invoke when the operation concerned is a request/response
operation.

15. Extensions for Business Protocols
There are two extensions for the business protocol usage pattern.

15.1. Variables
This extension clarifies the rules regarding variable initialization in
abstract processes. Unlike executable processes, variables in
abstract processes do not need to be fully initialized before being
used since some computation is left implicit in abstract processes.
However, since message properties are meant to represent
"transparent," i.e., protocol relevant data, BPEL4WS requires that
all message properties in a message must be initialized before the
message can be used, for example before the variable of the
message is used as the inputVariable in a Web Service operation
invocation.
In many cases, the level of abstraction appropriate in abstract
processes makes it unnecessary to use message variables in web
service interaction activities, when the intent is to simply constrain
the sequencing of such activities, and the actual message data is
not relevant. To simplify these common cases it is permissible, in
abstract processes, to omit the variable reference attributes from
the <invoke/>, <receive/>, and <reply/> activities. The meaning of
such an omission must be stated clearly. If no variable is specified
for an incoming message, then the abstract process may not refer
subsequently to the message or its properties (if any). If the
variable reference is omitted for an outgoing message, then any
properties of the message are considered to have been initialized
through opaque assignment, as described in the following section.
When variable references are omitted, correlation set references
may be interpreted as follows:
• For an incoming message which initializes a correlation set
(initiator case), the correlation set is deemed to be initialized.

Deleted

Deleted

Deleted

Deleted

Deleted

• For an outgoing message which references but does not
initialize a correlation set (follower case), the proper initialization
of the message properties is implicit. In this case, the already
initialized correlation set itself provides the token values for the
outgoing message.
Note that it is not possible to mix the variable-using and variable-
less web service interaction styles freely. If a correlation set is
initialized by rule 1 or 2 above, then outgoing messages in the
same correlated exchange must also refrain from referencing a
message variable. This restriction applies because it is not possible
to initialize the properties of the outgoing messages from the
correlation set alone.

15.2. Assignment
This extension adds a special form of assignment to abstract
processes to permit the modeling of the non-deterministic effects
of private computation on external protocol behavior.
Abstract processes add a sixth from-spec variant to allow an
opaque value to be assigned based on non-deterministic choice,
yielding the form:
The value of this form in the interpretation of assignment is chosen
nondeterministically from the XSD value space of the target. It can
only be used in assignments where the "tospec" refers to a variable
property. Two distinct use cases exist for opaque assignment. If the
value space of the target is suitably constrained, then opaque
assignment is a useful way to describe behavioral alternatives
where the mechanism for choosing the alternative is private or
otherwise external to the process specification. For this use case,
the XSD type of the target property must be one of the following:
• xsd:boolean
• A type derived from any XSD integral numeric type
restricted by either enumeration or a combination of minExclusive
or minInclusive and maxExclusive or maxInclusive
A second use cases exists for target properties which don’t meet
these requirements. When the target’s value space is not
constrained, it is useful to think of opaque assignment as providing
a unique identifier. Semantically, each opaque assignment of this
form should be considered to generate a unique value similar to a
GUID. This style of opaque assignment is most useful to model the
initialization of properties used for correlation.
A process that uses assignment of opaque values is clearly not
executable in the normal sense. However, it is feasible to emulate
possible execution traces using assignment of random values of the
correct type.

16. Examples
16.1. Shipping Service

This example presents the use of a BPEL4WS abstract process to
describe a rudimentary shipping service. This service handles the
shipment of orders. From the service point of view, orders are
composed of a number of items. The shipping service offers two
types of shipment: shipments where the items are held and shipped
together and shipment where the items are shipped piecemeal until
all of the order is accounted for.

16.1.1. Service Description
The context for the shipping service is a two-party
interaction between a customer and the service. This is
modeled in the following partnerLinkType definition:
The corresponding message and portType definitions are as
follows:
<wsdl:definitions
 targetNameSpace="http://ship.org/wsdl/shi
pping"
 xmlns:ship= ...>
 <message name="shippingRequestMsg">
 <part name="shipOrder"
type="ship:shipOrder"/>
 </message>
 <message name="shippingNoticeMsg">
 <part name="shipNotice"
type="ship:shipNotice"/>
 </message>
 <portType name="shippingServicePT">
 <operation name="shippingRequest">
 <input
message="shippingRequestMsg"/>
 </operation>
 </portType>
 <portType
name="shippingServiceCustomerPT">
 <operation name="shippingNotice">
 <input
message="shippingNoticeMsg"/>
 </operation>
 </portType>
</wsdl:definitions>

16.1.2. Message Properties
The properties relevant to the service behavior are:
• The ship order ID that is used to correlate the ship
notice(s) with the ship order (shipOrderID)
• The total number of items in the order (itemsTotal)
• The number of items referred to in a ship notice so
that, when partial shipments are acceptable, we can use this,
along with itemsTotal, to track the overall fulfillment of
the shipment (itemsCount)
Here are the definitions for the properties and their aliases:
<wsdl:definitions
 targetNamespace="http://example.com/shipP
rops/"

 xmlns:sns="http://ship.org/wsdl/shipping"
 xmlns:bpws="http://schemas.xmlsoap.org/ws
/2003/03/business-process/">

 <!-- types used in abstract processes are
required to be finite domains.
 The itemCountType is restricted by range
-->
 <wsdl:types>
 <xsd:schema>
 <xsd:simpleType
name="itemCountType">
 <xsd:restriction
base="xsd:int">
 <xsd:minInclusive value="1"/>
 <xsd:maxInclusive
value="50"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:schema>
 </wsdl:types>

 <bpws:property name="shipOrderID"
type="xsd:int"/>
 <bpws:property name="shipComplete"
type="xsd:boolean"/>
 <bpws:property name="itemsTotal"
type="ship:itemCountType"/>
 <bpws:property name="itemsCount"
type="ship:itemCountType"/>
 <bpws:property name="numItemsShipped"
type="ship:itemCountType"/>

<bpws:propertyAlias
propertyName="tns:shipOrderID"
 messageType="sns:shippingRequestMsg"
 part="shipOrder"
 query="/ShipOrderRequestHeader/shipOrderI
D"/>

<bpws:propertyAlias
propertyName="tns:shipOrderID"
 messageType="sns:shippingNoticeMsg"
 part="shipNotice"
 query="/ShipNoticeHeader/shipOrderID"/>

<bpws:propertyAlias
propertyName="tns:shipComplete"
 messageType="sns:shippingRequestMsg"
 part="shipOrder"
 query="/ShipOrderRequestHeader/shipComple
te"/>

<bpws:propertyAlias
propertyName="tns:itemsTotal"
 messageType="sns:shippingRequestMsg"
 part="shipOrder"

 query="/ShipOrderRequestHeader/itemsTotal
"/>

<bpws:propertyAlias
propertyName="tns:itemsCount"
 messageType="sns:shippingNoticeMsg"
 part="shipNotice"
 query="/ShipNoticeHeader/itemsCount"/>
</wsdl:definitions>

16.1.3. Process
Next is the process definition. For brevity, the abstract
process definition does not include, for example, the
handling of error conditions (business or otherwise) that a
complete description would account for. The rough outline
of the process is as follows:
And here is the more complete version:
<process name="shippingService"
 targetNamespace="http://acme.com/shipping
"
 xmlns="http://schemas.xmlsoap.org/ws/2003
/03/business-process/"
 xmlns:wsdl="http://schemas.xmlsoap.org/ws
dl/"
 xmlns:sns="http://ship.org/wsdl/shipping"
 xmlns:props="http://example.com/shipProps
/"
 abstractProcess="yes">

<partnerLinks>
 <partnerLink name="customer"
 partnerLinkType="sns:shippingLT"
 partnerRole="shippingServiceCustomer"
 myRole="shippingService"/>
</partnerLinks>

<variables>
 <variable name="shipRequest"
 messageType="sns:shippingRequestMsg"/>
 <variable name="shipNotice"
 messageType="sns:shippingNoticeMsg"/>
 <variable name="itemsShipped"
 type="props:itemCountType"/>
</variables>

<correlationSets>
 <correlationSet name="shipOrder"
 properties="props:shipOrderID"/>
</correlationSets>

<sequence>
 <receive partnerLink="customer"
 portType="sns:shippingServicePT"
 operation="shippingRequest"
 variable="shipRequest">
 <correlations>

 <correlation set="shipOrder"
initiate="yes"/>
 </correlations>
 </receive>
 <switch>
 <case condition=

"bpws:getVariableProperty('shipRequest','props:
shipComplete')" >
 <sequence>
 <assign>
 <copy>
 <from variable="shipRequest"
property="props:itemsCount"/>
 <to variable="shipNotice"
property="props:itemsCount"/>
 </copy>
 </assign>
 <invoke partnerLink="customer"

 portType="sns:shippingServiceCustomerPT"
 operation="shippingNotice"
 inputVariable="shipNotice">
 <correlations>
 <correlation set="shipOrder"
pattern="out"/>
 </correlations>
 </invoke>
 </sequence>
 </case>
 <otherwise>
 <sequence>
 <assign>
 <copy>
 <from expression="0"/>
 <to variable="itemsShipped"/>
 </copy>
 </assign>
 <while condition=

 "bpws:getVariableData('itemsShipped') <

 bpws:getVariableProperty('shipRequest','p
rops:itemsTotal')">
 <sequence>
 <assign>
 <copy>
 <from opaque="yes"/>
 <to
variable="shipNotice"
property="props:itemsCount"/>
 </copy>
 </assign>
 <invoke
partnerLink="customer"

 portType="sns:shippingServiceCustomerPT"

 operation="shippingNotice"

 inputVariable="shipNotice">
 <correlations>
 <correlation
set="shipOrder" pattern="out"/>
 </correlations>
 </invoke>
 <assign>
 <copy>
 <from expression=

 "bpws:getVariableData('itemsShipped')
 +

 bpws:getVariableProperty('shipNotice',
 'props:itemsCount')"/>
 <to
variable="itemsShipped"/>
 </copy>
 </assign>
 </sequence>
 </while>
 </sequence>
 </otherwise>
 </switch>
</sequence>
</process>

16.2. Loan Approval
This example considers a simple loan approval Web Service that
provides a port where customers can send their requests for loans.
Customers of the service send their loan requests, including
personal information and amount being requested. Using this
information, the loan service runs a simple process that results in
either a "loan approved" message or a "loan rejected" message.
The approval decision can be reached in two different ways,
depending on the amount requested and the risk associated with the
requester. For low amounts (less than $10,000) and low-risk
individuals, approval is automatic. For high amounts or medium
and high-risk individuals, each credit request needs to be studied in
greater detail. Thus, to process each request, the loan service uses
the functionality provided by two other services. In the streamlined
processing available for lowamount loans, a "risk assessment"
service is used to obtain a quick evaluation of the risk associated
with the requesting individual. A full-fledged "loan approval"
service (possibly requiring direct involvement of a loan expert) is
used to obtain in-depth assessments of requests when the
streamlined approval process does not apply.

16.2.1. Service Description

The WSDL portType supported by this service is shown
below ("loanServicePT" portType). It is assumed that an
independent "loan.org" consortium has provided definitions
of the loan service portType as well as the risk assessment
and in-depth loan approval service, so all the required
WSDL definitions appear in the same WSDL document. In
particular, the portTypes for the Web Services providing
the risk assessment and approval functions, and all the
required partner link types that relate to the use of these
portTypes, are also defined there.

16.2.2. Process
In the business process defined below, the interaction with
the customer is represented by the initial <receive> and the
matching <reply> activities. The use of risk assessment and
loan approval services is represented by <invoke> elements.
All these activities are contained within a <flow>, and their
(potentially concurrent) behavior is staged according to the
dependencies expressed by corresponding <link> elements.
Note that the transition conditions attached to the <source>
elements of the links determine which links get activated.
Dead path elimination is enabled by the value "yes" taken
by the "suppressJoinFailure" attribute on the <process>
element. This implies that as certain links are set false the
consequences of this decision can be propagated and the
excecution of certain activities can be skipped.
Because the operations invoked can return a fault of type
"loanProcessFault", a fault handler is provided. When a
fault occurs, control is transferred to the fault handler,
where a <reply> element is used to return a fault response
of type "unableToHandleRequest" to the loan requester.

16.3. Multiple Start Activities
A process can have multiple activities that create a process
instance. An example of this situation is a (simplified) business
process run by an auction house. The purpose of the business
process is to collect information from the buyer and the seller of a
particular auction, report the appropriate auction results to some
auction registration service, and then send the registration result
back to the seller and the buyer. Thus the business process starts
with two activities, one for receiving the seller information and one
for receiving the buyer information. Because a particular auction is
uniquely identified by an auction ID, the seller and the buyer need
to provide this information when sending in their data. The
sequence in which the seller and buyer requests arrive at the
auction house is random. Thus, when such a request comes in, it
needs to be checked whether a business process instance exists
already or not. If not, a business process instance is created. After
both requests have been received, the auction registration service is

invoked. Because the invocation is done asynchronously, the
auction house passes the auction ID to the auction registration
service. The auction registration service returns this auction ID in
its answer so that the auction house can locate the proper business
process instance. Because there are many buyers and sellers, each
of them needs to provide their endpoint references, so that the
auction service can respond properly. In addition, the auction
house needs to provide its own endpoint reference to the auction
registration service so that the auction registration service can send
the response back to the auction house.

16.3.1. Service Description
The auction service offers two port types, called sellerPT
and buyerPT, with appropriate operations for accepting the
data provided by the seller and the buyer. Because the
processing time of the business process is lengthy, the
auction service responds to the seller and buyer through
appropriate port types, sellerAnswerPT and
buyerAnswerPT. These portTypes are properly combined
into two partner link types, one for the seller called
sellerAuctionHouseLT and one for the buyer called
buyerAuctionHouseLT.
The auction service needs two port types, called
auctionRegistrationPT and auctionRegistrationAnswerPT,
that provide for the invocation of the auction registration
service. The port types are part of the appropriate partner
link type auctionHouseAuctionRegistrationServiceLT.

16.3.2. Process
The BPEL4WS definition for the business process offered
by the auction house follows:

17. Security Considerations
Because messages can be modified or forged, it is strongly
RECOMMENDED that business process implementations use WS-
Security to ensure messages have not been modified or forged while in
transit or while residing at destinations. Similarly, invalid or expired
messages could be re-used or message headers not specifically associated
with the specific message could be referenced. Consequently, when using
WS-Security, signatures MUST include the semantically significant
headers and the message body (as well as any other relevant data) so that
they cannot be independently separated and re-used.
Messaging protocols used to communicate among business processes are
subject to various forms of replay attacks. In addition to the mechanisms
listed above, messages SHOULD include a message timestamp (as
described in WS-Security) within the signature. Recipients can use the
timestamp information to cache the most recent messages for a business
process and detect duplicate transmissions and prevent potential replay
attacks.

It should also be noted that business process implementations are subject
to various forms of denial-of-service attacks. Implementers of business
process execution systems compliant with this specification should take
this into account.

A. Standard Faults
The following list specifies the standard faults defined within the
BPEL4WS specification. All these faults are named within the BPEL4WS
namespace standard prefix bpws: corresponding to URI
"http://schemas.xmlsoap.org/ws/2003/03/business-process/".
Table A.1. Standard Faults

B. Attributes and Defaults
The following list specifies the defaults for all standard attributes at the
process and activity level. The table does not include activity-specific
attributes (such as partnerLink in an invoke activity).
Table B.1. Attributes and Defaults

C. Coordination Protocol
It is valuable to express the fault and compensation handling relationship
between scopes by using the protocol framework of [WS-Transaction].
Specifically, this section shows how the relationship between an enclosing
scope and each of its nested scopes can be modeled using the
BusinessAgreement protocol defined in the WS-Transaction specification.
The BusinessAgreement protocol is designed to enable distributed
coordination of business activities. BPEL4WS usage of the protocol
makes the assumption of localized behavior in a single service, and as a
result several of the features of the protocol, including the
acknowledgement signal Forget, and the Error and Replay messages, are
not actually needed in BPEL4WS.
Coordination Protocol for BPEL4WS Scopes
• A nested scope may complete successfully. In this case a
compensation handler is installed for the nested scope. This is modeled
with a Completed signal from the nested scope to its parent scope.
o If the fault handler rethrows a fault to its enclosing scope, this is
modeled as a Faulted signal from the nested scope to its parent scope.
o If the fault is handled and not rethrown, the scope exits gracefully
from the work of its parent scope. This is modeled as an Exited signal
from the nested scope to its parent scope.
• After a nested scope has completed, (a fault or compensation
handler for) the parent scope may ask it to compensate itself by invoking
its compensation handler. The compensate action is modeled with a
Compensate signal from the parent scope to the nested scope.
• Upon successful completion of the compensation, the nested scope
sends the Compensated signal to its parent scope.
• The compensation handler may itself fault internally. In this case

o If the fault is not handled by a scope within the compensation
handler, it is rethrown to the parent scope. This is modeled as a Faulted
signal from the nested scope to its parent scope.
o If the fault is handled and not rethrown, we assume that the
compensation was able to complete successfully. In this case the nested
scope sends the Compensated signal to its parent scope.
• If there is a fault in the parent scope independent of the work of the
nested scope, the parent scope will ask the nested scope to prematurely
abandon its work by sending a Cancel signal.
• The nested scope, upon receiving the cancel signal, will interrupt
and terminate its behavior (as though there were an internal fault), and
return a Canceled signal to the parent.
• Finally, when a parent scope decides that the compensation for a
completed nested scope is not needed any more it sends a Close signal to
the nested scope. After discarding the compensation handler the nested
scope responds with a Closed signal.
• In case there is a race between the Completed signal from the
nested scope and the Cancel signal from the parent scope, the Completed
signal wins, i.e., the nested scope is deemed to have completed and the
Cancel signal is ignored.
• In case a Cancelsignal is sent to a nested scope that has already
faulted internally, the Cancel signal is ignored and the scope will
eventually send either a Faulted or an Exited signal to the parent.

Business A greement Protocol State Diagram

The BusinessAgreement protocol state diagram above summarizes the
preceding discussion. In the diagram, the parent (enclosing) scope
generates Cancel, Compensate, Forget and Close signals and the
nested scope generates Completed, Faulted, Exited, Compensated,
Canceled and Closed signals. It is important to emphasize that the states
represent the state of the relationship between the parent scope and one

specific nested scope. However, it is very nearly the case that the states
represent the state of the nested scope itself, except in case of signal races.
Note that the signal races discussed in points I and J above are not
reflected in the diagram since the diagram only reflects real protocol states.

D. XSD Schemas
BPEL4WS Schema
 <attribute name="messageType" type="QName"
use="required"/>
 <attribute name="variable" type="NCName"
use="required"/>
 </extension>
 </complexContent>
</complexType>

<complexType name="tOnAlarm">
 <complexContent>
 <extension base="bpws:tActivityContainer">
 <attribute name="for" type="bpws:tDuration-
expr"/>
 <attribute name="until" type="bpws:tDeadline-
expr"/>
 </extension>
 </complexContent>
</complexType>

<complexType name="tCompensationHandler">
 <complexContent>
 <extension
base="bpws:tActivityOrCompensateContainer"/>
 </complexContent>
</complexType>

<complexType name="tVariables">
 <complexContent>
 <extension base="bpws:tExtensibleElements">
 <sequence>
 <element name="variable"
 type="bpws:tVariable"
 maxOccurs="unbounded"/>
 </sequence>
 </extension>
 </complexContent>
</complexType>

<complexType name="tVariable">
<!-- variable does not allow extensibility elements
because otherwise its content model would be non-
deterministic -->
 <attribute name="name" type="NCName" use="required"/>
 <attribute name="messageType" type="QName" use =
“optional”/>
 <attribute name="type" type="QName" use =
“optional”/>
 <attribute name="element" type="QName" use =
“optional”/>

Deleted: option

 <anyAttribute namespace="##other"
processContents="lax"/>
</complexType>

<complexType name="tCorrelationSets">
 <complexContent>
 <extension base="bpws:tExtensibleElements">
 <sequence>
 <element name="correlationSet"
 type="bpws:tCorrelationSet"
 maxOccurs="unbounded"/>
 </sequence>
 </extension>
 </complexContent>
</complexType>

<complexType name="tCorrelationSet">
 <complexContent>
 <extension base="bpws:tExtensibleElements">
 <attribute name="properties" use="required">
 <simpleType>
 <list itemType="QName"/>
 </simpleType>
 </attribute>
 <attribute name="name" type="NCName"
use="required"/>
 </extension>
 </complexContent>
</complexType>

<complexType name="tActivity">
 <complexContent>
 <extension base="bpws:tExtensibleElements">
 <sequence>
 <element name="target" type="bpws:tTarget"
 minOccurs="0" maxOccurs="unbounded"/>
 <element name="source" type="bpws:tSource"
 minOccurs="0" maxOccurs="unbounded"/>
 </sequence>
 <attribute name="name" type="NCName"/>
 <attribute name="joinCondition"
 type="bpws:tBoolean-expr"/>
 <attribute name="suppressJoinFailure"
 type="bpws:tBoolean" default="no"/>
 </extension>
 </complexContent>
</complexType>

<complexType name="tSource">
<complexContent>
 <extension base="bpws:tExtensibleElements">
 <attribute name="linkName" type="NCName"
use="required"/>
 <attribute name="transitionCondition"
 type="bpws:tBoolean-expr"/>
 </extension>
 </complexContent>

</complexType>

<complexType name="tTarget">
 <complexContent>
 <extension base="bpws:tExtensibleElements">
 <attribute name="linkName" type="NCName"
use="required"/>
 </extension>
 </complexContent>
</complexType>

<complexType name="tEmpty">
 <complexContent>
 <extension base="bpws:tActivity"/>
 </complexContent>
</complexType>

<complexType name="tCorrelations">
 <complexContent>
 <extension base="bpws:tExtensibleElements">
 <sequence>
 <element name="correlation"
type="bpws:tCorrelation"
 minOccurs="1" maxOccurs="unbounded" />
 </sequence>
 </extension>
 </complexContent>
</complexType>

<complexType name="tCorrelation">
 <complexContent>
 <extension base="bpws:tExtensibleElements">
 <attribute name="set" type="NCName"
use="required"/>
 <attribute name="initiate" type="bpws:tBoolean"
default="no"/>
 </extension>
 </complexContent>
</complexType>

<complexType name="tCorrelationsWithPattern">
 <complexContent>
 <extension base="bpws:tExtensibleElements">
 <sequence>
 <element name="correlation"
 type="bpws:tCorrelationWithPattern"
 minOccurs="1"
 maxOccurs="unbounded"/>
 </sequence>
 </extension>
 </complexContent>
</complexType>

<complexType name="tCorrelationWithPattern">
 <complexContent>
 <extension base="bpws:tCorrelation">
 <attribute name="pattern">

 <simpleType>
 <restriction base="string">
 <enumeration value="in" />
 <enumeration value="out" />
 <enumeration value="out-in" />
 </restriction>
 </simpleType>
 </attribute>
 </extension>
 </complexContent>
</complexType>

<complexType name="tInvoke">
 <complexContent>
 <extension base="bpws:tActivity">
 <sequence>
 <element name="correlations"
 type="bpws:tCorrelationsWithPattern"
 minOccurs="0" maxOccurs="1"/>
 <element name="catch" type="bpws:tCatch"
 minOccurs="0" maxOccurs="unbounded"/>
 <element name="catchAll"
 type="bpws:tActivityOrCompensateContainer"
 minOccurs="0"/>
 <element name="compensationHandler"
 type="bpws:tCompensationHandler"
minOccurs="0"/>
 </sequence>
 <attribute name="partnerLink" type="NCName"
use="required"/>
 <attribute name="portType" type="QName"
use="required"/>
 <attribute name="operation" type="NCName"
use="required"/>
 <attribute name="inputVariable" type="NCName"
use="optional"/>
 <attribute name="outputVariable" type="NCName"
use="optional"/>
 </extension>
 </complexContent>
</complexType>

<complexType name="tReceive">
 <complexContent>
 <extension base="bpws:tActivity">
 <sequence>
 <element name="correlations"
 type="bpws:tCorrelations" minOccurs="0"/>
 </sequence>
 <attribute name="partnerLink" type="NCName"
use="required"/>
 <attribute name="portType" type="QName"
use="required"/>
 <attribute name="operation" type="NCName"
use="required"/>
 <attribute name="variable" type="NCName"
use="optional"/>

 <attribute name="createInstance"
type="bpws:tBoolean" default="no"/>
 </extension>
 </complexContent>
</complexType>

<complexType name="tReply">
 <complexContent>
 <extension base="bpws:tActivity">
 <sequence>
 <element name="correlations"
 type="bpws:tCorrelations" minOccurs="0"/>
 </sequence>
 <attribute name="partnerLink" type="NCName"
use="required"/>
 <attribute name="portType" type="QName"
use="required"/>
 <attribute name="operation" type="NCName"
use="required"/>
 <attribute name="variable" type="NCName"
use="optional"/>
 <attribute name="faultName" type="QName"/>
 </extension>
 </complexContent>
</complexType>

<complexType name="tAssign">
 <complexContent>
 <extension base="bpws:tActivity">
 <sequence>
 <element name="copy" type="bpws:tCopy"
 minOccurs="1" maxOccurs="unbounded"/>
 </sequence>
 </extension>
 </complexContent>
</complexType>

<complexType name="tCopy">
 <complexContent>
 <extension base="bpws:tExtensibleElements">
 <sequence>
 <element ref="bpws:from"/>
 <element ref="bpws:to"/>
 </sequence>
 </extension>
 </complexContent>
</complexType>

<element name="from" type="bpws:tFrom"/>

<complexType name="tFrom">
 <complexContent>
 <extension base="bpws:tExtensibleElements">
 <attribute name="variable" type="NCName"/>
 <attribute name="part" type="NCName"/>
 <attribute name="query" type="string"/>
 <attribute name="property" type="QName"/>

 <attribute name="partnerLink" type="NCName"/>
 <attribute name="endpointReference"
type="bpws:tRoles"/>
 <attribute name="expression" type="string"/>
 <attribute name="opaque" type="bpws:tBoolean"/>
 </extension>
 </complexContent>
</complexType>

<element name="to">
 <complexType>
 <complexContent>
 <restriction base="bpws:tFrom">
 <attribute name="expression"
type="string"
 use="prohibited"/>
 <attribute name="opaque"
type="bpws:tBoolean"
 use="prohibited"/>
 <attribute name="endpointReference"
type="bpws:tRoles"
 use="prohibited"/>
 </restriction>
 </complexContent>
 </complexType>
</element>

<complexType name="tWait">
 <complexContent>
 <extension base="bpws:tActivity">
 <attribute name="for" type="bpws:tDuration-
expr"/>
 <attribute name="until" type="bpws:tDeadline-
expr"/>
 </extension>
 </complexContent>
</complexType>

<complexType name="tThrow">
 <complexContent>
 <extension base="bpws:tActivity">
 <attribute name="faultName" type="QName"
use="required"/>
 <attribute name="faultVariable" type="NCName"/>
 </extension>
 </complexContent>
</complexType>

<complexType name="tCompensate">
 <complexContent>
 <extension base="bpws:tActivity">
 <attribute name="scope" type="NCName"/>
 </extension>
 </complexContent>
</complexType>

<complexType name="tTerminate">

 <complexContent>
 <extension base="bpws:tActivity"/>
 </complexContent>
</complexType>

<complexType name="tFlow">
 <complexContent>
 <extension base="bpws:tActivity">
 <sequence>
 <element name="links" type="bpws:tLinks"
minOccurs="0"/>
 <group ref="bpws:activity"
maxOccurs="unbounded"/>
 </sequence>
 </extension>
 </complexContent>
</complexType>

<complexType name="tLinks">
 <complexContent>
 <extension base="bpws:tExtensibleElements">
 <sequence>
 <element name="link"
 type="bpws:tLink"
 maxOccurs="unbounded"/>
 </sequence>
 </extension>
 </complexContent>
</complexType>

<complexType name="tLink">
 <complexContent>
 <extension base="bpws:tExtensibleElements">
 <attribute name="name" type="NCName"
use="required"/>
 </extension>
 </complexContent>
</complexType>

<complexType name="tSwitch">
 <complexContent>
 <extension base="bpws:tActivity">
 <sequence>
 <element name="case" maxOccurs="unbounded">
 <complexType>
 <complexContent>
 <extension
base="bpws:tActivityContainer">
 <attribute name="condition"
 type="bpws:tBoolean-expr"
 use="required"/>
 </extension>
 </complexContent>
 </complexType>
 </element>
 <element name="otherwise"
 type="bpws:tActivityContainer"

 minOccurs="0"/>
 </sequence>
 </extension>
 </complexContent>
</complexType>

<complexType name="tWhile">
 <complexContent>
 <extension base="bpws:tActivity">
 <sequence>
 <group ref="bpws:activity"/>
 </sequence>
 <attribute name="condition"
 type="bpws:tBoolean-expr"
 use="required"/>
 </extension>
 </complexContent>
</complexType>

<complexType name="tSequence">
 <complexContent>
 <extension base="bpws:tActivity">
 <sequence>
 <group ref="bpws:activity"
maxOccurs="unbounded"/>
 </sequence>
 </extension>
 </complexContent>
</complexType>

<complexType name="tPick">
 <complexContent>
 <extension base="bpws:tActivity">
 <sequence>
 <element name="onMessage"
 type="bpws:tOnMessage"
 maxOccurs="unbounded"/>
 <element name="onAlarm"
 type="bpws:tOnAlarm" minOccurs="0"
 maxOccurs="unbounded"/>
 </sequence>
 <attribute name="createInstance"
 type="bpws:tBoolean" default="no"/>
 </extension>
 </complexContent>
</complexType>

<complexType name="tScope">
 <complexContent>
 <extension base="bpws:tActivity">
 <sequence>
 <element name="variables"
 type="bpws:tVariables"
 minOccurs="0"/>
 <element name="correlationSets"
 type="bpws:tCorrelationSets"
 minOccurs="0"/>

 <element name="faultHandlers"
 type="bpws:tFaultHandlers"
 minOccurs="0"/>
 <element name="compensationHandler"
 type="bpws:tCompensationHandler"
 minOccurs="0"/>
 <element name="eventHandlers"
 type="bpws:tEventHandlers"
 minOccurs="0"/>
 <group ref="bpws:activity"/>
 </sequence>
 <attribute name="variableAccessSerializable"
 type="bpws:tBoolean"
 default="no"/>
 </extension>
 </complexContent>
</complexType>

<simpleType name="tBoolean-expr">
 <restriction base="string"/>
</simpleType>

<simpleType name="tDuration-expr">
 <restriction base="string"/>
</simpleType>

<simpleType name="tDeadline-expr">
 <restriction base="string"/>
</simpleType>

<simpleType name="tBoolean">
 <restriction base="string">
 <enumeration value="yes"/>
 <enumeration value="no"/>
 </restriction>
</simpleType>

<simpleType name="tRoles">
 <restriction base="string">
 <enumeration value="myRole"/>
 <enumeration value="partnerRole"/>
 </restriction>
</simpleType>

</schema>

Partner Link Type Schema
<?xml version='1.0' encoding="UTF-8"?>
<schema xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:plnk="http://schemas.xmlsoap.org/ws/2003/05/par
tner-link/"
 targetNamespace="http://schemas.xmlsoap.org/ws/2003/0
5/partner-link/"
 elementFormDefault="qualified">

 <element name="partnerLinkType"
type="plnk:tPartnerLinkType"/>

 <complexType name="tPartnerLinkType">
 <sequence>
 <element name="role" type="plnk:tRole"
minOccurs="1" maxOccurs="2"/>
 </sequence>
 <attribute name="name" type="NCName"
use="required"/>
 </complexType>

 <complexType name="tRole">
 <sequence>
 <element name="portType" minOccurs="1"
maxOccurs="1">
 <complexType>
 <attribute name="name" type="QName"
use="required"/>
 </complexType>
 </element>
 </sequence>
 <attribute name="name" type="NCName"
use="required"/>
 </complexType>
</schema>

Message Properties Schema
<?xml version='1.0' encoding="UTF-8"?>
<schema xmlns="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://schemas.xmlsoap.org/ws/2003/0
3/business-process/"
 xmlns:wsbp="http://schemas.xmlsoap.org/ws/2003/03/bus
iness-process/"
 elementFormDefault="qualified">

 <element name="property">
 <complexType>
 <attribute name="name" type="NCName"
use="required"/>
 <attribute name="type" type="QName"
use="required"/>
 </complexType>
 </element>

 <element name="propertyAlias">
 <complexType>
 <attribute name="propertyName" type="QName"
use="required"/>
 <attribute name="messageType" type="QName"
use="required"/>
 <attribute name="part" type="NCName"/>
 <attribute name="query" type="string"/>
 </complexType>
 </element>

</schema>

E. Notices

Copyright © The Organization for the Advancement of Structured
Information Standards [OASIS] 2001, 2002, 2003. All Rights Reserved.
OASIS takes no position regarding the validity or scope of any intellectual
property or other rights that might be claimed to pertain to the
implementation or use of the technology described in this document or the
extent to which any license under such rights might or might not be
available; neither does it represent that it has made any effort to identify
any such rights. Information on OASIS's procedures with respect to rights
in OASIS specifications can be found at the OASIS website. Copies of
claims of rights made available for publication and any assurances of
licenses to be made available, or the result of an attempt made to obtain a
general license or permission for the use of such proprietary rights by
implementors or users of this specification, can be obtained from the
OASIS Executive Director.
OASIS invites any interested party to bring to its attention any copyrights,
patents or patent applications, or other proprietary rights which may cover
technology that may be required to implement this specification. Please
address the information to the OASIS Executive Director.
This document and translations of it may be copied and furnished to others,
and derivative works that comment on or otherwise explain it or assist in
its implementation may be prepared, copied, published and distributed, in
whole or in part, without restriction of any kind, provided that the above
copyright notice and this paragraph are included on all such copies and
derivative works. However, this document itself may not be modified in
any way, such as by removing the copyright notice or references to OASIS,
except as needed for the purpose of developing OASIS specifications, in
which case the procedures for copyrights defined in the OASIS
Intellectual Property Rights document must be followed, or as required to
translate it into languages other than English.
The limited permissions granted above are perpetual and will not be
revoked by OASIS or its successors or assigns.
This and the information contained and the information is provided on an
"AS IS" basis and DISCLAIMS ALL WARRANTIES, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO WARRANTY THAT
THE USE OF THE INFORMATION HEREIN NOT INFRINGE ANY
RIGHTS OR ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
OASIS has been notified of intellectual property rights claimed in regard
to some or all of the contents of this specification. For more information
consult the online list of claimed rights.

F. Intellectual Property Rights
For information on wether any patents have been disclosed that may be
essential to implementing this specification, and any offers of patent
licensing terms, please refer to the Intellectual Property Rights section of
the WS-BPEL Technical Committee web page (http://www.oasis-
open.org/committees/wsbpel)

References
Normative

[XMLSpec] XML Specification, W3C Recommendation.
[SOAP 1.1] Simple Object Access Protocol (SOAP) 1.1, W3C Note
[WSDL 1.1] Web Services Definition Language (WSDL) 1.1, W3C
Note
[UDDI] Universal Description, Discovery and Integration,
Industry Initiative
[XLANG] Web Services for Business Process Design
[WSFL] Web Service Flow Language 1.0
[XML Schema Part 1] XML Schema Part 1: Structures, W3C
Recommendation
[XML Schema Part 2] XML Schema Part 2: Datatypes, W3C
Recommendation
[XPATH 1.0] XML Path Language (XPath) Version 1.0, W3C
Recommendation
[Sagas] Sagas H. Garcia-Molina and K. Salem, Proc. ACM
SIGMOD (1987).
[Trends] Trends in systems aspects of database management," I.L.
Traiger, Proc. 2nd Intl. , Conf. on Databases (ICOD-2), Wiley and
Sons 1983.
[WS-Transaction] “Web Services Transaction” , IBM and
Microsoft, 2002.
[RFC 2119] RFC 2119: Key words for use in RFCs to Indicate
Requirement Levels, S. Bradner. IETF (Internet Engineering Task
Force), 1997.
[RFC 2396] RFC 2396: Uniform Resource Identifiers (URI):
Generic Syntax, T. Berners-Lee, R. Fielding, L. Masinter,
MIT/LCS, U.C. Irvine, Xerox Corporation, August 1998.
[BPEL4WS 1.0] Business Process Execution Language for Web
Services Version 1.0, BEA, IBM and Microsoft, August 2002.
[WS-Addressing] Web Services Addressing (WS-Addressing), BEA,
IBM and Microsoft, March 2003.

H. Committee Members (Non-
Normative)

The following individuals were members of the committee during the
formulation of this document:
• Lars Abrell
• Hedy Alban
• Randall Anderson, Macgregor
• Tony Andrews, Microsoft
• Assaf Arkin,Intalio
• Sid Askary
• Kent Below, IBM

• Terry Bjornsen, Booz Allen Hamilton
• Mike Blevins, BEA
• Ben Bloch
• Alex Boisvert, Intalio, Inc.
• Subhra Bose, Reuters America
• George Brown, Intel
• Steve Brown, Metastorm
• Justin Brunt, WfMC
• Navin Budhiraja, Vitria
• David Burdett, CommerceOne
• Laurence Cable
• Ryan Cairnsi, OpenStorm Software
• Arun Candadai
• fred carter, AmberPoint
• Andy Chan, FileNet
• Sarat Chand, PeopleSoft
• Chia Chao, IONA
• Martin Chapman, Oracle
• Dave Chappell, Sonic Software
• Jamie Clark, OASIS
• Doron Cohen, BMC Software
• Ugo Corda, SeeBeyond
• Robin Cover, OASIS
• Fred Cummins, EDS
• Francisco Curbera, IBM
• Sanjay Dalal, BEA
• Khoi Dang, FileNet
• Michael DeBellis, Fujitsu
• Linda DeMichiel, Sun Microsystems
• Jens Doerpmund, Hewlett-Packard
• Bernd Eckenfels, Seeburger, AG
• Rami Elron, BMC Software
• John Evdemon, Microsoft (TC-Chair)
• B.J. Fesq
• Rabih Filfili, Microsoft
• Layna Fischer, BPMI.org
• Layna Fischer, WfMC
• Tony Fletcher, Choreology
• Bill Flood, Sybase
• Daniel Foody, Actional
• Steven Forgey, SeeBeyond
• Franz Fritz, SAP
• Yuzo Fujishima, NEC Corporation
• Shoichi Fukuda, Fujitsu
• Peter Furniss, Choreology
• Jean-Luc Giraud, Axway software
• Yaron Goland, BEA

• Alastair Green, Choreology
• Ajay Gummadi
• Michael Hafner, SAP
• Tommy Hansen, FileNet
• Kevin Hein, Teamplate
• Scott Hinkelman, IBM
• Chunbo Huang, BEA
• Yin-Leng Husband, Hewlett-Packard
• David Ingham, Arjuna Technologies
• Ram Jeyaraman, Sun Microsystems
• Diane Jordan, IBM (TC-Chair)
• Bala Kamallakharan, Cap Gemini Ernst and Young
• Neelakantan Kartha, Sterling Commerce
• Nicholas Kassem, Sun Microsystems
• Nickolas Kavantzas, Oracle
• Michael Keay
• Debra Kellington, Convergys
• Edwin Khodabakchian, Collaxa
• Sun-Ho Kim
• Yoav Kirsch, Business Layers
• Melanie Kudela, Uniform Code Council
• Pradeep Kumar, MRO Software
• Sanjeev Kumar
• Chris Kurt, Microsoft
• Kelvin Lawrence, IBM
• Philip Lee, BPMI.org
• Frank Leymann, IBM
• Yanming Li, France Telecom
• Paul Lipton, Computer Associates
• Mark Little, Arjuna Technologies
• Melton Littlepage, Booz Allen Hamilton
• Kevin Liu, SAP
• Brian Lorenz, Sybase
• Hop Luu, FileNet
• Art Machado, PeopleSoft
• Balinder Malhi, Microsoft
• Sumeet Malhotra, Unisys
• Rajesh Manglani, Uniform Code Council
• Bernard Manouvrier, Axway software
• Mike Marin, FileNet
• Monica Martin, Sun Microsystems
• Tod Matola, Sterling Commerce
• carol mcdonald, Sun Microsystems
• Bimal Mehta, Microsoft
• Vinkesh Mehta, CommerceOne
• Glenn Mi, Collaxa
• Jeff Mischkinsky, Oracle

• JP Morgenthal, Software AG
• Tim Moses, Entrust
• Kenji Nagahashi, Fujitsu
• Trevor Naidoo, IDS Scheer
• Goran Olsson, Oracle
• Srinivas Padmanabhuni, Infosys
• John Parkinson, Cap Gemini Ernst and Young
• Sanjay Patil, IONA
• Mark Potts, Talking Blocks
• Rajesh Pradhan, Iopsis Software
• Matthew Pryor, BPMI.org
• Ken Pugsley, PeopleSoft
• Andrew Pugsley, Hewlett-Packard
• Jon Pyke, WfMC
• Harvey Reed, Sonic Software
• Sundari Revanur, IONA
• Greg Ritzinger, Novell
• Anthony Roby, Accenture
• Jorge Rodriguez, IBM
• Dieter Roller, IBM
• Darran Rolls, Waveset Technologies
• Phil Rossomando, Unisys
• Steve Ross-Talbot, Enigmatec
• Michael Rowley, BEA
• Waqar Sadiq, EDS
• Yuji Sakata
• Krishna Sankar, Cisco Systems
• Bob Schmidt, Microsoft
• Marc-Thomas Schmidt, IBM
• Yoko Seki, Hitachi
• Pinaki Shah, E2Open
• Vishwanath Shenoy, Infosys
• Frank Siebenlist, Argonne National Laboratory
• Parijat Sinha, Convergys
• Dale Skeen, Vitria
• Howard Smith, BPMI.org
• Gavenraj Sodhi, Business Layers
• Vinay Srinivasaiah, SeeBeyond
• Venkat Srinivasan, SeeBeyond
• Nallan Sriraman, Reuters America
• Sally St. Amand
• Donald Steiner, WebV2
• Karl-Heinz Sternemann, BizTalk Competence Center
• Nikola Stojanovic
• Keith Swenson, Fujitsu
• Maciej Szefler, FiveSight Technologies
• Pal Takacsi-Nagy, BEA

• Ran Tamir, BMC Software
• Bob Taylor, Hewlett-Packard
• Sazi Temel, BEA
• Ron Ten-Hove, Sun Microsystems
• Aniruddha Thakur, Oracle
• Satish Thatte, Microsoft
• Steve Towers, BPM Group
• Derick Townsend, OpenStorm Software
• Ivana Trickovic, SAP
• Kenwood Tsai, Documentum
• William Vambenepe, Hewlett-Packard
• Danny van der Rijn, Tibco
• Gloria Vargas, Reuters America
• Ganesh Vednere, Cap Gemini Ernst and Young
• Claus von Riegen, SAP
• Jim Webber, Arjuna Technologies
• David Webber
• Michael Weiner, IBM
• Pete Wenzel, SeeBeyond
• Stuart Wheater,Arjuna Technologies
• Stephen White
• Scott Woodgate, Microsoft
• Prasad Yendluri, webMethods
• Eric Yuan, Booz Allen Hamilton
• Sinisa Zimek, SAP
• Michael zur Muehlen, WfMC

