

Web Services Reliable Messaging Protocol
(WS-ReliableMessaging)
March 13, 2003

Authors
Ruslan Bilorusets, BEA
Adam Bosworth, BEA
Don Box, Microsoft
Felipe Cabrera, Microsoft
Derek Collison, TIBCO Software
Jon Dart, TIBCO Software
Donald Ferguson, IBM
Christopher Ferris, IBM (Editor)
Tom Freund, IBM
Mary Ann Hondo, IBM
John Ibbotson, IBM
Chris Kaler, Microsoft
David Langworthy, Microsoft (Editor)
Amelia Lewis, TIBCO Software
Rodney Limprecht, Microsoft
Steve Lucco, Microsoft
Don Mullen, TIBCO Software
Anthony Nadalin, IBM
Mark Nottingham, BEA
David Orchard, BEA
John Shewchuk, Microsoft
Tony Storey, IBM

Copyright Notice
(c) 2002, 2003 BEA Systems Inc., International Business Machines Corporation,
Microsoft Corporation, TIBCO Software Inc. All rights reserved.

BEA, IBM, Microsoft, and TIBCO Software (collectively, the "Authors") hereby grant you
permission to copy and display the WS-ReliableMessaging Specification, in any medium
without fee or royalty, provided that you include the following on ALL copies of the WS-
ReliableMessaging Specification, or portions thereof, that you make:

1. A link or URL to the Specification at this location

2. The copyright notice as shown in the WS-ReliableMessaging Specification.

EXCEPT FOR THE COPYRIGHT LICENSE GRANTED ABOVE, THE AUTHORS DO NOT
GRANT, EITHER EXPRESSLY OR IMPLIEDLY, A LICENSE TO ANY INTELLECTUAL
PROPERTY, INCLUDING PATENTS, THEY OWN OR CONTROL.

THE WS-RELIABLEMESSAGING SPECIFICATION IS PROVIDED "AS IS," AND THE
AUTHORS MAKE NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR
A PARTICULAR PURPOSE, NON-INFRINGEMENT, OR TITLE; THAT THE CONTENTS OF THE

WS-RELIABLEMESSAGINGSPECIFICATION ARE SUITABLE FOR ANY PURPOSE; NOR THAT
THE IMPLEMENTATION OF SUCH CONTENTS WILL NOT INFRINGE ANY THIRD PARTY
PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS.

THE AUTHORS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL
OR CONSEQUENTIAL DAMAGES ARISING OUT OF OR RELATING TO ANY USE OR
DISTRIBUTION OF THE WS-RELIABLEMESSAGING SPECIFICATION.

The WS-ReliableMessaging Specification may change before final release and you are
cautioned against relying on the content of this specification.

The name and trademarks of the Authors may NOT be used in any manner, including
advertising or publicity pertaining to the Specification or its contents without specific,
written prior permission. Title to copyright in the WS-ReliableMessaging Specification will
at all times remain with the Authors.

No other rights are granted by implication, estoppel or otherwise.

Abstract
This specification (WS-ReliableMessaging) describes a protocol that allows messages to
be delivered reliably between distributed applications in the presence of software
component, system, or network failures. The protocol is described in this specification in
an independent manner allowing it to be implemented using different network transport
technologies. To support interoperable Web services, a SOAP binding is defined within
this specification.

The protocol defined in this specification depends upon other Web services specifications
for the identification of service endpoint addresses and policies. How these are identified
and retrieved are detailed within those specifications and are out of scope for this
document.

Composable Architecture
By using the SOAP [SOAP] and WSDL [WSDL] extensibility model, SOAP-based and
WSDL-based specifications are designed to be composed with each other to define a rich
Web services environment. As such, WS-ReliableMessaging by itself does not define all
the features required for a complete messaging solution. WS-ReliableMessaging is a
building block that is used in conjunction with other specifications and application-
specific protocols to accommodate a wide variety of protocols related to the operation of
distributed Web services.

Status
WS-ReliableMessaging and related specifications are provided for use as-is and for
review and evaluation only. BEA, IBM, Microsoft, and TIBCO Software will solicit your
contributions and suggestions in the near future. BEA, IBM, Microsoft, and TIBCO
Software make no warrantees or representations regarding the specification in any
manner whatsoever.

Acknowledgments
The following individuals have provided invaluable input into the design of the WS-
ReliableMessaging specification:

Keith Ballinger, Microsoft
Michael Conner, IBM
Francisco Curbera, IBM
Allen Brown, Microsoft
Steve Graham, IBM
Pat Helland, Microsoft
Rick Hill, Microsoft
Scott Hinkelman, IBM
Tim Holloway, IBM
Efim Hudis, Microsoft
Johannes Klein, Microsoft
Frank Leymann, IBM
Martin Nally, IBM
Peter Niblett, IBM
Jeffrey Schlimmer, Microsoft
James Snell, IBM
Keith Stobie, Microsoft
Stephen Todd, IBM
Satish Thatte, Microsoft
Sanjiva Weerawarana, IBM
Roger Wolter, Microsoft

We also wish to thank the technical writers and development reviewers who provided
feedback to improve the readability of the specification.

Table of Contents
Web Services Reliable Messaging Protocol (WS-ReliableMessaging)

Authors

Copyright Notice

Abstract

Composable Architecture

Status

Acknowledgments

Table of Contents

1 Introduction

1.1 Notational Conventions

1.2 Namespace

2. Reliable Messaging Model

2.1 Glossary

2.2 Protocol Preconditions

2.3 Protocol Invariants

2.4 Reliable Messaging Delivery Assurances

2.5 Example Message Exchange

3. RM Protocol Elements

3.1 Sequences

3.2. Sequence Acknowledgement

3.3. Request Acknowledgement

4. Policy Assertions

4.1. Spec Version

4.2. Delivery Assurance

4.3. Sequence Expiration

4.4. InactivityTimeout

4.5. Retransmission Interval

4.6. Acknowledgement Interval

5. Attaching Policy Assertions to Sequences

5.1 SequenceRef

5.2 Metadata Exchange

6. SequenceFault Element

6.1. Sequence Terminated

6.2. Unknown Sequence

6.3. Invalid Acknowledgement

6.4. Message Number Rollover

6.5. Last Message Number Exceeded

6.6. Sequence Refused

7. Security Considerations

8. References

Appendix A Example Timing Profile

Appendix B Schema

Appendix C Message Examples

C.1 Initial Transmission

C.2 First Acknowledgement

C.3 Retransmission

C.4 Final Acknowledgment

1 Introduction
It is often a requirement for two Web services that wish to communicate to do so
reliably in the presence of software component, system, or network failures. The
primary goal of this specification is to create a modular mechanism for reliable message
delivery. It defines a messaging protocol to identify, track, and manage the reliable
delivery of messages between exactly two parties, a source and a destination. It also
defines a SOAP binding which is required for interoperability. Additional bindings may
be defined.

This mechanism is extensible allowing additional functionality, such as security, to be
tightly integrated. This specification integrates with and compliments the WS-Security,
WS-Policy, and other Web services specifications. Combined, these allow for a broad
range of reliable, secure messaging options.

1.1 Notational Conventions
The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",
"SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be
interpreted as described in RFC2119 [KEYWORDS].

Namespace URIs of the general form "some-URI" represents some application-
dependent or context-dependent URI as defined in RFC2396 [URI].

This specification uses an informal syntax to describe the XML grammar of the XML
fragments below:

• The syntax appears as an XML instance, but the values indicate the data types
instead of values.

• Element names ending in "…" (such as <element…/> or <element…>) indicate that
elements/attributes irrelevant to the context are being omitted.

• Attributed names ending in "…" (such as name=...) indicate that the values are
specified below.

• Grammar in bold has not been introduced earlier in the document, or is of particular
interest in an example.

• <-- description --> is a placeholder for elements from some "other" namespace
(like ##other in XSD).

• Characters are appended to elements, attributes, and <!-- descriptions --> as
follows: "?" (0 or 1), "*" (0 or more), "+" (1 or more). The characters "[" and "]" are
used to indicate that contained items are to be treated as a group with respect to the
"?", "*", or "+" characters.

• The XML namespace prefixes (defined below) are used to indicate the namespace of
the element being defined.

• Examples starting with <?xml contain enough information to conform to this
specification; others examples are fragments and require additional information to be
specified in order to conform.

XSD schemas and WSDL definitions are provided as a formal definition of grammars
[xml-schema1] [WSDL].

1.2 Namespace
The XML namespace [XML-ns] URI that MUST be used by implementations of this
specification is:

http://schemas.xmlsoap.org/ws/2003/03/rm

The namespace prefix "wsrm" used in this specification is associated with this URI.

The following namespaces are used in this document:

Prefix Namespace

wsrm http://schemas.xmlsoap.org/ws/2003/03/rm

wsu http://schemas.xmlsoap.org/ws/2002/07/utility

wsp http://schemas.xmlsoap.org/ws/2002/12/policy

The normative schema for WS-Reliable Messaging can be found at:

http://schemas.xmlsoap.org/ws/2003/03/rm/wsrm.xsd

All sections explicitly noted as examples are informational and are not to be considered
normative.

If an action URI is used then the action URI MUST consist of the reliable messaging
namespace URI concatenated with the '#' character and the element name. For
example:

http://schemas.xmlsoap.org/ws/2003/03/rm#SequenceAcknowledgement

2. Reliable Messaging Model
Many errors may interrupt a conversation. Messages may be lost, duplicated or
reordered. Further the host systems may experience failures and lose volatile state.

The Reliable Messaging model provides the guarantee that messages sent by the initial
sender will be delivered to the ultimate receiver. The guarantee is specified by delivery
assurances defined in Section 2.4.

The diagram below illustrates the entities and events in a simple reliable message
exchange. First, the Initial Sender sends a message for reliable delivery. The Source
accepts the message and transmits it one or more times. After receiving the message
the Destination acknowledges it. Finally, the Destination delivers the message to the
Ultimate Receiver. The exact roles the entities play and the complete meaning of the
events will be defined throughout this specification.

Figure 1: Reliable Messaging Model

2.1 Glossary
The following definitions are used throughout this specification:

Endpoint: A referencable entity, processor, or resource where Web service messages
are originated or targeted.

Initial Sender: The endpoint which sends a message.

Ultimate Receiver: The endpoint to which a message is delivered.

Delivery Assurance: The guarantee that the messaging infrastructure provides on the
delivery of a message.

Source: The endpoint that transmits the message.

Destination: The endpoint that receives the message.

Send: The act of submitting a message to the source for reliable delivery. The reliability
guarantee begins at this point.

Deliver: The act of transferring a message to the ultimate recipient. The reliability
guarantee is fulfilled at this point.

Transmit: The act of writing a message to a network connection

Receipt: The act of reading a message from a network connection

Acknowledgement: The communication from the destination to the source indicating
the successful receipt of a message.

2.2 Protocol Preconditions
The correct operation of the protocol requires that a number of preconditions MUST be
established prior to the processing of the initial sequenced message:

• The source MUST have an endpoint reference that uniquely identifies the destination
endpoint; correlations across messages addressed to the unique endpoint are
meaningful.

• The source MUST have knowledge of the destination’s policies, if any, and the source
MUST be capable of formulating messages that adhere to this policy.

• If a secure exchange of messages is required, then the source and destination MUST
have a security context.

2.3 Protocol Invariants
During the lifetime of the protocol, two invariants are required for correctness:

• The source MUST assign each reliable message a sequence number (defined below)
beginning at 1 and increasing by exactly 1 for each subsequent reliable message.

• Every acknowledgement issued by the destination MUST include within an
acknowledgement range or ranges the sequence number of every message
successfully received by the destination and MUST exclude sequence numbers of any
messages not yet received.

2.4 Reliable Messaging Delivery Assurances
Endpoints which implement the WS-ReliableMessaging protocol provide delivery
assurances for the delivery of messages sent from the initial sender to the ultimate
receiver. The protocol supports the endpoints in providing these delivery assurances. It
is the responsibility of the source and destination to fulfill the delivery assurances in the
Sequence’s policy declarations, or raise an error and terminate the Sequence. An
endpoint MAY fail to fulfill its delivery assurance for any reason including an internal
error, security violation, a denial of service attack, a network partition or a service
outage. If either endpoint fails to fulfill its delivery assurance commitments, an error
MUST be raised on either the initial sender or the ultimate receiver or both. The
protocol defined here allows endpoints to meet this guarantee for the delivery
assurances defined below. These delivery assurances begin with a successful send by
the Initial Sender and end with a successful delivery. There are four basic delivery
assurances that endpoints can provide:

AtMostOnce Messages will be delivered at most once without duplication or an error
will be raised on at least one endpoint. It is possible that some messages in a sequence
may not be delivered.

AtLeastOnce Every message sent will be delivered or an error will be raised on at least
one endpoint. Some messages may be delivered more than once.

ExactlyOnce Every message sent will be delivered without duplication or an error will
be raised on at least one endpoint. This delivery assurance is the logical "and" of the
two prior delivery assurances.

InOrder Messages will be delivered in the order that they were sent. This delivery
assurance may be combined with any of the above delivery assurances. It requires that
the sequence observed by the ultimate receiver be non-decreasing. It says nothing
about duplications or omissions.

2.5 Example Message Exchange
The following figure illustrates a possible message exchange between two reliable
messaging endpoints.

Figure 2: The WS-ReliableMessaging Protocol

1. The protocol preconditions are established. These include policy exchange, endpoint
resolution, establishing trust.

2. The Source establishes a new sequence by assigning a unique identifier and begins
sending messages beginning with MessageNumber 1. In the figure the Source sends
3 messages.

3. Since the 3rd message is the last in this exchange, the Source includes a
LastMessage token.

4. The 2nd message is lost in transit.

5. The Destination acknowledges receipt of message numbers 1 and 3.

6. The Source retransmits the 2nd message. This is a new message on the underlying
transport, but since it has the same sequence identifier and message number so the
Destination can recognize it as equivalent to the earlier message, in case both are
received.

7. The Source includes an AckRequested element so the Destination will expedite an
acknowledgement.

8. The Destination receives the second transmission of the message with
MessageNumber 2 and acknowledges receipt of message numbers 1, 2, and 3.

9. The Source receives this acknowledgement and knows the sequence is completed.

Now that the basic model has been outlined, the details of the elements used in this
protocol are now provided.

3. RM Protocol Elements

3.1 Sequences
The RM protocol uses a <Sequence> element to track and manage the reliable delivery of
messages. Messages for which the delivery assurance applies MUST contain a
<Sequence> element. Each Sequence MUST have a unique <Identifier> element and
each message within a Sequence MUST have a <MessageNumber> element which
increments by 1 from an initial value of 1. These values are contained within a
<Sequence> element accompanying each message being delivered in the context of a
Sequence. In addition to mandatory <Identifier> and <MessageNumber> elements, the
header MAY include a <LastMessage> element, a <wsu:Expires> element, or both.

There MUST be no more than one <Sequence> element in any message.

The purpose of the <LastMessage> element is to signal to the destination that the
message represents the last message in the Sequence.

A following pseudo schema fragment defines the <Sequence> element.

<wsrm:Sequence ...>

<wsu:Identifier> [URI] </wsu:Identifier>

<wsrm:MessageNumber> [unsignedLong] </wsrm:MessageNumber>

<wsrm:LastMessage/>?

<wsu:Expires> [dateTime] </wsu:Expires>?

...

</wsrm:Sequence>

The following example illustrates a Sequence element.

<wsrm:Sequence>

<wsu:Identifier>http://fabrikam123.com/abc</wsu:Identifier>

<wsrm:MessageNumber>10</wsrm:MessageNumber>

<wsrm:LastMessage/>

</wsrm:Sequence>

The following describes the content model of the Sequence header.

/wsrm:Sequence
This is the element containing Sequence information for WS-ReliableMessaging

/wsrm:Sequence/wsu:Identifier
This required element MUST contain a URI conformant with [RFC2396] that uniquely
identifies the Sequence. The normative definition of this element may be found in
[WSCoordination].

/wsrm:Sequence/wsrm:MessageNumber
This required element MUST contain an unsignedLong representing the ordinal
position of the message within a Sequence. Sequence MessageNumbers start at 1
and monotonically increase throughout the Sequence. If the message number
reaches the maximum value of an unsignedLong (18,446,744,073,709,551,615), no

new sequence numbers can be generated and the source MUST issue a
MessageNumberRollover fault.

/wsrm:Sequence/wsrm:LastMessage
This element MAY be included by the sending endpoint. The <LastMessage> element
has no content. A sending endpoint MUST include a <LastMessage> element in the
<Sequence> element for the last message in a Sequence. A Sequence MUST NOT use
a <MessageNumber> value greater than that which accompanies a <LastMessage>
element. A destination MUST generate a LastMessageNumberExceeded fault upon
receipt of such a message.

/wsrm:Sequence/wsu:Expires
This optional element indicates the point in time at which the Sequence will expire.
Its value is a dateTime. Its presence MUST override any previously established
expiration. Expiration should be established as described in Section 5.2. A
SequenceAcknowledgment that covers the MessageNumber of the message that
carries a wsu:Expires element indicates acceptance of the new value.

/wsrm:Sequence/{any}
This is an extensibility mechanism to allow different types of information, based on a
schema, to be passed.

/wsrm:Sequence/@{any}
This is an extensibility mechanism to allow additional attributes, based on schemas,
to be added to the element.

3.2. Sequence Acknowledgement
The destination informs the source of successful message receipt using an
acknowledgement. Acknowledgements may be transmitted individually or included on
return messages. The destination MAY send an acknowledgement at any point. The
timing of acknowledgements can be advertised using policy and acknowledgments can
be explicitly requested using the <AckRequested> directive.

The following pseudo schema defines the <SequenceAcknowledgement> element:

<wsrm:SequenceAcknowledgement ...>

<wsu:Identifier> [URI] </wsu:Identifier>

<wsrm:AcknowledgementRange ...

Upper="[unsignedLong]"

Lower="[unsignedLong]"/> +

...

<wsrm:SequenceAcknowledgement>

The following describes the content model of the <SequenceAcknowledgement> element.

/wsrm:SequenceAcknowledgement
This element contains the Sequence acknowledgement information.

/wsrm:SequenceAcknowledgement/wsu:Identifier

This required element MUST contain a URI conformant with [RFC2396] that uniquely
identifies the Sequence. The normative definition of this element may be found in
[WSCoordination].

/wsrm:SequenceAcknowledgement/wsrm:AcknowledgementRange
This required element can occur 1 or more times. It contains a range of message
Sequence MessageNumbers successfully received by the receiving endpoint
manager.

/wsrm:SequenceAcknowledgement/wsrm:AcknowledgmentRange/@Upper
This required attribute contains an unsignedLong representing the
<MessageNumber> of the highest contiguous message in a Sequence range.

/wsrm:SequenceAcknowledgement/wsrm:AcknowledgmentRange/@Lower
This required attribute contains an unsignedLong representing the
<MessageNumber> of the lowest contiguous message in a Sequence range.

/wsrm:SequenceAcknowledgment/{any}
This is an extensibility mechanism to allow different (extensible) types of
information, based on a schema, to be passed.

/wsrm:SequenceAcknowledgment/@{any}
This is an extensibility mechanism to allow additional attributes, based on schemas,
to be added to the element.

The following examples illustrate <SequenceAcknowledgement> elements:

• Message numbers 1..10 inclusive in a Sequence have been received by the receiving
endpoint.

<wsrm:SequenceAcknowledgment>

<wsu:Identifier>http://fabrikam123.com/abc</wsu:Identifier>

<wsrm:AcknowledgmentRange Upper="10" Lower="1"/>

</wsrm:SequenceAcknowledgment>

• Message numbers 1..2, 4..6, and 8..10 inclusive in a Sequence have been received
by the receiving endpoint, messages 3 and 7 have not been received.

<wsrm:SequenceAcknowledgment>

<wsu:Identifier>http://fabrikam123.com/abc</wsu:Identifier>

<wsrm:AcknowledgmentRange Upper="2" Lower="1"/>

<wsrm:AcknowledgmentRange Upper="6" Lower="4"/>

<wsrm:AcknowledgmentRange Upper="10" Lower="8"/>

</wsrm:SequenceAcknowledgment>

3.3. Request Acknowledgement
The purpose of the <AckRequested> element is to signal to the destination that the
source is requesting that a <SequenceAcknowledgment> be returned.

At any time, the source may request an acknowledgement message from the destination
point using an <AckRequested> element.

The sending endpoint requests this acknowledgement by including an <AckRequested>
element in the message. A destination that receives a message that contains an
<AckRequested> element MUST respond with a message containing a
<SequenceAcknowledgement> element.

The following pseudo schema defines the <AckRequested> element:

<wsrm:AckRequested ...>

<wsu:Identifier> [URI] </wsu:Identifier>

...

</wsrm:AckRequested>

/wsrm:AckRequested
This element requests an acknowledgement for the identified sequence.

/wsrm:AckRequested/wsu:Identifier
This required element contains the URI of the sequence to which the request applies.
The normative definition of this element may be found in [WSCoordination].

/wsrm:AckRequested /{any}
This is an extensibility mechanism to allow different (extensible) types of
information, based on a schema, to be passed.

/wsrm:AckRequested /@{any}
This is an extensibility mechanism to allow additional attributes, based on schemas,
to be added to the element.

4. Policy Assertions
WS-Policy [WS-Policy], WS-PolicyAttachments [WS-PolicyAttachments] and WS-
PolicyAssertions [PolicyAssertions] collectively define a framework, model and grammar
for expressing the capabilities, requirements, and general characteristics of entities in an
XML Web Services-based system. This specification leverages the WS-Policy family of
specifications to enable a destination endpoint to describe and advertise its capabilities
and/or requirements, and to enable a source destination to communicate to the
destination the selected characteristics that apply for a given Sequence. The set of
policy assertions for reliable delivery is defined below.

4.1. Spec Version
The protocol determines invariants maintained by the reliable messaging endpoints and
the directives used to track and manage the delivery of messages. The assertion that
will be used to identify the protocol (and version) either used or supported (depending
on context) is the wsp:SpecVersion assertion that is defined in the WS-PolicyAssertions
specification [PolicyAssertions].

An example use of this assertion to indicate an endpoint’s support for the WS-
ReliableMessaging protocol follows:

<wsp:SpecVersion

wsp:URI="http://schemas.xmlsoap.org/ws/2003/03/rm"

wsp:Usage="wsp:Required"/>

4.2. Delivery Assurance
This section establishes well known names for application level delivery assurances
between the ultimate receiver and the destination. The delivery assurance is an
informational policy assertion as it does not affect the transmission protocol defined
above.

The following pseudo schema defines this element:

<wsrm:DeliveryAssurance Value="[QName]" ...> ... </wsrm:DeliveryAssurance>

The following describes the attributes and tags listed in the syntax above:

/wsrm:DeliveryAssurance
This element is a policy assertion as defined in WS-PolicyAssertions. It contains an
identifier that characterizes the reliability aspects of the sequence.

/wsrm:DeliveryAssurance/@Value
This attribute contains one aspect of a sequence's reliability guarantee. Its value is a
QName. The following QNames are defined to have these specific meanings:

QName Delivery assurance

wsrm:AtMostOnce The messages in the sequence will be delivered to the
application without duplication.

wsrm:AtLeastOnce The messages in the sequence are assured to be delivered to
the application at least once.

wsrm:ExactlyOnce The messages in the sequence are assured to be delivered
exactly once. This assertion is equivalent to AtMostOnce and
AtLeastOnce.

wsrm:InOrder The messages in the sequence are assured to be delivered to
the application in the order they were sent.

/wsrm:DeliveryAssurance/{any}
This is an extensibility mechanism to allow different (extensible) types of
information, based on a schema, to be passed.

/wsrm:DeliveryAssurance/@{any}
This is an extensibility mechanism to allow additional attributes, based on schemas,
to be added to the element.

The example below indicates that messages should be delivered at least once.

<wsrm:DeliveryAssurance Value="wsrm:AtLeastOnce"/>

4.3. Sequence Expiration
The lifetime of a sequence may be established using the <wsu:Expires> policy assertion
defined in Web Services Security Addendum [SecurityAddendum].

The following pseudo schema defines this element:

<wsu:Expires ...> [dateTime] <wsu:Expires>

The following describes the attributes and tags listed in the syntax above:

wsu:Expires

This element is defined in WS-Security Addendum. It indicates the expiration time of
the sequence.

The example below indicates should expire January 1, 2100.

<wsu:Expires>2100-01-01T12:00:00.000-00:00</wsu:Expires>

4.4. InactivityTimeout
This assertion specifies (in milliseconds) a period of inactivity for a Sequence. If during
this duration an endpoint has received no application or control messages, the endpoint
MAY consider the Sequence to have been terminated due to inactivity.

The following pseudo schema defines this element:

<wsrm:InactivityTimeout Milliseconds="[unsignedLong]" ...> ...

</wsrm:InactivityTimeout>

The following describes the attributes and tags listed in the syntax above:

/wsrm:InactivityTimeout
This element is a policy assertion as defined in WS-PolicyAssertions. It specifies a
period of inactivity after which the endpoints MAY consider the Sequence to have
been terminated due to inactivity.

/wsrm:InactivityTimeout/@Milliseconds
This attribute carries the value of the inactivity timeout duration, specified in
milliseconds, expressed as an unsignedLong.

/wsrm:InactivityTimeout/{any}
This is an extensibility mechanism to allow different (extensible) types of
information, based on a schema, to be passed.

/wsrm:InactivityTimeout/@{any}
This is an extensibility mechanism to allow additional attributes, based on schemas,
to be added to the element.

4.5. Retransmission Interval
A source may optionally specify a base retransmission interval for a sequence. If no
acknowledgement has been received for a given message within the interval, the source
will retransmit the message. The retransmission interval may be modified at the
source's discretion during the lifetime of the sequence. This assertion does not alter the
formulation of messages as transmitted, only the timing of their transmission.

The sequence may optionally specify that the interval will be adjusted using the
commonly known exponential backoff algorithm.

The following pseudo schema defines these elements:

<wsrm:BaseRetransmissionInterval Milliseconds="[unsignedLong]" ...> ...

</wsrm:BaseRetransmissionInterval>

<wsrm:ExponentialBackoff ...> ... </wsrm:ExponentialBackoff>

The following describes the attributes and tags listed in the syntax above:

/wsrm:BaseRetransmissionInterval
This element is a policy assertion as defined in WS-PolicyAssertions. This assertion
specifies the interval in milliseconds the source will wait after transmitting a message
and before retransmitting the message.

/wsrm:BaseRetransmissionInterval/@Milliseconds
This attribute specifies the interval in milliseconds the source will wait after
transmitting a message and before retransmitting the message.

/wsrm:BaseRetransmissionInterval/{any}
This is an extensibility mechanism to allow different (extensible) types of
information, based on a schema, to be passed.

/wsrm:BaseRetransmissionInterval/@{any}
This is an extensibility mechanism to allow additional attributes, based on schemas,
to be added to the element.

/wsrm:ExponentialBackoff
This element is a policy assertion as defined in WS-PolicyAssertions. This assertion
specifies that the retransmission interval will be adjusted using the exponential
backoff algorithm.

/wsrm:ExponentialBackoff/{any}
This is an extensibility mechanism to allow different (extensible) types of
information, based on a schema, to be passed.

/wsrm:ExponentialBackoff/{@any}
This is an extensibility mechanism to allow additional attributes, based on schemas,
to be added to the element.

The example below indicates that unacknowledged messages will be retransmitted after
two seconds and that exponential backoff algorithm will be used for timing of successive
retransmissions should the message continue to go unacknowledged.

<wsp:Policy>

<wsrm:BaseRetransmissionInterval wsp:Usage="wsp:Observed"

Milliseconds="2000"/>

<wsrm:ExponentialBackoff wsp:Usage="wsp:Observed"/>

</wsp:Policy>

4.6. Acknowledgement Interval
Acknowledgements can be sent on return messages or sent stand alone. In the case
that a return message is not available to send an acknowledgement a destination may
wait for up to the acknowledgement interval before sending a stand alone
acknowledgement. If there are no unacknowledged messages, the destination may
choose not to send an acknowledgement.

This assertion does not alter the formulation of messages or acknowledgements as
transmitted. Its purpose is to communicate the timing of acknowledgements so that the
source may tune appropriately. It does not alter the meaning of the <AckRequested>
directive.

The following pseudo schema defines this element:

<wsrm:AcknowledgementInterval Milliseconds="[unsignedLong]" ...> ...

</wsrm:AcknowledgementInterval>

The following describes the attributes and tags listed in the syntax above:

/wsrm:AcknowledgementInterval

This assertion specifies the duration in milliseconds after which the destination will
transmit an acknowledgement.

/wsrm:AcknowledgementInterval/@Milliseconds

This required attribute holds the value of the assertion.

/wsrm:AcknowledgementInterval/{any}

This is an extensibility mechanism to allow different (extensible) types of
information, based on a schema, to be passed.

/wsrm:AcknowledgementInterval/{@any}

This is an extensibility mechanism to allow additional attributes, based on schemas,
to be added to the element.

The example below indicates the destination MAY buffer acknowledgements for up to
2/10ths of a second.

<wsp:Policy>

<wsrm:AcknowledgementInterval wsp:Usage="wsp:Observed"

Milliseconds="200" />

</wsp:Policy>

5. Attaching Policy Assertions to Sequences
The policy assertions defined in Section 4. Policy Assertions above can be attached to an
individual Sequence or to Sequences in general. The policy assertions related to a
Sequence are established using an agreement as discussed in Section 5.2.

The WS-PolicyAttachment specification provides a means of attaching policy expressions
to domain expressions. This specification recommends the use of the
<PolicyAttachment> element to attach policy to a Sequence and defines the extension
below as a means of attaching policy to a Sequence.

5.1 SequenceRef
The <SequenceRef> expression is provided to enable policy assertions to be declared for
individual Sequences, or Sequences whose URI match a specified prefix. These
assertions apply to the Sequence itself, not to messages in the Sequence.

The following pseudo schema defines this element:

<wsrm:SequenceRef Match="wsrm:Exact|wsrm:Prefix" ?>

[URI]

</wsrm:SequenceRef>

The following describes the attributes and tags listed in the syntax above:

/wsrm:SequenceRef
This element is a policy attachments domain expression which identifies a Sequence
or Sequences. Its content is a URI.

/wsrm:SequenceRef/@Match
This attribute specifies whether the URI in the body must match exactly or must only
match a prefix of the URI for a Sequence.

Policy assertions can be attached to an individual Sequence by embedding a
<SequenceRef> element that identifies that Sequence within a <PolicyAttachment>
element.

The following example attaches the policy “profile” defined in Appendix B with the
Sequence with the Identifier of “http://fabrikam123.com/abc”. Additionally, it requires
that the Sequence use this version of the WS-ReliableMessaging specification in a
manner that provides the delivery assurances associated with “AtMostOnce”:

<wsp:PolicyAttachment>

<wsp:AppliesTo>

<wsrm:SequenceRef>

<wsu:Identifier>http://fabrikam123.com/abc</wsu:Identifier>

</wsrm:SequenceRef>

</wsp:AppliesTo>

<wsp:Policy>

<wsp:SpecVersion

wsp:URI="http://schemas.xmlsoap.org/ws/2003/03/rm"

wsp:Usage="wsp:Required"/>

<wsrm:DeliveryAssurance Value="wsrm:AtMostOnce"

wsp:Usage="wsp:Required"/>

</wsp:Policy>

<wsp:PolicyReference

Ref="http://schemas.xmlsoap.org/ws/2003/03/rm/baseTimingProfile.xml"/>

</wsp:PolicyAttachment>

5.2 Metadata Exchange
There are many ways that Web service partners can exchange WSDL interface and WS-
Policy information. Some will be informal, out of band approaches using e-mail, posting
documents on a Web site or in UDDI, etc.

To facilitate interoperability there is a need for a metadata exchange model. We
anticipate that future specifications will define a WSDL interface and message model that
Web service clients MAY use to obtain WSDL and WS-Policy information for a service at a
URL or endpoint reference.

6. SequenceFault Element
The purpose of the <SequenceFault> element is to carry the specific details of a fault
generated during the reliable messaging specific processing of a message belonging to a
Sequence. The fault container is meant to be used in conjunction with the SOAP fault
mechanism. For example, when used as a detail element in SOAP 1.2 the identifier in
the container correlates the fault with a specific sequence.

The following pseudo schema fragment defines the <SequenceFault> element.

<wsrm:SequenceFault>

<wsu:Identifier> [Sequence URI] </wsu:Identifier>

<wsrm:FaultCode> ... </wsrm:FaultCode>

<wsrm:AcknowledgementRange ...

Upper="[unsignedLong]"

Lower="[unsignedLong]"/> ?

...

</wsrm:SequenceFault>

The following describes the content model of the SequenceFault element.

/wsrm:SequenceFault
This is the element containing Sequence information for WS-ReliableMessaging

/wsrm:SequenceFault/wsu:Identifier
This required element MUST contain a URI conformant with [RFC2396] that uniquely
identifies the Sequence for which the fault was triggered.

/wsrm:SequenceFault/wsrm:FaultCode
This required element MUST contain a qualified name from the set of fault codes
defined below.

/wsrm:SequenceFault/wsrm:AcknowledgementRange
This element MUST only appear if the <FaultCode> is
wsrm:InvalidAcknowledgement. This element MUST occur 1 or more times if the
<FaultCode> is wsrm:InvalidAcknowledgment. Each value is copied from the
<SequenceAcknowledgment> element that triggers the fault.

/wsrm:SequenceFault/wsrm:AcknowledgmentRange/@Upper
This required attribute contains an unsignedLong representing the <MessageNumber>
of the highest contiguous message in a Sequence range.

/wsrm:SequenceFault/wsrm:AcknowledgmentRange/@Lower
This required attribute contains an unsignedLong representing the <MessageNumber>
of the lowest contiguous message in a Sequence range.

/wsrm:SequenceFault/{any}
This is an extensibility mechanism to allow different (extensible) types of
information, based on a schema, to be passed.

/wsrm:SequenceFault/@{any}
This is an extensibility mechanism to allow additional attributes, based on schemas,
to be added to the element.

6.1. Sequence Terminated
This fault is sent by either the source or the destination to indicate that the endpoint
that generates the fault has either encountered an unrecoverable condition, or has
detected a violation of the protocol and as a consequence, has chosen to terminate the
sequence. The endpoint that generates this fault should make every reasonable effort
to notify the corresponding endpoint of this decision. The qualified name of the fault
code is:

wsrm:SequenceTerminated

6.2. Unknown Sequence
This fault is sent by either the source or the destination in response to a message
containing an unknown sequence identifier. The qualified name of the fault code is:

wsrm:UnknownSequence

6.3. Invalid Acknowledgement
This fault is sent by the source in response to a <SequenceAcknowledgement> that
violates the cumulative acknowledgement invariant. An example of such a violation
would be a SequenceAcknowledgement covering messages that have not been sent.

The qualified name of the fault code is:

wsrm:InvalidAcknowledgement

An InvalidAcknowledgment SequenceFault MUST contain the set of
<AcknowledgementRange> elements that were carried in the
<SequenceAcknowledgment> that triggered the fault. For example:

<wsrm:SequenceFault>

<wsu:Identifier> [Sequence URI] </wsu:Identifier>

<wsrm:FaultCode>wsrm:InvalidAcknowledgment</wsrm:FaultCode>

<wsrm:AcknowledgmentRange Upper="1" Lower="10"/>

</wsrm:SequenceFault>

6.4. Message Number Rollover
This fault is sent by the source to indicate that it has run out of message numbers for a
sequence. It is an unrecoverable error and terminates the Sequence. The qualified
name of the fault code is:

wsrm:MessageNumberRollover

6.5. Last Message Number Exceeded
This fault is sent by a destination to indicate that it has received a message that has a
<MessageNumber> within a Sequence that exceeds the value of the <MessageNumber>
element that accompanied a <LastMessage> element for the Sequence. This is an
unrecoverable error and terminates the Sequence. The qualified name of the fault code
is:

wsrm:LastMessageNumberExceeded

6.6. Sequence Refused
This fault is sent by a destination to indicate that it cannot begin a requested Sequence:

wsrm:SequenceRefused

7. Security Considerations
It is strongly RECOMMENDED that the communication between services be secured
using the mechanisms described in WS-Security. In order to properly secure messages,
the body and all relevant headers need to be included in the signature. Specifically, the
<wsrm:Sequence> header needs to be signed with the body in order to "bind" the two
together. The <wsrm:SequenceAcknowlegement> header MAY be signed independently
because reply independent of the message is not a security concern.

Because Sequences are expected to exchange a number of messages, it is
RECOMMENDED that a security context be established using the mechanisms described
in WS-Trust and WS-SecureConversation. If a Sequence is bound to a specific endpoint,
then the security context needs to be established or shared with the endpoint servicing
the Sequence. While the context can be established at any time, it is critical that the
messages establishing the Sequence be secured even if they precede security context
establishment. However, it is RECOMMENDED that the security context be established
first. Security contexts are independent of reliable messaging Sequences.
Consequently, security contexts can come and go independent of the lifetime of the
Sequence. In fact, it is RECOMMENDED that the lifetime of a security context be less
than the lifetime of the Sequence unless the Sequence is very short-lived.

It is common for message Sequences to exchange a number of messages (or a large
amount of data). As a result, the usage profile of an Sequence is such that it is
susceptible to key attacks. For this reason it is strongly RECOMMENDED that the keys
be changed frequently. This "re-keying" can be effected a number of ways. The
following list outlines four common techniques:

• Closing and re-establishing a security context

• Exchanging new secrets between the parties

• Using a derived key sequence and switch "generations"

• Attaching a nonce to each message and using it in a derived key function with the
shared secret

The security context MAY be re-established using the mechanisms described in WS-Trust
and WS-SecureConversation. Similarly, secrets can be exchanged using the
mechanisms described in WS-Trust. Note, however, that the current shared secret
SHOULD NOT be used to encrypt the new shared secret. Derived keys, the preferred
solution from this list, can be specified using the mechanisms described in WS-
SecureConversation.

There is a core tension between security and reliable messaging that can be problematic
if not considered in implementations. That is, one aspect of security is to prevent
message replay and the core tenant of reliable messaging is to replay messages until
they are acknowledged. Consequently, if the security sub-system processes a message
but a failure occurs before the reliable messaging sub-system records the message (or
the message is considered "processed"), then it is possible (and likely) that the security

sub-system will treat subsequent copies as replays and discard them. At the same time,
the reliable messaging sub-system will likely continue to expect and even solicit the
missing message(s). Care should be taken to avoid and prevent this race condition.

The following list summarizes common classes of attacks that apply to this protocol and
identifies the mechanism to prevent/mitigate the attacks:

• Message alteration – Alteration is prevented by including signatures of the
message information using WS-Security.

• Message disclosure – Confidentiality is preserved by encrypting sensitive data
using WS-Security.

• Key integrity – Key integrity is maintained by using the strongest algorithms
possible (by comparing secured policies – see WS-Policy and WS-SecurityPolicy).

• Authentication – Authentication is established using the mechanisms described in
WS-Security and WS-Trust. Each message is authenticated using the mechanisms
described in WS-Security.

• Accountability – Accountability is a function of the type of and string of the key and
algorithms being used. In many cases, a strong symmetric key provides sufficient
accountability. However, in some environments, strong PKI signatures are required.

• Availability – All reliable messaging services are subject to a variety of availability
attacks. Replay detection is a common attack and it is RECOMMENDED that this be
addressed by the mechanisms described in WS-Security. Other attacks, such as
network-level denial of service attacks are harder to avoid and are outside the scope
of this specification. That said, care should be taken to ensure that minimal state is
saved prior to any authenticating sequences.

8. References
[KEYWORDS]

S. Bradner, "Key words for use in RFCs to Indicate Requirement Levels," RFC 2119,
Harvard University, March 1997

[SOAP]
W3C Note, "SOAP: Simple Object Access Protocol 1.1," 08 May 2000.

[URI]
T. Berners-Lee, R. Fielding, L. Masinter, "Uniform Resource Identifiers (URI): Generic
Syntax," RFC 2396, MIT/LCS, U.C. Irvine, Xerox Corporation, August 1998.

[XML-ns]
W3C Recommendation, "Namespaces in XML," 14 January 1999.

[XML-Schema1]
W3C Recommendation, "XML Schema Part 1: Structures," 2 May 2001.

[XML-Schema2]
W3C Recommendation, "XML Schema Part 2: Datatypes," 2 May 2001.

[WSPolicy]
Web Services Policy Framework, Microsoft, IBM, BEA, SAP, 18 December, 2002.

[PolicyAttachment]

Web Services Policy Framework, Microsoft, IBM, BEA, SAP, 18 December, 2002.

[PolicyAssertions]
"Web Services Policy Assertions Language (WS-PolicyAssertions)," Microsoft, IBM,
BEA, SAP, 18 December 2002.

[WSCoordination]
Web Services Coordination Framework, Microsoft, IBM, BEA, 9 August, 2002.

[WSSecurity]
"Web Services Security (WS-Security)," Microsoft, IBM, VeriSign, 5 April 2002.

[SecurityAddendum]
"Web Services Security Addendum," Microsoft, IBM, VeriSign, 18 August 2002.

[SecureConversation]
"Web Services Secure Conversation Language (WS-SecureConversation)," Microsoft,
IBM, VeriSign, RSA Security, 18 December 2002.

[SecurityPolicy]
"Web Services Security Policy Language (WS-SecurityPolicy)," Microsoft, IBM,
VeriSign, RSA Security, 18 December 2002.

[WSTrust]
"Web Services Trust Language (WS-Trust)," Microsoft, IBM, VeriSign, RSA Security,
18 December 2002.

[WSDL]
W3C Note, "Web Services Description Language (WSDL 1.1)," 15 March 2001.

Appendix A Example Timing Profile
The efficiency of WS-ReliableMessaging implementations can be improved using widely
known timing profiles. The following profile can be found at:

http://schemas.xmlsoap.org/ws/2003/03/rm/baseTimingProfile.xml

This profile defines a base retransmission interval of 3 seconds with exponential backoff.
Destinations can buffer acknowledgements for 1 second. If one endpoint has not
received messages from the other for 1 day or longer, the sequence MAY be terminated.

<wsp:Policy>

<wsrm:BaseRetransmissionInterval Milliseconds="3000"

wsp:Usage="wsp:Observed" />

<wsrm:ExponentialBackoff wsp:Usage="wsp:Observed" />

<wsrm:InactivityTimeout Milliseconds="86400000"

wsp:Usage="wsp:Observed" />

<wsrm:AcknowledgementInterval Milliseconds="1000"

wsp:Usage="wsp:Observed" />

</wsp:Policy>

Appendix B Schema
The normative schema for WS-Reliable Message is located at:

http://schemas.xmlsoap.org/ws/2003/03/rm/rm.xsd

The following copy is provided for reference.

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema targetNamespace="http://schemas.xmlsoap.org/ws/2003/03/rm"

xmlns:wsu="http://schemas.xmlsoap.org/ws/2002/07/utility"

xmlns:wsp="http://schemas.xmlsoap.org/ws/2002/12/policy"

xmlns:wsrm="http://schemas.xmlsoap.org/ws/2003/03/rm"

xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified"

attributeFormDefault="unqualified">

<xs:import namespace="http://schemas.xmlsoap.org/ws/2002/12/policy"

schemaLocation="http://schemas.xmlsoap.org/ws/2002/12/policy/policy.xsd"/>

<!-- Protocol Elements -->

<xs:complexType name="SequenceType">

<xs:sequence>

<xs:element ref="wsu:Identifier"/>

<xs:element name="MessageNumber" type="xs:unsignedLong"/>

<xs:element name="LastMessage" type="xs:ENTITY" minOccurs="0"/>

<xs:element ref="wsu:Expires" minOccurs="0"/>

<xs:any namespace="##other" processContents="lax" minOccurs="0"

maxOccurs="unbounded"/>

</xs:sequence>

<xs:anyAttribute namespace="##other" processContents="lax"/>

</xs:complexType>

<xs:element name="Sequence" type="wsrm:SequenceType"/>

<xs:element name="SequenceTerminate">

<xs:complexType>

<xs:sequence>

<xs:element ref="wsu:Identifier"/>

<xs:any namespace="##other" processContents="lax" minOccurs="0"

maxOccurs="unbounded"/>

</xs:sequence>

<xs:anyAttribute namespace="##other" processContents="lax"/>

</xs:complexType>

</xs:element>

<xs:element name="SequenceAcknowledgment">

<xs:complexType>

<xs:sequence>

<xs:element ref="wsu:Identifier"/>

<xs:element name="AcknowledgmentRange" maxOccurs="unbounded">

<xs:complexType>

<xs:sequence/>

<xs:attribute name="Upper" type="xs:unsignedLong"

use="required"/>

<xs:attribute name="Lower" type="xs:unsignedLong"

use="required"/>

</xs:complexType>

</xs:element>

<xs:any namespace="##other" processContents="lax" minOccurs="0"

maxOccurs="unbounded"/>

</xs:sequence>

<xs:anyAttribute namespace="##other" processContents="lax"/>

</xs:complexType>

</xs:element>

<xs:complexType name="AckRequestedType">

<xs:sequence>

<xs:element ref="wsu:Identifier"/>

<xs:any namespace="##other" processContents="lax" minOccurs="0"

maxOccurs="unbounded"/>

</xs:sequence>

<xs:anyAttribute namespace="##other" processContents="lax"/>

</xs:complexType>

<xs:element name="AckRequested" type="wsrm:AckRequestedType"/>

<!-- Policy Assertions -->

<xs:element name="InactivityTimeout">

<xs:complexType>

<xs:complexContent>

<xs:extension base="wsrm:PolicyAssertionType">

<xs:attribute name="Milliseconds" type="xs:unsignedLong"

use="required"/>

</xs:extension>

</xs:complexContent>

</xs:complexType>

</xs:element>

<xs:element name="BaseRetransmissionInterval">

<xs:complexType>

<xs:complexContent>

<xs:extension base="wsrm:PolicyAssertionType">

<xs:attribute name="Milliseconds" type="xs:unsignedLong"

use="required"/>

</xs:extension>

</xs:complexContent>

</xs:complexType>

</xs:element>

<xs:element name="ExponentialBackoff">

<xs:complexType>

<xs:complexContent>

<xs:extension base="wsrm:PolicyAssertionType">

<xs:attribute name="Value" type="xs:boolean" use="required"/>

</xs:extension>

</xs:complexContent>

</xs:complexType>

</xs:element>

<xs:element name="AcknowledgementInterval">

<xs:complexType>

<xs:complexContent>

<xs:extension base="wsrm:PolicyAssertionType">

<xs:attribute name="Milliseconds" type="xs:unsignedLong"

use="required"/>

</xs:extension>

</xs:complexContent>

</xs:complexType>

</xs:element>

<xs:complexType name="PolicyAssertionType">

<xs:sequence>

<xs:any namespace="##other" processContents="lax" minOccurs="0"

maxOccurs="unbounded"/>

</xs:sequence>

<xs:anyAttribute namespace="##other"/>

</xs:complexType>

<xs:simpleType name="DeliveryAssuranceEnum">

<xs:restriction base="xs:QName">

<xs:enumeration value="wsrm:AtMostOnce"/>

<xs:enumeration value="wsrm:AtLeastOnce"/>

<xs:enumeration value="wsrm:ExactlyOnce"/>

<xs:enumeration value="wsrm:InOrder"/>

</xs:restriction>

</xs:simpleType>

<xs:element name="DeliveryAssurance">

<xs:complexType>

<xs:complexContent>

<xs:extension base="wsrm:PolicyAssertionType">

<xs:attribute name="Value" type="xs:QName" use="required"/>

</xs:extension>

</xs:complexContent>

</xs:complexType>

</xs:element>

<!-- Fault Container and Codes -->

<xs:simpleType name="FaultCodes">

<xs:restriction base="xs:QName">

<xs:enumeration value="wsrm:UnknownSequence"/>

<xs:enumeration value="wsrm:SequenceTerminated"/>

<xs:enumeration value="wsrm:InvalidAcknowledgement"/>

<xs:enumeration value="wsrm:MessageNumberRollover"/>

</xs:restriction>

</xs:simpleType>

<xs:complexType name="SequenceFaultType">

<xs:sequence>

<xs:element ref="wsu:Identifier"/>

<xs:element name="FaultCode" type="xs:QName"/>

<xs:any namespace="##any"/>

</xs:sequence>

<xs:anyAttribute/>

</xs:complexType>

<xs:element name="SequenceFault" type="wsrm:SequenceFaultType"/>

<!-- Sequence Reference Domain Expression -->

<xs:complexType name="SequenceRefType">

<xs:sequence>

<xs:any namespace="##other" processContents="lax" minOccurs="0"

maxOccurs="unbounded"/>

</xs:sequence>

<xs:anyAttribute/>

<xs:attribute name="Identifier" type="xs:anyURI" use="required"/>

<xs:attribute name="Match" type="wsrm:MatchChoiceType" use="optional"

/>

</xs:complexType>

<xs:simpleType name="MatchChoiceType">

<xs:restriction base="xs:QName">

<xs:enumeration value="wsrm:Exact"/>

<xs:enumeration value="wsrm:Prefix"/>

</xs:restriction>

</xs:simpleType>

<xs:element name="SequenceRef" type="wsrm:SequenceRefType"/>

</xs:schema>

Appendix C Message Examples

C.1 Initial Transmission
The following example WS-ReliableMessaging headers illustrate the message exchange
in the above figure. The three messages have the following headers; the third message
is identified as the last message in the sequence:

Message 1

<?xml version="1.0" encoding="UTF-8"?>

<S:Envelope xmlns:S="http://www.w3.org/2001/12/soap-envelope"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:wsu="http://schemas.xmlsoap.org/ws/2002/07/utility"

xmlns:wsp="http://schemas.xmlsoap.org/ws/2002/12/policy"

xmlns:wsrm="http://schemas.xmlsoap.org/ws/2003/03/rm"

xmlns:wsa="http://schemas.xmlsoap.org/ws/2003/03/addressing">

<S:Header>

<wsa:MessageID>

http://Business456.com/guid/71e0654e-5ce8-477b-bb9d-34f05cfcbc9e

</wsa:MessageID>

<wsa:To>http://fabrikam123.com/serviceB/123</wsa:To>

<wsa:ReplyTo>

<wsa:Address>http://Business456.com/serviceA/789</wsa:Address>

</wsa:ReplyTo>

<wsrm:Sequence>

<wsu:Identifier>http://Business456.com/RM/ABC</wsu:Identifier>

<wsrm:MessageNumber>1</wsrm:MessageNumber>

</wsrm:Sequence>

</S:Header>

<S:Body>

<!-- Some Application Data -->

</S:Body>

</S:Envelope>

Message 2

<?xml version="1.0" encoding="UTF-8"?>

<S:Envelope xmlns:S="http://www.w3.org/2001/12/soap-envelope"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:wsu="http://schemas.xmlsoap.org/ws/2002/07/utility"

xmlns:wsp="http://schemas.xmlsoap.org/ws/2002/12/policy"

xmlns:wsrm="http://schemas.xmlsoap.org/ws/2003/03/rm"

xmlns:wsa="http://schemas.xmlsoap.org/ws/2003/03/addressing">

<S:Header>

<wsa:MessageID>

http://Business456.com/guid/daa7d0b2-c8e0-476e-a9a4-d164154e38de

</wsa:MessageID>

<wsa:To>http://fabrikam123.com/serviceB/123</wsa:To>

<wsa:ReplyTo>

<wsa:Address>http://Business456.com/serviceA/789</wsa:Address>

</wsa:ReplyTo>

<wsrm:Sequence>

<wsu:Identifier>http://Business456.com/RM/ABC</wsu:Identifier>

<wsrm:MessageNumber>2</wsrm:MessageNumber>

</wsrm:Sequence>

</S:Header>

<S:Body>

<!-- Some Application Data -->

</S:Body>

</S:Envelope>

Message 3

<?xml version="1.0" encoding="UTF-8"?>

<S:Envelope xmlns:S="http://www.w3.org/2001/12/soap-envelope"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:wsu="http://schemas.xmlsoap.org/ws/2002/07/utility"

xmlns:wsp="http://schemas.xmlsoap.org/ws/2002/12/policy"

xmlns:wsrm="http://schemas.xmlsoap.org/ws/2003/03/rm"

xmlns:wsa="http://schemas.xmlsoap.org/ws/2003/03/addressing">

<S:Header>

<wsa:MessageID>

http://Business456.com/guid/0baaf88d-483b-4ecf-a6d8-a7c2eb546817

</wsa:MessageID>

<wsa:To>http://fabrikam123.com/serviceB/123</wsa:To>

<wsa:ReplyTo>

<wsa:Address>http://Business456.com/serviceA/789</wsa:Address>

</wsa:ReplyTo>

<wsrm:Sequence>

<wsu:Identifier>http://Business456.com/RM/ABC</wsu:Identifier>

<wsrm:MessageNumber>3</wsrm:MessageNumber>

<wsrm:LastMessage/>

</wsrm:Sequence>

</S:Header>

<S:Body>

<!-- Some Application Data -->

</S:Body>

</S:Envelope>

C.2 First Acknowledgement
Message number 2 has not been received by the Destination due to some transmission
error so it responds with an acknowledgement for messages 1 and 3:

<?xml version="1.0" encoding="UTF-8"?>

<S:Envelope xmlns:S="http://www.w3.org/2001/12/soap-envelope"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:wsu="http://schemas.xmlsoap.org/ws/2002/07/utility"

xmlns:wsp="http://schemas.xmlsoap.org/ws/2002/12/policy"

xmlns:wsrm="http://schemas.xmlsoap.org/ws/2003/03/rm"

xmlns:wsa="http://schemas.xmlsoap.org/ws/2003/03/addressing">

<S:Header>

<wsa:MessageID>

http://fabrikam123.com/guid/0baaf88d-483b-4ecf-a6d8-a7c2eb546817

</wsa:MessageID>

<wsa:To>http://Business456.com/serviceA/789</wsa:To>

<wsa:ReplyTo>

<wsa:Address>http://fabrikam123.com/serviceB/123</wsa:Address>

</wsa:ReplyTo>

<wsrm:SequenceAcknowledgment>

<wsu:Identifier>http://Business456.com/RM/ABC</wsu:Identifier>

<wsrm:AcknowledgmentRange Upper="1" Lower="1"/>

<wsrm:AcknowledgmentRange Upper="3" Lower="3"/>

</wsrm:SequenceAcknowledgment>

</S:Header>

<S:Body/>

</S:Envelope>

C.3 Retransmission
The sending endpoint discovers that message number 2 was not received so it resends
the message and requests an acknowledgement:

<?xml version="1.0" encoding="UTF-8"?>

<S:Envelope xmlns:S="http://www.w3.org/2001/12/soap-envelope"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:wsu="http://schemas.xmlsoap.org/ws/2002/07/utility"

xmlns:wsp="http://schemas.xmlsoap.org/ws/2002/12/policy"

xmlns:wsrm="http://schemas.xmlsoap.org/ws/2003/03/rm"

xmlns:wsa="http://schemas.xmlsoap.org/ws/2003/03/addressing">

<S:Header>

<wsa:MessageID>

http://Business456.com/guid/0baaf88d-483b-4ecf-a6d8-a7c2eb546817

</wsa:MessageID>

<wsa:To>http://fabrikam123.com/serviceB/123</wsa:To>

<wsa:ReplyTo>

<wsa:Address>http://Business456.com/serviceA/789</wsa:Address>

</wsa:ReplyTo>

<wsrm:Sequence>

<wsu:Identifier>http://Business456.com/RM/ABC</wsu:Identifier>

<wsrm:MessageNumber>2</wsrm:MessageNumber>

</wsrm:Sequence>

<wsrm:AckRequested>

<wsu:Identifier>http://Business456.com/RM/ABC</wsu:Identifier>

</wsrm:AckRequested>

</S:Header>

<S:Body>

<!-- Some Application Data -->

</S:Body>

</S:Envelope>

C.4 Final Acknowledgment
The Destination now responds with an acknowledgement for the complete sequence
which can then be terminated:

<?xml version="1.0" encoding="UTF-8"?>

<S:Envelope xmlns:S="http://www.w3.org/2001/12/soap-envelope"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:wsu="http://schemas.xmlsoap.org/ws/2002/07/utility"

xmlns:wsp="http://schemas.xmlsoap.org/ws/2002/12/policy"

xmlns:wsrm="http://schemas.xmlsoap.org/ws/2003/03/rm"

xmlns:wsa="http://schemas.xmlsoap.org/ws/2003/03/addressing">

<S:Header>

<wsa:MessageID>

http://fabrikam123.com/guid/0baaf88d-483b-4ecf-a6d8-a7c2eb546817

</wsa:MessageID>

<wsa:To>http://Business456.com/serviceA/789</wsa:To>

<wsa:ReplyTo>

<wsa:Address>http://fabrikam123.com/serviceB/123</wsa:Address>

</wsa:ReplyTo>

<wsrm:SequenceAcknowledgment>

<wsu:Identifier>http://Business456.com/RM/ABC</wsu:Identifier>

<wsrm:AcknowledgmentRange Upper="3" Lower="1"/>

</wsrm:SequenceAcknowledgment>

</S:Header>

<S:Body/>

</S:Envelope>

