
Web Services Policy Framework (WS-
Policy)
September 2004

Authors

Siddharth Bajaj, VeriSign
Don Box, Microsoft
Dave Chappell, Sonic Software
Francisco Curbera, IBM
Glen Daniels, Sonic Software
Phillip Hallam-Baker, VeriSign
Maryann Hondo, IBM
Chris Kaler, Microsoft
Dave Langworthy, Microsoft
Ashok Malhotra, Microsoft
Anthony Nadalin, IBM
Nataraj Nagaratnam, IBM
Mark Nottingham, BEA
Hemma Prafullchandra, VeriSign
Claus von Riegen, SAP
Jeffrey Schlimmer (Editor), Microsoft
Chris Sharp, IBM
John Shewchuk, Microsoft

Copyright Notice
(c) 2001-2004 BEA Systems Inc., International Business Machines Corporation,
Microsoft Corporation, Inc., SAP AG, Sonic Software, and VeriSign Inc. All rights
reserved.

Permission to copy and display the WS-Policy Specification (the "Specification", which
includes WSDL and schema documents), in any medium without fee or royalty is hereby
granted, provided that you include the following on ALL copies of the WS-Policy
Specification, that you make:

1. A link or URL to the WS-Policy Specification at one of the Authors’ websites

2. The copyright notice as shown in the WS-Policy Specification.

BEA Systems, IBM, Microsoft, SAP, Sonic Software, and VeriSign (collectively, the
"Authors") each agree to grant you a license, under royalty-free and otherwise
reasonable, non-discriminatory terms and conditions, to their respective essential patent
claims that they deem necessary to implement the WS-Policy Specification.

THE WS-POLICY SPECIFICATION IS PROVIDED "AS IS," AND THE AUTHORS MAKE NO
REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, NON-INFRINGEMENT, OR TITLE; THAT THE CONTENTS OF THE WS-POLICY
SPECIFICATION ARE SUITABLE FOR ANY PURPOSE; NOR THAT THE IMPLEMENTATION
OF SUCH CONTENTS WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS,
TRADEMARKS OR OTHER RIGHTS.

http://www.bea.com/
http://www.ibm.com/
http://www.microsoft.com/
http://www.sap.com/
http://www.sonicsoftware.com/
http://www.verisign.com/

THE AUTHORS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL
OR CONSEQUENTIAL DAMAGES ARISING OUT OF OR RELATING TO ANY USE OR
DISTRIBUTION OF THE WS-POLICY SPECIFICATION.

The name and trademarks of the Authors may NOT be used in any manner, including
advertising or publicity pertaining to the WS-Policy Specification or its contents without
specific, written prior permission. Title to copyright in the WS-Policy Specification will at
all times remain with the Authors.

No other rights are granted by implication, estoppel or otherwise.

Abstract
The Web Services Policy Framework (WS-Policy) provides a general purpose model and
corresponding syntax to describe the policies of a Web Service.

WS-Policy defines a base set of constructs that can be used and extended by other Web
services specifications to describe a broad range of service requirements and
capabilities.

Composable Architecture
The Web service specifications (WS*) are designed to be composed with each other to
provide a rich set of tools for secure, reliable, and/or transacted Web services. WS-Policy
by itself does not provide a negotiation solution for Web services. WS-Policy is a
building block that is used in conjunction with other Web service and application-specific
protocols to accommodate a wide variety of policy exchange models.

Status
This WS-Policy Specification is a public draft release and is provided for review and
evaluation only. The Authors hope to solicit your contributions and suggestions in the
near future. The Authors make no warrantees or representations regarding the
specifications in any manner whatsoever.

Table of Contents
1. Introduction

1.1 Goals
1.2 Example

2. Notations and Terminology
2.1 Notational Conventions
2.2 Extensibility
2.3 Namespaces
2.4 Terminology

3. Policy Model
3.1 Policy Assertion
3.2 Policy Alternative
3.3 Policy
3.4 Web services

4. Policy Expression
4.1 Normal Form Policy Expression

4.2 Policy Identification
4.3 Compact Policy Expression

4.3.1 @wsp:Optional
4.3.2 Policy Operators
4.3.3 Policy Inclusion

4.4 Policy Intersection
5. Security Considerations
6. Acknowledgements
7. References

1. Introduction
WS-Policy provides a flexible and extensible grammar for expressing the capabilities,
requirements, and general characteristics of entities in an XML Web services-based
system. WS-Policy defines a framework and a model for the expression of these
properties as policies.

WS-Policy defines a policy to be a collection of policy alternatives, where each policy
alternative is a collection of policy assertions. Some policy assertions specify traditional
requirements and capabilities that will ultimately manifest on the wire (e.g.,
authentication scheme, transport protocol selection). Other policy assertions have no
wire manifestation yet are critical to proper service selection and usage (e.g., privacy
policy, QoS characteristics). WS-Policy provides a single policy grammar to allow both
kinds of assertions to be reasoned about in a consistent manner.

WS-Policy does not specify how policies are discovered or attached to a Web service.
Other specifications are free to define technology-specific mechanisms for associating
policy with various entities and resources. WS-PolicyAttachment [WS-PolicyAttachment]
defines such mechanisms, especially for associating policy with arbitrary XML elements,
WSDL artifacts, and UDDI elements. Subsequent specifications will provide profiles on
WS-Policy usage within other common Web service technologies.

1.1 Goals
The goal of WS-Policy is to provide the mechanisms needed to enable Web services
applications to specify policy information. Specifically, this specification defines the
following:

• An XML Infoset called a policy expression that contains domain-specific, Web Service
policy information.

• A core set of constructs to indicate how choices and/or combinations of domain-
specific policy assertions apply in a Web services environment.

WS-Policy is designed to work with the general Web services framework, including WSDL
service descriptions [WSDL] and UDDI service registrations [UDDIAPI20,
UDDIDataStructure20, UDDI30].

1.2 Example
The following example illustrates a policy:

01 <wsp:Policy>

02 <wsp:ExactlyOne>

03 <wsse:SecurityToken>

04 <wsse:TokenType>wsse:Kerberosv5TGT</wsse:TokenType>

05 </wsse:SecurityToken>

06 <wsse:SecurityToken>

07 <wsse:TokenType>wsse:X509v3</wsse:TokenType>

08 </wsse:SecurityToken>

09 </wsp:ExactlyOne>

10 </wsp:Policy>

This example illustrates a security policy using assertions defined in WS-SecurityPolicy
[WS-SecurityPolicy]. Lines 01-10 represent a policy for authentication.

Editor's Note: We expect the assertions defined in WS-Security Policy to be updated, but
the current assertions are used herein for the time being.

Lines 02-09 illustrate the Exactly One policy operator. Policy operators group policy
assertions into policy alternatives. A valid interpretation of the policy above would be
that an invocation of a Web service contains one of the security token assertions (Lines
03-08) specified.

Lines 03-05 and 06-08 represent two specific security policy assertions that indicate that
two types of authentication are supported.

2. Notations and Terminology
This section specifies the notations, namespaces, and terminology used in this
specification.

2.1 Notational Conventions
The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",
"SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be
interpreted as described in RFC 2119 [RFC 2119].

Namespace [XML-NS] URIs represent application-dependent or context-dependent URIs
as defined in RFC 2396 [RFC 2396].

This specification uses the following syntax within normative outlines:

• The syntax appears as an XML instance, but values in italics indicate data types
instead of values.

• Characters are appended to elements and attributes to indicate cardinality:

• "?" (0 or 1)

• "*" (0 or more)

• "+" (1 or more)

• The character "|" is used to indicate a choice between alternatives.

• The characters "[" and "]" are used to indicate that contained items are to be treated
as a group with respect to cardinality or choice.

Elsewhere in this specification, the characters "[" and "]" are used to call out references
and XML Infoset property names.

2.2 Extensibility
Within normative outlines, ellipses (i.e., "...") indicate a point of extensibility that allows
other Element or Attribute Information Items. Information Items MAY be added at the
indicated extension points but MUST NOT contradict the semantics of the Element
Information Item indicated by the [parent] or [owner] property of the extension. If a
processor does not recognize an Attribute Information Item, the processor SHOULD
ignore it; if a processor does not recognize an Element Information Item, the processor
SHOULD treat it as an assertion.

2.3 Namespaces
The XML namespace URI that MUST be used by implementations of this specification is:

http://schemas.xmlsoap.org/ws/2004/09/policy

A normative copy of the XML Schema [XMLSchema1] for WS-Policy constructs may be
retrieved by resolving the URI "http://schemas.xmlsoap.org/ws/2004/09/policy".

The following namespaces are used in this document:

Prefix Namespace

wsdl http://schemas.xmlsoap.org/wsdl/

wsse http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-
wssecurity-secext-1.0.xsd

wsp http://schemas.xmlsoap.org/ws/2004/09/policy

wsu http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-
wssecurity-utility-1.0.xsd

xs http://www.w3.org/2001/XMLSchema

In this document reference is made to the @wsu:Id attribute in a utility schema
(http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd).
The @wsu:Id attribute is included in the utility schema with the intent that other
specifications requiring a global Id could reference it (as is done here).

2.4 Terminology
We introduce the following terms that are used throughout this document:

Policy – A policy is a collection of policy alternatives.

Policy Alternative – A policy alternative is a collection of policy assertions.

Policy Assertion – A policy assertion represents an individual requirement, capability,
or other property of a behavior.

Policy Assertion Type – A policy assertion type represents a class of policy assertions
and implies a schema for instances of the assertion and assertion-specific semantics.

Policy Vocabulary – The policy vocabulary of a policy is the set of all policy assertion
types used in the policy.

Policy Expression – A policy expression is an XML Infoset representation of a policy,
either in a normal form or in an equivalent compact form.

Policy Subject – A policy subject is an entity (e.g., an endpoint, message, resource,
interaction) with which a policy can be associated.

http://schemas.xmlsoap.org/wsdl/
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd
http://schemas.xmlsoap.org/ws/2004/09/policy
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd
http://www.w3.org/2001/XMLSchema
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd

Policy Scope – A policy scope is a collection of policy subjects to which a policy may
apply.

Policy Attachment – A policy attachment is a mechanism for associating policy with
one or more policy scopes.

3. Policy Model
This section defines an abstract model for policies and for operations upon policies.

This abstract model is independent of how it is represented as an XML Infoset.

3.1 Policy Assertion
A policy assertion identifies a behavior that is a requirement (or capability) of a policy
subject. Assertions indicate domain-specific (e.g., security, transactions) semantics and
are expected to be defined in separate, domain-specific specifications.

Assertions are strongly typed. The type is identified only by the XML Infoset
[namespace name] and [local name] properties (that is, the qualified name or
QName) of the root Element Information Item representing the assertion. Assertions of
a given type MUST be consistently interpreted independent of their policy subjects.

The XML Infoset of an assertion MAY contain a non-empty [attributes] property and/or
a non-empty [children] property. Such content MAY be used to parameterize the
behavior indicated by the assertion. For example, an assertion identifying support for a
specific reliable messaging mechanism might include an Attribute Information Item to
indicate how long an endpoint will wait before sending an acknowledgement. However,
additional assertion content is not required when the identity of the root Element
Information Item alone is enough to convey the requirement (capability).

3.2 Policy Alternative
A policy alternative is a potentially empty collection of policy assertions. An alternative
with zero assertions indicates no behaviors. An alternative with one or more assertions
indicates behaviors implied by those, and only those assertions.

The vocabulary of a policy alternative is the set of all assertion types within the
alternative. The vocabulary of a policy is the set of all assertion types used in the policy.
An assertion whose type is part of the policy's vocabulary but is not included in an
alternative is explicitly prohibited by the alternative.

Assertions within an alternative are not ordered, and thus aspects such as the order in
which behaviors (indicated by assertions) are applied to a subject are beyond the scope
of this specification.

A policy alternative MAY contain multiple instances of an assertion type. Mechanisms for
determining the aggregate behavior indicated by the assertion instances (and their Post-
Schema-Validation Infoset (PSVI) content, if any) are specific to the assertion type and
are outside the scope of this document.

3.3 Policy
At the abstract level a policy is a potentially empty collection of policy alternatives. A
policy with zero alternatives contains no choices; a policy with one or more alternatives
indicates choice in requirements (or capabilities) within the policy.

Alternatives are not ordered, and thus aspects such as preferences between alternatives
in a given context are beyond the scope of this specification.

Alternatives within a policy may differ significantly in terms of the behaviors they
indicate. Conversely, alternatives within a policy may be very similar. In either case, the
value or suitability of an alternative is generally a function of the semantics of assertions
within the alternative and is therefore beyond the scope of this specification.

3.4 Web services
Applied in the Web services model, policy is used to convey conditions on an interaction
between two Web service endpoints. Satisfying assertions in the policy usually results in
behavior that reflects these conditions. Typically, the provider of a Web service exposes
a policy to convey conditions under which it provides the service. A requester might use
this policy to decide whether or not to use the service. A requester may choose any
alternative since each is a valid configuration for interaction with the service, but a
requester must choose only a single alternative since each is an alternative
configuration.

A policy assertion is supported by a requester if and only if the requester satisfies the
requirement (or accommodates the capability) corresponding to the assertion. A policy
alternative is supported by a requester if and only if the requester supports all the
assertions in the alternative. And, a policy is supported by a requester if and only if the
requester supports at least one of the alternatives in the policy. Note that although
policy alternatives are meant to be mutually exclusive, it cannot be decided in general
whether or not more than one alternative can be supported at the same time.

Note that a requester may be able to support a policy even if the requester does not
understand the type of each assertion in the vocabulary of the policy; the requester only
has to understand the type of each assertion in the vocabulary of a policy alternative.
This characteristic is crucial to versioning and incremental deployment of new assertions
because this allows a provider's policy to include new assertions in new alternatives
while allowing requesters to continue to use old alternatives in a backward-compatible
manner.

4. Policy Expression
To convey policy in an interoperable form, a policy expression is an XML Infoset
representation of a policy. The normal form policy expression is the most straightforward
Infoset; equivalent, alternative Infosets allow compactly expressing a policy through a
number of constructs.

4.1 Normal Form Policy Expression
To facilitate interoperability, this specification defines a normal form for policy
expressions that is a straightforward XML Infoset representation of a policy,
enumerating each of its alternatives that in turn enumerate each of their assertions. The
schema outline for the normal form of a policy expression is as follows:

<wsp:Policy ... >

 <wsp:ExactlyOne>

 [<wsp:All> [<Assertion ...> ... </Assertion>]* </wsp:All>]*

 </wsp:ExactlyOne>

</wsp:Policy>

The following describes the Element Information Items defined in the schema outline
above:

/wsp:Policy

A policy expression.

/wsp:Policy/wsp:ExactlyOne
A collection of policy alternatives. If there are no Element Information Items in the
[children] property, there are no admissible policy alternatives, i.e., no behavior is
admissible.

/wsp:Policy/wsp:ExactlyOne/wsp:All
A policy alternative; a collection of policy assertions. If there are no Element
Information Items in the [children] property, this is an admissible policy alternative
that is empty, i.e., no behavior is specified.

/wsp:Policy/wsp:ExactlyOne/wsp:All/*
XML Infoset representation of a policy assertion.

To simplify processing and improve interoperability, the normal form of a policy
expression should be used where practical.

For example, the following is the normal form of the policy expression example
introduced earlier.

01 <wsp:Policy>

02 <wsp:ExactlyOne>

03 <wsp:All>

04 <wsse:SecurityToken>

05 <wsse:TokenType>wsse:Kerberosv5TGT</wsse:TokenType>

06 </wsse:SecurityToken>

07 </wsp:All>

08 <wsp:All>

09 <wsse:SecurityToken>

10 <wsse:TokenType>wsse:X509v3</wsse:TokenType>

11 </wsse:SecurityToken>

12 </wsp:All>

13 </wsp:ExactlyOne>

14 </wsp:Policy>

Lines 03-07 and Lines 08-12 express the two alternatives in the policy. If the first
alternative is selected, only the Kerberos token type is supported; conversely, if the
second alternative is selected, only the X509 token type is supported.

4.2 Policy Identification
A policy expression may be assigned a namespace, indicated either using the
@TargetNamespace attribute of the wsp:Policy element or inherited from a containing
element (e.g., wsdl:definitions, xs:schema). If no namespace is specified by a
container or by @TargetNamespace of the wsp:Policy element, the namespace is "".

A policy expression can also itself be a Web resource, hence identifiable by a URI. To
allow policy expressions to be embedded in arbitrary containing elements, the @wsu:Id
attribute may be used to indicate a fragment ID.

The schema outline for these attributes is as follows:

<wsp:Policy xml:base="xs:anyURI" ?

 wsu:Id="xs:ID" ?

 TargetNamespace="xs:anyURI" ?

 ... >

 ...

</wsp:Policy>

The following describes the Attribute Information Items listed and defined in the schema
outline above:

/wsp:Policy/@wsu:Id

The identity of the policy expression as a relative URI. To refer to this expression, an
absolute URI is formed by using the identity as a local name relative to the XML base
(i.e., base#@wsu:Id).

/wsp:Policy/@TargetNamespace

The namespace URI for the policy expression in the event that one is not available in
the surrounding context, or if a different target namespace is desired.

The following example illustrates how to associate a policy expression with a URI:

<wsp:Policy xml:base="http://fabrikam123.com/policies" wsu:Id="P1" >

 <wsse:SecurityToken>

 <wsse:TokenType>wsse:Kerberosv5TGT</wsse:TokenType>

 </wsse:SecurityToken>

 <wsse:Integrity>

 <wsse:Algorithm Type="wsse:AlgSignature"

 URI="http://www.w3.org/2000/09/xmldsig#rsa-sha1" />

 </wsse:Integrity>

</wsp:Policy>

In the above example, the URI for the policy would be
"http://fabrikam123.com/policies#P1".

4.3 Compact Policy Expression
To express a policy in a more compact form while still using the XML Infoset, this
specification defines three constructs: an attribute to decorate an assertion, semantics
for recursively nested policy operators, and a policy reference/inclusion mechanism.
Each is described in the subsections below.

To interpret a compact policy expression in an interoperable form, a compact expression
may be converted to the corresponding normal form expression by the following
procedure:

1. Start with the [document element] property D of the Document Information Item
of the policy expression. The [namespace name] of D is always
"http://schemas.xmlsoap.org/ws/2004/09/policy". In the base case, the [local
name] property of D is "Policy"; in the recursive case, the [local name] property of
D is "Policy", "ExactlyOne", or "All".

2. Expand Element Information Items in the [children] property of D that are policy
references per Section 4.3.3.

3. Convert each Element Information Item C in the [children] property of D into
normal form.

3. If the [namespace name] property of C is
"http://schemas.xmlsoap.org/ws/2004/09/policy" and the [local name]
property of C is "Policy", "ExactlyOne", or "All", C is an expression of a policy
operator; normalize C by recursively applying this procedure.

4. Otherwise the Element Information Item C is an assertion; normalize C per
Section 4.3.1.

4. Apply the policy operator D to the normalized Element Information Items in its
[children] property and construct a normal form per Section 4.3.2.

Note that an implementation may use a more efficient procedure and is not required to
explicitly convert a compact expression into the normal form as long as the processing
results are indistinguishable from doing so.

4.3.1 @wsp:Optional

To indicate that a policy assertion is optional, this specification defines an attribute that
is a syntactic shortcut for expressing policy alternatives with and without the assertion.
The schema outline for this attribute is as follows:

<Assertion [wsp:Optional="xs:boolean"]? ...> ... </Assertion>

The following describes the Attribute Information Item defined in the schema outline
above:

/Assertion/@wsp:Optional
If true, the expression of the assertion is semantically equivalent to the following:

<wsp:ExactlyOne>

 <wsp:All> <Assertion ...> ... </Assertion> </wsp:All>

 <wsp:All />

</wsp:ExactlyOne>

If false, the expression of the assertion is semantically equivalent to the following:

<wsp:ExactlyOne>

 <wsp:All> <Assertion ...> ... </Assertion> </wsp:All>

</wsp:ExactlyOne>

Omitting this attribute is semantically equivalent to including it with a value of false.
Policy expressions should not include this attribute with a value of false, but policy
parsers must accept this attribute with a value of false.

For example, the following compact policy expression:

01 <wsp:Policy>

02 <wsse:SecurityToken wsp:Optional="true" >

03 <wsse:TokenType>wsse:Kerberosv5TGT</wsse:TokenType>

04 </wsse:SecurityToken>

05 </wsp:Policy>

is equivalent to the following normal form policy expression:

A <wsp:Policy>

B <wsp:ExactlyOne>

C <wsp:All>

D <wsse:SecurityToken>

E <wsse:TokenType>wsse:Kerberosv5TGT</wsse:TokenType>

F </wsse:SecurityToken>

G </wsp:All>

H <wsp:All />

I </wsp:ExactlyOne>

J </wsp:Policy>

The @wsp:Optional attribute in Line 2 of the first fragment indicates that the assertion
in Lines 02-04 is to be included in a policy alternative whilst excluded from another; it is
included in Lines C-G and excluded in Line H. Note that @wsp:Optional does not appear
in the normal form of a policy expression.

4.3.2 Policy Operators

To compactly express complex policies, policy operators MAY be recursively nested; that
is, one or more instances of wsp:Policy, wsp:All, and/or wsp:ExactlyOne MAY be
nested within wsp:Policy, wsp:All, and/or wsp:ExactlyOne.

The following rules are used to transform a compact policy expression into a normal
form policy expression:

Equivalence
wsp:Policy is equivalent to wsp:All.

Empty

• <wsp:All /> expresses a policy with zero policy assertions. Note that since
wsp:Policy is equivalent to wsp:All, <wsp:Policy /> is therefore equivalent to
<wsp:All />, i.e., a policy alternative with zero assertions.

• <wsp:ExactlyOne /> expresses a policy with zero policy alternatives.

Commutative
In line with the previous statements that policy assertions within a policy alternative
and policy alternatives within a policy are not ordered (see 3.2 Policy Alternative and
3.3 Policy, respectively), wsp:All and wsp:ExactlyOne are commutative. For
example,

<wsp:All> <!-- assertion 1 --> <!-- assertion 2 --> </wsp:All>

is equivalent to:

<wsp:All> <!-- assertion 2 --> <!-- assertion 1 --> </wsp:All>

and:

<wsp:ExactlyOne>

 <!-- assertion 1 --> <!-- assertion 2 -->

</wsp:ExactlyOne>

is equivalent to:

<wsp:ExactlyOne>

 <!-- assertion 2 --> <!-- assertion 1 -->

</wsp:ExactlyOne>

Associative
wsp:All and wsp:ExactlyOne are associative. For example,

<wsp:All>

 <!-- assertion 1 -->

 <wsp:All> <!-- assertion 2 --> </wsp:All>

</wsp:All>

is equivalent to:

<wsp:All> <!-- assertion 1 --> <!-- assertion 2 --> </wsp:All>

and:

<wsp:ExactlyOne>

 <!-- assertion 1 -->

 <wsp:ExactlyOne> <!-- assertion 2 --> </wsp:ExactlyOne>

</wsp:ExactlyOne>

is equivalent to:

<wsp:ExactlyOne>

 <!-- assertion 1 --> <!-- assertion 2 -->

</wsp:ExactlyOne>

Idempotent
wsp:All and wsp:ExactlyOne are idempotent. For example,

<wsp:All>

 <wsp:All> <!-- assertion 1 --> <!-- assertion 2 --> </wsp:All>

</wsp:All>

is equivalent to:

<wsp:All> <!-- assertion 1 --> <!-- assertion 2 --> </wsp:All>

and:

<wsp:ExactlyOne>

 <wsp:ExactlyOne>

 <!-- assertion 1 --> <!-- assertion 2 -->

 </wsp:ExactlyOne>

</wsp:ExactlyOne>

is equivalent to:

<wsp:ExactlyOne>

 <!-- assertion 1 --> <!-- assertion 2 -->

</wsp:ExactlyOne>

Distributive
wsp:All distributes over wsp:ExactlyOne. For example,

<wsp:All>

 <wsp:ExactlyOne>

 <!-- assertion 1 -->

 <!-- assertion 2 -->

 </wsp:ExactlyOne>

 <wsp:ExactlyOne>

 <!-- assertion 3 -->

 <!-- assertion 4 -->

 </wsp:ExactlyOne>

</wsp:All>

is equivalent to:

<wsp:ExactlyOne>

 <wsp:All><!-- assertion 1 --><!-- assertion 3 --></wsp:All>

 <wsp:All><!-- assertion 1 --><!-- assertion 4 --></wsp:All>

 <wsp:All><!-- assertion 2 --><!-- assertion 3 --></wsp:All>

 <wsp:All><!-- assertion 2 --><!-- assertion 4 --></wsp:All>

</wsp:ExactlyOne>

Similarly,

<wsp:All>

 <wsp:ExactlyOne>

 <!-- assertion 1 -->

 <!-- assertion 2 -->

 </wsp:ExactlyOne>

</wsp:All>

is equivalent to:

<wsp:ExactlyOne>

 <wsp:All>

 <!-- assertion 1 -->

 </wsp:All>

 <wsp:All>

 <!-- assertion 2 -->

 </wsp:All>

</wsp:ExactlyOne>

Distributing wsp:All over an empty wsp:ExactlyOne is equivalent to no alternatives.
For example,

<wsp:All>

 <wsp:ExactlyOne>

 <!-- assertion 1 -->

 <!-- assertion 2 -->

 </wsp:ExactlyOne>

 <wsp:ExactlyOne />

</wsp:All>

is equivalent to:

<wsp:ExactlyOne />

Policy operators are intended to express relationships between policy assertions, treating
them opaquely. The XML Infoset of an assertion SHOULD NOT contain policy operators in
its [children] property. To express choice within a domain, assertion authors should
consider defining multiple or parameterized assertions. This allows policy authors to
express choices using policy alternatives.

For example, given the following compact policy expression:

01 <wsp:Policy>

02 <wsp:ExactlyOne>

03 <wsse:SecurityToken>

04 <wsse:TokenType>wsse:Kerberosv5TGT</wsse:TokenType>

05 </wsse:SecurityToken>

06 <wsse:SecurityToken>

07 <wsse:TokenType>wsse:X509v3</wsse:TokenType>

08 </wsse:SecurityToken>

09 </wsp:ExactlyOne>

10 <wssx:Audit wsp:Optional="true" />

11 </wsp:Policy>

Applying Section 4.3.1 to @wsp:Optional in Line 10, and applying Section 4.3.1 to the
implied value of @wsp:Optional for the assertions in Lines 03-05 and 06-08 yields:

A <wsp:Policy>

B <wsp:ExactlyOne>

C <wsp:All>

D <wsse:SecurityToken>

E <wsse:TokenType>wsse:Kerberosv5TGT</wsse:TokenType>

F </wsse:SecurityToken>

G </wsp:All>

H <wsp:All>

I <wsse:SecurityToken>

J <wsse:TokenType>wsse:X509v3</wsse:TokenType>

K </wsse:SecurityToken>

L </wsp:All>

M </wsp:ExactlyOne>

N <wsp:ExactlyOne>

O <wsp:All><wssx:Audit /></wsp:All>

P <wsp:All />

Q </wsp:ExactlyOne>

R </wsp:Policy>

Note that the assertion listed in Line 10 expands into the two alternatives in Lines O and
P.

Finally, noting that wsp:Policy is equivalent to wsp:All, and distributing wsp:All over
wsp:ExactlyOne yields the following normal form policy expression:

01 <wsp:Policy>

02 <wsp:ExactlyOne>

03 <wsp:All>

04 <wsse:SecurityToken>

05 <wsse:TokenType>wsse:Kerberosv5TGT</wsse:TokenType>

06 </wsse:SecurityToken>

07 <wssx:Audit />

08 </wsp:All>

09 <wsp:All>

10 <wsse:SecurityToken>

11 <wsse:TokenType>wsse:Kerberosv5TGT</wsse:TokenType>

12 </wsse:SecurityToken>

13 </wsp:All>

14 <wsp:All>

15 <wsse:SecurityToken>

16 <wsse:TokenType>wsse:X509v3</wsse:TokenType>

17 </wsse:SecurityToken>

18 <wssx:Audit />

19 </wsp:All>

20 <wsp:All>

21 <wsse:SecurityToken>

22 <wsse:TokenType>wsse:X509v3</wsse:TokenType>

23 </wsse:SecurityToken>

24 </wsp:All>

25 </wsp:ExactlyOne>

26 </wsp:Policy>

Note that the two alternatives listed in Lines C-G and H-L are combined with the two
alternatives listed in Lines O and P to create four alternatives in the normalized policy,
Lines 03-08, 09-13, 14-19, and 20-24.

4.3.3 Policy Inclusion

In order to share assertions across policy expressions, the wsp:PolicyReference
element MAY be present anywhere a policy assertion is allowed inside a policy
expression. This element is used to include the content of one policy expression in
another policy expression.

When a wsp:PolicyReference element references a wsp:Policy element, then the
semantics of inclusion are simply to replace the wsp:PolicyReference element with a
wsp:All element whose [children] property is the same as the [children] property of
the referenced wsp:Policy element. That is, the contents of the referenced policy
conceptually replace the wsp:PolicyReference element and are wrapped in an wsp:All
operator. (Note: References that have a digest attribute SHOULD be validated before
being included.)

A policy assertion MUST NOT contain a wsp:PolicyReference. If a policy expression
needs to reference other policy expressions, the valid way is to encapsulate the
assertion within an operator and use references within the operator that will be
expanded into the policy expression referenced.

The schema outline for the wsp:PolicyReference element is as follows:

<wsp:Policy>

 ...

 <wsp:PolicyReference URI="xs:anyURI"

 Digest="xs:base64Binary" ?

 DigestAlgorithm="xs:anyURI" ? />

 ...

</wsp:Policy>

The following describes the Attribute and Element Information Items defined in the
schema outline above:

/wsp:Policy/.../wsp:PolicyReference

This element references a policy expression that is being included.

/wsp:Policy/.../wsp:PolicyReference/@URI

This attribute references a policy expression by URI. There is no requirement that
the URI be resolvable.

/wsp:Policy/.../wsp:PolicyReference/@Digest

This optional attribute specifies the digest of the referenced policy expression. This
is used to ensure the included policy is the expected policy.

/wsp:Policy/.../wsp:PolicyReference/@DigestAlgorithm

This optional URI attribute specifies the digest algorithms being used. This
specification predefines the algorithm below, although additional algorithms can be
expressed.

URI Description

http://schemas.xmlsoap.org/ws/2004/09/policy/Sha1Exc
(implied)

The digest is a SHA1
hash over the octet
stream resulting from
using the Exclusive XML
canonicalization defined
for XML Signature
[XMLSignature].

In the example below two policies include and extend a common policy. In the first
example there is a single policy document containing three policy expressions. The first
expression is given an identifier but not a fully qualified location. The second and third
expressions reference the first element by URI indicating the referenced element is
within the document.

<wsp:Policy wsu:Id="AUDIT" >

 <wssx:Audit wsp:Optional="true" />

</wsp:Policy>

<wsp:Policy >

 <wsp:PolicyReference URI="#AUDIT" />

 <wsse:SecurityToken>

 <wsse:TokenType>wsse:X509v3</wsse:TokenType>

 </wsse:SecurityToken>

</wsp:Policy>

<wsp:Policy >

 <wsp:PolicyReference URI="#AUDIT" />

 <wsse:SecurityToken>

 <wsse:TokenType>wsse:Kerberosv5TGT</wsse:TokenType>

 </wsse:SecurityToken>

</wsp:Policy>

There are times when it is desirable to "re-use" a portion of a policy expression.
Generally, this can be accomplished by placing the common assertions in a separate
policy expression and referencing it.

4.4 Policy Intersection
Policy intersection is useful when two or more parties express policy and want to limit
the policy alternatives to those that are mutually compatible. For example, when a
requester and a provider express requirements on a message exchange, intersection
identifies compatible policy alternatives (if any) included in both requester and provider
policies. Intersection is a commutative, associative function that takes two policies and
returns a policy.

Because the set of behaviors indicated by a policy alternative depends on the domain-
specific semantics of the collected assertion instances, determining whether two policy
alternatives are compatible generally involves domain-specific processing. As a first
approximation, an algorithm is defined herein that approximates compatibility in a
domain-independent manner; specifically, for two policy alternatives to be compatible,
they must at least have the same vocabulary (see Section 3.2 Policy Alternative).

Using this approximation, the intersection between two input policies P1 and P2 is a
policy Pi consisting of every policy alternative Ai with the following characteristics:

• Given some policy alternative Ax in P1 and some alternative Ay in P2 such that the
vocabulary of Ax == the vocabulary of Ay,

• The collection of assertion instances in Ai is all the assertions instances in Ax and all
the assertion instances in Ay.

The above definition implies the following:

• The vocabulary of Ai == the vocabulary of Ax == the vocabulary of Ay.

• When the vocabularies of the two input policies overlap but are different, the
vocabulary of the intersection of those policies is a subset of the vocabulary of the
input policies.

• If the vocabulary of one policy includes an assertion type that is not in the
vocabulary of another policy, then the behavior associated with that assertion type is
prohibited in the intersection of those policies.

As an example of intersection, consider two input policies:

<wsp:Policy> // Policy P1

 <wsp:ExactlyOne>

 <wsp:All> // Alternative A1

 <wsse:Confidentiality>

 <wsse:Algorithm Type="wsse:AlgEncryption"

 URI="http://www.w3.org/2001/04/xmlenc#3des-cbc" />

 <MessageParts

 Dialect="http://schemas.xmlsoap.org/2002/12/wsse#part" >

 wsp:Body

 </MessageParts>

 </wsse:Confidentiality>

 </wsp:All>

 <wsp:All> // Alternative A2

 <wsse:Confidentiality>

 <wsse:Algorithm Type="wsse:AlgEncryption"

 URI="http://www.w3.org/2001/04/xmlenc#3des-cbc" />

 <MessageParts

 Dialect="http://schemas.xmlsoap.org/2002/12/wsse#part" >

 wsp:Body

 </MessageParts>

 </wsse:Confidentiality>

 <wsse:SecurityHeader MustPrepend="true"

 MustManifestEncryption="true" />

 </wsp:All>

 </wsp:ExactlyOne>

</wsp:Policy>

<wsp:Policy> // Policy P2

 <wsp:ExactlyOne>

 <wsp:All> // Alternative A3

 <wsse:Confidentiality>

 <wsse:Algorithm Type="wsse:AlgEncryption"

 URI="http://www.w3.org/2001/04/xmlenc#3des-cbc" />

 <MessageParts

 Dialect="http://schemas.xmlsoap.org/2002/12/wsse#part" >

 wsp:Body wsp:Header(x:AccountNumber)

 </MessageParts>

 </wsse:Confidentiality>

 <wsse:SecurityHeader MustManifestEncryption="true" />

 </wsp:All>

 <wsp:All> // Alternative A4

 <wsse:Confidentiality>

 <wsse:Algorithm Type="wsse:AlgEncryption"

 URI="http://www.w3.org/2001/04/xmlenc#3des-cbc" />

 <MessageParts

 Dialect="http://schemas.xmlsoap.org/2002/12/wsse#part" >

 wsp:Body wsp:Header(x:AccountNumber)

 </MessageParts>

 </wsse:Confidentiality>

 <wsse:SecurityHeader MustManifestEncryption="true" />

 <wsse:MessageAge Age="3600" />

 </wsp:All>

 </wsp:ExactlyOne>

</wsp:Policy>

Because there is only one alternative (A2) in policy P1 with the same vocabulary as
another alternative (A3) in policy P2, the intersection is a policy with a single alternative
that contains all of the assertions in A2 and in A3.

<wsp:Policy> // Intersection of P1 and P2

 <wsp:ExactlyOne>

 <wsp:All>

 <wsse:Confidentiality>

 <wsse:Algorithm Type="wsse:AlgEncryption"

 URI="http://www.w3.org/2001/04/xmlenc#3des-cbc" />

 <MessageParts

 Dialect="http://schemas.xmlsoap.org/2002/12/wsse#part" >

 wsp:Body

 </MessageParts>

 </wsse:Confidentiality>

 <wsse:SecurityHeader MustPrepend="true"

 MustManifestEncryption="true" />

 <wsse:Confidentiality>

 <wsse:Algorithm Type="wsse:AlgEncryption"

 URI="http://www.w3.org/2001/04/xmlenc#3des-cbc" />

 <MessageParts

 Dialect="http://schemas.xmlsoap.org/2002/12/wsse#part" >

 wsp:Body wsp:Header(x:AccountNumber)

 </MessageParts>

 </wsse:Confidentiality>

 <wsse:SecurityHeader MustManifestEncryption="true" />

 </wsp:All>

 </wsp:ExactlyOne>

</wsp:Policy>

Note that the vocabulary of policy P1 is {wsse:Confidentiality, wsse:SecurityHeader},
the vocabulary of policy P2 is {wsse:Confidentiality, wsse:SecurityHeader,
wsse:MessageAge}, whilst the vocabulary of the intersection is the intersection
{wsse:Confidentiality, wsse:SecurityHeader}.

Note that there is > 1 instance of the assertion type wsse:Confidentiality; when the
behavior associated with wsse:Confidentiality is invoked, the contents of both assertion

instances are used to indicate the correct behavior. Whether these two instances are
compatible depends on the domain-specific semantics of the wsse:Confidentiality
assertion. To leverage intersection, assertion authors are encouraged to factor
assertions such that two instances of the same assertion type are always (or at least
typically) compatible.

5. Security Considerations
It is strongly RECOMMENDED that policies and assertions be signed to prevent
tampering.

Policies SHOULD NOT be accepted unless they are signed and have an associated
security token to specify the signer has the right to "speak for" the scope containing the
policy. That is, a relying party shouldn't rely on a policy unless the policy is signed and
presented with sufficient credentials to pass the relying parties' acceptance criteria.

It should be noted that the mechanisms described in this document could be secured as
part of a SOAP message [SOAP11, SOAP12] using WS-Security [WS-Security] or
embedded within other objects using object-specific security mechanisms.

6. Acknowledgements
We would like to thank the following people for their contributions towards this
specification: Dimitar Angelov (SAP), Martijn de Boer (SAP), Erik Christensen
(Microsoft), Giovanni Della-Libera (Microsoft), Yigal Hoffner (IBM), Brian Hulse (IBM),
Andrew Jones (IBM), Todd Karakashian (BEA), Scott Konersmann (Microsoft), Frank
Leymann (IBM), Steve Lucco (Microsoft), Al Lee (Microsoft), David Levin (Microsoft),
Hiroshi Maruyama (IBM), Steve Millet (Microsoft), Vick Mukherjee (Microsoft), Henrik
Frystyk Nielsen (Microsoft), Paul Nolan (IBM), Keith Stobie (Microsoft), Tony Storey
(IBM), Sanjiva Weerawarana (IBM), Volker Wiechers (SAP).

7. References
[RFC 2119]

S. Bradner, "Key words for use in RFCs to Indicate Requirement Levels," RFC 2119,
March 1997.

[RFC 2396]
T. Berners-Lee, et al, "Uniform Resource Identifiers (URI): Generic Syntax," RFC
2396, August 1998.

[SOAP11]
D. Box, et al, "Simple Object Access Protocol (SOAP) 1.1," 08 May 2000.

[SOAP12]
M. Gudgin, et al, "SOAP Version 1.2 Part 1: Messaging Framework," June 2003.

[UDDIAPI20]
D. Ehnebuske, et al, "UDDI Version 2.04 API," July 2002.

[UDDIDataStructure20]
D. Ehnebuske, et al, "UDDI Version 2.03 Data Structure Reference," July 2002.

[UDDI30]
T. Bellwood, et al, "UDDI Version 3.0," July 2002.

[WS-PolicyAttachment]
D. Box, et al, "Web Services Policy Attachment (WS-PolicyAttachment)," September
2004.

http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc2396.txt
http://www.ietf.org/rfc/rfc2396.txt
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/
http://www.w3.org/TR/2003/REC-soap12-part1-20030624/
http://uddi.org/pubs/ProgrammersAPI-V2.04-Published-20020719.htm
http://uddi.org/pubs/DataStructure-V2.03-Published-20020719.htm
http://uddi.org/pubs/uddi_v3.htm
http://msdn.microsoft.com/ws/2004/09/PolicyAttachment/

[WS-Security]
A. Nadalin, et al, "Web Services Security: SOAP Message Security 1.0 (WS-Security
2004)," March 2004.

[WS-SecurityPolicy]
G. Della-Libera, et al, "Web Services Security Policy Language (WS-SecurityPolicy),"
December 2002.

[WSDL]
E. Christensen, et al, "Web Services Description Language (WSDL) 1.1," March 2001.

[XML-NS]
T. Bray, et al, "Namespaces in XML," January 1999.

[XMLSchema1]
D. Beech, et al, "XML Schema Part 1: Structures," May 2001.

[XMLSignature]
D. Eastlake, et al, "XML-Signature Syntax and Processing," February 2002.

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://msdn.microsoft.com/webservices/default.aspx?pull=/library/en-us/dnglobspec/html/ws-securitypolicy.asp
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/REC-xml-names/
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmldsig-core/

	Web Services Policy Framework (WS-Policy)
	September 2004
	Authors
	Copyright Notice
	Abstract
	Composable Architecture
	Status
	Table of Contents
	1. Introduction
	1.1 Goals
	1.2 Example

	2. Notations and Terminology
	2.1 Notational Conventions
	2.2 Extensibility
	2.3 Namespaces
	2.4 Terminology

	3. Policy Model
	3.1 Policy Assertion
	3.2 Policy Alternative
	3.3 Policy
	3.4 Web services

	4. Policy Expression
	4.1 Normal Form Policy Expression
	4.2 Policy Identification
	4.3 Compact Policy Expression
	4.3.1 @wsp:Optional
	4.3.2 Policy Operators
	4.3.3 Policy Inclusion

	4.4 Policy Intersection

	5. Security Considerations
	6. Acknowledgements
	7. References

