
Web Services Policy Framework (WS-
Policy)
Version 1.01
2 June 2003

Authors

Don Box, Microsoft
Francisco Curbera, IBM
Maryann Hondo (Editor), IBM
Chris Kaler (Editor), Microsoft
Dave Langworthy, Microsoft
Anthony Nadalin, IBM
Nataraj Nagaratnam, IBM
Mark Nottingham, BEA
Claus von Riegen, SAP
John Shewchuk, Microsoft

Copyright Notice
(c) 2001, 2002, 2003 BEA Systems Inc., International Business Machines Corporation,
Microsoft Corporation, SAP AG. All rights reserved.

BEA, IBM, Microsoft, and SAP (collectively, the “Authors”) hereby grant you permission
to copy and display the WS-Policy Specification, in any medium without fee or royalty,
provided that you include the following on ALL copies of the WS-Policy Specification, or
portions thereof, that you make:

1. A link or URL to the Specification at this location

2. The copyright notice as shown in the WS-Policy Specification.

EXCEPT FOR THE COPYRIGHT LICENSE GRANTED ABOVE, THE AUTHORS DO NOT
GRANT, EITHER EXPRESSLY OR IMPLIEDLY, A LICENSE TO ANY INTELLECTUAL
PROPERTY, INCLUDING PATENTS, THEY OWN OR CONTROL.

THE WS-POLICY SPECIFICATION IS PROVIDED “AS IS,” AND THE AUTHORS MAKE NO
REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, NON-INFRINGEMENT, OR TITLE; THAT THE CONTENTS OF THE WS-POLICY
SPECIFICATION ARE SUITABLE FOR ANY PURPOSE; NOR THAT THE IMPLEMENTATION
OF SUCH CONTENTS WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS,
TRADEMARKS OR OTHER RIGHTS.

THE AUTHORS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL
OR CONSEQUENTIAL DAMAGES ARISING OUT OF OR RELATING TO ANY USE OR
DISTRIBUTION OF THE WS-POLICY SPECIFICATION.

The WS-Policy Specification may change before final release and you are cautioned
against relying on the content of this specification.

The name and trademarks of the Authors may NOT be used in any manner, including
advertising or publicity pertaining to the Specification or its contents without specific,
written prior permission. Title to copyright in the WS-Policy Specification will at all times
remain with the Authors.

No other rights are granted by implication, estoppel or otherwise.

Abstract
The Web Services Policy Framework (WS-Policy) provides a general purpose model and
corresponding syntax to describe and communicate the policies of a Web Service.

WS-Policy defines a base set of constructs that can be used and extended by other Web
Services specifications to describe a broad range of service requirements, preferences,
and capabilities.

Composable Architecture
The Web service specifications (WS*) are designed to be composed with each other to
provide a rich set of tools to provide security in the Web Services environment. WS-
Policy by itself does not provide a negotiation solution for Web services. WS-Policy is a
building block that is used in conjunction with other Web service and application-specific
protocols to accommodate a wide variety of policy exchange models.

Status
This WS-Policy Specification is an initial public draft release and is provided for review
and evaluation only. BEA, IBM, Microsoft, and SAP hope to solicit your contributions and
suggestions in the near future. BEA, IBM Microsoft, and SAP make no warrantees or
representations regarding the specifications in any manner whatsoever.

Table of Contents
1. Introduction

1.1 Goals
1.2 Example

2. Notations and Terminology
2.1 Notational Conventions
2.2 Namespaces
2.3 Terminology

3. Policy Model
3.1 Policy Expressions
3.2 Policy Assertions
3.2.1 Assertion Usage
3.2.2 Policy Assertion Syntax
3.3 Policy Operators
3.4 Forming Policy from Policy Sets
3.5 Simple Assertions and Usage Types

4. Policy Inclusion
5. Security Considerations
6. Acknowledgements
7. References
Appendix I. Schema

1. Introduction
WS-Policy provides a flexible and extensible grammar for expressing the capabilities,
requirements, and general characteristics of entities in an XML Web Services-based
system. WS-Policy defines a framework and a model for the expression of these
properties as polic ies. Policy expressions allow for both simple declarative assertions as
well as more sophisticated conditional assertions.

WS-Policy defines a policy to be a collection of one or more policy assertions. Some
assertions specify traditional requirements and capabilities that will ultimately manifest
on the wire (e.g., authentication scheme, transport protocol selection). Some assertions
specify requirements and capabilities that have no wire manifestation yet are critical to
proper service selection and usage (e.g., privacy policy, QoS characteristics). WS-Policy
provides a single policy grammar to allow both kinds of assertions to be reasoned about
in a consistent manner.

WS-Policy stops short of specifying how polic ies are discovered or attached to a Web
service. Other specifications are free to define technology-specific mechanisms for
associating policy with various entities and resources. Subsequent specifications will
provide profiles on WS-Policy usage within other common Web service technologies.

1.1 Goals
The goal of WS-Policy is to provide the mechanisms needed to enable Web Services
applications to specify policy information. Specifically, this specification defines the
following:

• An XML-based structure called a policy expression which contains domain specific
Web Service policy information

• A core set of grammar elements to indicate how the contained policy assertions
apply.

1.2 Example
The following example illustrates a policy:

001 <wsp:Policy xmlns:wsse="..." xmlns:wsp="...">

002 <wsp:ExactlyOne>

003 <wsse:SecurityToken wsp:Usage="wsp:Required" wsp:Preference="100">

004 <wsse:TokenType>wsse:Kerberosv5TGT</wsse:TokenType>

005 </wsse:SecurityToken>

006 <wsse:SecurityToken wsp:Usage="wsp:Required" wsp:Preference="1">

007 <wsse:TokenType>wsse:X509v3</wsse:TokenType>

008 </wsse:SecurityToken>

009 </wsp:ExactlyOne>

010 </wsp:Policy>

In this example, we illustrate the expression of a security policy using assertions defined
in WS-SecurityPolicy [WS-SecurityPolicy]. Lines 1 to 10 represent a set of policy
assertions for authentication.

Lines 2 to 9 represent the <wsp:ExactlyOne> policy operator that is used to group policy
assertions into policy sets. That is, a valid policy can contain any one of the contained
assertions (lines 3 to 8).

Lines 3 to 5 and 6 to 8 represent two specific security policy assertions that indicate that
two types of authentication are supported and that of the two types, Kerberos
authentication is preferred over X509 authentication.

2. Notations and Terminology
This section specifies the notations, namespaces, and terminology used in this
specification.

2.1 Notational Conventions
The keywords “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”,
“SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be
interpreted as described in RFC 2119 [RFC 2119].

Namespace [XML-NS] URIs (of the general form “some-URI”) represents some
application-dependent or context-dependent URI as defined in RFC 2396 [RFC 2396].

WS-Policy is designed to work with the general Web Services framework including WSDL
service descriptions [WSDL], UDDI service registrations [UDDI], and SOAP message
structure and message processing model [SOAP11, SOAP12].

2.2 Namespaces
The XML namespace URI that MUST be used by implementations of this specification is:

 http://schemas.xmlsoap.org/ws/2002/12/policy

The following namespaces are used in this document:

Prefix Namespace

wsdl http://schemas.xmlsoap.org/wsdl/

wsse http://schemas.xmlsoap.org/ws/2002/12/secext

wsp http://schemas.xmlsoap.org/ws/2002/12/policy

wsu http://schemas.xmlsoap.org/ws/2002/07/utility

xs http://www.w3.org/2001/XMLSchema

In this document reference is made to the wsu:Id attribute in a utility schema
(http://schemas.xmlsoap.org/ws/2002/07/utility). The wsu:Id attribute is included in
the utility schema with the intent that other specifications requiring a global Id could
reference it (as is done here).

2.3 Terminology
We introduce the following terms which are used throughout this document:

Policy – A policy is an informal abstraction and a term that is often used to refer to the
set of information that is being expressed as policy assertions

Policy Assertion – A policy assertion represents an individual preference, requirement,
capability or other property.

Policy Expression – A policy expression is an XML Infoset representation of one or
more policy assertions.

Policy Subject – A policy subject is an entity (e.g., an endpoint, object, or resource) to
which a policy expression can be bound.

Policy Attachment – The mechanism for associating policy expressions with one or
more subjects is referred to as policy attachment.

3. Policy Model
This section defines an abstract model for policies and for operations upon polic ies.

This abstract model is independent of a serialized representation of the model.

At the abstract level a policy is the set of conditions on an action that may result in a
behavior that reflects these conditions. In typical applications, there are many types of
policies expressed at different levels of detail.

For Web services, the provider of a Web service generally has conditions under which it
provides the service. A requester might use this information to decide whether or not to
use the service. Sometimes the provider of the service allows the requester to further
qualify an expressed policy.

To make this abstract model concrete for interoperability, the next section defines an
XML-based grammar for expressing a Web service's policy. Subsequent specifications
will define how policy assertions are associated with Web Service elements as well as
how domain specific policy assertions are expressed.

3.1 Policy Expressions
Any policy can be represented by a policy expression. Policy expressions are a compact
and interoperable means to author and convey polic y assertions. It should be noted
that this specification does not define how to specify the subject of a policy expression.

A policy expression is an XML serialization (an Infoset) that adheres to the syntax
described by this section. That grammar consists of three basic components: the top
level <wsp:Policy> container element, the policy operators (which provide a way to
group assertions), and several common attributes to distinguish usage. All three are
shown in the example below (using assertions defined in WS-SecurityPolicy):

001 <wsp:Policy xmlns:wsp="..." xmlns:wsse="...">

002 <wsp:ExactlyOne>

003 <wsp:All wsp:Preference="100">

004 <wsse:SecurityToken>

005 <wsse:TokenType>wsse:Kerberosv5TGT</wsse:TokenType>

006 </wsse:SecurityToken>

007 <wsse:Integrity>

008 <wsse:Algorithm Type="wsse:AlgSignature"

 URI="http://www.w3.org/2000/09/xmlenc#aes" />

009 </wsse:Integrity>

010 </wsp:All>

011 <wsp:All wsp:Preference="1">

012 <wsse:SecurityToken>

013 <wsse:TokenType>wsse:X509v3</wsse:TokenType>

014 </wsse:SecurityToken>

015 <wsse:Integrity>

016 <wsse:Algorithm Type="wsse:AlgEncryption"

 URI="http://www.w3.org/2001/04/xmlenc#3des-cbc" />

017 </wsse:Integrity>

018 </wsp:All>

019 </wsp:ExactlyOne>

020 </wsp:Policy>

The <wsp:Policy> element (lines 1 and 20) is the top level container element for a
policy expression.

The primary operator in the example is <wsp:ExactlyOne> (lines 2, and 19) indicating
that the policy consists of two policy assertion sets with the <wsp:ExactlyOne> operator
designating that a choice must be made between them.

The subordinate operator in the examp le is <wsp:All> (lines 3, 10, 11, and 18), which
indicates that all of the contained assertions must be met.

The leaf elements in the expression are assertions (lines 4 to 6, 7 to 9, 12 to 14, and 15
to 17) indicating the specific requirements to be met.

Policy expressions may be identified in several ways. As with WSDL [WSDL] and XML
Schema [XMLSchema1], policy expressions can be named using URI or QNAME
mechanisms. It should be noted that compliance does not require support for both URIs
and QNames. That is, it is compliant to specify policies using URIs only, QNames only,
or to support both.

A policy expression may be assigned a QName using the Name attribute, which specifies
the local part of the policy expression’s QName. The namespace component of the
policy expression’s QName may be indicated either using the TargetNamespace attribute
of the <wsp:Policy> element or may be inherited from a containing element (e.g.,
<wsdl:definitions>, <xs:schema>). If no target namespace is specified by either the
container or the <wsp:Policy> element, the namespace part of the expression’s QName
is “”.

A policy expression can also itself be a Web resource, hence identifiable by a URI. To
allow policy expressions to be embedded in arbitrary containing elements, the wsu:Id
attribute may be used to indicate a fragment ID.

The next section defines the syntax for policy assertions and the following section
defines the policy element and the operators.

3.2 Policy Assertions
A policy assertion conveys a requirement, preference, or capability of a given policy
subject. Assertions are typed and can be simple or complex. A simple assertion is
defined to be an assertion that can be compared to another assertion of the same type
based on value-equivalence with no special consideration of the assertion's semantics.

Complex assertions are defined as assertions that require an assertion type-specific
means of comparison. The mechanisms for describing these complex type-specific

comparisons are specific to the domain-specific policy language in which they are
expressed and are outside the scope of this document.

An assertion type MAY be defined such that the assertion is parameterized. For example,
an assertion describing the maximum acceptable message size (in bytes) would likely
accept an integer parameter indicating the maximum byte count. In contrast, an
assertion that simply indicates that TCP-large-window-extensions are required does not
need parameters; its mere presence is enough to convey the assertion.

Interactions, if any, between simple or complex assertions within a domain (i.e., an XML
namespace) are specific to that domain. We assume there are no interactions between
assertions from different domains.

Note that in the XML serialization of a policy, policy assertions are strongly typed, and
their type names are QNames that MUST be consistently interpreted independent of
subject.

3.2.1 Assertion Usage
Each assertion is associated with a usage type. The usage stipulates how the assertion
should be interpreted in relation to the overall policy. For example, one assertion could
provide privacy guarantees for information exchanged by the Web services. Another
assertion could be a requirement for encryption. These two assertions differ. The first
has no externally visible manifestation and the second does – it indicates a requirement
for messages being sent to the service. The first is simply a declaration that a service
will do (or in this case not do) something. The second requires cooperation between the
two Web services. To capture the nature of these differences, WS-Policy defines five
usage qualifiers: Required, Optional, Rejected, Observed and Ignored.

Operators that group together assertions are also allowed to designate a usage type in
lieu of specifying usage type on each individual assertion.

3.2.2 Policy Assertion Syntax
A policy specifies one or more policy assertions. These individual declarations are
domain-specific (e.g., security, transactions) and are expected to be defined in separate
domain-specific specifications. Since assertions are expressed as elements, new
assertions can be created using namespace extensibility. An assertion is identified by
QName and is processed as part of a policy Infoset independent of a specific
serialization.

However, every assertion MUST have an in-scope value for the wsp:Usage attribute to
qualify its semantics as applied to the policy subject; there is no implied value for this
attribute. An assertion can be “wsp:Required”, “wsp:Rejected”, “wsp:Optional”,
“wsp:Observed”, or “wsp:Ignored” by a policy subject. The meaning of these categories
is explained below as are scoping rules for the wsp:Usage attribute.

Policies are represented using the <wsp:Policy> element. The schema outline for this
element is as follows:

<wsp:Policy wsu:Id="..."? Name="..."? TargetNamespace="..."? >

 <Assertion wsp:Usage="..."? wsp:Preference="..."? /> *

 ...

 <wsse:Security>...</wsse:Security> ?

</wsp:Policy>

The following describes the attributes and elements listed in the schema outlined above:

/wsp:Policy

This element is a policy expression that contains policy assertions.

/wsp:Policy/@wsu:Id

This optional attribute uniquely identifies the policy expression as a URI. The URI is
formed by using the Id as a local name relative to the XML base (i.e., base#Id).

/wsp:Policy/@Name

This optional attribute uniquely identifies the policy expression as a QName. The
QName is formed by using the Name as a local name composed with a target
namespace URI. The target namespace URI can be inherited from the context or
specified by the TargetNamespace attribute.

/wsp:Policy/@TargetNamespace

This optional attribute of type xs:anyURI specifies the namespace URI for the policy
expression’s QName in the event that one is not available in the surrounding context,
or if a different base is desired. The intent is that when this attribute is present the
TargetNamespace/Name pair specifies the QName that is the logical identifier of the
policy expression.

/wsp:Policy/Assertion

This is a place holder element name for a domain-specific policy assertion.

/wsp:Policy/Assertion/@wsp:Usage

This optional QName attribute identifies how the policy assertion is processed. The
following table describes the different values of this attribute. Additionally, the
attribute is extensible, additional QName values in addition to those listed may be
used.

Value Meaning

wsp:Required The assertion must be applied to the subject. If the subject
does not meet the criteria expressed in the assertion a fault or
error will occur.

wsp:Rejected The assertion is explicitly not supported and if present will cause
failure.

wsp:Optional The assertion may be made of the subject but it is not required
to be applied.

wsp:Observed The assertion will be applied to all subjects and requesters of the
service are informed that the policy will be applied.

wsp:Ignored The assertion is processed, but ignored. That is, it can be
specified, but no action will be taken as a result of it being
specified. Subjects and requesters are informed that the policy
will be ignored.

/wsp:Policy/Assertion/@wsp:Preference

This optional attribute specifies the preference of this particular alternative. The
preference is expressed as an xs:int. The higher the value of the preference, the
greater the weighting of the expressed preference. If no preference is specified, a
value of zero is assumed.

/wsp:Policy/wsse:Security

This optional element allows security information to be specified about this policy.
This element is defined in WS-Security [WS-Security].

/wsp:Policy/{any}

Additional child elements MAY be specified to make additional policy assertions but
MUST NOT contradict the semantics of the parent element; if an element is not
recognized, it SHOULD be ignored.

/wsp:Policy/@{any}

Additional attributes MAY be specified but MUST NOT contradict the semantics of the
owner element; if an attribute is not recognized, it SHOULD be ignored.

It is legal for a policy expression to contain only assertions with no operators. When no
operators are specified, it is implied that there are no alternatives. The following
example illustrates a policy expression containing only assertions.

It is not legal for a policy assertion to contain an operator, since operators are used to
express relationships between assertions.

<wsp:Policy xmlns:wsse="...">

 <wsse:SecurityToken wsp:Usage="wsp:Required" wsp:Preference="1">

 <wsse:TokenType>wsse:Kerberosv5TGT</wsse:TokenType>

 </wsse:SecurityToken>

 <wsse:Integrity wsp:Usage="wsp:Required" wsp:Preference="8" >

 <wsse:Algorithm Type="wsse:AlgSignature"

 URI="http://www.w3.org/2000/09/xmlenc#aes" />

 </wsse:Integrity>

</wsp:Policy>

The following example illustrates how to associate a policy expression with a URI:

<wsp:Policy xmlns:wsse="..." wsu:Id="P1" xmlns:wsu="...">

 <wsse:SecurityToken wsp:Usage="wsp:Required" wsp:Preference="1" >

 <wsse:TokenType> wsse:Kerberosv5TGT</wsse:TokenType>

 </wsse:SecurityToken>

 <wsse:Integrity wsp:Usage="wsp:Required" wsp:Preference="8" >

 <wsse:Algorithm Type="wsse:AlgSignature"

 URI="http://www.w3.org/2000/09/xmlenc#aes" />

 </wsse:Integrity>

</wsp:Policy>

In the above example, if the XML base was “http://fabrikam123.com/policies”, then the
URI for the policy would be “http://fabrikam123.com/policies#P1”.

Alternatively, a policy expression can be identified using QNames:

<wsp:Policy xmlns:wsse="..."

 Name="Q1"

 TargetNamespace="http://fabrikam123.com/policies">

 <wsse:SecurityToken wsp:Usage="wsp:Required" wsp:Preference="1">

 <wsse:TokenType>wsse:Kerberosv5TGT</wsse:TokenType>

 </wsse:SecurityToken>

 <wsse:Integrity wsp:Usage="wsp:Required" wsp:Preference="8">

 <wsse:Algorithm Type="wsse:AlgSignature"

 URI="http://www.w3.org/2000/09/xmlenc#aes" />

 </wsse:Integrity>

</wsp:Policy>

In the above example, the QName for the policy would be <f123:Q1> where f123 has
the value “http://fabrikam123.com/policies”.

3.3 Policy Operators
In order to author more flexible policies, policy operators are provided which allow
alternative acceptable policy assertions to be authored. The operators are:

• <wsp:All> which requires that all of its child elements be satisfied

• <wsp:ExactlyOne> which requires that exactly one of its child elements be satisfied

• <wsp:OneOrMore> which requires that at least one of its child elements be satisfied
• <wsp:Policy> whose semantics are the same as <wsp:All>

The schema outline for the <wsp:Policy> element is as follows:

<wsp:Policy>

 ...

 <wsp:ExactlyOne wsp:Usage="..."? wsp:Preference="..."?>

 ...

 </wsp:ExactlyOne>

 <wsp:All wsp:Usage="..."? wsp:Preference="..."?> ... </wsp:All>

 <wsp:OneOrMore wsp:Usage="..."? wsp:Preference="..."? >

 ...

 </wsp:OneOrMore>

 ...

</wsp:Policy>

The following describes the attributes and elements listed in the schema outlined above:

/wsp:Policy

A policy expression is the top level container for the set of policy operators and
assertions.

/wsp:Policy/.../wsp:ExactlyOne

This element may contain one or more policy assertions, references, or operators. It
requires that exactly one of its children be satisfied.

/wsp:Policy/.../wsp:All

This element may contain one or more policy assertions, references, or operators. It
requires that every one of its children be satisfied.

/wsp:Policy/.../wsp:OneOrMore

This element may contain one or more policy assertions, references, or operators. It
requires that at least one of its children be satisfied.

Each operator allows additional child and/or attribute content. Additional child elements
and attributes MUST NOT contradict the semantics of the parent / owner element.
Additional child elements MUST be assertions, references, or operators. If an attribute is
not recognized, it SHOULD be ignored.

In the example below an authentication mechanism must be selected. Either security
option “Kerberosv5TGT” or “X509v3” is allowed. The <wsp:ExactlyOne> element is
provided to allow an exclusive choice between the assertions. The intent is to allow
services to indicate a range of supported options for other parties to choose from. As
well, the policy indicates that auditing is observed. This is because the <wsp:Policy>
container has the same behavior as the <wsp:All> operator. In this example a
preference is not indicated.

<wsp:Policy xmlns:wsse="..." xmlns:wssx="...">

 <wsp:ExactlyOne>

 <wsse:SecurityToken wsp:Usage="wsp:Required">

 <wsse:TokenType>wsse:Kerberosv5TGT</wsse:TokenType>

 </wsse:SecurityToken>

 <wsse:SecurityToken wsp:Usage="wsp:Required">

 <wsse:TokenType>wsse:X509v3</wsse:TokenType>

 </wsse:SecurityToken>

 </wsp:ExactlyOne>

 <wssx:Audit wsp:Usage="wsp:Observed"/>

</wsp:Policy>

In the next example below an authentication mechanism must be selected but the
provider indicates which mechanism it “prefers” by indicating a preference. Either
security token type “Kerberos5TGT” or “X509v3” is allowed.

<wsp:Policy xmlns:wsse="...">

 <wsp:ExactlyOne>

 <wsse:SecurityToken wsp:Usage="wsp:Required" wsp:Preference="100">

 <wsse:TokenType>wsse:Kerberosv5TGT</wsse:TokenType>

 </wsse:SecurityToken>

 <wsse:SecurityToken wsp:Usage="wsp:Required" wsp:Preference="1">

 <wsse:TokenType>wsse:X509v3</wsse:TokenType>

 </wsse:SecurityToken>

 </wsp:ExactlyOne>

</wsp:Policy>

The following example illustrates the representation of a group of assertions as part of
an expression with an <wsp:ExactlyOne> operator. In this example, the security profile
consists of security specific policy assertions. The first alternative specifies Kerberos
Authentication and Privacy. The second alternative specifies password authentication
and an audit trail. Either the first or second alternative must be chosen, but not both.
The preference attribute establishes a preference for the first alternative.

<wsp:Policy xmlns:wsse="..." xmlns:wssx="...">

 <wsp:ExactlyOne>

 <wsp:All wsp:Usage="wsp:Required" wsp:Preference="100">

 <wsse:SecurityToken>

 <wsse:TokenType>wsse:Kerberosv5TGT</wsse:TokenType>

 </wsse:SecurityToken>

 <wssx:Privacy />

 </wsp:All>

 <wsp:All wsp:Preference="1" wsp:Usage="wsp:Required">

 <wsse:SecurityToken>

 <wsse:TokenType>wsse:UsernameToken</wsse:TokenType>

 </wsse:SecurityToken>

 <wssx:Audit />

 </wsp:All>

 </wsp:ExactlyOne>

</wsp:Policy>

Note that in this example, the wsp:Usage and wsp:Preference attributes appear on a
policy operator instead of on the assertions themselves. The wsp:Usage attribute
applies to the element upon which it appears and to all of that element’s descendants,
unless overridden by another wsp:Usage attribute on a descendant element.

3.4 Forming Policy from Policy Assertion Sets
A policy is the collection of all acceptable policy assertions for a specific domain. This
collection can be viewed as a table, in which each column is an assertion and each row is
a policy assertion set. For simple assertion types (and single collection), the cells in the
table indicate the Boolean predicate of the assertion as defined in the previous section.

For example, the policy “either only an x509 certificate and 3DES encryption or a
Kerberos certificate and AES are acceptable and all other combinations are invalid” can
be represented in a table as:

 Assertions

Acceptable

Policy Sets
X509 Kerberos 3DES AES

Set 1 True False True False

Set 2 False True False True

This table has two rows. The first row states “x509 is required and 3DES is required and
that other aspects are invalid.” The second row states “Kerberos is required and AES is
required and that other aspects are invalid.” Each row is an acceptable alternative, so
this table can be read as the intended policy above: “either an x509 certificate and 3DES
encryption (only) or a Kerberos certificate and AES are acceptable (only).”

3.5 Simple Assertions and Usage Types
A policy assertion set combines one or more policy assertions to describe an acceptable
combination of assertions with their respective usages.

For example, consider the case in which two fictitious assertion types have been
defined: X509 and 3DES. For the purposes of this example, we will assume that each
assertion has no additional parameters.

A simple policy assertion set consisting of both assertions would look like this:

Assertion
Type

X509 3DES

Usage Required Required

This assertion set indicates that both X509 and 3DES are required by the (yet to be
specified) subject of this policy.

It is also possible to vary the usage for each assertion. For example, the following policy
set indicates that X509 is required by the subject, but that 3DES is explicitly rejected:

Assertion
Type

X509 3DES

Usage Required Rejected

To simplify the analysis and processing of policy assertion sets, non-parameterized
simple assertions can be viewed as Boolean predicates, with a Required usage resulting
in true and Rejected resulting in false.

For example, the second example just shown could be described like this:

Simplified
Sets

X509 3DES

Set 1 True False

It should be noted that complex and parameterized assertion types require more
sophisticated logic and that must be handled in a type-specific manner – the specifics of
which are outside the scope of this document.

Using this simplified Boolean formulation, a simple assertion with Optional usage results
in two sets being induced: one with a true predicate and the other with a false predicate.
For example, had the X509 assertion been marked optional and the 3DES assertion
marked required, the resultant assertion sets would be this:

Simplified
Sets

X509 3DES

Set 1 True True

Set 2 False True

Note that either of these two assertion sets would be acceptable to the subject of the
two assertions just described.

A simple policy assertion set consisting of fictitious assertions for Privacy and Audit
might look like this:

Assertion
Type

Privacy Audit

Usage Observed Required

Following this simplified Boolean formulation, a simple assertion with Observed usage
always resolves to true. For example, had there been a privacy assertion marked
Observed and an Audit assertion marked Required, the resultant assertion set would be
this:

Simplified
Sets

Privacy Audit

Set 1 True True

Continuing the formulation, a simple assertion with Rejects usage always resolves to
false would be represented as this:

Assertion
Type

Privacy Audit

Usage Observed Rejects

For example, had there been a privacy assertion marked Rejects the resultant policy
sets would be this:

Simplified
Sets

Privacy Audit

Set 1 True False

4. Policy Inclusion
In order to share assertions across policy expressions, the <wsp:PolicyReference>
element can be specified as a policy assertion. This element is used to include the
content of one policy expression in another expression.

When a <wsp:PolicyReference> element references another <wsp:Policy> element,
then the semantics of inclusion are simp ly to replace the <wsp:PolicyReference>
element with a <wsp:All> element containing the [children] property of the referenced
<wsp:Policy> element. That is, the contents of the referenced policy conceptually
replace the <wsp:PolicyReference> element and are wrapped in an <wsp:All>
operator. (Note: References that have a digest attribute SHOULD be validated before
being included). It is legal for a policy operator to contain a <wsp:PolicyReference> (see
example below). It is not legal for an assertion element to contain a
<wsp:PolicyReference>. If a policy expression needs to reference other policy
expressions the valid way is to encapsulate the assertion within an operator and use
references within the operator which will be expanded into the policy expression
referenced.

The schema outline for the <wsp:PolicyReference> element is as follows:

<wsp:Policy>

 ...

 <wsp:PolicyReference URI="..." ?

 Ref="..." ?

 Digest="..." ?

 DigestAlgorithm="..." ? />

 ...

</wsp:Policy>

The following describes the attributes and elements listed in the schema outlined above:

/wsp:Policy/.../wsp:PolicyReference

This element references the policy expression that is being applied to all in-scope
resources.

/wsp:Policy/.../wsp:PolicyReference/@URI

This optional attribute references a policy using its URI. Either the URI attribute or
the Ref attribute MUST be specified.

/wsp:Policy/.../wsp:PolicyReference/@Ref

This optional attribute references a policy using its QName. Either the URI attribute
or the Ref attribute MUST be specified.

/wsp:Policy/.../wsp:PolicyReference/@Digest

This optional attribute (of type xs:base64Binary) specifies the digest of the included
policy. This is used to ensure the included polic y is the expected policy.

/wsp:Policy/.../wsp:PolicyReference/@DigestAlgorithm

This optional QName attribute specifies the digest algorithms being used. This
specification predefines the algorithm below although additional algorithms can be
expressed.

QName Description

wsse:Sha1Exc
(implied)

The digest is a SHA1 hash over the octet stream resulting from
using the Exclusive XML canonicalization defined for XML
Signature [XMLSignature].

In the example below two policies include and extend a common policy. In the first
example there is a single policy document containing three policy expressions. The first
expression is given an id but not a fully qualified location. The second and third
expressions reference the first element by using a URI indicating the referenced element
is within the document.

<wsp:Policy wsu:Id="audit" xmlns:wsu="..." xmlns:wsse="..."
xmlns:wssx="...">

 <wssx:Audit wsp:Usage="wsp:Observed" />

</wsp:Policy>

<wsp:Policy xmlns:wsse="...">

 <wsp:PolicyReference URI="#audit" />

 <wsse:SecurityToken wsp:Usage="wsp:Required">

 <wsse:TokenType>wsse:X509v3</wsse:TokenType>

 </wsse:SecurityToken>

</wsp:Policy>

<wsp:Policy xmlns:wsse="...">

 <wsp:PolicyReference URI="#audit" />

 <wsse:SecurityToken wsp:Usage="wsp:Required">

 <wsse:TokenType>wsse:Kerberosv5TGT</wsse:TokenType>

 </wsse:SecurityToken>

</wsp:Policy>

The following example illustrates the same thing using QName references:

<wsp:Policy Name="audit"

 TargetNamespace="http://fabrikam123.com/policies"

 xmlns:wssx="...">

 <wssx:Audit wsp:Usage="wsp:Observed" />

</wsp:Policy>

<wsp:Policy xmlns:wsse="..."

 xmlns:f123="http://fabrikam123.com/policies">

 <wsp:PolicyReference Ref="f123:audit" />

 <wsse:SecurityToken wsp:Usage="wsp:Required">

 <wsse:TokenType>wsse:X509v3</wsse:TokenType>

 </wsse:SecurityToken>

</wsp:Policy>

<wsp:Policy xmlns:wsse="...">

 <wsp:PolicyReference Ref="f123:audit" />

 <wsse:SecurityToken wsp:Usage="wsp:Required">

 <wsse:TokenType>wsse:Kerberosv5TGT </wsse:TokenType>

 </wsse:SecurityToken>

</wsp:Policy>

There are times when it is desirable to “re-use” a portion of a policy expression.
Generally, this can be accomplished by placing the common assertions in a separate
policy expression and referencing it. However, some assertions may contain sub-
elements which can be re-used. For example, a choice among a common set of

algorithms. In such cases, it is not possible to use a separate policy expression because
the sub-elements being re-used are not complete policy expressions. Consequently, it is
allowed to use the policy identification mechanisms previously described on policy
operators. This allows policy expressions to contain references to these sub-elements
and re-use them. When a <wsp:PolicyReference> element reference is to a policy
operator, then the <wsp:PolicyReference> element is replaced with the element
information item being referenced. The following example illustrates this usage of
inclusion:

<wsp:Policy xmlns:wsse="..." xmlns:cus="...">

 <cus:Assert1>

 <wsp:ExactlyOne wsu:Id="opts">

 <cus:Option1 wsp:Usage="wsp:Required" />

 <cus:Option2 wsp:Usage="wsp:Required" />

 <cus:Option3 wsp:Usage="wsp:Required" />

 </wsp:ExactlyOne>

 </cus:Assert1>

 <cus:Assert2>

 <wsp:PolicyReference URI="#opts" />

 </cus:Assert2>

</wsp:Policy>

5. Security Considerations
It is strongly RECOMMENDED that policies and assertions be signed to prevent
tampering.

Policies SHOULD NOT be accepted unless they are signed and have an associated
security token to specify the signer has the right to “speak for” the scope containing the
policy. That is, a relying party shouldn't rely on a policy unless the policy is signed and
presented with sufficient credentials to pass the relying parties acceptance criteria.

It should be noted that the mechanisms described in this document could be secured as
part of a SOAP message using WS-Security or embedded within other objects using
object-specific security mechanisms.

6. Acknowledgements
We would like to thank the following people for their contributions towards this
specification:

Erik Christensen, Microsoft
Giovanni Della-Libera, Microsoft
Scott Konersmann, Microsoft
Frank Leymann, IBM
Steve Lucco, Microsoft
Hiroshi Maruyama, IBM
Steve Millet , Microsoft

Henrik Frystyk Nielsen, Microsoft
Keith Stobie, Microsoft
Tony Storey, IBM
Sanjiva Weerawarana, IBM

7. References
[RFC 2119]

“Key words for use in RFCs to Indicate Requirement Levels,” RFC 2119, S. Bradner
(editor), March 1997.

[RFC 2396]
“Uniform Resource Identifiers (URI): Generic Syntax,” RFC 2396, T. Berners-Lee, R.
Fielding, and L. Masinter (editors), August 1998.

[SOAP11]
“SOAP: Simple Object Access Protocol 1.1,” W3C Note, Don Box, David Ehnebuske,
Gopal Kakivaya, Andrew Layman, Noah Mendelsohn, Henrik Frystyk Nielsen, Satish
Thatte, and Dave Winer, 08 May 2000.

[SOAP12]
“SOAP Version 1.2 Part 1: Messaging Framework,” W3C Candidate Recommendation,
Martin Gudgin, Marc Hadley, Noah Mendelsohn, Jean-Jacques Moreau, and Henrik
Frystyk Nielsen (editors), 19 December 2002.

[UDDI]
“UDDI Version 3.0,” OASIS Committee Specification, Tom Bellwood, Luc Clément,
David Ehnebuske, Andrew Hately, Maryann Hondo, Yin Leng Husband, Karsten
Januszewski, Sam Lee, Barbara McKee, Joel Munter, and Claus von Riegen (editors),
19 July 2002.

[WS-Security]
“Web Services Security (WS-Security),” Bob Atkinson, Giovanni Della-Libera, Satoshi
Hada, Maryann Hondo, Phillip Hallam-Baker, Chris Kaler (Editor), Johannes Klein,
Brian LaMacchia, Paul Leach, John Manferdelli, Hiroshi Maruyama, Anthony Nadalin,
Nataraj Nagaratnam, Hemma Prafullchandra, John Shewchuk, and Dan Simon, 5
April 2002.

[WS-SecurityPolicy]
“Web Services Security Policy Language (WS-SecurityPolicy)”, Giovanni Della-Libera,
Phillip Hallam-Baker, Maryann Hondo, Tomasz Janczuk, Chris Kaler, Hiroshi
Maruyama, Anthony Nadalin (Editor), Nataraj Nagaratnam, Andrew Nash, Rob
Philpott, Hemma Prafullchandra, John Shewchuk, Elliot Waingold, and Riaz
Zolfonoon, 18 December 2002.

[WSDL]
“Web Services Description Language (WSDL) 1.1,” W3C Note, Erik Christensen,
Francisco Curbera, Greg Meredith, and Sanjiva Weerawarana, 15 March 2001.

[XML-NS]
“Namespaces in XML,” W3C Recommendation, Tim Bray, Dave Hollander, and
Andrew Layman (editors), 14 January 1999.

[XMLSchema1]
“XML Schema Part 1: Structures,” W3C Recommendation, Henry S. Thompson, David
Beech, Murray Maloney, and Noah Mendelsohn (editors), 2 May 2001.

[XMLSignature]

“XML-Signature Syntax and Processing,” W3C Recommendation, Donald Eastlake,
Joseph Reagle, and David Solo (editors), 12 February 2002.

Appendix I. Schema
A normative copy of the XML Schema [XMLSchema1] for WS-Policy constructs may be
retrieved by resolving the URI “http://schemas.xmlsoap.org/ws/2002/12/policy”. A non-
normative copy of that Schema is included in-line below for convenient reference.

<xs:schema targetNamespace="http://schemas.xmlsoap.org/ws/2002/12/policy"

 xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns:wsp="http://schemas.xmlsoap.org/ws/2002/12/policy"

 xmlns:wsu="http://schemas.xmlsoap.org/ws/2002/07/utility"

 elementFormDefault="qualified"

 blockDefault="#all">

 <xs:import namespace="http://schemas.xmlsoap.org/ws/2002/07/utility"

 schemaLocation="http://schemas.xmlsoap.org/ws/2002/07/utility"/>

 <xs:attribute name="Usage" type="wsp:OpenUsageType"/>

 <xs:simpleType name="OpenUsageType">

 <xs:annotation>

 <xs:documentation>

 Per GXA norms, we allow other values that are not pre-defined.

 </xs:documentation>

 </xs:annotation>

 <xs:union memberTypes="wsp:UsageType xs:QName"/>

 </xs:simpleType>

 <xs:simpleType name="UsageType">

 <xs:annotation>

 <xs:documentation>

 Pre-defined Usage types that apply to individual assertions.

 Per GXA norms, we use QNames rather than traditional token-based

 enumerations.

 </xs:documentation>

 </xs:annotation>

 <xs:restriction base="xs:QName">

 <xs:enumeration value="wsp:Required"/>

 <xs:enumeration value="wsp:Optional"/>

 <xs:enumeration value="wsp:Rejected"/>

 <xs:enumeration value="wsp:Ignored"/>

 <xs:enumeration value="wsp:Observed"/>

 </xs:restriction>

 </xs:simpleType>

 <xs:attribute name="Preference" type="xs:int"/>

 <xs:element name="PolicyReference" type="wsp:PolicyReferenceType"/>

 <xs:complexType name="PolicyReferenceType">

 <xs:sequence>

 <xs:any namespace="##any"

 processContents="lax"

 minOccurs="0"

 maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:attribute name="URI" type="xs:anyURI" use="optional"/>

 <xs:attribute name="Ref" type="xs:QName" use="optional"/>

 <xs:attribute name="Digest" type="xs:base64Binary" use="optional"/>

 <xs:attribute name="DigestAlgorithm" type="xs:QName" use="optional"/>

 <xs:anyAttribute namespace="##any" processContents="lax"/>

 </xs:complexType>

 <xs:element name="All" type="wsp:Compositor"/>

 <xs:element name="OneOrMore" type="wsp:Compositor"/>

 <xs:element name="ExactlyOne" type="wsp:Compositor"/>

 <xs:complexType name="Compositor">

 <xs:group ref="wsp:CompositorContent" maxOccurs="unbounded"/>

 <xs:attributeGroup ref="wsp:CompositorAndAssertionAttributes"/>

 </xs:complexType>

 <xs:group name="CompositorContent">

 <xs:choice>

 <xs:element ref="wsp:OneOrMore"/>

 <xs:element ref="wsp:All"/>

 <xs:element ref="wsp:ExactlyOne"/>

 <xs:element ref="wsp:PolicyReference"/>

 <xs:group ref="wsp:PolicyAssertions"/>

 <xs:any namespace="##other" processContents="lax"/>

 </xs:choice>

 </xs:group>

 <xs:attributeGroup name="CompositorAndAssertionAttributes">

 <xs:attribute ref="wsp:Usage" use="optional"/>

 <xs:attribute ref="wsp:Preference" use="optional"/>

 <xs:attribute ref="wsu:Id" use="optional"/>

 <xs:anyAttribute namespace="##any" processContents="lax"/>

 </xs:attributeGroup>

 <xs:element name="Policy" type="wsp:PolicyExpression"/>

 <xs:complexType name="PolicyExpression">

 <xs:group ref="wsp:CompositorContent"

 minOccurs="0"

 maxOccurs="unbounded"/>

 <xs:attribute name="Name" type="xs:NCName" use="optional"/>

 <xs:attribute name="TargetNamespace" type="xs:anyURI" use="optional"/>

 <xs:attribute ref="wsu:Id" use="optional"/>

 <xs:anyAttribute namespace="##any" processContents="lax"/>

 </xs:complexType>

</xs:schema>

