WMLScript
Specification

Proposed Version 11-Feb-1999

Wireless Application Protocol
WMLScript Language Specification
Version 1.1

Disclaimer:

This document is subject to change without notice.

Proposed Version 11-Feb-1999 Page 2(114)

Contents
1. O @ 1 OO EO 7
2. DOCUMENT STATUS. ...ttt sttt e et e e s be e s be e s beeeaseesabeeeaseesabeeeaseesateessseesaeeeaseestesenseeebeeeaseennts 8
A I O =" =T 1 0\ 2 1 TSR 8
A = N NS 8
2 T O 11V 1LY 1= N =R 8
3. = AN T i OO 9
3.1 NORMATIVE REFERENCEScoittiteeittteeeitteeeiitteeeeateeeeaisseessasseseaastesasassseassasssessastesasasssessasssesaastesesassesssassnessnssesesansens 9
3.2 INFORMATIVE REFERENCESuceiiiitiieiitteeeiitteeeaiteeesaseeaaatseesasssessasssaaastessaassessssesasastesesassssesasssesaatesesasesssasseesan sensenans 9
4, DEFINITIONSAND ABBREVIATIONS.ottt ettt ettt st sare et e st e e sane e s beeeeaeesnteeen seenneesareas 10
g I 19 i = 1] T N S 10
A AN =1 = =V Ny TN S 11
5. OVERVIEW ..ottt ettt ettt e e ettt et e e et e e e bt e e e beeeebe e e sbeeeabeeeebeeeabeseabeeabeseabeeensesanbesenseeanbessnbesantenenseennts 12
B.1 WHY SCRIPTING? ... cittie ettt e ettt e e ettt e e e ettee e e ettt e e e abeeeeaaseeesaaseeaaaabeeaeasseeesasseeaeanbesesanssesessseeeaanteeasansseeesasseeesanteeanannns 12
5.2 BENEFITSOF USING WML SCRIPTctiiiiiiiii it e ettt e ettt e e ettt e e e et eeeate e e s eaaeeeeaabeeasesseeesasseeesanbaeaeasseeesasseeasanteeanannns 12
6. WMLSCRIPT CORE ...ttt ettt ettt ste e et e s ae e et e e e ebeeeabee e sbeeebeeeabeesaseesabeesaseesnteennreean 13
B.1 LEXICAL STRUCTUREceiiuttteiitteeeestteeseiseeeesssseeesanteeeeassesesassseesastesesaassesesasseessantesesanssesesassseesasesssanseeesnssessansenesannes 13
6.1.1 LOr= TS SIS = S 1Y/ 7 13
6.1.2 WhIteSPACE AN LIiNE BIrEAKS........ccuecieeeiesie st se et e et sttt e e e e st e besaeebeeseenae e e saesnaesteseesresneeneennenean 13
6.1.3 0L o [0S = 0 oo Lo g 13
6.14 LO00] 10110 1 £ SN 14
6.1.5 (== KOOSO 14
6.1.5.1 Lo (= L = - SO ROTOR 14
6.1.5.2 FLOAtNG-POINT LITEIralS.iviiciieeicieite ettt ettt e ae et e e b e sren shesbe st e s e s esseteabessesenseneerestesaeeen 15
6.1.5.3 L1 Te L (= - SR RPPR 15
6.1.5.4 BOOIEAN LITEIAIS. .. cccviivieieitectiitt ettt ettt st e b et e st e e e s besbe e besbe e besbeessesbeanseabe s s ebeessesbeenseabesaeesteaneebesaeesresbnentesns 16
6.1.5.5 10z [To WA 1= - OO OO 16
6.1.6 L0 0 L= OO REORSRURTRPNS 16
6.1.7 RESEIVEA WOPTS......cotiiiiiee ettt ettt et sttt e et e e ae s ae e s beeebe e be e beeabeeasesbeesbeesbeeabeeabeenbeenteeabesreesbeesteenrenn 17
6.1.8 2T S 7= 1o PP PP 17
6.2 VARIABLES AND DATA TYPES. . utiiiiiitiii e it e s ittt e e sttt e e e aee e e s sttt e e e s teeeeastee e s saeeeeaateeeeasseeessseeeaasseeesanneeesnsseeesansenenannes 18
6.2.1 Variahl€ DECIAIALION. ... ccveiieiieitee ettt et et e et e st e s beesbeesbeebesasesaeeebeeebeesbeeabeesbeenbesasesaeesbeesseenseenrens 18
6.2.2 A 1A E= o LR wa oL Lo [= (] = 18
6.2.3 VATTADIE ACCESSecvecteceie ettt cte e et e ete st e s e st e e bt ebe et e e aaesbeesbeesbeesbesasesaeesaeeabeenbeeabesabeenbesntesasesaeesbeenseenseenreans 19
6.2.4 RV 22T T= o L= Y o1 T 19
6.2.5 LWAIUBS ..ottt ettt ettt ettt ettt e e st e s haesbeesbe e besasesaeesaeeebe e beenbeeabesabesheesheeabeesheeabeenbeeabeeateereeebeenteenrenn 19
6.2.6 B YL o Y 1= 19
6.2.7 NUMEITC VAIUES ...ttt ettt ettt et sttt sbe e st e e te s e e s ae s ebeaebe et e eabesabesasesbeesbeesbeeabeenbeeaseeasesasesbeebeentenn 19
6.2.7.1 L= o (= S = TSSOSO SR SRS 20
6.2.7.2 FLOBLINGAPOINT SIZE ... ettt ettt et et et e st e e e st e teebesee b e e eses £ ebesbeesenseseenseteabessensenseneeseetessesean 20
6.2.8 S L1010 V7= 11 L= 20
6.2.9 BOOIEAN VAIUES.......ccuviiieeitee ettt ettt ete ettt et e et e sbaesbeesbeesbeebesasesassebeaebe e beeabesabesaseeabeenbeeaseeatesbeesbeesbeenrenn 21
6.3 OPERATORS AND EXPRESSIONS.....ccittieiiiieeeiiieeeestteesesseeeessuseeessnteeesaasseeesasseeasantesesanssesesasssesssssesesanssseesasssessansenesannes 21
6.3.1 PSS Lo 000 4RO o= = (o £ 21
6.3.2 F L a 0= Tl @ o= - o 21
6.3.3 [T TTor= IO o= 1 (o 22
6.3.4 S L1007 = 1 0] T 23

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Proposed Version 11-Feb-1999 Page 3(114)

6.3.5 COMPATTSON OPEIALONS ...veeeteeeieete st ekt se et se et se et ebese et et e seeaeeb e seeseebeseeseebeseeaeebeseeseebesbesbe e ebesbe e ebesreenben 23
6.3.6 ATTAY OPEIBEOIS. ...c.ueeutetireste ettt sttt se e s b bt b e et e e s e e e R e e R e eR e eb e s aeessese e R e s bt eae e e e nn e resreerenreennennens 24
6.3.7 1000100 00> W @] o= = L0 ST PP O PP PP PUSORR 24
6.3.8 CONItIONAI OPEIALONcueteeeteitere ettt ettt ettt b et eb bbbt bt eb e sb e seeb e e b e s e ekt sb e st ebesb e e ekt sbe e ebesbe e ebesneneerens 24
6.3.9 EYPEOF OPEIALOT ...tttk ettt bt b et b e e bt e e s e bt s e et b s b e e e bt e bt s e bt b e s e b e bt b s e b n e e 24
B.3.10 FSVAIIT OPEI IOeeiueetireeeeetert ettt bttt st e h bt b e st b bbb e e a e b e e bt b e b e st eb e b e e e Rt e b e e e st b e e st b e ne e 25
B.3. 11 EXDIESSIONS ...eueetiteueetert ettt ettt h et h et h ekt E R R R E £ R R R AR R e R e R SRR e e AR e e Rt b e Rt b e neees 25
6.3.12 EXPreSSION BiNAINGS......ecueitiieiiitirieiistist ettt sttt s bbb e st e s e st b e e ese b e e e st b e e ene e 25
B.4 FFUNGCTIONSuitiieeetie e e ettt e e ettt e e ettt e e easeee e st eeeeaasseeesaaseeeaaabaeaeansseeesasseeaeanteeaeassesessseeeesnsseesassesesasseeaesnbseesanseeesassenns 27
6.4.1 (D L=Tw F= = 111) o [P ORRUOt 27
6.4.2 FUNCHON CAllS......eiiitie ettt sttt e e s e et e e st e e et e e st e s easeesabeeeabeesabeesnsessnbessnseesnbesensessnbesaseesnts 27
6421 L OCEl SCHPL FUNCLIONS........eueitiisieiet ettt b et b e e s st e b e e ne e e b st nn b e n et nrene e 28
6.4.2.2 EXLENEl FUNCLIONS........eiiieciccte ettt e st e e s be e e s beeae e seeaeesbesaeen sbeeneatesseensesaeensesteensensesnseseenseans 28
6.4.2.3 LIBIarY FUNCLIONSc.veuieciieitesee ettt e h s sh et r bt ne R e e nb e e bt ne b e e n et nrene e 29
6.4.3 DEFAUIT REIUNN VAIUEeoivie ettt ettt e et e e et e e ebe e s besebessabesebessabesenseesabesenseesnbesesessbeseseesnts 29
5.5 ST ATEMENTS .. .tiii et ctteee e ettt e e ettt e e ettt eeeebeeeeeaaseeeeaaseeeeaabeeaeassesesasseeaeanteeaeassesesasseeeeanbseasassesesasseeaeanbseesanteeesassenas 29
6.5.1 EMPLY SEBEEIMENT. ... et st r e R a e r e r e a e r e 29
6.5.2 EXPIESSION SEALEIMBNT ...ttt sttt b et b e s bbbt b s et b e e s et b e sb e st ebenb et b e nn s s 30
6.5.3 BIOCK STAEEIMENT......citii ettt st e et e st e et e st e e ebe e st e e eabeesabeseaseesabesenseesabesansessabeseseesnbessnsessnbesnseesnts 30
6.5.4 AV L= o (SR F 1= 0 1 = | OSSR 31
6.5.5 RS P21 .0/ | RSSO 32
6.5.6 T TR 210 10 | OO ROO 32
6.5.7 FOr SLAEEMIENL ...ttt e ettt e e et e e e e ebteeeeeabeeeeeaseeeeabaeee e steeesasseeesasbeeeensteeesansenas 33
6.5.8 BrEaK SLALEIMENTeoiviecie ettt et e sttt e et e e sttt e st e e sabeesabeesabeesaseesabeesaseesabeesaseesabesenseesnbesesessnbesaseesnt 33
6.5.9 (000 0 111U IRS = 1= 1= 0| TR 34
B.5.10 REIUIN STALEIMENTeoiiiiiiie et ee e ettt e e et e e e e et eeeeebbeeeeeateeesebseeeaasbeeeaasbeeaessseeesaasseesaanbeeesasnseeesnsseeans 34
B.6 LIBRARIES.......ccttieeeittieeeetteeeeeetteeeeetteeesatteeeeabeeeeaasseeesaaseeaeanbaeaeassesesasseseeantseaeassesesasseeesanbesesaassesesassenaeanbseeeannseeesasseeas 35
6.6.1 S 21000 = 10] o1 1= TR 35
B.7 PRAGMAS. ...ttt e e ettt e e ettt e e ettt e e e ettt e e e aateeeeeaseea e e beeaeaasteeeaasseeeeaabeeeeaaabeeeaaaaeeeeibeeeeaaabeeeeataeaeaatbeeeaanreeeaanaeeas 35
6.7.1 External Compilation UNITScoii ettt sttt et sb e et b e s 35
6.7.2 P Yol @0 o1 1 o) OSSO 36
6.7.3 VL= = S 101 10z L o] o [P UR OOt 37
6.7.3.1 N BITIE <. ettt e et e e e ettt e e eteeeeetaeeesbeeeaaaeeeeabaeeeaabeeeateeeeaabeee e seaateeaeaseeeeabeeeeanbeeeateeeeanbeeeaateeeaanres 38
6.7.3.2 HT TP EQUIV ettt sttt ettt b e e et e st e s e e aeeE et e £ e meeme £ s e e eseeaeeeeebeaseneeneabeeaeseensaneeneasenes 38
6.7.3.3 UL g0 = o | ST TSP PR UPPTURRUPRORIN 38

7. AUTOMATIC DATA TYPE CONVERSION RULES........oooit ittt sttt ve b v saresraesbeesreas 39
7.1 GENERAL CONVERSION RULES........uutiiiitiieeiitiee e ettt e sseeeeesteeessssteeesssseeeesntaeesaassesesasssesssnseeesanssesesasssssssnsesssansesesnsnnes 39
711 (001011 g To 0TSy (oIS (1o TP 39
712 (0001011 £ To 101 (03 110 = (PR 39
713 (00010\V/= g To 101 (o] = Loz Uil aTe ot =] o) PR 40
7.1.4 CONVErSIONSTO BOOIEANc.veeviciiectiectie ettt ettt et e e et e st e st e s beesbeebesasesaeesbeebe e nbesanesasesaeesseensesnseans 40
7.15 CONVEISIONSTO INVALIGoocuiiirieiticctiecte ettt et et e et e st e e ebesresaeesaeesbeebeeabeeaseebeesnbesnnesasesaeesseensesnseans 40
7.1.6 S 010010 0°= P PP PRTPPTPS 40
7.2 OPERATOR DATA TYPE CONVERSION RULES.......uutiiiiitieeeitieeeeiiteeessteeeesteeeesssteeesssssesssnssessasssesesasssssssnssssssnnsesesnsnees 41
7.3 SUMMARY OF OPERATORS AND CONVERSIONS......ceiiiiueeeeitteeeeiseeeessseeeeaseeesasssesesasssesssnsesssssssesesasssssssssssesanssesesnsssees 43
731 SNGIE-TYPEA OPENGLOTS......veiueeuieeeitesesteeteseeeesteste s e stestesreesee s e sesseseestesseesesseessesseseestesaeansenseteseenresseesennennen 43
732 T L Y/ 1= o @ o= =1 (o S 44
8. WMLSCRIPT GRAMMAR ..ottt ettt ette ettt etae e ste e e tae e st e e ebae e sabeessseesabeseseeesabeessseesaseessseentesesessbesensessnts 45
8.1 CONTEXT-FREE GRAMMARS......cceittttteiitteeeiittteeaaiteeesatseeaeaataeeaaastesesasseeasaatseaeaassesesassesesatseasaastesesassaeasstseesanssesesassenns 45
811 (7= 1= - OSSR 45
8.1.2 LEXICAl GIAIMIMIALvviieueieitieietee e ittt eetee e sttt eeteeesbaeeeseeesbseeeseeesbseeabesesbseeaseseabseaasesesbeeenseeebessnseesnbessnsessnbesasessnts 45
8.13 SYNEACHIC GIAMITIAT ...ttt ettt sttt se ettt b e e ae b e se et et e sa e st eb e se e st e b e se e st eb e seeseebese e e ekt sbe e ebesbeneebeseennren 45
814 NUMENTC SIFTNG GEAMIMIAY ...ttt sttt ettt ettt sttt b et eb e bt b e s b et b e s b e e e bt s b et e b e s b et eb e e b e se e st ebenb e st sbennenees 46
8.15 (7= T 00T (o] 7=\ 1o) o [OOSR 46

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Proposed Version 11-Feb-1999 Page 4(114)

8.1.6 SOUICE TEXLtieeeeitee ettt e ettt e e ettt e e e bt eeeeeabee e e easeeeesbeeeeaasseeesaaseeeesbeeaeasbesesassnseessnsseeesasteeesanneneesassenanns 48
8.2 WMLSCRIPT LEXICAL GRAMMARoviiiiitiieiiieeeeeitteeeeetteeesatseeesateeasaassesesasseeasabesasaassesesasseeasantaeasaasseeesasseeasatenasannns 49
8.3 WMLSCRIPT SYNTACTIC GRAMMARuutiieiitieeeeeitteeeeetteeesatteeeeaateeaeaassesesasseeaeaatesasaassesesasseeasasteeasanssesesasseeesantesasannes 54
8.4 NUMERIC STRING GRAMMAR......ceiiiitiieeeiteeeeiiteeaeaitteeeaatteeesatseeaaaatesaeaassesesaseeaaaatesasaassesesassseasastseasansseeesassseesasterasannns 59

9. WMLSCRIPT BY TECODE INTERPRETERoootei ettt ettt ettt e s re s s teesnae et e ennnee s 61
9.1 INTERPRETER ARCHITECTUREceiticttteiiittttesiteeeaateeesaaseeeesassseeaastesesanssesesasseesssntesesasssesesassseesassesssansseesasssessanseresannes 61
0.2 CHARACTER SET .uttiiiittiei ettt e i iteeeesteeessasteeesasseeasanteeeeasseeesasseeeeasteeeeasseeesseeeeeantesesansseeessseeeaansenesannseeesannneessnsenensnnes 62
0.3 WMLSCRIPT AND URLS.....eci ittt s s e e st e e st e e e e aee e e s sae e e e anteeesannteeesnsseeeeanseeeeannneeesnsneeeeansenenannn 62

9.3.1 URL SCNEMIES. ...veiitie ittt ettt ettt et et et e s aae s aeesbeesbeesbeeasesaseebeaebe e beeabeeabesabesaeesheesheesbeenbeenseeasesssesbeebaenrenn 62

932 L =10 0.0 1 Y 3T T 62

9.3.3 L O 1 1 - 62

9.34 URL Calls and Parameter PASSINGccccoeieirirereeeesiesesiestesseseesessessessessessessssssssssssessessessesssessessessssssenes 65

9.35 L@ T= T Tox (=l i o o1 1 65

9.3.6 REIALIVE URLS......ccitiiiictiecteeetee ettt ettt teeste e eteeteeaseebeeebe e be e besabessbesaeesheesbeeseensesbeeabeenbeenseeaseareesbeeteenrens 65
0.4 BYTECODE SEMANTICSuuttteiiuteeeeiteeeeaaseeeesaseeeeateeesaasseeesasseeesastesssaassesesasssessansesesaassesesassseesasenssanseeesasssessansenessnnes 65

94.1 Passing Of FUNCLION AFQUIMETES.......ccceueiereriestesieseeeesseseeseestessesseeseesessessessessessessesssessessessssssessessessessesnsnnes 65

9.4.2 AllOCation Of Variabl@ INEXES.......c.cocuiieiiie ittt ettt sttt et eab e saaeebeesbaesanesaeesreesneebeenreens 66

9.4.3 AULOmMALiC FUNCEION REIUIN VAIUB.........ccviiieicieeetectecte ettt ebe et e eabesraesbaesbeesaeesbeesneeseenreens 66

9.4.4 INItIAliSAION Of VAITADIES.......ccviiiiicticece ettt ettt e b e st e e besatesaeeasesasesaeesbeesbeenbesaneans 66
O.5 A CCESS CONTROL t.eeeuutteeeeureeesiueeeeasteeesaasseeesassseesasesesaassesesasssessassesssasssesesassseesansesssanssesesasssessassesssannseeesssssesssnsenesannes 66

10, WMLSCRIPT BINARY FORM AT ...ttt ettt stteeetee e stteeetee e sraeeesae e ssaeesbesesseesesesesseseabesesseeasesssesenseesnns 67
10.1 (000) AV =N 10)N 1T SO O OSSR OU 67

L1011 USEU DALA TYPES ...ecueteeeteitereeiesteseeie sttt sbe et seeseebesbe e ebe st e e ebe s he e e bt s b e e e bt e b e e e b e e b et e bt ebeae e st ebese e st sbenee st nb e s enees 67

10.1.2 MUIti-DYLE INEEGEr FOIMABL......eiveiitiieeiietere ettt sttt sttt sttt b e et b e e bt sb et b e e et b et b e s s 67

10.1.3 Character ENCOTINGccerueuirierieiirieieeie ettt sttt sttt sttt b et b e bt b e bt bbb e et b e e et sb e et sb s s es 68

10.1.4 NOtatioNAl CONVENLIONS.vieiireeitrieiiree ettt e et ettt e et e etreesreesareesseessseesseesssesssseessseessseesssssesssseessseessssessneeses 68
10.2 VWM L SCRIPT BY TECODE.....ccciittieeettee e i etteee e ettt e e eetteeeeetaeeeesbaeeseasseeesasseeasaabaeasassesesasseseaantasesansseeesasseeesantenanannes 69
10.3 BYTECODE HEADER ittt ettt e e e e e et e e e e e e e e s et e ee e e e e e e s e abasaeeeaaesaassataeeeaaesassntaeeeaeesesanntanneeaans 69
104 CONSTANT POOL ...ttt ettt e ettt e e ettt e e ettt e e e eat e e e e eateeeesabaeeeasseeesasseeeeasbaeeeanseeeesnsseeaeanteeesannseeessreeannn 69

O N O 0 =1 | £ OSSR RROUS 70

O T 10 1= 1= £ ST PP PRRO 70
10.4.1.1.1 8 Bit SIGNEA INEEJEScueiiiiiireiieeteiri ettt b et e bRt e bt ne St se st ne e R e e s e e st nen et b e n st e r e 70
10.4.1.1.2 16 Bit SIONEA INEEOEYevieieeiieiteirteie ettt s b et a et e b ns e st ne b e e n bt st b et n st e r e 71
10.4.1.1.3 32 Bit SIONEA INEEOEYcveeieeiieiteirtee ettt b e b et e bt s e st ne R e et s r e e b et n st e n e 71

O I 3t 2 = o = £SO 71

0 1 4 1 oL OSSP 71
O e B R 8 I et C S { o OSSR 71
10.4.1.3.2 EMPLY SEINGS. .. tvereereeienteseresteesreseseet e sse st ss s e s e s st et e s et e s e ss st e e R s s e b e e e a2k e st s e e bt ae e R e e ne e s e e s e b e e e et s n s e e n e ne 71
10.4.1.3.3 Strings with External Character ENcoding DEfiNitioNccceviiieiieiniene e e 72

105 PRAGMA POOLeutiiiiie e cctteee ettt e e ettt e e e e e st e e e e e e e e e s e s taeeeeeeeesaassasaeeeaaesaassstseeeaaesaanntaaeeeaaseaanntanneeaans 72

O R o =T 172 TP RSP PTPTPR PRSI 72

10.5.1.1 ACCESS CONIOl PrBOMBS......cueiveiiretereeteesreti sttt ettt b et r e b e e et s e st ne b e e e et s st s e bt e e b e e ne e st r e b nenr e e renenenin 72
O TS 300 I e o= @0 g L 0 B D TE== o] = o 73
T0.5.1.1.2 ACCESS DOMAIN......cciiiiitieiteeeitie ettt eeteesteeeeteeeteeeeseesseesaeesseesseeasesasseesbesanseeasesaasesases eessesssssansessssesnbesasesanseesssesnseenses 73
FO.5.1.1.3 ACCESS PALN ...ttt ettt ettt et e et e et e e et e e et e e bt e eaaeeebeeeas e e beesaseen sebeeenbeeeseeanbeesaeeeabeeabesenteeareeenreenrees 73

10.5.1.2 MetaInfOrmation PragiMaS........cccueirueirreriiesreiseesesseseses et s e st ese e b e r st se s e s e s e s e e b e e nre st s s e b nesb e renenrenin 73
TO.5.1.2. 1 USEN AQENTE PrOPEITYeeeeieeieee ettt ettt h et b ettt b e ea e e sbeshe e e e eheeaee s 2 aeeeeeembeebeesbeseeeme e bt aaeeneesneenbenas 73
10.5.1.2.2 User Agent Property @nd SCREIME........co.ciriiiieiieeie et n e b s n e e e n e e s e 73

10.6 FFUNCTION POOL ...tttiiie e ettt ee ettt et e e e et ettt e e e s e st e e e e e e e e e s e ntaeeeeeaeesassssaeeeaaesaassstseeeaaesaanntaeeeaeasesantanneeaans 74

O S 200 R =V Tox o L WA= T RN 1= o TSRO 74

O 2S00 R ¥ T o o T A= 1= SRR 74

O TG 02 = V1 Tox o LSOO 75

O 10 R 0o (= LY £ - YOS S PTS PR STTR 75

10.7 I 7 0 PSSR 75
11. WMLSCRIPT INSTRUCTION SETccciiiiieciee ittt ste et este e stte e sae e sateesase s saseesaeessaseesaneesaseesssnsessssesensensnns 76

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Proposed Version 11-Feb-1999 Page 5(114)

111 CONVERSION RULESceiiittie ettt e e ettt e ee ittt e e s ettt e e e eateeeeeateeeesebaeeeaaateeesaaseeasanbeeeeasseeesasseseesntaeasaastesesasseeesasseenannes 76
11.2 FATAL ERRORScoiiiiiitttiiee ettt e e e s ettt et e e e s e tate e et e e e s eaaataeeeaaeseaantseeeaaeeesaantaeeeeeaaesaassssanesaaesaaasntsnneaaesanan 76
11.3 OPTIMISATIONS.eeeeeiiteeeeettee et ettee e e ettt eeetaeeeesatseeeaasseseaassesaeaasseaaaassesesasseeasanbesaeassseesassssaeanseeesassesesassenasasseanannes 7
114 NOTATIONAL CONVENTIONS.eeeeiittiieeiteeeeiitteeeeateeesataeeeeaateeasaassesesasseeeaabesasaasseeesasssesaassesesasssssesasseesaassesesassnas 78
115 INSTRUGCTIONS ...ciiiietttieeteeeeeseatteeeeeesessataseeeeaeesaasssaeeeaaesaasssaeeeaassaaansseeeaassaasntasesaaesesassssaeasasesanssnsseesanssnnnsnsnns 78
11.5.1 CONtrol FIOW INSITUCTIONS......cccviiiiieeciteeietie e eteeeetee e eteeeeteeeebeeeeaesesbeeebesesbeseseseabasesesebbessssessbessnseesasensnsensn 79
11.5.2 FUNCLON Call INSITUCTIONScccviiiiteeeitee it cetee e eteeeetee e eteeeetes e et e esbeeesbeeessesesbeessesesbeeeasesesbbessssessabessnseesnbessnsensn 83
1153 Variable Access and ManiPUIALIONo.eoeeiriieereeiee sttt s s e sb e nennenenas 86
11.5.4 ACCESS TO CONSLANES......oeiiiiieiieiiiie et eete e ettt e e e ettt e e e e tee e e eaaeeeeetbeeeeaataeeeeassesesasseeaeanbeeesansseeesasseeasanteeanannes 88
S ST AN 110100 (ol a1 (U Tox 1] TR 91
T1.5.6 BitWiSE INSITUCLIONS......ecitiiiteecteeiitee ettt e st e et e st e ete e sbeeeate e st e e ssbeesabeesaseesabeessseesabeeassessabesssseesabesanseesabessnsensn 95
1157 COmMPAriSON INSIIUCHIONS.eveeitirteeeterieeetestee sttt ettt se bt se e s e e bt ss e e eb e s s e e e bt st e bt s ebe e b e s ene s b e s enenis 97
1158 LOGICAl INSITUCLIONScitiieiiitiieeiiet sttt ettt s et b bbb et b s et e s e bt s e e b e b ene b nenenis 99
T11.5.9 SACK INSITUCKIONS.......vieiieiitie et ctee et sete e et e steeeate e st e e eat e e sabeeeabeesabeeesseesabeeasseesabeeasbeeessseessseessseeseeessreennees 101
11510 ACCESS O OPEN AN TYPIE.....eviueetiiteeeterteseetesteseetesteseesesteseebesae e ebesse s ebesse e ebesbe e et e sbeeebesbesbesbeeebesbeneebeseeneerens 101
11.5.11 FUNCLiON REIUIN INSITUCTIONScivveieeiee it ste et sttt streeetee e stteeeaeeesaseeeseeesabessseeesaresessseesaseessesessseensees 102
11.5.12 MiISCElANEOUS INSITUCTIONS......c.vviiciieiieeceiee ettt e eetee et e e steeebe s e ebeeebessabeeesbesenbessabesasseessseessseessesessseensees 103
12. BYTECODE VERIFICATION ..ottt ettt e s te e s te e s ae e sate e saae e sabeesaeeesateesaseesateesaneesansenseessesenseesnns 104
12.1 INTEGRITY CHECK ...ueiiiiiieeeiitieeeeiteeessaeeessteeessastesesasseeeeaateeesasseeeaasseeeeasteeesaaseeeesnsaeeeaassesesasnneeesnsenesannsenessnnnnes 104
12.2 RUNTIME VALIDITY CHECKS. .. uteteiittteietteeeiitteeeesteeessaseeesseeesaassesesassssssssssesaassesesasssesssnsesesansesessssssessnsenssanne 105
13. RUN-TIME ERROR DETECTION AND HANDLING......cooi ettt sttt ettt ste et saeestee e saeeeves e sneeeaeeens 106
131 ERROR DETECTIONuuttiiiiieeeiiieei e e e eeittte e e e e e setteeeeaeeesaataeeeaaesasssseeeeaeesansseeeaassaasnsseesaassasssseesasesansanneanes eeaannesan
13.2 ERROR HANDLINGtttiiiie e e e ettt e e e e eetee et e e e e e s et ee e e e e e e s e abaeeeeeaeesassseeeeaaassaassasaeeeaassaassssaneeaassaasntanneeaaanesnn
13.3 FATAL ERRORScoiiiiiitiiii ettt e e e e ettt e e e e e s et e e e e e e e e s e ataeeeeeaeesaasbseeeeeaassaassasaeeeaaesaassssaeeeaassananntanneaaesanan
13.3. 1 BYLECOUE EFTOIS ..uitieetiiteeetestere ettt ettt ettt ettt bt b et b e bt eb e b e e bt s b e e eb e e h e e eb e e b e b e e ebesb e e ebenb e e ebesre e erens
T I O A V= o= (o) = ="
13.3.1.2 Fatal Library FUNCHON EFTON......cooiiiieisieirecetees et e n et nn st e n e nn e
13.3.1.3 Invalid FUNCtion ArgUMENtS........cccoeererrererreireeienennenens
13.3.1.4 Externa Function Not Found
13.3.1.5 Unableto Load ComMPIlation UNItccoiieiiiieeseseeeese ettt st st sae s ebeste s e e eneesesaeseenseneeneenas 107
G I L G T o o= Y AT - 11 o S 108
T I A S o Q0 Lo (= (o 108
13.3.2 Program SPeCified ADOITION ..ot b e b e s r e ene s 108
13.3.2.1 Programmed ADOIT ..ottt Sh et R et e n e 108
13.3.3 MeEmMOry EXNAUSLION EFTOFS. ..ottt sttt sttt sttt se et b e et se e e b see e eb e e ebesbe e ebesneneenens 108

13.3.3.1 Stack Overflow
13.3.3.2 Out of Memory

13.3.4 EXIEIrNAl EXCEPLIONSeitiieiiiteieet sttt sttt b e e bt b et b e b s e bt b s e e e eb e s b e e b e sb e e ebesre e ene s
R R U L= = g 1L = = o OO STOTTT
13.3.4.2 SYSIOM INIIEIEH .. .eceeuiiieeeeeec ettt b bbb s bbbt e e bbbt e bbbt

134 NON-FATAL ERRORS ...ttt e e e e b b b s a e e sae s sae e ne s ns s ne e

13.4.1 COmMPUEBLTIONAI EFTOIS.....ciuiiiiuiitiieeiete sttt sttt ettt b et b e et b e se et b e s e e st eb e seeseebesee sbesbe e ebesb e e ebeseeneenens
13401 DIVIAE DY ZENO....oieieiieieee et R e R Rt e R Rt e
13.4.1.2 Integer Overflow................
13.4.1.3 Floating-Point Overflow
13.4.1.4 Floating-PoiNt UNGEITIOW...........coirieiriirsieire et e nn bt e e e een e nn e 110

13.4.2 CONStANt REFErONCE EFTOIS.iitiieieeeeieieie ettt ettt sb e se e e e e besbesbesbesae e eeseesbesaesbesneeneeneans 110
13.4.21 Not aNumber Floating-POiNt CONSLANLc..cirrriiireireeiesee sttt e s e n s e e e n e s 110
13.4.2.2 Infinite Floating-Point Constant
13.4.2.3 lllegal Floating-POINt REFEIENCE.cioi ittt e r et se bbb n e 111

ST G T Oe 01V €= To g I o S PTPRRPRRR 111
G R 10 (=0T g o Tl R o =P P PR SRR 111
13.4.3.2 Floating-POINt TOO LAIGEccireireeiiriiteisieieri ettt r e st r st nn b e s e b ae s r st e b e s n e nn e 111
13.4.3.3 Floating-POINt TOO SIMAIccueiiiitiiiteeseire et e st ne bt s et r et e b e n e nn e 112

135 LIBRARY CALLSAND ERRORS......cootiitiitiiriiietiet ettt st s r e r et sh e s sr e r e sne e s 112

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Proposed Version 11-Feb-1999 Page 6(114)

14. SUPPORT FOR INTEGER ONLY DEVICES........ccoiiriri e 113

15, CONTENT TYPES ...ttt et s et E e bRt b et e e se e Eese e eR e s b e e s s e e e nnearesreeresaeennenen 114

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Proposed Version 11-Feb-1999 Page 7(114)

1. Scope

Wireless Application Protocol (WAP) isaresult of continuous work to define an industry-wide specification for
developing applications that operate over wireless communication networks. The scope for the WAP Forum isto define a
set of standards to be used by service applications. The wireless market is growing very quickly and reaching new
customers and services. To enable operators and manufacturers to meet the challenges in advanced services, differentiation
and fast/flexible service creation, WAP defines a set of protocols in transport, session and application layers. For
additional information on the WAP architecture, refer to Wireless Application Protocol Architecture Specification [WAP].

This paper is a specification of the WML Script language. It is part of the WAP application layer and it can be used to add
client side procedural logic. The language is based on ECMAScript [ECMA262] but it has been modified to better support
low bandwidth communication and thin clients. WML Script can be used together with Wireless Markup Language [WML]
to provide intelligence to the clients but it has also been designed so that it can be used as a standal one tool.

One of the main differences between ECMA Script and WML Script is the fact that WML Script has a defined bytecode and
an interpreter reference architecture. This way the narrowband communication channels available today can be optimally
utilised and the memory requirements for the client kept to the minimum. Many of the advanced features of the

ECM A Script language have been dropped to make the language smaller, easier to compile into bytecode and easier to
learn. For example, WML Script is a procedural language and it supports locally installed standard libraries.

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Proposed Version 11-Feb-1999 Page 8(114)

2. Document Status

This document is available online in the following formats:

e PDF format at http://www.wapforum.org/.

2.1 Copyright Notice

© Wireless Application Protocol Forum Ltd. 1999. Terms and conditions of use are available from the Wireless
Application Protocol Forum Ltd. web site (http://www.wapforum.org/docs/copyright.htm).

2.2 Errata

Known problems associated with this document are published at http://www.wapforum.org/.

2.3 Comments

Comments regarding this document can be submitted to WAP Forum in the manner published at
http://ww.wapforum.org/.

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Proposed Version 11-Feb-1999 Page 9(114)

3. References

3.1 Normative references

[ECMA262] Standard ECMA-262: "ECMA Script Language Specification”, ECMA, June 1997

[IEEE754] ANSI/IEEE Std 754-1985: "|EEE Standard for Binary Floating-Point Arithmetic". Institute of
Electrical and Electronics Engineers, New Y ork (1985).

[1S010646] "Information Technology - Universal Multiple-Octet Coded Character Set (UCS) - Part 1:
Architecture and Basic Multilingual Plane", |SO/IEC 10646-1:1993.

[RFC2279] "UTF-8, atransformation format of Unicode and 1SO 10646", F. Y ergeau, January 1998. URL.:
ftp://ftp.isi.edu/in-notes/rfc2279.txt

[RFC2068] "Hypertext Transfer Protocol - HTTP/1.1", R. Fielding, et al., January 1997. URL:
ftp://ftp.isi.edu/in-notes/rfc2068.txt

[RFC2119] "Key words for use in RFCs to Indicate Requirement Levels', S. Bradner, March 1997. URL:
ftp://ftp.isi.edu/in-notes/rfc2119.txt

[RFC2396] "Uniform Resource Identifiers (URI): Generic Syntax", T. Berners-Lee, et a., August 1998. URL:

http://info.internet.isi.edu/in-notes/rfc/files/rfc2396.txt
[UNICODE] "The Unicode Standard: Version 2.0", The Unicode Consortium, Addison-Wesley Devel opers Press,
1996. URL: http://www.unicode.org/

[WAP] "Wireless Application Protocol Architecture Specification”, WAP Forum, 30-April-1998. URL:
http://ww.wapforum.org/
[WML] "Wireless Markup Language Specification”, WAP Forum, 30-April-1998. URL:

http://ww.wapforum.org/

[WMLSLibs] "WMLScript Standard Libraries Specification”, WAP Forum, 30-April-1998. URL:
http://ww.wapforum.org/

[WSP| "Wireless Session Protocol”, WAP Forum, 30-April-1998. URL: http://www.wapforum.org/

[XML] "Extensible Markup Language (XML), W3C Proposed Recommendation 10-February-1998, REC-
xml-19980210", T. Bray, et a, February 10, 1998. URL: http://www.w3.0rg/TR/REC-xml

3.2 Informative References

[HTML4] "HTML 4.0 Specification, W3C Recommendation 18-December-1997, REC-HTML40-971218", D.
Raggett, et al., September 17, 1997. URL: http://www.w3.0rg/TR/REC-html40

[JavaScript] "JavaScript: The Definitive Guide", David Flanagan. O'Reilly & Associates, Inc. 1997

[WAE] "Wireless Application Environment Specification”, WAP Forum, 30-April-1998. URL.:
http://www.wapforum.org/

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Proposed Version 11-Feb-1999 Page
10(114)

4. Definitions and abbreviations

4.1 Definitions

The following are terms and conventions used throughout this specification.

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT",
"RECOMMENDED", "MAY" and "OPTIONAL" in this document are to be interpreted as described in [RFC2119].

Bytecode - content encoding where the content is typically a set of low-level opcodes (ie, instructions) and operands for a
targeted hardware (or virtual) machine.

Client - adevice (or application) that initiates a request for connection with a server.

Content - subject matter (data) stored or generated at an origin server. Content istypically displayed or interpreted by a
user agent in response to a user request.

Content Encoding - when used as a verb, content encoding indicates the act of converting a data object from one format

to another. Typically the resulting format requires less physical space than the original, is easier to process or store and/or
isencrypted. When used as a noun, content encoding specifies a particular format or encoding standard or process.

Content Format — actual representation of content.

Device - a network entity that is capable of sending and receiving packets of information and has a unique device address.
A device can act as both a client or a server within a given context or across multiple contexts. For example, a device can

service a number of clients (as a server) while being a client to another server.

JavaScript - ade facto standard language that can be used to add dynamic behaviour to HTML documents. JavaScript is
one of the originating technologies of ECMAScript.

Origin Server - the server on which a given resource resides or is to be created. Often referred to as a web server or an
HTTP server.

Resource - a network data object or service that can be identified by a URL. Resources may be available in multiple
representations (e.g. multiple languages, data formats, size and resolutions) or vary in other ways.

Server - a device (or application) that passively waits for connection requests from one or more clients. A server may
accept or reject a connection request from a client.

User - a user is a person who interacts with a user agent to view, hear or otherwise use a rendered content.

User Agent - a user agent (or content interpreter) is any software or device that interprets WML, WMLScript or resources.
This may include textual browsers, voice browsers, search engines, etc.

Web Server - a network host that acts as an HTTP server.

WML - the Wireless Markup Language is a hypertext markup language used to represent information for delivery to a
narrowband device, e.g. a phone.

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Proposed Version 11-Feb-1999

Page
11(114)

WML Script - ascripting language used to program the mobile device. WML Script is an extended subset of the
JavaScriptd scripting language.

4.2 Abbreviations

For the purposes of this specification, the following abbreviations apply:

API
BNF
ECMA
HTML
HTTP
IANA
LSB
MSB
RFC
ul
URL
UTF
ucs
wW3C
WWW
WSP
WTP
WAP
WAE
WTA
WTAI
WBMP

Application Programming Interface
Backus-Naur Form

European Computer Manufacturer Association
HyperText Markup Language [HTML4]
HyperText Transfer Protocol [RFC2068]
Internet Assigned Number Authority

Least Significant Bits

Most Significant Bits

Request For Comments

User Interface

Uniform Resource Locator [RFC2396]
UCS Transformation Format

Universal Multiple-Octet Coded Character Set
World Wide Web Consortium

World Wide Web

Wireless Session Protocol

Wireless Transport Protocol

Wireless Application Protocol

Wireless Application Environment
Wireless Telephony Applications
Wireless Telephony Applications Interface
Wireless BitMaP

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Proposed Version 11-Feb-1999 Page
12(114)

5. Overview

5.1 Why Scripting?

WML Script is designed to provide general scripting capabilities to the WAP architecture. Specifically, WML Script can be
used to complement the Wireless Markup Language [WML]. WML is a markup language based on Extensible Markup
Language [XML]. It isdesigned to be used to specify application content for narrowband devices like cellular phones and
pagers. This content can be represented with text, images, selection lists etc. Simple formatting can be used to make the
user interfaces more readable as long as the client device used to display the content can support it. However, al this
content is static and there is no way to extend the language without modifying WML itself. The following list contains
some capabilities that are not supported by WML:

» Check the vaidity of user input (validity checks for the user input)

» Accessto facilities of the device. For example, on a phone, allow the programmer to make phone calls, send
messages, add phone numbers to the address book, access the SIM card etc.

» Generate messages and dialogs locally thus reducing the need for expensive round-trip to show alerts, error
messages, confirmations etc.

« Allow extensions to the device software and configuring a device after it has been deployed.

WML Script was designed to overcome these limitations and to provide programmable functionality that can be used over
narrowband communication linksin clients with limited capabilities.

5.2 Benefits of using WMLScript

Many of the services that can be used with thin mobile clients can be implemented with WML. Scripting enhances the
standard browsing and presentation facilities of WML with behavioural capabilities. They can be used to supports more
advanced Ul functions, add intelligence to the client, provide access to the device and its peripheral functionality and
reduces the amount of bandwidth needed to send data between the server and the client.

WML Script isloosely based on ECMA Script [ECMA262] and does not require the devel opers to learn new concepts to be
able to generate advanced mobile services.

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Proposed Version 11-Feb-1999 Page
13(114)

6. WMLScript Core

One objective for the WML Script language is to be close to the core of the ECM A Script Language specification
[ECMAZ262]. The part in the ECM A Script Language specification that defines basic types, variables, expressions and
statementsis called core and can almost be used "asis" for the WML Script specification. This section gives an overview
of the core parts of WML Script.

See chapter WMLcript Grammar (8) for syntax conventions and precise language grammar.

6.1 Lexical Structure

This section describes the set of elementary rules that specify how you write programsin WML Script.

6.1.1 Case Sensitivity

WML Script is a case-sengitive language. All language keywords, variables and function names must use the proper
capitalisation of letters.

6.1.2 Whitespace and Line Breaks

WML Script ignores spaces, tabs, newlines etc. that appear between tokensin programs, except those that are part of string
constants.

Syntax:

WhiteSpace ::
<TAB>
<VT>
<FF>
<SP>
<LF>
<CR>

LineTerminator ::
<LF>
<CR>
<CR><LF>

6.1.3 Usage of Semicolons

The following statements in WML Script have to be followed by a semicolon:1

o Empty statement (see 6.5.1)

» Expression statement (see 6.5.2)
* Variable statement (see 6.5.4)

* Break statement (see 6.5.8)

1 Compatibility note: ECM A Script supports optional semicolons.

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Proposed Version 11-Feb-1999 Page
14(114)

» Continue statement (see 6.5.9)
* Return statement (see 6.5.10)

6.1.4 Comments

The language defines two comment constructs: line comments (ie, start with // and end in the end of the line) and block
comments (ie, consisting of multiple lines starting with /* and ending with */). It isillegal to have nested block comments.2

Syntax:

Comment ::

MultiLineComment
SngleLineComment

MultiLineComment ::
[* MultiLineCommentChar Sy * /

SngleLineComment ::
/1 SingleLineCommentChar s,

6.1.5 Literals

6.1.5.1 Integer Literals
Integer literals can be represented in three different ways. decimal, octal and hexadecimal integers.

Syntax:

DecimalIntegerLiteral ::

0
NonZeroDigit Decimal Digitsyy

NonZeroDigit :: one of

1 2 3 4 5 6 7 8 9
Decimal Digits ::
Decimal Digit

Decimal Digits Decimal Digit

Decimal Digit :: one of
012345¢%6 7289

HexintegerLiteral ::
O0x HexDigit
0X HexDigit
HexlIntegerLiteral HexDigit

HexDigit :: one of
0 1 2 3 456 7 8 9 abocdwef ABTC CDTEF

2 Compatibility note: ECMAScript also supports HTML comments.

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Proposed Version 11-Feb-1999 Page

15(114)

OctallntegerLiteral ::
0 OctalDigit
OctallntegerLiteral OctalDigit

OctalDigit :: one of
0 1 2 3 4 5 6 7

The minimum and maximum sizes for integer literals and values are specified in the section 6.2.7.1. An integer literal that
is not within the specified value range must result in a compile time error.

6.1.5.2 Floating-Point Literals
Floating-point literals can contain a decimal point as well as an exponent.

Syntax:

DecimalFloatLiteral ::

DecimalIntegerLiteral . Decimal Digits,, ExponentParty
. Decimal Digits ExponentPartqy
DecimallntegerLiteral ExponentPart

Decimal Digits ::
Decimal Digit
Decimal Digits Decimal Digit

ExponentPart ::
ExponentIndicator Signedinteger

ExponentIndicator :: one of
e E

Sgnedinteger ::
Decimal Digits
+ DecimalDigits
- DecimalDigits

The minimum and maximum sizes for floating-point literals and values are specified in the section 6.2.7.2. A floating-point
literal that is not within the specified value range must result in a compile time error. A floating-point literal underflow
results in afloating-point literal zero (0. 0).

6.1.5.3 StringLiterals
Strings are any sequence of zero or more characters enclosed within double () or single quotes ().

Syntax:
SringLiteral ::

" DoubleStringCharacter sy "
' SingleStringCharacter Sy

Examples of valid strings are;

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Proposed Version 11-Feb-1999

" Exanpl e"

"Specials: \x00 \" \b

"Quot e:

\ll n

Page
16(114)

Since some characters are not representable within strings, WML Script supports special escape sequences by which these
characters can be represented:

An escape sequence occurring within a string literal always contributes a character to the string value of the literal and is

Sequence | Character represented3 Unicode Symbol
' Apostrophe or single quote \u0027 '
\" Double quote \u0022 "
\ Backslash \u005C \
V Slash \uO02F /
\b Backspace \u0008
\f Form feed \u000C
\n Newline \uOOOA
\r Carriage return \u000D
\t Horizontal tab \u0009
\xhh The character with the encoding specified by two
hexadecimal digitsh (Latin-1 1ISO8859-1)
\ooo The character with the encoding specified by the
three octal digit®oo (Latin-1 ISO8859-1)
\uhhhh | The Unicode character with the encoding specified
by the four hexadecimal digitdhhh.

never interpreted as a line terminator or as a quote mark that might terminate the string literal.

6.1.5.4 Boolean Literals

A "truth value" in WMLScript is represented by a boolean literal. The two boolean literalg a:andf al se.

Syntax:

BooleanLiteral ::

6.1.5.5

true
fal se

Invalid Literal

WMLScript supports a speciaivalid literal to denote an invalid value.

Syntax:
InvalidLiteral ::
invalid
6.1.6 Identifiers

Identifiers are used to name and refer to three different elements of WMLScript: variables (see 6.2), functions (see 6.4)

and pragmas (see 6.7). Identiffecannot start with a digit but can start with an underscore ().

3 Compatibility note: ECMAScript supports also non-escape characters preceded by a backslash.

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Proposed Version 11-Feb-1999 Page
17(114)

Syntax:
Identifier ::
I dentifierName but not ReservedWord

IdentifierName ::

Identifier Letter
IdentifierName Identifier Letter
| dentifierName Decimal Digit

Identifier Letter :: one of

abocdef ghi jk mnopagqgr st

ABCDEFGHI JKLMNOPQRSTUVWXYZ
Decimal Digit :: one of

012345¢%6 732829

Examples of legal identifiers are:

timeOfDay speed quality HOVE ADDRESS var0O _rnyName

The compiler looks for the longest string of characters make up avalid identifier. Identifiers cannot contain any special
characters except underscore (). WML Script keywords and reserved words cannot be used as identifiers. Exampl es of
illega identifiersare:

while for if nmy~nanme $sys 123 3pieces take.this

Uppercase and lowercase |etters are distinct which means that the identifiers speed and Speed are different.

6.1.7 Reserved Words

WML Script specifies a set of reserved words that have a special meaning in programs and they cannot be used as
identifiers. Examples of such words are (full list can be found from the WML Script grammar specification, see chapter 8):

break continue false true while

6.1.8 Name Spaces

WML Script supports name spaces for identifiers that are used for different purposes. The following name spaces are
supported:

* Function names (see 6.4)
* Function parameters (see 6.4) and variables (see 6.2)
e Pragmas (see 6.7)

Thus, the same identifiers can be used to specify afunction name, variable/parameter name or a name for a pragma within
the same compilation unit:

4 Compatibility note: ECMAScript supports the usage of $ character in any position of the name, too.

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Proposed Version 11-Feb-1999 Page
18(114)

use url nyTest "http://ww. host.confscript";

function nyTest (myTest) {
var val ue = nyTest #nyTest (nyTest);
return val ue;

b

6.2 Variables and Data Types

This section describes the two important concepts of WML Script language: variables and internal data types. A variableis
aname associated with a data value. Variables can be used to store and manipulate program data. WM L Script supports
local variables® only declared inside functions or passed as function parameters (see 6.4).

6.2.1 Variable Declaration

Variable declaration is compulsory® in WML Script. Variable declaration is done simply by using the var keyword and a
variable name (see section 6.5.4 for information about variable statements). Variable names follow the syntax defined for
all identifiers (see section 6.1.6):

var Xx;
var price;
var X,Y,;

var size = 3;

Variables must be declared before they can be used. Initialisation of variablesis optional. Uninitialised variables are
automatically initialised to contain an empty string (").

6.2.2 Variable Scope and Lifetime

The scope of WML Script variables is the remainder of the function (see 6.4) in which they have been declared. All
variable names within a function must be unique. Block statements (see 6.5.3) are not used for scoping.

function priceCheck(givenPrice) {
if (givenPrice > 100) {
var newPrice = givenPrice;
} else {
newPrice = 100;
1

return newPrice;

b

The lifetime of avariable is the time between the variable declaration and the end of the function.

5 Compatibility note: ECMAScript supports global variables, too.
6 Compatibility note: ECMAScript supports automatic declaration, too.

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Proposed Version 11-Feb-1999 Page
19(114)

function foo() {

X = 1; /1l Error: usage before declaration
var Xx,Yy,;
it (x) {
var vy, [l Error: redeclaration
s

b

6.2.3 Variable Access

Variables are accessible only within the function in which they have been declared. Accessing the content of avariableis
done by using the variable name:

var nyAge
var your Age
var our Age

37;
63;
myAge + your Age;

6.2.4 Variable Type

WML Script isaweakly typed language. The variables are not typed but internally the following basic data types are
supported: boolean, integer, floating-point and string. In addition to these, afifth data type invalid is specified to be used
in cases an invalid datatype is needed to separate it from the other internal data types. Since these data types are supported
only internally, the programmer does not have to specify variable types and any variable can contain any type of data at
any given time. WML Script will attempt automatically convert between the different types as needed.

var flag = true; /] Bool ean
var nunber = 12; /1 1nteger
var tenperature = 37.7; /] Fl oat
nunber ="XI"; /1 String
var except = invalid; /[l Invalid

6.2.5 L-Values

Some operators (see 6.3.1 for more information about assignment operators) require that the left operand is areference to a
variable (L-value) and not the variable value. Thus, in addition to the five data types supported by WML Script, a sixth
type variableis used to specify that a variable name must be provided.

result += 111; // += operator requires a variable

6.2.6 Type Equivalency

WML Script supports operations on different data types. All operators (see section 6.3) specify the accepted data types for
their operands. Automatic data type conversions (see chapter 7) are used to convert operand values to required data types.
6.2.7 Numeric Values

WML Script supports two different numeric variable values: integer and floating-point values’. Variables can be initialised
with integer and floating-point literals and several operators can be used to modify their values during the run-time.
Conversion rules between integer and floating-point values are specified in chapter 7.

7 Convention: In cases where the value can be either an integer or afloating-point, a more generic term number is used instead.

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Proposed Version 11-Feb-1999 Page
20(114)

var pi = 3. 14;
var length = 0;
var radius = 2.5;

| ength 2*pi *r adi us;

6.2.7.1 Integer Size

The size of the integer is 32 bits (two’s complement). This means that the supported value range8 for integer valuesis:
-2147483648 and 2147483647. Lang [WMLSL.ibs] library functions can be used to get these values during the run-time:

Lang. max| nt () Maximum representable integer value
Lang. m nlnt () Minimum representable integer value

6.2.7.2 Floating-point Size

The minimumy/maximum values® and precision for floating-point values are specified by [|EEE754]. WML Script supports
32-hit single precision floating-point format:

e Maximum value: 3.40282347E+38
e Minimum positive nonzero value (at least the normalised precision must be supported): 1.17549435E-38 or smaller

The Float [WMLSL.ibs] library can be used to get these values during the run-time:

Fl oat . maxFl oat () M aximum representabl e fl oating-point value supported.
Fl oat . mi nFl oat () Smallest positive nonzero floating-point value supported.

The special floating-point number types are handled by using the following rules:

« |f an operation results in afloating-point number that is not part of the set of finite real numbers (not a number,
positive infinity etc.) supported by the single precision floating-point format then theresultisani nval i d value.

 If an operation results in a floating-point underflow the result is zero (0.0).

» Negative and positive zero are equal and undistinguishable.

6.2.8 String Values

WM L Script supports strings that can contain letters, digits, specia characters etc. Variables can be initialised with string
literals and string values can be manipulated both with WM L Script operators and functions specified in the standard String
library [WMLSLibg].

var msg = "Hello";
var len = String. | ength(nsg);
nsg = nmsg + ' Worlds!’

8 Compatibility note: ECMAScript does hot specify maximum and minimum values for integers. All numbers are represented as floating-point values.
9 Compatibility note: ECM A Script uses double-precision 64-bit format [IEEE754] floating-point values for all numbers.

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Proposed Version 11-Feb-1999 Page
21(114)

6.2.9 Boolean Values

Boolean values can be used to initialise or assign a value to a variable or in statements which require a boolean value as
one of the parameters. Boolean value can be aliteral or the result of alogical expression evaluation (see 6.3.3 for more
information).

var truth
var lie

true;
ltruth;

6.3 Operators and Expressions

The following sections describe the operators supported by WML Script and how they can be used to form complex
expressions.

6.3.1 Assignment Operators

WML Script supports several waysto assign avalue to avariable. The smplest oneis the regular assignment (=) but
assignments with operation are also supported:

Operator Operation
= assign
+= add (numbers)/concatenate (strings) and assign
-= subtract and assign
*= multiply and assign
= divide and assign
div= divide (integer division) and assign
%= remainder (the sign of the result equals the sign of the dividend) and assign
<<= bitwise left shift and assign
>>= bitwise right shift with sign and assign
>>>= bitwise right shift zero fill and assign
= bitwise AND and assign
A= bitwise XOR and assign
|= bitwise OR and assign

Assignment does not necessarily imply sharing of structure nor does assignment of one variable change the binding of any
other variable.

var a = "abc";
var b = a;
b = "def"; [/ Value of ais "abc"

6.3.2 Arithmetic Operators

WM L Script supports all the basic binary arithmetic operations:

Operator Operation

+ add (numbers)/concatenation (strings)
- subtract

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Proposed Version 11-Feb-1999

In addition to these, a set of more complex binary operations are supported, too:

Operator Operation
* multiply
/ divide
div integer division

Operator Operation
% remainder, the sign of the result equals the sign of the dividend
<< bitwise left shift
>> bitwise right shift with sign
>>> bitwise shift right with zero fill
& bitwise AND
| bitwise OR
N bitwise XOR

The basic unary operations supported are:

Examples:

Operator Operation
+ plus
- minus
- pre-or-post decrement
++ pre-or-post increment
~ bitwise NOT

var y = 1/ 3;

var x = y*3+(++b);

6.3.3 Logical Operators

WM L Script supports the basic logical operations:

Operator Operation
&& logical AND
Il logical OR
! logical NOT (unary)

Page
22(114)

Logical AND operator evaluates the first operand and tests the result. If the result isf al se, the result of the operation is
f al se and the second operand is not evaluated. If the first operand evaluatesto t r ue, the result of the operation isthe

result of the evaluation of the second operand. If the first operand evaluatesto i nval i d, the second operand is not
evaluated and the result of the operationisi nval i d.

Similarly, thelogical OR evaluates the first operand and tests the result. If the result ist r ue, the result of the operation is
t r ue and the second operand is not evaluated. If the first operand evaluatesto f al se, the result of the operation isthe

result of the evaluation of the second operand. If the first operand evaluatesto i nval i d, the second operand is not
evaluated and the result of the operationisi nval i d.

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Proposed Version 11-Feb-1999 Page
23(114)

weAgree = (i AnRi ght && your AreRi ght) |
('i ArRi ght && !youAreRi ght);

WML Script requires a value of boolean type for logical operations. Automatic conversions from other types to boolean
type and vice versa are supported (see 7).

Notice: If the value of the first operand for logical AND or OR isi nval i d, the second operand is not evaluated and the
result of the operand isi nval i d:

var a = (1/0) || foo(); // result: invalid, no call to foo()
var b = true || (1/0); // true
var ¢ = false || (1/0); // invalid

6.3.4 String Operators

WML Script supports string concatenation as a built-in operation. The + and += operators used with strings perform a
concatenation on the strings. Other string operations!O are supported by a standard String library (see [WMLSLibs)).

var str
var chr

"Begi nni ng" + "End"
String.charAt(str,210); // chr = "E"

6.3.5 Comparison Operators

WML Script supports all the basic comparison operations:

Operator Operation
< less than
<= less than or equal
== equal
>= greater or equal
> greater than
I= inequality

Comparison operators use the following rules:

e Boolean: true islargerthanf al se

» Integer: Comparison is based on the given integer values

» Floating-point;: Comparison is based on the given floating-point values

e Sring: Comparison is based on the order of character codes of the given string values. Character codes are defined
by the character set supported by the WML Script Interpreter

e Invalid: If at least one of the operandsisi nval i d then the result of the comparisonisi nval i d

10 Compatibility note: ECMAScript supports String objects and a length attribute for each string. WM L Script does not support objects. However,
similar functionality is provided by WML Script libraries.

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Proposed Version 11-Feb-1999 Page
24(114)

Examples:
var res
var val

(myAnount > your Anount) ;
((2/0) == invalid); /1 val = invalid

6.3.6 Array Operators

WML Script does not support arrays!! as such. However, the standard String library (see [WMLSLibs]) supports functions
by which array like behaviour can be implemented by using strings. A string can contain elements that are separated by a
separator specified by the application programmer. For this purpose, the Sring library contains functions by which
creation and management of string arrays can be done.

function dumy() {
var str = "Mary had a little |anb";
var word = String.elenentAt(str,4," ");

i

6.3.7 Comma Operator

WML Script supports the comma (,) operator by which multiple evaluations can be combined into one expression. The
result of the comma operator is the value of the second operand:

for (a=1, b=100; a < 10; a++, b++) {
... do something ...

h

Commas used in the function call to separate parameters and in the variable declarations to separate multiple variable
declarations are not comma operators. In these cases, the comma operator must be placed inside the parenthesis:

var a=2;
var b=3, c=(a,3);
myFunction("Name", 3*(b*a,c)); // Two parameters: "Name",9

6.3.8 Conditional Operator

WM L Script supports the conditional (?:) operator which takes three operands. The operator selectively evaluates one of
the given two operands based on the boolean value of the first operand. If the value of the first operand (condition) is

t r ue then the result of the operation is the result of the evaluation of the second operand. If the value of the first operand
isfal seorinval i d then theresult of the operation is the result of the evaluation of the third operand.

myResult = flag ? "Off" : "On (value=" + level +")";
Notice: This operator behaveslike an if statement (see 6.5.5). The third operand is evaluated if the evaluation of the

condition resultsinf al se ori nval i d.

6.3.9 typeof Operator

Although WML Script is aweakly typed language, internally the following basic data types are supported: boolean,
integer, floating-point, string and invalid. Typeof (typeof) operator returns an integer valuel? that describes the type of the
given expression. The possible results are:

1 Compatibility note: ECMAScript supports arrays.
12 Compatibility note: ECMAScript specifies that the typeof operator returns a string representing the variable type.

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Proposed Version 11-Feb-1999 Page

25(114)
Type Code
Integer: 0
Floating-point: 1
String: 2
Boolean: 3
Invalid: 4

Typeof operator does not try to convert the result from one type to another but returns the type as it is after the evaluation
of the expression.

var str
var nyType

"123";
typeof str; // nyType = 2

6.3.10 isvalid Operator

This operator can be used to check the type of the given expression. It returns aboolean value f al se if the type of the
expression isinvalid, otherwiset r ue isreturned. isvalid operator does not try to convert the result from one type to
another but returns the type asiit is after the evaluation of the expression.

var str = "123";
var ok = isvalid str; Il true
var tst = isvalid (1/0); // false

6.3.11 Expressions

WML Script supports most of the expressions supported by other programming languages. The simplest expressions are
constants and variable names, which simply evaluate to either the value of the constant or the variable.

567

66. 77

"This is too sinple"
"This works too’

true

my Account

Expressions that are more complex can be defined by using simple expressions together with operators and function calls.
myAccount + 3
(a + b)/3
i nitial Val ue + next Val ue(nyVval ues) ;

6.3.12 Expression Bindings

The following table contains all operators supported by WML Script. The table also contains information about operator
precedence (the order of evaluation) and the operator associativity (left-to-right (L) or right-to-left (R)):

Preced- | Associa- Operator Operand types Result type Operation performed
ence13 tivity

13 Binding: 0 binds tightest

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Proposed Version 11-Feb-1999 Page
26(114)
Preced- | Associa- Operator Operand types Result type Operation performed
a‘]ce13 thlty
1 R ++ number number” pre- or post-increment (unary)
1 R -- number number’ pre- or post-decrement (unary)
1 R + number number | unary plus
1 R - number number” unary minus (negation)
1 R ~ integer integer’ bitwise NOT (unary)
1 R ! boolean boolean” | logical NOT (unary)
1 R typeof any integer return internal data type (unary)
1 R isvalid any boolean check for validity (unary)
2 L * numbers number | multiplication
2 L / numbers floating- division
point’
2 L div integers integer’ integer division
2 L % integers integer’ remainder
3 L - numbers number | subtraction
3 L + numbers or strings number or | addition (numbers) or string
string’ concatenation
4 L << integers integer’ bitwise left shift
4 L >> integers integer’ bitwise right shift with sign
4 L >>> integers integer’ bitwise right shift with zero fill
5 L <, <= numbers or strings boolean’ less than, less than or equal
5 L > >= numbers or strings boolean’ greater than, greater or equal
6 L == numbers or strings boolean’ equal (identical values)
6 L 1= numbers or strings boolean’ not equal (different values)
7 L & integers integer’ bitwise AND
8 L A integers integer’ bitwise XOR
9 L | integers integer’ bitwise OR
10 L && booleans boolean” | logical AND
11 L I booleans boolean” | logical OR
12 R ?: boolean, any, any any’ conditional expression
13 R = variable, any any assignment
13 R *= = variable, number number” assignment with numeric
operation
13 R /= variable, number floating- assignment with numeric
point’ operation
13 R %=, div= variable, integer integer’ assignment with integer
operation
13 R += variable, number or number or | assignment with addition or
string string’ concatenation
13 R <<=, >>z, variable, integer integer’ assignment with bitwise
>>>= &=, operation
= |:
14 L , any any multiple evaluation

" The operator can return ani nval i d valuein case the data type conversions fail (see chapter 7 for
more information about conversion rules) or one of the operandsisi nval i d.

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Proposed Version 11-Feb-1999 Page
27(114)

6.4 Functions

A WML Script function is a named part of the WML Script compilation unit that can be called to perform a specific set of
statements and to return avalue. The following sections describe how WM L Script functions can be declared and used.

6.4.1 Declaration

Function declaration can be used to declare a WML Script function name (ldentifier) with the optional parameters
(Formal ParameterList) and a block statement that is executed when the function is called. All functions have the following
characteristics:

» Function declarations cannot be nested.

» Function names must be unique within one compilation unit.

« All parameters to functions are passed by value.

» Function calls must pass exactly the same number of arguments to the called function as specified in the function
declaration.

» Function parameters behave like local variables that have been initialised before the function body (block of
statements) is executed.

« A function always returns avalue. By default it is an empty string (" "). However, areturn statement can be used to
specify other return values.

Functions in WML Script are not data typesl4 but a syntactical feature of the language.

Syntax:

FunctionDeclaration :
ext erng: functi on ldentifier (FormalParameterListyy) Block ; o

Formal ParameterList :

Identifier
FormalParameterList, ldentifier

Arguments: The optional ext er n keyword can be used to specify afunction to be externally accessible. External
functions can be called from outside the compilation unit in which they are defined. Identifier is the name specified for the
function. FormalParameterList (optional) is a comma-separated list of argument names. Block is the body of the function
that is executed when the function is called and the parameters have been initialised by the passed arguments.

Examples:
function currencyConverter(currency, exchangeRate) {
return currency*exchangeRat e;

b

extern function testlt() {
var UDS = 10;
var FIM = currencyConverter(USD, 5.3);

b

6.4.2 Function Calls

Theway afunction is called depends on where the called (target) function is declared. The following sections describe the
three function calls supported by WML Script: local script function call, external function call and library function call.

14 Compatibility note: Functionsin ECMAScript are actual data types.

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Proposed Version 11-Feb-1999 Page
28(114)

6.4.2.1 Local Script Functions

Local script functions (defined inside the same compilation unit) can be called simply by providing the function name and
acomma separated list of arguments (number of arguments must match the number of parametersl® accepted by the
function).

Syntax:

Local ScriptFunctionCall :
FunctionName Arguments

FunctionName :
Identifier

Arguments :

()
(ArgumentList)

ArgumentList :
AssignmentExpression
ArgumentList, AssignmentExpression

Functions inside the same compilation unit can be called before the function has been declared:

function test2(param ({
return test1(param+l);
}s

function testl(val) {
return val *val ;

b

6.4.2.2 External Functions

External function calls must be used when the called function is declared in an external compilation unit. The function call
issimilar to alocal function call but it must be prefixed with the name of the external compilation unit.

Syntax:

External ScriptFunctionCall :
External ScriptName # FunctionName Arguments

External ScriptName :
Identifier
Pragmause url (see6.7) must be used to specify the external compilation unit. It defines the mapping between the

external unit and a name that can be used within function declarations. This name and the hash symbol (#) are used to
prefix the standard function call syntax:

15 Compatibility note: ECMAScript supports a variable number of argumentsin a function call.

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Proposed Version 11-Feb-1999 Page
29(114)

use url OQtherScript "http://ww. host. com script";

function test3(paran {
return O herScri pt#t est 2(paramt+l) ;

b

6.4.2.3 Library Functions

Library function calls must be used when the called function isa WML Script standard library function [WMLSLibs].

Syntax:

LibraryFunctionCall :
LibraryName . FunctionName Arguments

LibraryName :
Identifier

A library function can be called by prefixing the function name with the name of the library (see 6.6 for more information)
and the dot symbol (.):

function test4(paran {
return Fl oat.sqrt(Lang. abs(paran) +1);

i

6.4.3 Default Return Value

The default return value for afunction is an empty string (" "). Return values of functions can be ignored (ie, function call
as a statement):

function test5() {
test4(4);

’

6.5 Statements

WML Script statements consist of expressions and keywords used with the appropriate syntax. A single statement may span
multiple lines. Multiple statements may occur on asingleline.

The following sections define the statements available in WML Script16: empty statement, expression statement, block
statement, break, continue, for, if...else, return, var, while.

6.5.1 Empty Statement

Empty statement is a statement that can be used where a statement is needed but no operation is required.

16 Compatibility note: ECMAScript supports also for..in and with statements.

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Proposed Version 11-Feb-1999 Page
30(114)

Syntax:
EmptyStatement :

Examples:
while (!poll(device)) ; // Wait until poll() is true

6.5.2 Expression Statement

Expression statements are used to assign values to variables, calculate mathematical expressions, make function calls etc.

Syntax:

ExpressionStatement :
Expression ;

Expression :
AssignmentExpression
Expression, AssignmentExpression

Examples:
str "Hey " + your Nane;
val 3 prevval + 4;
count er ++;
myVal uel = counter, nyValue2 = val 3;
alert("Watch out!");
retVval = 16*Lang. max(val 3, counter);

6.5.3 Block Statement

A set of statements enclosed in the curly brackets is a block statement. It can be used anywhere a single statement is
needed.

Syntax:

Block :
{ StatementListoy }

SatementList :

Statement
SatementList Statement

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Proposed Version 11-Feb-1999 Page
31(114)

Example:

{ .
var i = 0;
var x = Lang. abs(b);
popUp(" Renenber!");

6.5.4 Variable Statement

This statement declares variables with initialisation (optional, variables are initialised to empty string (") by default). The
scope of the declared variable is the rest of the current function (see section 6.2.2 for more information about variable
scoping).

Syntax:

VariableStatement :
var VariableDeclarationList ;

VariableDeclarationList :

VariableDeclaration
VariableDeclarationList, VariableDeclaration

VariableDeclaration :
Identifier Variablelnitializer o

Variablelnitializer :
= Conditional Expression

Arguments: Identifier isthe variable name. It can be any legal identifier. Conditional Expression istheinitia value of the
variable and can be any legal expression. This expression (or the default initialisation to an empty string) is evaluated
every time the variable statement is executed.

Variable names must be unique within a single function.

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Proposed Version 11-Feb-1999 Page

32(114)
Examples:
function count(str) {
var result = 0; // Initialized once
while (str I'="") {
var ind = 0; /[l Initialized every tine
/1l modify string
};
return result
s
function exampl e(param {
var a = 0;
if (param> a) {
var b = a+1; /! Variables a and b can be used
} else {
var ¢ = a+2; /] Variables a, b and c can be used
};
return a; /] Variable a, b and c are accessible
s

6.5.5 If Statement

This statement is used to specify conditional execution of statements. It consists of a condition and one or two statements
and executes the first statement if the specified condition istrue. If the condition is false, the second (optional) statement is
executed.

Syntax:

IfSatement :

i f (Expression) Satement el se Satement
i f (Expression) Statement

Arguments: Expression (condition) can be any WML Script expression that evaluates (directly or after conversion) to a
boolean or an invalid value. If condition evaluatestot r ue, the first statement is executed. If condition evaluatesto
fal seorinvali d,thesecond (optional) el se statement is executed. Satement can be any WML Script statement,
including another (nested) i f statement. el se isalwaystied to the closesti f .

Example:
i f (sunShines) {
nyDay = "Good";
goodDays++;
} else
myDay = "Ch well...";

6.5.6 While Statement

This statement is used to create a loop that evaluates an expression and, if itist r ue, execute a statement. The loop
repeats as long as the specified conditionist r ue.

Syntax:

WhileStatement :
whi | e (Expression) Satement

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Proposed Version 11-Feb-1999 Page
33(114)

Arguments. Expression (condition) can be any WML Script expression that evaluates (directly or after the conversion) to a
boolean or an invalid value. The condition is evaluated before each execution of the loop statement. If this condition
evaluatestot r ue, the Statement is performed. When condition evaluatestof al se ori nval i d, execution continues
with the statement following Statement. Statement is executed as long as the condition evaluatestot r ue.

Example:
var counter = O;
var total = 0;
while (counter < 3) {
count er ++;

total += c;

b

6.5.7 For Statement

This statement is used to create loops. The statement consists of three optional expressions enclosed in parentheses and
separated by semicolons followed by a statement executed in the loop.

Syntax:

For Statement :
for (Expressiong, ; Expressiong; Expressiong,) Statement
for (var VariableDeclarationList; Expressiongy; Expressiong,) Statement

Arguments: The first Expression or VariableDeclarationList (initialiser) is typically used to initialise a counter variable.
This expression may optionally declare new variables with the var keyword. The scope of the defined variablesisthe rest
of the function (see section 6.2.2 for more information about variable scoping).

The second Expression (condition) can be any WML Script expression that evaluates (directly or after the conversion) to a
boolean or an invalid value. The condition is evaluated on each pass through the loop. If this condition evaluatestot r ue,
the Satement is performed. This conditional test is optional. If omitted, the condition always evaluatestot r ue.

The third Expression (increment-expression) is generally used to update or increment the counter variable. Statement is
executed as long as the condition evaluatestot r ue.

Example:
for (var index = 0; index < 100; index++) {
count += index;
myFunc(count) ;

’

6.5.8 Break Statement

This statement is used to terminate the current while or for loop and continue the program execution from the statement
following the terminated loop. It isan error to use break statement outside a while or afor statement.
Syntax:

BreakStatement :
break ;

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Proposed Version 11-Feb-1999

Example:
function testBreak(x) {
var index = 0;
while (index < 6) {
if (index == 3) break
i ndex++;
1
return index*x;

b

6.5.9 Continue Statement

Page
34(114)

This statement is used to terminate execution of ablock of statementsin awhile or for loop and continue execution of the

loop with the next iteration. Continue statement does not terminate the execution of the loop:

* Inawhileloop, it jumps back to the condition.
* Inafor loop, it jumpsto the update expression.

It isan error to use continue statement outside awhile or a for statement.

Syntax:

ContinueStatement :
conti nue ;

Example:

var index = 0;

var count = O;

while (index < 5) {
i ndex++;
if (index == 3)

conti nue;

count += i ndex;

s

6.5.10 Return Statement

This statement can be used inside the function body to specify the function return value. If no return statement is specified

or none of the function return statements is executed, the function returns an empty string by default.

Syntax:

ReturnStatement :
return EXpressiong:;

Example:

function square(x)
if (!(Lang.isFloat(x)))
return x * Xx;

b

return invalid;

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Proposed Version 11-Feb-1999 Page
35(114)

6.6 Libraries

WML Script supports the usage of libraries!?. Libraries are named collections of functions that belong logically together.
These functions can be called by using a dot (*.") separtor with the library name and the function name with parameters:

An example of a library function call:

function dunmy(str) {
var i = String.elementAt(str,3," ");

b

6.6.1 Standard Libraries

Standard libraries are specified in more detail intLScript Standard Libraries Specification [WMLSLibs].

6.7 Pragmas

WMLScript supports the usage mfagmas that specify compilation unit level information. Pragmas are specified at the
beginning of the compilation unit before any function declaration. All pragmas start with the kexseoashd are
followed by pragma specific attributes.

Syntax:

CompilationUnit :
Pragmas,,; FunctionDeclarations

Pragmas:
Pragma
Pragmas Pragma

Pragma :
use PragmaDeclaration;

PragmaDeclaration :

External CompilationUnitPragma
AccessControl Pragma
MetaPragma

The following sections contain more information about the supported pragmas.

6.7.1 External Compilation Units

WMLScript compilation units can be accessed by using a URL. Thus, each WMLScript function can be accessed by
specifying the URL of the WMLScript resource and its namasA ur| pragma must be used when calling a function
in an external compilation unit.

17 Compatibility note: ECMAScript does not support libraries. It supports a set of predefined objects with attributes. WML Script uses libraries to
support similar functionality.

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Proposed Version 11-Feb-1999 Page
36(114)

Syntax:

External CompilationUnitPragma :
ur | Identifier SringLiteral

Theuse url pragma specifiesthe location (URL) of the external WML Script resource and givesit alocal name. This
name can then be used inside the function declarations to make external function calls (see section 6.4.2.2).

use url QtherScript "http://ww.host.com app/script";

function test(parl, par2) {
return O her Scri pt #check(par 1- par 2) ;

b
The behaviour of the previous example is the following:

e The pragma specifies a URL to a WML Script compilation unit.
« Thefunction call loads the compilation unit by using the given URL (ht t p: / / www. host . con? app/ scri pt)
» The content of the compilation unit is verified and the specified function (check) is executed

Theuse url| pragma hasits own name space for local names. However, the local names must be unique within one
compilation unit. The following URLSs are supported:

« Uniform Resource Locators [RFC2396] without a hash mark (#) or afragment identifier. The schemes supported
are specified in [WAE].

» Rdative URLs[RFC2396] without a hash mark (#) or afragment identifier: The base URL isthe URL that
identifies the current compilation unit.

The given URL must be escaped according to the URL escaping rules. No compile time automatic escaping, URL syntax
or URL validity checking is performed.

6.7.2 Access Control

A WML Script compilation unit can protect its content by using an access control pragma. Access control must be
performed before calling external functions. It is an error for a compilation unit to contain more than one access control

pragma.

Syntax:

AccessControlPragma :
access AccessControl Specifier

AccessControl Specifier :
public
donmai n StringLiteral
pat h SringLiteral
domai n SringLiteral pat h SringLiteral

Every time an external function isinvoked an access control check is performed to determine whether the destination
compilation unit allows access from the caller. Access control pragmais used to specify domain and path attributes against
which these access control checks are performed. If a compilation unit has adomain and/or path attribute, the referring
compilation unit's URL must match the values of the attributes. Matching is done as follows: the access domain is suffix-
matched against the domain name portion of the referring URL and the access path is prefix-matched against the path
portion of the referring URL. Domain and path attributes follow the URL capitalisation rules.

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Proposed Version 11-Feb-1999 Page
37(114)

Domain suffix matching is done using the entire element of each sub-domain and must match each element exactly (e.g.
www. wapf or um or g shall match wapf or um or g, but shall not match f or um or g).

Path prefix matching is done using entire path elements and must match each element exactly (e.g./ X/ Y matches/ X, but
does not match / XZ).

The domain attribute defaults to the current compilation unit’s domain. The path attribute defaults to the value " / " .
To simplify the development of applications that may not know the absolute path to the current compilation unit, the path
attribute accepts relative URL S [RFC2396]. The user agent converts the relative path to an absolute path and then performs
prefix matching against the path attribute.
Given the following access control attributes for a compilation unit:

use access domai n "wapforumorg" path "/finance";
The following referring URLs would be allowed to call the external functions specified in this compilation unit:

htt p: // wapf orum or g/ fi nance/ noney. cgi

htt ps: //ww. wapf orum or g/ fi nance/ mar ket s. cgi

htt p: // www. wapf orum or g/ fi nance/ denos/ packages. cgi ?x=1238&y=456

The following referring URLs would not be allowed to call the external functions:

http://ww.test.net/finance
http: //ww. wapf orum org/internal/foo.wn

A compilation unit can specify that all external functions have public access (ie, callsto external functions are accepted
from any compilation unit) by using the publ i ¢ access control attribute:

use access public;

By default, access control is disabled.

6.7.3 Meta-Information

Pragmas can also be used to specify compilation unit specific meta-information. Meta-information is specified with
property names and values. This specification does not define any properties, nor does it define how user agents must
interpret meta-data. User agents are not required to act on the meta-data.

Syntax:

MetaPragma :
nmet a MetaSpecifier

MetaSpecifier :
MetaName
MetaHttpEquiv
MetaUser Agent

MetaName :
nane MetaBody

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Proposed Version 11-Feb-1999 Page
38(114)

MetaHttpEquiv :
http equi v MetaBody

MetaUser Agent :
user agent MetaBody

MetaBodly :
MetaPropertyName MetaContent MetaSchemeq:

Meta-pragmas have three attributes: property name, content (the value of the property) and optional scheme (specifies a
form or structure that may be used to interpret the property value — the values vary depending on the type of meta-data).
The attribute values are string literals.

6.7.3.1 Name

Name meta-pragma is used to specify meta-information intended to be used by the origin servers. The user agent should
ignore any meta-data named with this attribute. Network servers should not emit WMLScript content containing meta-
name pragmas.

use neta nane "Created" "18-March-1998";

6.7.32 HTTP Equiv

HTTP equiv meta-pragma is used to specify meta-information that indicates that the property should be interpreted as an
HTTP header (see [RFC2068]). Meta-data named with this attribute should be converted to a WSP or HTTP response
header if the compilation unit is compiled before it arrives at the user agent.

use neta http equiv "Keywords" "Script, Language";

6.7.3.3 User Agent

User agent meta-pragma is used to specify meta-information intended to be used by the user agents. This meta-data must
be delivered to the user agent and must not be removed by any network intermediary.

use neta user agent "Type" "Test";

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Proposed Version 11-Feb-1999 Page
39(114)

7. Automatic Data Type Conversion Rules

In some cases, WML Script operators require specific data types as their operands. WM L Script supports automatic data
type conversions to meet the requirements of these operators. The following sections describe the different conversionsin
detail.

7.1 General Conversion Rules

WML Script is aweakly typed language and the variable declarations do not specify atype. However, internally the
language handles the following data types:

» Boolean: represents a boolean value true or false.

* Integer: represents an integer value

* Floating-point: represents a floating-point value

» Sring: represents a sequence of characters

* Invalid: represents atype with asinglevaluei nval i d

A variable at any given time can contain a value of one of these types. WML Script provides an operator typeof, which can
be used to determine what is the current type of avariable or any expression (no conversions are performed).

Each WML Script operator accepts a predefined set of operand types. If the provided operands are not of the right data
type an automatic conversion must take place. The following sections specify the legal automatic conversions between two
data types.

7.1.1 Conversions to String

Legal conversions from other data typesto string are:

« Integer value must be converted to a string of decimal digits that follows the numeric string grammar rules for
decimal integer literals. See section 8.4 for more information about the numeric string grammar.

« Floating-point value must be converted to an implementation-dependent string representation that follows the
numeric string grammar rules for decimal floating-point literals (see section 8.4 for more information about the
numeric string grammar). The resulting string representation must be equal to the original value (ie. 5 can be
represented as" 0. 5", ".5e0", etc.).

e Theboolean valuet r ue isconverted to string " t r ue" andthevaluef al se isconvertedto string" f al se".

e | nval i d cannot be converted to astring value.

7.1.2 Conversions to Integer

Legal conversions from other data typesto integer are:

« A string can be converted into an integer value only if it contains adecimal representation of an integer number (see
section 8.4 for the numeric string grammar rules for adecimal integer literal).

» Floating-point value cannot be converted to an integer value.

e Theboolean valuet r ue is converted to integer value 1, f al se to 0.

e | nval i d cannot be converted to an integer value.

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Proposed Version 11-Feb-1999 Page
40(114)

7.1.3 Conversions to Floating-Point

Legal conversions from other data types to floating-point are:

* A string can be converted into a floating-point value only if it contains a valid representation of a floating-point
number (see section 8.4 for the numeric string grammar rules for adecimal floating-point literal).

« Aninteger value is converted to a corresponding floating-point value.

» Theboolean valuet r ue is converted to afloating-point value 1.0, f al se to 0.0.

e I nvali d cannot be converted to afloating-point value.

The conversions between a string and a floating-point type must be transitive within the ability of the data typesto
accurately represent the value. A conversion could result in loss of precision.

7.1.4 Conversions to Boolean

Legal conversions from other data types to boolean are:

e Theempty string (" ") isconverted to f al se. All other strings are convertedtot r ue.

e Aninteger value Ois converted to f al se. All other integer numbers are convertedtot r ue.

» A floating-point value 0.0 is converted to f al se. All other floating-point numbers are convertedtot r ue.
e I nval i d can not be converted to aboolean value.

7.1.5 Conversions to Invalid

There are no legal conversion rules for converting any of the other datatypesto an invalid type. | nval i d iseither a
result of an operation error or aliteral value. In most cases, an operator that hasani nval i d value as an operand
evaluatestoi nval i d (seethe operatorsin sections 6.3.8, 6.3.9 and 6.3.10 for the exceptions to thisrule).

7.1.6 Summary

The following table contains a summary of the legal conversions between data types:

Given\Used as. | Boolean I nteger Floating-point String

Boolean true - 1 1.0 "true"

Boolean false - 0 0.0 "false"

Integer 0 fase - 0.0 "o

Any other true - floating-point string representation of a
integer value of number decimal integer
Floating-point false Ilegal - implementation-

0.0 dependent string

representation of a
floating-point value, e.g.

"0.0"
Any other true Ilegal - implementation-
floating-point dependent string

representation of a
floating-point value
Empty string false Illegal Illegal -

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Proposed Version 11-Feb-1999 Page

41(114)

Given\Used as. | Boolean I nteger Floating-point String
Non-empty true integer value of floating-point -
string its string value of its string

representation (if | representation (if

valid — see valid — see

section 8.4 for section 8.4 for

numeric string numeric string

grammar for grammar for

decimal integer | decimal floating-

literals) or illegal | point literals) or

illegal

invalid lllegal lllegal lllegal lllegal

7.2 Operator Data Type Conversion Rules

The previous conversion rules specify when a legal conversion is possible between two data types. WMLScript operators
use these rules, the operand data type and values to select the operation to be performed (in case the type is used to specify
the operation) and to perform the data type conversions needed for the selected operation. The rules are specified in the
following way:

< The additional conversion rules are specified in steps. Each step is performed in the given order until the operation
and the data types for its operands are specified and the return value defined.

 If the type of the operand value matches the required type then the value is used as such.

« If the operand value does not match the required type then a conversion from the current data type to the required
one is attempted:

- Legal conversion: Conversion can be done only if the general conversion rules (see section 7.1) degalfy a
conversion from the current operator data type to the required one.

- lllegal conversion: Conversion can not be done if the general conversion rules (see section 7.1) do not specify a
legal conversion from the current type to the required type.

« If a legal conversion rule is specified for the operand (unary) or for all operands then the conversion is performed,
the operation performed on the converted values and the result returned as the value of the operation. If a legal
conversion results in amval i d value then the operation returnsiarval i d value.

» If no legal conversion is specified for one or more of the operands then no conversion is performed and the next
step in the additional conversion rules is performed.

The following table contains the operator data type conversion rules based on the given operand data types:

Operand types | Additional conversion rules Examples
=>
Boolean(s) » If the operand is of type boolean or can be true f&&ﬁ' 3 => Egg: 232
converted into a boolean val§ghen perform a "A'" || "" => bool ean
boolean operation and return its value, otherwise L 142 => bool ean
linvalid => invalid
* returninvalid 3 & invalid => invalid

18 Conversion can be doneif the general conversion rules (see section 7.1) specify alegal conversion from the current type to the required type.

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Proposed Version 11-Feb-1999

Page
42(114)
Operand types | Additional conversion rules Examples
) . "T7" << 2 => integer
Integer(s) If the operand is of type integer or can be true << 2 => integer
converted into an integer valuel8 then perform 7.2 >> 3 =>invalid
; ; ; 2.1 div 4 =>invalid
an integer operation and return its value,
otherwise
returni nval i d
Floating- . : . -
X If the operand is of type floating-point or can be
point(s) . . . 3
converted into a floating-point valuels then
perform afloating-point operation and return its
value, otherwise
returni nval i d
String(s) If the operand is of type string or can be)
converted into a string valuel8 then perform a
string operation and return its value, otherwise
returni nval i d
.] +10 => i nt eger
][P;;og(ra]r ?roint If the operand is of type integer or can be -10.3 => £l oat
(unar ? P converted into an integer value then perform an -"33" => integer
y integer operation and return its value, otherwise +"47.3" => float
+true => integer 1
if the operand is of type floating-point or can be -]‘Ial se => integer 0
converted into a floating-point valuel8 then . gégégg. g : zx:: : g
perform afloating-point operation and return its
value, otherwise
returni nval i d
100/10.3 => float
;P;;'ﬁirsiogims If atleast one of the operandsis of type floating- 33*44 => integer
P point then convert the remaining operand to a "10"*3 => integer
floating-point value, perform a floating-point 3. ‘1‘8 4. g = : nI legg
operation and return its value, otherwise "2.3"*"3" => float
if the operands are of type integer or can be g ?égggéﬂ zz : zx:: : g
converted into integer values!8 then perform an invalid*l => invalid

integer operation and return its value, otherwise

if the operands can be converted into floating-
point values!® then perform a floating-point
operation and return its value, otherwise

returni nval i d

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Proposed Version 11-Feb-1999 Page
43(114)
Operand types | Additional conversion rules Examples
. . 12+3 => integer
:,P;;‘gﬁrs oints = If at least one of the operandsis of type string 32.4+65 => fl oat
or stringsl? then convert the remaining operand to a string "12"+5.4 => string
9 value, perform a string operation and return its § ﬁgyzzgg = SI lr ?ﬁ;
value, otherwise 2.74"4.2" => string
» if atleast one of the operandsis of type floating- 932?2{2? = inI 'eog
point then convert the remaining operand to a vAsinvalid => | nvalgi d
floating-point value, perform a floating-point
operation and return its value, otherwise
» if the operands are of typeinteger or can be
converted into integer values!8 then perform an
integer operation and return its value, otherwise
* retuninvalid
Any . a=37.3 = float
* Anytypeisaccepted b = typeof "s" => string

7.3

Summary of Operators and Conversions

The following sections contain a summary on how the conversion rules are applied to WML Script operators and what are

their possible return value types.

7.3.1 Single-Typed Operators

Operators that accept operands of one specific type use the general conversion rules directly. The following list contains all

single type WML Script operators:

Operator | Operand types Result typel® | Operation performed
! boolean boolean logical NOT (unary)
&& booleans boolean logical AND
I booleans boolean logical OR
~ integer integer bitwise NOT (unary)
<< integers integer bitwise left shift
>> integers integer bitwise right shift with sign
>>> integers integer bitwise right shift with zero fill
& integers integer bitwise AND
n integers integer bitwise XOR
| integers integer bitwise OR
% integers integer remainder
div integers integer integer division
<<=, >>=, | first operand: variable integer assignment with bitwise operation
>>>=, second operand: integer
&:' A=, |:
%=, first operand: variable integer assignment with numeric operation
div= second operand: integer

N operators may have an invalid result type.

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Proposed Version 11-Feb-1999

7.3.2 Multi-Typed Operators

The following sections contain the operators that accept multi-typed operands:

Operator Operand types Result type?0 Operation performed
++ integer or floating-point | integer/floating- | pre- or post-increment (unary)
point
-- integer or floating-point | integer/floating- | pre- or post-decrement (unary)
point
+ integer or floating-point | integer/floating- | unary plus
point
- integer or floating-point | integer/floating- | unary minus (negation)
point
* integers or floating- integer/floating- | multiplication
points point
/ integers or floating- floating-point division
points
- integers or floating- integer/floating- | subtraction
points point
+ integers, floating-points | integer/floating- | addition or string concatenation
or strings point/string
<, <= integers, floating-points boolean less than, less than or equal
or strings
>, >= integers, floating-points boolean greater than, greater or equal
or strings
== integers, floating-points boolean equal (identical values)
or strings
I= integers, floating-points boolean not equal (different values)
or strings
*= = first operand: variable integer/floating- | assignment with numeric operation
second operand: integer point
or floating-point
/= first operand: variable floating-point assignment with division
second operand: integer
or floating-point
+= first operand: variable integer/floating- | assignment with addition or
second operand: integer, point/string concatenation
floating-point or string
typeof any integer2l return internal data type (unary)
isvalid any boolean?! check for validity (unary)
?: first operand: boolean any conditional expression
second operand: any
third operand: any
= first operand: variable any assignment
second operand: any
, first operand: any any multiple evaluation
second operand: any

20 o)) operators (unless otherwise stated) may have an invalid result type.

21 Operator does not generate an invalid result type.

Page
44(114)

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Proposed Version 11-Feb-1999 Page
45(114)

8. WMLScript Grammar

The grammars used in this specification are based on [ECMA262]. Since WML Script is not compliant with ECM A Script,
the standard has been used only as the basis for defining WML Script language.

8.1 Context-Free Grammars

This section describes the context-free grammars used in this specification to define the lexical and syntactic structure of a
WML Script program.

8.1.1 General

A context-free grammar consists of a number of productions. Each production has an abstract symbol called a nonterminal
asitsleft-hand side and a sequence of one or more nonterminal and terminal symbols asits right-hand side. For each
grammar, the terminal symbols are drawn from a specified alphabet.

A given context-free grammar specifies alanguage. It begins with a production consisting of a single distinguished
nonterminal called the goal symbol followed by a (perhaps infinite) set of possible sequences of terminal symbols. They
are the result of repeatedly replacing any nonterminal in the sequence with aright-hand side of a production for which the
nonterminal is the left-hand side.

8.1.2 Lexical Grammar

A lexical grammar for WML Script is given in section 8.2. This grammar has asits terminal symbols the characters of the
Universal Character set of |SO/IEC-10646 ([1S010646]). It defines a set of productions, starting from the goal symbol
Input that describes how sequences of characters are translated into a sequence of input elements.

Input elements other than white space and comments form the terminal symbols for the syntactic grammar for WML Script
and are called WML Script tokens. These tokens are the reserved words, identifiers, literals and punctuators of the

WML Script language. Simple white space and single-line comments are simply discarded and do not appear in the stream
of input elements for the syntactic grammar. Likewise, a multi-line comment is simply discarded if it contains no line
terminator; but if a multi-line comment contains one or more line terminators, then it is replaced by asingle line
terminator, which becomes part of the stream of input elements for the syntactic grammar.

Productions of the lexical grammar are distinguished by having two colons™: : " as separating punctuation.

8.1.3 Syntactic Grammar

The syntactic grammar for WML Script is given in section 8.3. This grammar has WML Script tokens defined by the
lexical grammar asits terminal symbols. It defines a set of productions, starting from the goal symbol CompilationUnit,
that describe how sequences of tokens can form syntactically correct WML Script programs.

When a stream of Unicode charactersisto be parsed asa WML Script, it isfirst converted to a stream of input elements by
repeated application of the lexical grammar; this stream of input elements is then parsed by a single application of the
syntax grammar. The program is syntactically in error if the tokens in the stream of input elements cannot be parsed asa
single instance of the goal nonterminal CompilationUnit, with no tokens left over.

Productions of the syntactic grammar are distinguished by having just one colon": " as punctuation.

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Proposed Version 11-Feb-1999 Page
46(114)

8.1.4 Numeric String Grammar

A third grammar is used for translating strings into numeric values. This grammar is similar to the part of the lexical
grammar having to do with numeric literals and has as its terminal symbols the characters of the Unicode character set.
This grammar appearsin section 8.4.

Productions of the numeric string grammar are distinguished by having three calofis$ punctuation.

8.1.5 Grammar Notation

Terminal symbols of the lexical and string grammars and some of the terminal symbols of the syntactic grammar, are
shown infi xed wi dt h font, both in the productions of the grammars and throughout this specification whenever the
text directly refers to such a terminal symbol. These are to appear in a program exactly as written.

Nonterminal symbols are showniialic type. The definition of a nonterminal is introduced by the name of the
nonterminal being defined followed by one or more colons. (The number of colons indicates to which grammar the
production belongs.) One or more alternative right-hand sides for the nonterminal then follow on succeeding lines. For
example, the syntactic definition:

WhileStatement :
while (Expression) Satement
states that the nonterminahileStatement represents the tokerhi | e, followed by a left parenthesis token, followed by
anExpression, followed by a right parenthesis token, followed ftatement. The occurrences @&xpression and
Satement are themselves nonterminals. As another example, the syntactic definition:
ArgumentList :
AssignmentExpression
ArgumentList , AssignmentExpression
states that aArgumentList may represent either a singlssignmentExpression or anArgumentList, followed by a comma,
followed by anAssignmentExpression. This definition ofArgumentList is recursive, that is to say, it is defined in terms of

itself. The result is that afwrgumentList may contain any positive number of arguments, separated by commas, where each
argument expression is &ssignmentExpression. Such recursive definitions of nonterminals are common.

The subscripted suffixdpt", which may appear after a terminal or nonterminal, indicateptaonal symbol. The
alternative containing the optional symbol actually specifies two right-hand sides, one that omits the optional element and
one that includes it. This means that:

VariableDeclaration :
Identifier Variablelnitializer o

is a convenient abbreviation for:

VariableDeclaration :

Identifier
Identifier Variablelnitializer

and that:

IterationSatement :
for (Expressiony: ; Expressiong ; Expressiony) Satement
is a convenient abbreviation for:
IterationSatement :

for (; Expressiony ; Expressiony) Statement
for (Expression ; Expressiong: ; Expressiony) Statement

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Proposed Version 11-Feb-1999 Page
47(114)

which in turn is an abbreviation for:

IterationStatement :

for (; ; Expressiony) Statement
for (; Expresson ; Expression,) Satement
for (Expresson ; ; Expression,) Satement

for (Expresson ; Expression ; Expressiony) Statement
which in turn is an abbreviation for:

IterationStatement :

for (; ;) Satement

for (; ; Expresson) Satement

for (; Expression ;) Satement

for (; Expression ; Expression) Satement

for (Expression ; ;) Satement

for (Expression ; ; Expresson) Satement

for (Expression ; Expression ;) Satement

for (Expression ; Expression ; Expression) Satement

therefore, the nonterminal IterationStatement actually has eight alternative right-hand sides.

Any number of occurrences of LineTerminator may appear between any two consecutive tokensin the stream of input
elements without affecting the syntactic acceptability of the program.

When the words "one of" follow the colon(s) in agrammar definition, they signify that each of the terminal symbols on the
following line or linesis an aternative definition. For example, the lexical grammar for WML Script contains the
production:

ZeroToThree:: one of
0 1 2 3

which is merely a convenient abbreviation for:

ZeroToThree ::
0

1
2
3

When an alternative in a production of the lexical grammar or the numeric string grammar appears to be a multicharacter
token, it represents the sequence of characters that would make up such a token.

The right-hand side of a production may specify that certain expansions are not permitted by using the phrase "but not"
and then indicating the expansions to be excluded. For example, the production:

Identifier ::

| dentifierName but not ReservedWord

means that the nonterminal Identifier may be replaced by any sequence of characters that could replace |dentifierName
provided that the same sequence of characters could not replace ReservedWord.
Finally, afew nonterminal symbols are described by a descriptive phrase in roman type in cases where it would be
impractical to list al the alternatives:

SourceCharacter:
any Unicode character

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Proposed Version 11-Feb-1999 Page
48(114)

8.1.6 Source Text

WML Script source text is represented as a sequence of characters representable using the Universal Character set of
I SO/IEC-10646 ([1S0O10646]). Currently, this character set isidentical to Unicode 2.0 ([UNICODE]). Within this
document, the terms 1SO10646 and Unicode are used interchangeably and will indicate the same document character set.

SourceCharacter ::
any Unicode character

There is no requirement that WM L Script documents be encoded using the full Unicode encoding (e.g. UCS-4). Any
character encoding ("charset") that contains an inclusive subset of the charactersin Unicode may be used (e.g. US-ASCI|,
|SO-8859-1, etc.).

Every WML Script program can be represented using only ASCI| characters (which are equivalent to the first 128 Unicode
characters). Non-ASCII Unicode characters may appear only within comments and string literals. In string literals, any
Unicode character may also be expressed as a Unicode escape sequence consisting of six ASCII characters, namely \ u
plus four hexadecimal digits. Within acomment, such an escape sequence is effectively ignored as part of the comment.
Within astring literal, the Unicode escape sequence contributes one character to the string value of the literal.

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Proposed Version 11-Feb-1999

8.2 WMLScript Lexical Grammar

The following contains the specification of the lexical grammar for WML Script:

SourceCharacter ::
any Unicode character

WhiteSpace ::
<TAB>
<VT>
<FF>
<SP>
<LF>
<CR>

LineTerminator ::
<LF>
<CR>
<CR><LF>

Comment ::

MultiLineComment
SngleLineComment

MultiLineComment ::
/* MultiLineCommentChar Sy * /

MultiLineCommentChars ::
MultiLineNotAsteriskChar MultiLineCommentChar sy
* PostAsteriskCommentChar sy

PostAsteriskCommentChars ::

MultiLineNotForwardS ashOr AsteriskChar MultiLineCommentChar s,

* PostAsteriskCommentChar Sy

MultiLineNotAsteriskChar ::
SourceCharacter but not asterisk *

MultiLineNotForwardSashOrAsteriskChar ::
SourceCharacter but not forward-dash/ or asterisk *

SngleLineComment ::
/1 SingleLineCommentChar sy

SngleLineCommentChars ::
SngleLineCommentChar SingleLineCommentChar sy

SngleLineCommentChar ::
SourceCharacter but not LineTerminator

Page
49(114)

© Wireless Application Protocol Forum, Ltd, 1999

All rights reserved.

Proposed Version 11-Feb-1999

Token ::

ReservedWord
Identifier
Punctuator
Literal

ReservedWord ::
Keyword

Keywor dNotUsedByWML Script

FutureReservedWord
BooleanLiteral
InvalidLiteral

Keyword :: one of
access
agent
br eak
conti nue
div
div=
domai n
el se

equi v
extern
for
function
header
http

i f
isvalid

KeywordNotUsedByWML Script :: one of

del ete
in

lib
new

FutureReservedWord :: one of
case

catch
cl ass
const
debugger

Identifier ::

nul |
this
voi d
Wi th

def aul t
do
enum
export
ext ends

I dentifier Name but not ReservedWord

IdentifierName ::
Identifier Letter

IdentifierName | dentifier Letter
| dentifierName Decimal Digit

IdentifierLetter :: one of22
abcdef

g h
A BCDEFGHII

22 Compatibility note: ECM A Script supports the usage of dollar sign ($) in identifier names, too.

o —

nmet a
name
pat h
public
return
t ypeof
use
user

finally
i mport
private
si zeof

struct

Page
50(114)

var
whil e
url

super
switch
t hr ow

try

© Wireless Application Protocol Forum, Ltd, 1999

All rights reserved.

Proposed Version 11-Feb-1999

DecimalDigit :: one of

01234567389

Punctuator :: one of23

= >

| = ,
&&

_ *

% <<

* = =

<<= >>=

} 1

Literal ::24
InvalidLiteral

BooleanLiteral
NumericLiteral
SringLiteral

InvalidLiteral ::25
invalid

BooleanLiteral ::26
true
fal se

NumericLiteral ::
DecimalIntegerLiteral
HexIntegerLiteral
OctallntegerLiteral
Decimal FloatLiteral

Decimal IntegerLiteral ::

0
NonZeroDigit Decimal Digitsyy

NonZeroDigit :: one of
1 2 3

HexintegerLiteral ::
0x HexDigit
0X HexDigit
HexlIntegerLiteral HexDigit

HexDigit :: one of

0 1 2 3 45 6 7 8 9 awb

23 Compatibility note: ECMAScript supports arrays and square brackets ([1), too.
24 Compatibility note: ECMAScript supports Null literal, too.
25 Compatibility note: ECMAScript does not support invalid.
26 Compatibility note: ECMAScript supports both lower and upper case boolean literals.

Page
51(114)

<= >=
? :
-- +
n
+= -=
A= %
) {
6 7 8 9
c d e f A B CDEF

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Proposed Version 11-Feb-1999

OctallntegerLiteral ::
0 OctalDigit
OctallntegerLiteral OctalDigit

OctalDigit :: one of
0 1 2 3 4 5 6

DecimalFloatLiteral ::
DecimalIntegerLiteral . Decimal Digits,, ExponentPar gy
. Decimal Digits ExponentPartqy
DecimallntegerLiteral ExponentPart

Decimal Digits ::
Decimal Digit
Decimal Digits Decimal Digit

ExponentPart ::
ExponentIndicator SignedIinteger

ExponentIndicator :: one of
e E

Sgnedinteger ::
Decimal Digits
+ DecimalDigits
- DecimalDigits

SringLiteral ::
" DoubleStringCharacter sy "
" SingleStringCharacter Sy

DoubleStringCharacters ::
DoubleStringCharacter DoubleStringCharacter oy

SngleSringCharacters ::
SingleStringCharacter SingleStringChar acter sy

DoubleStringCharacter ::
SourceCharacter but not double-quote " or backslash\ or LineTerminator
EscapeSequence

SngleStringCharacter ::
SourceCharacter but not single-quote’ or backslash\ or LineTerminator
EscapeSequence

EscapeSequence ::
Character EscapeSequence
Octal EscapeSequence

HexEscapeSequence
UnicodeEscapeSequence

Character EscapeSequence ::
\ SingleEscapeCharacter

Page
52(114)

© Wireless Application Protocol Forum, Ltd, 1999

All rights reserved.

Proposed Version 11-Feb-1999

SngleEscapeCharacter :: one of
' " \ /

HexEscapeSequence ::
\ X HexDigit HexDigit

Octal EscapeSequence ::
\ OctalDigit
\ OctalDigit Octal Digit
\ ZeroToThree OctalDigit Octal Digit

ZeroToThree:: one of
0 1

UnicodeEscapeSequence ::
\ u HexDigit HexDigit HexDigit HexDigit

Page
53(114)

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Proposed Version 11-Feb-1999 Page
54(114)

8.3 WMLScript Syntactic Grammar

The following contains the specification of the syntactic grammar for WML Script:

PrimaryExpression :27
Identifier
Literal
(Expression)

CallExpression : 28
PrimaryExpression
Local ScriptFunctionCall
External ScriptFunctionCall
LibraryFunctionCall

Local ScriptFunctionCall :
FunctionName Arguments

External ScriptFunctionCall :
External ScriptName # FunctionName Arguments

LibraryFunctionCall :
LibraryName . FunctionName Arguments

FunctionName :
Identifier

External ScriptName :
Identifier

LibraryName :
Identifier

Arguments :

()
(ArgumentList)

ArgumentList :
AssignmentExpression
ArgumentList, AssignmentExpression

PostfixExpression :
CallExpression
Identifier ++
Identifier - -

27 Compatibility note: ECMAScript supports objects and this, too.

28 Compatibility note: ECMAScript support for arrays ([]) and object alocation (new) removed. MemberExpression is used for specifying library
functions, e.g. Stri ng. | engt h("abc"), not for accessing members of an object.

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Proposed Version 11-Feb-1999 Page
55(114)

UnaryExpression :29
PostfixExpression
t ypeof UnaryExpression
i sval i d UnaryExpression
++ ldentifier
- - |dentifier
+ UnaryExpression
- UnaryExpression
~ UnaryExpression
I UnaryExpression

MultiplicativeExpression ;30
UnaryExpression
MultiplicativeExpression * UnaryExpression
MultiplicativeExpression/ UnaryExpression
MultiplicativeExpression di v UnaryExpression
MultiplicativeExpression %UnaryExpression

AdditiveExpression :
MultiplicativeExpression
AdditiveExpression + MultiplicativeExpression
AdditiveExpression - MultiplicativeExpression

ShiftExpression ;
AdditiveExpression
ShiftExpression << AdditiveExpression
ShiftExpression >> AdditiveExpression
ShiftExpression >>> AdditiveExpression

Relational Expression :
ShiftExpression
Relational Expression < ShiftExpression
Relational Expression > ShiftExpression
Relational Expression <= ShiftExpression
Relational Expression >= ShiftExpression

EqualityExpression :
Relational Expression
EqualityExpression == Relational Expression
EqualityExpression ! = Relational Expression

BitwiseANDEXxpression :
EqualityExpression
BitwiseANDEXxpression & EqualityExpression

BitwiseXOREXpression :
BitwiseANDEXxpression

BitwiseXORExpression * BitwiseANDEXpression

29 Compatibility note: ECMAScript operators delete and void are not supported. parselnt and parseFloat are supported as library functions.
ECMAScipt does not support operator isvalid.

30 Compatibility note: Integer division (div) is not supported by ECMA Script.

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Proposed Version 11-Feb-1999 Page

56(114)
BitwiseORExpression :
Bitwi seXOREXpression

BitwiseORExpression | BitwiseXOREXpression

Logical ANDEXxpression :
BitwiseORExpression
Logical ANDEXpression && BitwiseORExpression

Logical ORExpression :
Logical ANDExpression
Logical ORExpression | | Logical ANDEXxpression

Conditional Expression :
Logical ORExpression
Logical ORExpression ? AssignmentExpression: AssignmentExpression

AssignmentExpression :
Conditional Expression
Identifier AssignmentOperator AssignmentExpression

AssignmentOperator :: one of

= *= /= U += -= <<= >>= >>>= &= A= | = div=
Expression :
AssignmentExpression

Expression, AssignmentExpression

Satement ;31

Block
VariableStatement
EmptyStatement
ExpressionStatement
IfSatement
IterationStatement
ContinueStatement
BreakSatement
ReturnSatement

Block :
{ StatementListoy }

SatementList :

Statement
SatementList Statement

VariableStatement :
var VariableDeclarationList ;

VariableDeclarationList :

VariableDeclaration
VariableDeclarationList, VariableDeclaration

31 Compatibility note: ECMAScript with statement is not supported.

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Proposed Version 11-Feb-1999 Page
57(114)

VariableDeclaration :
Identifier Variablelnitializer gy

Variablelnitializer :
= Conditional Expression

EmptyStatement :

ExpressionStatement :
Expression ;

[fSatement ;32

i f (Expression) Satement el se Satement
i f (Expression) Statement

IterationSatement ;33

WhileStatement
ForSatement

WhileStatement :
whi | e (Expression) Satement

For Statement :
for (Expressiong, ; Expressiong; Expressiong,) Statement
for (var VariableDeclarationList; Expressiong,; Expressiong,) Statement

ContinueStatement ;34
conti nue ;

BreakSatement :3°
break ;

ReturnStatement :
return EXpressiongg:;

FunctionDeclaration ;36
ext erng: functi on ldentifier (FormalParameterListoy) Block ; o

Formal ParameterList :

Identifier
FormalParameterList, ldentifier

CompilationUnit :
Pragmas,,; FunctionDeclarations

Rase isalwaystied to the closest if.

33 Compatibility note: ECMAScript for in statement is not supported.
34 Continue statement can only be used inside awhile or afor statement.
35 Break statement can only be used inside awhile or afor statement.
36 Compatibility note: ECMA Script does not support keyword extern.

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Proposed Version 11-Feb-1999

Pragmas :37

Pragma
Pragmas Pragma

Pragma :
use PragmaDeclaration;

PragmaDeclaration :

External CompilationUnitPragma
AccessControl Pragma
MetaPragma

External CompilationUnitPragma :
ur | ldentifier SringLiteral

AccessControl Pragma : 38
access AccessControl Specifier

AccessControl Specifier :
public
domai n SringLiteral
pat h SringLiteral

domai n SringLiteral pat h SringLiteral

MetaPragma :
nmet a MetaSpecifier

MetaSpecifier :
MetaName
MetaHttpEquiv
MetaUser Agent

MetaName :
nane MetaBody

MetaHttpEquiv :
http equi v MetaBody

MetaUser Agent :
user agent MetaBody

MetaBodly :

MetaPropertyName MetaContent MetaSchemeq:

MetaPropertyName :
SringLiteral

MetaContent :
SringLiteral

37 Compatibility note: ECMAScript does not support pragmas.
38 Compilation unit can contain only one access control pragma.

Page
58(114)

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Proposed Version 11-Feb-1999 Page
59(114)

MetaScheme :
SringLiteral

FunctionDeclarations :

FunctionDeclaration
FunctionDeclarations FunctionDeclaration

8.4 Numeric String Grammar

The following contains the specification of the numeric string grammar for WML Script. This grammar is used for
trandating strings into numeric values. This grammar is similar to the part of the lexical grammar having to do with
numeric literals and has as its terminal symbols the characters of the US-ASCII character set.

The following grammar can be used to convert strings into the following numeric literal values:

« Decimal Integer Literal: Use the following productions starting from the goal symbol SringDecimallntegerLiteral.
« Decimal Floating-Point Literal: Use the following productions starting from the goal symbol
SringDecimal FloatingPointLiteral.

SringDecimalIntegerLiteral :::
StrWhiteSpace,,: StrDecimalInteger Literal StrivhiteSpace,y,

SringDecimal FloatingPointLiteral :::
StrWhiteSpace,,: StrDecimalInteger Literal StrivhiteSpace,y,
StrWhiteSpace,, StrDecimal FloatingPointLiteral StrivhiteSpacey,

StrWhiteSpace :::
StrwhiteSpaceChar StrivhiteSpace,

SrwhiteSpaceChar :::
<TAB>
<VT>
<FF>
<SP>
<LF>
<CR>

SrDecimal IntegerLiteral :::

SrDecimal Digits
+ SrDecimalDigits
- SrDecimalDigits

StrDecimal FloatingPointLiteral :::
StrDecimal Digits. StrDecimal Digitsyy StrExponentPart gy
. StirDecimal Digits StrExponentPartyy
SrDecimal Digits SrExponentPart

SrDecimalDigits:::
SrDecimal Digit
SrDecimal Digits SrDecimal Digit

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Proposed Version 11-Feb-1999

SrDecimalDigit ::: one of
012345¢6 72829

SrExponentPart :::
StrExponentindicator SrSignedinteger

SrExponentindicator ::: one of
e E

SrSgnedinteger :::
SrDecimal Digits
+ SrDecimalDigits
- SrDecimalDigits

Page
60(114)

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Proposed Version 11-Feb-1999 Page
61(114)

9. WMLScript Bytecode Interpreter

Thetextual format of WML Script language must be compiled into a binary format before it can be interpreted by the
WML Script bytecode interpreter. WMLScript compiler encodes one WML Script compilation unit into WML Script
bytecode using the encoding format presented in the chapter 10. A WML Script compilation unit (see section 8.1.3) isa
unit containing pragmas and any number of WML Script functions. WML Script compiler takes one compilation unit as
input and generates the WML Script bytecode as its output.

9.1 Interpreter Architecture

WMLScript interpreter takes WML Script bytecode as its input and executes encoded functions as they are called. The
following figure contains the main parts related to WML Script bytecode interpretation:

call http://www host.com scri pt#nyFunc(“Test”,12)

www .host.com/script:
WM L Script WML Script
Libraries Bytecode
Functions Functions
Interpreter
myFunc()
State
IP Operand
Stack

Call Stack || Variables

Figure 1: General architecture of the WML Script interpreter

The WML Script interpreter can be used to call and execute functions in a compilation unit encoded as WML Script
bytecode. Each function specifies the number of parametersit accepts and the instructions used to express its behaviour.
Thus, a call to aWML Script function must specify the function, the function call arguments and the compilation unit in
which the function is declared. Once the execution completes normally, the WML Script interpreter returns the control and
the return value back to the caller.

Execution of a WML Script function means interpreting the instructions residing in the WML Script bytecode. While a
function is being interpreted, the WML Script interpreter maintains the following state information:

e |P (Instruction Pointer): This pointsto an instruction in the bytecode that is being interpreted.

« Variables: Maintenance of function parameters and variables.

« Operand stack: It is used for expression evaluation and passing arguments to called functions and back to the caller.

« Function call stack: WML Script function can call other functions in the current or separate compilation unit or
make calls to library functions. The function call stack maintains the information about functions and their return
addresses.

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Proposed Version 11-Feb-1999 Page
62(114)

9.2 Character Set

The WML Script Interpreter must use only one character set (native character set) for al of its string operations.
Transcoding between different character sets and their encodingsis allowed as long as the WML Script string operations
are performed using only the native character set. The native character set can be requested by using the Lang library
function Lang.character Set() (see [WMLSLibs])

9.3 WMLScript and URLs

The World Wide Web is a network of information and devices. Three areas of specification ensure widespread
interoperability:

* A unified naming model. Naming isimplemented with Uniform Resource Locators (URLS), which provide standard
way to name any network resource. See [RFC2396].

» Standard protocolsto transport information (e.g. HTTP).

» Standard content types (e.g. HTML, WML Script).

WML Script assumes the same reference architecture as HTML and the World Wide Web. WML Script compilation unit is
named using URLs and can be fetched over standard protocols that have HTTP semantics, such as[WSP]. URLs are
defined in [RFC2396]. The character set used to specify URLsis also defined in [RFC2396].

In WML Script, URLs are used in the following situations:

* When auser agent wants to make a WML Script call (see 9.3.4)
* When specifying external compilation units (see 6.7.1)
* When specifying access control information (see 6.7.2)

9.3.1 URL Schemes

A WMLScript interpreter must implement the URL schemes specified in [WAE].

9.3.2 Fragment Anchors

WML Script has adopted the HTML de facto standard of naming locations within a resource. A WML Script fragment
anchor is specified by the document URL, followed by a hash mark (#), followed by a fragment identifier. WML Script
uses fragment anchors to identify individual WML Script functions within a WML Script compilation unit. The syntax of
the fragment anchor is specified in the following section.

9.3.3 URL Call Syntax

This section contains the grammar for specifying the syntactic structure of the URL call. This grammar is similar to the
part of the WML Script lexical and syntactic grammars having to do with function calls and literals and has asits terminal
symbols the characters of the US-ASCII character set.

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Proposed Version 11-Feb-1999 Page
63(114)

http://ww. host.com scr#foo(1,-3, hello) [l XK
http://ww. host. com scr#bar (1, -3+1, good’) [l Error
http://ww. host. com scr#test(foo(1,-3, hello’)) // Error

Only the syntax for the fragment anchor (#) is specified (see [RFC2396] for more information about URL syntax).

URLCallFragmentAnchor :::
FunctionName()
FunctionName(ArgumentList)

FunctionName :::

FunctionNameL etter
FunctionName FunctionNameL etter
FunctionName Decimal Digit

FunctionNameLetter ::: one of
abcdef ghij k!l mnopgrstuvwxyz
ABCDEFGHI JKLMNOPQRSTUVWXYZ
DecimalDigit ::: one of
0123456789

ArgumentList :

Argument
ArgumentList, Argument

Argument :::
WhiteSpaces, Literal WhiteSpacesy

WhiteSpaces :
WhiteSpace
White Spaces WhiteSpace

WhiteSpace :::
<TAB>
<VT>
<FF>
<SP>
<LF>
<CR>

Literal :::
InvalidLiteral
BooleanLiteral
NumericLiteral
SringLiteral

InvalidLiteral :::
invalid

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Proposed Version 11-Feb-1999

BooleanLiteral :::

true
fal se

NumericLiteral :::
SgnedDecimalIntegerLiteral
SgnedDecimal FloatLiteral

SgnedDecimalIntegerLiteral :::
DecimalIntegerLiteral
+ DecimallntegerLiteral
- DecimallntegerLiteral

DecimalIntegerLiteral :::
Decimal Digit Decimal Digitsyy

SgnedDecimalFloatLiteral :::
DecimalFloatLiteral
+ DecimalFloatLiteral
- DecimalFloatLiteral

DecimalFloatLiteral :::

Page
64(114)

DecimalIntegerLiteral . Decimal Digits,y, ExponentPartyy

. Decimal Digits ExponentPartoy
DecimallntegerLiteral ExponentPart

DecimalDigits :::
Decimal Digit
Decimal Digits Decimal Digit

ExponentPart :::
ExponentIndicator SignedIinteger

Exponentindicator ::: one of
e E

Sgnedinteger :::
Decimal Digits
+ DecimalDigits
- DecimalDigits

SringLiteral :::
" DoubleStringCharacter sy "
' SingleStringCharacter Sy

DoubleStringCharacters:::
DoubleStringCharacter DoubleStringChar acter sy

SngleStringCharacters:::
SingleStringCharacter SingleStringChar acter Sy

DoubleStringCharacter :::
SourceCharacter but not double-quote "

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Proposed Version 11-Feb-1999 Page
65(114)

SngleStringCharacter :::
SourceCharacter but not single-quote’

9.3.4 URL Calls and Parameter Passing

A user agent can make a call to an external WML Script function by providing the following information using URLs and
fragment anchors:

* URL of the compilation unit (e.g. ht t p: / / www. X. conf nyScri pts. scr)
« Function name and parameters as the fragment anchor (e.g. t est Func(’ Test %20ar gunent’ , - 8))

Thefinal URL with the fragment is:
http://ww. X. conf nyScri pts. scr#test Func(’ Test %20ar gunent’ , - 8)
If the given URL denotes avalid WML Script compilation unit then:

» Access control checks are performed (see 6.7.2). The call failsif the caller does not have rights to call the
compilation unit.

« The function name specified in the fragment anchor is matched against the external functionsin the compilation
unit. The call failsif no match is found.

e The parameter list in the fragment anchor (see 9.3.2) is parsed and the given arguments with their appropriate types
(string literals as string data types, integer literals as integer data types etc.) are passed to the function. The call fails
if the parameter list has an invalid syntax.

9.3.5 Character Escaping

URL calls can use URL escaping (see [RFC2396]) and any other escaping mechanism provided by the content format
containing the URL call to specify the URL. However, the URL Call Syntax is applied to the URL fragment only after it
has been properly unescaped.

9.3.6 Relative URLS

WML Script has adopted the use of relative URLS, as specified in [RFC2396]. [RFC2396] specifies the method used to
resolve relative URL s in the context of a WML Script compilation unit. The base URL of a WML Script compilation unit is
the URL that identifies the compilation unit.

9.4 Bytecode Semantics

The following sections describe the general encoding rules that must be used to generate WML Script bytecode. These
rules specify what the WML Script compiler can assume from the behaviour of the WML Script interpreter.

9.4.1 Passing of Function Arguments

Arguments must be present in the operand stack in the same order as they are presented in a WML Script function
declaration at the time of aWML Script or library function call. Thus, the first argument is pushed into the operand stack
first, the second argument is pushed next, etc. The instruction executing the call must pop the arguments from the operand
stack and use them to initialise the appropriate function variables.

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Proposed Version 11-Feb-1999 Page
66(114)

9.4.2 Allocation of Variable Indexes

A WML Script function refers to variables by using unique variable indexes. These indexes must match with the
information specified for each called WML Script function: the number of arguments the function accepts and the number
of local variables used by the function. Thus, the variable index allocation must be done using the following rules:

1) Function Arguments: Indexes for function arguments must be allocated first. The allocation must be done in the
same order as the arguments are pushed into the operand stack (O is allocated for the first argument, 1 for the
second argument, etc.). The number of indexes allocated for function arguments must match the number of
arguments accepted by the function. Thus, if the function accepts N arguments then the last variable index must
be N-1. If the function does not accept any arguments (N = 0) then no variable indexes are allocated.

2) Local variables: Indexesfor local variables must be alocated subsequently from the first variable index (N) that
is not used for function arguments. The number of indexes allocated for local variables must match the number
of local variables used by the function.

9.4.3 Automatic Function Return Value

WML Script function must return an empty string in case the end of the function is encountered without a return statement.
The compiler can rely on the WML Script interpreter to automatically return an empty string every time the interpreter
reaches the end of the function without encountering a return instruction.

9.4.4 Initialisation of Variables

The WML Script compiler should rely on the WML Script interpreter to initialise al function local variablesinitially to an
empty string. Thus, the compiler does not have to generate initialization code for variables declared without initialisation.

9.5 Access Control

WML Script provides two mechanisms for controlling the access to the functions in the WML Script compilation unit:
external keyword and a specific access control pragma. Thus, the WML Script interpreter must support the following
behaviour:

« External functions: Only functions specified as external can be called from other compilation units (see 6.4).
» Access control; Accessto the external functions defined inside a compilation unit is allowed from other compilation
units that match the given access domain and access path definitions (see 6.7.2).

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Proposed Version 11-Feb-1999 Page
67(114)

10. WMLScript Binary Format

The following sections contain the specifications for the WML Script bytecode, a compact binary representation for
compiled WML Script functions. The format was designed to allow for compact transmission over narrowband channels,
with no loss of functionality or semantic information.

10.1 Conventions

The following sections describe the general encoding conventions and data types used to generate WM L Script bytecode.

10.1.1 Used Data Types

The following data types are used in the specification of the WML Script Bytecode:

Data Type Definition

bit 1 bit of data

byte 8 bits of opaque data

int8 8 bit signed integer (two’s complement encoding)

u_int8 8 bit unsigned integer

int16 16 bit signed integer (two’s complement encoding)

u_intl6 16 bit unsigned integer

mb_u_int16 16 bit unsigned integer, in multi-byte integer format. See 10.1.2 for more
information.

int32 32 hit signed integer (two's complement encoding)

u_int32 32 hit unsigned integer

mb_u_int32 32 bit unsigned integer, in multi-byte integer format. See 10.1.2 for more
information.

float32 32 hit signed floating-point value in ANSI/IEEE Std 754-1985 [IEEE754] format.

Network byte order for multi-byte integer valuesis "big-endian". In other words, the most significant byte is transmitted on
the network first followed subsequently by the less significant bytes. Network bit ordering for bit fields within abyteis
"big-endian”. In other words, bit fields described first are placed in the most significant bits of the byte.

10.1.2 Multi-byte Integer Format

This encoding uses a multi-byte representation for integer values. A multi-byte integer consists of a series of octets, where
the most significant bit is the continuation flag and the remaining seven bits are a scalar value. The continuation flag is
used to indicate that an octet is not the end of the multi-byte sequence. A single integer value is encoded into a sequence of
N octets. Thefirst N-1 octets have the continuation flag set to a value of one (1). The final octet in the series has a
continuation flag value of zero.

The remaining seven bits in each octet are encoded in a big-endian order, e.g., most significant bit first. The octets are
arranged in a big-endian order, e.g. the most significant seven bits are transmitted first. In the situation where the initial
octet has less than seven bits of value, all unused bits must be set to zero (0).

For example, the integer value 0x A0 would be encoded with the two-byte sequence 0x81 0x20. Theinteger value
0x60 would be encoded with the one-byte sequence 0x60.

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Proposed Version 11-Feb-1999 Page
68(114)

10.1.3 Character Encoding

WML Script bytecode supports the following character encoding:
o UTF-8 (see [RFC2279)])

Other character sets and their encodings are supported by a special string type (string with external character encoding
definition, see 10.4.1) that does not explicitly specify the used character set or its encoding but assumes that this
information is provided either as part of the compilation unit itself (constant pool), as part of the content access mechanism
(WSP headers etc.) or as the default setting for the compilation unit. The following rules must be applied when defining
the used character encoding for these special strings:

« |If the value of the character set number in the constant pool is non-zero then this number defines the used character
encoding (the number denotes the MIBEnum value assigned by the IANA for all character sets).

« |f the value of the character set number in the constant pool is zero (0) then the character encoding information
provided by the content access mechanism (WSP headers etc.) define the character encoding.

« |f the content access mechanism does not provide any information about the used character encoding then UTF-8is
assumed as the default character encoding.

The compiler must select one of these encodings to encode character stringsin the WML Script bytecode.
WML Script language constructs, such as function namesin WML Script, are written by using only a subset of Unicode

character set i.e, asubset of US-ASCII characters. Thus, function names in the WML Script bytecode must use afixed
UTF-8 encoding.

10.1.4 Notational Conventions

WML Script bytecode is a set of bytes that represent WML Script functionsin abinary format. It contains al the
information needed by the WML Script interpreter to execute the encoded functions as specified. The bytecode can be
divided into sections and subsections each of which containing a binary representation of alogical WML Script unit.

The WML Script bytecode structure and content is presented using the following table based notation:

Name Data typeand size Comment
Thisisaname of asectioninside | This specifies a data type This gives a general overview of the
the bytecode. and its size reserved for a meaning of this section.

section in case it cannot be
divided into smaller
subsections. Subsection
specification isgivenin a
Separate table. Reference to
the tableis provided.

The name of the next section.
Any number of sections can be
presented in one table.

The following conventions apply:

» Sections of bytecode are represented as rows in atable.

» Each section may be divided into subsections and represented in separate tables. In such case areference to the
subsection table is provided.

* Repetitive sections are denoted by section name followed by three dots (...).

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Proposed Version 11-Feb-1999 Page

69(114)

10.2 WMLScript Bytecode
The WML Script encoding contains two major elements. constant literals and the constructs needed to describe the
behaviour of each WML Script function. Thus, the WML Script bytecode consists of the following sections:

Name Datatype and size Comment

HeaderInfo See 10.3 Contains general information related to the

bytecode.
ConstantPool See 10.4 Contains the information of all constants specified

as part of the WML Script compilation unit that
are encoded into bytecode.

PragmaPool See 10.5 Contains the information related to pragmas
specified as part of the WML Script compilation
unit that are encoded into bytecode.
FunctionPool See 10.6 Contains al the information related to the
encoding of functions and their behaviour.

The following sections define the encoding of these sections and their subsections in detail.

10.3 Bytecode Header

The header of the WML Script bytecode contains the following information:

Name Datatypeand size Comment

VersionNumber byte Version number of the WML Script bytecode. The
version byte contains the major version minus
one in the upper 4 bits and the minor version in
the lower 4 bits.

The current version is 1.1. Thus, the version
number must be encoded as 0x01.

CodeSize mb_u_int32 The size of the rest of the bytecode (not including
the version number and this variable) in bytes

10.4 Constant Pool

Constant pool contains all the constants used by the WML Script functions. Each of the constants has an index number
starting from zero that is defined by its position in the list of constants. The instructions use this index to refer to specific
constants.

Name Datatypeand size Comment
NumberOfConstants mb_u intl6 Specifies how many constants are encoded in this
pool.

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Proposed Version 11-Feb-1999

Page
70(114)

Name

Datatypeand size

Comment

CharacterSet

mb_u_int16

Specifies the character set used by the string
constants in the constant pool. The character setis
specified as an integer that denotes a MIBEnum
value assigned by the IANA for all character sets
(see [WSP] for more information).

Constants...

See 10.4.1

Contains the definitions for each constant in the
constant pool. The number of constantsis
specified by NumberOf Constants.

10.4.1 Constants

Constants are stored into the bytecode one after each other. Encoding of each constant starts with the definition of its type
(integer, floating-point, string etc.). It is being followed by constant type specific data that represents the actual value of

the constant:
Name Datatypeand size Comment
ConstantType u_int8 The type of the constant.
ConstantValue See10.4.1.1, 10.4.1.2 and | Type specific value definition.
10.4.1.3

The following encoding for constant typesis used:

Code | Type Encoding
0 8 bit signed integer 104.1.1.1
1 16 bit signed integer 10.4.1.1.2
2 32 bit signed integer 10.4.1.1.3
3 32 hit signed floating-point 10.4.1.2
4 UTF-8 String 10.4.1.3.1
5 Empty String 10.4.1.3.2
6 String with external character encoding definition 104.1.3.3

7-255 Reserved for future use

10.4.1.1 Integers

WML Script bytecode supports 8 hit, 16 bit and 32 bit signed integer constants. The compiler can optimise the WML Script
bytecode size by selecting the smallest integer constant type that can still hold the integer constant value.

10.4.1.1.1 8 Bit Signed Integer

8 bit signed integer constants are represented in the following format:

Name

Datatypeand size

Comment

Constantinteger8 int8

The value of the 8 bit signed integer constant.

© Wireless Application Protocol Forum, Ltd, 1999

All rights reserved.

Proposed Version 11-Feb-1999 Page
71(114)

10.4.1.1.2 16 Bit Signed I nteger

16 hit signed integer constants are represented in the following format:

Name

Datatypeand size

Comment

ConstantInteger16

int16

The value of the 16 bit signed integer constant.

10.4.1.1.3 32 Bit Signed Integer

32 hit signed integer constants are represented in the following formet:

Name

Datatypeand size

Comment

Constantl nteger32

int32

The value of the 32 bit signed integer constant.

10.4.1.2 Floats

Floating-point constants are represented in 32-bit ANSI/IEEE Std 754-1985 [|EEE754] format:

Name

Datatype and size

Comment

ConstantFloat32

float32

The value of the 32 bit floating point constant.

10.4.1.3 Strings

WML Script bytecode supports several ways to encode string constants3? into the constant pool. The compiler can select
the most suitable character encoding supported by the client and optimise the WML Script bytecode size by selecting the

smallest string constant type that can still hold the string constant value.

10.4.1.3.1 UTF-8 Strings

Strings that use UTF-8 encoding are encoded into the bytecode by first specifying their length and then the content:

Name

Datatypeand size

Comment

StringSizeUTF8

mb_u_int32

The size of the following string in bytes (not
containing this variable).

ConstantStringUTF8

StringSizeUTF8 bytes

The value of the Unicode string (non-null
terminated) constant encoded using UTF-8. See
10.1.3 for more information about transfer
encoding of strings.

10.4.1.3.2 Empty Strings

Empty strings do not need any additional encoding for their value.

39 Note that stri ng constants can contain embedded null characters.

© Wireless Application Protocol Forum, Ltd, 1999

All rights reserved.

Proposed Version 11-Feb-1999 Page
72(114)

10.4.1.3.3 Stringswith External Character Encoding Definition

Strings that use external character encoding definition are encoded into the bytecode by first specifying their length and
then the content:

Name Datatype and size Comment

StringSizeExt mb_u_int32 The size of the following string in bytes (not
containing thisfield).

ConstantStringExt StringSizeExt bytes The value of the string (non-null terminated)

constant using external character encoding
definition. See 10.1.3 for more information
about transfer encoding of strings.

10.5 Pragma Pool

The pragma pool contains the information for pragmas defined in the compiled compilation unit.

Name Datatypeand size Comment
NumberOfPragmas mb_u int16 The number of pragmas.
Pragmas... See 10.5.1 Contains the definitions for each pragma in the

pragma pool. The number of pragmas is
specified by NumberOfPragmas.

10.5.1 Pragmas

Pragmas are stored into the bytecode one after each other. Encoding of each pragma starts with the definition of its type. It
is being followed by pragma type specific data that represents the actual value of the pragma:

Name Datatypeand size Comment
PragmaType u_int8 The type of the pragma following pragma value.
PragmaValue See 10.5.1.1 and 10.5.1.2 Pragma type specific value definition.

The following encoding for pragma types is used:

Code | Type Encoding
0 Access Control Disabled 10.5.1.1.1
1 Access Domain 10.5.1.1.2
2 Access Path 10.5.1.1.3
3 User Agent Property 10.5.1.2.1
4 User Agent Property and Scheme 10.5.1.2.2
5-255 | Reserved for future use

10.5.1.1 Access Control Pragmas

Access control information is encoded into the bytecode using three different pragmadggsssontrol disabled,
access domain andaccess path. The pragma pool can contain only one entry for each access control pragma type.

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Proposed Version 11-Feb-1999 Page
73(114)

10.5.1.1.1 Access Control Disabled

This pragma specifies that access control for the compilation unit is disabled. If pragma pool contains entries for access
domain and access path, their values are ignored. No additional encoding is needed.

10.5.1.1.2 Access Domain

This pragma specifies the access domain to be used for the access control.

Name Datatypeand size Comment

AccessDomainlndex mb_u_int16 Constant pool index to a string constant
containing the value of the access domain. The
referred constant type must be between 4 and 6.

10.5.1.1.3 Access Path

This pragma specifies the access path to be used for access control.

Name Datatype and size Comment

AccessPathl ndex mb_u_intl16 Constant pool index to a string constant
containing the value of the access path. The
referred constant type must be between 4 and 6.

10.5.1.2 Meta-Information Pragmas

These pragmas contain meta-information that is mean for the WML Script interpreter. Meta-information contains following
entities: name, content and scheme (optional)

10.5.1.2.1 User Agent Property

User agent properties are encoded by first specifying their name and then their value as indexes to the constant pool:

Name Datatype and size Comment

PropertyNamel ndex mb_u_intl16 Constant pool index to a string constant
(constant types 4 to 6) containing the property
name.

Contentl ndex mb_u_intl16 Constant pool index to a string constant
(constant types 4 to 6) containing the property
value.

10.5.1.2.2 User Agent Property and Scheme

This pragma is encoded by specifying the property name, the value and the additional scheme:

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Proposed Version 11-Feb-1999 Page
74(114)

Name Datatypeand size Comment

PropertyNamel ndex mb_u_int16 Constant pool index to a string constant
(constant types 4 to 6) containing the property
name.

Contentl ndex mb_u_int16 Constant pool index to a string constant
(constant types 4 to 6) containing the property
value.

Schemel ndex mb_u_int16 Constant pool index to a string constant
(constant types 4 to 6) containing the property
schema.

10.6 Function Pool

The function pool contains the function definitions. Each of the functions has an index number starting from zero that is
defined by its position in the list of functions. The instructions use this index to refer to specific functions.

Name Datatype and size Comment

NumberOfFunctions u_int8 The number of functions specified in this
function pool.

FunctionNameTable See 10.6.1 Function name table contains the names of all
external functions present in the bytecode.

Functions... See 10.6.2 Contains the bytecode for each function.

10.6.1 Function Name Table

The names of the functions that are specified as external (ext er n) are stored into a function name table. The names must
be presented in the same order as the functions are represented in the function pool. Functions that are not specified as
external are not represented in the function name table. The format of the table is the following:

Name Datatypeand size Comment

NumberOfFunctionNames | u_int8 The number of function names stored into the
following table.

FunctionNames... See10.6.1.1 Each external function name represented in the
same order as the functions are stored into the
function pool.

10.6.1.1 Function Names

Function name is provided only for functions that are specified as external in WML Script. Each name is represented in the
following manner;

Name Datatype and size Comment

Functionl ndex u_int8 The index of the function for which the
following name is provided.

FunctionNameSize u_int8 The size of the following function name in bytes
(not including this variable).

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Proposed Version 11-Feb-1999

Page
75(114)

Name Datatypeand size

Comment

FunctionName FunctionNameSi ze bytes

The characters of the function name encoded by
using UTF-8. See 10.1.3 for more information
about function name encoding.

10.6.2 Functions

Each function is defined by its prologue and code array:

Name Datatypeand size Comment

NumberOfArguments u_int8 The number of arguments accepted by the
function.

NumberOfLocalVariables | u_int8 The number of local variables used by the
function (not including arguments).

FunctionSize mb_u_int32 Size of the following CodeArray (not including
this variable) in bytes.

CodeArray See 10.6.2.1 Contains the code of the function.

10.6.2.1 CodeArray

Code array contains all instructions that are needed to implement the behaviour of a WML Script function. See 11 for more

information about WML Script instruction set.

Name Datatypeand size

Comment

Instructions... See chapter 11

The encoded instructions.

10.7 Limitations

The following table contains the limitations inherent in the selected bytecode format and instructions:

Maximum size of the bytecode 4294967295 bytes
Maximum number of constants in the constant pool 65535

Maximum number of different constant types 256

Maximum size of a constant string 4294967295 bytes
Maximum size of a constant URL 4294967295 bytes
Maximum length of function name 255

Maximum number of different pragma types 256

Maximum number of pragmas in the pragma pool 65536

Maximum number of functions in the function pool 255

Maximum number of function parameters 255

Maximum number of local variables / function 255

Maximum number of local variables and function parameters 256

Maximum number of libraries 65536

Maximum number of functions / library 256

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Proposed Version 11-Feb-1999 Page
76(114)

11. WMLScript Instruction Set

The WML Script instruction set specifies a set of assembly level instructions that must be used to encode all WML Script
language constructs and operations. These instructions are defined in such away that they are easy to implement efficiently
on avariety of platforms.

11.1 Conversion Rules

The following table contains a summary of the conversion rules specified for the WML Script interpreter:

Rule — Operand type(s) Conversions

1 - Boolean(s) See the conversion rulesHoolean(s) in section
Operator Data Type Conversion Rules (7.2)

2 — Integer(s) See the conversion ruled fibeger (s) in section
Operator Data Type Conversion Rules (7.2)

3 — Floating-point(s) See the conversion rulesHmating-point(s) in
sectionOperator Data Type Conversion Rules (7.2

4 — String(s) See the conversion rulesSwing(s) in section
Operator Data Type Conversion Rules (7.2)

5 — Integer or floating-point (unary) See the conversion rulesfeger or floating-
point (unary) in sectionOperator Data Type
Conversion Rules (7.2)

6 — Integers or floating-points See the conversion rulelnfegers or floating-
points in sectionOperator Data Type Conversion
Rules (7.2)

7 — Integers, floating-points or strings See the conversion ruléstégers, floating-
points or strings in sectionOperator Data Type
Conversion Rules (7.2)

8 - Any See the conversion rules famy in section
Operator Data Type Conversion Rules (7.2)

11.2 Fatal Errors

The following table contains a summary of the fatal errors specified for the WMLScript interpreter:

Error code: Fatal Error:
1 (Verification Failed) See sectidferification Failed (13.3.1.1)
for details

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Proposed Version 11-Feb-1999

Error code:

Fatal Error:

2 (Fatal Library Function Error)

See section Fatal Library Function Error
(13.3.1.2) for details

3 (Invalid Function Arguments)

See section Invalid Function Arguments
(13.3.1.3) for details

4 (External Function Not Found)

See section External Function Not Found
(13.3.1.4) for details

5 (Unable to Load Compilation Unit)

See section Unable to Load Compilation
Unit (13.3.1.5) for details

6 (Access Violation)

See section Access Violation (13.3.1.6) for
details

7 (Stack Underflow)

See section Stack Underflow (13.3.1.7) for
details

8 (Programmed Abort)

See section Programmed Abort (13.3.2.1)
for details

9 (Stack Overflow)

See section Stack Overflow (13.3.3.1) for
details’

10 (Out of Memory)

See section Out of Memory (13.3.3.2) for
details

11 (User Initiated)

See section User Initiated (13.3.4.1) for
details

12 (System Initiated)

See section System Initiated (13.3.4.2) for
details

Page
77(114)

" These fatal errors are not related to computation but can be generated as a result of memory exhaustion
or external signals.

11.3 Optimisations

WML Script instruction set has been defined so that it provide at least the minimal set of instructions by which WML Script
language operations can be presented. Since the WML Script bytecode is being transferred from the gateway to the client
through a narrowband connection, the selected instructions have been optimised so that the compilers can generate code of
minimal size. In some cases, this has meant that several instructions with different parameters have been introduced to
perform the same operation. The compiler should use the one that generates optimal code.

Inline parameters have been used to optimally pack information into as few bytes as possible. The following inline
parameter optimisations have been introduced:

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Proposed Version 11-Feb-1999 Page

78(114)
Signature Available Used for
instructions
1XXPPPPP 4 JUMP_FW_S, JUMP_BW_S, TIUMP_FW_S, LOAD_VAR_S
010XPPPP 2 STORE VAR S LOAD CONST_S
011XXPPP 4 CALL_S,CALL _LIB_S INCR VAR S
OOXXXXXX 63 The rest of the instructions

11.4 Notational Conventions

The following sections contain the definitions of instructions in the WML Script instruction set. For each instruction, the
following information is provided:

Instruction: A symbolic name given to the instruction and its parameters.

Opcode: The 8-bit encoding of the instruction.

Parameters: Parameter description specifying their ranges and semantics. Some instructions are optimised and can
contain an implicit parameter as part of the encoding, ie, a set of bits from the 8 bit encoding is reserved for a
parameter value.

Operation: Description of the operation of the instruction, its parameters and the effects they have on the execution
and the operand stack.

Operands: Specifies the number of operands required by the instruction and all acceptable operand types.
Conversion: Specifies the used conversion rule (see section 11.1).

Result: Specifiesthe result and its type.

Operand stack: Specifies the effect on the operand stack. It is described by using notation where the part before the
arrow (=>) represents the stack before the instruction has been executed and the part after the arrow the stack after
the execution.

Errors. Specifies the possible fatal errors that can occur during the execution of the instruction (see section 11.2).

All instructions except the control flow instructions continue the execution at the following instruction. Control flow
instructions specify the next instruction explicitly.

Fatal errors that can be encountered at any time (see section External Exceptionsin 13.3.4 and Memory Exhaustion Errors
in 13.3.3) are assumed to be possible with every instruction.

The result of theinstruction can beani nval i d value. Thisis not explicitly stated with each instruction but is assumed to
be the result of the used conversion rule, aload of an invalid or unsupported floating-point constant or aresult of an
operation withani nval i d operand.

11.5 Instructions

The following sections contain the descriptions of each instruction divided into subcategories.

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Proposed Version 11-Feb-1999 Page

79(114)

11.5.1 Control Flow Instructions

Instruction: JUMP_FW_S

Opcode: 100iiiii (iiiii isthe implicit unsigned offset)

Parameter: Offset is an unsigned 5-bit integer in the range of 0..31.

Operation: Jumps forward to an offset. Execution proceeds at the given offset from the address of the first byte
following this instruction. More specifically, if the address of thisinstruction is n and the value of
the offset is offset then the next instruction to be executed is at address:
n+ 1 + offset.

Operands: -

Conversion: -

Result: -

Operand stack: No change

Errors: 1 (Verification Failed)

Instruction:; JUMP_FW offset

Opcode: 00000001

Parameter: Offset is an unsigned 8-hit integer in the range of 0..255.

Operation: Jumps forward to an offset. Execution proceeds at the given offset from the address of the first byte
following this instruction. More specifically, if the address of thisinstruction is n and the value of
the offset is offset then the next instruction to be executed is at address:
n+ 2 + offset.

Operands: -

Conversion: -

Operand stack: No change

Errors: 1 (Verification Failed)

Instruction: JUMP_FW_W <offset],offset2>

Opcode: 00000010

Parameter: Offset is an unsigned 16-bit integer <offsetl, offset2> in the range of 0..65535.

Operation: Jumps forward to an offset. Execution proceeds at the given offset from the address of the first byte
following thisinstruction. More specifically, if the address of thisinstruction isn and the value of
the offset is offset then the next instruction to be executed is at address:
n+ 3 + offset.

Operands: -

Conversion: -

Result: -

Operand stack: No change

Errors: 1 (Verification Failed)

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Proposed Version 11-Feb-1999 Page
80(114)

Instruction:; JUMP BW_S

Opcode: 10diiiii (iiiii isthe implicit unsigned offset)

Parameter: Offset is an unsigned 5-hit integer in the range of 0..31.

Operation: Jumps backward to an offset. Execution proceeds at the given offset from the address of this
instruction. More specificaly, if the address of thisinstruction is n and the value of the offset is
offset then the next instruction to be executed is at address: n - offset.

Operands: -

Conversion: -

Result: -

Operand stack: No change

Errors: 1 (Verification Failed)

Instruction: JUMP_BW offset

Opcode: 00000011

Parameter: Offset is an unsigned 8-bit integer in the range of 0..255.

Operation: Jumps backward to an offset. Execution proceeds at the given offset from the address of this
instruction. More specificaly, if the address of this instruction is n and the value of the offset is
offset then the next instruction to be executed is at address: n - offset.

Operands: -

Conversion: -

Resullt: -

Operand stack: No change

Errors: 1 (Verification Failed)

Instruction:; JUMP_BW_W <offsetl,offset2>

Opcode: 00000100

Parameter: Offset isan unsigned 16-bit integer <offsetl, offset2> in the range of 0..65535.

Operation: Jumps backward to an offset. Execution proceeds at the given offset from the address of this
instruction. More specifically, if the address of thisinstruction is n and the value of the offset is
offset then the next instruction to be executed is at address: n - offset.

Operands: -

Conversion: -

Result: -

Operand stack: No change

Errors: 1 (Verification Failed)

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Proposed Version 11-Feb-1999 Page

81(114)
Instruction:; TJUMP_FW_S
Opcode: 110iiiii (iiiii isthe implicit unsigned offset)
Parameter: Offset is an unsigned 5-hit integer in the range of 0..31.
Operation: Pops a value from the operand stack and jumps forward to an offset if the value is either f al se or

i nval i d. Execution proceeds at the given offset from the address of the first byte following this
instruction (more specificaly, if the address of thisinstruction is n and the value of the offset is
offset then the next instruction to be executed is at address: n + 1 + offset). Otherwise, the execution
continues at the next instruction.

Operand: Boolean
Conversion: 1 - Boolean(s)
Result: -

Operand stack: ..., value => ...

Errors: 1 (Verification Failed), 7 (Stack Underflow)

Instruction: TIJUMP_FW offset

Opcode: 00000101

Parameter: Offset is an unsigned 8-bit integer in the range of 0..255.

Operation: Pops a value from the operand stack and jumps forward to an offset if the value is either f al se or

i nval i d. Execution proceeds at the given offset from the address of the first byte following this
instruction (more specifically, if the address of thisinstruction is n and the value of the offset is
offset then the next instruction to be executed is at address: n + 2 + offset). Otherwise, the execution
continues at the next instruction.

Operand: Boolean
Conversion: 1 - Boolean(s)
Result: -

Operand stack: ..., value => ...
Errors: 1 (Verification Failed), 7 (Stack Underflow)

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Proposed Version 11-Feb-1999 Page

82(114)

Instruction:
Opcode:
Parameter:

Operation:

Operand:
Conversion:
Result:

Operand stack:

TIUMP_FW_W <offset1,offset2>
00000110
Offset isan unsigned 16-bit integer <offsetl, offset2> in the range of 0..65535.

Pops a value from the operand stack and jumps forward to an offset if the value is either f al se or

i nval i d. Execution proceeds at the given offset from the address of the first byte following this
instruction (more specificaly, if the address of thisinstruction is n and the value of the offset is
offset then the next instruction to be executed is at address: n + 3 + offset). Otherwise, the execution
continues at the next instruction.

Boolean
1 — Boolean(s)

..., value => ...

Operand stack:

Errors:

Errors: 1 (Verification Failed), 7 (Stack Underflow)

Instruction: TIJUMP_BW offset

Opcode: 00000111

Parameter: Offset is an unsigned 8-bit integer in the range of 0..255.

Operation: Pops a value from the operand stack and jumps backward to an offset if the value is either f al se or
i nval i d. Execution proceeds at the given offset from the address of this instruction (more
specifically, if the address of thisinstruction is n and the value of the offset is offset then the next
instruction to be executed is at address: n - offset). Otherwise, the execution continues at the next
instruction.

Operand: Boolean

Conversion: 1 - Boolean(s)

Result: -

..., value => ...

1 (Verification Failed), 7 (Stack Underflow)

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Proposed Version 11-Feb-1999

Page
83(114)

Instruction:
Opcode:
Parameter:

Operation:

Operand:
Conversion:

Result:

Operand stack:

Errors:

TIJUMP_BW_W <offsetl,offset2>
00001000
Offset isan unsigned 16-bit integer <offsetl, offset2> in the range of 0..65535.

Pops a value from the operand stack and jumps backward to an offset if the value is either f al se or
i nval i d. Execution proceeds at the given offset from the address of this instruction (more
specifically, if the address of thisinstruction is n and the value of the offset is offset then the next
instruction to be executed is at address: n - offset). Otherwise, the execution continues at the next
instruction.

Boolean

1 - Boolean(s)

...,value => ...

1 (Verification Failed), 7 (Stack Underflow)

11.5.2 Function Call Instructions

Instruction: CALL_S

Opcode: 01100iii (iii isthe implicit findex)

Parameter: Findex is an unsigned 3-bit integer in the range of 0..7.

Operation: Pops function arguments from the operand stack, initialises the function variables (arguments and
local variables) and calls alocal function defined in the same function pool. Execution proceeds
from the first instruction of the function findex.

Operands: Variable number, any type

Conversion: -

Resullt: Any (function return value)

Operand stack: ..., [argl, [arg2 ...]] => ..., ret-value

Errors: 1 (Verification Failed), 7 (Stack Underflow)

Instruction: CALL findex

Opcode: 00001001

Parameter: Findex is an unsigned 8-bit integer in the range of 0..255.

Operation:; Pops function arguments from the operand stack, initialises the function variables (arguments and
local variables) and calls alocal function defined in the same function pool. Execution proceeds
from the first instruction of the function findex.

Operands: Variable number, any type

Conversion: -

Result; Any (function return value)

Operand stack: ..., [argl, [arg2 ...]] => ..., ret-value

Errors: 1 (Verification Failed), 7 (Stack Underflow)

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Proposed Version 11-Feb-1999 Page
84(114)
Instruction: CALL_LIB_Slindex
Opcode: 01101iii (iii istheimplicit findex)
Parameters: Findex is an unsigned 3-bit integer in the range of 0..7.
Lindex is an unsigned 8-hit integer in the range of 0..255.
Operation:; Pops function arguments from the operand stack, initialises the function variables (arguments and
local variables) and calls alibrary function findex defined in the specified library lindex.
Operands: Variable number (specified by the called library function), any type
Conversion: -
Result; Any (function return value)
Operand stack: ..., [argl, [arg2 ...]] => ..., ret-value
Errors: 1 (Verification Failed), 2 (Fatal Library Function Error),
7 (Stack Underflow), 8 (Programmed Abort)
Instruction: CALL_LIB findex lindex
Opcode: 00001010
Parameters: Findex is an unsigned 8-bit integer in the range of 0..255.
Lindex is an unsigned 8-bit integer in the range of 0..255.
Operation: Pops function arguments from the operand stack, initialises the function variables (arguments and
local variables) and calls alibrary function findex defined in the specified library lindex.
Operands: Variable number (specified by the called library function), any type
Conversion: -
Resullt: Any (function return value)
Operand stack: ..., [argl, [arg2 ...]] => ..., ret-value
Errors: 1 (Verification Failed), 2 (Fatal Library Function Error),
7 (Stack Underflow), 8 (Programmed Abort)
Instruction:; CALL_LIB_W findex <lindex1, lindex2>
Opcode: 00001011
Parameters: Findex is an unsigned 8-bit integer in the range of 0..255.
Lindex is an unsigned 16-bit integer <lindexl,lindex2> in the range of 0..65535.
Operation:; Pops function arguments from the operand stack, initialises the function variables (arguments and
local variables) and calls alibrary function findex defined in the specified library lindex.
Operands: Variable number (specified by the called library function), any type
Conversion: -
Result; Any (function return value)
Operand stack: ..., [argl, [arg2 ...]] => ..., ret-value
Errors: 1 (Verification Failed), 2 (Fatal Library Function Error),

7 (Stack Underflow), 8 (Programmed Abort)

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Proposed Version 11-Feb-1999 Page
85(114)

Instruction:; CALL_URL urlindex findex args

Opcode: 00001100

Parameters: Urlindex is an unsigned 8-bit integer in the range of 0..255 that must point to the constant pool
containing avalid URL. The referred constant type must be between 4 and 6.

Findex is an unsigned 8-hit integer in the range of 0..255 that must point to the constant pool
containing avalid function name. The referred constant type must be 4.

Argsisan unsigned 8-hit integer in the range of 0..255 that must contain the number of function
arguments pushed on the operand stack.

Operation:; Pops function arguments from the operand stack, initialises the function variables (arguments and
local variables) and calls a function specified by findex defined in the specified URL address
urlindex.

Operands: Variable number (specified by args), any type

Conversion: -

Result; Any (function return value)

Operand stack: ..., [argl, [arg2 ...]] => ..., ret-value

Errors: 1 (Veification Failed), 3 (Invalid Function Arguments),

4 (External Function Not Found), 5 (Unable to Load Compilation Unit),
6 (Access Violation), 7 (Stack Underflow)

Instruction: CALL_URL_W <urlindexl,urlindex2> <findex1,findex2> args

Opcode: 00001101

Parameters: Urlindex is an unsigned 16-bit integer <urlindex1,urlindex2> in the range of 0..65535 that must
point to the constant pool containing avalid URL. The referred constant type must be between 4 and
6.

Findex is an unsigned 16-bit integer <findex1,findex2> in the range of 0..65535 that must point to
the constant pool containing a valid function name. The referred constant type must be 4.
Argsisan unsigned integer in the range of 0..255 that must contain the number of function
arguments pushed on the operand stack.

Operation: Pops function arguments from the operand stack, initialises the function variables (arguments and
local variables) and calls a function specified by findex defined in the specified URL address
urlindex.

Operands: Variable number (specified by args), any type

Conversion: -

Resullt: Any (function return value)

Operand stack: ..., [argl, [arg2 ...]] => ..., ret-value

Errors: 1 (Verification Failed), 3 (Invalid Function Arguments),

4 (External Function Not Found), 5 (Unable to Load Compilation Unit),
6 (Access Violation), 7 (Stack Underflow)

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Proposed Version 11-Feb-1999

11.5.3 Variable Access and Manipulation

Page
86(114)

Instruction: LOAD VAR S

Opcode: 1113iiiii (iiiii isthe implicit vindex)

Parameter: Vindex is an unsigned 5-bit integer in the range of 0..31.
Operation: Pushes the value of the variable vindex on the operand stack.
Operands: -

Conversion: -

Result: Any (content of the variable)

Operand stack: . => ..., value

Errors: 1 (Verification Failed)

Instructions; LOAD_VAR vindex

Opcode: 00001110

Parameter: Vindex is an unsigned 8-bit integer in the range of 0..255.
Operation; Pushes the value of the variable vindex on the operand stack.
Operands: -

Conversion: -

Result; Any (content of the variable)

Operand stack: . => ..., value

Errors: 1 (Verification Failed)

Instruction: STORE_VAR_S

Opcode: 0100iiii (iiii istheimplicit vindex)

Parameter: Vindex is an unsigned 4-bit integer in the range of 0..15.

Operation: Pops the value from the operand stack and stores it into the variable vindex.

Operand:
Conversion:

Result:

Operand stack:

Errors:

Any

8- Any

..., value => ...

1 (Verification Failed), 7 (Stack Underflow)

© Wireless Application Protocol Forum, Ltd, 1999

All rights reserved.

Proposed Version 11-Feb-1999 Page

87(114)
Instruction:; STORE_VAR vindex
Opcode: 00001111
Parameter: Vindex is an unsigned 8-bit integer in the range of 0..255.
Operation: Pops the value from the operand stack and storesiit into the variable vindex.
Operand: Any
Conversion: 8- Any
Result: -
Operand stack: ..., value => ...
Errors: 1 (Verification Failed), 7 (Stack Underflow)
Instruction: INCR_VAR_S
Opcode: 01110Giii (iii isthe implicit vindex)
Parameter: Vindex is an unsigned 3-bit integer in the range of 0..7.
Operation: Increments the value of a variable vindex by one.
Operands: -
Conversion: 5 — Integer or floating-point (unary)
Result: -

Operand stack: No change

Errors: 1 (Verification Failed)

Instruction: INCR_VAR vindex

Opcode: 00010000

Parameter: Vindex is an unsigned 8-bit integer in the range of 0..255.
Operation: Increments the value of a variabielex by one.

Operands: -

Conversion: 5 — Integer or floating-point (unary)

Result: -

Operand stack: No change

Errors: 1 (Verification Failed)

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Proposed Version 11-Feb-1999 Page

88(114)

Instruction:
Opcode:
Operation:
Parameter:
Operands:
Conversion:
Result:
Operand stack:

Errors:

DECR_VAR vindex

00010001

Decrements the value of a variable vindex by one.
Vindex is an unsigned 8-bit integer in the range of 0..255.

5 — Integer or floating-point (unary)

No change
1 (Verification Failed)

11.5.4 Access To Constants

Instruction:
Opcode:

Parameter:

Operation:
Operands:
Conversion:

Result:

Operand stack: ...

LOAD_CONST_S

0104iiii ijii is the implicitcindex)

Cindex is an unsigned 4-bit integer in the range of 0..15 that points to the constant pool conta
the actual constant. The referred constant type must be between 0 and 6.

Pushes the value of the constant denoteishdbgx on the operand stack.

Any (content of the constant)

=> ..., value

ining

Errors: 1 (Verification Failed)

Instruction:; LOAD_CONST cindex

Opcode: 00010010

Parameter: Cindex is an unsigned 8-hit integer in the range of 0..255 that points to the constant pool containing
the actual constant. The referred constant type must be between 0 and 6.

Operation: Pushes the value of the constant denoted by cindex on the operand stack.

Operands: -

Conversion: -

Result; Any (content of the constant)

Operand stack: . => ..., value

Errors: 1 (Verification Failed)

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Proposed Version 11-Feb-1999 Page
89(114)
Instruction:; LOAD_CONST_W <cindexl,cindex2>
Opcode: 00010011
Parameter: Cindex is an unsigned 16-bit integer <cindex1,cindex2> in the range of 0..65535 that points to the
constant pool containing the actual constant. The referred constant type must be between 0 and 6.
Operation; Pushes the value of the constant cindex on the operand stack.
Operands: -
Conversion: -
Result; Any (content of the constant)
Operand stack: . => ..., value
Errors: 1 (Verification Failed)
Instruction: CONST_0
Opcode: 00010100
Parameters: -
Operation: Pushes an integer value 0 on the operand stack.
Operands: -
Conversion: -
Resullt: Integer
Operand stack: . => .., value_0
Errors: -
Instruction:; CONST 1
Opcode: 00010101
Parameters: -
Operation: Pushes an integer value 1 on the operand stack.
Operands: -
Conversion: -
Result; Integer
Operand stack: => ..., value 1
Errors: -

© Wireless Application Protocol Forum, Ltd, 1999

All rights reserved.

Proposed Version 11-Feb-1999 Page
90(114)
Instruction:; CONST_M1
Opcode: 00010110
Parameters: -
Operation: Pushes an integer value —1 on the operand stack.
Operands: -
Conversion: -
Result: Integer
Operand stack: ... => ..., value -1
Errors: -
Instruction: CONST_ES
Opcode: 00010111
Parameters: -
Operation: Pushes an empty string on the operand stack.
Operands: -
Conversion: -
Resullt: String
Operand stack: . => ..., value_"™
Errors: -
Instruction: CONST_INVALID
Opcode: 00011000
Parameters: -
Operation; Pushesani nval i d value on the operand stack.
Operands: -
Conversion: -
Resullt: Invalid
Operand stack: . => ..., invalid
Errors: -

© Wireless Application Protocol Forum, Ltd, 1999

All rights reserved.

Proposed Version 11-Feb-1999 Page
91(114)
Instruction:; CONST_TRUE
Opcode: 00011001
Parameters: -
Operation: Pushes a boolean valuet r ue on the operand stack.
Operands: -
Conversion: -
Resullt: Boolean
Operand stack: . => ..., value_true
Errors: -
Instruction:; CONST_FALSE
Opcode: 00011010
Parameters: -
Operation: Pushes aboolean value f al se on the operand stack.
Operands: -
Conversion: -
Resullt: Boolean
Operand stack: . => ..., value_false
Errors: -

11.5.5 Arithmetic Instructions

Instruction:
Opcode:
Parameters:
Operation:
Operand:
Conversion:

Result:

INCR
00011011

Increments the value on the top of the operand stack by one.

Integer or floating-point
5 — Integer or floating-point (unary)

Integer or floating-point (incremented by one)

Operand stack: ..., value => ..., value+1

Errors.

7 (Stack Underflow)

© Wireless Application Protocol Forum, Ltd, 1999

All rights reserved.

Proposed Version 11-Feb-1999

Page
92(114)

Instruction:
Opcode:
Parameters:
Operation:
Operand:
Conversion:
Result:

Operand stack:

DECR
00011100
Decrements the value on the top of the operand stack by one.
Integer or floating-point
5 — Integer or floating-point (unary)
Integer or floating-point (decremented by one)

..., value => ..., value-1

Operand stack:

Errors: 7 (Stack Underflow)

Instruction: ADD_ASG vindex

Opcode: 00011101

Parameter: Vindex is an unsigned 8-bit integer in the range of 0..255.

Operation: Pops a value from the operand stack and adds the value to the variable vindex.
Operands: Integers, floating-points or strings

Conversion: 7 — Integers, floating-points or strings

Result: For integers or floating-points: variable containing the result of the addition

For strings: variable containing the result of string concatenation

...,value => ...

Operand stack:

Errors:

...,value => ...
1 (Verification Failed), 7 (Stack Underflow)

Errors: 1 (Verification Failed), 7 (Stack Underflow)

Instruction:; SUB_ASG vindex

Opcode: 00011110

Parameter: Vindex is an unsigned 8-bit integer in the range of 0..255.

Operation: Pops a value (subtractor) from the operand stack and subtracts the value from the variable vindex.
Operands: Integers or floating-points

Conversion: 6 — Integers or floating-points

Result: Variable containing the result of the subtraction

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Proposed Version 11-Feb-1999 Page

93(114)

Instruction:
Opcode:
Parameters:

Operation:

Operand:
Conversion:
Result:

Operand stack:

UMINUS
00011111

Pops a value from the operand stack and performs a unary minus operation on it and pushes the
result back on the operand stack.

Integer or floating-point
5 — Integer or floating-point (unary)
Integer or floating-point (negated)

..., value => ..., -value

Operand stack:

Errors: 7 (Stack Underflow)

Instruction: ADD

Opcode: 00100000

Parameters: -

Operation: Pops two values from the operand stack and performs an add operation on them and pushes the
result back on the operand stack.

Operands: Integers, floating-points or strings

Conversion: 7 — Integers, floating-points or strings

Result: For integers or floating-points: the result of the addition

For strings: the result of the concatenation

..., valuel, value2 => ..., valuel + value2

Operand stack:

Errors.

Errors: 7 (Stack Underflow)

Instruction: SUB

Opcode: 00100001

Parameters: -

Operation: Pops two values from the operand stack and performs a subtract operation on them and pushes the
result back on the operand stack.

Operands: Integers or floating-points

Conversion: 6 — Integers or floating-points

Result; Integer or floating-point

..., valuel, value2 => ..., valuel - value2
7 (Stack Underflow)

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Proposed Version 11-Feb-1999 Page

94(114)

Instruction:
Opcode:
Parameters:

Operation:;

Operands:
Conversion:
Result:
Operand stack:

MUL
00100010

Pops two values from the operand stack, performs a multiplication operation on them and pushes the
result back on the operand stack.

Integers or floating-points
6 — Integers or floating-points
Integer or floating-point

..., valuel, value2 => ..., valuel * value2

Operand stack:

Errors: 7 (Stack Underflow)

Instruction: DIV

Opcode: 00100011

Parameters: -

Operation: Pops two values from the operand stack, performs a division operation on them and pushes the
result back on the operand stack.

Operands: Integers or floating-points

Conversion: 6 — Integers or floating-points

Result: Floating-point

..., valuel, value2 => ..., valuel / value2

Operand stack:

Errors.

Errors: 7 (Stack Underflow)

Instruction: IDIV

Opcode: 00100100

Parameters: -

Operation: Pops two values from the operand stack, performs an integer division operation on them and pushes
the result back on the operand stack.

Operands: Integers

Conversion: 2 — Integer(s)

Result: Integer

..., valuel, value2 => ..., valuel IDIV value2
7 (Stack Underflow)

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Proposed Version 11-Feb-1999 Page

95(114)

Instruction:
Opcode:
Parameters:

Operation:

Operands:
Conversion:
Result:

Operand stack:

Errors.

REM
00100101

Pops two values from the operand stack, performs a reminder operation on them (the sign of the
result equals the sign of the dividend) and pushes the result back on the operand stack.

Integers

2 — Integer(s)

Integer

..., valuel, value2 => ..., valuel % value2

7 (Stack Underflow)

11.5.6 Bitwise Instructions

Instruction:
Opcode:
Parameters:

Operation:

Operands:
Conversion:
Result:

Operand stack:

B_AND
00100110

Pops two values from the operand stack and performs a bitwise and operation on them and pushes
the result back on the operand stack.

Integers
2 — Integer(s)
Integer

..., valuel, value2 => ..., valuel & value2

Operand stack:

Errors.

Errors: 7 (Stack Underflow)

Instruction:; B OR

Opcode: 00100111

Parameters: -

Operation: Pops two values from the operand stack and performs a bitwise or operation on them and pushes the
result back on the operand stack.

Operands: Integers

Conversion: 2 — Integer(s)

Result: Integer

..., valuel, value2 => ..., valuel | value2

7 (Stack Underflow)

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Proposed Version 11-Feb-1999 Page

96(114)

Instruction:
Opcode:
Parameters:

Operation:

Operands:
Conversion:
Result:

Operand stack:

B_XOR
00101000

Pops two values from the operand stack, performs a bitwise xor operation on them and pushes the
result back on the operand stack.

Integers
2 — Integer(s)
Integer

..., valuel, value2 => ..., valuel ” value2

Errors: 7 (Stack Underflow)

Instruction: B_NOT

Opcode: 00101001

Parameters: -

Operation: Pops a value from the operand stack and performs a bitwise complement operation on it and pushes
the result back on the operand stack.

Operands: Integer

Conversion: 2 — Integer(s)

Result: Integer

Operand stack: ..., value => ..., ~value

Operand stack:

Errors.

Errors: 7 (Stack Underflow)

Instruction:; B _LSHIFT

Opcode: 00101010

Parameters: -

Operation: Pops two values from the operand stack, performs a bitwise left-shift operation on them and pushes
the result back on the operand stack.

Operands: Integers

Conversion: 2 — Integer(s)

Result: Integer

..., value, amount => ..., value << amount

7 (Stack Underflow)

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Proposed Version 11-Feb-1999 Page

97(114)

Instruction:
Opcode:
Parameters:

Operation:

Operands:
Conversion:
Result:

Operand stack:

B_RSSHIFT
00101011

Pops two values from the operand stack, performs a bitwise signed right-shift operation on them and
pushes the result back on the operand stack.

Integers
2 — Integer(s)
Integer

..., value, amount => ..., value >> amount

Operand stack:

Errors:

Errors: 7 (Stack Underflow)

Instruction: B_RSZSHIFT

Opcode: 00101100

Parameters: -

Operation: Pops two values from the operand stack and performs a bitwise right-shift with zero operation on
them and pushes the result back on the operand stack.

Operands: Integers

Conversion: 2 — Integer(s)

Result: Integer

..., value, amount => ..., value >>> amount

7 (Stack Underflow)

11.5.7 Comparison Instructions

Instruction:
Opcode:
Parameters:

Operation:

Operands:
Conversion:
Result:

Operand stack:

Errors.

EQ
00101101

Pops two values from the operand stack, performs alogical equality operation on them and pushes
the result back on the operand stack.

Integers, floating-points or strings

7 — Integers, floating-points or strings
Boolean

..., valuel, value2 => ..., valuel EQ value2
7 (Stack Underflow)

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Proposed Version 11-Feb-1999 Page

98(114)

Instruction:
Opcode:
Parameters:

Operation:

Operands:
Conversion:
Result:

Operand stack:

LE
00101110

Pops two values from the operand stack, performs alogical |ess-or-equal operation on them and
pushes the result back on the operand stack.

Integers, floating-points or strings
7 — Integers, floating-points or strings
Boolean

..., valuel, value2 => ..., valuel LE value2

Operand stack:

Errors: 7 (Stack Underflow)

Instruction: LT

Opcode: 00101111

Parameters: -

Operation: Pops two values from the operand stack, performs alogical less-than operation on them and pushes
the result back on the operand stack.

Operands: Integers, floating-points or strings

Conversion: 7 — Integers, floating-points or strings

Result: Boolean

..., valuel, value2 => ..., valuel LT value2

Operand stack:

Errors.

Errors: 7 (Stack Underflow)

Instruction: GE

Opcode: 00110000

Parameters: -

Operation: Pops two values from the operand stack, performs alogical greater-or-equal operation on them and
pushes the result back on the operand stack.

Operands: Integers, floating-points or strings

Conversion: 7 — Integers, floating-points or strings

Result: Boolean

..., valuel, value2 => ..., valuel GE value2
7 (Stack Underflow)

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Proposed Version 11-Feb-1999 Page

99(114)

Instruction:
Opcode:
Parameters:

Operation:

Operands:
Conversion:
Result:

Operand stack:

GT
00110001

Pops two values from the operand stack, performs a greater-than operation on them and pushes the
result back on the operand stack.

Integers, floating-points or strings
7 — Integers, floating-points or strings
Boolean

..., valuel, value2 => ..., valuel GT value2

Operand stack:

Errors:

Errors: 7 (Stack Underflow)

Instruction: NE

Opcode: 00110010

Parameters: -

Operation: Pops two values from the operand stack, performs alogical not-equal operation on them and pushes
the result back on the operand stack.

Operands: Integers, floating-points or strings

Conversion: 7 — Integers, floating-points or strings

Result: Boolean

..., valuel, value2 => ..., valuel NE value2
7 (Stack Underflow)

11.5.8 Logical Instructions

Instruction:
Opcode:
Parameters:

Operation:

Operands:
Conversion:
Result:

Operand stack:

Errors.

NOT
00110011

Pops a value from the operand stack and performs alogical complement operation on it and pushes
the result back on the operand stack.

Boolean
1 - Boolean(s)
Boolean
..., value => ..., lvalue
7 (Stack Underflow)

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Proposed Version 11-Feb-1999 Page

Errors.

100(114)

Instruction: SCAND

Opcode: 00110100

Parameters: -

Operation: Pops a value from the operand stack and converts it to a boolean value. If the converted valueis
fal se orinval i d then the converted value itself is pushed on the operand stack and the boolean
valuef al se ispushed on the operand stack. If the converted valueist r ue then the converted
valueitself is pushed on the operand stack.

Operands: Any

Conversion: 1 - Boolean(s)

Result: Boolean

Operand stack: ..., value => ..., false, false (incasethevalueisf al se)

..., value => ..., true (in casethevalueist r ue)
..., value => ..., invalid, false (incasethevalueisi nval i d)

Errors: 7 (Stack Underflow)

Instruction: SCOR

Opcode: 00110101

Parameters: -

Operation: Pops a value from the operand stack and converts it to a boolean value. If the converted value is
f al se thenthe boolean valuet r ue is pushed on the operand stack. If the converted valueist r ue
ori nval i d then the converted value itself is pushed on the operand stack and the boolean value
f al se ispushed on the operand stack.

Operands: Any

Conversion: 1 - Boolean(s)

Result: Boolean

Operand stack: ..., value => ..., true (incasethevalueisf al se)

..., value => ..., true, false (incasethevaueist r ue)
..., value => ... invalid, false (in casethevalueisi nval i d)

7 (Stack Underflow)

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Proposed Version 11-Feb-1999 Page

101(114)

Instruction:
Opcode:
Parameters:

Operation:

Operands:
Conversion:
Result:

Operand stack:

Errors:

TOBOOL
00110110

Pops a value from the operand stack and converts the value to a boolean value and pushes the
converted value on the operand stack. If the popped valueisi nval i d thenani nval i d vaueis
pushed back on the operand stack.

Any
1 - Boolean(s)
Boolean
..., value => ..., tobool
7 (Stack Underflow)

11.5.9 Stack Instructions

Instruction:
Opcode:
Parameters:
Operation:
Operands:
Conversion:
Result:

Operand stack:

Errors.

POP
00110111
Pops a value from the operand stack.

Any

...,value => ...
7 (Stack Underflow)

11.5.10 Access to Operand Type

Instruction:
Opcode:
Parameters:

Operation:

Operands:
Conversion:
Resullt:
Operand stack:

Errors:

TYPEOF
00111000

Pops a value from the operand stack and checks its type. Pushes the result as an integer on the
operand stack. The possible results are: 0 = Integer, 1 = Floating-point, 2 = String, 3 = Boolean, 4 =
Invalid

Any

Integer

..., value => ..., typeof?
7 (Stack Underflow)

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Proposed Version 11-Feb-1999

Page
102(114)

Instruction:
Opcode:
Parameters:

Operation:

Operands:
Conversion:
Resullt:
Operand stack:

Errors:

ISVALID
00111001

Pops a value from the operand stack and checks its type. If the typeisinvalid a boolean value
f al se ispushed on the operand stack, otherwise a boolean valuet r ue is pushed on the operand
stack.

Any

Boolean

..., value => ..., valid?
7 (Stack Underflow)

11.5.11 Function Return Instructions

Instruction: RETURN

Opcode: 00111010

Parameters: -

Operation: Returns the control back to the caller. The return value is on the top of the operand stack. The
execution continues at the next instruction following the function call of the calling function.

Operands: Any

Conversion: -

Resuilt: -

Operand stack: ..., ret-value => ..., ret-value

Errors: 7 (Stack Underflow)

Instruction: RETURN_ES

Opcode: 00111011

Parameters: -

Operation: Pushes an empty string on the operand stack and returns the control back to the caller. The
execution continues at the next instruction following the function call of the calling function.

Operands: -

Conversion: -

Result: -

Operand stack: = ..,"

Errors: -

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Proposed Version 11-Feb-1999

11.5.12 Miscellaneous Instructions

Page
103(114)

Instruction:
Opcode:
Parameters:
Operation:
Operands:
Conversion:

Result:

Errors:

Operand stack:

DEBUG
00111100
No operation. Reserved for debugging and profiling purposes.

No change

© Wireless Application Protocol Forum, Ltd, 1999

All rights reserved.

Proposed Version 11-Feb-1999 Page
104(114)

12. Bytecode Verification

Bytecode verification takes place before or while the bytecode is used for execution. The purpose of the verification isto
make sure that the content follows the WM L Script bytecode specification. In case of verification failure, the failed
bytecode should not be used for execution or the execution must be aborted and failure signalled to the caler of the

WML Script interpreter.

The following checks are to be executed in the WML Script Interpreter either before the execution is started or during the
execution of WML Script bytecode.

12.1 Integrity Check

The following list contains checks that must be used to verify the integrity of the WML Script bytecode beforeit is
executed:

» Check that the version number is correct: The bytecode version number must be compared with the bytecode
version number supported by the WML Script interpreter. The major version numbers must match. The minor
version number of the bytecode must be less than or equal to the minor version number supported by the
WML Script interpreter.

» Check that the size of the bytecode is correct: The size specified in the bytecode must match exactly the byte size of
the content.

* Check the constant pool:

« The number of constantsis correct: The number of constants specified in the constant pool must match the
number of constants stored into the constant pool.

+ Thetypes of constants are valid: The numbers used to specify the constant types in the constant pool must
match the supported constant types. Reserved constant types (7-255) result in a verification failure.

» The sizes of constants are valid: Each constant must allocate only the correct number of bytes specified by the
WML Script bytecode specification (fixed size constants such as integers) or the size parameter provided as part
of the constant entity (constants of varying size such as strings).

* Check the pragma pool:
+ The number of pragmasis correct: The number of pragmas specified in the pragma pool must match the
number of pragmas stored into the pragma pool.
« Thetypes of pragmas are valid: The numbers used to specify the pragmatypes in the pragma pool must match
the supported pragma types. Reserved pragma types (5-255) result in a verification failure.
+ The constant pool indexes are valid:
« The access control domain and path must point to string constants.
« The constant pool indexes used in meta-information pragmas must point to string constants.

* Check the function pool:
+ The number of functionsis correct: The number of functions specified in the function pool must match the
number of functions stored into the function pool.
« Thefunction name tableis correct:
« The number of function namesis correct: The number of function names specified in the function name
table must match the number of function names stored into the function name table.
« The function name indexes are correct: The indexes must point to existing functions in the function pool.
+ The function names contain only valid function name characters: Function names must follow the
WML Script function name syntax.
« Thefunction prologue is correct:

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Proposed Version 11-Feb-1999 Page
105(114)

+ The number of arguments and local variablesis correct: The sum of the number of arguments and local
variables must be less or equal to 256.

« The size of the function is correct: The size specified in the function prologue must match exactly the byte
size of the function.

12.2 Runtime Validity Checks

The following list contains the checks that must be done during the execution to verify that the used instructions are valid
and they use valid parameter values:

« Check that the bytecode contains only valid instructions: Only instructions that are defined in chapter 11 are valid.
e Check that local variable references are valid: The references must be within the boundaries specified by the
number of function local variables in the function prologue.
» Check that constant references are valid:
« The references must be within the boundaries specified by the number of constants in the constant pool.
« The references must point to the valid constant types specified by each instruction:;
« Incase of URL references, the referred constant strings must contain avalid URL (see [RFC2396]).
« In case of Function Name references, the referred constant strings must contain a valid WML Script function
name.
» Check that the standard library indexes and library function indexes are valid: The indexes must be within the
boundaries specified by the WML Script Standard Libraries specification [WMLSLibs].
» Check that local function call indexes are valid: The function indexes must match with the number of functions
specified in the function pool.
e Check that the jumps are within function boundaries: All jumps must have a target inside the function in which they
are specified.
e Check that the targets of jumps are valid: The target of al jumps must be the beginning of an instruction.
» Check that the ends of the functions are valid: Functions must not end in the middle of an instruction.

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Proposed Version 11-Feb-1999 Page
106(114)

13. Run-time Error Detection and Handling

Since WML Script functions are used to implement services for users that expect the terminals (in particular mobile
phones) to work properly in all situations, error handling is of utmost importance. This means that while the language does
not provide, for example, an exception mechanism, it should provide toolsto either prevent errors from happening or tools
to notice them and take appropriate actions. Aborting a program execution should be the last resort used only in cases
where nothing else is possible.

The following section lists errors that can happen when downloading bytecode and executing it. It does not contain
programming errors (such as infinite loop etc.). For these cases a user controlled abortion mechanism is needed.

13.1 Error Detection

The goa of error detection isto give tools for the programmer to detect errors (if possible) that would lead to erroneous
behaviour. Since WML Script is aweakly typed language, specia functionality has been provided to detect errorsthat are
caused by invalid data types:

» Check that the given variable contains the right value: WML Script supports type validation library [WMLSLibs]
functions such as Lang.isInt(), Lang.isFloat(), Lang.parselnt() and Lang.parseFloat().

» Check that the given variable contains avalue that is of right type: WML Script supports the operators typeof and
isvalid that can be used for this purpose.

13.2 Error Handling

Error handling takes place after an error has already happened. This is the case when the error could not be prevented by
error detection (memory limits, external signals etc.) or it would have been too difficult to do so (overflow, underflow
etc.). These cases can be divided into two classes:

« Fatal errors: These are errors that cause the program to abort. Since WML Script functions are always called from
some other user agents, program abortion should always be signalled to the calling user agent. It istheniits
responsibility to take the appropriate actions to signal the user of errors.

* Non-fatal errors: These are errors that can be signalled back to the program as special return values and the
program can decide on the appropriate action.

The following error descriptions are divided into sections based on their fatality.

13.3 Fatal Errors

13.3.1 Bytecode Errors

These errors are related to the bytecode and the instructions being executed by the WML Script Bytecode Interpreter. They
areindications of erroneous constant pool elements, invalid instructions, invalid arguments to instructions or instructions
that cannot be completed.

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Proposed Version 11-Feb-1999 Page

107(114)
13.3.1.1 Verification Failed
Description: Reports that the specified bytecode for the called compilation unit did not pass the
verification (see chapter 12 for more information about bytecode verification).
Generated: At any time when a program attemptsto call an external function.
Example: var a = 3*Qther Scri pt#doThi s(param ;
Severity: Fatal.
Predictable: I's detected during the bytecode verification.
Solution: Abort program and signal an error to the caller of the WML Script interpreter.
13.3.1.2 Fatal Library Function Error
Description: Reportsthat acall to alibrary function resulted in afatal error.
Generated: At any timewhen acall to alibrary functionisused (CALL_LIB). Typically, thisis
an unexpected error in the library function implementation.
Example: var a = String.format(param;
Severity: Fatal.
Predictable: No.
Solution: Abort program and signal an error to the caller of the WML Script interpreter.
13.3.1.3 Invalid Function Arguments
Description: Reports that the number of arguments specified for afunction call do not match
with the number of arguments specified in the called function.
Generated: At any time acall to an external function isused (CALL_URL).
Example: Compiler generates an invalid parameter to an instruction or the number of
parameters in the called function has changed.
Severity: Fatal.
Predictable: No.
Solution: Abort program and signal an error to the caller of the WML Script interpreter.
13.3.1.4 External Function Not Found
Description: Reports that a call to an external function could not be found from the specified
compilation unit.
Generated: At any time, when a program attempts to call an external function (CALL_URL).
Example: var a = 3*Qt her Scri pt#doThi s(param ;
Severity: Fatal.
Predictable: No.
Solution: Abort program and signal an error to the caller of the WML Script interpreter.

13.3.1.5 Unableto Load Compilation Unit

Description: Reports that the specified compilation unit could not be loaded due to
unrecoverable errors in accessing the compilation unit in the network server or the
specified compilation unit does not exist in the network server.

Generated: At any time, when a program attempts to call an external function (CALL_URL).
Example: var a = 3*Qther Scri pt#doThi s(param ;

Severity: Fatal.

Predictable: No.

Solution: Abort program and signal an error to the caller of the WML Script interpreter.

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Proposed Version 11-Feb-1999

13.3.1.6 Access Violation

Page
108(114)

Description: Reports an access violation. The called external function residesin a protected
compilation unit.

Generated: At any time when a program attempts to call an external function (CALL_URL).

Example: var a = 3*Qther Scri pt#doThi s(param ;

Severity: Fatal.

Predictable: No.

Solution: Abort program and signal an error to the caller of the WML Script interpreter.

13.3.1.7 Stack Underflow

Description: Indicates a stack underflow because of a program error (compiler generated bad
code).

Generated: At any time when a program attempts to pop an empty stack.

Example: Only generated if compiler generates bad code.

Severity: Fatal.

Predictable: No.

Solution: Abort program and signal an error to the caller of the WML Script interpreter.

13.3.2 Program Specified Abortion

This error is generated when a WML Script function calls the library function Lang.abort() (see [WMLSLibs]) to abort the
execution.

13.3.2.1 Programmed Abort

Description: Reports that the execution of the bytecode was aborted by a call to Lang.abort()
function.

Generated: At any time when a program makes a cal to Lang.abort() function..

Example: Lang. abort (" Unrecoverable error");

Severity: Fatal.

Predictable: No.

Solution: Abort program and signal an error to the caller of the WML Script interpreter.

13.3.3 Memory Exhaustion Errors

These errors are related to the dynamic behaviour of the WML Script interpreter (see section 9.1 for more information) and
its memory usage.

13.3.3.1 Stack Overflow

Description: Indicates a stack overflow.

Generated: At any time when a program recourses too deep or attempts to push too many
variables onto the operand stack.

Example: function f(x) { f(x+1); };

Severity: Fatal.

Predictable: No.

Solution: Abort program and signal an error to the caller of the WML Script interpreter.

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Proposed Version 11-Feb-1999

13.3.3.2 Out of Memory

Page
109(114)

Description: Indicates that no more memory resources are available to the interpreter.
Generated: At any time when the operating system fails to allocate more space for the
interpreter.
Example: function f(x)
x=x+"abcdefghijkimnopqgrstuvzyxy”;
f(x);
Severity: Fatal.
Predictable: No.
Solution: Abort program and signal an error to the caller of the WML Script interpreter.

13.3.4 External Exceptions

The following exceptions are initiated outside of the WML Script Bytecode Interpreter.

13.3.4.1 User Initiated

Description: Indicates that the user wants to abort the execution of the program (reset button
etc.)

Generated: At any time.

Example: User presses reset button while an application is running.

Severity: Fatal.

Predictable: No.

Solution: Abort program and signal an error to the caller of the WML Script interpreter.

13.3.4.2 System Initiated

Description: Indicates that an external fatal exception occurred while aprogram is running and it
must be aborted. Exceptions can be originated from alow battery, power off, etc.

Generated: At any time.

Example: The system is automatically switching off due to alow battery.

Severity: Fatal.

Predictable: No.

Solution: Abort program and signal an error to the caller of the WML Script interpreter.

13.4 Non-Fatal Errors

13.4.1 Computational Errors

These errors are related to arithmetic operations supported by the WML Script.

13.4.1.1 Divideby Zero

Indicates adivision by zero.
At any time when a program attempts to divide by O (integer or floating-point
division or remainder).

Description:
Generated:

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Proposed Version 11-Feb-1999

Example:

Severity:
Predictable:
Solution:

13.4.1.2 Integer Overflow

Description:
Generated:
Example:

Severity:
Predictable:
Solution:

Page
110(114)

var
var
var
var
var
a /= b;

Non-fatal.

Yes.

Theresultisani nval i d value.

N< X TD
(IR TINT
P wOor
=
o<oT

i)

Reports an arithmetic integer overflow.
At any time when a program attempts to execute an integer operation.

var a = Lang. maxint();
var b = Lang. maxint();
var ¢ = a + b;

Non-fatal.

Yes (but difficult in certain cases).
Theresultisani nval i d value.

13.4.1.3 Floating-Point Overflow

Description:
Generated:
Example:

Severity:
Predictable:
Solution:

Reports an arithmetic floating-point overflow.
At any time when a program attempts to execute a floating-point operation.

var a = 1.6e308;
var b = 1.6e308;
var ¢ = a * b;
Non-fatal.

Y es (but difficult in certain cases).
Theresultisani nval i d value.

13.4.1.4 Floating-Point Underflow

Description:
Generated:

Example:

Severity:
Predictable:
Solution:

Reports an arithmetic underflow.

At any time when the result of a floating-point operation is smaller than what can be
represented.

var a
var b
var ¢
Non-fatal.

Yes (but difficult in certain cases).

The result is afloating-point value 0. 0.

Fl oat . preci sion();
Fl oat . preci sion();
a* b;

13.4.2 Constant Reference Errors

These errors are related to run-time references to constants in the constant pool.

13.4.2.1 Not a Number Floating-Point Constant

Description:

Reports areference to afloating-point literal in the constant pool that is Not a
Number [IEEE754].

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Proposed Version 11-Feb-1999 Page

111(114)

Generated: At any time when a program attempts to access a floating-point literal and the
compiler has generated a Not a Number as a floating-point constant.

Example: A reference to afloating-point literal.

Severity: Non-fatal.

Predictable: Yes.

Solution: Theresultisani nval i d value.

13.4.2.2 Infinite Floating-Point Constant

Description: Reports a reference to a floating-point literal in the constant pool thet is either
positive or negative infinity [EEE754].

Generated: At any time when a program attempts to access a floating-point literal and the
compiler has generated a floating-point constant with a value of positive or negative
infinity.

Example: A reference to afloating-point literal.

Severity: Non-fatal.

Predictable: Yes.

Solution: Theresultisani nval i d value.

13.4.2.3 Illegal Floating-Point Reference

Description: Reports an erroneous reference to a floating-point value in the constant pool.

Generated: At any time when a program attempts to use floating-point values and the
environments supports only integer values.

Example: var a = 3.14;

Severity: Non-fatal.

Predictable: Can be detected during the run-time.

Solution: Theresultisani nval i d value.

13.4.3 Conversion Errors
These errors are related to automatic conversions supported by the WML Script.
13.4.3.1 Integer Too Large
Description: Indicates a conversion to an integer value where the integer value istoo large
(positive/negative).

Generated: At any time when an application attempts to make an automatic conversion to an
integer value.

Example: var a = -"99";

Severity: Non-fatal.

Predictable: No.

Solution: Theresultisani nval i d value.

13.4.3.2 Floating-Point Too Large

Description: Indicates a conversion to afloating-point value where the floating-point value is too
large (positive/negative).

Generated: At any time when an application attempts to make an automatic conversion to a
floating-point value.

Example: var a = -"9999999. 9999999999e99999";

Severity: Non-fatal.

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Proposed Version 11-Feb-1999 Page

112(114)
Predictable: No.
Solution: Theresultisani nval i d value.
13.4.3.3 Floating-Point Too Small

Description: Indicates a conversion to a floating-point value where the floating-point value is too
small (positive/negative).

Generated: At any time when an application attempts to make an automatic conversion to a
floating-point value.

Example: var a = -"0.01e-99";

Severity: Non-fatal.

Predictable: No.

Solution: The result is afloating-point value 0. 0.

13.5 Library Calls and Errors

Since WML Script supports the usage of libraries, there is a possibility that errors take place inside the library functions.
Design and the behaviour of the library functions are not part of the WML Script language specification. However,
following guidelines should be followed when designing libraries:

* Provide the library users mechanisms by which errors can be detected before they happen.

» Usethe same error handling mechanisms as WML Script operators in cases where error should be reported back to
the caller.

e Minimise the possibility of fatal errorsin all library functions.

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Proposed Version 11-Feb-1999 Page

113(114)

14. Support for Integer Only Devices

The WML Script language has been designed to run also on devices that do not support floating-point operations. The
following rules apply when WML Script is used with such devices:

« Variables can only contain the following internal data types:
» Boolean
« Integer
. String
+ Invdid
e Any LOAD_CONST bytecode that refers to a floating point constant in the constant pool will pushani nval i d
value on the operand stack instead of the constant value.
» Division (/) operation returns alwaysani nval i d value.
e All conversion rules related to floating-points are ignored.

e URL call with afloating-point value as an argument results in afailure to execute the call dueto aninvalid URL
syntax.

The programmer can use Lang.float() [WMLSLibs] to test (during the run-time) if floating-point operations are supported.

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

Proposed Version 11-Feb-1999 Page
114(114)

15. Content Types

The content types specified for WML Script compilation unit and its textual and binary encoding are:

e Textual form: t ext/ vnd. wap. wr scri pt
* Binary form: appl i cati on/ vnd. wap. w scri ptc

Ed: these types are not yet registered with the IANA and are consequently experimental content types.

© Wireless Application Protocol Forum, Ltd, 1999
All rights reserved.

