
Reuse of Linked Documents through Virtual Document
Prescriptions

Anne-Marie Vercoustre1 and Fran¸cois Paradis2

1 INRIA Rocquencourt, BP 105, 78153 Le Chesnay Cedex, France
2 CSIRO Mathematical and Information Sciences, 723 Swanston St., Carlton, VIC 3053,

Australia

Abstract. As the WWW becomes a major source of information, a lot of interest
has arisen, not only for searching for information, but for reusing this informa-
tion in new pages, or directly within applications. Unfortunately HTML tags do
not provide a significant level of structure for identifying and extracting infor-
mation, since they are mostly used for presentation issues. Moreover the simple
link mechanism of the Web does not support the controlled traversal of links to
related pages. Particularly promising is the proposal for a new standard, XML,
which could bring the power of SGML to the Web while keeping the simplicity
of HTML. In this paper we present a system and a language that allow reusing
of information from various sources, including databases and SGML-like docu-
ments, by combining it dynamically to produce a virtual document. The language
uses a treelike structure for the representation of the information objects as well
as link objects. The paper focuses on the selection and the traversal of XML links
to extract information from linked pages. The strength of our approach is to be an
SGML-compliant solution, which makes it ready to take full advantage of XML
for reusing information from the Web as soon as it is widely used.

1 Introduction

Reuse of information is increasingly important in a global hypermedia like the Web
[14, 20]: as it becomes a major source of information, there is an increasing need for
accessing that information and “building” new information from it. So far the Web
community has focused on providing better browsing tools and search engines. This
process of finding information is however, only the first step in an integrated solution
for reuse of information. A more complete scenario for reuse of Web pages would be:
i) find the pages containing the information; ii) extract the relevant information from
the pages; iii) follow the links to find more information or to put this information in
context; iv) use that information to build new pages, or reuse it in an application.

The extraction of information is ill-supported by HTML, because the information
is semi-structured, as opposed to SGML, which allows a finer grain and more rigorous
structuring of information. HTML also lacks many desirable features for following the
links; it only provides simple unidirectional links, with no semantics on the links them-
selves. Some approaches have been proposed to make up for HTML deficiencies by
adding some “SGML” intelligence to the Web [21]. Particularly promising is the pro-
posal for a new standard, XML [9], which could bring the power of SGML to the Web

while keeping the simplicity of HTML. XML will facilitate the extraction of fragments
from pages, and provide a comprehensive scheme for linking.

Virtual documents have been used mainly for building dynamic Web pages, with
little concern for reusing existing information. As a tool for the reuse of Web pages, they
provide mechanisms to integrate heterogeneous sources of information (HTML, XML,
databases, etc.), and ease the task of maintaining Web sites by ensuring the information
is always consistent and up-to-date.

We present a language for virtual documents as a means to reuse Web pages, and
the more specific application of reusing a set of linked XML documents. In a previous
paper [23] we described two of the reuse steps cited earlier: how to extract fragments of
heterogeneous information and integrate them in a virtual document, which is achieved
using a generic tree model. This paper focuses on how to allow and control the traversal
of XML/HTML links to retrieve information that resides in linked pages. To that end,
we extend the language to provide more concise and powerful syntax for link traversal.

We first introduce our language for writing virtual documents and the generic tree
model for retrieving and combining information. We then present XML with a focus on
the definition of links. We show through some examples how to represent, select and
follow XML links using the general syntax of our language. We finally propose a new
syntax for selecting and following links and illustrate it through the same examples.

2 The RIO approach to virtual documents

The RIO (Reuse of Information Object) project aims to develop techniques which can
support information reuse in various contexts [22]. The focus of the project is currently
on the reuse of structured information from heterogeneous sources, including OO or
relational databases, SGML and HTML documents, and possibly any kind of semi-
structured data [3].

Our approach is to introduce adocument prescriptionof the virtual document to be
generated. A document prescription consists of:

1. Static data, or the structure and the text that do not change in the document, just as
in a normal document.

2. Queries, or the commands needed to generate the dynamic part of the document.
3. Transformation instructions, to convert the reused information objects into new

document objects.

The document prescription is written as an SGML document or as one of its deriva-
tives such as HTML or XML. Static data is expressed using normal SGML constructs.
Queries and transformation instructions are expressed as SGMLProcessing Instruc-
tions. The interpreter of the document prescription executes the following tasks:

1. Sends thenative queries to the database server which connects to the specific
database, sends the queries and gets the results back.

2. Assembles the results into a tree representation that provides a generic model and
data structure for integrating heterogeneous data sources.

3. Selects, joins and transforms objects in the tree model.

4. Maps the selected objects into the document structures of the target virtual docu-
ment.

Figure 1 shows a simple example of a document prescription to generate an HTML
document containing a list of staff members and some regularly updated news. The list
of news is fetched from another HTML page1, while the list of STAFF is retrieved from
an SQL database of persons with names, title, location, and portfolio.

<HTML><BODY>
< BASE HREF= ‘‘http://www.inria.fr/’’ >

<?pick body.table[#FIRST+1] from url(‘‘http://www.inria.fr/’’) >

<?define $staff as sql(select * from STAFF where
portfolio=’’TIM’’) >

<H1>TIM group members </H1 >
<?map $i in $staff ><?$i.name >
</BODY></HTML>

Fig. 1.A simple document prescription

The first instruction sends an http query to retrieve the HTML page andpicks up the
second table which contains the news. The result is mapped into HTML using the func-
tion toSGML which unparses a subtree using its label as tag name. The second instruc-
tion defines a variable to store the results of an SQL query that retrieves all employees
in the TIM group. Finally themap iterates over the list of employees and produces an
 element for every employee, with the employee name as content.The complete
description of the language with more advanced examples can be found in [23].

The role of thedocument interpreteris to gather and combine information from the
data sources, as instructed in the document prescription, and to map it according to the
document DTD.2 The integration of heterogeneous information is done using a tree-like
model which is very similar to those presented in [4] or [3]. As in these approaches we
are not using a model that encompasses all the source models. Instead we use a generic
and minimalist approach. The data structure we use consists of ordered labeled trees.
Each tree node can have one of the following types (akin to an SGML terminology):
ELEM, VALUE, ATTRor LIST .

Figure 2 gives an example of the tree structure for representing an employee. More
generally SQL tables are represented with an unlabeled node for each row, which has
the column as children3. For SGML-like documents, elements are represented byel-
ement nodes with a label corresponding to their tag name. SGML attributes are repre-
sented by an attribute node under the element node.

In figure 1, expressions likebody.table[#FIRST+1] and$i.name arepath
expressions; they perform selections on the results in an OQL-like manner (our syntax
1 As this page is generated internally, copyright is not an issue here.
2 The interpreter itself does not validate the document against the DTD: that can be achieved by

coupling an editor with the interpreter.
3 Of course this mapping is not unique; for an alternative see [4]

LEGEND
element
attribute

value
list

name title location portfolio

F.Paradis Dr Melbourne EDC

Fig. 2. Tree representation of a person from the STAFF database

is inspired by the language discribed in [10], now named POQL). A path expression
can be seen as the traversal of a tree: an expression.L (dot selection) finds the children
with label L one level down the tree, an expression..L (dot-dot selection) finds the
children with labelL at any level down the tree.

It must be noted here that objects can form cyclic graphs, so we might need to
represent links between nodes using an object identifier. However since our current
focus is on SGML documents rather than general object-oriented databases, we only
need to consider links between documents or between parts of a document. In SGML
these links are purely syntactic, so we can keep them in the tree as they are, ie. by their
SGML tags.

Before showing in section 4 how to use the language to follow links, we introduce
XML and more specifically XML links.

3 XML Overview

XML (eXtended Markup Language) is being developed under the auspices of the World
Wide Web Consortium (W3C) to enable a subset of SGML documents to be served,
received, and processed on the Web. XML offers an interesting approach that takes
advantage of the powerful content-based markup and scalability of SGML while, at the
same time, enabling documents to be published as easily as is currently possible with
HTML. It also extends the simple HTML link mechanism.

The main differences between XML and SGML are:

1. XML is a very simplified version of SGML to make SGML tools easier to im-
plement. As an example tag omission is not permitted: the start-tag and the corre-
sponding end-tag must both be present.

2. XML distinguishes between avalid document, which is a document that conforms
to its DTD, and awell-formeddocument which only requires tags to be properly
nested. This is extremely important since it allows processing of a document with-
out its DTD, and to transmit and exchange of document fragments without parsing
the full document.

3. XML offers a set of constructs for describing links between objects: in addition to
the target location, they include information on their role, behavior, etc. Links are
typed and may have multiple targets.

We now give more details on the definition of XML links [9] and two examples that
we will use in the next section4.

XML links can encompass both the simple unidirectional hyperlinks of today’s
HTML, as well as more sophisticated multi-ended and typed links.

Basically there are two sorts of link elements that can be inserted in an XML doc-
ument: simple links and extended links. Linking elements are recognized based on the
use of a designated attribute namedXML-LINK . For example a simple link type named
refer can be defined as follows using predefined attributes:

<!ELEMENT refer ANY>
<!ATTLIST refer

XML-LINK CDATA "SIMPLE"
ROLE CDATA #IMPLIED
HREF CDATA #REQUIRED
TITLE CDATA #IMPLIED
SHOW (EMBED|REPLACE|NEW) "REPLACE"
ACTUATE (AUTO|USER) "USER"
BEHAVIOR CDATA #IMPLIED

>

TheXML-LINK attribute indicates thatrefer is a link element, here aSIMPLE link.
The HREFattribute gives the location of the target resource. A locator can be more
complex than a simple URL (see 4.3).ROLEandTITLE are optional attributes that
indicates the role of the link and the nature of the target resource, respectively. The
last three attributes concern the traversal policy of the link; the first two use predefined
policies that we will describe in section 5.3, while the last one is application-dependent.

A XML document with arefer link may contain the following text:5

Example 1:

<REFER XML-LINK="SIMPLE" HREF="http://www.inria.fr/">
INRIA

</REFER>

We do not give an example of the DTD definition forextendedlinks. It will differ
from a SIMPLE link by an EXTENDEDvalue for the attributeXML-LINK , and the
declaration of sub-elements of typetarget . An example of anextendedlink of type
see-also might be:

Example 2:
4 Note however that some aspects of XML – especially the linking mechanism – are still under

definition and may be revised in future releases.
5 As SIMPLE has been given as default value, the attributeXML-LINK could be omitted.

<see-also XML-LINK="EXTENDED"> see also
<target XML-LINK="locator"

ROLE= "Background"
TITLE= "History of INRIA"
SHOW= "REPLACE"
HREF= "http://www.inria.fr/historic.html">

History of INRIA </target>
<target XML-LINK="locator"

HREF= "http://www.inria.fr/chiffres.html">
INRIA in numbers </target>

</see-also>

This link of typesee-also has two targets, but could have more, each recognized
by the valuelocator of the attributeXML-LINK .

An extended link can involve any number of resources, and need not be co-located
with any of them. Dealing with links that are not co-located with the source is out of
the scope of our language and should be addressed within a complete XML system. We
are dealing only with links that are co-located with their source.

4 Managing XML links with RIO

Following links consists of: selecting the links you want to follow (section 4.1), con-
necting to the http server to retrieve the target documents (sections 4.2 and 4.3), and
possiblypick ing up parts of the target documents. XML links also havebehaviorthat
we will discuss in section 5.3.

4.1 Representing and selecting links

When a document is retrieved, it is represented as a generic tree, as we have seen before.
This applies to HTML/XML link elements as well. The link in example 1 would be
represented as in Figure 36.

The selection of links works exactly as the selection of any other element. If$d
refers to the root of a document,$d..refer selects all the link elements of typere-
fer . The textual content of the link element is obtained withrefer.#VALUE and the
target location withrefer.href.#VALUE . Hence links can be selected according
to the values of their attributes or their anchor. The following expression selects all the
links with an anchor containing the string ”INRIA”:

pick $link from $d..#ELEM as $link, $link.href
where $link.#VALUE contains "INRIA"

It is also possible to reuse the link in another link element, which is particularly
useful if we want to reuse a link from XML and embed it into an HTML page (or the
reverse):

6 Note that the attributes with default value would have been added by the parser.

target target

see−also
LEGEND

element
attribute

value
list

Extended

XML−LINK

XML−link
href

http://www.inria.fr/historic.html

Role show

replace

Title

locator background History

See also

of
Inria

History of Inria

Fig. 3. Tree representation of a link element

<?map $refer in $d..refer>

 <A> <?attributes $refer.href><? $refer.#VALUE>

This prescription creates a list of HTML links from all therefer links in the
document. Theattributes instruction adds thehref attribute from therefer
link (picked up with the expression$refer.href) to theA element. The value of
the anchor$refer.#VALUE is reused as it is, but could be changed to any static or
dynamic string, for example the name of the URL.

4.2 Following links

The aim of link traversal is to select information from other related pages. To achieve
that in our language, we can use the selections shown in the previous section along with
the predicateurl to retrieve the targets. For example, the following query could be
used to followrefer links in a document, and retrieve the target’s title and URL:

Query 1:

pick list($d..title,$url)
from url("http://somewhere.com") as $base,

$base..refer.href as $url, url($url) as $d

The path expression$base..refer.href 7 selects the target locations for all
therefer links, and the expressionurl($url) requests an http connection for each
of those, actually retrieving the target document8. The result of thepick is a list of
tuples (title, url).

7 a possible shortcut forrefer.href.#VALUE in this context
8 We will see in the next section how the “location” is interpreted.

Following extended links works in a similar way. For example if we want to follow
only links corresponding to a locator whose attributeROLEis ”background”:

Query 2:

pick $d..title
from url("http://somewhere.com") as $base,

$base..see-also.target as $loc,
$loc..href as $url, url($url) as $d

where $loc.role="background"

We have shown that since XML links are standard SGML elements with specific
attributes, the RIO language is able to select and follow links according to their specific
type, role, and anchor. In the next section we study in more detail the various forms of
XML locators which permit us to retrieve parts of documents.

4.3 XML locators

The XML syntax for locators is flexible enough to accommodate various resource lo-
cations, including resources that are not XML documents. For XML resources, XML
offers a more specific syntax;

Locator ::= URL
Locator ::= [URL] Connector (XPointer | Name)
Connector ::= ’#’ | ’|’ | ’?XML-XPTR=’

Unlike HTML, XML has locators not only for retrieving full documents, but also for
referring to fragments of documents, whether they are located in the current document
(internal links) or a target document.

We study hereafter how the system will translate these locators into selection in-
structions. If the URL is provided, the resource, called thecontaining resource, is re-
trieved by sending an http request. If not, the containing resource is the same as the
document that contains the linking element. The ’j’ connector is application dependent,
and the?XML-XPTRconnector is processed by the server which returns only the sub-
resource. Hence we only need to consider the case where the connector is #.

#Name is a shortcut for#ID(Name) , ie. the sub-resource that has an XML ID
attibute whose value matches the Name. It will be translated in RIO as :

pick $p..#ELEM as $p, $p.ID#ATTR."Name"
An Xpointer is defined by a series of location terms, absolute or relative to the

previous one. For example, the locator stringCHILD(2,CHAP)(4,SEC)(3) refers
to the third child of the fourth SEC within the second CHAP within the referenced
document. It will translate very naturally into the following expression: (numbering of
elements starts at 0):CHAP[1].SEC[3].[2] .

We have shown how our language can express link traversal and retrieval of tar-
get elements contained in XML documents. The next section presents the part of the
language more specific to managing HTML and XML links.

5 A specific syntax for links

The examples in the previous sections have illustrated the power of our language for
selecting and following links, extracting new information objects, and finally assem-
bling them into new documents. In this section we extend our language with specific
expressions for combining path expressions and instructions for selecting and following
links.

5.1 Following links

We introduce the operator “-> ” to retrieve the direct targets from a source, and the
operator “->* ”, which also recursively retrieves the targets to any degree. The element
before the-> can restrict the type of links to be followed. This syntax is inspired from
WebSQL[16].

Using this operator, query 1 can be written as:

Query 1bis:

pick $d..title from url("http://somewhere.com")
as $base, $base..refer-> as $d

where “$base..refer-> ” is equivalent to “url($base..refer.href ”.
Table 1 gives the interpretation of some typical link expressions where$result refers
to the results.

The keyword#ROOTrefers to the root of the designated tree. In$base->#ROOT ,
for instance, it refers to the target of$base ; this expression is equivalent to$base-> .
The#ROOTkeyword can generally be omitted, except in cases where adotselection is
needed after the “-> ” operator instead of the defaultdot-dotselection.

link expression interpretation
$base..refer-> url($base..refer.href) as $result
$base..refer->-> url($base..refer.href) as $d,

url($d..refer.href) as $result
$base..refer->* Follow recursively all the refer links and

return the list of target documents at any step
$base..refer->chap url($base..refer.href) as $d ,

$d..chap as $result
$base-> url($base..href) as $result

Table 1. Interpretation of link expressions

The danger of expressions such as$base..refer ->* , and how we will control
it is discussed briefly in section 5.3.

The complete BNF for link expressions is:

link-expression ::= follow-link [’as’ ident] |
follow-link ’as’ ident ’->’ ident

follow-link ::= path-expression link-exp
link-exp ::= { ’->’ [root-expression] }+ |

’->’ ’*’ [root-expression]
root-expr ::= root-expression | name

A root-expression is path-expression starting with#ROOT. The second alternative of
the first rule will be used in more advanced examples in the next section.

5.2 Binding link elements

Query 1bis was deliberately not quite equivalent to query 1 since the url was missing in
the result. Accessing the url will be made easier by using a more advanced feature of
our syntax. The query equivalent to query 1 is:

Query 1ter:

pick list($d..title, $anchor.href)
from url("http://somewhere.com") as $base,

$base..refer-> as $anchor->$d

The expressionas $anchor->$d binds the variable$anchor to the link ele-
ment corresponding to the link, and the variable$d to the corresponding target docu-
ment.

Query 2 can be reformulated as:

Query 2bis:

pick $d..title
from url("http://somewhere.com") as $base,

$base..see-also.target-> as $anchor->$d
where $anchor.role="background"

5.3 Link behavior

Simple links, as well as extended links, can specify policies for link traversal, using the
attributesSHOWandACTUATE. TheSHOWattribute can take one of the three values:
EMBED(ie. the target resource will be embedded into the current document),REPLACE
(the target resource will be displayed in place of the current document), orNEW(the
target will be displayed in a new window).

With our language it is possible to create Virtual documents that change the behavior
of links.

Example 3:

$d replace target.SHOW with attr(SHOW, "EMBED")

This instruction sets all theSHOWattributes oftarget elements to the valueEM-
BED.

Example 4:

<?define $doc as
(pick $d replace $anchor with elem(paragraph,$embedded)

from url("http://somewhere.com") as $d,
$d..refer-> as $anchor->$embedded,
$anchor.SHOW."EMBED")>

<?toSGML($doc)>

Example 4 is a complete prescription that takes an existing page somewhere, re-
places all the links with attribute value equal toEMBEDwith the corresponding target
element9: The fourth line of the prescription follows the link and binds the link ele-
ment and the result to the variables$anchor and$embedded , as explained in the
previous section. The next line selects the link elements with the attributeSHOWset to
EMBED. The second process instruction simply uses the function toSGML to generate a
tagged document that exactly matches the tree structure. This straight mapping involves
a pre-order tree traversal, using the node labels as the tags and their value as the content.

This virtual document prescription is a little atypical. Usually a virtual document
prescription would contain more static parts with explicit tags, and some embedded
process instructions. This prescription transforms an existing page, instead of reusing
parts of it.

5.4 Controlling links

Using uncontrolled regular expressions for following links can be very dangerous since
it may amount to a query for all the documents in the Web. [16] defines three types of
hypertext links:internal, when the destination is within the source document,local if
the destination and the source are on the same server, andglobal if they are located on
different servers.

In RIO we are not interested in querying the whole Web, or even a large part of the
Web. We know the information we are looking forexists, and we often know where it
is, or have some idea of the structure of the pages where it may be found.

Secondly we can foresee that XML will push for documents that contain typed links
to support intelligent applications as pointed out in [18]. Following links according to
their type will be a way of controlling the number of retrieved documents.

For these reasons we may decide not to follow links that are very distant from
the initial document in term of number of global link traversal. The interpreter can
limit recursive link traversal to target documents on the same server or domain. It will
be possible though to follow an explicit finite number of global links. Loops can be
prevented by keeping trace of the visited documents.

9 We suppose that each target element can be embedded into a paragraph in the source document.

6 Related research work

Other works have looked at querying structured or semi-structured information, either
from a database point of view [3, 10]; from a document processing point of view, as
with HyQ [2] or SgmlQL [15]; or for hypertexts focusing on links: [8], a logical query
language for hypertexts, Gram [7] which introduces path-expressions, or MacWeb [17],
[18] that uses typed links.

Our selection of objects is similar to the generalized path expressions found in
POQL [10] or Gram [7] ; however, their interpretation is much simplified since our paths
are concrete paths into untyped tree structures that are not constrained to a database
schema. This need to query semi-structured data without strict typing conventions has
been recognized in Lorel [5] , which uses coercion between types to address the prob-
lem. An alternative to path expressions is tree patterns, as in SgmlQL [15]. However,
as any of these languages, SgmlQL does not address the problem of conversion to a
different DTD nor to deal with heterogeneous data.

This problem of DTD ”conversion” has been addressed already by a number of
approaches: either by general-purpose languages such as DSSSL [1], or within SGML
editors for supporting cut-and- paste between incompatible elements [6]. Conversion
will be important for reusing XML documents from HTML or the reverse.

Various languages for querying the WWW in a database style have been developed
in W3QL [13], [16], and WebSQL [19]. Their approach is to build a model for Web
pages as well as for links and to query the Web as an SQL database. Araneus [19]
models servers that present a regular structure with a nested tree model mapped into
SQL tables. WebSQL models HTML pages as tuples [url, title, text, type, length, modif]
and links as [base, href, label], and define an SQL-like language for querying pages and
following links. To control the navigation they emphasize the distinction between local
and remote documents. Our approach differs from these approaches in making full use
of the SGML/XML tags for exploiting the internal structure of the document. To control
links we mostly rely on link types.

Building Web pages with dynamic content can be done using the limited HTML
language facilities (server sideinclude, tags,<OBJECT> element), with Java
Scripts or JavaApplets, or with Editors like WebWriter [11]. Advanced servers, like
PHP10 offer an interface for accessing SQL databases from HTML. This works by
embedding SQL queries and control instructions in HTML comments that are pre-
processed on the server. Most of these approaches have the disadvantage of being script-
based, which makes it difficult for non programmers to create pages, and for anyone to
update them or to include them in other documents.

Languages for reusing Web information have been less explored. XML itself offers
capabilities for reusing fragments of XML documents, by usingAUTO, EMBEDlinks
and by supporting XML documents that are only well-formed, relaxing the constraint
on the conformance to a DTD. However it does not allow for restructuring or mixing
the reused information.

Araneus [19] offers a limited model for creating new Web pages after querying
existing ones. The constructed pages can only include text, lists and links to other pages,

10 R. Lerdof, PHP/FI documentation, http://www.php.net/

and not the full-range of HTML constructs; from the definition of new pages, a new
set of static HTML pages are created. Boomerang [12] uses page templates and string
pattern matching based-rules for reconfiguring Web pages. Rules are used to instantiate
variables which are then expanded in the templates. Boomerang does not make real
use of the structure of the document and does not allow for merging information from
several pages.

WebMethods11 relies on using HTML tags for building Java objects that can be
directly used from applications. Although it has been one of our initial sources of inspi-
ration, it can’t follow links and does not offer any language for building new documents
nor integrating various sources of information. Dkweb [24] proposes an architecture
for dynamically customizing the structure and the content of Web pages, by storing
view definition and meta information objects into an OO database. These views are a
simplified form of our prescriptions, while embedded methods turn Web pages into in-
formation objects. Our tree model offers a more generic representation of information
objects.

7 Conclusion

Reusing information contained in electronic documents is becoming a major issue,
whether it is proprietary information or information available from the Internet. In this
paper we have presented a language for reusing information objects from heterogeneous
sources, including SGML, XML, and HTML documents. Our approach is to use a mid-
dleware format to integrate the results of queries from the various sources and to map
them into a new (virtual) document. We have demonstrated more specifically how to
use the language for following XML links and to control the traversal of links using
their types and properties. Since our solution is generic and fully SGML compatible we
are ready to benefit from the intelligence that XML, or any HTML extension, will bring
to the Web for supporting the extraction and reuse of information.

The approach is currently being implemented using Java for the interpreter and
the database server; our prototypal application is a virtual document prescription for
generating activity reports that reuse information from our Intranet, an SQL database of
staff and an OO database of documents. Other potential applications are: flexible and
manageable generation of large documentation, or configuration of Intranet servers.

Further extensions to the language would include control instructions to make the
virtual document more adaptable to the actual results of queries, and explicit instruc-
tions for building a set of related pages.

References

1. ISO 10179.Document Style and specification Language (DSSSL), 1996.
2. ISO 10774. Information Technology- Hypermedia/Time-based Structuring language (Hy-

Time), 1992.
3. S. Abiteboul. Querying semi-structured data. InProceedings of ICDT’97 (Invited talk),

1997.

11 WebMethods,The Web Interface Toolkit, http://www.webMethods.com/.

4. S. Abiteboul, S. Cluet, and T. Milo. Correspondence and translation for heterogeneous data.
In Proceedings of ICDT97, 1997.

5. S. Abiteboul, D. Quass, J. McHugh, J. Widom, and J. Wiener. The lorel query language for
semi-structured data.Journal of Digital Libraries, 1(1), 1996.

6. Akpotsui, V. Quint, and C. Roisin. Type modeling for document transformation in structured
editor. Mathematical and Computer Modelling, 1994.

7. B. Amann. Gram: A graph data model and query language. InProceedings of the Second
European Conference on Hypertext, ECHT’92, Milan, 1992.

8. C. Beeri and Y. Kornatzky. A logical query language for hypertext system. InProceedings of
the first European Conference on Hypertext, pages 67–80. Canbridge University Press, 1990.

9. T. Bray and C.M. Sperberg-McQueen. Extensible markup language (XML), W3C working
draft, http://www.w3.org/pub/WWW/TR/WD-xml.html.

10. V. Christophides, S. Abiteboul, S. Cluet, and M. Scholl. From structured documents to novel
query facilities. InProceedings of the ACM SIGMOD Conference on Management of Data,
Minneapolis, Minnesota, pages 313–324, 1994.

11. Arturo Crespo and Eric A. Bier. Webwriter: A browser-based editor for constructing web
applications. InProceedings of WWW5 Conference, Paris, France, May 6–10 1996.

12. Curtis E. Dyreson and Antony M. Sloane. The boomerang white paper: a page as you like
it. In Proceedings of the WWW4 Conference, pages 667–676, December 1995.

13. D. Konopnicki and O. Schmueli. W3QS: A query system for the world wide web. InPro-
ceedings of VLDB’95, pages 54–65, 1995.

14. D. M. Levy. Document reuse and document systems.Electronic Publishing, 6(4):339–348,
December 1993.

15. Jacques Le Maitre, Elisabeth Murisasco, and M. Rolbert. From annotated corpora to
databases : the SgmlQL language. InCSLI lecture notes, collection linguistic databases.
Cambridge University Press, to appear.

16. A. Mendelzon, G. Mihaila, and T. Milo. Querying the world wide web. InProceedings of
PDIS’96, Miami, Floride, 1996.

17. Jocelyne Nanard and Marc Nanard. Using types to incorporate knowledge in hypertext. In
Proceedings of the 3rd ACM Conference on Hypertext, ACM Press, San Antonio (Texas),
December 1991.

18. Marc Nanard and Jocelyne Nanard. Should anchors be typed too? an experiment with
macweb. InProceedings of the ACM Conference on Hypertext, HTX’93, Seattle, Novem-
ber 1993.

19. P. Merialdo P. Atzeni, G. Mecca. To weave the web. InProceedings of the 23rd International
Conference on Very Large Databases (VLDB’97), 1997.

20. D. Skar. Graduating from file-based to info-based document construction. InProceedings of
the SGML Asia Pacific Conference, Sydney, Australia, September 1996.

21. C. M. Sperberg-McQueen and Robert F. Goldstein. Html to the max: A manifesto for adding
SGML intelligence to the world-wide web.Computer Networks and ISDN Systems, 28, pages
3–11, 1995.

22. Anne-Marie Vercoustre, Jon Dell’Oro, and Brendan Hills. Reuse of information through
virtual documents. InSecond Australian Document Computing Symposium, Melbourne Aus-
tralia, pages 55–64, April 5 1997.

23. Anne-Marie Vercoustre and Fran¸cois Paradis. A descriptive language for information ob-
ject reuse through virtual documents. In4th International Conference on Object-Oriented
Information Systems (OOIS’97), Brisbane, Australia, 10–12 November 1997.

24. Jack Jingshuang Yang and Gail E. Kaiser. An architecture for integrating OODBs with
WWW. In Proceedings of the WWW5 Conference, Paris, France, May 1996.

