
On Wrapping Query Languages and E�cient XML Integration�

Vassilis Christophides Sophie Cluet J�erôme Sim�eon

Institute of Computer Science INRIA Rocquencourt Bell Laboratories

FORTH, P.O. Box 1385 BP 105, 78153 600 Mountain Avenue

Heraklion, Greece Le Chesnay Cedex, France Murray Hill, NJ, USA

christop@csi.forth.gr Sophie.Cluet@inria.fr simeon@research.bell-labs.com

Abstract

Modern applications (portals, e-commerce, digital libraries, etc.) require integrated access
to various information sources (from traditional RDBMS to semistructured Web repositories),
fast deployment and low maintenance cost in a rapidly evolving environment. Because of its
exibility, there is an increasing interest in using XML as a middleware model for such appli-
cations. XML enables fast wrapping and declarative integration. However, query processing in
XML-based integration systems is still penalized by the lack of an algebra with adequate opti-
mization properties and the di�culty to understand source query capabilities. In this paper, we
propose an algebraic approach to support e�cient query evaluation in XML integration systems.
We de�ne a general purpose algebra suitable for semistructured or XML query languages. We
show how this algebra can be used, with appropriate type information, to also wrap more struc-
tured query languages such as OQL or SQL. Finally, we develop new optimization techniques
for XML-based integration systems.

1 Introduction

XML [9] is becoming widely used for the development of Web applications that require data inte-
gration (e.g., portals, e-commerce, digital libraries). Although fashion surely accounts for some of
XML's popularity, it is also justi�ed on technical grounds. Notably, XML enables easy wrapping of
external sources and declarative integration, thus allowing fast deployment and cheap maintenance
of applications. Still, XML-based systems are not yet as e�cient as more traditional integration
software [47, 31, 21, 11, 49, 33, 27, 10]. In this paper, we address this issue.

Let us consider an example to motivate the use of XML technology and the improvements we
propose. In this example, we plan to build a Web site providing access to commercial information
about cultural goods1. For this application, we need to integrate two sources: one, highly struc-
tured, is an object database that contains trading information; the other is a partially structured
document repository that contains descriptive information about artistic work and is full-text in-
dexed with Wais2. Figure 1 shows an XML representation of some sample data from these two
sources.

�Project supported by OPAL (Esprit IV project number 20377) and AQUARELLE (Telematics Application Pro-
gram IE-2005).

1Similar to, e.g. www.artdata.com, www.christies.com or www.sothebys.com
2http://ls6-www.informatik.uni-dortmund.de/ir/projects/freeWAIS-sf/

1

<work>
 <artist> Claude Monet </artist>
 <title> Nympheas </title>
 <style> Impressionist </style>
 <size> 21 x 61 </size>
 <cplace>Giverny</cplace>
</work>
....
<work>
 <artist> Claude Monet </artist>
 <title> Waterloo Bridge </title>
 <style> Impressionist </style>
 <size> 29.2 x 46.4 </size>
 <history>Painted with <technique> Oil on canvas
 </technique> in ...
</work>

<object id="a1" class="artifact">
 <tuple>
 <title> Nympheas </title>
 <year> 1897 </year>
 <creator> Claude Monet </creator>
 <price> 10.000.000 </price>
 <owners refs = "p1 p2 p3"/>
 </tuple>
</object>
.....
<object id="p3" class="person">
 <tuple>
 <name> Doctor X </name>
 <auction> 10.1500.000</auction>
 </tuple>
</object>

Figure 1: Sample XML Data

There are four main advantages in using XML for such an application. First, because XML is
a very exible format, it can be used to represent both structured and semistructured information
(see Figure 1) from our sources. Second, it is very easy to convert data into XML, and to do
so in a generic fashion. In our example, this means that the person in charge of developing the
application will not spend too much time generating the XML displayed in Figure 1. Third, there
exist many languages allowing declarative integration of XML data (e.g. MSL [39], StruQL [23],
YATL [18] or XMAS [42]). Finally, being a standard, XML facilitates interoperability. However,
query processing in XML-based integration raises some hard issues.

� Wrapping type information. There are certainly many reasons why preserving type informa-
tion is useful, but it is particularly important for query optimization [25]. Although most
data management systems can now export data in XML, they usually don't provide the
corresponding type information. This is mostly because XML's current form of typing (i.e.
DTDs [9]) is not su�cient to capture rich type systems (e.g., an object database schema) or,
conversely, partially structured documents (e.g., in Figure 1, works might come with manda-
tory elements as well as elements not known in advance, like history or cplace). Several
recent proposals (e.g., XML Schema [7] or DCD [8]) are studying this issue, but no de�nitive
standard is available yet. In [18], we introduced a type system, suitable to represent any mix
of well-formed and valid XML data, that we will use in the rest of paper.

� Wrapping source query capabilities. Internet sources usually do not export data but, instead,
provide query facilities. Thus, in order to integrate them, one needs to understand their
\query language". This is also important for performance reasons: by pushing the processing
to the sources as much as possible, the application avoids massive data transfers and reduces
XML conversion overhead. The only technique proposed so far and that would be appropri-
ate for XML, comes from the TSIMMIS system: query templates [41] are used to describe
source capabilities. However, this does not allow an exhaustive description of a source capa-
bilities (e.g., all possible queries on the example object database) and implies costly ad hoc
development (i.e. to code, for each application, the translation of a given list of queries).

2

� Processing XML queries e�ciently in an integration context remains an open problem. A well-
understood algebra that supports the peculiarities of XML languages is missing. Moreover, we
need to be able to exploit partial type information and very heterogeneous source capabilities.

In this paper, we propose an algebraic framework and optimization techniques to address the
last two of the above issues. More precisely, we make the following contributions:

An algebra for XML. We introduce an operational model based on a general-purpose algebra
for XML. This algebra is expressive enough to capture most of the semantics of existing
semistructured/XML or structured languages with their respective speci�cities.

A source description language. We show how this algebra can be used to wrap full text queries
or structured query languages such as OQL or SQL in a complete (i.e. allowing exploitation
of sources full query capabilities) and generic (i.e. with no e�ort required from the application
developer) way.

Query processing techniques. We show that our algebra is appropriate to optimize integra-
tion applications. Notably, we introduce new rewriting techniques for query composition,
investigate the impact of type information during query processing and illustrate how query
evaluation can take advantage of source query capabilities.

The paper is organized as follows. Section 2 illustrates the advantages of XML integration
by explaining the di�erent steps required to build our example application with YAT, our home-
brewed integration system. This section also recalls the speci�cs of the type system we are using.
Section 3 introduces our algebra. The description language to wrap source query languages is
presented in Section 4. In Section 5 we present the optimization techniques and the system current
implementation status. We conclude in Section 6.

2 XML Integration with YAT

The YAT System is a semistructured data conversion system [18, 44] that we are currently turning
in to a full-edged XML integration system. As we already presented in [45], it relies on a library
of generic wrappers and a declarative integration language called YATL. Figure 2 illustrates the
three steps required to setup our application example with YAT:

1. simeon wraps the (O2) object database. For this, he simply needs to run the o2-wrapper

program that can export structural information from any O2 database (here the art database)
as well as the system query capabilities (i.e., it wraps OQL, we will see how in Section 4).

2. christop wraps the cultural source with another generic wrapper. The xmlwais wrapper
understands XML data, typed with our type system and indexed by Wais. It expects a
standard Wais source con�guration �le (museum.src in the example) as parameter.

3. cluet runs a yat mediator, connects both wrappers using the port numbers given by her
fellow developers, imports the structural and query capabilities of the two connected system
and loads her favorite integration program (view1.yat).

3

--

logos{simeon}: o2-wrapper -server gringos.inria.fr

-system cultural

-base art

-port 6066

o2-wrapper is running at logos.inria.fr:6066

logos{simeon}:

--

sappho{christop}: xmlwais-wrapper -directory ~christop/wais-sources/museum.src

-port 6060

xmlwais-wrapper is running at sappho.ics.forth.gr:6060

sappho{christop}:

--

cosmos{cluet}: yat-mediator -port 6666

yat-mediator is running at cosmos.inria.fr:6666

yat> connect o2artifact logos.inria.fr:6066;

yat> connect xmlartwork sappho.ics.forth.gr:6060;

yat> import o2artifact;

yat> import xmlartwork;

yat> load "/u/cluet/YAT/view1.yat";

yat>

Figure 2: Installing Wrappers and Mediators

Before we take a closer look at the integration program itself, let us �rst give the structural
information, as exported by the two wrappers. Note that for interoperability reasons, wrappers
and mediators communicate data, structures and operations in an XML syntax (see [16] for the
complete XML interfaces).

The YAT type system is based on a simple yet powerful mechanism that allows to represent
information at various levels of genericity (model, schema, data) and to understand the connection
existing between these levels. As will be explained in Section 4, we rely on this speci�c feature to
wrap query languages. We present it here briey (see [18] for a complete description).

Figure 3 gives a graphical representation of the YAT data model and of the type information
exported by our two wrappers. The left hand-side of the �gure shows the O2 data model (on top)
and the schema of the art database (in the lower part). Note that (i) bold fonts denote identi�ers,
(ii) the & symbol denotes references to identi�ers, (iii) the ? and _ symbols are used to denote
respectively multiple occurrences and alternatives. Thus, an O2 type is described as being either
an atomic type, or a tuple, or a collection or a reference to a class. A tuple type is represented as
a collection of linear subtrees, each associating a symbol to a value of some type. One interesting
property of this representation is that the Artifact schema is recognized by the system as an
instance of the O2 model (which is denoted Artifact <: ODMG).

Let us now take a look at the representation of the documents exported by the xmlwais wrapper
in the lower left part of the �gure. Each is described as a sequence of mandatory elements, followed
by a collection of optional and unknown elements (called Fields). Note the exibility of this model
that can capture partially structured information, avoiding the dilemma of choosing either one of

4

The "Artifact" Schema

Type :

Type

tuple

Type

&Class
* *

(Int v Bool v
 Float v String
 v Bytes)

Symbol

set bag
list array

Class :
class

Type

Symbol

artifacts:

&Artifact

set

*

The ODMG model

*

class

tuple

String

name

String

entity

Person:
set

*

persons:

&Person

Artifact : class

tuple

artifact

IntString

title

String

creatoryear

Float

price owners

list

*
&Person

works:

works

Work

*
SymbolString

YAT Model

*
YAT : Any

YAT

&YAT

(v v
 v)

Field :

Field

auction

The "Artworks" structure

*
work

String String String

title style

String

artist

Work :

Fieldsize

Figure 3: O2, XML-Wais and YAT mediator structural metadata

the valid (i.e. XML with precise schema) or well-formed (XML with no schema at all) strategy.

Finally, on the top right part of Figure 3, one sees a representation of the YAT meta-model
itself, that captures any tree. Once again, the O2 model, the Artifacts schema, and the Artworks
structure are instances of this almighty model (in fact, we have Artifact <: ODMG <: YAT).

Integration programs in declarative languages are usually composed of a sequence of rules or
queries [39, 23, 18], whose partial results are connected together through Skolem functions. Figure 2
shows a YATL query3, extracted from program view1.yat, that constructs a document (artworks)
in the integrated view. This document contains both the trading and descriptive information about
each work of art which is available in the two sources.

The query consists of three clauses. The MATCH clause performs pattern-matching: �lters
are used to navigate in the source data and bind variables to the appropriate information (e.g.,
the artifact title to variable $t, the list of optional XML elements to $fields). YATL �ltering
mechanism relies on type instantiation: if a tree is an instance of a �lter, then one can deduce
a mapping between values and variables. Otherwise, a type error occurs. The WHERE clause
ful�lls the usual function. The MAKE clause constructs the result by creating a new tree with
the values returned by the previous clauses. In the example, we build a new artwork tree for
each distinct artifact and group these subtrees under the doc node. Here, artwork($t,$c) is a
Skolem function, creating new tree identi�ers for each distinct values of title and creator. Using
Skolem functions allow us to identify (sub-)trees and, thus, to create references. Note that the
type information provided by the wrappers and by the YATL program can be used to guide the
integration speci�cation, check the consistency of an application or signal source modi�cations.

3In its new syntax [24, 46].

5

artworks() :=

MAKE doc * & artwork($t,$c) := work [title: $t,

artist: $a,

year: $y,

price: $p,

style: $s,

size: $si,

owners * $o,

more: $�elds]

MATCH artifacts WITH set f * class: artifact: tuple f

title: $t,

year: $y,

creator: $c,

price: $p,

owners: list * class: person: tuple f

name: $o,

auction: $aug g g,

works WITH works * work [artist: $a,

title: $t',

style: $s,

size: $si,

*($�elds)]

WHERE $y > 1800 AND $c = $a AND $t = $t'

Figure 4: Integrating information about the works of Art

6

2.1 Technical challenges in query processing

The above example illustrates the simplicity of XML-based integration. Apart from the quality
of structural descriptions provided by YAT, other semistructured or XML integration systems (e.g.
TSIMMIS [40], MIX [4]) o�er similar functionalities. But we still have to evaluate user queries in
an e�cient way. As an invitation to proceed further, assume that a user, after having noticed that
some artworks had a creation place (cplace �eld), issues the following query:

Q1: What are the artifacts created at \Giverny" ?
MAKE $t
MATCH artworksWITH doc.work.[title.$t, more.cplace.$cl]
WHERE $cl = "Giverny"

In order to process Q1, we need to address several problems: (i) how to compose it with the
view de�nition (note that Q1 accesses the semistructured �elds of artwork documents), (ii) how to
understand that only the XML-Wais source is needed to answer the query, (iii) how to exploit the
Wais textual queries to avoid downloading all documents. In the following, we demonstrate that
the algebraic framework we propose can answer successfully all these questions.

3 The YAT operational model and XML Algebra

Choosing the good operational model for information integration is a strategic decision. As we will
see in the remainder of the paper, it is the main tool for both the generic description of source
query capabilities and the XML query optimization. We adopt a simple but expressive operational
model: it relies on a functional approach allowing arbitrary compositions of any side-e�ect free
functions4 as well as function calls, and provides a �xed set of prede�ned operations - the so-called
YAT XML algebra. This algebra has been designed with respect to the following requirements:

Expressive power. The algebra must capture evaluation of query and integration languages,
along with their XML-speci�c features. Notably it must support complex pattern matching
primitives including ordered navigation (like in XQL [43] or YATL), di�erent kinds of variables
(atomic values, whole sub-trees, tag or index variables) as well as Skolem functions.

Support for exible typing. XML favors exibility and most XML query languages are not
typed. Yet, we also want to capture the properties of structured languages. Thus, the
algebra should support both exible type �ltering (in the style of Lorel[1], XML-QL[22]) and
more strict forms of typing (for languages such as OQL [17, 12]).

Support for optimization. Of course, the algebra should come equipped with a number of equiv-
alences o�ering interesting optimization opportunities.

The algebra is an extension of the object algebra of [19]. In this section, we present the operators
that we introduced to deal with tree structures and recall briey the others. Next, we show how
queries are translated in our operational model. Finally, we give a brief overview of alternative
proposals.

4With the exception of Skolem functions that feature a limited form of side-e�ect.

7

Bind

works

*

*

works

work

titleartist

$t

($fields)

$a $s

style size

$si

..........ta fields

"Nympheas"

s

"Impressionist"

"Claude
 Monet"

si

"21 x 61"

"Claude
 Monet"

ta fieldss

"Impressionist"

si

"Waterloo
 Bridge"

"29.2 x 46.4"

cplace

"Giverny"

history

technique

"Oil on canvas"

"Painted with" "in ..."

Figure 5: A Bind operation and resulting Tab structure

3.1 YAT XML algebra

One of the main characteristics of XML data is that, like objects, it can be arbitrarily nested.
Thus, we adopt a technique similar to that used for object-oriented algebras. Starting from an
arbitrary XML structure, we apply an operator, called Bind, whose purpose is to extract the
relevant information and produce a structure called Tab comparable to a :1NF relation. Then, on
these Tab structures we can apply standard operators such as Join, Select, Project, etc. Finally, an
inverse operation to Bind, called Tree, generates a new nested XML structure.

The Bind operator extracts data from some arbitrary input tree according to a given �lter (i.e.
a tree featuring distinct variables) and produces a tabular representation of the variable bindings
resulting from the �ltering operation.

Figure 5 illustrates this mechanism with an example. The Bind operation is applied on the
tree representing the XML collection of works with a �lter asking for a bind of each work title($t),
artist ($a), style ($s), size ($si) and optional elements (by putting the variable $fields on the
edge, we require the construction of a subtree with all the branches that are not bound by the
previous variables). Note the similarity between the Tab structure and a :1NF relation.

Bind is quite a powerful operation, providing support for type �ltering and navigation, both
vertical and horizontal (through horizontal regular expressions - see $fields bound to the remaining
subtree). However, as we will see in Section 5.1, it can be decomposed into more simple operations
when necessary. More details about Bind �lter patterns can be found in [18], while their extension
to allow exible type �ltering is presented in [46].

The Tree operator is applied on Tab structures and returns a collection of trees conforming to
some input pattern. Figure 6 illustrates its use. Here, the Tree operation is applied on the result
of the previous Bind (F[$t,$a,$s,$si,$fields] denotes the �lter of Figure 5). It groups the works
according to their artist (*($a)) and creates a new identi�er for each artist (artist($a)). The
trees associated to the artist identi�ers regroup the title of their work ($t after the *). Note that
this is somehow equivalent to a grouping operation.

Skolem functions are used to create new identi�ers and perform value assignment. In our
algebra, Skolem functions do not create values but have side e�ect on the integrated view. They
are somehow orthogonal to the rest of the algebra.

8

Tree

....
....

*

*

$a

($a)

$t

"Monet"

"Nympheas""Bathers"

artist($a):=

a1:= a2:=

Bind(works, F[$a,$t,$s,$si,$fields])

"Fruits"

"Cezanne"

Figure 6: The Tree operation

The other operators of the algebra are those of the object algebra of [19]. Select, Project,
Join, Union, Intersection come from relational. Classic object operations are: Group, Sort, Map
and D-Join (for dependency join) which is used for navigating within nested collections. Their
de�nition on Tab structures rather than collections of tuples is straightforward5. For lack of space,
we do not recall their de�nition here, but will explain their use whenever necessary. Except for the
Map, these operators are always applied on the top level of a Tab structure (in a manner similar
to the relational algebra). If one needs to go deeper, an extra Bind or Map has to be applied.

As most of the algebra is composed of standard operators, we can take advantage of their well-
known properties and reuse all the equivalences from object-oriented optimization (e.g. covering
standard relational ones or those for nested queries [19]). Concerning the distinctive characteristics
of XML data, note that:

� Bind and Tree are two frontier operations isolating processing speci�c to trees from more
standard one.

� By allowing recursive calls in the algebra (which was not the case in [19]), we capture
generalized path expressions [14, 1] (See [46] for more details). In [15], we studied their
optimization. We do not address this issue again here (also see [25] for more on this issue).

Finally, one important characteristic of this algebra is that it is independent of any underlying
physical access structure. Therefore, it can be used to reason about the evaluation of XML queries,
whether the corresponding XML data are locally stored (e.g. in a document management system or
an XML repository) or whether they are virtual (e.g. accessed through wrappers as in our context).
Indeed, in Section 5 we will present useful rewritings for both cases.

3.2 Expressive power and YATL algebraic translation

Our algebra o�ers the arsenal necessary to express the evaluation of existing XML query languages
(notably, YATL, Lorel, XML-QL and XQL). Figure 7 shows the algebraic translation of the view def-
inition of Figure 2 and of query Q1 (translation of other XML query languages would be performed
in a similar manner6). It has been obtained using the following translation steps:

5Although not illustrated here, [19]'s algebra is multi-sorted, which corresponds to Tab's with collections of di�erent
kinds: set, list or bag.

6Note that the translation of some particular features, for instance preservation of deeply nested structure with
order in XQL, would be more involved.

9

QueryQ1

Tree

Bind

Select

*
work

title

$t

$t

Bind

Select

artifacts

$y > 1800
Bind

works

*

*
works

title

$t

artist

$a

style

$s

work
($fields)

set

class
*

*

tuple

class

tuple
name auction

auo

person

owners

list

artifacts

year

yt’

creator

$c

price

$p

title

Tree

Join $t =$t’ and $c =$a

View definition

*

*

title

$t

year

$y $p

price

$fields

owners

$o

style

$s

work

doc

artist size

size

$si

sia

doc

cplace

$cp

$cp = "Giverny"

artworks

more

more

artworks:=

artwork($t,$a):=

Figure 7: Algebraization of YATL queries

1. Named documents (e.g. artifacts) are the input operations of the algebraic expression.

2. Each statement of the MATCH clause is translated into a Bind operation that captures its
�ltering/binding semantics, and creates a Tab structure suitable for further processing in the
algebra.

3. The connection between the various inputs is materialized using a Join operation.

4. The other predicates in the WHERE clause are translated into a Select operation.

5. Finally, the MAKE clause is translated using the Tree operation.

3.3 Related work

Several algebras for semistructured data have been proposed. The algebra presented in [34] is
a physical algebra, aimed at the optimization involving Lore indexes, and does not provide the
appropriate expressive power (notably horizontal navigation, Skolem functions, type �ltering). A
physical algebra is also used in XML-QL query engine. An XML algebra is proposed in [5] to
support XML queries, but it does not provide the appropriate expressive power and optimization
properties are unclear (e.g. the Join operation is not commutative anymore). Finally, SAL [6] is a

10

logical XML algebra, but it does not support horizontal navigation, sorting, Skolem functions and
type �ltering.

Compared to object algebras, YAT Bind resembles the Scan operator of [20] (minus the condition,
plus potentially complex patterns). An object algebra with side-e�ects similar to that of Skolem
functions has been presented in [2].

4 Generic wrapping of sources query capabilities

As we explained in Section 2, each wrapper exports its source query capabilities. In this section,
we explain how wrappers communicate this information to the mediator. More important, we
show how the combination of our operational model and type system allows to do this at di�erent
genericity levels: from full query languages (e.g., OQL on the ODMG model) to sets of queries
(e.g., a method on an O2 schema or a more exotic textual predicate on XML elements).

Wrapping source operations in YAT is performed in two steps that concern (i) signature and
(ii) semantics. The �rst step is in fact the most essential. The second is needed only for special
optimization purposes as will be explained later. In most cases, both steps are performed auto-
matically by the wrappers. However, for some exotic sources (i.e., those featuring operation that
cannot be captured by the core operational model), the second step must be performed manually.
As an example of the �rst step, let us assume that our O2 schema features a speci�c method:
current price on class Artifact. It can be imported by the O2 wrapper using the following XML
syntax:

1 <operation name="external">

2 <operation name="current_price">

3 <input>

4 <value model="Artifact_Schema" pattern="Artifact"/></input>

5 <output>

6 <leaf label=Float /></output>

7 </operation>

8 </operation>

Mainly, one needs to note the input and output elements: current price is said to take an
Artifact and to return a oat. Note that this declaration is performed automatically by the the O2

wrapper by simply querying the O2 schema manager. Once the method is wrapped, it is available
to the integration programmers, and, potentially to the end users (if the programmer decides so).

Let us now see how OQL and Wais are captured in this manner before looking at some related
work. Optimization issues are discussed in Section 5.

4.1 Describing OQL capabilities

We consider here the description of OQL [12, 17]. Obviously, SQL [35, 36] could be described
in a similar manner (although the wrapper implementation is more complicated due to the non-
functional nature of SQL).

YAT operational model borrows a large part of OQL algebra [19]. However, YAT supports also
two new semistructured operators as well as a di�erent type system. As a matter of fact, whereas
YAT captures OQL, the opposite is not true for mainly one reason: OQL binding capabilities are

11

more restricted (e.g., we cannot query schema information). We now explain how we can describe
precisely OQL query capabilities taking this restriction into account.

Capturing Binding Capabilities. A Bind operation has two parameters: a �lter and the
data that has to be �ltered/bound. In order to distinguish between Bind operations that can be
actually evaluated by OQL and those that cannot, we �rst need to specify which are the acceptable
�lters for OQL. Such a speci�cation of valid �lters (called Fpattern) is shown on Figure 8. An
Fpattern is essentially a serialization of the structured patterns illustrated in Figure 3, annotated
with di�erent kinds of ags. For instance, in the �lter for O2 classes (pattern with name Fclass,
line 4) the attributes bind and ground of pattern nodes are used to declare that (i) only subtrees
corresponding to actual O2 objects or values can be bound (bind="tree", line 5) (ii) extraction
of class schema information is prevented (bind="none", line 6) and (iii) the name of classes in a
schema speci�c �lter has to be instantiated (inst="ground", line 6).

The good thing about this Fpattern description is that the integration programmer does not
need to see it. It is coded by the YAT developers and embedded within the O2 wrapper. This also
applies to the XML descriptions given next.

Description for OQL. Below is a subset of the operational interface of the O2 wrapper:

1 <omodel name="o2omodel">

2 <operation name="algebraic">

3 <union>

4 <operation name="bind">

5 <input>

6 <value model="o2model" pattern="Type"/>

7 <filter model="o2fmodel" pattern="Ftype"/>

8 </input>

9 <output>

10 <value model="yatstruc" pattern="Tab"/>

11 </output>

12 </operation>

13 <operation name="select"></operation>

14 <operation name="map"></operation>

15 ...

16 </union>

17 </operation>

18
19 <operation name="boolean">

20 <union>

21 <operation name="shalow_eq"></operation>

22 <operation name="leq"></operation>

23 ...

24 </union>

25 </operation>

26 ...

27 </omodel>

Note that two kinds of operations are declared: algebraic (line 2) and boolean (line 19) op-
erations. In fact there are others: external (e.g., the current price method), arithmetic (e.g., +),

12

1 <interface name="o2artifact">

2 <operat>

3 <fmodel name="o2fmodel">

4 <fpattern name="Fclass">

5 <node label="class" bind="tree">

6 <node label="Symbol" bind="none" inst="ground">

7 <value pattern="Ftype"/></node></node>

8 </fpattern>

9
10 <fpattern name="Ftype">

11 <union>

12 <leaf label="Bool"/>

13 <leaf label="Char"/>

14 <leaf label="Int"/>

15 <leaf label="Float"/>

16 <leaf label="String"/>

17 <node label="tuple" col="set" bind="tree">

18 <star inst="ground">

19 <node label="Symbol" bind="none"><value label="Ftype"/></node>

20 </star></node>

21 <node label="set" col="set" bind="tree">

22 <star inst="none"><value label="Ftype"/></star></node>

23 <node label="bag" col="bag" bind="tree">

24 <star inst="none"><value label="Ftype"/></star></node>

25 <node label="list" bind="tree">

26 <star inst="none"><value label="Ftype"/></star></node>

27 <node label="array" bind="tree">

28 <star inst="none"><value label="Ftype"/></star></node>

29 <ref pattern="Fclass"/>

30 </union>

31 </fpattern>

32 </fmodel>

33 </operat>

34 </interface>

Figure 8: O2 Filter patterns exported in XML

13

etc. The �rst algebraic operation we declare is the Bind operation. Note that its signature has
been specialized using the Fpattern Ftype introduced in the previous subsection. Other algebraic
operators follow, none of which with a specialized signature (e.g., select, map, etc.). To under-
stand why this specialization is not required, we need to remind that our goal is to be able to
push operations on the connected sources. An operation can be pushed only on data imported by
the source or on the result of a pushed operation. Since Bind is always the �rst operation in a
query, we are sure that other pushable algebraic operations will be applied on ODMG compliant
data (a Tab captures any o2 collection of tuples) and there is no need to overload the system with
unnecessary information. Furthermore, in order to be pushed, all the arguments of an operation
must be pushable. For instance, selection and map operations will be pushed with predicates (e.g.,
=, <=, etc.)) or functions (e.g., the method current price) understood by O2. Going back to our
integration example, the sequence of Bind and Select operations illustrated in Figure 7 can be
pushed to the O2 source and it will translated by the wrapper into the following equivalent OQL
query:

select t: Artifact.title, y: Artifact.year, c: Artifact.creator, p: Artifact.price,
n: Owner.name, au: Owner.auction,

from Artifact in artifacts, Owner in Artifact.owners
where Artifact.year > 1800

4.2 Describing Wais capabilities

For database people, the most basic operation one can perform on a source is to ask for an entry
point (e.g., a relation, a set of objects). However, this seemingly simple operation is not supported
by some sources. For instance, many Web sites are only accessible through form-based query
interfaces and does not allow to export source's full content. Thus, it is capital to understand the
operations supported by these sources, even if not supported by the original YAT model.

Another apparently simple assumption in the database community is that you may view what
you query. Again, this is not always true. For instance, the Z39.50 [3] protocol (underlying the
Wais retrieval engine and which is widely used for digital libraries) is based on attribute/value
textual queries and establish a clear separation between what you may retrieve and what you may
query. For instance, one could specify that only the artist and style elements can be exported
from our XML documents while allowing queries only on the optional ones [37]. Although we do
not illustrate this here, the extensibility of the operational model allows to capture this peculiar
feature in a very simple way (by adding new predicates for each queried �eld and exporting them
to the view).

In the sequel, we focus on the wrapping of the full-text capabilities of our XML-Wais source
(or more generally of distributed information retrieval protocols and search engines) as well as the
declaration of source-supplied equivalences.

Importing the query capabilities of an XML-Wais source. In order to wrap the query
capability of the XML-Wais source we need to (i) specify the source Fpatterns, (ii) declare that
the source supports Bind and Select and (iii) describe the full-text predicate contains supplied by
Wais. Note that the Fpattern is very restrictive as it only permits to bind subtrees corresponding
to full documents (i.e., work but not artist or any other element). We give below the interface
corresponding to the XML-Wais wrapper:

14

1 <interface name="xmlartist">

2 <operat>

3 <fmodel name="waisfmodel">

4 <fpattern name="Fworks">

5 <node label="works" bind="none" inst="ground">

6 <star inst="none">

7 <value pattern="work" bind="tree"/></star></node>

8 </fpattern>

9 </fmodel>

10
11 <omodel name="waisomodel">

12 <operation name="algebraic">

13 <union>

14 <operation name="bind">

15 <input>

16 <value model="Artworks_Structure" pattern="works"/>

17 <filter model="waisfmodel" pattern="Fworks"/></input>

18 <output>

19 <value model="yatstruc" pattern="Tab"/></output>

20 </operation>

21
22 <operation name="select"></operation>

23 </union>

24 </operation>

25
26 <operation name="external">

27 <operation name="contains">

28 <input>

29 <value model="Artworks_Structure" pattern="Work"/>

30 <leaf label=String /></input>

31 <output>

32 <leaf label=Bool /></output>

33 </operation>

34 </operation>

35 </omodel>

36 </operat>

Once this is done, not much has been achieved since the mediator does not know the semantics
of the only predicate that can be pushed to the source. Yet, there exists some connection between
full-text and equality predicates. For instance, a query asking for works by impressionist artists
could be evaluated by (i) a full-text search for works containing the string \impressionist" followed
by (ii) a standard evaluation of the equality predicate within the mediator. This is expressed in
our interface language with the following equivalence given, for readability, in a textual form:

Select($x=$y, Bind(works, works*work[F($x)]))

=

Select($x=$y,Select(contains($w,$y),Bind(works, works*work($w)[F($x)])))

As expected, the equivalence states that starting from a selection with equality over the result
of a Bind (F($x) denotes here an arbitrary sub-�lter with a variable x), one can add a more general
contains predicate over the root of the document ($w).

15

4.3 Related work

In Garlic [47, 41, 29], source capabilities are coded by the programmer within the corresponding
wrapper. They remain unknown to the optimizer, that must communicate with the wrappers at
optimization/evaluation time to know what part of the query has been accepted and what remains
to be processed. In Disco [30], the description of source operations is not typed, which entails
extra work for the optimizer in order to match the generated plans against the imported query
descriptions. In TSIMMIS [32, 48], optimization opportunities are reduced since the interface
language is capable to describe only sets of queries rather than full query languages. To the best
of our knowledge, YAT is the only system allowing generic and complete description of capabilities
for arbitrary sources.

5 Exploiting Source Capabilities and Optimization

Our algebra is an object algebra extended to manipulate XML data with two operators (Bind and
Tree). As a consequence, a large number of optimization techniques proposed for the relational or
object models [28, 19] are directly applicable. In this section, we introduce rewriting techniques for
the new Bind and Tree operators. Our goal is to optimize arbitrary compositions of user queries
with integration views, either locally or by pushing queries to the external sources.

5.1 XML processing and Bind rewriting

The Bind operation is used to bind variables, but also to capture some of the most powerful features
of XML query languages, notably vertical and horizontal navigation as well as type �ltering. Bind
is a potentially expensive operation. Understanding how to simplify and/or rewrite it is crucial
since: (i) a simpler Bind has a better chance to be pushed to a source, (ii) Bind entails navigation
that can be costly and should be transformed into more traditional associative access as much as
possible.

Bind and vertical navigation

The left-hand side of Figure 9 shows the binding operation over artifacts, taken out from the
algebraic translation of our view de�nition (Figure 7). This Bind corresponds to a vertical naviga-
tion from the set of artifacts down to their local attributes (e.g., title) and further down to the
information contained in their associated set of owners. Navigation through nested collections is
usually captured in object algebras by a join whose right input depends on the left (DJoin in our
algebra [19]). Hence, the equivalence between Bind and Djoin shown in Figure 9 is not surprising:
in the middle part of the �gure we see that the Bind has been split into more elementary ones con-
nected through a DJoin. (Note the introduction of the new variable $x that is removed afterwards
by a projection.) As a reward, we can apply classic DJoin rewritings and transform navigation
into associative access: for instance, the right-hand side of Figure 9 exploits the persons extent
to transform DJoin into a standard Join (for which more e�cient algorithms are available). A
complex Bind can always be splitted into elementary Binds (i.e. with only one-level deep �lters),
connected together through DJoins.

Instead of using Djoins, another possibility is to split a complex Bind into a linear sequence
of elementary ones, each one navigating down the result of the previous one. The left-hand side

16

Bind

Bind Bind

Project

artifacts

set

class
*

*

tuple

class

tuple
name auction

auo

person

owners

list

artifacts

year

yt’

creator

$c

price

$p

title

artifacts persons

set

class
*

*

tuple
tuple

name auction

auo

person

class

owners

list

artifacts

year

yt’

creator

$c

price

$p

title

$x

$t,$y,$c,$p,$o,$au

Bind Bind

Project

artifacts

set

class
*

*

tuple tuple
name auction

auo

person

owners

list

artifacts

year

yt’

creator

$c

price

$p

title

$x

$t,$y,$c,$p,$o,$au

set
*

Join

class($y)

$x =$y

$x

DJoin
$x

Figure 9: From Bind to Join

Bind
*

work

title

$t cplace

doc

$cp

artworks

more

Bind

Bind
*

work

title

$t

t

$t

doc

$cp

cplace

$h

h

artworks

more

Figure 10: Splitting Binds

of Figure 10 illustrates this by rewriting the Bind operation over artworks that is part of the Q1
algebraic expression given in Figure 7. Among other things, this rewriting is useful to, e.g., to
simplify query compositions with XML integration views.

Bind, horizontal navigation and type �ltering

The absence of type information is usually bad news. Indeed, when a Bind operation features a
complex �lter and no structural information is available, the only evaluation strategy is to navigate
through the whole data graph. This is usually what happens in purely semistructured systems. In
this case, adding specialized indexes, like in [34], is the only way to achieve reasonable performances.
Hopefully, we often have more interesting opportunities, using type information about the data
(coming from the source) or the �lter (i.e. coming from the query). This is particularly useful for
XML queries mixing structured and semistructured data and it is illustrated next.

Semistructured queries over structured data. By semistructured queries, we mean queries
that access both structure and content, e.g. by using tag variables or exible type �ltering.
For instance, the left part of Figure 11 shows how to retrieve the attribute names of person

17

if Type(F) Type(works)Map

persons

Bind

tuple
name

$o

person

set
*

*

class

$val

att

auction

auction

persons

Bind

tuple
name

$o

person

set
*

class

$val

concat()

Bind

*

*

works

works

title

$t

artist

$a

style

$s

work
($fields)

Project

Bind

works

*
works

title

$t

artist

$a

work

(=F)

$att
size

$si

$t, $a

Figure 11: Bind and Map or Project

objects. Fortunately, we have precise type information(see Figure 3) and we can simplify the
�lter7, as shown on Figure 11. This rewriting has several bene�ts, the most obvious of which
is that the new Bind operation can be pushed to the O2 source!

Structured queries over semistructured data. Consider for instance the partially structured
XML artworks of our example and assume that a user is only interested in the artifacts
title and artist elements. As illustrated on the right side of Figure 11, this corresponds
to a projection. By using this projection to rewrite the Bind operation, we can simplify the
query. Doing so, we must be careful not to change the type �ltering semantics of the Bind.
A su�cient condition for the equivalence to hold is to verify, as it is our case, that the type
of works is an instance of the �lter.

5.2 Query composition and Tree-Bind rewriting

The Tree operation captures the restructuring semantics of a query or view de�nition: it features
implicit grouping and sorting which are typically expensive operations. As a matter of fact, a Tree
can be rewritten as sequence of Group, Sort and nested Map operations, on which optimization
techniques, e.g. from [19, 13], can be used. However, the evaluation of a Tree remains costly if
applied on large amounts of data. This is usually not the case with user queries, but may occur
when constructing a view. It is therefore particularly important to eliminate the intermediate Tree
operations resulting from the composition of queries and view de�nition.

We now go back to the evaluation of query Q1 (see page 7). The left part of Figure 12 presents
the composition of the algebraic translation of Q1 with the view de�nition: it is a rather complex
algebraic expression. A naive evaluation strategy would �rst materialize the view, and then evaluate
the query. Fortunately our XML algebra comes equipped with all the equivalences we need in order
to rewrite it as shown in the right part of Figure 12. Because of space limitations, we only sketch
the optimization process here, more details can be found in [44].

7Note that it is similar to rewriting techniques for generalized path expressions [15, 25].

18

Project
Tree

*

*

title

$t

year

$y $p

price

$fields

owners

$o

style

$s

 lower
 part of the
 view definition

Tree

Bind

QueryQ1

Select

*
work

title

$t

$t

Bind

Tree

Select

$t

works

*
works

work

$t

titlework

doc

cplace

$cp

artworks:=

artwork($t,$a):=

$a

artist

$cp = "Giverny"

size

$si

doc
$t, $h:fields

history Bind

Bind
*

*
work

title

$t

t

$t

doc

$cp

cplace

$h

h

more

more

cplace

$cp

$cp = "Giverny"

View Definition (see Figure 5)

Figure 12: Optimization of Q1

The �rst essential step, illustrated by arrows in Figure 12, is to get rid of the Bind-Tree sequence
that appears at the frontier between view de�nition and query. To do so, we �rst use the equivalence
from Figure 10 to split the Bind operation into two: this introduces an instantiation relationship
between the �lters of the lower Bind and of the Tree. Given this relationship, a second equivalence
is used to transform the Bind-Tree sequence into a simple projection with renaming. Once this is
done, we are mostly dealing with object operations on which standard rewritings apply. Because all
artifacts are available in the XML source, we can push the projection down and: (i) eliminate the
branch corresponding to the O2 source and (ii) simplify the Bind on the XML source. Finally, using
once more the equivalence from Figure 10 but in another direction, we merge the remaining Bind
�lters to obtain the �nal expression, on the right side of Figure 12. Note that we could optimize
the query further by making use of the XML source full text capabilities. This type of optimization
is illustrated in the sequel with another example.

5.3 Source capability-based rewriting

Exploiting source capabilities during query processing is de�nitely the most important technique in
a distributed context. Indeed, pushing some of the query evaluation to an external source allows:
to reduce the processing time by using source speci�c indexes or similar fast access structures; to
minimize the communication costs between the sources and the mediator, as well as the conver-
sion costs to the middleware model; to limit the system resources (e.g., memory) required by the
mediator; and to bene�t from possible parallelism introduced by remote query execution. The
next example shows how description of source capabilities from Section 4 can be used during the
optimization process.

19

Q2: Which impressionist artworks are sold for less than 200,000.00?

MAKE * answer [title: $t, artist: $a, price: $p]
MATCH works WITH doc * work [title: $t,

artist: $a,
price: $p,
style: $s]

WHERE $p < 200000 AND $s = "Impressionist"

The algebraic translation of the query is shown on the left-hand side of Figure 13, along with
the equivalence that transforms the Bind-Tree sequence into a Project operation. The optimized
version is illustrated on the right-hand side. Before we describe how it has been obtained, let us
see how it can be evaluated: �rst, the XML-Wais source (lower left part) is asked for all artworks
containing the string \Impressionist". Next, a second Bind is applied to extract the title, artist
and style elements from the selected artworks. Then, for each pair of title and artist, the O2

source is called to retrieve the corresponding artifact information. This last part is captured by
the Djoin operation: it corresponds here to a nested loop evaluation with variables $t and $a

passing from one side to the other. This kind of information passing is standard in distributed
query optimization [38, 26].

Tree

*

*

title

$t

year

$y $p

price more

$fields

owners

$o

style

$s $te

 lower
 part of the
 view definition

work

Tree

Bind

Query

Select

Q2

$s = "Impressionist" and
$p < 2000000

*

title

$t $p

price style

$s

work

*

title

$t $c $p

price

answer

View definition

Project

Tree
*

title

$t $p

price

answer
Pushed operations

Bind

works

Select

*
works

Select
$s = "Impressionist"

contains("Impressionist",$w)

Bind

title

Wais

DJoin

Bind

Select

artifacts

set

class
*

tuple

artifacts

$t’

creator

$c

price

$p

title

O2

$y > 1800 and
$p < 2000000 and
$t =$t‘ and $c =$a

$t, $a

$w

$t

artist

$a

style

$s

w

*

work($w)

artist

$a

artwork($t,$a):=

artworks:= doc

size

artist

$a

artist

artist

$a

$t, $a, $p, $s

doc

Figure 13: Algebraic translation and optimization of Q2

To obtain this plan, the optimizer performs several rounds of rewritings. The �rst round is
quite similar to the one we gave for query Q1: after the Bind-Tree simpli�cation, the projection is
used to simplify the Bind on each source and selections are pushed. The goal of the second round
of rewritings is to push as much evaluation as possible to the sources. On the O2 side, little work
is required since, as explained in Section 4.1, both Bind and selection can be trivially transformed
into an OQL query. On the XML-Wais side, the optimizer tries to match the Bind operation with
the Wais capabilities that have been declared. As, the only possibility is to push a simple Bind

20

on XML documents along with a contains predicate, the optimizer: (i) introduces a Select with
contains and (ii) splits the Bind to match the Wais capabilities description. The �rst step requires
the equivalence declared in Section 4.2, connecting the selection with equality and the selection with
contains. The second step simply uses the equivalence from Figure 10. Finally, a last round of
optimization determines possible information passing between sources and it is based on standard
rewritings between Joins and Djoins.

5.4 System status

This work takes place within the context of the YAT System [44], currently developed at Bell
Labs and INRIA8. At the time we write, the new XML version of the system, with its algebraic
evaluation engine, is running and stable. The implementation of the optimizer is still on-going.
This �rst implementation is based on heuristics and a simple linear search strategy consisting of
the three rewriting rounds presented previously.

6 Conclusion

We have presented an algebraic framework to support e�cient query evaluation in XML integra-
tion systems. It relies on a general purpose algebra allowing to capture the expressive power of
semistructured or XML query languages but also to wrap, with appropriate type information, more
structured query languages such as OQL or SQL. The proposed XML algebra comes equipped with
a number of equivalences o�ering interesting optimization opportunities. Notably, they enable to
optimize query compositions, exploit type information and push query evaluation to the external
source.

References

[1] S. Abiteboul, D. Quass, J. McHugh, J. Widom, and J. L. Wiener. The lorel query language
for semistructured data. International Journal on Digital Libraries, 1(1):68{88, April 1997.

[2] S. Amer-Yahia, S. Cluet, and C. Delobel. Bulk Loading Techniques for Object Databases and
an Application to Relational Data. In Proceedings of International Conference on Very Large
Databases (VLDB), New York, August 1998.

[3] ANSI/NISO. Z39.50-1995 (Versions 2 and 3) Information Retrieval: Application Service Def-
inition and Protocol Speci�cation, 1995.

[4] C. K. Baru, A. Gupta, B. Lud�ascher, R. Marciano, Y. Papakonstantinou, P. Velikhov, and
V. Chu. XML-Based Information Mediation with MIX. In Proceedings of ACM SIGMOD
Conference on Management of Data, pages 540{543, Philadelphia, Pennsylvania, June 1999.

[5] D. Beech, A. Malhotra, and M. Rys. A formal data model and algebra for xml. Communication
to the W3C, September 1999.

[6] C. Beeri and Y. Tzaban. SAL: An Algebra for Semistructured Data and XML. In International
Workshop on the Web and Databases (WebDB'99), Philadelphia, Pennsylvania, June 1999.

8http://www-rocq.inria.fr/~simeon/YAT/

21

[7] D. Bleech, S. Lawrence, M. Maloney, N. Mendelsohn, and H. S. Thompson. Xml schema (parts
1 & 2). W3C Working Draft, September 1999.

[8] T. Bray, C. Frankston, and A. Malhotra. Document content description for xml. Submission
to the World Wide Web Consortium, July 1998.

[9] T. Bray, J. Paoli, and C. M. Sperberg-McQueen. Extensible Markup Language (XML) 1.0.
W3C Recommendation, February 1998.
http://www.w3.org/TR/REC-xml/.

[10] P. Buneman, S. B. Davidson, K. Hart, C. Overton, and L. Wong. A data transformation
system for biological data sources. In Proceedings of International Conference on Very Large
Databases (VLDB), pages 158{169, Zurich, Switzerland, September 1995.

[11] M. J. Carey, L. M. Haas, P. M. Schwarz, M. Arya, W. F. Cody, R. Fagin, M. Flickner, A. W.
Luniewski, W. Niblack, D. Petkovic, J. Thomas, J. H. Williams, and E. L. Wimmers. Towards
heterogeneous multimedia information systems: The garlic approach. In Research Issues in
Data Engineering, pages 124{131, Los Alamitos, California, March 1995.

[12] R. G. Cattell. The Object Database Standard: ODMG 2.0. Morgan Kaufmann, 1997.

[13] S. Chaudhuri and K. Shim. Including Group-By in Query Optimization. In Proceedings of
International Conference on Very Large Databases (VLDB), pages 354{366, Santiago de Chile,
Chile, September 1994.

[14] V. Christophides, S. Abiteboul, S. Cluet, and M. Scholl. From Structured Documents to Novel
Query Facilities. In Proceedings of ACM SIGMOD Conference on Management of Data, pages
313{324, Minneapolis, Minnesota, May 1994.

[15] V. Christophides, S. Cluet, and G. Moerkotte. Evaluating queries with generalized path expres-
sions. In Proceedings of ACM SIGMOD Conference on Management of Data, pages 413{422,
Montreal, Canada, June 1996.

[16] V. Christophides, S. Cluet, and J. Sim�eon. On Wrapping Query Languages and E�cient XML
Integration (full version).
http://www-db.research.bell-labs.com/user/simeon/yamg full.ps, October 1999.

[17] S. Cluet. Designing OQL: Allowing Objects to be Queried. Information Systems, 23(5):279{
305, 1998.

[18] S. Cluet, C. Delobel, J. Sim�eon, and K. Smaga. Your Mediators Need Data Conversion! In
Proceedings of ACM SIGMOD Conference on Management of Data, pages 177{188, Seattle,
Washington, June 1998.

[19] S. Cluet and G. Moerkotte. Nested Queries in Object Bases. In Proceedings of International
Workshop on Database Programming Languages, pages 226{242, New York City, USA, August
1993.

[20] S. Cluet and G. Moerkotte. Query Processing in the Schemaless and Semistructured Context.
unpublished, 1996.

22

[21] Some commercial integration systems.
http://www.software.ibm.com/data/datajoiner/,
http://www.sybase.com/products/entcon/,
http://www.oracle.com/products/servers/rdb/html/fs dbi.html,
http://www.unisql.com/product info/unisqlm.html,
http://www.cincom.com/totalframework/index.html,
http://www.enterworks.com/products.html,
http://www.cerfnet.com/~margie/dii/,
http://www.junglee.com/,
http://www.crossaccess.com/product.htm,
http://www.ibi.com/.

[22] A. Deutsch, Mary Fernandez, D. Florescu, A. Y. Levy, and D. Suciu. XML-QL: A Query
Language for XML. Submission to the World Wide Web Consortium, August 1998.
http://www.w3.org/TR/NOTE-xml-ql/.

[23] M. Fernandez, D. Florescu, A. Y. Levy, and S. Suciu. Warehousing and incremental evaluation

for web site management. In Proceedings of 14i�emes Journ�ees Bases de Donn�ees Avanc�ees,
Hammamet, Tunisie, October 1998.

[24] M. Fernandez, J.Sim�eon, and P.Wadler (editors). XML Query Languages: Experiences and
Exemplars. Communication to the W3C, September 1999.

[25] M. Fernandez and D. Suciu. Optimizing regular path expressions using graph schemas. In
Proceedings of IEEE International Conference on Data Engineering (ICDE), Orlando, Florida,
February 1998.

[26] D. Florescu, A. Levy, I. Manolescu, and D. Suciu. Query Optimization in the Presence of
Limited Access Patterns. In Proceedings of ACM SIGMOD Conference on Management of
Data, Philadelphia, Pennsylvania, May 1999. to appear.

[27] G. Gardarin, S. Gannouni, B. Finance, P. Fankhauser, W. Klas, D. Pastre, R. Lego�, and
A. Ramfos. IRO-DB : A Distributed System Federating Object and Relational Databases.
In Object Oriented Multibase Systems : A Solution for Advanced Applications. Prentice Hall,
1995.

[28] G. Graefe. Query Evaluation Techniques for Large Databases. ACM Computing Surveys,
25(2):73{170, June 1993.

[29] L. M. Haas, D. Kossmann, E. L. Wimmers, and J. Yang. Optimizing queries across diverse
data sources. In Proceedings of International Conference on Very Large Databases (VLDB),
pages 276{285, Athens, Greece, August 1997.

[30] O. Kapitskaia, A. Tomasic, and P. Valduriez. Dealing with discrepancies in wrapper function-

ality. In Actes des 13i�emes Journ�ees Bases de Donn�ees Avanc�ees (BDA'97), pages 327{349,
Grenoble, France, September 1997.

[31] A. Y. Levy, A. Rajaraman, and J. J. Ordille. Querying heterogeneous information sources
using source descriptions. In Proceedings of International Conference on Very Large Databases
(VLDB), pages 251{262, Bombay, India, September 1996.

23

[32] C. Li, R. Yerneni, V. Vassalos, H. Garcia-Molina, Y. Papakonstantinou, and J. Ullman.
Capability-Based Mediation in TSIMMIS. In Exhibits Program of SIGMOD'98, pages 564{566,
Seattle, Washington, June 1998.

[33] L. Liu, C. Pu, and Y. Lee. An adaptive approach to query mediation across heterogeneous
information sources. In Proceedings of International Conference on on Cooperative Information
Systems (CoopIS), pages 144{156, Brussels, Belgium, June 1996.

[34] J. McHugh and J. Widom. Query Optimization for XML. In Proceedings of International
Conference on Very Large Databases (VLDB), Edinburgh, Scotland, August 1999. to appear.

[35] J. Melton. ISO-ANSI SQL2. International Standard Organization and American National
Standards Institute, 1988.

[36] J. Melton and A. Simon. Understanding the New SQL: A complete Guide. Morgan Kaufmann,
1993.

[37] A. Michard, V. Christophides, M. Scholl, M. Stapleton, D. Sutcli�e, and A.-M. Vercoustre.
The aquarelle resource discovery system. Computer Networks and ISDN Systems, 30(13):1185{
1200, August 1998.

[38] M. T. �Ozsu and P. Valduriez. Principles of Distributed Database Systems. Prentice Hall, 1991.

[39] Y. Papakonstantinou, S. Abiteboul, and H. Garcia-Molina. Object Fusion in Mediator Systems.
In Proceedings of International Conference on Very Large Databases (VLDB), pages 413{424,
Bombay, India, September 1996.

[40] Y. Papakonstantinou, H. Garcia-Molina, and J. Widom. Object exchange across heterogeneous
information sources. In Proceedings of IEEE International Conference on Data Engineering
(ICDE), pages 251{260, Taipei, Taiwan, March 1995.

[41] Y. Papakonstantinou, A. Gupta, H. Garcia-Molina, and J. D. Ullman. A query translation
scheme for rapid implementation of wrappers. In Proceedings International Conference on
Deductive and Object-Oriented Databases (DOOD), volume 1013 of Lecture Notes in Computer
Science, pages 97{107. Springer-Verlag, Singapore, December 1995.

[42] Y. Papakonstantinou and P. Velikhov. Enhancing Semistructured Data Mediators with Docu-
ment Type De�nitions. In Proceedings of IEEE International Conference on Data Engineering
(ICDE), pages 136{145, Sydney, Australia, March 1999.

[43] J. Robie, J. Lapp, and D. Schach. Xml query language (xql). Workshop on XML Query
Languages, December 1998. W3C.

[44] J. Sim�eon. Int�egration de sources de donn�ees h�et�erog�enes (Ou comment marier simplicit�e et
e�cacit�e). PhD thesis, Universit�e de Paris XI, January 1999.

[45] J. Sim�eon and S. Cluet. Using YAT to Build a Web Server. In International Workshop on
the Web and Databases (WebDB'98), Valencia, Spain, March 1998.

[46] J. Sim�eon and S. Cluet. Design Issues in XML Languages: A Unifying Perspective. Draft
manuscript, October 1999.

24

[47] A. Tomasic, L. Raschid, and P. Valduriez. Scaling heterogeneous databases and the design of
disco. In Proceedings of the 16th International Conference on Distributed Computing Systems,
pages 449{457, Hong Kong, May 1996.

[48] V. Vassalos and Y. Papakonstantinou. Describing and using query capabilities of heterogeneous
sources. In Proceedings of International Conference on Very Large Databases (VLDB), pages
256{265, Athens, Greece, August 1997.

[49] L. L. Yan, M. T. �Ozsu, and L. Liu. Accessing heterogeneous data through homogenization
and integration mediators. In Proceedings of International Conference on on Cooperative
Information Systems (CoopIS), Charleston, South Carolina, June 1997.

25

