

NOTICE

This contribution has been prepared to assist Accredited Standards Committee T1–Telecommunications. This document is offered to the
Committee as a basis for discussion and is not a binding proposal on Sprint or any other company. The requirements are subject to change
in form and numerical value after more study. Sprint specifically reserves the right to add to, amend, or withdraw the statements contained
herein.
* CONTACT: Raymond E. Reeves; email: Raymond.E.Reeves@mail.sprint.com; Tel: 1-913-534-3405; Fax: 1-913-534-5136

COMMITTEE T1 – TELECOMMUNICATIONS
Working Group T1M1 T1M1/2001-100 R3
Kansas City, MO, September 10-11, 2001

DRAFT STANDARD

TITLE: tML Guidelines for mapping UML notation to XML Schemas and vice versa
SOURCE*: Sprint
PROJECT: tML Mapping Guidelines

ABSTRACT

This technical proposed standard provides guidelines for defining (generating) Telecommunications
Markup Language (tML) Schemas based on Unified Modeling Language (UML) notation design models
and vice versa.

This work is proposed to help (for example) TMN paradigm independent design models to be mapped
with little or no effort to an eXtensible Markup Language (XML) implementation. Efforts underway in
the ANSI T1 and ITU-T bodies to create implementation independent models will take advantage of this
recommendation.

T1M1/2001-100 R3

 ii

TABLE OF CONTENTS

LIST OF FIGURES .. III

1 SCOPE... 4

1.1 PURPOSE ... 4
1.2 APPLICATION .. 5
1.3 ISSUES... 5

2 REFERENCES .. 6

2.1 NORMATIVE REFERENCES... 6

3 DEFINITIONS AND ABBREVIATIONS.. 7

3.1 DEFINITIONS FROM W3C RECOMMENDATION XML SCHEMA PART 1.................................... 7
3.2 ABBREVIATIONS ... 7

4 UNIFIED MODELING LANGUAGE (UML) TRANSLATION .. 8

4.1 MODEL MANAGEMENT VIEW ... 8
4.1.1 UML Package .. 8

4.2 STATIC VIEW .. 9
4.2.1 Classifiers .. 9
4.2.2 Relationships.. 15
4.2.3 Constraints... 16

4.3 USE CASE VIEW.. 17
4.4 STATE MACHINE VIEW ... 17
4.5 ACTIVITY VIEW .. 17
4.6 INTERACTION VIEW .. 17
4.7 PHYSICAL VIEW .. 17

5 STYLE IDIOMS FOR TML SPECIFICATIONS... 18

5.1 USE CONSISTENT INDENTATION ... 18
5.2 USE CONSISTENT CASE FOR IDENTIFIERS.. 18
5.3 DECOUPLE TYPES FROM ELEMENTS ... 18
5.4 USE A CONSISTENT TYPE SUFFIX.. 19
5.5 USE A CONSISTENT SUFFIX FOR ATTRIBUTE GROUP TYPES. ... 19
5.6 USE A CONSISTENT SUFFIX FOR ELEMENT GROUP TYPES. .. 19
5.7 ASSUME NO GLOBAL IDENTIFIER SPACES .. 19
5.8 GLOBAL LEVEL DEFINITIONS.. 19
5.9 EXPLICIT VS. IMPLICIT NAMESPACES .. 19

6 EXAMPLES .. 19

T1M1/2001-100 R3

 iii

 List of Figures
Figure 1. tML Based Specification ... 5

T1M1/2001-100 R3

 4

Draft Recommendation

tML Guidelines for mapping UML notation to XML schemas and vice versa
(2001)

1 Scope
The TMN architecture defined in Recommendation M.3010–2000 introduces concepts from distributed
processing and includes the use of multiple management protocols. The initial TMN interface
specifications for intra- and inter-TMN interfaces were developed using the Guidelines for the
Definition of Managed objects (GDMO) notation from OSI Systems Management with Common
Management Information Protocol (CMIP) as the protocol. The inter-TMN interface (X) included both
CMIP and CORBA GIOP/IIOP as possible choices at the application layer.

Telecommunications Extensible Markup (tML), an application of the Extensible Markup Language
(XML), is being considered for use in the TMN architecture primarily due to its flexibility for structured
information definition. This acceptance is expected to enhance the availability of tML-based
information syntax definition due to better development tools and widespread expertise in XML
Schemas definition. This XML technology, developed by the World Wide Web Consortium (W3C), is
also being considered by multiple industries and standardization bodies like ebXML, OASIS, BizTalk,
etc. While GDMO/ASN.1 information models provide solutions for interoperability between manager
and agent systems, tML defines structured information that does not required highly complex encoding
mechanisms.

At the same time, efforts within the TMN community are striving to define a paradigm and technology
independent set of specifications for TMN using the UML notation. This is identified as the Unified
TMN Requirements, Analysis and Design.

1.1 Purpose
The scope of this contribution is to define guidelines suitable for the mapping of UML based
information models to XML Schemas.

Re-using a generic information model for a variety of network technologies and network management
applications and mapping to XML Schemas (or other technology) will speed the introduction of network
services while keeping network management system development costs down.

A primary goal of the tML framework and this “XML Schema to UML mapping” recommendation
(proposed standard) is the re-use of these information models by enabling their translation to XML
Schemas in a quick (and automated) fashion with little change in semantics.

Applicability of the guidelines contained herein extends to all domains that follow a model driven
approach based on UML for system development and specification. Examples include efforts in areas
like T1M1 UMA/UOM, DSL Forum, etc.

T1M1/2001-100 R3

 5

1.2 Application
Recommendation M.3020 defines three phases in the development of a TMN specification. The three
phases are Requirements, Analysis and Design. Figure 1 shows this process and the scope of this
Recommendation for developing XML Schemas based specification relative to this process.

Requirements Specification

Paradigm Independent Specification

CMIP/GDMO/
ASN.1 Based
Specification

tML Based
Specification

Other Paradigm
Based

Specification

(a) (b) (c)

Paradigm
independent

Paradigm
specific

Figure 1. tML Based Specification

The requirements and analysis are specified using an approach that is not specific to a network
management technology paradigm. The output from the analysis phase, the paradigm independent
specification, is used as input to the paradigm specific design phase.

In the design phase, network management paradigm specific features are used to define information
models. These paradigm specific specifications incorporate both behavior (normally in natural
language) and formal interface signatures (e.g., GDMO/ASN.1, IDL, XML Schemas).

The arrows marked as (a), (b) and (c) show that the analysis output is mapped, for example, to a
GDMO/ASN.1 based model to use with CMIP or XML Schema models to use with the choice of
message transport mechanism, respectively (or IDL models to use with CORBA/IIOP). There are no
prescriptive rules available at this time to generate these models. It may be possible to develop such
rules in the future in M.3020. Meanwhile, this Recommendation proposes a set of guidelines and rules
for the arrow shown as (b).

In developing the transformation from UML notation to XML Schemas, this recommendation uses an
approach that not prescriptively translates every element of the syntax. Rather, the elements are
translated from the UML model in a way that preserves most of the semantics.

This approach preserves the requirements and semantics of the models developed to meet the
telecommunication context. It is applied when the managing and managed systems are designed to
communicate using information exchange (instance documents) based on XML Schemas.

1.3 Issues
This recommendation does not address the use-case, state machine, activity, interaction and physical
views.

T1M1/2001-100 R3

 6

2 References

2.1 Normative References
At the time of publication, the editions indicated were valid. All Recommendations and other references
are subject to revision; all users of this Recommendation are therefore encouraged to investigate the
possibility of applying the most recent edition of the Recommendations and other references listed
below.

- Extensible Markup Language (XML) 1.0, Second Edition, Tim Bray et al., eds,. W3C, 6 October
2000. See http://www.w3.org/TR/2000/REC-xml-20001006.

- Namespaces in XML, Tim Bray et al., eds,. W3C, 14 January 1999. See
http://www.w3.org/TR/1999/REC-xml-names-19990114.

- XML Schema Part 1: Structures. Henry Thompson et al., eds,. W3C Recommendation, 2 May 2001.
See http://www.w3.org/TR/2001/REC-xmlschema-1-200010502.

- XML Schema Part 2: Datatypes . Paul Biron et al., eds,. W3C Recommendation, 2 May 2001. See
http://www.w3.org/TR/2001/REC-xmlschema-2-200010502.

- T1M1/2001-84R1. Proposed XML Schema for common tML types used in proposed standard XML
Schemas for ANSI T1M1.3 – Coding and Language Data Representation (CLDR) standards.

- T1M1/2001-118R1. UML model and XML Schemas for DSL Service Flow-Thru fulfillment
management interface.

- T1M1.5/2001-164R3. XML Schemas for UOM Volume II UOIM: UOM Volume III.

T1M1/2001-100 R3

 7

3 Definitions and Abbreviations

3.1 Definitions from W3C Recommendation XML Schema Part 1
The following terms used in this Recommendation are defined in the XML Schema Part 1: Structure
(W3C Rec. XML Schema Part 1):
− XML Schema
− Schema component
− Target namespace
− Declaration
− Definition
− Type definition
− Simple type
− Complex type
− Type restriction
− Type extension
− Base type

3.2 Abbreviations
This Recommendation uses the following abbreviations:

ASN.1 Abstract Syntax Notation #1
CMIP Common Management Information Protocol
CORBA Common Object Request Broker Architecture
DSL Digital Subscriber Line
DSLsp DSL Service Provisioning
GDMO Guidelines for the Definition of Managed Objects
GIOP General Interoperability Protocol
HTML Hypertext Markup Language
HTTP Hypertext Transport Protocol
HTTPS HTTP Secure
IDL Interface Definition Language
ITU-T International Telecommunication Union – Telecom
MIB Manage Information Base
OAM&P Operations, Administration, Maintenance, and Provisioning
tML XML for TMN
TMN Telecommunications Management Network
UML Unified Modeling Language
UTRAD Unified TMN Requirements, Analysis and Design
W3C World Wide Web Consortium
XML Extensible Markup Language

T1M1/2001-100 R3

 8

4 Unified Modeling Language (UML) Translation
This section provides guidelines for creating XML Schema information models from structural
information contained in UML models. The sections below describe how each of the GDMO templates
and ASN.1 types are to be translated to XML Schemas.

4.1 Model Management View
UML model management view deals with packages and dependency relationships between them.

4.1.1 UML Package
In UML, models are partitioned into packages. Every element of a model must belong to one package.
UML imposes no rule on how to partition models into packages, however the appropriate partitioning of
models based on rational principles, like common functionality is recommended.

In effect, a UML package defines a namespace for all the UML elements contained in it. UML package
names are used in external references for referring to definitions contained in other packages from the
referring package. In essence, the UML package concept maps to the XML Schema and namespace.

This recommendation proposes mapping UML packages (considering the package name) to XML
Schemas with a target namespace so that namespace prefixes could be used in external references. If no
namespace property is specified in the UML package, the package name will be used as both the XML
Schema name and target namespace name. The location of the package element property in the UML
model is out of scope for this recommendation.

Proposed package element properties include:

UML property tML significance Default
targetNamespace targetNamespace name for the schema related with the

package.
Package name

nameSpacePrefix Suggested prefix (xmlns:) to be used in the schemas using
declarations from this schema.

Package name

schemaLocation Suggested location for storing the schema. This is the value
to be used in “schemaLocation=” value pairs.

Package name + “.xsd”

id Equivalent to the id attribute for the <schema> element. Package name
version Equivalent to the version attribute for the <schema> element. Date+Time

For example,

<schema
 targetNamespace="http://www.itu.int/tML/tML-DSLsp"
 xmlns:tML-DSLsp="http://www.itu.int/tML/tML-DSLsp"

 xmlns="http://www.w3.org/2001/XMLSchema"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified"
 version="2001/06/20 14:26:34"
 id="tML-DSLsp.xsd"
 …
>
<!-- etc -->
</schema>

T1M1/2001-100 R3

 9

Dependencies among packages, both access and import dependencies, shall be mapped to the “import”
mechanism provided by XML Schemas. Because XML Schema does not allow multiple default
namespaces, it is required that every imported definitions be prefixed with the corresponding namespace
prefix.

XML Schema does not support nested namespaces, for this reason, classifiers contained within children
packages will be treated as if contained in the parent package. Where name collisions exist, classifiers
will be renamed to have a prefix containing its package’s name.

XML Schemas allow for a special relation between schemas and their target namespaces. Two XML
Schemas may have the same target namespace and, in consequence, a containment dependency could
exist between them. tML specific stereotype is suggested in the package dependencies. This new
stereotype for the dependency is <<include>> (or <<generalization>>) –this information could be
conveyed as a property of the dependency– and would map to the “include” mechanism provided by
XML Schemas.

For example,

tML-T1-CLDRBase

tML-Base

<<include>>

<?xml version="1.0"?>
<schema
 targetNamespace="http://www.itu.int/tML/tML-Base"
 xmlns:tML-CLDR="http://www.itu.int/tML/tML-Base"
 id="tML-T1-CLDRBase.xsd"
 …
 …
>
<include schemaLocation="tML-Base.xsd"/>

<!-- etc -->
<!-- etc -->

</schema>

The only visibility semantics of packages mapped to XML Schemas is public.

4.2 Static View
This UML model view models concepts of a domain and internal concepts created as part of the
implementation of an application. The main parts of this view are classes and their relationships:
association, generalization, and various kinds of dependencies. This view is the foundation on which the
other views are built and is expressed as class diagrams.

4.2.1 Classifiers
Classifiers, which are discrete concepts in the model, include class, interface, and data type. Class is the
most familiar term. These classifiers can be mapped to XML Schema data types (simple or complex).
unless the classifier is stereotyped, in which case the corresponding XML Schema concept will depend
on the stereotype used. UML data type classifiers map nicely to simple types (simpleType) and the other
classifiers can be mapped to complex types (complexType), unless otherwise specified through
stereotypes.

As a UML class classifier, XML Schema data types are general descriptions of the structure for
elements: its content model. tML Instance documents have to obey the constraints defined in the content
model of the base type.

T1M1/2001-100 R3

 10

The relationship of classifiers and XML Schemas is as follows:

Classifier
Properties

Type

Name Name
Abstraction Complex types in tML can be designated as abstractions much like the

<<abstract>> stereotype in UML. To identify a complex type as abstract,
the types ‘abstract’ has to be assigned the “true” value.

Visibility Only public is supported (other require separate mechanisms)
Operations New Type with notation: ClassifierName_OperationName_”Operation” and

parameters as elements.
Attributes Elements
Attribute containment The only supported containment semantic is “by value” (Further study of

XLink and XPointer is needed to support “by reference” semantics.)

4.2.1.1 Data types

4.2.1.1.1 Enumeration
An enumeration is a data type whose instances for a list of named literal values. Usually, both the
enumeration name and its literal values are declared. XML Schemas allow the creation of enumerations
on simpleTypes. By default, enumerations are considered to be based on the string base type. However,
in order for UML to express the diverse types of enumerations that XML Schemas allow, enumerations
not based on strings have to have refinement association to its base data type or simpleType. If the
dependency from an enumeration to a datatype is not specified, refinement should be assumed.

For instance,

ResultType
success
failure
error

<<enumeration>>

<simpleType name="ResultTypeType">
 <restriction base="string">
 <enumeration value="success"/>
 <enumeration value="failure"/>
 <enumeration value="error"/>
 </restriction>
</simpleType>

Note: The values of all ‘value’ properties of an enumeration or datatype classifier are considered to be
part of the list of allowed values of the enumeration. For example, a property-list for ResultType
containing ‘{value=”unknown”}’ extends ResultType to {success, failure, error, unknown}.

For embedded enumerations where the attributes have as its type an enumeration with the list of values
included like, it must translate to an element with anonymous type.

For instance,

<<req>> ResultType: enumeration {success, failure, error} <element name="ResultType">

<simpleType>
 <restriction base="string">
 <enumeration value="success"/>
 <enumeration value="failure"/>
 <enumeration value="error"/>
 </restriction>
</simpleType>

</element>

T1M1/2001-100 R3

 11

4.2.1.1.2 General datatypes
Any UML datatype stereotyped classifier may refer to UML datatypes (e.g. String, Integer, Single,
Object, Long, Boolean, Byte, Date, Double, Currency, etc.) or a XML Schema datatype (e.g. hexInteger,
anyType, duration, dateTime, etc.). The corresponding formal mappings from XML Schema to UML
datatype, and vice versa is left for further study because many of them are language dependent.

For instance,

SizeAvailable

11
13
24

<<enumeration>>

Integer
<<datatype>><<refine>>

<simpleType name="SizeAvailableType">
 <restriction base="integer">
 <enumeration value="11"/>
 <enumeration value="13"/>
 <enumeration value="24"/>
 </restriction>
</simpleType>

4.2.1.2 Class
Class is the most common classifier and most of the content of this section applies to other classifiers.

Classes can be stereotyped or can be left undifferentiated as well. Several stereotypes carry specific
semantics for tML specific implementation. The following is a list of such identified stereotypes:

UML Stereotype XML Schema significance
elementGroup In this case, the class maps to a XML element group with name equal to the

‘elementGroup’ stereotyped class. For convenience reasons, the XML element
group name may include the ‘Group’ postfix.

attributeGroup The class maps to a tML attribute group with name equal to the ‘attributeGroup’
stereotyped class. For convenience reasons, the tML attribute group name may
include the ‘Attributes’ postfix.

simpleContent Often, it is needed to have an element which contains several attributes. This can
be model through a UML classifier with <<simpleContent>> stereotype. In such
case, the only attribute allowed in the classifier attribute compartment is the
‘content’ attribute with the <<base>> stereotype. The attribute type specifies the
simpleContent attribute model. In the case of this being absent.

choice Mapping choice classes uses the same rules of other classes. However, the UML
attributes (XML elements) defined within the specific class (XML complex type)
are treated as part of a choice group within the XML type content model.

For example:

UML XML Schema

ServiceAddressAndConstraint
<<req>> ServiceAddress
<<0..n>> ServiceRequestConstraint

<<elementGroup>>

<group name="ServiceAddressAndConstraintGroup">
 <sequence>
 <element name="ServiceAddress"
 type="tML-DSLBase:NationalAddressType"/>
 <element name="ServiceRequestConstraint"
 type="tML-DSLBase:ServiceRequestConstraintType"
 minOccurs="0" maxOccurs="unbounded"/>
 </sequence>
</group>

T1M1/2001-100 R3

 12

ResultType
success
failure
error

<<enumeration>>

ResultCode
<<base>> content : String

<<simpleContent>>

1 1 +ResultType

<<attribute>>

<element name="ResultCode">
 <complexType>
 <simpleContent>
 <extension base="string">
 <attribute name="ResultType"
 type="tML-DSLBase:ResultTypeType"
 use="required"/>
 </extension>
 </simpleContent>
 </complexType>
</element>

RequestIdentification

<<opt>> RequestorAffiliateID
<<req>> RequestorOrderID
<<opt>> RequestorVersionID

<<attributeGroup>>

<attributeGroup name="RequestIdentificationAttributes">
 <attribute name="RequestorAffiliateID"
 type="tML-DSLBase:tradingPartnerIdCodeType" use="optional"/>
 <attribute name="RequestorOrderID"
 type="tML-DSLBase:orderIDType" use="required"/>
 <attribute name="RequestorVersionID"
 type="tML-DSLBase:versionIDType" use="optional"/>
</attributeGroup>

4.2.1.2.1 Basic Types
XML Schema defines the following hierarchy of built-in basic datatypes (a.k.a ‘types’), derived from
and defined in the XML Schemas specification1, to which UML predefined data types may be translated:

1 See XML Schema Part 2: Datatypes, W3C Recommendation 2 May 2001, §3.

T1M1/2001-100 R3

 13

As per the W3C XML
Schema Specification,
“[p]rimitive datatypes are
those that are not defined in
terms of other datatypes;
they exist ab initio.” And,
“[d]erived datatypes are
those that are defined in
terms of other datatypes.”

Some of the built-in
datatypes include: anyType,
boolean, byte, double (for
double-precision floating-
point numbers), float (for
single-precision floating-
point numbers), long (for
large integers), object (for
object references), integer,
short (for small integers),
hexBinary, string, and Char
(as defined in XML 1.0 2nd
edition). Enumerations,
which are a basic type in
many languages (including
IDL) is obtained through the
enumeration constraining
facet that could be applied
to most built-in types.

This guideline uses the string type for all strings. The actual character encoding is defined in the encoding
declaration contained in the xml processing instruction. In an encoding declaration, the values “UTF-8”,
“UTF-16”, “ISO-10646-1”, “ISO-8859-2”, …, “ISO-8859-9” should be used for the various encodings and
transformations of Unicode / ISO/IEC 10646, the values “ISO-8859-1”, “ISO-8859-2”, …, “ISO-8859-9”
should be used for the parts of ISO 8859, and the values “ISO-2022-JP”, “Shift_JIS”, and “EUC-JP” should
be used for the various encoded forms of JIS X-0208-1997.

A sample declaration of wide character encoding follows:

<?xml version="1.0" encoding="UTF-16"?>
<? ? ? ? ? ? ="1 9 9 9 ? 3 ? 1 ? ">
 <? >? ? ? ? </? >
 <? ? >? ? ? ? ? ? ? ? ? ? ? ? </? ? >
 <!-- ? ? ? ? -->
 <? ? >&? ? ? ;</? ? >
 <? ? ? ? ? ? ? ="? ? ? ? "/>
</? ? >

T1M1/2001-100 R3

 14

4.2.1.2.2 Attributes
The UML attribute concept maps primarily to XML Schema elements, however, under certain
circumstances and the choice of the modeler, it could be mapped to a XML Schema attribute.

The default syntax for UML attributes is:

[<<stereotype>>] visibility name : type-expression [multiplicity ordering] = initial-value { property-string }

• Where the stereotypes recognized are those resembling the multiplicity semantics. For instance, opt

is understood as 0..1, req is construed as 1..1.

• Where only public visibility is supported by XML Schemas. Other visibility semantics require other
mechanisms for enforcement. (Actually, all forms of nonpublic visibilities are language-dependent.)

• Where the attribute name shall map to the element name.

• Where the attribute type-expression refers to other Classifiers or tML type.

• Where multiplicity indicates a range of allowable cardinalities a value sequence may assume. The
minOccurs and maxOccurs facets are used.

• Where ordering is not expressible with just tML unless other advanced features are included (like is
the case of XPointer and XPath)

• Where the initial-value of simple typed elements maps to the default facet supported only by
simpleTyped elements in tML.

For example:
public measurement : integer 2..5 ordered

or
<<2..5>> public measurement : integer

would map to
<element name="measurement" type="integer" minOccurs="2" maxOccurs="5"/>

And,
<<opt>> private salary : float

would map to
<element name="salary" type="double" minOccurs="0"/>

The following is a list of properties that can be associated with Classifiers attributes and datatypes,
which map directly to the equally named corresponding XML Schema facet:

UML Properties
maxLength maxInclusive
minLength minExclusive
length maxExclusive
minInclusive

T1M1/2001-100 R3

 15

4.2.1.2.3 Operations
Though XML Schemas are not good for modeling the operational aspects of a system, the UML
operation concept could map well to a new complexType with naming convention
ClassifierName_OperationName_”Operation” and parameters treated as XML elements or UML
classifier attributes.

The default syntax for UML attributes is:

[<<stereotype>>] visibility name (parameter-list) : return-type-expression { property-string }

• Where the parameter-list is interpreted as a list of attribute definitions.
o The syntax used is kind name : type-expression = default-value
o Where kind could be in, out or inout. No enforceable semantics are carried.

• Where return-type-expression cannot be expressed in tML terms.
• Where the rest of semantics are treated much like in the case of attributes.

For example:
 Subscription

series : String
priceCategory : Category
number : Integer = 1

cost()
reserve(series : String, level : SeatLevel)
cancel()

<complexType name="SubscriptionType">
 <sequence>
 <element name="series" type="string"/>
 <element name="priceCategory" type="ns:CategoryType"/>
 <element name="number" type="integer" default="1" />
 </sequence>
</complexType>

<complexType name="Subscription_Cost_Operation">
 <complexContent>
 <extension base="ns:InteractionType"/>
 </complexContent>
</complexType>

<complexType name="Subscription_Reserve_Operation">
 <complexContent>
 <extension base="ns:InteractionType">
 <sequence>
 <element name="series" type="string"/>
 <element name="level" type="ns:SeatLevelType"/>
 </sequence>
 </extension>
 </complexContent>
</complexType>

<complexType name="Subscription_Cancel_Operation">
 <complexContent>
 <extension base="ns:InteractionType"/>
 </complexContent>
</complexType>

4.2.2 Relationships
UML defines several types of relationship between classifiers. The various relationships and suggested
mapping to XML Schema concepts follow:

UML Relationship Suggested XML Schema mapping Comment
Generalization &
Realization

Simple and Complex types differ:
- Complex type derivation by extension
- Simple type derivation by restriction and

union for multiple inheritance

Overloading and multiple inheritance
for complex types are discouraged

T1M1/2001-100 R3

 16

Flow & Usage No mapping suggested in this version
Dependencies Package (access & import) dependencies are

supported through import mechanism
‘include’ and ‘generalize’ package
dependency stereotypes map to
tML specific ‘include’ mechanisms.

Constraints & OCL
statements

These can be incorporated as <annotation>s
within the contextual elements

XOR dependencies
between
associations

When two or more non-stereotyped associations
(compositions, aggregations, etc.) from class X
to classes Y1, Y2, …, Yn exist, these are
mapped as part of a choice group in the
complex Type definition of X.

AND dependencies
between
associations

When two or more non-stereotyped associations
(compositions, aggregations, etc.) from class X
to classes Y1, Y2, …, Yn exist and each has a
minimum occurrence of zero, these are mapped
to a sequence group in the complex Type
definition of X. The minimum occurrence (UML
multiplicity) of each of the elements (UML
attributes) is to be one, regardless of the initial
UML multiplicity of the association end. The
minimum occurrence of the sequence group will
be zero to allow for the case where all the
elements are absent.

4.2.2.1 Associations
Association express discrete connections between objects or other instances in a system. Because of the
rich semantics that associations carry and some of XML Schemas rules, the following initial concept and
semantics mapping are recommended:

UML concept tML mapping
Association class A complex type which includes an ID element for both of the

participating classes
Qualified association Left for further study
Bi-directionality Because of tML documents strict tree structure, (it is initially

suggested that) all associations should have navigability in exactly one
direction.

Aggregation and
composition

A strong containment is assumed (composition). If the association has
a <<attribute>> stereotype, the composite type will include the part as
an attribute. Otherwise it will be included as an element.
The element or attribute defined should have the same name as the role
name for the part class association end. The multiplicity will be the
same as the association end multiplicity.

4.2.3 Constraints
UML includes the definition of a constraint language, called Object Constraint Language (OCL), useful
for describing existence and universal properties. Mapping of these semantics to XML Schema concepts
requires further study. Meanwhile, it is suggested mapping UML constraint statement (i.e. OCL) to an
XML Schema annotation element (<annotation>).

T1M1/2001-100 R3

 17

4.3 Use Case View
The mapping of this view’s concepts to XML Schema semantics is left for further study.

4.4 State Machine View
The mapping of this view’s concepts to XML Schema semantics is left for further study.

4.5 Activity View
The mapping of this view’s concepts to XML Schema semantics is left for further study.

4.6 Interaction View
The mapping of this view’s concepts to XML Schema semantics is left for further study.

4.7 Physical View
The mapping of this view’s concepts to XML Schema semantics is left for further study.

T1M1/2001-100 R3

 18

5 Style Idioms for tML Specifications
This section defines a set of style idioms for the XML Schema to be used in mapped UML models.
Having a set of style idioms will result in XML Schema specifications with a consistent style. This may
require some additional work by editors, but this extra effort is worth the increased readability of the
tML specifications. It is important to keep in perspective that style conventions are for the benefit of the
reader, not necessarily to the benefit of the author.

5.1 Use Consistent Indentation
This section demonstrates the indentation style that may be used in the XML Schemas. As an example,
an excerpt from the Digital Subscriber Line (DSL) Forum Service Provisioning (DSLsp) definitions is
shown below:

 <attributeGroup name="InteractionIdentificationAttributes">
 <annotation>
 <documentation xml:lang="">
 WT-063 Refactored Table 5, 6 and 7
 </documentation>
 </annotation>
 <attribute name="InteractionType" type="tML-DSLBase:ServiceFulfillmentTypeType" use="required"/>
 <attribute name="EntityID" type="tML-DSLBase:tradingPartnerIdCodeType" use="required"/>
 <attribute name="InteractionTimeStamp" type="tML-DSLBase:DateAndTimeType" use="required"/>
 <attribute name="InterfaceVersion" type="tML-DSLBase:versionIDType" use="optional"/>
 </attributeGroup>

5.2 Use Consistent Case for Identifiers
Several languages enforce case rules while others have de-facto rules. These rules allow readers to easily
distinguish identifiers of different type leading to increased readability. XML Schema does enforce
case, so the following rules are proposed.

• Type declarations shall have every embedded word capitalized except for the first word
capitalized.

• All others (e.g., elements and entities) shall have the first letter of every embedded word
capitalized.

5.3 Decouple types from elements

Whenever a possible, create an element separated from the definition of its type and reuse types already
defined. See the example:

<element name="DaysOfTheWeek" type="DaysOfTheWeekType"/>
<complexType name="DaysOfTheWeekType">
 <!-- etc -->
</complexType>

<!-- tML instance document -->
<sunnyDays>
 <bitStringNamed>
 <sunday/>
 <monday/>
 <wednesday/>
 </bitStringNamed>
</sunnyDays>

T1M1/2001-100 R3

 19

5.4 Use a Consistent Type Suffix
Append the suffix “Type” to all XML Schema derived types. This idiom increases readability by clearly
separating type identifiers from other identifiers.

5.5 Use a Consistent Suffix for Attribute Group Types.
For attribute groups use a suffix of “Attributes” to distinguish them.

5.6 Use a Consistent Suffix for Element Group Types.
For element groups use a suffix of “Group” to distinguish them.

For example:

 <group name="PrequalificationInformationGroup">
 <annotation>
 <documentation>
 NOTE: Table 63 element 21.7 (CO Capacity Constraint) is underspecified: GenericConstraint assumed.
 </documentation>
 </annotation>
 <sequence>
 <element name="PrequalificationReferenceID" type="tML-DSLBase:GenericIDType" minOccurs="0"/>
 <element name="QualifiedAddress" type="tML-DSLBase:NationalAddressType" minOccurs="0"/>
 <element name="QualifiedTelephoneNumber" type="tML-DSLBase:TelephoneNumberType" minOccurs="0"/>
 <element name="QualifiedLoopCircuitID" type="tML-DSLBase:GenericIDType" minOccurs="0"/>
 <element name="CentralOffice" type="tML-DSLBase:NationalCentralOfficeType" minOccurs="0"/>
 <element name="LoopCharacteristics" type="tML-DSLBase:NationalLoopCharacteristicsType" minOccurs="0"/>
 <element name="COCapacityConstraint" type="tML-DSLBase:GenericConstraintType" minOccurs="0"/>
 </sequence>
 </group>

5.7 Assume No Global Identifier Spaces
To reduce name collisions and promote reuse, all identifiers shall be scoped to a particular context (e.g.,
module, and interface).

5.8 Global Level Definitions
All named type and exportable element definitions shall be at the global level. Nested type definitions
or local types shall be unnamed. Avert cluttering the global space with unnecessary type and element
definitions.

5.9 Explicit vs. Implicit namespaces
In order to ease creation of XML Schemas and readability, have qualified element namespace prefix.

6 Examples

Refer to T1M1/2001-84R1 and T1M1.5/2001-164R3 for extensive examples of applying the guidelines
defined in this document.

