
Sun Microsystems, Inc.
901 San Antonio Road
Palo Alto, CA 94303 U.S.A.

An XML Data-Binding Facility
for the JavaTM Platform

Mark Reinhold
Core Java Platform Group

Java Software

30 July 1999

Sun Microsystems has recently undertaken to provide basic support forXML in the Java
Platform. The proposed facilities include both an event-driven,SAX-compliant parser
and an implementation of theW3C DOM (Document Object Model) parse-treeAPI. This
is a critical first step, but using these fairly low-levelAPIs does require a moderately
sophisticated understanding ofXML.

In order to makeXML more easily accessible to a wider developer audience we
are therefore looking at ways to connectXML documents more directly to in-memory
objects. Such a connection would allow programs that manipulateXML content to be
written at the same conceptual level as the content itself, rather than at the level of parser
events or parse trees. It would also obviate the need to use low-levelAPIs such asSAX
andDOM in XML-based data-messaging systems, thereby making such systems much
easier to create and maintain.

A particularly promising approach along these lines involves compiling, orbinding,
an XML schema into one or more Java classes. These automatically-generated classes
handle the translation betweenXML documents, which must follow the schema, and
interrelated instances of the classes. They also ensure that the constraints expressed in
the schema are maintained as instances of the classes are manipulated.

This design note reviews the basic concepts ofXML and schemas, motivates and
definesXML-based data binding, presents an extended example, and then outlines the
requirements of a data-binding facility for the Java Platform.

Please send comments on this note tohxml-binding-comments@java.sun.comi.



Copyright c
 1999 by Sun Microsystems, Inc.,
901 San Antonio Rd., Palo Alto, California, 94303 U.S.A.
All rights reserved.

This document is protected by copyright. No part of this document may be reproduced in any form by
any means without prior written authorization of Sun and its licensors, if any. The information described
in this document may be protected by one or more U.S. patents, foreign patents, or pending applications.

Sun, Sun Microsystems, the Sun Logo, Java, and JavaBeans are trademarks or registered trademarks of
Sun Microsystems, Inc., in the United States and other countries.

THIS DOCUMENT IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.
THIS DOCUMENT COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ER-
RORS. CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE
CHANGES WILL BE INCORPORATED IN NEW EDITIONS OF THE DOCUMENT. SUN MI-
CROSYSTEMS, INC., MAY MAKE IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S)
AND/OR THE PROGRAM(S) DESCRIBED IN THIS DOCUMENT AT ANY TIME.



1

Introduction

XML is, essentially, a platform-independent way to structure information. AnXML
document is a tree ofelements. An element may have a set ofattributes, in the form
of key-value pairs, and may contain other elements, text, or a mixture thereof. An
element may refer to other elements via special attributes, thereby allowing arbitrary
graph structures to be represented.

The structure of anXML document need not follow any rules beyond those laid out in
theXML specification. To exchange documents in a meaningful way, however, requires
that their structure be described and constrained so that the various parties involved will
interpret them correctly and consistently. This can be accomplished through the use of
aschema. A schema contains a set of rules that constrains the structure and content of a
document’s components,i.e., its elements, attributes, and text. A schema also describes,
at least informally and often implicitly, the intended conceptual meaning of a document’s
components. A schema is, in other words, a specification of the syntax and semantics
of a (potentially infinite) set ofXML documents. A document is said to bevalid with
respect to a schema if, and only if, it satisfies the constraints described in the schema.

In what language are schemas written? TheXML specification itself describes a
sublanguage for writingdocument-type definitions, or DTDs. As schemas go,DTDs are
fairly weak. They support the definition of simple constraints on structure and content,
but provide no facility for expressing data types or complex structural relationships.
These deficiencies have motivated various efforts to define more sophisticated schema
languages, and there is aW3C Working Group dedicated to defining a standard schema
language by the end of 1999. (These newer schema languages are themselves applications
of XML, leading to interesting recursive dependencies that will not be explored in any
detail here.)

Data binding

Any nontrivial application ofXML will, then, be based upon one or more schemas
and will involve one or more programs that create, consume, and manipulate documents
whose syntax and semantics are governed by those schemas. While it is certainly possible
to write such programs using the low-levelSAX parserAPI or the somewhat higher-level
DOM parse-treeAPI, doing so is likely to be tedious and error-prone. The resulting code
is also likely to contain many redundancies that will make it difficult to maintain as bugs
are fixed and as the schemas evolve.

It would be much easier to writeXML-enabled programs if we could simply map the
components of anXML document to in-memory objects that represent, in an obvious and
useful way, the document’s intended meaning according to its schema. Of what classes
should these objects be instances? In some cases there will be an obvious mapping from
schema components to existing classes, especially for common types such asString,
Date, Vector, and so forth. In general, however, classes specific to the schema being



2

used will be required. Rather than burden developers with having to write these classes
we can generate the classes directly from the schema, thereby creating a Java-level
bindingof the schema.

An XML data-binding facilitytherefore contains aschema compiler,which translates
a schema into a set of schema-specific classes with appropriate access and mutation (i.e.,
get and set) methods. It also contains amarshalling framework, which supports
the unmarshallingof XML documents into graphs of interrelated instances of both
existing and schema-derived classes and themarshallingof such graphs back intoXML
documents. The unmarshalling process checks incomingXML documents for validity
with respect to the schema. Similarly, the compiler generates code into the derived
classes to enforce the constraints expressed in the schema, thereby ensuring that only
valid documents are generated by the marshalling process.

ClassescompileSchema

in
st

an
ce

of

fo
ll

ow
s

marshal

unmarshal
ObjectsDocument

To sum up: Schemas describe the structure and meaning of anXML document, in much
the same way that a class describes an object in a program. To work with anXML
document in a program we would like to map its components directly into a set of
objects that reflect the document’s meaning according to its schema. We can achieve
this by compiling the schema into a set of derived classes that handle all the details
of marshalling and unmarshalling and also ensure that only valid documents will be
produced and consumed. Data binding thus allowsXML-enabled programs to be written
at the same conceptual level as the documents they manipulate, rather than at the level
of parser events or parse trees.

An example

To illustrate the benefits of data binding, consider the hypothetical problem of writing
an order-processing system for a shoe warehouse. This system must accept incoming
shoe orders inXML, validate them, and arrange for the specified shoes to be shipped to
the requesting retail store. A typical order might look something like this:

<ShoeOrder id="4040458" style="Sandal">
<color>Brown</color>
<size>9 1/2</size>
<width>AA</width>

</ShoeOrder>



AN XML DATA-BINDING FACILITY FOR THE JAVA PLATFORM 3

A schema for such a shoe order, written in the draft schema language recently published
by the W3C XML Schema Working group, would begin with a declaration of the
ShoeOrder element type, its attributes, and its subelements:

<schema name="ShoeOrder">

<elementType name="ShoeOrder">

<attrDecl name="id" required="true">
<datatypeRef name="ID"/>

</attrDecl>

<attrDecl name="style" required="true">
<datatypeRef name="IDREF"/>

</attrDecl>

<model>
<sequence>

<elementTypeRef name="color"/>
<elementTypeRef name="size"/>
<elementTypeRef name="width"/>

</sequence>
</model>

These declarations specify that aShoeOrder element has two required attributes,id and
style; the former is anXML element identifier, while the latter is anXML identifier
reference. Themodel declaration specifies that the content of aShoeOrder element
must be a sequence of the named subelements in the order given. Each subelement is
specified here by reference to an element type that will be defined below.

The declaration continues with the definition of a derived data type for colors:

<datatype name="Colors">
<basetype name="string"/>
<enumeration>

<literal>Black</literal>
<literal>Blue</literal>
<literal>Brown</literal>
<literal>Tan</literal>
<literal>White</literal>

</enumeration>
</datatype>

This definition says that a color is a string whose value is exactly one ofBlack, Blue,
Brown, Tan, or White. We can then define thecolor element type that was referred to
in the model for theShoeOrder element:

<elementType name="color">
<datatypeRef name="Colors"/>

</elementType>



4

Shoe sizes require a more interesting data type definition:

<datatype name="Size">
<basetype name="string"/>
<lexicalRepresentation>

<lexical>[1-9][0-9]?( 1/2)?</lexical>
</lexicalRepresentation>
<minInclusive>3 1/2</minInclusive>
<maxInclusive>13</maxInclusive>

</datatype>

Here we have constrained a shoe size to be a string matching the regular expression given
in thelexicalRepresentation declaration. That is, a shoe size is a string beginning
with a nonzero digit, possibly followed by another digit which may be zero, possibly
followed by a space and the string1/2 for half sizes. Shoe sizes are further constrained
to be no less than3 1/2 and no greater than13 according to the usual lexicographic order
on strings.

Shoe widths are also defined using a regular expression:

<datatype name="Width">
<basetype name="string"/>
<lexicalRepresentation>

<lexical>AAA|AA|[A-E]|EE|EEE</lexical>
</lexicalRepresentation>

</datatype>

This declaration constrains shoe widths to be betweenA and E inclusive while also
allowing the extremeAAA, AA, EE, andEEE widths.

To finish up, we need the element-type declarations forsize andwidth:

<elementType name="size">
<datatypeRef name="Size"/>

</elementType>

<elementType name="width">
<datatypeRef name="Width"/>

</elementType>

Finally, we have the end tags for the overall schema:

</elementType>

</schema>



AN XML DATA-BINDING FACILITY FOR THE JAVA PLATFORM 5

An XML schema compiler might bind the above schema into a Java class with the
following signature:

public class ShoeOrder {

public ShoeOrder(String id, Style style,
String color, String size, String width);

public String getId();
public void setId(String id);

public Style getStyle()
public void setStyle(Style style);

public String getColor();
public void setColor(String color);

public String getSize();
public void setSize(String size);

public String getWidth();
public void setWidth(String width);

public void marshal(OutputStream out)
throws IOException;

public static ShoeOrder unmarshal(InputStream in)
throws IOException;

}

We assume that the schema also defines aStyle element, which would cause a corre-
spondingStyle class to be generated.

The generatedShoeOrder class handles all the details of marshalling and unmar-
shalling. To accept an order over a network connection, for example, and enter it into
the warehouse database we merely need this code:

public void acceptOrder(Socket s) throws IOException {
ShoeOrder so = ShoeOrder.unmarshal(s.getInputStream());
WarehouseDB.enter(so);

}

Similarly, the following method retrieves a shoe order by number and transmits it over
the given socket:

public void sendOrder(String id, Socket s) throws IOException {
ShoeOrder so = WarehouseDB.lookup(id);
so.marshal(s.getOutputStream());

}

Finally, the variousset methods in the generatedShoeOrder class perform complete
validity checking in order to ensure that marshalled instances will be valid with respect to



6

the originalXML schema. Each of the following statements would cause an appropriate
runtime exception to be thrown because they violate the schema:

so.setColor("Red");
so.setSize("5 3/4");
so.setWidth("Z");

Schema-derived classes need not be used in their original form. In some set-
tings it may be convenient to extend such classes in order to add application-specific
data and behavior. TheShoeOrder class, for example, could be extended by aWare-
houseShoeOrder subclass that adds fields and methods that are needed only within
the warehouse order-processing system. It could be specialized in a different way by
a StoreShoeOrder subclass for use in the retail-store order-entry systems. This style
of programming may benefit from development tools that can keep track of the various
application-specific subclasses and recheck their validity as theShoeOrder schema, and
hence theShoeOrder class, evolves.

Requirements

A data-binding facility for the Java Platform will have two major components: A
marshalling framework and a schema compiler. Herewith a preliminary sketch of the
requirements of each component.

Marshalling framework The marshalling framework will be a platform extension
that establishes conventions for annotating classes with the necessary metadata. This
metadata, perhaps in the form of themarshal andunmarshal methods shown above,
will define the translation between an externalXML document and an internal instance of
the annotated class. (This approach is reminiscent of theencode anddecode operations
for transmissible types in the Argus programming language.)

The marshalling framework will also contain basic interfaces for the marshalling
and unmarshalling operations as well as the necessary low-level support services.

The marshalling framework must be useful for applications other thanXML data
binding. As part of the Swing work, for instance, we are experimenting with anXML-
based mechanism for archiving graphs of JavaBeansTM from within graphical application-
builder tools. This mechanism, as well as more general-purpose runtime archiving
mechanisms, should be able to use the same marshalling framework as theXML data-
binding facility.

Ideally the marshalling framework will not be specific toXML. It seems unwise
to tie such a general framework to a specific data format, especially since we may want
to support other formats in the future. This implies that the metadata conventions and
interfaces must be carefully designed so as to be independent ofXML. Because this goal
may be very difficult to achieve, it is a desideratum rather than a hard requirement.

Note that the marshalling framework is not in any way intended to displace the
object-serialization mechanism which is already a central part of the Java Platform.



AN XML DATA-BINDING FACILITY FOR THE JAVA PLATFORM 7

Schema compiler The schema compiler will be a command-line tool rather than an
extension to the platform itself, though it may also be exposed in a public but non-platform
API for direct use by development tools.

Exactly which of the many extantXML schema languages the compiler will support
is an open question. The standard currently under development by theW3C’s XML
Schema Working Group will almost certainly be worth supporting. There are a number
of other schema languages, some of which have been deployed, that may be worth
supporting if there is demand. These includeDCD, DDML, SOX, and XML-Data.
Finally, theDTD sublanguage ofXML is itself a simple schema language that is already
in widespread use and may therefore be worth supporting.

A variety of schema-translation strategies are possible. The simplest translation
results in roughly one Java class for each nontrivial schema component. A more sophis-
ticated translation might produce interfaces or abstract classes reflecting the structures
and types expressed in schema together with related classes containing the metadata and
constraint-checking code. Precisely which strategy or strategies should be used by the
compiler is an open question.

Given that there is not (yet) a universal schema language, and with the strong
possibility that still more such languages will be invented in the future, the schema
compiler should be engineered in a modular fashion that will allow support for new
languages to be added as required.

References

W3C XML Schema Working Group http://www.w3.org/XML/Group/Schemas.html

XML Schema Working Draft
Part 1: Structures http://www.w3.org/1999/05/06-xmlschema-1
Part 2: Datatypes http://www.w3.org/1999/05/06-xmlschema-2

Other schema languages
DCD http://www.w3.org/TR/NOTE-dcd
DDML http://www.w3.org/TR/NOTE-ddml
SOX http://www.marketsite.net/xml/download/sox20.pdf
XML-Data http://www.w3.org/TR/1998/NOTE-XML-data-0105

Argus http://www.pmg.lcs.mit.edu/Argus.html

Java Object Serialization ftp://ftp.java.sun.com/docs/jdk1.2/
serial-spec-JDK1.2.pdf

XML and Java Technology http://java.sun.com/xml


