
Document Style Design by Direct Manipulation

Hélène Richy

Irisa, Campus universitaire de Beaulieu, F-35042 Rennes Cedex, France

Abstract. Designing style sheets for structured documents is often a difficult
task. In this paper, we discuss the way to support style design through direct
manipulation and propose an interactive method of specification by example for
editing style sheets. In this approach, style editing actions within a formatted
document are generalized into “generic” style specifications and the “generic”
style sheet is dynamically updated.
An initial implementation of a direct-manipulation editor for structured docu-
ment style sheet is presented. Based on a structured authoring environment, this
prototype provides a comfortable environment for editing style properties as de-
fined in style sheets through the visual representation of any document, without
programming the style language.

1 Introduction

The separation of concerns between authoring, editing, designing, and typesetting was
well established in the traditional publishing industry. In electronic publishing, a simi-
lar separation leads us to consider logically structured documents separated from their
style specification. In this context, the document style design raises two questions. The
first one relates todesign, i.e. what will the document look like? No system will au-
tomatically create a perfect document design, since it is a matter of taste, aesthetics,
or artistic creation. However, a comfortable environment using direct manipulation can
assist this design process. The second question relates tostyle specification: how does
the abstract design, or style sheet, ensure an accurate design?

Let us focus on electronic documents. Languages, such as DSSSL [9], or CSS [14],
or soon XSL [1] are now available for style specification, and achieve better-quality lay-
out, while allowing more sophisticated formatting operations. However, no support is
available to define these specifications. Interfaces based on forms as provided by most
word processing systems (Microsoft Word, FrameMaker[5], ...) for updating style prop-
erties are not sufficient to define sophisticated typographical properties [20] when these
can be defined with logical contextual dependencies. Even with a declarative language
like P [17] or CSS, writing style specifications for documents of a complex structure is
an arduous task.

This situation calls for new features to be provided by editing environments for edit-
ing style sheets. Specifying by example seems a natural way to approach these prob-
lems [4] [16]. Thus, we propose a graphical style editing environment as an extension
of a structured authoring environment [6] [7]. The goal of this system is to provide an
environment for interactive style design of structured documents which may also pro-
duce the abstract style specification ensuring that similar documents will look the same.



We considerdirect manipulation in style editing as being based on the following prin-
ciples:

– abstract style specification is controlled byvisual checking on the formatted doc-
ument (interactive formatting),

– abstract style specification is inferred fromlocal style editingwithin the formatted
document,

– conditional style specification is indicated bydirect selectionof context within the
formatted document.

This paper focuses on a style editing environment for structured documents. Sec-
tion 2 first presents an overview of models and of design approaches. The third and
fourth sections then present the proposed approach and discuss the merits and limita-
tions of the presentation graph which forms its basis. Finally, some aspects of the initial
prototype implemented on the Thot editor-formatter [2] are described in section 5, be-
fore the conclusions are presented in section 6.

2 Style Sheets and Structured Documents

2.1 Separation Between Structure and Presentation

Most desktop publishing systems use style sheets. Style sheets describe how documents
will be formatted and transformed for printing or for screen display. Style sheets offer
users a powerful way to provide an attractive presentation of their electronic documents.

Just as structured documents allow the separation of the structure of a document
from its content and presentation, style sheets in the same way, allow a separation of
the content of a document from its presentation: layout and style properties of docu-
ments are considered separately from the structuring of a document into headings and
paragraphs. Thus, the way documents look changes simply by modifying just the style
sheet; no change is required in the document itself to improve its appearance.

2.2 Style Specification

We shall now intentionally limit our investigation to structured documents and consider
traditional print-based typography [19]. We therefore assume the following hypotheses:

– Structured documents are static documents, composed of texts and images (graph-
ics or photos)1.

– A style sheet is a generic style specification used to define the presentation of docu-
ments when their structure is consistent with a structure model such as a “Document
Type Definition” (DTD) in SGML [8].

1 Recent evolution of style sheets for presenting non-visual media [15], animation, synchroniza-
tion [11] [12], and more generally temporal dimensions [13] [21] of documents on the internet
is not considered.



– The formatting model is based on boxes [10], as in the models defined in DSSSL or
CSS: any box can be defined by spatial properties and style properties: its dimen-
sions, its position, its optional surrounding border and margin, and the style of its
text content. Boxes can be embedded in other boxes.

Style specifications may be defined either using declarative languages such as CSS
for HTML [18] documents in the World-Wide Web, or P, the style language of the Thot
editor, or as functional specifications, as provided by the ISO standard for associating
processing with SGML documents. DSSSL combines two languages: functional speci-
fications of tree transformation and declarative style specifications. Whatever the style
language, three kinds of properties may be distinguished:

Spatial properties define the dimensions and position of boxes in terms of either in-
ternal dimensions, distance, or alignment properties between boxes. So, the spatial
properties are defined either by an absolute value or by a relative value.

Typographic properties concern the aspect of the text (fonts, character style, color,
background, ...) or its layout (character size, spacing, ...).

Decorative properties concern boxes which are created either for ornamental pur-
poses or for a better control of page layout (column, header, ...).

2.3 Design Approaches

Document style design is usually achieved through direct manipulation of documents.
For instance, most interactive electronic publishing systems provide a modifying com-
mand for the style of text or paragraphs: after selecting a paragraph, the user chooses a
command in a style modification menu (font, color, ... ) for the paragraph.

Some systems use inferencing in a very simple way. As an example, by memorising
the previous transformation or by looking at the first paragraph in the selection, such
systems guess that the user wants the same transformation for new objects (cf.Mac-
Draw). Microsoft Worduses the number formatting command to determine what the
numbers at the beginning of all the paragraphs should be and will renumber each level
appropriately, but it will get it wrong in some cases, for instance changing brackets into
periods in the inner sections.

Now, most electronic publishing systems also provide facilities for a graphical lay-
out design. However the layout design and the style specification are often considered
separately (cf.FrameMaker[5]). Because a simple document model is considered in
these systems – a document is considered as a simple list of paragraphs – the style
specification is only based on paragraph and character formats.

On the other hand, some new editing environments (developed for editing HTML
documents) now allow style sheet editing, providing facilities for creating or updating
style sheets using both programming techniques and direct manipulation. Amaya [17],
for example, provides a user interface for editing style sheets (CSS1): a CSS selector
enables the user to select CSS from files, two rule selectors allow rules to be copied
from one file to another. The content of a style sheet may also be edited. Indeed, the
user is supposed to know to program using the CSS language as well as HTML which
is not as easy as it looks.



The approach of “Design by Example” as proposed by A. Br¨uggemann-Klein and
S. Hermann [3] in the systemDesigneris related to the direct manipulation approach
that we propose. In both approaches, the system produces style specifications by infer-
ring rules on how each document of the same type is to be formatted: in the first case, the
graphic artist specifies the layout of a small number of sample documents, and a series
of layout objects are implemented. In our approach, the direct manipulation interface
allows a visual approach while editing any formatted document. In both approaches,
the design system deals on the one hand with the formatted document, and on the other
hand with the generic style specification.

3 Direct Style Design

We suggest the application of a programming by example method to graphical editing
of generic style sheets: the user can display within a formatted representation of the
document an example of what the style sheet will be able to produce automatically.
This approach allows an interactive visual checking on any formatted document thus
ensuring that the abstract style specification produces the accurate design.

3.1 The Use of a Structure-driven Editor

Our method for designing generic style sheets for structured documents makes use of
an editor-formatter environment. Instead of building an environment that allows di-
rect style sheet manipulation from scratch, we propose extending an existing editor-
formatter, such as Thot. Thot is an interactive structure-driven editor-formatter with
two major characteristics:

– A grammar specifies the structure of a type of document and the editor relies on
this specification to produce documents with a structure consistent with this speci-
fication.

– A style sheet specifies the layout of a type of document and the formatter uses this
style specification to produce formatted documents with a layout consistent with
this style specification.

Furthermore, the formatted document may result both from ageneric stylesheet
and from aspecific stylespecification: a specific style may be embedded in the doc-
ument, allowing the user to change the aspect of text or graphical element (style or
formatting) and to modify the geometric position and dimension of elements – even if
they contradict the generic rules as defined by the style sheet for this type of element.

By interactive editing, the user directly edits a formatted representation of the doc-
ument; only actions which are consistent with the structural model (generic structure)
being possible. The automatically generated presentation can therefore be changed, ei-
ther globally by changing the style sheet (generic style), or locally by giving aspecific
presentationto an element of the document. However, changing the style sheet has not
been possible so far by editing with Thot. Therefore, developing a style editor based on
Thot will make this possible while transforming style editing commands into generic
style editing commands.



3.2 From Specific to Generic Style Editing – An Example

Transforming editing actions which affect the specific presentation of a selected element
into generic actions which may affect a lot of elements depending on the logical context
is by no means easy, as shown in the following example.

Most editors include style editing commands enabling the updating of specific style
rules. For instance, some style editing commands may be used to modify the character
size of a selectedSection: by reducing the character size from 12 pt to 10 pt, thePara-
graphsincluded in this selectedSectionwill be displayed with 10 pt characters. This
achieves an update of the “specific rule” associated with this logical element (Section)
within the document. This will have no effect on the style sheet, nor on the character
size of any otherSectionwithin the document.

Conversely, the user of a generic style editor may require the style editor to extend
this new character size value to eachSectionwithin the document. In this case, the char-
acter size rule associated withSectionwithin the current style sheet should be updated,
achieving an update of what is called the “generic rule” associated with the generic
element typeSection.

The problem becomes more complex when some rules are contextual. In this case,
the effect of the generic style update may be limited to a context. Such context may be
defined by a structural condition. If, for instance, the selectedSectionis not at the upper
level (i.e. embedded in an otherSection), the character size rule associated withSection
may be transformed into a conditional rule so as to apply this new value of character
size only to aSectionat this level. In this case, a direct style rule must be transformed
into a conditional style rule within the style sheet, as follows:

IF Section IN Section THEN character-size = 10 pt ELSE character-size = 12 pt.
A more complex situation may occur if the initial style value is defined as a relative
value. For instance, if the character size ofSectionis defined as identical to the character
size ofAbstract, or conversely. The update of the rule associated withSectionmay or
may not change this relationship. In such cases, the transformation must be performed
with added indications from the user, who should indicate his preference when several
transformations are possible.

3.3 Generic Style Transformation Process

As shown in the previous example, inferring a generic presentation from specific re-
quirements may depend on the logical context, the generic structure, the generic style
of the document, or some preferences indicated by the user.

So, let us first consider that a simple style editing action consists of:

– selecting an “element-box” within a formatted source document,
– editing a style property associated with anelement-box while proposing a new value

for this style property,
– validating the accuracy of the transformation.

Changes in a style sheet can then be prepared in two steps. The first step consists
of analyzing the style editing command: the logical context associated with the se-
lectedelement-box, the style rules involved in the creation of thiselement-box, and the
changes required.



The second step consists of calculating the possible transformations of the style
sheet which are consistent with the initial situation: a generalization process assumes
the implementation of complex consistency checking mechanisms on the structural
layer, in order to propose accurate generalizations and to produce the required visual
effects.

After validation by the user, all the visual effects are transformed into the appropri-
ate style sheet each time a style property is modified. The style update process produces
this new style sheet. The source document is immediately formatted with this style
sheet.

4 Presentation Graphs

Most of the difficulties presented above relate to the same basic problem: transforming
specific rules into generic rules. In this section, we shall explain how representing a
style sheet as a dependency graph, called a presentation graph, may help in detecting
and checking changes for accurate generalization within a structured document.

4.1 Building a Presentation Graph

A style sheet can be considered as a series of statements in which the structural ele-
ment types of the document are associated with formatting objects. For example, “para-
graphs” are associated with fonts, colors, and other typographic effects. Spatial proper-
ties describe how the associated boxes will be positioned, or dimensioned. Thus, while
considering a set of style properties and values associated with a selector [14], style
sheets may be represented by graphs, as follows:

– Eachnode is a tuple<TYPE, STYLE> where TYPE is a structural type of ele-
ment, and STYLE is a style property. One or several VAL attributes may be associ-
ated with a node. Eachattribute represents a possible value of this style property
for the structural element of type TYPE.

– Each node is connected to related nodes with adirected arc. The target nodes (t)
are nodes on which the property value of the current node depends. The original
nodes (o) are nodes that inherit from the property of another node.

– Each arc islabelled. The label contains a computed function (COMP) and a struc-
tural condition (COND).

Building such a graph from the style specification requires a knowledge of the
generic structure in order to integrate inheritance of properties from the logical struc-
ture. Let us consider, for instance, the generic structure as described in fig. 1, and the
simple style specification of fig. 2.

The presentation graph (see fig. 3) resulting from this style specification when ap-
plied to this generic structure shows that thecolor property of aParagraphdepends
on the logical context: the node<Paragraph, color > is connected to the nodes
<Abstract, color > and<Section, color >. Three attributes are associated with
the node<Paragraph, color >: red, green, and black. The labels on the arcs describe



how the value of the property is calculated and which logical condition applies to it: the
color of a Paragraphis either red in theAbstract, or green in theAppendix, or black
elsewhere. For instance, arc (a) in fig. 3 which connects node<Paragraph,color > to
node<Abstract,color > is labelled by the following computed function:

COMP = [VAL(o) = VAL(t)]

and by the following structural condition:
COND = [Paragraph= In (Abstract)].

Report = (Title, Abstract, Contents, Appendix)
Abstract = (Paragraph)*
Contents = (Section)*
Section = (Section_title, (Paragraph)*)
Appendix = (Appendix_title, (Section)*)

Fig. 1.A generic structure

(1) Report {color: black}
(2) Abstract {color: red}
(3) Appendix {color: green}
(4) Section_title {color: blue}

Fig. 2.A style specification

Abstract
color

Paragraph
color

d

red

Section_title
color

Title
color

Report
color

Appendix
color

Section
color

Appendix_title
color

(4)

black

black

green

green

green

black

black

black

blue

red

(3)

g

f

e

c

b

(2)

(1)

a

green

Content
color

Fig. 3.A presentation graph



4.2 Transformations on the Presentation Graph

Several areas may be identified in a presentation graph to check the “influence” of a
style rule. Consider a style property P, and a selected element E of type T. The logical
context of E is supposed to be determined by the embedding elements of E. Consider
the sub-graphG of the presentation graph only describing property P, and call node
N = <T, P>: the influence areas of (P, E) are then defined as follows within the sub-
graphG:

1. the style path associated with E contains the node N =<T, P> and all nodes
connected to N with an arc whose logical condition is satisfied by the context of E.
This path helps to detect all the style rules which have an effect on the style of E.

2. the sub-graphG�: contains all the nodes which are the origin of an arc directed to
N. This area covers all the style rules which may be involved by a modification of
P on N,i.e elements which may inherit from the value of the P property of the E
element.

3. the sub-graphG+: contains all nodes which are the target of an arc originating
from N (directly or indirectly). This area covers all the style rules which must be
reconsidered when modifying or deleting N or arcs originating from N.

As an example, consider the presentation graph (fig. 3), and the new value “blue”
for thecolor of a Sectionelement E within theContentof a Report. The style path
associated with E is composed of (c) + (d) and goes from the node<Section, color >

to the node<Report,color >. G� includes the node<Paragraph, color >. G+ in-
cludes the node<Appendix, color >.

The generalization process examines the label of arc (e) toG+ and arc (c) in the
style path to calculate possible updates inG. A first update may consist of creating a
direct rule on the node<Content, color > setting the color to blue, deleting (d), and
replacing the black attribute on<Content, color > by a blue one. In this case, only
Sectionsincluded in theContentof a Reportwill be blue.Sectionswhich are included
in theAppendixwill remain green.

A second update may consist of deleting (c) and (e), and creating a direct rule on
the node<Section, color > setting the color to blue so that any section color will be
blue whatever the context, and replacing the green attribute on<Section, color > by
a blue one. In any case, the black attribute on<Section, color > will be deleted.

4.3 Advantages and Limits of the Presentation Graph

The presentation graph matches the structural context in so as far as the contextual
rules rely upon inheritance from the logical structure. Conditional rules which involve
several types are not represented in this graph. Only values related to adjacent nodes
are described. However, this is a natural way of specifying a generic style while using
logical inheritance and inclusion relationships. And it is suitable for supporting most of
the rules as defined in CSS1 where relative rules only depend on the parent element.

Indeed, the graph helps to clarify style specifications in many ways: it can be used to
reduce the style sheet by grouping style definitions at the highest level possible. Thus,



only efficient style rules are kept in the style sheet when its construction is based on such
a graph. This application offers a number of additional advantages over style validation
which are not presented here.

5 P-edit, Current State of Development

P-edit is a prototype of a generic style editor. Thot is the structured editor which we have
taken as a basis to build this generic style editor. This propotype enables the updating
of style sheets which are written in the P language, the style sheet language used by
Thot. It is developed through the application programming interface (API) provided by
Thot. The interactive formatter – integrated within Thot – applies the style specification
as defined in the P model in the source document. Initial implementation is limited to
typographic and spatial properties of elements and validates the presentation graph.

5.1 User Interaction

As described in section 3.1 (and in the Thot Manual [2]), thespecific presentational-
lows the user to change the aspect of text or graphical elements, and the color or the
formatting of the elements of a document. The geometric position and dimensions of
elements can be changed using the mouse to move or resize a box, and color can be
modified by selecting within a color palette, etc. In addition to these commands, the
following commands are provided in P-edit to edit generic style sheets:

Control of the style editor Starting the style editing session: this transforms all the
subsequent specific style editing actions into generic style editing actions and some
new style editing actions become available.
Creating a new style sheet and stopping the style editing session: the P compiler
produces a new style sheet which is immediately used to format the document2.

New style editing actionsCreating and editing decorative boxes: decorative boxes are
temporarily considered as element-boxes within the source document. This result
is obtained by adding/removing extension into/from the structure model.
Editing numbering properties: all the possibilities for the style numbering of a list
element are provided. For visual checking, the changes made on the style number-
ing immediately apply to the selected list.

Generalization Designating related elements: either for calculating values or for con-
ditional application.
Choosing a method to calculate relative style properties: with a definite increment
and related to a selected element.
Choosing a generic application: several inferences are provided, and some may be
updated or completed by designing related elements.

Box visualization For better visual editing, outline or colored background of boxes are
provided. Changing visibility enables the display and selection of embedded boxes
when bounding boxes overlap.

2 An initial style sheet is assumed to be provided. Our intent is to add facilities within P-edit to
build a very simple style sheet inferred from the structure model.



5.2 First Experiments

As shown by the user interface (fig. 4), the user does not edit the style sheet, but changes
the appearance of the source document in two steps: the first step consists of using the
style dialog box which describes the style properties, the numbering properties, ..., or
the colors of the currently selected element, or resizing the box associated with the
selected element, to update a style property. The second step consists of choosing the
scope of the modification, assisted by the generalization process, before asking the style
update process to apply the generic modification to the current style sheet. ¿From our
first experiments with P-edit, we can outline some points:

– while providing appropriate feedback about what the style editor is doing, this
method (direct manipulation, design by example, visual control) insures accuracy
and full specification of the style for the source document,

– while applying the same style sheet to any document belonging to the same class,
visual checking is easy and further updating of the style sheet is possible. How-
ever, this method does not ensure that any document of the same class will look as
aesthetic as defined in the source document: some elements may be missing, thus
changing the look-and-feel of the layout.

– this way of producing style sheets for structured documents supposes that the user
is aware of the document structure. Otherwise, he/she may have difficulty in se-
lecting the appropriate element before editing a style property or selecting a related
element to define logical contextual dependencies. Some visualization of this struc-
ture and of the presentation graph would provide the user with a global vision of
the dependencies and should be further investigated.

6 Conclusion

This paper has presented a tool for the design of style sheets for structured documents,
which does not require users to program the style language. The proposed approach
is based on a presentation graph and enables the generalization process to produce the
style sheet properly. In this approach, designers or authors directly modify the presen-
tation on a formatted document. By immediately visualizing the formatted document,
users are able to discover relationships among logical components and style rules. This
ability helps users to update the generic style in an efficient way.

A first prototype, based on the structured Thot editor, provides an interactive envi-
ronment for editing the typography, topology, and style of a document, and for updating
style sheets written in the P language. Since P-edit is a prototype used for the validation
of our generic approach, it does not provide all the functionality of a full system. Some
features such as page layout, footnotes, views, or decorative boxes should be improved.
And we have made the simplifying assumption that an initial style sheet is provided.

Until now, not much attention has been paid to the problem of generic style editing.
The results of this experiment reveal that this approach can be used to edit style sheets
with simple contextual conditions as defined in the CSS language.



Fig. 4. Character style editing of aSectionwith P-edit

In conclusion, this experimental style editor is a first step in improving the typog-
raphy of electronic documents. Further researches should explore macro-typography
knowledge with a view to integrating the expertise of professional designers or typog-
raphers and so producing better-quality style sheets.

Acknowledgements

We would like to thank anonymous rewievers for valuable comments on this manuscript
and C. Hérault for her help in bringing this about. We also thank Centre de Formation
des Traducteurs, Terminologues et R´edacteurs (University of Rennes 2) and Heather
Brown for their proof reading.

References

1. S. Adler, A. Berglund, J. Clark, I. Cseri, P. Grosso, J. Marsh, G. Nicol, J. Paoli, D. Schach,
H.S. Thompson, C. Wilson,A Proposal for XSL,Submitted to W3C,
http://www.w3.org/TR/NOTE-XSL, 27 August 1997



2. S. Bonhomme, V. Quint, H. Richy, C. Roisin, I. Vatton,The Thot User’s Manual,Inria-Imag,
http://opera.inrialpes.fr/doc/thot/Thotman-E.html, 1997.

3. A. Brüggemann-Klein, S. Hermann, “Design by example: A user-centered approach to the
specification of document layout”,Proc. of ICCC/IFIP Conference on Electronic Publish-
ing’97: New Models and Opportunities,F. Rowland, J. Meadows ed., ICCC Press, Washing-
ton, DC, pp. 223-236, 1997.

4. A. Cypher ed.,Watch What I Do: Programming by Demonstration,MIT Press, Cambridge,
MA, 1993.

5. FrameMaker,FrameMaker User Manual,Frame Technology Corporation, San Jose, CA,
1995.

6. R. Furuta, V. Quint, J. Andr´e, “Interactively Editing Structured Documents”,Electronic Pub-
lishing,vol. 1, num. 1, pp. 20-44, April 1988.

7. C. Hüser, W. Möhr, V. Quint ed.,Electronic Publishing, Document Manipulation and Typog-
raphy,Proc. of the Fifth International Conference, EP-odd, 6(4), December 1993.

8. ISO,Information processing - Text and Office systems - Standard Generalized Markup Lan-
guage (SGML),ISO 8879, October 1986.

9. ISO, Information techmology - Text and Office systems - Document Style Semantics and
Specification Language (DSSSL),ISO/IEC DIS 10179, 1996.

10. D.E. Knuth,The TEXbook,Addison Wesley Publishing Company, Reading, MA, 1988.
11. M. Jourdan, C. Roisin, L. Tardif “Édition et Visualisation Interactive de Documents Mul-

timedia”, Proc. of Electronic Publishing 1998,J. André, H. Brown, ed., Springer-Verlag,
1998.

12. P. King, H. Cameron, H. Bowman, S. Thompson “Synchronization in Multimedia docu-
ments”,Proc. of Electronic Publishing 1998,J. André, H. Brown, ed., Springer-Verlag, 1998.

13. N. Laya¨ıda, L. Sabry-Ismail, “Maintaining Temporal Consistency of Multimedia Documents
Using Constraint Networks”,Multimedia Computing and Networking 1996,M. Freeman,
P. Jardetzky, H.M. Vin, ed., pp. 124-135, SPIE 2667,
http://opera.inrialpes.fr/OPERA/BibOpera.html, January 1996.

14. H.W. Lie, B. Bos,Cascading Style Sheets, level 1,W3C Recommendation,
http://www.w3.org/TR/REC-CSS1, 17 December 1996.

15. C. Lilley, T.V. Raman,Aural Cascading Style Sheets (ACSS),W3C Working Draft,
http://www.w3.org/TR/WD-acss, 28 March 1997.

16. B.A. Myers, “Demonstrational Interfaces: A Step Beyond Direct Manipulation”,IEEE Com-
puter,vol. 25, num. 8, pp. 61-73, August 1992.

17. V. Quint, C. Roisin, I. Vatton, “A structured Authoring Environment for the World-Wide
Web”, Computer Networks and ISDN Systems,vol. 27, num. 6, pp. 831-840, April 1995.

18. D. Raggett,HTML3.2 Reference Specification,W3C Recommendation,
http://www.w3.org/TR/REC-html32, 14 January 1997.

19. H. Richy, C. Hérault, J. Andr´e, “Notion de feuille de style”,Cahiers GUTenberg,vol. 21,
pp. 127-134, http://www.univ-rennes1.fr/pub/gut/publications, June 1995.

20. R. Southall, “Presentation Rules and Rules of Composition in the Formatting of Complex
Text”, Proc. of Electronic Publishing 1992,C. Vanoirbeek, G. Coray, ed., pp. 275-290, Cam-
bridge University Press, Cambridge, UK, 1992.

21. L. Weitzman, K. Wittenburg, “Automatic Presentation of Multimedia Documents Using Re-
lational Grammars”,Proc. of the Second ACM International Conference on Multimedia,
pp. 443-451, San Francisco, CA, October 1994.


