

Using XML/XMI for Tool Supported Evolution of UML Models1

Frank Keienburg, Andreas Rausch
Technische Universität München, Arcisstr. 21, D-80290 München, Germany

{keienbur|rausch}@in.tum.de

1 This work originates form the research project FORSOFT, supported by the Bayerische Forschungsstiftung.

Abstract
Software components developed with modern tools and
middleware infrastructures undergo considerable
reprogramming before they become reusable. Tools and
methodologies are needed to cope with the evolution of
software components. We present some basic concepts
and architectures to handle the impacts of the evolution
of UML models. With the proposed concepts a
infrastructure to support model evolution, data schema
migration, and data instance migration based on UML
models can be realized. To describe the evolution path we
use XML/XMI files.

1. Introduction

Technical innovations in communication and
information processing, permanent organizational
changes, international business networks and virtual
organizations lead to a new business competition
landscape. Today’s development of new products takes
place under immense time pressure. Ever shorter
technology time cycles lead to ever shorter product life
cycles and shorter development time cycles. “Time-to-
market” has become one of the most important success
factors for new products to survive this competition. The
question is, how can you shorten product development
time to be successful at the market. Modern concepts of
software engineering should support this improvement
process. In the last decade, the object-oriented paradigm
gained a great success covering almost all steps of
software development and it’s life cycle.

Concurrent engineering in software engineering
shortens software development time. Thereby, the
traditional sequential development process with its
consecutive steps requirements analysis, design,
implementation, quality insurance and service is replaced
by a more concurrent one. This process should be
iterative, incremental and therefore more cyclic than the
old one. As soon as possible the results from earlier
phases should be passed to later ones. This leads to a
nearly parallel and therefore shorter process with early
information exchange between the different phases, but

also to changes in the original development model and the
related data based on it. The new software development
process and the supporting tools should cover all steps of
the software life cycle and therefore also model changes.

Another demand of modern software engineering to
shorten development time for being successful at the
market, is to support development with regards to prior
product versions and components with the help of reuse
and componentware. These concepts differ to starting
every time from scratch. For a efficient development
process you need a tool that supports the creation of new
software based on older versions and components. As an
additional benefit, components can help to avoid software
redundancies and provide interoperability if they are used
by more than one software application.

Modern programming concepts like Java Enterprise
Beans [1] or CORBA Components [2] and corresponding
middleware infrastructures implementing these concepts
offer a rich support of reuse and component based
development. But, currently they do not support model
changes and model evolution at all. This should also
include data migration based on old models to new
models and data access with code based on different
model versions, or shortly preserving persistent data
across schema changes. Technically this means to support
schema evolution and data migration.

This paper provides some concepts and design
solutions of a tool supporting schema evolution and data
migration. In the fist section we introduce the user
requirements of a tool for model evolution. We show how
this tool should fit into modern middleware infrastructures
like Java Enterprise Beans. In section three we show a
simple model of component based applications. With this
model we allow runtime mapping from various interfaces
to a single implementation. The next section discusses the
different entities of UML models and the operations an
designer can perform on these models [4,5,6]. Based we
are able to come up with the architecture of a tool
supporting schema evolution and data migration. In the
next two next sections we discuss four different kinds of
change primitives and some problems to be solved with
the not cleanly manageable model changes. Finally, we
provide concepts for developers to specify the model

evolution based on XML and XMI [11]. A short
conclusion rounds the paper up.

2. What You Need is What You Get

Modern distributed systems are based on a 3-tier or
multi-tier client server architecture. A 3-tier architecture
mostly consists of client (tier 1), application server (tier 2)
and database server (tier 3) [13]. The right side in
Figure 1 shows such an application. A popular approach
to build such a system is using Java Enterprise Beans [1],
CORBA [3], or DCOM [12]. Because development of
such a system is very complex it’s helpful to use tools that
support the development process.

Developing a distributed system means usually to
perform the following steps [14]:
• Create an application model with a CASE tool.
• Generate interfaces of the distributed components

based on the model.
• Implement the application server according to the

interfaces.
• Realize persistence for the application server

instances.
• Implement the client applications.

Some of these standard work can be automated by a
tool to become a continuous development process based
on a consistent model. Nowadays there are many
commercial tools available like for instance various
application server. For our own research activities, we

have developed our own tool: a simple environment called
AutoMate to easily generate 3-tier applications from UML
models [9,10]. Using AutoMate you can concentrate your
development on implementing the server functionality and
the client code. Everything else is automatically done for
you according to the class model. AutoMate generates
IDL interfaces, client proxies, server code and adds the
whole database functionality including transaction logic
and other things, as Figure 1 shows.

As already mentioned, tools like AutoMate relieves
you of programming application code, database access,
and some more standard work. But model evolution is not
supported in these tools.

At the moment after changing a class model, new code
overwrites old code, a new database schema overwrites
the old one and old object instances are deleted. This
means only clients based on the newest model version can
for example create or select persistent objects. All
previous work is lost, you can’t access persistent objects
with an old client version anymore. Every time you
change your model you have to start from scratch again.
But, model changes are quite usual in a concurrent
development environment and every time starting from
scratch again is not very efficient. That’s the reason why

schema evolution is a useful extension to existing
middleware infrastructures like for instance AutoMate.

To cover the hole model life cycle from analysis to test
you have to ensure consistency. This consistency can be
divided into static and dynamic aspects. You have to

Figure 1: The Development Process with AutoMate

FilePart
FileName : String

Point
X : int
Y : int

Font
Name : String
Style : int
Size : int

Dimension
Height : int
Width : int

LineStyle
$ STRAIGHT : LineStyle
$ SNAPPED : LineStyle
$ SLANTED : LineStyle
$ LOOP : LineStyle

<<Enum>>

AutomatonKind
$ IMPLEMENTATION : AutomatonKind
$ CLASSSPEC : AutomatonKind
$ TYPESPEC : AutomatonKind

<<Enum>>

Direction
$ IN : Direction
$ OUT : Direction

<<Enum>>

TransitionSegment
Name : String
Input : String
Output : String
PreCondition : String
PostCondition : String
Action : String
IsOuter : boolean
ControlPointOne : Point
ControlPointTwo : Point

Part
Name : String

RepositoryProperties

STDPart

InterfacePoint
Name : String
Condition : String
Direction : int
Location : Point

*

1

+OutSegment
*

+SourcePoint
1

*

1

+InSegment
*

+DestinationPoint
1

CompoundDocument
Name : String
OEFStream : String
OEFAnnotation : String

*
1
*
1

Repository
Name : String

1 11 1

ProjectProperties

Channel
Name : String
Type : String
DisplayFont : Font
DrawType : int
TextBoxSize : Dimension
TextBoxLocation : Point

State
Name : String
Predicate : String
EntryAction : String
ExitAction : String
IsHistory : boolean
IsInitial : boolean
Location : Point
Size : Dimension
Border : int

0.* 0.*

1
*
1
*

Project
Name : String
OEFStream : String

*
1
*
1

1
*
1
*

0..1

*

+SuperProject
0..1

+SubProject
*

1 11 1

SSDPart

Attribute
Name : String
Type : String

Port
Name : String
Direction : Direction = 0
Type : String
Location : Point
DisplayFont : Font
ShowName : boolean

0..1

1

+OutChannel
0..1

+SourcePort
1

0..1

1

+InChannel
0..1

+DestinationPort
1

ComponentSystem
Name : String

1

*

1

*

Automaton
Name : String
Kind : int
ClassName : String

0.

*

0.

*

1

*

1

*

Component
Name : String
Location : Point
Size : Dimension
Border : int
DisplayFont : Font
TextBoxLocation : Point
TextBoxSize : Dimension

0..1 *0..1 *

1

*

+SuperComponent

1

+SubComponent

*

1

*

1

*

1

*

1

*

0..1

1

0..1

1

0..1

0..1

0..1

0..1

TextBoxLine
Line : String1 1..*1 1..*

Application Applet Class Browser

OO-DB

Server Code

Client Proxies

Case Tool
UML Model

Generated
by AutoMate

IDL Interfaces

Adapter

Pers. Obj.

ORB

Databaseadaptor

FilePart
FileName : String

Point
X : int
Y : int

Font
Name : String
Style : int
Size : int

Dimension
Height : int
Width : int

LineStyle
$ STRAIGHT : LineStyle
$ SNAPPED : LineStyle
$ SLANTED : LineStyle
$ LOOP : LineStyle

<<Enum>>

AutomatonKind
$ IMPLEMENTATION : AutomatonKind
$ CLASSSPEC : AutomatonKind
$ TYPESPEC : AutomatonKind

<<Enum>>

Direction
$ IN : Direction
$ OUT : Direction

<<Enum>>

TransitionSegment
Name : String
Input : String
Output : String
PreCondition : String
PostCondition : String
Action : String
IsOuter : boolean
ControlPointOne : Point
ControlPointTwo : Point

Part
Name : String

RepositoryProperties

STDPart

InterfacePoint
Name : String
Condition : String
Direction : int
Location : Point

*

1

+OutSegment
*

+SourcePoint
1

*

1

+InSegment
*

+DestinationPoint
1

CompoundDocument
Name : String
OEFStream : String
OEFAnnotation : String

*
1
*
1

Repository
Name : String

1 11 1

ProjectProperties

Channel
Name : String
Type : String
DisplayFont : Font
DrawType : int
TextBoxSize : Dimension
TextBoxLocation : Point

State
Name : String
Predicate : String
EntryAction : String
ExitAction : String
IsHistory : boolean
IsInitial : boolean
Location : Point
Size : Dimension
Border : int

0.* 0.*

1
*
1
*

Project
Name : String
OEFStream : String

*
1
*
1

1
*
1
*

0..1

*

+SuperProject
0..1

+SubProject
*

1 11 1

SSDPart

Attribute
Name : String
Type : String

Port
Name : String
Direction : Direction = 0
Type : String
Location : Point
DisplayFont : Font
ShowName : boolean

0..1

1

+OutChannel
0..1

+SourcePort
1

0..1

1

+InChannel
0..1

+DestinationPort
1

ComponentSystem
Name : String

1

*

1

*

Automaton
Name : String
Kind : int
ClassName : String

0.

*

0.

*

1

*

1

*

Component
Name : String
Location : Point
Size : Dimension
Border : int
DisplayFont : Font
TextBoxLocation : Point
TextBoxSize : Dimension

0..1 *0..1 *

1

*

+SuperComponent

1

+SubComponent

*

1

*

1

*

1

*

1

*

0..1

1

0..1

1

0..1

0..1

0..1

0..1

TextBoxLine
Line : String1 1..*1 1..*

Application Applet Class Browser

OO-DBOO-DB

Server Code
Server Code

Client Proxies

Client Proxies

Case Tool
UML Model

Generated
by AutoMate

IDL InterfacesIDL Interfaces

Adapter

Pers. Obj.

ORBORB

Databaseadaptor

Databaseadaptor

maintain both, static aspects which are dealing with
keeping application code consistent and dynamic aspects
which are dealing with keeping object instances and their
behavior consistent. In AutoMate or in any other tool with
an integrated database support this means especially to
perform object instance changes and conversion.

Static aspects deals with the definition of classes
including it’s attributes, method signatures, types and
inheritance graphs and the static relation between such
classes. The framework has to ensure that no type or
interface inconsistencies occur.

After a UML model has changed you have to update
your code that has already been generated by the tool, e.g.
with AutoMate. This means for a three tier architecture
realized with CORBA, you have to adapt IDL interfaces,
client stubs, server code and database access in a way that
clients based on old and new model version work together
with your database and behave consistent over their whole
life cycle.

Dynamic aspects concern the runtime behavior of
instances when clients proceed method calls on them.
These client calls based on a specific model version have
to deliver the same results (behave consistent) over the
hole model and application life cycle.

Figure 2: System with Different Model Versions

Persistent objects and the database schema are related
to a specific code version. That’s just why code changes
cause also database schema and object instance changes.

Both should be reorganized in a way that the data is
consistent and accessible with client code based on any
model version.

To clearly and easily explain the requirements of
model evolution in a system like AutoMate, the desired
model evolution behavior is introduced. In the beginning a
model is introduced that changes over time, these change
means a change of a special interface. After this change
there are two versions of the model and accordingly two
versions of the interface.

The desired behavior should cover how model
evolution is handled in the future system from the client
application point of view. The illustration shows a
distributed system that is build on the before introduced
model versions.

This software system is based on a three tier
architecture, which may be created with AutoMate. The
presentation tier of this system architecture consists of
client applications build on basis of interfaces from
different model versions of model A. The second tier
consists of CORBA servers for the different interface
versions and the third tier consists of a object oriented
database with persistent objects based on a general
interface A and the necessary wrappers that delegate the
work to the general interface.

3. Components, Evolution and Runtime
Mapping

As already mentioned software systems are usually
very complex. For reasons of reuse and concurrent
engineering these systems are partly constructed of
components. A component client communicates and
interacts with a component via it’s interface. Such
components with it’s belonging set of interfaces can be
modeled like shown in the UML class diagram in
Figure 3. A Component is constructed according to the
composite pattern [7] and is a single implementation or a
compound of other components.

Figure 3: A Component Model

Normally development of components is a iterative and
incremental process as surrounding conditions of the
system or it’s desired behavior changes during it’s life
cycle. Therefore a typical development scenario for a
component with the help of a CASE tool can be like this:
At the beginning of the development process a UML
model of the interface will be designed. Based on this
interface model the implementation will be realized or
generated. In the later life cycle of the component, it’s
interface model will be changed and the implementation
has to be updated accordingly.

This causes the necessity to support automatic
component interface changes. Most of the time it is not
possible or desired to update all applications that already
use an existing component at the moment the interface of
a component changes. The resulting problem is to handle
more than one component interface of a single component.
With the necessity to support component evolution a
problem of interface incompatibility is born and the
motivation to solve this problem with the help of schema
evolution is introduced.

As a solution approach each component provides a set
of interfaces mapping to it’s versions, but only one actual
implementation. This approach is modeled in Figure 3.
The latest version of the component interface exactly
corresponds to the actual implementation, all other
interfaces are wrappers or adapters [7] that encapsulate
the functionality of the component and provide translation
and delegation. Each time a component model changes a
new interface version has to be generated, the
implementation has to be changed accordingly and the old
interfaces have to be converted into wrapper to the latest
interface.

Figure 4 explains how a wrapper or adapter for
components can be modeled according to the
corresponding pattern [7] and clarifies the principle of

delegation from the target interface to the adapted
interface. This model is a refinement of the interface
wrapper relationship in Figure 3. All interfaces are
generalizations of the before introduced component
interface. All target interfaces are old versions of
component interfaces and a adapted interface is the latest
interface of the component. Therefore every component
would have a 1-to-1 relationship with the adapted
interface and a 1-to-* relationship with possible old target
interfaces.

If a client calls an operation on a target interface a
adapter will delegate this target interface operation to a
operation on the adapted interface. This delegation
mechanism with the adapter is responsible for matching
operations and casting results at runtime.

4. Evolution of UML Models

Nowadays interfaces and their relationships are often
described with graphical description techniques. The
according Java code, CORBA IDL or database adapters
are generated. A common graphical description technique
is the usage of UML class models (cf. [4,5,6]). To
understand the problems that are related to evolution of
such models, it’s important to get an overview of all
possible class model entities in the beginning. Only the
basic parts of UML class diagrams are taken into
consideration

The most important entities of a UML class model
diagram are specified in [4]. For schema evolution and
data migration are only the following entities relevant:
• Classes
• Attributes
• Methods
• and relations (association, aggregation,

generalization, etc.)

Figure 4: A Wrapper Model

As you can easy image it is possible for a developer to
change every entity of such a class model diagram in a
CASE tool. Basically a developer can perform the
following operations on these entities. We call these
operations update primitives:
• add
• delete
• rename
• retype

A deeper discussion of the topic of the various update
primitives can be found in [15]. Note, that the this
primitives guarantee completeness [16]: This set of
operations cover all possibilities for schema
modifications. But the correctness of the schema
modifications is an undecidable problem [17,18]. As a
consequence, we do not consider about methods updates.
We only take care about the classes and their attributes
and relations. Thus we can not support runtime evolution.
You have to shut down the system run the evolution tool
and than you can restart the system again. Usually that is
an acceptable restriction if you want to support schema
evolution and instance evolution for distributed systems

5. Supporting Model Evolution

In the last two sections we have described how a client
can work with different interface versions of a component
at runtime and what possible changes of a component
interface described in UML are. This section elaborates
the basic concepts and architecture to organize and apply
possible changes on a model.

Model evolution means proceeding a ordered list of
model change primitives on an existing component model
and finally create a new model version. Afterwards the

next interface versions and wrapper have to be generated,
the implementation has to be changed and the old
interfaces (target interfaces) have to be maintained in a
way that they can work as wrapper to the latest version.

The different model versions are organized in a model
list in Figure 5. The first element of such a list is the first
model version, the last element is the latest model version.
Recursively the successors are derived from their
predecessors according to a set of change commands or
update primitives. Every list item beside of the first and
the last has exactly one predecessor and one successor.
Each model version is aggregated of a set of model
components, that are equivalent to the one’s introduced
before.

In principle every model change primitive leads to a
new model version in the model change list, but most of
the time it makes more sense to group update primitives
together to a set of update commands or model change
macros. These macros are modeled in Figure 5 according
to the composite pattern [7]. A component change consists
of at least one change primitive or a compound of change
primitives. Proceeding such a set of update commands or
a component change object on a model leads to a new
model version.

Change execution can be modeled with the help of the
command pattern [8]. The client of the command pattern
is the so called change manager, the trigger or executor is
a change executor and the commands themselves are the
above introduced component changes. Last but not least,
the receiver of the changes are the different model
versions which are organized in a ordered model list.

A change manager is very similar to a parser for
recognizing model changes. The change executor is
responsible for the change logic. It’s task is to apply a

Figure 5: Supporting Evolution Model

component change on a model version. This task can
include database changes, code changes and the
organization of the new model version. Putting everything
together delivers the following evolution model
introduced in Illustration 5.

6. Model Changes and Classification

Let us now consider in more detail the different UML
class model update primitives that are relevant for schema
evolution. The following provides a short overview of the
different model update primitives and the changes that can
occur to them.

Different possible changes have different consequences
that have to be reflected. But on the other side, certain
model item changes could be replaced by a sequence of
other model primitives. For example the change of a
attribute name. This change could be compensated
through a attribute deletion with a following creation with
the new name.

Change primitives, we introduced in section 3, can be
organized in different categories of model update
primitives. This different groups of update primitives are
different in the way how changes are evaluated for the
model, the code, the instances or the wrapper. Generally
the primitives above can be subdivided in primitives
which are relevant for persistence and primitives which
are not relevant for persistence. This categorization is
possible because of the two different characteristics of
objects, state and behavior. Everything that describes the
state of a object like attributes is relevant for persistence,
anything that describes the behavior like methods is not

relevant for database persistence. Note, also there are
some primitives that are not relevant for persistence this
primitives have to be handled for code updates.

The primitives that are relevant for persistence can be
further divided into four groups. These groups are ordered
ascending to the difficulty of implementation:
• First Group: Phantom Modifying Primitives

These primitives are all renaming primitives. With
name parameterization this primitives can be handled
very easily by a wrapper that looks up the actual
name at runtime. Only the wrapper code has to be
changed not the implementation nor the instances.

• Second Group: Interface Restricting Primitives
This category is especially for deletion primitives.
The consequence of a deletion primitive is only the
creation of a new wrapper that restricts the range of
the original implementation. There have to be no
changes to the instances or the code, only restricting
wrapper have to be implemented.

• Third Group: Model Extending Primitives
These primitives are the create or add primitives.
Essentially these primitives can be executed by an
enhancement of existing wrapping interfaces,
implementation code and additionally instance
enhancement.

• Fourth Group: Not cleanly Manageable
This group is for all retype primitives. This primitives
are critical for reasons of information and exactness
losses and indetermination of user’s wishes. The
treatment of such changes will be described in the
next paragraph.

These four groups are explained in Figure 6.

Figure 6: Classification of Change Primitives

7. Treatment of Not Cleanly Manageable
Model Changes

In this section we present a simple model for
supporting model schema evolution. This simple model is
only used to explain the general behavior of not cleanly
manageable model changes.

The target of model evolution is to maintain
correctness after a model change. This means both the
static relation of interfaces and types and cooperation
between interfaces and the behavior of instances has to be
consistent after a change. In the following two possible
scenarios for handling model evolution are described. The
first one will be named as the “Convert Scenario” and the
second one as the “Extend Scenario”. We describe the
problems, advantages and disadvantages of each scenario.

In the “Convert Scenario” the old data of persistent
objects is converted and adapted according to the new
model specification. Every time the model changes the
schema changes and the data is converted too.

Figure 7: The Convert Scenario

Now comes a short explanation of this scenario. At
time t0 the class C in Model t0 has an attribute a of type
integer. The model which includes C is changed and now
at time t1 the class C has an attribute a of type real. After
the model change two versions (model t0 and model t1) of
the model exist. The schema is changed according to the
new model and the data has to be converted into the new
format. This means all old values of attribute a have to be
converted from integer to real. Additionally to the value
converting a new view has to be created, because one of
the requirements is that it should be possible to access the
converted data with an old model version. This view is
responsible for this transparent access and will be realized
with a wrapper. At the moment you should imagine that
this view is a black box that gets real value input from the
database schema and provides integer output to the code
based on model t0. Figure 7 provides you a visual
overview of the explained scenario.

The “Extend Scenario” chooses another way to keep
consistency. This philosophy of this scenario is as follows:

Every time a model is changed the schema will be
extended. The new schema is a union of the old and the
new model. Newly added attributes for example will be
initialized with null. The different applications (including
the latest) access the schema with the help of wrappers,
because each model uses only a subset of the schema.

Now the attribute a of Class C in Model t0 is changed
from type real to integer. The most important difference is
the way instances are treated. In this scenario not the
attribute type of the schema is changed, but a new
attribute with type real extends the schema. The old values
are still accessible as integers but the values are not
converted from integer to real. Instead of the attribute
conversion the new attributes are initialized with a null
reference. Each code equal if it is based on the new or the
old model must now use a view to access the persistent
data from the database. The schema evolution changes are
visible in Figure 8 below.

Figure 8: The Extend Scenario

Now we have discussed two scenarios of schema
evolution, but at what time it makes sense to convert
instead of extend and at what time the other way around or
rather what wants the developer? The answer is it depends
on the situation and on the users demands.

There is a very easy mathematical foundation for the
problems of not cleanly manageable changes. The reason
for the problems is that not every type cast with the related
instance conversion is a bijective function. This means
there is no identical way to convert the data from one
representation into the other. The only way to achieve a
general conversion possibility is to store every instance in
a container that has type any, but this has the big
disadvantage of no typing and data conversions.

8. XML/XMI based Specification of the
Model Evolution

In the following the architecture for specifying UML
models and model changes will be introduced. One
needed important thing for delivering transparent model
changes is a neutral model specification format. For

reasons of currently becoming a respected standard and
being adopted by a lot of UML Case Tools vendors, XMI
is chosen in this architecture as a neutral exchange format
between different Case Tools. In addition there is a
explosion of tools for handling XML documents very
comfortable. The XMI standard [11] specifies with a
Document Definition Type (DTD), how UML models are
mapped into a XML file. Besides this functionality XMI
also specifies how model changes can be easily mapped
into an XML document. Therefore XMI is a very good
solution for solving some of the requested requirements
for UML model evolution.

As said before XMI specifies a possibility for
transmitting metadata differences. The goal is to provide a
mechanism for specifying the differences between
documents in a way that the entire document does not
need to be transmitted each time. This is especially
important in a distributed and concurrent environment
where changes have to be transmitted to other users or
applications very quickly. This design does not specify an
algorithm for computing the differences, just a form of
transmitting them. Only occurring model changes are
transmitted. In this way different instances of a model can
be maintained and synchronized more easily and
economically. The idea is to transmit only the changes
made to the model together with the necessary information
to be able to apply the necessary changes to the old
model. With this information you have the possibility for
model merging. This means you can combine difference
information plus a common reference model to construct
the appropriate new model. A important remark to this
topic is that model changes are time sensitive. This means
changes must be handled in the exact chronological order
for achieving the wanted result.

According to Illustration 5, that specifies the evolution
model, the model versions are represented as XMI files
and the component changes are also XMI files that only
specify the model changes. Each model version has a
predecessor model from that it is derived (except if the
model is the first version), a XMI document that
represents the actual UML specification of this model.
Each component change has a XMI-change document that
specifies how a model version was constructed from the
predecessor schema.

As introduced before not only the UML models will be
specified according to the XMI standard, but also model
changes. The following elements are used to encode the
for this paper important model differences:
• XMI.difference: (reference to the old model)

The XMI.difference element is contained by the
XMI.content section of the XMI document. There can
be zero or more difference elements and each
difference element can contain zero or more
particular differences. The difference element

optionally links to the original document (the parent
model) to which the changes are applied.

• XMI.delete: (reference to deleted element)
The delete element is contained by a difference
element. It’s link attributes contain a link to the
element from the original document to be deleted and
specifies a removal of the referenced element and all
of it’s contents.

• XMI.add: (new element content)
Like the delete element the add element is contained
by a difference element. The content of a add element
specifies the element and it’s contend to be added to
the original model.

• XMI.replace: (reference to replaced element,
replacement content)
The last element is also contained by a difference
element. The content of replace is the element to
replace the old element with. The old element will be
specified in the link attributes of the replace element.

Here is an example how the UML model data and the
changes can be coded according to the XMI standard,
Note, the tags are shortened for clarity.

Figure 9: The Original Document

The change document with references to the original
document.

Figure 10: The Evolved Version of the Document

And finally how the differences steps change the
document if they are applied

Figure 11: Three Samples of XMI Based Evolution
Description

9. Conclusion

In this paper we have shown that modern middleware
infrastructures for the development of distributed
applications provide rich support for model based
development and code generation. But there is almost no
support in case of model evolution. We have introduced
some concepts and architectures to realize a tool
supporting model evolution and data migration and to
integrate this tool in modern infrastructures. To specify
the model evolution the developer should use an XMI
based difference description.

Based on this concepts we have already implemented a
first prototype. This is a very primitive version but it is
already integrated in our framework AutoMate. Based on
this experience we have realized the new version of the
tool called ShapeShifter. ShapeShifter is now a stand
alone tool supporting model evolution and data migration
on top of Versant’s object-oriented database. With
ShapeShifter you specify the model difference in XMI and
the model and the database are automatically migrated.
ShapeShifter is now used in a first industrial project.

The next step will be a complete integration in a CASE
tool. Currently one can export and import XMI model
files from some CASE tools. But for a full integration of
ShapeShifter we need more sophisticated tools to generate
the XMI difference file from to XMI based model
versions. Moreover we plan to integrate ShapeShifter into
several Enterprise Java Beans Container.

10. References

List and number all bibliographical references in 9-
point Times, single-spaced, at the end of your paper.
When referenced in the text, enclose the citation number
in square brackets, for example [1]. Where appropriate,
include the name(s) of editors of referenced books.

[1] JavaSoft. Enterprise Java Beans Specification 1.1.
http://www.javasoft.com. 2000.
[2] OMG. CORBA Components. http://www.omg.org.
2000.
[3] OMG. Common Object Request Broker Architecture
2.0. http://www.omg.org. 2000.
[4] OMG. OMG Unified Modeling Language
Specification (Version 1.3). http://www.omg.org,
document number: 99-06-08.pdf. 1999.
[5] Grady Booch, Ivar Jacobson, James Rumbaugh. The
Unified Modeling Language User Guide. Addison Wesley
Publishing Company. 1998.
[6] James Rumbaugh, Ivar Jacobson, Grady Booch. The
Unified Modeling Language Reference Manual. Addison
Wesley Publishing Company. 1998.
[7] Erich Gamma, Richard Helm, Ralph Johnson, John
Vlissides. Design Patterns : Elements of Reusable Object-
Oriented Software. Addison-Wesley Professional
Computing. 1995.
[8] Frank Buschmann, Regine Meunier, Hans Rohnert,
Peter Sommerlad, Michael Stal. Pattern Oriented Software
Architecture: A System of Patterns. John Wiley & Son.
1996.
[9] Klaus Bergner, Karsten Kuhla, Andreas Rausch.
Schnelle Schichten: Transparenter Zugriff auf ODBMS
über CORBA. iX No. 11. 1998.
[10] AutoMate. AutoMate, Technische Universität
München. http://automate.informatik.tu-muenchen.de.
2000.
[11] OMG. The XMI Specification 1.0.
http://www.omg.org. 2000.
[12] Frank E. Redmond III. DCOM: Microsoft
Distributed Component Object Model. Microsoft Press.
1997.
[13] Dan Harkey, Robert Orfali. Client/Server
Programming with Java and CORBA, Second Edition.
John Wiley & Sons. 1998.
[14] Robert Orfali, Dan Harkey, Jeri Edwards.
Client/Server Survival Guide, Third Edition. John Wiley
& Sons. 1999.
[15] Eduardo Casais. Managing Class Evolution in
Object-Oriented Systems. In Object-Oriented Software
Composition, Prentice Hall. 1995.
[16] Fabiano Cattaneo, Alberto Coen.-Porisini, Luigi
Lavazza, Robert Zicari. Overview and Progress Report of

the ESSE Project: Supporting Object-Oriented Database
Schema Analysis and Evolution. In Proceedings of the
10th TOOLS Converence, Prentice Hall. 1996.
[17] Hyoung-Joo Kim. Algorithmic and Computational
Aspects of OODB Schema Design. In Object-Oriented
Databases with Applications to CASE, Prentice Hall.
1991.
[18] Emmanuel Waller. Schema Updates and Consistency.
In DOOD’91 Proceedings, Springer Verlag. 1991.
[19] Robert Zicari. A Framework for Schema Updates in
an Object-Oriented Database System. In Building an
Object-Oriented Database System – The Story of O2,
Morgan Kaufmann. 1992.

