

Specialization in DITA: Technology, Process, & Policy
Michael Priestley

IBM Canada

mpriestl@ca.ibm.com

David A. Schell
IBM

dschell@us.ibm.com

ABSTRACT
DITA is an architecture for creating topic-oriented, information-
typed content that can be reused and single-sourced in a variety of
ways. It is also an architecture for creating new information types
and describing new information domains, allowing groups to create
very specific, targeted document type definitions using a process
called specialization, while at the same time reusing common
output transforms and design rules.

Specialization provides a way to reconcile the needs for centralized
control of major architecture and design with the needs for
localized control of group-specific and content-specific guidelines
and controls. Specialization allows multiple definitions of content
and output to coexist, related through a hierarchy of information
types and transforms. This hierarchy lets general transforms know
how to deal with new, specific content, and it lets specialized
transforms reuse logic from the general transforms. As a result, any
content can be processed by any transform, as long as both content
and transform are specialization-compliant and part of the same
hierarchy. You get the benefit of specific solutions, but you also
get the benefit of common standards and shared resources.

For some groups, specialization requires a radical move away from
centralized processes into a world of negotiated possibilities that
introduces many new stakeholders to the information management
infrastructure. For other groups, specialization introduces
centralization, and, while it provides new opportunities for sharing
and reusing logic and design, it also requires new policies and
procedures to bring disparate design and development activities
into a cohesive, coordinated framework.

Previous papers ([1],[2],[3],[4]) have described in some detail how
the technology of specialization works, and how it can be
implemented using off-the-shelf tools that are dependent only on
base levels of W3C standards (XML 1.0, XSLT 1.0). This paper
provides a brief summary of recent changes to DITA
specialization, and describes their effects on processes, but
concentrates primarily on policy considerations involved in the
deployment of a specialization architecture.

Categories & Subject Descriptors: D.2.13
[Reusable Software]; I.7.2 [Document and Text Processing];
K.6.4 [System Management]: Centralization/decentralization
General Terms
Management, Documentation, Design, Standardization, Languages

Keywords
XML, XSLT, XML architectures, specialization, information
typing, information architecture, information management,
domains, ontologies, process, policy, Darwin, DITA

1 A DITA OVERVIEW
The Darwin Information Typing Architecture (DITA) is an XML-
based, end-to-end architecture for authoring, producing, and
delivering technical information. This architecture consists of a set
of design principles for creating "information-typed" modules at a
topic level, and for using that content in delivery modes such as
online help, product support portals on the Web, and printed
manuals.

This architecture was designed by a workgroup representing user
assistance teams from across IBM. After an initial investigation in
late 1999, the workgroup developed the architecture collaboratively
during 2000, through postings to a database and weekly
teleconferences. The architecture has been placed on the
IBM®developerWorks™ Web site as an alternative XML-based
documentation system, designed to exploit XML as its encoding
format. With the delivery of significant updates in 2002, which
contain enhancements for consistency and flexibility, we consider
the DITA design to be past its prototype stage.

For more information on DITA, including the base DTDs and
sample transforms, see
http://www.ibm.com/developerworks/xml/library/x-dita1/ .

At the heart of DITA, representing the generic building block of a
topic-oriented information architecture, is an XML document type
definition (DTD) called "the topic DTD." The extensible
architecture, however, is the defining part of this design for
technical information; the topic DTD, or any schema based on it, is
just an instantiation of the design principles of the architecture. The
consistent use of DTD and XSLT examples in the rest of this paper
are meant to show how the principles of DITA are or can be
implemented using DTDs and XSLT, and do not mean that DITA
is limited to that implementation choices.

2 THE TECHNOLOGY
There are three basic ways to extend DITA. Each has a unique role,
and associated costs and benefits:

• Specialization
o Information types
o Domains
o Code

• Customization of code

• Integration of design

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGDOC’02, October 20-23, 2002, Toronto, Ontario, Canada.
Copyright 2002 ACM 1-58113-543-2/02/0010…$5.00.

164

2.1 Specialization
When you require a difference in output that reflects a real
difference in input, or you want to make changes to your design for
the sake of increased consistency or descriptiveness (regardless of
output), you can use DITA specialization to define new
information types or new domains.

Specialization allows you to define new kinds of information (new
topics, new domains of information), while reusing as much of the
existing design and code as possible, and minimizing or
eliminating the costs of interchange, migration, and maintenance.

There are two specialization hierarchies: one for information types
(with topic at the root) and one for domains (with elements in topic
at their root). Information types define topic structures, such as
concept or task or reference, which often apply across subject areas
(for example, a user interface task and a programming task may
both consist of a series of steps). Domains define markup for a
particular information domain or subject area, such as
programming, or hardware. Each of them represent an “is a”
hierarchy, in object-oriented terms, with each information type or
domain being a subclass of its parent. For example, a specialization
of task is still a task; and a specialization of the user interface
domain is still part of the user interface domain.

The two hierarchies are kept separate to make it easy to combine
them as needed (for example, to give you a task that contains
programming keywords). This means that, aside from their
common root in topic, a domain will never specialize elements
from an information type, and an information type will never
specialize elements from a domain.

The two hierarchies are implemented as a set of module files that
declare the markup and entities required by each specialization. A
DTD for authoring specialized content, then, embeds the modules
for the appropriate specializations, plus the modules for their
ancestors. Each of the modules, aside from the base topic.mod, is
insufficient for independent authoring, but can be combined with
others.

This separation of markup into modules, as with the XHTML
modularization initiative, (http://www.w3.org/TR/xhtml-
modularization/), allows easy reuse of specific parts of the
specialization hierarchy, as well as allowing easy extension of the
hierarchy (since new modules can be added without affecting
existing DTDs). This makes it easy to assemble design elements
from different sources into a single integrated DTD.

Specialization involves creating new design modules, and new
shell DTD files to embed them. It may also involve creating
matching code modules, with new shell XSLT transforms to import
them.

When you need to make semantic distinctions in your content that
are not available in the base DITA framework, or when you need to
prune the structure of an existing information type to suit more
restrictive guidelines, you can create specialized information type
or domain modules to incorporate into your design. If appropriate,
you can also create matching specialized code modules, to add
distinctive output behavior for your new semantic elements.

topic

title

prolog

metadata

relgroup

body

task

title

prolog

metadata

relgroup

taskbody

prereq

context

steps

xmp

result

postreq

step

cmd, (info | substeps | tutorialinfo |
taskxmp | choices)*, stepresult?

A specialization can reuse elements from higher-level designs (as
task reuses title and prolog), but each specialization module only
declares the elements that are unique to it (as task declares
taskbody, prereq, context, and so on).

While specialization lets you define new elements, you must map
them to pre-existing elements in an existing information type or
domain module (as taskbody maps to body, and so on). The
mapping must be valid, which means the new element is as
restrictive or more restrictive than the parent in its allowed content
and attributes, and does not break requirements set by the parent
such as required attributes or content. It is encoded in a special
“class” attribute, defined in the DTD as an attribute with a default
value, but not actually coded in the content. This lets content in
newly specialized information types or using newly specialized
domains be processed by pre-existing code, so you can continue to
refine your design while preserving your investment in existing
infrastructure.

There are two separate ways to specialize:

• New information types, which define new kinds of topics,
with specific structures as well as specific elements.

• New domains, which define new kinds of elements (for
example new kinds of paragraph, new kinds of phrase, new
kinds of keywords) that can be made available in any existing
information type, as variants of the ancestor element.

This gives you maximum flexibility in the way you create a
specialized DTD:

• Information type specialization starts from the top (the
definition of the topic) and works down through the structure
to whatever level is required (to the section level, or even
down to the phrase level, as in the contents of a task’s steps).

• Domain specialization starts from the bottom (the definition
of an element) and lets you include new variants of that
element wherever the original was available.

Because you can reuse existing design and code, you don’t need to
define an entire DTD from scratch, only the differences between
your more descriptive semantics and the already defined semantics
in the parent information type or domain modules.

165

2.1.1 Information types
Information type specialization starts from the definition of a topic;
all information types ultimately inherit from this topic definition.

reference
taskconcept

topic

wiztask

Each information type’s module contains the declarations for the
markup it defines. A shell DTD can then embed the specialized
module with its ancestor modules to support authoring topics of the
specialized information type.
For example, a shell DTD that would support authoring wiztasks
could:

• Embed topic.mod (to get default elements from topic, such as
p for paragraph)

• Embed task.mod (to get default elements from task, such as
cmd for a command in a step)

• Embed wiztask.mod (to get the specialized topic structure for
the new topic type, and any new elements declared as part of
that structure)

For more information on information type specialization, see:
http://www.ibm.com/developerworks/xml/library/x-dita2/

2.1.2 Domains
Domain specialization also starts from the definition of a topic,
although unlike information types, domains can start specializing at
any level that is based on any element in the topic, without regard
for the elements that contain it. For example, a domain might
specialize fifteen new variants of keyword, and touch no other
elements.

Topic

GUI

Wizard

wintitle

wiztitle

keyword

apiname

As with information types, domains must provide mappings from
their new elements to ancestral equivalents. For example, a
wiztitle element in wizards could specialize wintitle in
UI, which in turn specializes keyword in topic: giving
wiztitle mappings to both wintitle and keyword.

Each module defines a set of domain-specific elements, such as
syntaxdiagram (and its component elements) in the
programming domain, or wintitle (a window title) in the user
interface domain. The elements can be quite complex, as in
syntaxdiagram, which is a specialization of fig (a figure in
topic) containing eight other specialized elements; or they can be
quite simple, as with wintitle, which contains only text and is a
specialization of keyword in topic.

A shell DTD can then embed an entity file (which declares what
each element is a variant of) and a module file (to get the
specialized markup), and the new domain markup becomes
available in whatever information types you are including,
wherever the original markup was allowed. In other words, once
properly assembled into a DTD, the new markup becomes
available wherever its ancestors are allowed. Specializations of
fig become allowable wherever figs are allowed in the
information type; specializations of keyword become allowable
wherever keywords are allowed in the information type.

To integrate a domain with an information type, create a shell DTD
that embeds the domain entities, redeclares content models for the
affected elements (for example fig and keyword), redeclares
domain attributes that list the domains in use, and embeds the
requisite information type and domain modules, along with those
of their ancestors.

For example, if you wanted to include the wizard domain in the
concept information type, you would create a shell DTD that:

• Includes the declarations for the domain entities, which define
the specialized variants of each ancestor element

• Overrides the definitions for the ancestor element entities, to
allow the domain variants into existing content models

• Overrides the content of the domains attribute, so it lists the
domains in use by the information type

• Includes the modules for the information types, starting with
the least specific (topic), and ending with the most specific (in
this case, concept)

• Includes the modules for the domains, again starting with the
general and proceeding to the specific

While the shell DTD is doing considerably more work than it does
for information types on their own, note that there is still no
markup actually declared in the shell file: all the markup
declarations are in the information type and domain modules (.mod
files), where they can be reused without conflict by any number of
other shell DTDs.

For more information on domain specialization, see:
http://www.ibm.com/developerworks/xml/library/x-dita5/

2.1.3 Code
You may find that the default processing for your new information
types or domains is appropriate, and that you don’t need any new
code. For example, the programming domain’s codeblock

166

element specializes pre (equivalent to the HTML pre element,
meaning preformatted); thus, codeblock, like pre, will get
formatted with line breaks and in monospace font, without any
extra code necessary.

However, if you want different output, you can define the new
template rules in code modules that are parallel to the information
type and domain modules, so that they can be easily included by a
specialized shell XSLT transform, which imports the existing base
behavior plus the new overriding rules.
For example, if you wanted to add a special “fastpath” icon to each
occurrence of a wiztitle in the output, you could create an
XSLT module for the wizards domain (say, wiz2htm.xsl) that
contained a template that matches on wiztitle and outputs an
icon before the contained text. To incorporate the new rule for the
wizard domain into an HTML output transform for concepts, you
could create a shell XSLT transform that:

• Imports topic2htm.xsl (default behavior, for example pre)

• Imports concept2htm.xsl (concept-specific behavior if any)

• Imports ui2htm.xsl (base behavior for UI-specific elements)

• Imports wiz2htm.xsl (the new domain rule, adding a fastpath
icon to wizard titles)

2.1.4 Example: base design for authoring tasks
By designing in modules, and tracking the modules as parts of a
specialization hierarchy, we get maximum reuse of markup and
code, and maximum maintainability within a formal structure:

referencetask

task:
skeleton

XSLT

referencetaskconcept

topic

UIprogrammingsoftware UIsoftware

task:
skeleton

DTD
topic

domains

info types

2.1.5 Example: extended design for authoring
wiztasks

Because the base design is already modularized, extensions to the
design can easily build on the existing structure, adding modules to
the hierarchy and then creating shell DTDs that select the necessary
existing modules along with the new ones. Because the new design
is also modularized, it in turn is reusable by future extensions.

referencetask

wiztask:
skeleton

XSLT

reference
taskconcept

topic

UIprogrammingsoftware UIsoftware

wiztask:
skeleton

DTD
topic

wiztask

wizards

wiztask

2.1.6 Specialization and generalization
When content is created with specialized DTDs, it uses new design
elements, which could create issues when sharing your content
with other groups that don’t share the new design elements.
Specialization and generalization provide ways to avoid these
issues that would otherwise create substantial barriers to
interchange and reuse.

If the reusing group only needs output, they can just run their
existing transforms against your content, and get output based on
whatever the lowest common denominator is between your
specialization hierarchies. For example, if you send them a wiztask,
they may process it as a task. This means that other groups can use
your content without committing to your output rules or
infrastructure: design and output are decoupled, and can be
considered, and adopted, separately.

If the reusing group needs to take over the content, however, but is
unwilling to adopt the specialization, you can back your content out
of the specialization and into an ancestor design, using a process
called generalization. This lets you migrate any specialized content
into a more general design, taking advantage of the design’s built-
in mapping, using a standard transform (no need for complex
mappings, no need for cleanup). This means that other groups can
adopt your content without committing to your design: content and
design are decoupled, and can be considered, and adopted,
separately.

2.1.7 Result
The result is specialized design, both in terms of information type
(structure) and domain (subject), with optionally matching
specialized output: the markup you need to describe your content
for search and enforce consistency of structure, and any output
differences you want for your more closely described content.

This gives you the same benefits as a new DTD developed from
scratch, but without compromising reuse or interchangeability of
content, and with substantially less design and code to create and
maintain.

Note that all of these principles and strategies, while demonstrated
here with DTDs, can also be implemented with XML schemas,
which in fact have some built-in support for validating inheritance
relationships that specialization can leverage.

2.2 Customization
When you just need a difference in output, you can use DITA
customization to override the default output without affecting
portability or interchange, and without involving specialization. For

167

example, if your readers are mostly experienced users, you could
concentrate on creating many summary tables, and maximizing
retrievability; or if you needed to create a brand presence, you
could customize the transforms to apply appropriate fonts and
indent style, and include some standard graphics and copyright
links.

Customization lets you get different output effects without
touching your design or content. Your content is insulated from
locally driven design initiatives, such as branding or market-
specific requirements, so that if the content gets used by a different
brand, or published for new markets, you only need to change
customization modules: your base processing model and all your
content are reusable without editing. This also lets different groups,
with different branding requirements, share content without
conflict, since their branding requirements are factored out of the
content into processes, and even the processes are entirely shared
except for brand-specific modules.
Customization involves creating new XSLT modules (that provide
the new behavior rules) and new shell XSLT files that import both
the existing modules (to provide default behavior) and the new
modules (to provide overriding behavior.).
For example, to add a default image and link to every output
HTML page, you would need:

• A new customization module that defines the override
templates. These may be overrides of existing named
templates in the base transforms, or just match-based
templates that are used whenever they have higher priority
than the base ones.

• A new shell XSLT file that imports the existing transform
modules, and then imports the custom module (so that it has
higher priority than the base modules)

2.2.1 Result
The result is customized output, without affecting the reusability or
interchangeability of the content, and with a minimum of new code
to maintain.

2.3 Integration
Because of DITA’s specialization hierarchies, which provide a set
of design modules for information types and domains, you can
quickly create a DTD that integrates the subset of information
types and domains you require, using a shell DTD that embeds the
appropriate design modules and leaves the others out.

Integration allows you to select a subset of existing design. You
can then use existing default transforms that support all information
types, or create a more selective transform that applies only to the
design you are using. The result is information that can be
processed with existing transforms, and authored with existing
DTDs.

DITA is lightweight by design, and specialization is intended to
allow you to meet specific needs without increasing the size of the
core standard. DITA integration allows you to create an even more
compact solution, ignoring any branches of the hierarchy that you
don’t need, even within the base, but also allowing you to
selectively integrate additions to the hierarchy, rather than
accepting an all-or-nothing proposition. This gives you a “light”
version of the DTD on your terms: you get to define what “light”

means, what markup you need and what markup you don’t, without
ever touching the files that hold the markup declarations.

For example, if another group added three information types and
three domains to the hierarchies, you could choose to integrate one
of the information types and two of the domains, and ignore the
rest. This allows you to include the extensions that make sense for
your group without being affected by the extensions that don’t
apply to you.

When you need a different configuration of existing DITA
elements, DITA integration provides a formal, disciplined way to
recombine existing information types and domains, without
compromising portability or maintainability: since any documents
created are subsets of the full supported list of information types
and domains, there is no new markup or code to support, and all
content created is within supported boundaries.
For example, if you wanted to create documents that consisted of a
task topic with child reference topics and support for software and
user interface domains (but with no other information types or
domains supported, and no other nesting allowed), you could create
shells as follows:
Create a shell DTD that:

• Includes the declarations for the domain entities (software-
domain.ent, ui-domain.ent)

• Overrides the definitions for the ancestor element entities, to
allow the domain variants into existing content models (pre,
keyword, and ph)

• Overrides the nesting entities that define what each
information type can nest (task-info-type allows reference,
reference-info-type allows no-topic-nesting)

• Overrides the content of the domains attribute, so it lists the
domains in use by the information type (sw-d and ui-d)

• Includes the modules for the information types (topic.mod,
task.mod, reference.mod)

• Includes the modules for the domains (software-domain.mod,
ui-domain.mod)

Create a shell XSLT transform (optional) that:

• Imports topic2htm.xsl (the common root module for topic to
HTML transforms)

• Imports task2htm.xsl and ref2htm.xsl

• Imports ui-d2htm.xsl and sw-d2htm.xsl

2.3.1 Result
The result is an integrated design and equivalent output, without
any new DTD declarations or transform templates (only shell
DTDs and shell transforms that reuse the available existing
modules).

2.4 Specialization vs. customization vs.
integration

Use specialization when you are dealing with new semantics (new,
meaningful categories of information, either in the form of new
information types or new domains). The new semantics can be
encoded as part of a specialization hierarchy that allows them to be

168

migrated back to more general equivalents, and processed by
existing transforms.

Use customization when you need new output with no change to
the underlying semantics, that is, when you aren’t saying anything
new or meaningful about the content, only about how it is
displayed.

Use integration when you need to change topic nesting
relationships, or restrict the available information types or domains.

Summary: Technology

 Artifacts Costs/Benefits

Specialization Specialized
DTD module
Shell DTD
(Optional)
Specialized
XSLT module
(Optional)
Shell XSLT

Small cost
New design elements
(Optional) New code
Migration/interchange
supported by architecture
(generalization transform)
Reuse of most existing design
and all or most code

Customization Customized
XSLT module
Shell XSLT

Smaller cost
No new design elements
Some new code
No migration/interchange
issues
Reuse of all existing design
and most code

Integration Shell DTD Smallest cost
No new design elements
No new code
No migration/interchange
issues
Reuse of all existing design
and code

New design
from scratch

Complete
DTD
Complete
XSLT
Any migration
or interchange
transforms
when required

High cost
New design elements
New code
Migration/interchange
supported by single-purpose
transforms; no built-in
mappings (transform may be
complex and may require
cleanup before and after)
No reuse of design or code

3 THE PROCESS
In this section, we explain how integration, customization, and
specialization affect how documents get created, published, and
translated.

3.1 Standard
In a standard DITA process, authors create documents based on
standard DTDs, and transform them using standard transforms to
create English output; the documents are packaged for translation

and sent to translators, who use translation tools to work with the
content, validate in batch mode to make sure their editing has not
broken the DTD rules, and then use the same or localized versions
of the transforms to create output in various languages.

XMLXML

HTM

DTD

XSL

HTM

XSL

DTD

XMLpkg

3.2 With specialization
In a specialized DITA process, the specialized DTD modules and
shell DTD, and potentially the specialized XSLT modules and shell
XSLT, must be packaged and used by the translators to validate the
translated content and produce translated output. If the specialized
module defines fixed or default text in translatable attributes, those
attribute values must be defined in entities in an external file that
can be localized; and if the transforms generate translatable text,
those portions of the transform must also be isolated and localized.

XMLXML

HTM

DTD

XSL

HTM

XSL

DTD

XML

pkg

3.3 With customization
In a customized DITA process, the XSLT customization module
and the shell transform that incorporates it must be packaged with
the content and used by the translators to create the translated
output. Various versions of the transform may need to be created;
if, for example, the transform generates text into the output, that
generated text must be localized for each target language.

169

XMLXML

HTM

DTD

XSL

HTM

XSL

DTD

XML

pkg

3.4 With integration
In an integrated DITA process, there is no impact on translation:
the modules selected by the integrated DTD or XSLT are a subset
of those supported by the DTDs and XSLT already used by the
translators.

XMLXML

HTM

DTD

XSL

HTM

XSL

DTD

XMLpkg

4 THE POLICY
In the previous sections, we discussed the technology of DITA and
its effects on processes: how to specialize, customize, and integrate
DITA to suit your needs, how each process works, and how to
identify their costs and benefits in terms of implementation and
maintenance.

Having establishing how DITA’s technology and processes work
in principle, however, one should also address how these processes
will work in a real company, with real requirements that go well
beyond what’s been described in our basic scenarios.

In the following sections, we review some of the issues involved in
managing DITA-related projects, in terms of policies:

• Policy issues

• Policy for sharing

• Policy for risks

4.1 Policy issues
Some of the issues related to policy for managing DITA-related
projects are:

• Legacy support and archiving

• Investment cost

• Organizational change

4.1.1 Legacy support and archiving
What happens when you create content that needs to be supported
for the foreseeable future? When you work with a predictable DTD
and transform set, you can easily archive the content and expect to
be able to use it any time in the future. However, with integration,
customization, and specialization, more than just content is
affected: DTD elements and XSLT modules may be affected.

The first part of a legacy support strategy is to differentiate between
versions of the DTDs and transforms: current files may safely point
to the latest standard DTDs, and use the latest standard transforms,
but once archived you will want to make sure content points to the
version of the DTDs and transforms that were current at the time of
archiving, rather than what will be current some time in the future.
While future DTDs are very likely to be backwards-compatible, it
makes good business sense to ensure that the content will be
validated and processed in the future using the same rules they
were originally authored for.

While each group could be responsible for archiving their own
content, and potentially their own extensions to the DTDs and
transforms, the base DTDs and transforms would be archived on an
ongoing basis, using a versioning strategy: each update is reflected
in a location that always contains the latest version as well as in a
location that reflects the specific version number of the files. This
is similar to the way the W3C handles versions of standards, for
example.

In addition to archiving content with version-specific DTD
references, groups that choose to extend the base process in some
way can use additional strategies to manage their archival
requirements:

• Specialization:
If you are likely to create new content under the same rules in
the future, you may want to archive the specialized modules
and shell DTDs (making sure they reference version-specific
standard files). Otherwise you can use the standard
generalization mechanism to migrate all the content up to a
standard DTD version, and archive the content at that level. If
you choose to preserve the class attributes defined by the
specialized DTDs even after generalization (as actual content
rather than DTD-implied values), then you can continue to use
XSLT specializations. Those XSLT specializations can be
archived in the same way as for customized XSLT.
Otherwise, if you are only interested in preserving content,
you can completely throw away all your specialization
investment, and archive only in terms of the standard (exactly
where you’d be if you had stuck to the standard from the
start).

• Customization:
If you intend to continue creating the same branded output in
the future (and do not just want to archive content for future
reuse in other projects), you will want to archive the
customized XSLT module, as well as the shell XSLT
transform that incorporates it. Make sure the XSLT shell
points to the version-specific standard modules.

170

• Integration:
If you are likely to create new content under the same rules in
the future, you may want to archive the integrating DTD as
well as the content; otherwise, you can archive just the
content, since the DTD remains the same.

To summarize, your archiving choices are as follows:

• Archive just standard content. You throw away any
additional work you may have invested in integrating,
customizing, or specializing.

• Archive just standard content and output. You preserve
your ability to create specific kinds of output, but throw away
the ability to create new content under the same rules as the
archived content.

• Archive the content, the output, and the input rules. You
preserve the content, the ability to create new content under
those rules, and the ability to produce specific kinds of output
for the content.

4.1.2 Investment costs
Extending DITA provides considerable benefits: eliminating
unwanted markup options through integration, creating the output
you want through customization, or creating both the markup and
output you want through specialization. It can also lower the costs
of adoption in many respects. It does this by reducing the tagset to
be learned through integration, eliminating format considerations
from content through customization, or getting design rules that
coach new authors, and markup that describes real content
distinctions through specialization. However, any investment
beyond the simple authoring of content requires not only additional
investment but also a different kind of investment:

• Specialization:
Requires investment in creating the customized DTD modules
and shell DTD, and potentially equivalent XSLT modules and
shell XSLT. This requires access to skills with DTDs and
DITA specialization, as well as to XSLT skills. These costs
are best shared with others to avoid duplicating analysis work,
and to avoid creating competing descriptions of the same
information types or domains. However, sharing development
costs does add collaboration costs, and ultimately could result
in support costs, depending on who ends up owning the
specialization and who ends up using it.

• Customization:
Requires investment in creating the customized XSLT module
and shell XSLT file. This requires access to XSLT coding
skills. If you ship content to translation, or trade it with other
groups, you may want to share the output customization as
well as the content, which could put you in the position of
supporting the customization when it used by others.
However, the other group could reuse your content without
using your output customizations, for example, if your
customizations conflicted with their branding requirements.

• Integration:
Requires some investment in creating the integrating DTD.
This requires access to skills with DTDs. In addition, tools
that are DTD-sensitive, such as editors, may need some work
to recognize the new DTD as being a subset of the rules
already expressed in a supported DTD. Also, if you ship

content to translation, or trade it with other groups, you will
need to either share the integrating DTD file, or adjust the
DTD references in your content to point to the standard DTDs
before you ship the content. Adjusting DTD references is easy
to do and completely automatable, but still an extra step to
incorporate.

4.1.3 Organizational change
DITA’s modular design gives many different groups the
opportunity to contribute to a common architecture, channeling
energy that might otherwise be frustrated by the compromises
required by completely centralized design, or marginalized by local
design priorities. However, in order to harness this energy, the
organization must systematically support new forms of
collaboration.

With the definition of the topic, and a base set of DTDs and
transforms, we can build in interoperability of content: that is,
content created in one part of an organization can be reused
elsewhere, with minimal, and automated, preprocessing. In other
words, we generalize content to the standard, and adjust DTD
references in content to point to the standard. However, sharing
content is merely one part of a larger reuse picture: business rules,
as captured in integrated and specialized DTDs, and specialized
and customized transforms, are also reusable across the
corporation, and the requirements for consistency and efficiency
make coordination of these activities highly desirable.

For all groups involved, this new coordinating activity represents a
redistribution of control: some parts of their design and output will
now be controlled by others further up the hierarchy of
specialization, and some parts of their design and output may in
fact be used by others, reversing the dependency. It means that
commitment to a specialization is not only tied to the needs of the
maintaining group, but also to the needs of the whole organization:
each specialization requires a long-term commitment, one that
could potentially outlast the originating group itself.

In other words, by choosing to specialize, a group accepts a
dependency on those supporting the higher-level design and output
they reuse, and also accepts a duty to those who might choose to
specialize from their base, thereby creating a dependency on them.
By specializing, a group accepts dual status in both the role of user
(of higher-level specializations) and the role of supporter (of their
own specializations, which may be higher level, relative to some
other group’s specialization). This means duties beyond just DTD
and XSLT creation, but also documentation, answering questions
on internal or external forums, and potentially education and a
formal defect and requirement process, depending on the level of
formality required by the specialization in question and the
organizations involved. The originators of the specialization need
to make a long-term commitment to the specialization, including
plans for handing off support to other groups, or archiving in a
common repository, in cases where the group’s interest in the
specialization expires before the organization’s interest does.

Beyond each group, there must also be a collaboration
infrastructure that includes:

• Clearly defined ways to share design, code, and information

• Ways to find collaborators

• Ways to formalize support and archiving strategies

171

• Ways to track an evolving design, and help groups decide if
and when to migrate to new information types or domains as
they emerge

For each group, control may be distributed differently, depending
on the level of responsibility they are able to assume, and the
degree to which their work represents core interests of the
organization. There is no longer a single law of governance for all
groups, but a series of shifting priorities that draws lines as
appropriate for each group, lines that may be redrawn in time as
funding priorities and available skills move or evolve.
Specializations will often be needed by the organization for the
long term, even long after the originating group’s interest has
expired. As such, support for the specialization, while it may rest
with individual groups, still needs to be managed in the interest of
all groups, and of the larger organization. Any specialization policy
must address such potential conflicts between the requirements and
commitments of individual groups, and those of other groups, and
of the organization as a whole.

4.2 Policy for sharing
Specialization provides a framework for both more formal and
more fruitful collaboration: it allows organizations to reuse and
share common elements, without the compromises and overhead
associated with the negotiation of a monolithic unified standard. In
addition to allowing more degrees of collaboration, it also allows
different rewards and different responsibilities.

4.2.1 Sharing design, sharing code, sharing
responsibility

When groups share their design, they do more than just reduce
costs: they necessarily agree on a common understanding of a set
of information domains, and adopt a common way to describe
certain kinds of information. Such effort yields not only a more
consistent approach, but also a more deeply understood subject. By
placing common design efforts in the context of a larger hierarchy,
groups participate in the collaborative authoring of an organization-
wide ontology: the process of specialization becomes the process of
agreeing on what the subjects involved are, and how they relate to
each other.

When groups share their code, again they do more than just reduce
costs and development time: they also necessarily collaborate on
best practices. Each group contributes their best ideas, and over
time a consensus on the best approaches to particular problems
emerges, and is available to all.
When groups share code and design, they also share responsibility:
with regard to the framework that they must work within, and also
with regard to those who will build, in the future on the present
contributions. The result should be:

• Reduced time to develop by starting from an existing
design and code base

• Reduced risk by sharing development costs with others

• Reduced redundancy by eliminating parallel
development streams

In some senses, DITA’s specialization hierarchies could be viewed
as inherently geared toward collaborative design and development:
it is well suited to providing the framework for an open-source or

shared-source development strategy, with clearly defined
dependencies and responsibilities.

4.2.2 Policy implications for sharing
In order for specialization to work in the context of a large
organization, we need clear policies on these issues:

• Why to share: why should I specialize?

• When to share: when is it appropriate to specialize?

• With whom to share: with whom can I collaborate?

• How to share: how can I coordinate with these others?

• What to share: what gets produced?

• Where to share: where does it go, to become available to
others?

4.2.3 Process implications for sharing
We also need clear policies for how to develop specializations that
transcend the technological issues. We need guidelines on
collaboration, funding, distributing support costs, determining
feasibility, and estimating value to the customer.

4.2.4 Technology implications for sharing
Finally, we need clearly structured repositories to enable people to
make use of what’s available, register their dependencies on what
they use, and contribute to ongoing design and development
through feedback or shared development effort.

4.3 Policy for risks in managing DITA-
related projects

Specialization is a new way to manage shared information design
and code. While it brings substantial rewards without many of the
attendant risks of standard serial analysis and development, it also
brings a set of unique risks.

4.3.1 Dead-end design
When a design turns out to be bad, or is rendered obsolete, you can
save your content by generalizing it to an ancestor information type
or domain. You can create a new integrated DTD that supports
whatever your target is, or you can generalize all the way up to the
base DTD if necessary. This means that, regardless of what you
invest in new design or output transforms, your content should be
safe.

Note that if you build structures into your design that are not
appropriately processed in terms of its general equivalents, you will
need to fall back on more traditional non-DITA-based recovery
strategies: either you rewrite your content or you figure out a way
to get your output through customization alone. For example, the
DITA programming domain contains a fairly complex set of
markup for describing syntax diagrams. The intended output from
the language is a graphic or simple diagram. Without the override
processing to create the graphic (for example, displayed using only
the default topic2htm.xsl), the diagram appears simply as a list of
keywords within a figure that would be readable but not
particularly useful.

172

While we might have been able to get better default processing of
syntax diagrams by designing its language differently, we wanted
to keep its language as close as possible to the existing design in
IBMIDDOC in order to leverage existing processes and skills. In
the end, we decided that it was more important to be faithful to the
original (pre-DITA) design than to adjust the design to find better
mappings (and thereby better default processing). We traded some
flexibility in content reusability for the sake of preserving an
existing investment in design, education, and processes. However,
we are also aware of the ongoing design risk.

To minimize the risk of dead-end design, you can:

• Make sure new specializations map accurately to general
equivalents (so that generalization can provide automatic
migration to a more general format).

• If some structures require specialized processing (such as
syntaxdiagram), evaluate the benefit of using the
specialization against the risk of future migration; make room
in your fallback plan for a custom migration transform to
handle special cases.

• Collaborate on the design, to reduce the chances of it being
bad.

• Collaborate on the development of code, to reduce the
chances of its being useless.

• Collaborate on the support, to reduce the chances of it
becoming obsolete.

• Plan for the long term, including considerations for long-term
support and eventual archiving.

4.3.2 Ongoing design
Since most specializations will be based on modeling a subject
area, their designs will need to change if the subject areas change,
or if your understanding of the subject areas evolves. When this
happens, you have a few choices: i) you can change your design
directly, thus rendering your content invalid until it has been edited
into compliance with the new rules, ii) you can create a new
information type and migrate to it, thus allowing you to continue
working with the old rules and switch to the new rules only when
needed, iii) you can loosen your design restrictions, staying with
the current information type, but depending on authors and editors
to gradually move content into compliance with the new
guidelines.

Changing your design “on the fly” may be appropriate for small
groups with no immediate deadlines and no dependent groups that
would be affected by the change. The advantage is that your design
stays clean, only one instance of the information type or domain
stays in the hierarchy, your design is as up-to-date as possible, and
your content is validated as it is authored.

Changing your design through migration is more appropriate when
multiple groups depend on the information type or domain, and
will be migrating to the new design at different times. However,
this will take some coding. Generalization is free, but
respecialization to a new information type will take some custom
coding, and may require rewriting.

Simply loosening your design is certainly the easiest option to
implement, but has the least satisfying results: your specialization
will still support the old (wrong) way of marking up content, and

enforcement of the guidelines is no longer automatic. In addition,
those looking to reuse your specialization will now have much
more to learn before they can successfully use your work (what
parts are deprecated, what parts are recommended), and are much
more likely to get it wrong, resulting in increased support costs.

4.3.3 External dependencies
You need to manage two kinds of dependency: your group’s
dependency on higher-level information types and domains, and
other groups’ dependencies on your information types and
domains.

To manage your dependencies on others, make sure that you are
pointing at version-specific DTD files unless you are confident that
your specialized design and code are completely current, and are
prepared to do the work to keep them current with future changes
to the information types and domains that you depend on.

To manage others’ dependencies on you, make sure you provide
version-specific locations for your design and code, as discussed
previously. Also, avoid changes that are not backwards compatible
unless there is a clear and overriding benefit both for you and for
the others that use your work.

4.4 Summary of policy questions
Without policies, a specialization hierarchy could quickly grow out
of control, with many different groups each describing the same
information types and domains with subtly different, and
fundamentally incompatible markup: while their common
ancestors might provide a measure of compatibility, the true value
of the hierarchy is in its unified descriptions of evolving
information types and domains, providing a way to describe a
consensus within the larger community about how to write and
describe information.
In order to provide order and control the growth of the
specialization hierarchy, and maximize its value for the
organization, there are a number of questions that must be
answered for each proposed specialization.
Roughly speaking, the process each specialization should follow is:

o Determine need
o See if the specialization already exists
o Justify costs with benefits
o Get stakeholders involved
o Design, implement, test, revise
o Get sign-off from management, specialization

workgroup, and translation
o Publish, review, revise
o Continue to manage through lifecycle

In more detail, we have categorized the questions you need to
answer into three stages:

o Preliminary investigation
o Collaboration

o Proof-of-concept validation

173

4.4.1 Preliminary investigation
In the preliminary investigation stage, the focus is on establishing
the basic value of the specialization.

o Does the specialization give value to end-users? For
example, does it increase consistency, usability, or
searchability? Describe the value at this stage.

o Does the specialization add semantic meaning? That is,
does it describe actual content, rather than intended use
or output? If the answer is no, consider customization or
integration.

o Is the specialization general enough to be useful? That is,
is it so specific that no one else will use it?

o Is the specialization specific enough to be meaningful?
That is, is it so general that it adds no value?

o Is it stable enough to describe? That is, is it still evolving
so rapidly that any time spent defining it will be wasted?

o Is it new? That is, does an equivalent specialization
already exists?

o Is it worth continuing? That is, given the amount of value
relative to the amount of change required, and the
expected scope of its effects, do the potential benefits
justify the costs of proceeding?

4.4.2 Collaboration
In the collaboration stage, the focus is on sharing responsibilities
and achieving a design consensus.

o Was a search conducted for existing standards?
Incorporate them where appropriate, and document why
you haven’t if not appropriate.

o Have you invited other groups to participate, either
through co-development or review of the design? Make
sure you share costs, and eliminate divergent
development streams where possible.

o Have you involved subject matter experts to ensure
semantics are meaningful to users? Make sure you have
someone thoroughly involved with the subject matter to
estimate both the descriptiveness of the design and the
usefulness to readers of the distinctions.

o Have you involved affected authors and editors? Make
sure the structures you are defining are compatible with
good information design principles, and that they support
authoring (and customer) requirements and editorial
guidelines.

o Is it worth continuing? That is, given the resources
committed by all interested parties, can you deliver the
specialization in time for the authoring groups that
require it?

4.4.3 Proof-of-concept validation
In the proof-of-concept validation stage, the focus is on whether the
specialization works, and on establishing plans for the future.

o Does the specialization (DTD and XSLT modules
combined) work with existing end-to-end processes?
That is, are you making any changes that could break
existing investments in processes?

o Is the specialization consistent with requirements set by
ancestor information types and domains?

o Are the DTDs and code prepared for translation
concerns, for example by moving fixed attribute titles
and code-generated text into separate files?

o Is the specialization valid, constructed according to
module and DTD construction rules, and accurately and
appropriately mapped to ancestor information types and
domains?

o Is there a mechanism in place for collecting feedback
from end-users and authors, to validate value and drive
further evolution?

o Is the ongoing support and eventual archiving of the
DTDs and transforms accounted for?

o Are fallback plans in place, in case the support
agreements prove unsustainable or organizational
priorities change?

o Is it worth continuing? That is, given the costs of
development, support, and archiving, can you commit to
the full deployment of the specialization within the
organization, or even outside the organization?

4.5 Policy: costs, benefits, risks, rewards
With this view of policy issues, we can revisit the costs, benefits,
risks and rewards of each approach.

4.5.1 Specialization
For the wider organization, there is a considerable investment
required. This is likely to be an activity requiring collaboration and
coordination across multiple groups, and creates a hierarchy of
cross-group dependencies that will need to be tracked and
managed, as well as a process for selection and validation of the
new design and process modules. This should still be substantially
cheaper than each group developing from scratch: the collaboration
is meant to eliminate redundant effort, not overly complicate a
development process.

For the specific group that accepts responsibility for owning a
specialization, there is also a considerable investment required. In
addition to the development or acquisition of the appropriate skill
set (DTDs, XSLT, DITA, information analysis and design, domain
familiarity), there are collaboration costs, coding, and testing costs.

The benefit of using specialization is an increasingly descriptive
hierarchy of markup, which makes it easy for groups to develop
integrated DTDs that meet their needs more specifically, creates a
richer repository of information for reuse and development, and
gives better value to customers. This means more consistency,
lower learning curve for new writers (who have markup that
matches the content they need to create), richer information, and
happier customers (who have information tailored to their needs,
rather than targeted at the lowest common denominator).

The risks of using specialization include specializations that
become obsolete (with content that must then be generalized to a
higher-level information type or domain); on the other hand,
specialization also can require a long-term commitment, since the
need to maintain the specialization may actually outlive the original
content it was created for. The risks also include cross-group
dependencies (both the group’s dependencies on others for the

174

maintenance of referenced design and code modules, and others
dependencies on the group, for the maintenance of its design and
code modules).

4.5.2 Customization
For the wider organization, this has some cost. While
customization is likely to be group-specific, it still needs to be
reviewed to ensure that organization-wide output guidelines are not
broken, and that any generated text is translated.

For the specific group, this has some cost. They need the
appropriate skill set (XSLT) and will need to work with translation
groups, but there is not much need for cross-group collaboration
(except where groups share a brand identity, for example).

The benefit of using customization is customized output without
compromise of content: the content remains portable and reusable
across the organization, while individual groups still get their
specific design they need for the audience or marketplace.

The risk of using customization is that the customization will be
rendered obsolete, at which point it can be thrown away with no
impact to the content, or won’t be rendered obsolete, in which case
it will need to be archived indefinitely.

4.5.3 Integration
For the wider organization, this has no cost. The wider organization
can concentrate on supporting the base DTDs and processes, which
the integrated DTDs select subsets from.

For the specific group, this has some cost. They need the
appropriate skill set (DTDs) and may need to customize editors.

The benefit of using integration is immediate enforcement of
group-specific guidelines, using a smaller set of markup that is
specific to a group’s needs. This means a lower learning curve for
new authors, and increased consistency in markup and content as a
whole.

Summary: Technology and Policy
 Artifacts Costs/Benefits
Specialization Technology:

Specialized
DTD module
Shell DTD
(Optional)
Specialized
XSLT module
(Optional)
Shell XSLT
Policy:
Cross-group
dependencies

Technology:
Small cost
New design elements
(Optional) New code
Migration/interchange
supported by architecture
(generalization transform)
Reuse of most existing design
and all or most code
Policy:
Costs:
Skills, collaborative
development, support,
archiving
Benefits:
Reusable hierarchies, lower
learning curves, customer-
centered content and output

Customization Technology:
Customized
XSLT module
Shell XSLT

Technology:
Less cost
No new design elements
Some new code
No migration/interchange
issues
Reuse of all existing design
and most code
Policy:
Costs:
Skills, support, development,
archiving
Benefits:
Reusable content, customer-
centered output

Integration Technology:
Shell DTD

Technology:
Close-to-zero cost
No new design elements
No new code
No migration/interchange
issues
Reuse of all existing design
and code
Policy:
Costs:
Skills, support, archiving
Benefits:
Smaller learning curve,
tighter fit to customer
requirements

175

Summary: Technology and Policy (Continued)
 Artifacts Costs/Benefits

New design
from scratch

Technology:
Complete
DTD
Complete
XSLT
Any
migration/inte
rchange
transforms
when required

Technology:
High cost
New design elements
New code
Migration/interchange supported
by single-purpose transforms;
no built-in mappings (transform
may be complex, may require
cleanup before and after)
No reuse of design or code
Policy:
Costs:
Skills, development, support,
archiving; must support
complete set of costs from start
to finish; low likelihood of later
reuse
Benefits:
No dependencies on others,
customer-centered content and
output

5 SUMMARY
DITA provides three main ways to extend design or output
capabilities: specialization (of information types, domains, and
code); customization (of output); and integration (of design
subsets). Each of these ways must be supported by strategies for
technology, process, and policy, which manage the risks to content
and to infrastructure posed by uncontrolled mutation of the
specialization hierarchies.

Over time, these strategies can be used to manage the evolution of
the specialization hierarchies: new information types and domains
can be developed to inhabit specific niches in the information
ecosystem, evolving as the ecosystem evolves, or preserving their
skeletons in the fossil record.

Standard and monolithic DTDs are often unable to move quickly
enough to respond to changing conditions, and as a result force
their users through mass migrations from one standard to another,
often at great expense, and often stranding some content beyond
retrieval.

In contrast, DITA provides a diversity that can cushion against
change, as well as a set of processing standards that support
evolution without forced migration. While some specializations
will always end up extinct, generalization can save the content, and
the decoupling of design and process hierarchies can save the
infrastructure from the fate of the design. In effect, instead of a
series of mass extinction events, DITA provides a more rational
way to evolve: pursuing some branches and pruning others, as the
needs of your information environment dictate.

6 REFERENCES
[1] Priestley, Michael. Specializing topic types in DITA.
http://www.ibm.com/developerworks/xml/library/x-dita2/

[2] Hennum, Erik. Specializing domains in DITA.
http://www.ibm.com/developerworks/xml/library/x-dita5/

[3] Priestley, M., Hargis, G., and Carpenter, S. (2001) DITA:
An XML-based Technical Documentation Authoring and
Publishing Architecture. Technical Communication, Technical
Communication, Volume 48, No.3, p.352--367.

[4] Schell, D.A., Priestley, M., Day, D.R., Hunt, J. Status and
directions of XML in technical documentation in IBM: DITA.
Conference proceedings, Make IT Easy 2001
http://www.ibm.com/ibm/easy/eou_ext.nsf/Publish/1819

7 RESOURCES
Main developerWorks site:
http://www.ibm.com/developerworks/xml/library/x-dita1/

DITA DTDs and transforms:
http://www.ibm.com/developerworks/xml/library/x-dita1/dita10.zip

DITA FAQ:
http://www.ibm.com/developerworks/xml/library/x-dita3/

DITA forum:
news://news.software.ibm.com/ibm.software.developerworks.xml.dita

8 TRADEMARKS
The following terms are trademarks or registered trademark of
International Business Machines Corporation in the United States,
other countries, or both: developerWorks, IBM.

Other company, product, or service names may be trademarks or
service marks of others.

176

	ABSTRACT
	A DITA OVERVIEW
	THE TECHNOLOGY
	Specialization
	Information types
	Domains
	Code
	Example: base design for authoring tasks
	Example: extended design for authoring wiztasks
	Specialization and generalization
	Result

	Customization
	Result

	Integration
	Result

	Specialization vs. customization vs. integration

	THE PROCESS
	Standard
	With specialization
	With customization
	With integration

	THE POLICY
	Policy issues
	Legacy support and archiving
	Investment costs
	Organizational change

	Policy for sharing
	Sharing design, sharing code, sharing responsibility
	Policy implications for sharing
	Process implications for sharing
	Technology implications for sharing

	Policy for risks in managing DITA-related projects
	Dead-end design
	Ongoing design
	External dependencies

	Summary of policy questions
	Preliminary investigation
	Collaboration
	Proof-of-concept validation

	Policy: costs, benefits, risks, rewards
	Specialization
	Customization
	Integration

	SUMMARY
	REFERENCES
	RESOURCES
	TRADEMARKS

