
Management of XML Documents in an

Integrated Digital Library∗

David A. Smith Anne Mahoney
Jeffrey A. Rydberg-Cox

Perseus Project, Tufts University
E-mail: {dasmith,amahoney,jrydberg}@perseus.tufts.edu

Abstract

We describe a generalized toolset developed by the Perseus Project to
manage XML documents in the context of a large, heterogeneous digital
library. The system manages multiple DTDs through mappings from el-
ements in the DTD to abstract document structures. The abstraction of
document metadata, both structural and descriptive, facilitates the de-
velopment of application-level tools for knowledge management and doc-
ument presentation. We discuss the implementation of the XML back
end and describe applications for cross citation retrieval, toponym extrac-
tion and plotting, automatic hypertext generation, morphology, and word
co-occurrence.

1 Introduction

One of the greatest challenges in building and maintaining a large, heteroge-
neous DL (digital library) is the necessity of managing documents with widely
varying encodings and markup practices. Although the World Wide Web has
demonstrated the power of simple links among simple documents, the benefits
of more highly structured markup have long been understood.1 The Perseus
digital library project has developed a generalizable toolset to manage XML
(Extensible Markup Language) documents of varying DTDs (Document Type
Definitions); to extract structural and descriptive metadata from these docu-
ments and deliver document fragments on demand; and to support other tools
that analyze linguistic and conceptual features and manage document layout.

In over ten years of creating and managing SGML and now XML data,
we have been greatly helped by the generality and abstraction of structured
∗Support for this work was provided by the Digital Libraries Initiative Phase 2, with

primary funding from the National Endowment for the Humanities and the National Science
Foundation.

1For applications of structured markup in large document systems, see Fraser et al. (1999),
Karben (1999), and Lubell (1999).

1



markup, which has allowed us to deliver our content smoothly on a variety of
platforms, from standalone CD-ROMs, to custom client-server software, to the
World Wide Web. In digitizing historical and scholarly documents, we have
also come to appreciate the richness of the implicit and explicit links among
printed resources. Our DL system reifies these connections and tries to meet
the challenges of automatically generating hypertexts in electronic media.2 Most
often needed in creating a rich hypertext across a digital library are models of
the structure of individual documents and descriptions of their content. These
models ought to be independent of the particular encodings of those documents.
Use of these abstractions allows rapid development of scalable tools for display,
linguistic analysis, knowledge management, and information retrieval within
the DL system. We describe an engine to leverage the power of XML for this
modeling task and some of its applications in building a hypertextual digital
library. This document management system is the back end for a production
web server that delivers over 2 million pages a week; it went into production
early in March, 2000.3

2 Compiling Document Information

Despite the success of generalized markup schemes such as DocBook or the
scheme developed by the TEI (Text Encoding Initiative),4 projects encoding
documents in different fields will require the services of different DTDs (Usdin
and Graham, 1998). As XML use grows, more and more specifications for appli-
cation domains are being created by various industries and user communities; a
well known and extensive list of XML applications includes for example an As-
tronomical Markup Language, a Bioinformatic Sequence Markup Language, a
Weather Observation Markup Format, and Genealogical Data in XML.5 These
communities can not only map information in their domains onto markup ele-
ments, but can control the interrelationships of information through the XML
content model.

Customizing markup applications eases the encoding of individual docu-
ments and often achieves a better fit with their intellectual structures, but it
can raise barriers to resource discovery within a digital library. To take a simple
example, a programmer wishing to extract all of the book titles mentioned in
a collection of documents marked up in varying DTDs may have to look for
<cit> in some documents and <title> in others, whose DTD might use <cit>
to mean a piece of quoted text. More importantly, a document’s structural
metadata, which is intended to allow access to logical parts of the document, is

2For automatic hypertext generation, see Agosti et al. (1997), Allan (1997), and Kaindl
and Kramer (1999).

3The Perseus digital library is on the web at http://www.perseus.tufts.edu. Further
information about Perseus may be found in Smith et al. (2000), Crane (1998b), and Crane
(1998a).

4Perseus does in fact use the TEI DTDs heavily. One of the principal virtues of this tagset
is the extensive documentation (Sperberg-McQueen and Burnard, 1994).

5http://www.oasis-open.org/cover/xml.html

2

http://www.perseus.tufts.edu
http://www.oasis-open.org/cover/xml.html


tied to specific concrete element names. In order to find “chapter 5” in an XML
document, the user or system implementor must know something about that
document’s markup — whether the DTD and encoding conventions favor count-
ing to the fifth <chapter> tag or searching for <div2 type="chapter" n="5">.
Although much work has been done on XML Namespaces to encourage markup
reuse and minimize duplication of semantic structures (XMLNS 1999), it is un-
likely that all marked up documents will eventually use <ns:title> for book
titles.

Our system, therefore, allows digital librarians to create partial mappings
between the elements in a DTD and abstract structural elements and then
produces an index (internally termed a lookup table or LUT) of the elements
so mapped. What is encoded as <div1 type="scene"> in one document and
as <scene> in another is presented to the system as an abstract, structural
“scene”. Identifier attributes on XML elements, such as ID or N, are also in-
dexed, and occurrences of each structure within the document are sequentially
numbered. A mapping may also specify that some of the document’s content,
such as section titles or dates, be incorporated in the index to enable resource
discovery and visualization, as described below. Unlike SGML architectural
forms, this structural mapping is external metadata and does not require modi-
fying either the document or the DTD.6 Not only does this system insulate the
digital library’s user from particulars of markup when browsing documents, but
it allows standard abstract citations to be mapped onto documents. In look-
ing up, for example, a request for “book 3, Bekker page 1277a” of Aristotle’s
Politics, the DL system does not need to ascertain that the document at hand
encodes that information as <div1 type="Book" n="3">...<pb ed="Bekker"
n="1277a">. Note also that not all elements in a DTD need be mapped, which
allows the digital librarian to concentrate on “interesting” structural features.

After this structural element map is created for the DTD, an unlimited
number of documents written in conformance with this DTD can be parsed and
indexed by the DL system. For efficiency in later extraction of fragments from
the XML document, open elements and other persistent state variables in the
parsing process are saved at each indexed node.

In addition to indexing structural metadata, the DL system also extracts de-
scriptive metadata about both the document itself (e.g. its creation date) and
its subdocuments (e.g. chapter titles). These metadata are stored in a database
instantiation of RDF (the Resource Description Framework) where each tuple
is a metadata assertion (RDF 1999). Thus one database row may state that a
particular document has the Dublin Core Creator “William Shakespeare”, an-
other row will state that that document’s Dublin Core Title is “Measure for
Measure”, and another that it can be addressed by acts, scenes, and lines, or by
continuous Through Line Numbers. Since documents have permanent identi-
fiers, digital librarians may add some metadata directly to the database rather
than having to encode it in the XML. The metadatabase can also be serialized
into XML for exchange with other applications, such as more traditional library

6For a good discussion of architectural forms, see DeRose and Durand (1994).

3



catalogues.

3 Delivering Documents

Currently, the main use of our DL system is for delivery of document sections on
the World Wide Web. Users specify the text they wish to read; the DL locates
the XML file and associated metadata, determines which portion of the file
contains the desired text section, applies appropriate styling rules, and presents
the text in HTML form.

XML documentsLegacy data
(TLG, LOC, etc.)

Multiple DTDs

Abstract structures

Document subset
(XML Fragment)

Feature/citation databases
Augmentation
Implicit search
Visualization

User preferences

Stylesheets

Displayed
Document

Figure 1: Information flow in Perseus

Users can follow the most direct path into texts in Perseus by looking them
up by author, title, and section, according to domain-specific canonical reference
schemes. In this case, the first task of the DL display engine, therefore, is to
interpret the human-readable citation scheme. We have chosen to map actual
electronic documents to abstract bibliographic objects (ABO). Each ABO rep-
resents a unit of intellectual content in the digital library.7 The ABO identifier

7In very rough terms, an ABO is a book. More accurately, it is the unit of cataloguing.
A single printed book may contain several different literary works, or a work may appear in
several volumes. We create an ABO for each work that we expect will be requested by readers

4



is the key to several of the various metadata tables. Given the ABO, the DL
system can determine which concrete XML documents or subdocuments instan-
tiate versions of the desired text. Different versions might include translations
into other languages or historical states of the same text; each version is imple-
mented as a separate XML document. We select one version for display, based
on user-specified preference information, and give the user a list of other avail-
able versions. For example, if a user requests “Matthew 28:5”, the DL system
looks up the ABO for the Gospel According to Matthew; determines that the
original Greek, the Latin Vulgate, and two English translations are available;
finds out that the current user prefers Greek; and remembers that the desired
section is chapter 28, verse 5.

The DL system also uses the ABO to determine which texts are commen-
taries on the desired target text. We usually consider a commentary to belong
to an ABO, not to a particular version of the text. Many scholarly commen-
taries, particularly in literary studies, are written with specific reference to the
original-language version of a text; we have chosen to make those commentaries
available to readers of translations as well as readers of the original language.
We distinguish commentaries on an ABO from other texts in the DL that may
refer to this ABO; although we will present all available references, those from
commentaries are given prominence as being the most relevant to the reader’s
presumed interests. Presentation of references is discussed further below.

Once the DL system has determined a particular concrete version of the
specified ABO, it can retrieve version-specific metadata. These data include the
title of this version8, its language, its layout specification, and the “chunking
scheme” for the text. The chunking scheme determines how much of the text
is to be presented at once; conceptually, it is analogous to the page size of a
printed book. Chunking is expressed in terms of logical structural divisions
of the work: chapters, sections, paragraphs, or whatever is appropriate. The
DL can apply a default, but the editor of a text may also specify chunking
information; there may be a chunking scheme for each citation scheme if the
document has more than one. It is convenient if all versions of the same ABO
use the same chunking scheme, as this facilitates moving between versions, but
our system does not require this.

With all relevant metadata in hand, the DL display engine must open the
XML document and extract the portion the reader wishes to see. The engine
uses the LUT to find the given citation (for example, the location of Matthew
28:5, in the example given above). The LUT gives not only the byte offset in
the XML file, but also a list of the elements open at this point in the text and
their attributes. The desired location might fall at the beginning of a chunk or
might fall somewhere in the middle; in our example, if the Greek edition of the
New Testament is defined to chunk on chapters, Matthew 28:5 is in the middle
of the chunk for chapter 28, but Matthew 28:1 would be at the beginning. The
chunking routine must locate the beginning and end of the chunk that contains

or cited by other works, and ABOs need not correspond to concrete documents presently in
the DL.

8It is not unusual for translations to have different titles from original works.

5



the user’s desired section.
Chunks, as noted above, are logical structural divisions of the work, but

they need not correspond to container elements in the DTD. In fact, a work
may have several different chunking schemes, possibly overlapping.9 In the ac-
tual marked-up text, we implement multiple concurrent hierarchies with empty
elements, so as not to require SGML extensions like CONCUR which are nei-
ther widely available nor part of the XML standard. Milestones are easy for the
markup editor to use, but make chunk extraction a bit more complex. If the
desired chunk is implemented by a container element, say for example <div2
type="chapter" n="28">, it suffices to extract that entire <div2>, and per-
form closure fixups as described below. If the chunk is the distance between
two milestones, say <milestone unit="chapter" n="28"> and <milestone
unit="chapter" n="29">, it is possible that the first milestone may be inside
one container element and the second may be inside the next of the containers.10

In such a case, the extracted chunk will overlap with the container elements of
the original XML text.

Given the LUT information for the beginning and end of the relevant chunk,
then, the extraction routine must read the chunk from the XML file and convert
it into a well-balanced XML fragment (XMLFI 1999). This fragment is then
wrapped in another element, to become a well-formed XML document, suitable
for passing to an XML transformation utility.11 Our DL currently delivers
documents over the Web, so we transform this document into HTML form,
but we have experimented with allowing users to request other formats as well,
notably Adobe’s Portable Document Format and raw XML.

The HTML display is controlled by a template, written mostly in HTML but
with place-holders for various display elements and portions of the document.
Which template to use is determined by the layout specification metadata record
for the concrete XML document. We have chosen to express layout information
in HTML primarily so that authors or editors who are not programmers can
control the appearance of their documents. Using HTML also allows us to
create documents that are idiomatic for the Web, with colors, tables, frames,
and the various other features that experienced Web readers expect. That is,
although our DL system is more general than an ordinary Web site, and is
not tied to the Web as a display medium, it can nonetheless interact natively
with the Web in ways that users find intuitive and appealing. As browser
support for XML becomes more robust, we expect to exploit XSL (Extensible
Stylesheet Language) or other XML styling tools to produce attractive direct
XML displays.

9Although the DL display engine recognizes a default chunking scheme for each concrete
document, the user can request use of a different one.

10This may seem unrealistic as applied to the example text, the New Testament, which
has a single canonical citation scheme. A clearer example is the book of Psalms, in which
containers might be used for the Hebrew numbering scheme, milestones for the Septuagint.

11The utility we in fact use is the Copenhagen SGML Tool (CoST), which is written in
the mature application extension language Tcl; this puts the full power of a programming
language in our hands. As extension mechanisms for XSLT (Extensible Stylesheet Language
Transformations) mature, we could equally well use this facility.

6



The last phase of display processing is the application of the rest of the
user’s preferences. The first preference was the choice among versions of a text,
for example original language or translation; see above. The other preferences
govern the appearance of the display and the connections between this text and
others in the DL. Users may specify the fonts to be used for languages that do
not use the Roman alphabet; we support Unicode, but also support a variety
of other fonts for users whose browsers or operating systems do not support
Unicode. Users may also indicate which of several automatic searches should
be performed, and how the results should be displayed; automatic searches and
cross references are discussed further below.

In the end, the user receives a Web page, with standard navigation con-
trols and a text-specific layout, containing a particular fragment of a particular
version of a text.

4 Advanced Applications

The advantages of this DL system extend far beyond the practical issues re-
lated to delivering documents to end users. The abstraction of structural and
descriptive metadata allows us to develop scalable tools for linguistic analysis,
knowledge management, and information retrieval within the DL system. The
tools in the currently existing DL system include reification of cross-citations
of documents within the system, generation of maps with a GIS (Geographic
Information System), creation of hypertext, discovery of word co-occurrence
patterns, and linkages to morphological analysis.

A great deal of traditional scholarship involves tracking down footnotes and
discovering what others have said about a text. The DL system allows us to
display links to other texts that cite the document currently being displayed. A
simple example is a commentary, which explicitly talks about another text. For
example, when a reader views the text of Catullus, the DL system automatically
shows notes from E. T. Merrill’s commentary on those poems. Much more
exciting, however, is the ability to display citations from texts that are not
explicitly related to each other. For example, a reader of Matthew 26:5 might
wish to know that this text is quoted in James J. O’Donnell’s commentary on
Augustine’s Confessions, book 9, chapter 1, section 1. The DL system extracts
not only commentary citations but also citations from independent texts, and
displays them as active hyperlinks alongside the text being read. This feature
shows one benefit that can be gained by taking the time to mark up elements
such as citations. Moreover, it becomes more valuable as the DL grows, revealing
unexpected links among texts, which scholars might not have been aware of. A
reader of Homer might be surprised to find that Iliad 8.442 is cited in the
Variorum Edition of Shakespeare’s Coriolanus, V.i.

Another module automatically scans any text in the DL for place names.
These names are linked to a GIS that allows users automatically to generate a
map of the places mentioned in the entire document, in the section currently
being displayed, or in a larger logical unit, for example a book or an act. Here,

7



our abstraction of structural and descriptive metadata is more important than
the markup: place names are discovered by an information extraction system
after the documents have been indexed. Because the XML back end described
above presents all documents to the information discovery module in a uniform
way, the GIS programmer need not be aware of the details of the DTDs or of
the markup conventions used in the texts.

We have exploited this abstraction in other information extraction systems
we have written, one of which is the creation of automatic hypertexts. Impor-
tant subject terms within the domain area are recognized and linked to other
documents within the DL that contain the term. These links are provided au-
tomatically for every document when it is displayed. This makes it easy for
readers to get fuller information about important ideas, to contextualize unfa-
miliar vocabulary, and to explore related documents in the DL. Because subject
terms are linked to dynamic hypertexts, not to simple glossary or dictionary
entries, readers can explore types of material they might not have thought rel-
evant (or even have known of): historical texts, site plans, art works, or the
like. Further, as the library expands, new documents appear on these hypertext
pages without any additional programming.

In addition to helping users explore large domains, we also have modules
that help users explore the smallest details of the language. These details in-
clude morphology and word co-occurrence. Every text in a foreign language is
passed through a morphological analyzer. The resulting analyses are placed in
a database. When foreign-language texts are displayed, each word is checked
against this database, and links are generated between words and their analy-
ses. These analyses, in turn, are linked to a suite of dictionaries and grammars,
allowing users to read texts in languages they do not yet know well.

Another module that operates at the level of the word identifies words that
regularly co-occur. Abstracted indices are used to scan texts and calculate
word frequencies and co-occurrence ratios. Highly significant word pairs can
be presented along with lexical information, or in independent tabular displays.
This sort of collocation information can yield interesting information about
common patterns of language usage.12 For example, in English, collocation
data shows that the mutual information score for the words “strong” and “tea”
is much higher than the score for “powerful” and “tea”. This suggests that it is
much more common to speak of “strong tea” than “powerful tea”. Collocation
data can also provide a quick overview of the sense in which an author uses
a word. For example, if the most common collocates of the word “bank” in a
collection of texts were words such as “water”, “shade”, or “cool”, we would
know that the author probably was writing about rivers rather than financial
institutions.

12For the theory and practice of word co-occurrence, see Biber (1993), Biber et al. (1998),
Church and Hanks (1990), Church et al. (1991), Sinclair (1991), and Smadja (1991).

8



5 Conclusion

We have described an XML document management system for the Perseus digi-
tal library. This system facilitates development of knowledge management appli-
cations including those for display, feature extraction, and automatic hypertext
generation. Our DL system facilitates development of these and other applica-
tions because it releases the application programmer from the task of indexing
collections of documents written in multiple DTDs. Because the modules scale
as the DL grows, documents in the integrated DL become more valuable than
those existing in isolation.

References

M. Agosti, F. Crestani, and M. Melucci. On the use of information retrieval
techniques for the automatic construction of hypertext. Information Process-
ing & Management, 33(2):133–144, 1997.

James Allan. Building hypertext using information retrieval. Information Pro-
cessing & Management, 33(2):145–159, 1997.

Douglas Biber. Co-occurence patterns among collocations: A tool for corpus-
based lexical knowledge acquisition. Computational Linguistics, 9(3):531–538,
1993.

Douglas Biber, Susan Conrad, and Randi Reppen. Corpus Linguistics: Investi-
gating Language, Structure and Use. Cambridge University Press, Cambridge,
1998.

Kenneth Church, Willian Gale, Patrick Hanks, and Donald Hindle. Using statis-
tics in lexical analysis. In U. Zernik, editor, Lexical Acquisition: Exploiting
On-Line Resources to Build a Lexicon. Lawrence Erlbaum Associates, Hills-
dale, 1991.

Kenneth Church and Patrick Hanks. Word association norms, mutual informa-
tion, and lexicography. Computational Linguistics, 16(1):22–29, 1990.

Gregory Crane. New technologies for reading: The lexicon and the digital
library. Classical World, pages 471–501, 1998a.

Gregory Crane. The Perseus Project and beyond: How building a digital library
challenges the humanities and technology. D-Lib Magazine, January 1998b.
See http://www.dlib.org/dlib/january98/01crane.html.

Steven J. DeRose and David G. Durand. Making Hypermedia Work: A User’s
Guide to HyTime. Kluwer Acadmenic Publishers, Boston, 1994.

B. Fraser, J. Roberts, G. Pianosi, P. Alencar, D. Cowan, D. German, and
L. Nova. Dynamic views of SGML tagged documents. In Proceedings of the

9

http://www.dlib.org/dlib/january98/01crane.html


Seventeenth Annual International Conference on Computer Documentation,
pages 93–98, 1999.

Hermann Kaindl and Stefan Kramer. Semiautomatic generation of glossary
links: A practical solution. In Hypertext ’99: Returning to Our Diverse Roots,
pages 3–12, 1999.

Alan Karben. News you can reuse: Content repurposing at The Wall Street
Journal Interactive Edition. Markup Languages: Theory & Practice, 1(1):
33–45, 1999.

Joshua Lubell. Structured markup on the web: A tale of two sites. Markup
Languages: Theory & Practice, 1(3):7–22, 1999.

John Sinclair. Corpus, Concordance, and Collocation. Oxford University Press,
Oxford, 1991.

Frank Smadja. Macrocoding the lexicon with co-occurence knowledge. In
U. Zernik, editor, Lexical Acquisition: Exploiting On-Line Resources to Build
a Lexicon. Lawrence Erlbaum Associates, Hillsdale, 1991.

David A. Smith, Jeffrey A. Rydberg-Cox, and Gregory R. Crane. The Perseus
Project: A digital library for the humanities. Literary and Linguistic Com-
puting, 15(1):15–25, 2000.

C. M. Sperberg-McQueen and Lou Burnard, editors. Guidelines for Electronic
Text Encoding and Interchange. Text Encoding Initiative, May 1994.

Tommie Usdin and Tony Graham. XML: Not a silver bullet, but a great pipe
wrench. StandardView, 6(3):125–132, 1998.

XMLNS 1999. Namespaces in XML. World Wide Web Consortium, 14 January
1999. See http://www.w3.org/TR/1999/REC-xml-names-19990114.

RDF 1999. Resource Description Framework (RDF) Model and Syntax Spec-
ification 1.0. World Wide Web Consortium, 22 February 1999. See http:
//www.w3.org/TR/1999/REC-rdf-syntax-19990222.

XMLFI 1999. XML Fragment Interchange. World Wide Web Consortium, 30
June 1999. See http://www.w3.org/1999/06/WD-xml-fragment-19990630.

10

http://www.w3.org/TR/1999/REC-xml-names-19990114
http://www.w3.org/TR/1999/REC-rdf-syntax-19990222
http://www.w3.org/TR/1999/REC-rdf-syntax-19990222
http://www.w3.org/1999/06/WD-xml-fragment-19990630

	Introduction
	Compiling Document Information
	Delivering Documents
	Advanced Applications
	Conclusion

