
PDML

Product Data Markup Language

A New Paradigm for Product Data Exchange and Integration

A White Paper

William C. Burkett
April 30, 1999

A B S T R A C T

Product Data Markup Language (PDML) is a set of XML vocabularies and a
usage structure for deploying product data on the Internet and making it visible to
DoD weapon system support personnel. PDML offers a new paradigm for
product data exchange based on existing technology that facilitates the
integration and interoperability of business processes across the DoD and
contracting organizations, particularly among those using PDM systems for
process control and product data management. The Internet provides a
ubiquitous platform for connectivity; XML provides a web-friendly and well-
understood syntax for the exchange of data; and STEP/ISO 10303 provides a
methodology for satisfying and integrating the information needs of the diverse
collection of data-usage communities that comprise the DoD weapon system
support personnel.

PDML defines a set of Application Transaction Sets (ATS) that define the data
requirements for communities defined by the users of particular legacy systems
and standards. The Integration Schema is an encompassing generalization of the
ATSs that provides an integrated view across the ATSs. Mapping specifications
define the relationships between the specialized vocabularies in the ATSs and the
generic vocabulary in the Integration Schema.

Product Data Markup Language PDML White Paper

Page 2 of 15

1 The Visibility of Product Data

The Challenge

Information system technology has long promised to
integrate business processes by providing
communication channels that seamlessly enable
members of a team to exchange data and information
across physical and temporal boundaries. The reality,
however, has been very different. Data is stored and
duplicated in so many different places that one often
doesn’t know “good” data from bad – even if one can
find the data that one is interested in. And these
aren’t the biggest problems that integration efforts
must overcome. A bigger obstacle is the fact that
data is tightly bound to the applications that
create/use the data, which means that moving data
between applications requires a conversion or
translations process – and anyone that has opened a
WordPerfect document in Microsoft Word knows
how well this translation typically works.

The support of weapon systems in the U.S.
Department of Defense is a huge undertaking relying
on data and information submitted/delivered from the
countless manufacturers, suppliers, and support
personal. The DoD envisions transitioning from a
primarily government-operated product data
repository environment to an environment in which
the responsibility for maintaining current and
accurate data describing defense material is
partitioned and distributed among government
entities and contractors; the product data repositories
are operated and maintained by the party most
responsible for the data at that point in the product’s
life cycle. In the current environment, for example,
there is considerable duplication and redundancy
between data repositories (e.g., PDM systems)
managed by a weapon system’s engineers and
repositories managed by the personnel who buy spare
parts for the weapon system. The duplication
burdens personnel from both sites with non-valued-
added work to synchronize the versions and indexes
of the repositories so that changes initiated at either
site are incorporated in all sites. Often, the weapon
system prime contractor may maintain an additional
data repository for internal use, thus exacerbating the
synchronization problem.

Thus, the problem consists of (1) countless data
repositories that are bound to and designed to support
specific applications, and (2) the need to provide a
integrated, accessible, consistent data in a form useful
and meaningful to the personnel supporting a weapon

system (i.e., in a form tailored/customized to the
particular users of the data.) The problem is that
meaningful product data is not visible to the
personnel that need it.

The PDML Vision

The PDML vision is to enable any authorized user to
access product data for any item from any site
without manual intervention or coordination by other
personnel. As PDML technology is put into place,
duplicative government repository sites will be
downscoped and eventually shut down. For example,
a possible migration scenario to technology
supporting this vision would be:

• Reference (master) copies of product data will
reside and be maintained at the site of
engineering authority for the product item. All
other copies and variants of the data will be
considered non-authoritative.

• In the product development phase of the life
cycle, engineering authority will most often
reside at the site of the development agent
(usually the weapon system prime contractor, but
sometimes a lower tier supplier or government
activity for common items or Government
Furnished Equipment (GFE)).

• Later in a product life cycle, the authority rests at
the site of the Change Control Board (CCB) or
the sustaining engineering activity. A sustaining
engineering activity usually assumes full
engineering authority from the CCB once the
product item evolves to the late stages of entirely
government based logistic support.

The vision is not a single, integrated virtual product
data repository, but rather an environment in which
users can:

• easily locate and obtain product data that is
authoritative, timely, and accurate;

• view and understand the data without resorting
to thesauri or indices, or dictionaries; and

• import the data into their own application
systems with no more difficultly than simply
downloading the file and opening it with the
application.

If a user knows a product identification number, such
as an NSN, part number, or serial number, that
should be the only entry-point needed to obtain and
use the product data for his job function.

Product Data Markup Language PDML White Paper

Page 3 of 15

The Current Solutions

Prior to 1999, realizing this vision was focused on the
development of integration technologies that enabled
interoperability of application systems. The
integration disparate and heterogeneous information
systems has been pursued since the recognition that
two different systems are using some of the same
information and someone said “hey – let’s share data
and save time”. Approaches that have been pursued
include:

• Point-to-point translators that convert data bound
to one system into the data format of a target
system;

• A shared database that is used by multiple
applications;

• Product Data Exchange (PDE) standards that
specify a neutral, application-independent data
structure used to convey data between
applications (and translators written to/from the
PDE standard);

• Database federations in which each repository
makes (some part of) its data visible to other
databases/applications in the federation and
accessible via an API;

• Product Data Management (PDM) and
Enterprise Resource Planning (ERP) applications
that “throw a net” over the applications within an
enterprise and route, control, and constrain data
that moves between individuals and/or
applications.

The Internet and World Wide Web provide an even
newer avenue to combat this problem. The ubiquity
of the Internet breaks spatial and temporal barriers
and provides the opportunity for users to access data
anywhere, anytime. Furthermore, the rapid rise in
popularity of the eXtensible Markup Language
(XML) provides a platform independent and web-
friendly data structuring syntax for the representation
and exchange of data.

So – why don’t these solutions provide the product
data visibility needed for the system integration and
weapon system support? There are three reasons:

• The complexity of application interoperability
coupled with the huge variety of platforms and
implementations make these solutions (1) point
solutions, and (2) expensive solutions;

• The exchange of bits does not equate to the
exchange of meaning (i.e., communication);

• The ever-changing requirements on system use
makes point solutions brittle and short-lived.

The PDML Solution

PDML provides a technology solution that moves
closer to the vision described above not by
introducing new technology, but introducing a new
data exchange paradigm that leverages existing
integration technology and addresses the reasons
existing technology doesn’t meet the PDML vision.
By drawing upon the best features of the current
technology solutions, PDML provides a data
exchange solution that

• doesn’t require special applications,
• provides meaningful and usable data to users,

and
• provides a means of exchanging data between

application systems.

PDML defines a data usage architecture that starts
with the assumption of data access and exchange
over the Internet using existing Internet protocols and
languages. This provides a general and ubiquitous
platform that will be more stable and have a longer
lifespan than point-specific solutions. In addition, the
volume of development on the Internet will result in
tools and solutions that are more widely applicable,
more functional, and far less expensive than those
applicable to integration point solutions. Tools for
processing XML data, for example, are freely
available on the Internet.

This keeps the PDML solution general, uniform, and
widely applicable.

The elements of the architecture dealing with data
“content” (i.e., the meaning of the data) rather than
data “conveyance” (i.e., “moving bits around”)
provide a two-edge approach for the definition and
exchange of “meaning” between people. The first
“edge” is a usage-specific view of data that defines
the meaning of data with respect to a specific “usage
community”. By using the terminology/vocabulary
and structure of a particular community, the view
provides unambiguous and easily understood
representation of the data; the representation of this
view in XML further provides a widely accepted and
processable syntax for the exchange of data.

This keeps the PDML solution simple.

The definition of data (i.e., the vocabulary and
structure) with respect to the viewpoint of a particular
usage community is important because “meaning” is
a feature of human cognition and language use. Data
has no inherent “meaning; the “meaning” of data is
ascribed to it by a community of users, application

Product Data Markup Language PDML White Paper

Page 4 of 15

programmers, and database designers. This usage
community establishes a context for the data use.
Current integration solutions described above work
only when the users share a stable context for the
usage of the data; by making the context of the data
explicit, PDML enables unambiguous data exchange
within a context.

The second “edge” of the PDML approach for the
specification of meaning is also part of the PDML
solution for adaption to changing requirements. It is
integrated view of the data that encompasses all of
the individual usage-specific views. Allied usage
communities overlap with respect to the data needed
within/by the community, though they may look at
the data differently. The integrated view not only
provides a mechanism for mapping the meaning of
data between usage communities, but is also isolated
from the changing usage requirements. New usage-
specific views can be added or old views changed
without affecting the integrated view.

This keeps the PDML solution integrated.

2 PDML Design Philosophy

The “philosophy” behind the design of PDML
consists of two primary design principles:

• Leverage the best features of existing
technology; and

• Maintain the data usage semantics.

Leverage Existing Technologies

The development of new technology is fraught with
unavoidable obstacles. PDML seeks to avoid as
many obstacles as possible by applying the best
features of existing technologies to meeting the
PDML vision. These technologies represent a range
of system integration, PDE, and network
technologies, including:

• STEP (ISO 10303) as a PDE technology;
• The Internet as an integration platform;
• XML as data structuring and encoding language;
• PDM systems as an enterprise data management

tool.

Maintain Emphasis on Data Semantics

Information technologies seem to overwhelmingly
focus on transport and processing of data with little,
if any, regard for the principle value of data:
conveying meaning to a user. Thus, an important
design principle of PDML is the emphasis on the

meaning of the data to the users of the data (i.e., the
data semantics). This principle manifests itself in the
usage-specific views of data defined in PDML and in
the semantic mappings between the views through
the mediating integrated view. This emphasis on
semantic contrasts is most clearly illustrated when
comparing PDML to HTML as a data presentation
format or the general use of SGML as a document
structure representation.

3 Application of Existing
Technology to PDML

Leveraging existing technologies in the development
of PDML requires the identification of the desirable
features of the technology and the adaptation of those
features to PDML requirements. Two technologies in
particular – XML and STEP – are central to the
structure and use of PDML.

The Web and XML

The use of the Internet, World Wide Web and XML
is almost a given in new system integration projects,
application interoperability, and data exchange. The
reason for this is obvious: ubiquity and acceptance of
the Internet and World Wide Web make it furthest-
reachng and lowest cost integration platform in the
world. The Internet is everywhere and is the most
obvious solution to provide product data visibility to
weapon system support personnel.

XML is the syntax of choice for exchange of web
data, leveraging a middle ground between full-blown
document structure and content management offered
by SGML and the presentation mechanism provided
by HTML. SGML originated in the field of text
processing and the developers of the SGML language
made an important realization that there is a
distinction between the content of the document and
the manner or style in which it is presented. HTML
is a simple application of SGML that designed to
present content on the World Wide Web, thus
bringing SGML onto the Internet as a data structuring
and exchange syntax.

XML is “… a simplified subset of SGML
…optimized for the web environment, which implies
data-processing-oriented (rather than publishing-
oriented), and short life-span (in fact, usually
dynamically generated) information”. [5] XML is
the ideal approach for deploying structured
information on the web because it marries the
presentation-free content management view of
SGML (without many of the publication biases) to

Product Data Markup Language PDML White Paper

Page 5 of 15

the de facto language syntax of web established by
HTML.

Data view versus document view

An important aspect of the PDML philosophy is the
question of “data or document”. As noted by Charles
Goldfarb (one of the original developers of SGML
and XML) “…many people have noticed that XML
documents resemble traditional relational and object
database data in many ways. Once you have a
language for rigorously representing documents,
those documents can be treated more like other forms
of data.” [5]

Since it originated in the SGML world of document
publishing, XML is often viewed with a document-
biased perspective inherited from SGML. This bias
induces particular DTD design principles – chief
among them a propensity for hierarchically-
structured data – that is at odds with good data
management practice. Individuals with database/data
modelling experience view the XML syntax as
another data structuring/encoding scheme and apply
their data structure design principles to DTD design,
resulting in DTD’s noticeably different form the
“document-biased” DTD’s. Because Product Data
Management is more about databases and data
exchange, the design of PDML has adopted the
“XML as data” philosophy in the design of DTDs.

STEP Technology

STEP (ISO 10303) is the principal product data
exchange standard in the world. STEP pioneered
several significant and revolutionary innovations in
the use and exchange of data, notably the
interpretation and use of generic data structures in
different application domains. PDML is based upon
the same basic structure of STEP, so a brief
introduction to three main components of STEP as a
PDE standard would be instructive.

The structure of STEP

The design of STEP attempts to reconcile two
diametrically-opposed objectives:

• Define a set of data elements that are
unambiguous;

• Define a set of data elements that are
manageable (i.e., few in number), robust (i.e.,
stable over time), and flexible (i.e., can be used
in many ways).

It meets the second of these objectives through the
definition of a set of data elements known as the
Integrated Resources. The Integrated Resources is a
collection of schemas written in the EXPRESS
information modelling language [6] that were
designed to be applicable in all usage communities
that deal with product data. As a result, the schemas
are very generic and flexible – the schemas are
independent of any particular industrial domain.

The generic design of the Integrated Resources,
however, is directly at odds with the first objective:
an unambiguous set of data elements would require
not generic entities, but very specific entities –
which, consequently, would result in a very, very
large number of entities.

STEP solved this problem by introducing an
innovative technique called “Interpretation” [2].
Interpretation, just as the normal English usage of the
term implies, explains/specifies how a generic
Integrated Resource construct, like product, is to
be understood within a particular usage domain (i.e.,
by a particular usage community.)

Application of STEP Technology in PDML

There are two parts of STEP that have been leveraged
in PDML

• The generic, integrated view (Integrated
Resources);

• EXPRESS as a data specification language.

Within PDML, component corresponding to the
domain-specific vocabulary for a particular usage
community is called an Application Transaction Set
(ATS). The PDML component corresponding to the
generic vocabulary that is applicable across
communities is called the Integration Schema; the
design of the Integration Schema is based on the
STEP Integrated Resources.

EXPRESS, as a data modelling language, is far richer
in features than SGML/XML DTDs with respect to
semantics and constraints and will therefore be used
to specify the PDML schemas. The EXPRESS
PDML schemas will be the master schemas with
respect to the meaning and constraints of PDML data
elements. Conversion algorithms have been defined
that specify the transformation of the EXPRESS
schema to an XML DTD and are described below.

UML (Unified Modeling Language [4]) is a more
widely known and popular language than EXPRESS,
and has richer, more expressive features than

Product Data Markup Language PDML White Paper

Page 6 of 15

EXPRESS. However, UML, as an object-modelling
language, has a different purpose than EXPRESS.
Objects in UML “do” something - they have
functionality and capabilities and lend themselves to
the development of application systems. Entities in
EXPRESS, on the other hand, don’t “do” anything
other than represent a real-world concept and don’t
lead to application system designs or functionality. It
was felt that UML is over-featured with respect to the
requirements of PDML.

There is a very important point to keep in mind with
respect to the use of STEP in PDML:

PDML IS AN APPLICATION OF STEP
TECHNOLOGY; IS NOT A COMPETITOR

OF OR REPLACEMENT FOR STEP OR

THE STEP STANDARDIZATION

EFFORTS.

As stated above, PDML is leveraging a combination
the best features of existing technology – it is not
intended to replace those technologies.

EXPRESS -> XML DTD conversion

Since there was a desire to leverage the semantic
power of the EXPRESS language in the definition of
the Application Transaction Sets and the Integration
Schema, a conversion process was needed that would

turn the EXPRESS schema into an XML DTD. We
defined an algorithm that (as faithfully as possible)
maintains the semantics and structure of the
EXPRESS schema. This conversion is what is called
an early binding approach because there is a close
relationship between the EXPRESS schema and the
resulting DTD. Table 1 illustrates the relationship
between the EXPRESS declaration and the
equivalent declaration in the XML DTD.

From the document-biased perspective of DTD
development, the result of the conversion is
somewhat unpleasing: it is bulky, verbose, and
inflexible. However, from the data-biased
perspective, the resulting DTD is robust and
complete with respect to the product data semantics
and constraints in the EXPRESS schema.

PDML has chosen this literal, data-centric approach
to XML for a number of reasons:

• The DTD captures both the semantics and
structure of the EXPRESS schema, thus
explicitly encoding the semantics and structure
in XML instances using the DTD;

• Verbosity and file size are not as important a
concern as they once were due to faster channels,
higher bandwidth, and common file compression
tools and techniques;

• The “early binding” of the DTD results in XML
that, to a large degree, encodes the schema into

Table 1 - Example of EXPRESS -> XML DTD Conversion

ENTITY product;
 name : STRING;
 description : STRING;
 id : STRING;
 frame_of_reference : SET [1:?]
OF product_context;
END_ENTITY;

<!ELEMENT product (product.name,
product.description, product.id,
product.frame_of_reference, material?)>
<!ATTLIST product
 id ID #IMPLIED>

 <!ELEMENT product.name (#PCDATA)>
 <!ATTLIST product.name
 datatype CDATA #FIXED "STRING">
 <!ELEMENT product.description (#PCDATA)>
 <!ATTLIST product.description
 datatype CDATA #FIXED "STRING">
 <!ELEMENT product.id (#PCDATA)>
 <!ATTLIST product.id
 datatype CDATA #FIXED "STRING">
 <!ELEMENT product.frame_of_reference
 (product_context_ref+)>
 <!ATTLIST product.frame_of_reference
 aggregatetype CDATA #FIXED "SET">

<!ELEMENT product_ref EMPTY>
<!ATTLIST product_ref
 refid IDREF #REQUIRED>

Product Data Markup Language PDML White Paper

Page 7 of 15

the data (i.e., the schema can be largely
reconstructed from the data itself); the
explicitness of the schema in the data has two
valuable side effects:
§ The data is more resistant to degradation over

time, thus making it a better archiving format;
§ The data is more resistant to problems with

compatibility between versions of the schema
(e.g., “upward compatibility” problems)
because the data fields are explicitly named
and delimited.

The DTD’s that comprise PDML adhere to the XML
1.0 specification [1] syntax. Therefore, any XML
compliant tool kit will be able to process PDML.

4 Product Data Markup Language

PDML is not a single data specification, but rather a
structure of related specifications and tools to deploy
and use integrated product data on the World Wide
Web. PDML Version 0.5 is composed of the
following components:

• Seven Application Transaction Sets:
• The Integration Schema;
• Mapping specification between the Application

Transaction Sets and the Integration Schema;
• The PDML Toolkit.

The relationship between these components is
illustrated in Figure 1. As PDML grows, additional
transaction sets will be added to the specification.

PDML defines views called Application Transaction
Sets (ATS) that name and structure data in a way
already familiar to a particular usage community –
they establish a vocabulary for the community. The
ATS is an XML DTD that specifies the elements and
the structure needed to exchange data between
current users of a particular application (i.e., users
within the same context). Exchange of the data and a
presentation style sheet would enable a user to
receive and view the product data with any
mainstream (and XML-savvy) web browser.

These view-specific vocabularies don’t solve the
integration problem, however.

The usage community (i.e., context) represented by
the weapon system design and support personnel
actually consists of many component usage
communities. The Application Transaction Sets were
designed specifically to support a few of the most
important of these communities. The data required in
these contexts overlaps with data in other contexts;

furthermore, the data used in different contexts often
has different names, or is stored in a different
structure. Therefore, PDML provides an Integration
Schema that serves as an intermediary between
views, a neutral representation that is designed to
service the information needs of all the contexts
within weapon system support in a uniform and
integrated way.

The relationship between the Application Transaction
Sets and the Integration Schema is specified through
mappings, or conversion rules, between the
Application Transaction Set and the Integration
Schema. The mappings, thus, provide an approach
for taking view-specific data, converting it to a
neutral integrated representation, and producing a
new view-specific representation that presents the
reconciled and integrated data to a user or
application.

Application Transaction Sets

Jargon, lexicons, vocabularies, and languages all
develop and grow within “meaning communities” –
collections of individuals to whom certain words and
phrases have a specific meaning and within which the
meaning is reinforced and evolves through usage
over time. The PDML Application Transaction Sets
are exactly that: vocabularies meaningful within a
well-defined community - except that the community
is defined as the users of a particular legacy system
like JEDMICS or standard like MIL-STD-2549.

Application Transaction Sets permit legacy data to be
converted to/conveyed by XML in a simple form
with a virtually one-to-one correspondence between
the XML instances and the legacy data elements.
This data can be exchanged with other systems that
share the view using the Application Transaction Set
directly, or it can be converted to the neutral format
(i.e., the Integration Schema), integrated with data
from other views, and then converted “back out” into
another view.

There are seven Application Transaction Sets defined
in PDML (version 0.5, April, 1999):

• Product Structure;
• Product Description Document;
• Technical Order –4;
• JEDMICS;
• MIL-STD-2549 DIP1;
• MIL-STD-2549 DIP3;
• MIL-STD-2549 DIP7.

Product Data Markup Language PDML White Paper

Page 8 of 15

The scope of the Application Transaction Sets as a
whole and the definition of individual transaction sets
originated from a number of sources. The PDM
Enablers effort within the Manufacturing Domain
Task Force of OMG [7] defines an interface enabling
the interoperabilty of PDM systems. Of this work,
the areas of particular importance were the Product
Structure and the Product Description Documents
associated with the products.

Another source was the scenario to be used in the
demonstration of PDML. The scenario is based on
the competitive procurement of B52 Parts, which led
to the other four transaction sets.

Product Structure and Product Description
Document

The Product Structure and (associated) Product
Description Document Application Transaction Sets
originates in the requirements to support PDM
interoperability. From the perspective of a single
product, it calls out related design documentation,
relationships to other parts, and usages of the product
within higher assemblies/end items. The primary
elements that comprise the Product Structure view
are presented in Table 2.

The Product Description Document Application
Transaction Set is a very simple view intended for
document identification and management. Table 3
presents the primary elements in the Design
Document view.

JEDMICS and Technical Order –4

JEDMICS is the primary system used by DoD for
managing technical data. Thus, it provides a natural
context for use and management of product data
within the DoD. It is also the Application
Transaction Set most closely tied to a particular
legacy system.

Because it is such a well-defined and simple system
view, there is only a single element defined in the
JEDMICS transaction set, as shown in Table 4.

The Technical Order –4 is a standard form used by
the Engineering Support Authority (ESA) at Tinker
Air Force Base for maintenance and procurement of
B52 parts. Thus, the TO –4 is another natural context
for the definition and use of product data. The
elements of the TO –4 transaction set are shown in
Table 5.

<!-- === -->

<!ELEMENT direction (direction.direction_ratios)>
<!ATTLIST direction
 id ID #IMPLIED>

 <!ELEMENT direction.direction_ratios (direction.direction_ratios.item+)>
 <!ATTLIST direction.direction_ratios
 aggregatetype CDATA #FIXED "LIST">
 <!ELEMENT direction.direction_ratios.item (#PCDATA)>
 <!ATTLIST direction.direction_ratios.item
 datatype CDATA #FIXED "REAL">

<!ELEMENT direction_ref EMPTY>
<!ATTLIST direction_ref
 refid IDREF #REQUIRED>

<!-- === -->

<!ELEMENT document (document.id, document.name, document.description,
 document.kind, (document_with_class?, file?)?)>
<!ATTLIST document
 id ID #IMPLIED>

 <!ELEMENT document.id (#PCDATA)>
 <!ATTLIST document.id
 datatype CDATA #FIXED "STRING">
 <!ELEMENT document.name (#PCDATA)>
 <!ATTLIST document.name
 datatype CDATA #FIXED "STRING">
 <!ELEMENT document.description (#PCDATA)>
 <!ATTLIST document.description
 datatype CDATA #FIXED "STRING">
 <!ELEMENT document.kind (document_type_ref)>

<!ELEMENT document_ref EMPTY>
<!ATTLIST document_ref
 refid IDREF #REQUIRED>

Integration
Schema

JEDMICS
Application

Transaction Set
<!-- === -->

<!ELEMENT identifier(#PCDATA)>
<!ATTLIST identifier
 datatype CDATA #FIXED "STRING">

<!-- === -->

<!ELEMENT part_relationship
(part_relationship.other_relating_product_identifier,

part_relationship.other_relating_.other_product_relationship
_name,
 part_relationship.other_product_relationship_description,
part_relationship.related_product)>
<!ATTLIST part_relationship
 id ID #IMPLIED>

 <!ELEMENT
part_relationship.other_relating_product_identifier
(#PCDATA)>
 <!ATTLIST
part_relationship.other_relating_product_identifier
 datatype CDATA #FIXED "STRING">
 <!ELEMENT
part_relationship.other_relating_product_design_version
(#PCDATA)>
 <!ATTLIST
part_relationship.other_relating_product_design_version
 datatype CDATA #FIXED "STRING">

<!ELEMENT part_relationship_ref EMPTY>
<!ATTLIST part_relationship_ref
 refid IDREF #REQUIRED>

Product Structure
Application

Transaction Set
<!-- === -->

<!ELEMENT identifier(#PCDATA)>
<!ATTLIST identifier
 datatype CDATA #FIXED "STRING">

<!-- === -->

<!ELEMENT part_relationship
(part_relationship.other_relating_product_identifier,

part_relationship.other_relating_.other_product_relationship
_name,
 part_relationship.other_product_relationship_description,
part_relationship.related_product)>
<!ATTLIST part_relationship
 id ID #IMPLIED>

 <!ELEMENT
part_relationship.other_relating_product_identifier
(#PCDATA)>
 <!ATTLIST
part_relationship.other_relating_product_identifier
 datatype CDATA #FIXED "STRING">
 <!ELEMENT
part_relationship.other_relating_product_design_version
(#PCDATA)>
 <!ATTLIST
part_relationship.other_relating_product_design_version
 datatype CDATA #FIXED "STRING">

<!ELEMENT part_relationship_ref EMPTY>
<!ATTLIST part_relationship_ref
 refid IDREF #REQUIRED>

Tech Order -4
Application

Transaction Set
<!-- === -->

<!ELEMENT identifier(#PCDATA)>
<!ATTLIST identifier
 datatype CDATA #FIXED "STRING">

<!-- === -->

<!ELEMENT part_relationship
(part_relationship.other_relating_product_identifier,

part_relationship.other_relating_.other_product_relationship
_name,
 part_relationship.other_product_relationship_description,
part_relationship.related_product)>
<!ATTLIST part_relationship
 id ID #IMPLIED>

 <!ELEMENT
part_relationship.other_relating_product_identifier
(#PCDATA)>
 <!ATTLIST
part_relationship.other_relating_product_identifier
 datatype CDATA #FIXED "STRING">
 <!ELEMENT
part_relationship.other_relating_product_design_version
(#PCDATA)>
 <!ATTLIST
part_relationship.other_relating_product_design_version
 datatype CDATA #FIXED "STRING">

<!ELEMENT part_relationship_ref EMPTY>
<!ATTLIST part_relationship_ref
 refid IDREF #REQUIRED>

Product Description
Document Application

Transaction Set
<!-- === -->

<!ELEMENT identifier(#PCDATA)>
<!ATTLIST identifier
 datatype CDATA #FIXED "STRING">

<!-- === -->

<!ELEMENT part_relationship
(part_relationship.other_relating_product_identifier,

part_relationship.other_relating_.other_product_relationship
_name,
 part_relationship.other_product_relationship_description,
part_relationship.related_product)>
<!ATTLIST part_relationship
 id ID #IMPLIED>

 <!ELEMENT
part_relationship.other_relating_product_identifier
(#PCDATA)>
 <!ATTLIST
part_relationship.other_relating_product_identifier
 datatype CDATA #FIXED "STRING">
 <!ELEMENT
part_relationship.other_relating_product_design_version
(#PCDATA)>
 <!ATTLIST
part_relationship.other_relating_product_design_version
 datatype CDATA #FIXED "STRING">

<!ELEMENT part_relationship_ref EMPTY>
<!ATTLIST part_relationship_ref
 refid IDREF #REQUIRED>

Mapping
Specification

Mapping
Specification

Figure 1 - Relationship of PDML Components

Product Data Markup Language PDML White Paper

Page 9 of 15

MIL-STD-2549 DIP1, DIP3, and DIP7

MIL-STD-2549 [3] is new DoD standard for a
Configuration Management Data Interface. This
standard defines the data elements, definitions, and
relationships necessary for the delivery of and access
to electronic configuration management data.

“DIPs” are Data Information Packets that specify a
predefined subset or usage of the overall 2549
standard for a particular purpose. The DIPs defined
as Application Transaction Sets in PDML are:

• DIP1: Drawings, Specification, Standards,
Software and Software Support Documents

Data concerning documents defining the
configuration design of hardware or software, or
establishing standards for material, products, or
processes.

• DIP3: Product/Asset Configuration

Data concerning: part/material identification,
serialization/lot tracking, actual current
configuration of fielded products, update
information concerning changes.

• DIP7: Engineering Parts List

Data concerning the content of an engineering
parts list.

All the definitions and conformance rules for these
DIPs have also been adopted in PDML

Integration Schema

All of the Application Transaction Sets are views (or
subsets) of product data necessary for weapon system
support. They also overlap with respect to the data
they include – a quick glance at the elements
presented above shows values such as
part_number and drawing_number are

Table 2 - Product Structure Elements

<!ELEMENT product_structure ((part_relationship |
part_usage_relationship | product | product_relationship |
related_design_document)*)>

<!ELEMENT identifier(#PCDATA)>
<!ELEMENT part_relationship (other_relating_product_identifier,

other_relating_product_design_version,
other_product_relationship_name,
other_product_relationship_description, related_product)>

<!ELEMENT part_usage_relationship (product_structure_context_name,
assembly_product_identifier, assembly_product_design_version,
usage_description, interface_product_identifier,
interface_product_design_version, interface_description,
substitute_product_identifier, substitute_product_design_version,
substitution_requirements, substitution_rank,
alternate_product_identifier, alternate_product_design_version,
alternate_description)>

<!ELEMENT product (product_identifier, product_name,
product_description, product_design_version, design_document)>

<!ELEMENT product_relationship (related_product, relating_product)>
<!ELEMENT related_design_document (design_version_description,

design_drawing_number, drawing_type, find_number,
design_document_number, document_type, document_subject_name,
document_subject_description)>

Table 3 – Product Description Document Elements

<!ELEMENT product_description_document ((associated_design_document |
drawing_document)*)>

<!ELEMENT associated_design_document (design_document_number,
document_title, document_release_date, document_author_name,
author_organization_name, author_organization_address)>

 <!ELEMENT drawing_document (drawing_number, drawing_revision,
designer_name, designer_organization_name,
designer_organization_address, drawing_size, drawing_sheet,
drawing_sheet_revision)>

Product Data Markup Language PDML White Paper

Page 10 of 15

common to two or more of the views. The
relationships between the data defined in these views
are established through the mapping to the
Integration Schema.

The Integration Schema is a large DTD that is based
on the STEP Integrated Resources. Like the
Integrated Resources, it serves as an integrating
mechanism – an integrated view – of the product data
used within the communities/applications represented
by the Application Transaction Sets. Unlike the
STEP, data is not exchanged using this neutral view,
but rather using the external views. When an
integrated, cross-application view of product data is
needed, data is extracted from the appropriate
systems using their Application Transaction Sets,
integrated via the Integration Schema, and then
converted back to a specific Application Transaction
Set view. The PDML Toolkit provides the mapping
and conversion capabilities that insulate the users of
the individual views from the complexity of the
mapping process.

The relationship between each Application
Transaction Set and the Integration Schema is
specified in Mapping Specification, explained in the
following section.

The Integration Schema is not intended to be directly
used for product data exchange. Rather, it is more
appropriate to consider it a temporary neutral form
for integration and view translation.

Table 6 presents a small subset of the elements
defined in the Integration Schema.

Mapping Specifications and View Integration

The Application Transaction Sets are application-
specific views of product data and define a narrow
context of data usage. The Integration Schema is an
application independent view of product data and
establishes a context of product data usage that
encompasses the contexts of the application views.
As a view, the Application Transaction Sets can be
considered as a particular interpretation of the
Integration Schema. This interpretation is formally
specified by a Mapping Specification (just as
“interpretations” are specified by Mapping Tables in
STEP).

Mapping is more than conversion of between data
structures. It encompasses the interpretation of data
based on contextual values – a value from a single
field doesn’t always mean exactly the same thing
(though it always generally means the same thing.)
Based on contextual value that indicates the use, a
field such as document.id could be drawing
number, a tech order number, the designation of a
standard or specification, or the identification of a
digital file.

The PDML Toolkit “internalizes” and uses the
Mapping Specification to drive the conversion of
XML data to/from the Integration Schema format.

Table 4 – JEDMICS Element

<!ELEMENT jedmics (drawing_number, cage_code, sheet, frame, revision,
high_dwg, drawing_size, contl_code, revision_date, number_frames,
file_type, file_size, security, rights, foreign, nuclear, safety,
dist, physical_location, ODMS_date, in_date, last_access_date,
last_change_date, last_change_user_id, file_type_source_flavor,
file_type_dest_flavor, file_type_format, extension, num_acc_docs)>

Table 5 – Technical Order -4 Elements

<!ELEMENT tech_order_4 ((ipb | figure | major_assembly_breakdown |
use_on_code)*)>

<!ELEMENT ipb (part_number, nomenclature, technical_order_number, CAGE,
Name, Address, TCTO_number, Issue_date)>

<!ELEMENT figure (figure_index, section, sheet, assembly_index_number,
part_number, units, use_on_code, parts_list_id)>

<!ELEMENT major_assembly_breakdown (index_number, section, description,
figure_number)>

<!ELEMENT use_on_code (code, definition)>

Product Data Markup Language PDML White Paper

Page 11 of 15

PDML Toolkit

The PDML Application Transaction Sets can be used
directly by application system for viewing and
exchanging product data. It allows a user to pull
XML files from local or remote locations, browse
multiple XML documents in selected styles, integrate
multiple XML documents of the same DTD, and
publish XML files. It also provides API’s allowing
applications to exchange data through XML
technology.

The integration performed in the Toolkit is driven by
the mapping specifications. Using the mapping
specification, the toolkit can convert data encoded
according to an Application Transaction Set to the
format specified by the Integration Schema. Data
encoded according to other Application Transaction
Sets can then also be converted and integrated into
the neutral form. This integrated data set can then be
converted “back out” to data conforming to an
Application Transaction Set and view, exchanged, or
saved.

The intent of PDML is for users to interact only with
the Application Transaction Set views of the data; the

Table 6 – Integration Schema Elements

<!ELEMENT address (internal_location?, street_number?, street?,
postal_box?, addtown?, region?, postal_code?, country?,
facsimile_number?, telephone_number?, electronic_mail_address?,
telex_number?, organizational_address?)>

<!ELEMENT calendar_date (month_component, day_component)>
<!ELEMENT date (year_component, calendar_date?)>
<!ELEMENT dated_effectivity (effectivity_start_date,

effectivity_end_date)>
<!ELEMENT document (id, name, description, kind, (document_with_class?,

file?)?)>
<!ELEMENT document_type (product_data_type)>
<!ELEMENT drawing_definition (drawing_number, drawing_type?)>
<!ELEMENT drawing_document (drawing_revision, document)>
<!ELEMENT drawing_revision (revision_identifier, drawing_identifier,

intended_scale?, total_sheet_number)>
<!ELEMENT drawing_sheet_revision (revision_identifier)>
<!ELEMENT effectivity (effectivity.id, effectivity.name,

effectivity.description, (dated_effectivity |
serial_numbered_effectivity | lot_effectivity)?)>

<!ELEMENT file (size, file_format, source)>
<!ELEMENT group (group.id, group.name, group.description)>
<!ELEMENT local_time (hour_component, minute_component,

second_component)>
<!ELEMENT organization (organization.identifier?, organization.name,

organization.description, cage?)>
<!ELEMENT person (person.identifier, first_name?, middle_names?,

last_name?, prefix_titles?, suffix_titles?)>
<!ELEMENT product (product.name, product.description, product.id,

product.frame_of_reference, material?)>
<!ELEMENT product_composition (produrelating_product_definition,

related_product_definitions, description,
product_composition.name)>

<!ELEMENT product_context (discipline_type)>
<!ELEMENT product_definition (product_definition.id,

product_definition.description, of_product, version_id,
frame_of_reference,
product_definition_with_associated_documents?)>

<!ELEMENT product_definition_context (life_cycle_stage)>
<!ELEMENT product_usage_relationship

(specified_usage_occurrence_relationship?)>
<!ELEMENT security_classification (security_classification.name,

purpose, security_level)>
<!ELEMENT security_classification_level

(security_classification_level.name)>

Product Data Markup Language PDML White Paper

Page 12 of 15

neutral model is hidden by the mapping specification
and conversion software.

5 Why is PDML different?

PDML introduces to the web a new paradigm for data
use, integration, and exchange. Mainstream pursuits
of standardization of XML vocabularies and DTDs
focus their efforts on the definition of the elements of
their vocabulary – within their own particular usage
community! There is nothing inherently wrong with
these efforts, and it is extremely important that data
usage communities identify and define the principle
elements that they use to talk among themselves and
exchange information. However, experience with
data exchange standards such as STEP show that
such solutions are not

• portable;
• usable or useful (or not very usable/useful)

outside the usage community that defined it;
• integrated with other vocabularies (by the single

fact that they were developed within and for a
particular community and without consideration
of other vocabularies.

PDML provides a mechanism and paradigm in which
data exchange is no longer bound to semantically
“flat” schemas, but leverages the abstraction and
context-sensitivity that people use unconsciously
every day in human language use. In this way,
individual usage communities can “have their cake
and eat it, too” – they can use/exchange data in
accordance with the own vocabulary and definitions,
but still have an unambiguous path for exchanging
data with users from other communities.

Unlike many XML DTD development efforts, PDML
is not “thrown together” to meet a few short-sighted
needs. Rather, PDML is based on database schema
modelling principles and adopts a long-term view of
data use and integration. Short-term solutions are
brittle and quickly become obsolete. The flexible,
stable, and reusable solution offered by PDML in the
form of the Integration Schema offers a long-term
solution can be applied (through interpretation) to
any number of usage communities. The usage
communities may come and go, but the Integration
Schema will remain and provide an integrated point
for application views both past and present.

The independent development of XML DTDs as
vocabularies for individual and disjoint communities
of users will result in a cacophony of incompatible –
or worse: partially compatible – data specifications.

If there is to be any hope that web resources can ever
truly be integrated, some form of relationship or
structure that provides a method for mapping
between distinct communities is essential. PDML
provides a valuable step in that direction.

Product Data Markup Language PDML White Paper

Page 13 of 15

Appendix A - Example XML in different views

XML data for the Tech Order –4
Application Transaction Set

XML data for same information in
Integration Schema format

<to_4 name=”to_4” id=”TO41” version=”master
dated 04/08/99”>

<part id="PRT1">
 <part_number>3-61018</part_number>
 <nomenclature>LINK, Bomb door deflection

joint
 </nomenclature>
 <technical_order_number>1B-52H-4
 </technical_order_number>
</part>

<part id="PRT2">
 <part_number>8-6515-3</part_number>
 <nomenclature>SPAR INSTL, Center bomb door

inboard (LH only) (see fig. 570)
 </nomenclature>
 <technical_order_number>
 </technical_order_number>
</part>

<major_assembly_breakdown_figure id="MABF1">
 <index_number>17</index_number>
 <section_number>43</section_number>
 <section_description>
 Wheel and bomb bay area
 </section_description>
 <figure_number>570</figure_number>
 <figure_description>
 Center Bomb Door Spar Installations
 </figure_description>
</major_assembly_breakdown_figure>

</to_4>

<pdml name=”pdml” id=”pdml1” version=”master dated
04/20/99”>

<document_type id="DT1">
 <product_data_type>technical order
 </product_data_type>
</document_type>
<document id="D1">
 <document.id>1B-52H-4</document.id>
 <document.name></document.name>
 <kind>
 <document_type_ref refid="DT1"/>
 </kind>
</document>

<product_context id="PC1">
 <discipline_type>B-52</discipline_type>
</product_context>
<product id="P1">
 <product.name>LINK, Bomb door deflection

joint</product.name>
 <product.description></product.description>
 <product.id >3-61018</product.id>
 <product.frame_of_reference>
 <product_context_ref refid="PC1"/>
 </product.frame_of_reference>
</product>

<product id="P2">
 <product.name>SPAR INSTL, Center bomb door inboard

(LH only) (see fig. 570)</product.name>
 <product.description></product.description>
 <product.id >8-6515-3</product.id>
 <product.frame_of_reference>
 <product_context_ref refid="PC1"/>
 </product.frame_of_reference>
</product>

<product_definition id=”PD1”>
<product_definition.id>43</product_definition.id>
 <product_definition.description>
 Wheel and bomb bay area
 </product_definition.description>
 <product_definition.of_product>
 <product_ref refid="P2"/>
 </product_definition.of_product>
 <product_definition.version_id>
 </product_definition.version_id>
 <product_definition.frame_of_reference>
 <product_definition_context_ref refid=”PDC1”/>
 </product_definition.frame_of_reference>
 <product_definition_with_associated_documents>
 <document_ref refid="D2"/>
 </product_definition_with_associated_documents>
</product_definition>

<document_type id="DT2">
 <product_data_type>-4 IPB figure
 </product_data_type>
</document_type>
<document id="D2">

Product Data Markup Language PDML White Paper

Page 14 of 15

 <document.id>570</document.id>
 <document.name>
 Center Bomb Door Spar Installations
 </document.name>
 <kind>
 <document_type_ref refid="DT2"/>
 </kind>
</document>

<document_relationship id=”DR1”>
 <document_relationship.name>IPB figure
 </document_relationship.name>
 <document_relationship.description>
 </document_relationship.description>
 <document_relationship.relating_document>
 <document_ref refid="D1"/>
 </document_relationship.relating_document>
 <document_relationship.related_document>
 <document_ref refid="D2"/>
 </document_relationship.related_document>
</document_relationship>

<assignment_role id=”AR1”>
 <assignment_role.name>part illustration
 </assignment_role.name>
 <assignment_role.description>
 </assignment_role.description>
</assignment_role>

<product_document_reference id=”PDR1”>
 <pdr.documented_products>
 <product_ref refid="P1"/>
 </pdr.documented_products>
 <pdr.assigned_document>
 <document_ref refid="D2">
 </pdr.assigned_document>
 <pdr.role>
 <assignment_role_ref refid=”AR1”>
 </pdr.role>
 <product_document_reference.source>
 </pdr.source>
</product_document_reference>

<assignment_role id=”AR2”>
 <assignment_role.name>major assembly breakdown index

number</assignment_role.name>
 <assignment_role.description>
 </assignment_role.description>
</assignment_role>

<item_location_identification_assignment id=”ILIA1”>
 <ilia.identified_product_documents>
 <product_document_reference_ref refid=”PDR1”/>
 </ilia.identified_product_documents>
 <ilia.assigned_id>17</ilia.assigned_id>
 <ilia.role>
 <assignment_role_ref refid="AR2"/>
 </ilia.role>
</item_location_identification_assignment>

</pdml>

Product Data Markup Language PDML White Paper

Page 15 of 15

Bibliography

1. Bray, T., Paoli, J., and Sperberg-McQueen, C.M. Extensible Markup Language (XML) 1.0 W3C
Recommendation 10-February-1998. (1998) http://www.w3.org/. Date of page: 1998-02-10. Found c. 199-04-
24.

2. Danner, W.F. Developing Application Protocols (APs) Using the Architecture and Methods of STEP
(STandard for the Exchange of Product data). Fundamentals of the STEP Methodology. National Institute of
Standards and Technology. NISTIR 5972. 1997.

3. Department of Defense. Department of Defense Interface Standard Configuration Management Data Interface.
MIL-STD 2549, standard, 1997.

4. Fowler, M. and Scott, K., UML Distilled Applying the Standard Object Modeling Language. Addison-Wesley
Object Technology Series, G. Booch, I. Jacobson, and J. Rumbaugh, ed. Addison-Wesley, Reading, Mass,
1997. ISBN 0-201-32563-2.

5. Goldfarb, C. and Prescod, P., The XML Handbook. Open Information Management, C. Goldfarb, ed. Prentice
Hall, Upper Saddle River, NJ, 1998. ISBN 0-13-081152-1.

6. ISO. Industrial automation systems and integration - Product data representation and exchange - Part 11:
EXPRESS Language Reference Manual. ISO 10303-11:1994, International standard, Geneva, 1994.

7. OMG. PDM Enablers Joint Proposal to the OMG in Response to OMG Manufacturing Domain Task Force
RFP 1. mfg/98-02-02, Proposal standard, 1998

Acronyms

JEDMICS Joint Engineering Data Management Information Control System

HTML HyperText Markup Language

PDE Product Data Exchange

PDM Product Data Management

PDML Product Data Markup Language

SGML Standard Generalized Markup Language

STEP STandard for the Exchange of Product model data

XML eXtensible Markup Language

