Open Financial Exchange

Specification 2.0

April 28, 2000

© 2000 Intuit Inc., Microsoft Corp. All rights reserved

Open Financial Exchange Specification Legend

Open Financial Exchange Specification ©1996-2000 by its publishers: CheckFree Corp., Intuit Inc., and
Microsoft Corporation. All rights reserved.

A royalty-free, worldwide, and perpetual license is hereby granted to any party to use the Open Financial
Exchange Specification to make, use, and sell products and services that conform to this Specification.

THIS OPEN FINANCIAL EXCHANGE SPECIFICATION IS MADE AVAILABLE “AS IS” WITHOUT
WARRANTY OF ANY KIND. TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW,
MICROSOFT, INTUIT AND CHECKFREE (“PUBLISHERS”) FURTHER DISCLAIM ALL
WARRANTIES, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT, ALL
OF WHICH ARE HEREBY DISCLAIMED. THE ENTIRE RISK ARISING OUT OF THE USE OF
THIS SPECIFICATION REMAINS WITH RECIPIENT. TO THE MAXIMUM EXTENT PERMITTED
BY APPLICABLE LAW, IN NO EVENT SHALL THE PUBLISHERS OF THIS SPECIFICATION BE
LIABLE FOR ANY CONSEQUENTIAL, INCIDENTAL, DIRECT, INDIRECT, SPECIAL, PUNITIVE,
OR OTHER DAMAGES WHATSOEVER (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR
LOSS OF BUSINESS PROFITS, BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION,
OR OTHER PECUNIARY LOSS) ARISING OUT OF ANY USE TO WHICH THIS SPECIFICATION
IS PUT, EVEN IF THE PUBLISHERS HEREOF HAVE BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

TABLE OF CONTENTS

Chapter 1 OVeIVIEW e e e e e 15
LIIntroduction. i 15
1.1.1 Design Principles 16
1.2 Open Financial ExchangeataGlance................... 18
121 Data Transport.o 18
1.2.2 Request and Response Model .. 20
1.3 Definitionso oo 21
LB L USer . oot e 21
1.3.2 Financial Institution o 21
1.3.3 Service Provider i 21
134 Client. ... 22
135 5 rver .. 22
13,6 SeIVICe. .\ttt 22
L3 7 Tag. o 22
138 Element. 23
139 Aggregate. ... 23
1.3 I0Request.o 24
1311 ReSPONSe. . .o 24
1312 MeSSage ..ot 24
1.3. 13 Transaction.ottt 24
1.3.14 Synchronization.ttt 24
1315 Message Set 25
LA OFX Versions. . ..ottt e 25
1.5 Conventions.ot 26
Chapter 2 Structure 29
21HTTP Headers.o e 30
2.2 Open Financial Exchange File Format. 30
221 0OFXHEADER 32
222 VERSION . .. 32
223 SECURITY .. 32
2.2.4 OLDFILEUID and NEWFILEUID 32
23 XML Details. . ..o 34
2.3.1 ComplianCe 34
2.4 Open Financial Exchange XML Structure. 34

OFX 2.0 Specification 6/30/00 iii

24T OVEIVIEW . v vt e e e e 34

242 CaseSensitivity 34
243 TopLevel ... oo 35
244 MESSAZRS. . . oottt 35
2.4.5 Message Sets and Version Control 37
2.4.6 TransactionSo v it 39
2.4.7 Synchronization Wrapperuuuiiiiiiiii i 42
2.4.8 Message Set Wrapper....... ... 42
2.5 The Signon Message Set.o 42
2.5.1 Signon <SONRQ>and <SONRS>, 42
2.5.2 USERPASS Change <PINCHRQ> <PINCHRS> 48
2.5.3 <CHALLENGERQ> <CHALLENGERS>............o, 50
2.5.4 Signon Message Set Profile Information 51
255 Examples. 52
2.6 External Data Support 52
2.7 Extensions to Open Financial Exchange o ... 53
2.8 Backward Compatibility with Pre-OFX 2.0 Systems.ooove.... 53
281EndTagUsage. ... 53
2.82 XML Compliant Header. i 54
2.8.3 International Support......... 54
2.8.4 Message Set Versioningo i 55
Chapter 3 Common Aggregates, Elements, and Data Types. 57
3.1 Common Aggregatest e 57
3.1.1 Identification of Financial Institutions and Accounts 57
3.1.2 Punctuation in Certain User-Supplied Values 57
3.1.3 Echoing in Responses. 59
3.1.4 Balance Records <BAL>....... i 59
3.1.5 Error Reporting <STATUS> i, 60
32CommonElements. 61
3.2.1 Client-Assigned Transaction UID <TRNUID>........................... 61
3.2.2 Server-Assigned ID <SRVRTID> i, 62
3.2.3 Financial Institution Transaction ID <FITID> 63
324 Token <TOKEN>. i e 64
3.2.5 Transaction Amount <TRNAMT>......... 64
326 Memo <MEMO>. 64
3.2.7 Date Start and Date End <DTSTART><DTEND> 65
328 CommonDataTypes ... 66
3.2.9 Amounts, Prices, and Quantities i 69

6/30/00 OFX 2.0 Specification

B2 10 Languaget e 70

3.2.11 Other BasicData Types ..ottt 70
Chapter 4 OFX SecCUrityot e 71
4.1 Security Conceptsin OFX i 71
4.1.1 Architectureo 71
4.1.2Security Goals 72
4.1.3 Security Standards 72
4.1.4 FI Responsibilities. 73
4.1.5 Security Levels: Channel vs. Application 74
4.2 Security Implementation in OFX o i 75
4.2.1 Channel-Level Securityo i 75
4.2.2 Application-Level Security oo 77
Chapter 5 International Support 83
51Languageand Encoding 83
5.2 Currency <CURDEF> <CURRENCY> <ORIGCURRENCY>.................... 83
5.3 Country-Specific Element Values.o i 85
Chapter 6 Data Synchronization. 87
0.1 OVeIVIEW .. oot 87
6.2Background 87
6.3 Data Synchronization Approach i 88
6.4 Data Synchronization Specifics ... 89
0.4 1ToKeNS. 89
6.4.2 The Synchronization Process.ttt 90
6.4.3 Synchronizable Objectso i 92
6.4.4 Token and Full Syncronization Summary................... 92
6.5 Conflict Detection and Resolution.................... o e 94
6.6 Synchronization Options. i i 94
6.6.1 Synchronization Errors i 96
6.7 Typical Server Architecture for Synchronization 9
6.8 Typical Client Processing of Synchronization Results 98
6.9 Simultaneous Connections i 99
6.10 Synchronization Alternatives......... i 99
6.10.1 File-Based Error Recovery........... i 100

OFX 2.0 Specification 6/30/00 %

6.10.2 Lite Synchronization. i 102

6.10.3 Relating Synchronization and Error Recovery 103
6. 11 EXamples 104
Chapter 7 FIProfile. e 107
71 OVeIVIEW . oo 107
711 Message Sets 107
7.1.2VersionControl 108
7.1.3 Batching and Routing.oouiiii e 109
7.1.4 Client Signon for Profile Requests 109
7.1.5 Profile Request <PROFRQ>. i 110
7.2 Profile Response <PROFRS>. i i 111
721 MessageSet 112
722SignonRealms........ i 114
7235tatus Codes. 115
7.3 Profile Message Set Profile Information 115
Chapter 8 Activation & Account Information. 117
Bl OVEIVIEW . oot 117
8.2 Approaches to User Sign-Up with OFX, 117
8.3 Usersand Accounts 118
8.4 Enrollment and Password Acquisition 118
841 UserIDs ... 119
8.4.2 Enrollment Request <ENROLLRQ>................. 119
8.4.3 Enrollment Response <ENROLLRS>.ot 120
8.4.4 Enrollment Status Codes i 121
845 Examples. 122
8.5 Account Information 123
8.5.1 Request <ACCTINFORQ>. o 124
8.5.2 Response <ACCTINFORS>. i 124
8.5.3 Account Information Aggregate <ACCTINFO> 125
8.5.45tatus Codes. 125
855 Examples. ... 126
8.6 Service Activation............ ..o i 127
8.6.1 Activation Request <ACCTRQ>....... i 127
8.6.2 Activation Response <ACCTRS>.......... 129
8.6.3Status Codes. 130
8.6.4 Service Activation Synchronization................ i L 131

6/30/00 OFX 2.0 Specification

8.6.5 Examples ... 132

8.7 Name and Address Changesouiuuiiiiiiiiiiiiiiiiine... 133
8.7.1 Change User Information Request <CHGUSERINFORQ> 133
8.7.2 Change User Information Response <CHGUSERINFORS> 134
873StatusCodes.o 134
8.7.4 Change User Information Synchronization 135

8.8 Signup Message Set Profile Information................... o oo 136

Chapter 9 Customer to FI Communication 139

9.1 The E-Mail Message Set.......... ..o 139

9.2E-Mail Messages. 139
9.2.1 Regular vs. Specialized E-Mail 140
9.2.2 Basic <MAIL> Aggregate it 140
9.2.3 E-Mail <MAILRQ> <MAILRS>ttt iiiiiiiiiaen 142
9.2.4 E-Mail Synchronization <MAILSYNCRQ> <MAILSYNCRS> 144
9.25 E-Mail Example. ... 145

93GetHTMLDPageo i 148
9.3.1 MIME Get Request and Response <GETMIMERQ> <GETMIMERS>. 148
9.32MIME Example 149

9.4 E-Mail Message Set Profile Information oo i 151

Chapter 10 Recurring Transactionsttt 153

10.1 Creating a Recurring Model i i 153

10.2 Recurring Instructions <RECURRINST> ool 154
10.2.1 Values for <FREQ>. . ..ottt ittt e e e e e e e e 154
10.2.2 Exampleso 155

10.3 Retrieving Transactions Generated by a Recurring Model 157

10.4 Modifying and Canceling Individual Transactions 157

10.5 Modifying and Canceling Recurring Models. 157
1051 Exampleso 158

10.6 Expired Models. 160

Chapter 11 Banking 161

11.1 Consumer and Business Banking. ool 161

11.2CreditCard Data. 161

11.3 Common Banking Aggregates i 161

OFX 2.0 Specification 6/30/00 vii

11.3.1 Banking Account <BANKACCTFROM> and <BANKACCTTO> 162

11.3.2 Credit Card Account <CCACCTFROM> and <CCACCTTO> 166
11.3.3 Bank Account Information <BANKACCTINFO> 167
11.3.4 Credit Card Account Information <CCACCTINFO>................... 168
11.3.5 Transfer Information <XFERINFO>., 168
11.3.6 Transfer Processing Status <XFERPRCSTS>........................... 170
11.4 Downloading Transactions and Balances.................................. 171
11.4.1 Bank Statement Download i 172
11.4.2 Credit Card Statement Download i ... 174
11.4.3 Statement Transaction <STMTTRN>............ i, 177
11.5 Statement Closing Information. L. 181
11.5.1 Statement Closing Download o L. 181
11.5.2 Non-Credit Card Statement <CLOSING>.coiiiiiinnnn... 182
11.5.3 Credit Card Statement Closing Request <CCSTMTENDRQ>............ 184
11.5.4 Credit Card Statement Closing Response <CCSTMTENDRS>........... 184
116 Stop Check 187
11.6.1Stop Check Add. 188
11.6.25tatus Codes. . ..o vt e 191
11.7 Intrabank Funds Transfert 192
11.7.1 Intrabank Funds Transfer Addition.......... 193
11.7.2 Intrabank Funds Transfer Modification............................... 196
11.7.3 Intrabank Funds Transfer Cancellation............ 199
11.8 Interbank Funds Transfert e e 201
11.8.1 Interbank Funds Transfer US......... 201
11.8.2 Interbank Funds Transfer International Usage....................... 202
11.8.3 Interbank Funds Transfer Modification. 205
11.8.4 Interbank Funds Transfer Cancellation............................... 208
11.9 Wire Funds Transfer. e e et et e 210
11.9.1 Wire Funds Transfer Additioncco i, 211
11.9.2 Wire Funds Transfer Cancellation 215
11.10 Recurring Funds Transfer, 217
11.10.1 Recurring Intrabank Funds Transfer Addition........................ 217
11.10.2 Recurring Intrabank Funds Transfer Modification 220
11.10.3 Recurring Intrabank Funds Transfer Cancellation..................... 223
11.10.4 Recurring Interbank Funds Transfer Addition........................ 224
11.10.5 Recurring Interbank Funds Transfer Modification 227
11.10.6 Recurring Interbank Funds Transfer Cancellation..................... 230
11.11 E-Mail and Customer Notification............. 232

viii

6/30/00 OFX 2.0 Specification

11111 Banking E-Mail 232

11.11.2 Notifications. oo 235
11.11.3 Returned Check and Deposit Notification 236
11.12 Data Synchronization for Banking. i i i 237
11.12.1 Data Synchronization for Stop Check, 238
11.12.2 Data Synchronization for Intrabank Funds Transfers................... 239
11.12.3 Data Synchronization for Interbank Funds Transfers................... 242
11.12.4 Data Synchronization for Wire Funds Transfers 244
11.12.5 Data Synchronization for Recurring Intrabank Funds Transfers 245
11.12.6 Data Synchronization for Recurring Interbank Funds Transfers 247
11.12.7 Data Synchronization for Bank Mail, 249
11.13 Message Sets and Profile. i 251
11.13.1 Message Sets and Messages. 252
11.13.2 Bank Message Set Profile. ol 258
11.13.3 Credit Card Message Set Profile..................................... 260
11.13.4 Interbank Funds Transfer Message Set Profile......................... 261
11.13.5 Wire Transfer Message Set Profile 262
1114 Exampleso 263
11.14.1 Statement Download i 263
11.14.2 Intrabank Funds Transfer 265
11.14.3Stop Checko 267
11.14.4 Recurring Transfers i i 270
Chapter 12 Payments. i 281
12.1 Consumer and Business Payments oL 281
122 The Payee Model e 281
12.2.1PayeeIdentifiers 281
1222 Payee Lists 282
12.23Standard Payee Lists. ol 283
12.2.4 Identifying Payees. 283
12.2.5 Side Effects of Payee Adds and Modifications.......................... 285
12.3 Identifiers Used in Payment Transactionsot 285
12.4 The Payment Life Cycle.o e 287
1241 Payment Creation 287
12.4.2 Payment Modification oo ool 287
12.4.3 Payment Status Inquiry 288
12.4.4 Payment Cancellation.l 288
12.4.5 Delayed Payee Matchingo 288

OFX 2.0 Specification 6/30/00 iX

12.5 Common Payments Aggregates........... il 289

12.5.1 Payments Account Information <BPACCTINFO> 289
12.5.2 Payment Information <PMTINFO>..................o.L. 290
12.6 Payments Functions 297
12.6.1 Payment Creation 298
12.6.2 Payment Modification i i 301
12.6.3 Payment Cancellation. i 305
12.6.4 Payment Status Inquiry 307
12.7 Recurring Payments. 308
12.7.1 Creating a Recurring Payment o ... 310
12.7.2 Recurring Payment Modificationo oo 313
12.7.3 Recurring Payment Cancellation 317
128 PaymentMail 319
12.8.1 Payment Mail Request and Response 319
12.8.2 Payment Mail Synchronization. o o oL 322
129 Payee Lists 323
12.9.1 Adding a Payee to the Payee List, 325
12.9.2 Payee Modification i 327
12.9.3 Payee Deletion. i 331
12.9.4 Payee List Synchronization i i 333
12.10 Data Synchronization for Payments, 335
12.10.1 Payment Synchronizationo o il 336
12.10.2 Recurring Payment Synchronization..................... 338
12.10.3 DISCUSSION. &+t vttt ettt et it it 340
12.11 Message Setsand Profile o i i 341
12.11.1 Bill Pay Message Sets and Messagesooiiiiiiiiiiinnnn. 342
12.11.2 Bill Pay Message Set Profile <BILLPAYMSGSET> 344
1212 Examples 346
12.12.1 Scheduling a Payment i i 346
12.12.2 Modifying aPayment. 350
12.12.3 CancelingaPayment 354
12.12.4 Updating Payment Status L. 355
12.12.5 Scheduling a Recurring Payment.............. 356
12.12.6 Modifying a Recurring Payment. 358
12.12.7 Canceling a Recurring Payment 360
12.12.8 Adding a Payee tothe Payee List..............ooooii.aL. 361
12.12.9 Synchronizing Scheduled Payments 363

6/30/00 OFX 2.0 Specification

Chapter 13 InvesStments. 365

13.1 Types of Response Information oo i 366
13.2 SUD-ACCOUNTS .« v vttt et e e e e e e e e e e e e e e e 366
13.3 Units, Precision, and Signs oo 366
133 L Units . oot e 366
13,3, 2 PreCiS 0N .« o v vttt e 367
13,33 60IgNS « o 367
13.4 Bank and Investment Transactionst i 368
13.5Money Market Funds. 368
13.5.1 Separate Account at the Financial Institution........................... 368
13.5.2 Sweep Account Within an Investment Account 369
13.5.3 Position Within an Investment Accountouvteu e, 369
13.6 Investment ACCOUNESo v v ittt e e e e e e e e 369
13.6.1 Specifying the Investment Account <INVACCTFROM>................. 369
13.6.2 Investment Account Information <INVACCTINFO>. 370
13.6.3 Brokerage, Mutual Fund, and 401K Accounts 371
13.7 Investment Message Sets and Profileol 372
13.7.1 Investment Statement Downloadco i 373
13.7.2 Security Information. o oo 376
13.8 Investment SecUrities.o oottt 379
13.8.1 Security Identification <SECID>. i, 379
13.8.2 Security List Requesto i 379
13.8.3 Security List Response i 381
13.8.4 Security List <SECLIST>o i 382
13.8.5 Securities Informationt e 382
13.9 Investment Statement Download. i 388
13.9.1 Investment Statement Request oL 388
13.9.2 Investment Statement Response o il 390
13.9.3 401(k) Account Informationuuuviniriinin i 414
13.10 Investment E-Mail 421
13.10.1 Investment E-Mail Request and Response 421
13.10.2 Investment E-Mail Synchronization. 423
13.11 Complete Example. ... 425
13.12 Complete 401(k) Example. 430
Chapter 14 Bill Presentment 437

OFX 2.0 Specification 6/30/00 Xi

TA.T OVEIVICW .« v e e e e e e e e e 437

14.1.1 Bill Presentment Model i 437
14.1.2 Servers and Message Sets. i i i 437
14.2 Biller Directoryot 438
14.2.1 Client Signon to the Biller Directory Server 438
14.2.2 Search Arguments.oou i 438
14.2.3 Identification of Bill Publishers. o . 438
14.2.4 Find Biller Request <FINDBILLERRQ>.oooiiiiiiinan. 439
14.2.5 Find Biller Response <FINDBILLERRS>., 441
14.2.6 Status Codes <FINDBILLERRS>, 443
14.2.7 Account Number Validation.............. oL 444
14.2.8 Biller Payment Restrictions i i 445
14.3 Customer Signup ...t 446
1431 Enrollment 447
14.3.2 AccountInquiry. 447
14.3.3 Service Activation 450
14.3.4 Service Status Update for Groups of Customers 452
144 Bill Deliveryo 456
14.4.1 Bill Delivery Process. ... 456
144.2Bill ListRetrieval o 456
14.4.3 Bill Detail Retrieval 470
14.4.4 Table Structure Definition o oo L 474
14.4.5 Delivery Notification 476
14.4.6 Bill Status Modificationo oo 479
145 Bill Payment. 480
14.5.1 Remittance Information i i 480
14.5.2 Payee Identification. 480
14.6 Bill Presentment E-Mail o 481
14.6.1 Bill Presentment Mail Request <PRESMAILRQ> 482
14.6.2 Bill Presentment Mail Response <PRESMAILRS>. 482
14.6.3 Status Codes <PRESMAILRS>ot 483
14.6.4 Request <PRESMAILSYNCRQ>.ot 484
14.6.5 Response <PRESMAILSYNCRS>. L. 485
14.7 Message Setsand Profileo il 486
14.7.1 Message Sets and Messages. il 486
14.7.2 Biller Directory Message Set Profile.................................. 490
14.7.3 Bill Delivery Message Set Profile, 490
14.8 Bill Presentment Examples i 492

Xii

6/30/00 OFX 2.0 Specification

14.8.1 Find Biller Examples. i 492

14.8.2 Enrollment Examples........... L 499
14.8.3 Activation Example 501
14.8.4 Bill Delivery Examples................ 503
Appendix A Status Codes. e 513
Appendix B Differences Between OFX 1.6 and OFX2.0 519
BAIOFXT1.6t02.0 ..o 519
B.1.1 Specification Changes by Chapter................ i, 520

OFX 2.0 Specification 6/30/00 Xiii

Xiv 6/30/00 OFX 2.0 Specification

CHAPTER 1 OVERVIEW

1.1 Introduction

Open Financial Exchange is a broad-based framework for exchanging financial data and instructions
between customers and their financial institutions. It allows institutions to connect directly to their
customers without requiring an intermediary.

INSTITUTIONS
CUSTOMERS o _—
Financial Institutions
Consumers > Financial Advisors
Families 4 Government Agencies
Taxpayers Merchants and Businesses
Small Businesses Information Providers

Transaction Processors

Open Financial Exchange is an open specification that anyone can implement: any financial institution,
transaction processor, software developer, or other party. It uses widely accepted open standards for data
formatting (such as XML), connectivity (such as TCP/IP and HTTP), and security (such as SSL).

Open Financial Exchange defines the request and response messages used by each financial service as well
as the common framework and infrastructure to support the communication of those messages. This
specification does not describe any specific product implementation.

OFX 2.0 Specification 6/30/00 15

1.1.1 Design Principles

The following principles were used in designing Open Financial Exchange:

¢ Broad Range of Financial Activities — Open Financial Exchange provides support fow@ad
range of financial activities. Open Financial Exchange 2.0 specifies the following services:

Bank statement download

Credit card statement download

Funds transfers including recurring transfers
Consumer payments, including recurring payments

Business payments, including recurring payments

* 6 & ¢ o o

Brokerage and mutual fund statement download, including transaction history, current holdings, and
balances for normal accounts and 401(k) accounts.

+ Bill presentment and payment
¢ Tax form download, including 1099 and W2 (presented as a 2.0 addendum).

¢ Broad Range of Financial Institutions — Open Financial Exchange supports communication with
a broad range of financial institutions (Fls), including:

¢ Banks

Brokerage houses
Merchants
Processors

Financial advisors

* 6 ¢ o o

Government agencies

¢ Broad Range of Front-End Applications — Open Financial Exchange supportsraad range of
front-end applications, including Web-based applications, covering all types of financial activities
running on all types of platforms.

¢ Extensible — Open Financial Exchange has been designed to allow the easy addition of new services.
Future versions will include support for many new services.

¢ Open — This specification is publicly available. You can build client and server applications using the
Open Financial Exchange protocols independent of any specific technology, product, or company.

¢ Multiple Client Support — Open Financial Exchange allows a user to use multiple client applications
to access the same data at a financial institution. With the popularity of the World Wide Web, customers
are increasingly more likely to use multiple applications—either desktop-based or Web-based—to
perform financial activities. For example, a customer can track personal finances at home with a
desktop application and occasionally pay bills while at work with a Web-based application. The use of
data synchronization to support multiple clients is a key innovation in Open Financial Exchange.

16 1.1 Introduction

¢ Robust — Open Financial Exchange will be used for executing important financial transactions and for
communicating important financial information. Assuring users that transactions are executed and
information is correct is crucial. Open Financial Exchange provides robust protocols for error recovery.

¢ Secure — Open Financial Exchange provides a framework for building secure online financial
services. In Open Financial Exchange, security encompasses authentication of the parties involved, as
well as secrecy and integrity of the information being exchanged.

¢ Batch & Interactive — The design of request and response messages in Open Financial Exchange is
for use in either batch or interactive style of communication. Open Financial Exchange provides for
applying a single authentication context to multiple requests in order to reduce the overhead of user
authentication.

< International Support — Open Financial Exchange is designed to supply financial services
throughout the world. It supports multiple currencies, country-specific extensions, and different forms
of encoding such as UNICODE.

¢ Platform Independent —Open Financial Exchange can be implemented on a wide variety of front-
end client devices, including those running Windows 3.1, Windows 95, Windows NT, Macintosh, or
UNIX. It also supports a wide variety of Web-based environments, including those using HTML, Java,
JavaScript, or ActiveX. Similarly on the back-end, Open Financial Exchange can be implemented on a
wide variety of server systems, including those running UNIX, Windows NT, or OS/2.

¢ Transport Independent — Open Financial Exchange is independent of the data communication
protocol used to transport the messages between the client and server computers. Open Financial
Exchange 2.0 uses HTTP.

OFX 2.0 Specification 6/30/00 17

1.2 Open Financial Exchange at a Glance

The design of Open Financial Exchange is as a client and server system. An end-user uses a client
application to communicate with a server at a financial institution. The form of communication is requests
from the client to the server and responses from the server back to the client.

Open Financial Exchange uses the Internet Protocol (IP) suite to provide the communication channel
between a client and a server. IP protocols are the foundation of the public Internet and a private network
can also use them.

1.2.1 Data Transport

Clients use the HyperText Transport Protocol (HTTP) to communicate to an Open Financial Exchange
server. The World Wide Web throughout uses the same HTTP protocol. In principle, a financial institution
can use any off-the-shelf web server to implement its support for Open Financial Exchange.

To communicate by means of Open Financial Exchange over the Internet, the client must establish an
Internet connection. This connection can be a dial-up Point-to-Point Protocol (PPP) connection to an
Internet Service Provider (ISP) or a connection over a local area network that has a gateway to the Internet.

Clients use the HTTP POST command to send a request to the previously acquired Uniform Resource
Locator (URL) for the desired financial institution. The URL presumably identifies a Common Gateway
Interface (CGI) or other process on an Fl server that can accept Open Financial Exchange requests and
produce a response.

18 1.2 Open Financial Exchange at a Glance

The POST identifies the data as being of type application/x-ofx. Use application/x-ofx as the return type as
well. Fill in other fields per the HTTP 1.0 specification. Here is a typical request:

POST http://www.fi.com/ofx.cgi HTTP/1.0 HTTP headers
User-Agent:MyApp 5.0

Content-Type: application/x-ofx

Content-Length: 1032

<l--XML declaration-->
<?xml version="1.0"?>

<I--OFX declaration-->

<?0FX OFXHEADER="200" VERSION="200" SECURITY="NONE" OLDFILEUID="NONE"
NEWFILEUID="NONE"?>

<l-- OFX request-->

<OFX>

. Open Financial Exchange requests ...
</OFX>

A blank line defines the separation between the HTTP headers and the start of the Open Financial
Exchange headers.

The structure of a response is similar to the request, with the first line containing the standard HTTP result,
as shown next. The content length is given in bytes.

HTTP 1.0 200 OK HTTP headers

Content-Type: application/x-ofx
Content-Length: 8732

<l--XML declaration-->
<?xml version="1.0"?>

<I--OFX declaration-->

<?0FX OFXHEADER="200" VERSION="200" SECURITY="NONE" OLDFILEUID="NONE"
NEWFILEUID="NONE"?>

<l-- OFX response-->
. Open Financial Exchange responses ...
</OFX>

OFX 2.0 Specification 6/30/00 19

1.2.2 Request and Response Model

The basis for Open Financial Exchange is the request and response model. One or more requests can be
batched in a single file. This file typically includes a signon request and one or more service-specific
requests. An FI server will process all of the requests and return a single response file. This batch model
lends itself to Internet transport as well as other off-line transports. Both requests and responses are plain
text files, formatted using a grammar based on Extensible Markup Language (XML).

Here is a simplified example of an Open Financial Exchange request file. (This example does not show the
Open Financial Exchange headers and the indentation is only for readability.) For complete details, see the
more complete examples throughout this specification.

<OFX> <l-- Begin request data -->
<SIGNONMSGSRQV1>
<SONRQ> <I-- Begin signon -->

<DTCLIENT>19991029101000</DTCLIENT><!-- Oct. 29, 1999, 10:10:00
am -->

<USERID>123-45-6789</USERID> <l-- User ID (that is, SSN) -->

hole) <USERPASS>MyPassword</USERPASS> <!-- Password (SSL encrypts
whole) -->

<LANGUAGE>ENG</LANGUAGE> <I-- Language used for text -->
<FI> <l-- ID of receiving institution
-—->
<ORG>NCH</ORG> <!-- Name of ID owner -->
<FID>1001</FID> <l-- Actual ID -->
</FI>

<APPID>MyApp</APPID>
<APPVER>0500</APPVER>
</SONRQ> <l-- End of signon -->
</SIGNONMSGSRQV1>

<BANKMSGSRQV1>
<STMTTRNRQ> <l-- First request in file -->
<TRNUID>1001</TRNUID>
<STMTRQ> <l-- Begin statement request -->
<BANKACCTFROM> <I-- Identify the account -->
D > <BANKID>121099999</BANKID> <!-- Routing transit or other FI
<ACCTID>999988</ACCTID> <!-- Account number -->
<ACCTTYPE>CHECKING</ACCTTYPE><!-- Account type -->
</BANKACCTFROM> <l-- End of account ID -->
S <INCTRAN> <I-- Begin include transaction --
<INCLUDE>Y</INCLUDE> <l-- Include transactions -->

20 1.2 Open Financial Exchange at a Glance

</INCTRAN> <l-- End of include transaction -

-=>
</STMTRQ> <l-- End of statement request -->
</STMTTRNRQ> <l-- End of first request -->
</BANKMSGSRQV1>
</OFX> <l-- End of request data -->

The response format follows a similar structure. Although a response, such as a statement response,
contains all of the details of each transaction, each individual detail of the statement is identified using
tags.

The key rule of Open Financial Exchange syntax is that each tag is either an element or an aggregate. Data
follows its element tag. An aggregate tag begins a compound tag sequence, which must end with a
matching tag; for example, <AGGREGATE> ... </AGGREGATE>.

The file sent by Open Financial Exchange does not require any white space between tags.

White space following a tag delimiter (>), following an element value, or preceding a tag delimiter (<)
should be ignored. White space within an element value (i.e. not preceding, not following) is significant. If
white space is desired preceding or following an element value, this is achieved using the CDATA wrapper.

If more than one white space element is heeded, then multiple macros should be utilized. See
section 2.3.1.1

1.3 Definitions

The following sections detail definitions that hold within the context of OFX.

1.3.1 User

Userrefers to the person or entity interfacing with the OE&l}entto cause it to generate OR¥quests

1.3.2 Financial Institution

Financial Institution(FI) refers to the institution with which the user has a direct relationship. Generally
this means a bank, but in many cases it may be an institution providing non-banking financial services.

1.3.3 Service Provider

Service Provide(SP) refers to an institution with which the user doeshave a direct relationship.
Generally, such an institution is subcontracted by the Fl to provide specific services to the customer on
behalf of the FI.

OFX 2.0 Specification 6/30/00 21

1.3.4 Client

An OFX client is the software that generates Ofequestsreceivegesponseand processes them. This
may be a personal finance manager, a web browser running locally interactive code (such as with a Java
applet or ActiveX control), a Web server, a proxy, or one of many other possibilities.

1.3.5 Server

An OFX serveris the software that receives OFX requests, processes them, and generates OFX responses.

1.3.6 Service

A serviceis a collection of relatetransactions For example, the BANKSVC service encompasses
banking transactions such as requesting bank statements, initiating stop checks, initiating wire transfers,
etc.

In OFX 1x and 2x, services are used directly only when describing or changing the general options
available to a particular customer. Other collections of transactions instead use the concept of Message
Sets as described in section 1.3.15

1.3.7 Tag

Tagis the generic name for either a start tag or an end tagja/ tagconsists of arelemenbr aggregate

name surrounded by angle brackets.ét tagis the same as a start tag, with the addition of a forward

slash immediately preceding the name. For example, the start tag for the aggregate named FOO looks like
this:

<FOO>
The end tag for the same aggregate looks like this:

</[FOO>

22 1.3 Definitions

1.3.8 Element

An OFX document contains one or makementsAn element is some data bounded by a leading start tag
and a trailing end tag. For example, an element named BAZ, containing data “bar,” looks like this:

<BAZ>bar</BAZ><!-- An element ended by its own end tag-->

An OFX elemenmust contain data (not just white space) and magcontain other elements. This is a
refinement to the XML definition of an element which is more generic. An XML element containing other
elements is defined in OFX as aggregate OFX specifically disallows empty elements and elements with
mixedcontent.

1.3.9 Aggregate

An aggregatds a collection of elements and/or other aggregates. An aggregate may not contain any data
itself, but rather contains elements containing data, and/or recursively contains aggregates.

OFX includes very few empty aggregates and clients and servers should not send an aggregate without
content. In general, the entire aggregate should be left out of a request or response file when its (optional)
content is missing. The few exceptions to these rules (such as <SECLISTRS>, described in section
13.8.3.3 are called out in the relevant sections of this document.

OFX 2.0 Specification 6/30/00 23

1.3.10 Request

A requests information sent by the client. An OFd¢equest fileis the entire XML file sent by the client,
including the OFX declaration. Amdividual requesgenerally is an aggregate whose name ends in RQ.

1.3.11 Response

A responsaés information sent by the server. An ORF¥sponse filés the entire XML file sent by the
server, including the OFX declaration. Amdividual responsgenerally is an aggregate whose name ends
in RS.

When elements and aggregates from the request also appear in the corresponding response they are
generally intended to echo the values from a request in the response (this enables client matching with the
request, for example). While the server should not modify data in individual elements when echoing,
elements not found in a particular request may be added in the response. These situations (such as adding a
<PAYEELSTID> when creating a <PMTRQ> response) are described as they arise. OFX also includes a
few specific situations requiring different information to be sent and returned in corresponding elements of

a request/response pair. Again, these exceptions (such as the <TOKEN> element in a sync request and
response) are described as they arise.

1.3.12 Message

A messagés the unit of work in OFX. It refers to a request and response pair. For example, the message to
download a bank statement consists of the request <STMTRQ> and the response <STMTRS>.

1.3.13 Transaction

A transactionconsists of a message and its associated transaction wrappers. The transaction request
wrapper contains a unique transaction identifier used to prevent ambiguity in matching a particular

response to its associated request, and the request aggregate. The transaction response wrapper contains a
status aggregate, the transaction identifier sent in the request, and (if the transaction was successful) the
response aggregate. For details on the use of transaction wrappers, see section 2.4.6

1.3.14 Synchronization

For messages subject to synchronization (see Chapter 6, "Data Synchron)jzaticexided layer of

aggregates is also part of a message definition: a synchronization request and response. These add a token
and, in some cases, other information. Synchronization requests may encapsuiatied transactions

that execute only when certain conditions are true at the server (either the containing synchronization
request completed without error or the request had no errors and the client was up to date).

24 1.3 Definitions

1.3.15 Message Set

Message sere collections of messages. Generally they form all or parseféce(as defined in section

1.3.6. OFX utilizes these smaller groupings when wrapping request or response transactions, profiling
server support for the wrappers and describing individual messages. The BANKSVC service, for example,
is broken into the BANKMSGSET, CREDITCARDMSGSET, INTERXFERMSGSET and
WIREXFERMSGSET message sets.

Please refer to section 2.4.5 , "Message Sets and Version Cdiotrakiditional information about
message sets.

1.4 OFX Versions

There are four distinct versions of OFX clients and servers.

Version 1.0.2 supports any or all version 1 message sets except Bill Presentment. These message sets are
defined by the OFX 1.0.2 Document Type Definition (DTD), which is used for parsing. Applications that
conform to this version are referred to as 1.0.2 clients and 1.0.2 servers.

Version 1.5.1 supports all version 2 message sets, Bill Presentment, and all version 1 message sets.
Because it supports all message sets, the OFX 1.5.1 DTD can be used to create and support OFX 1.0.2 and/
or OFX 1.5.1 clients and servers.

Version 1.6 DTD supports all message sets available in the OFX 1.5.1 DTD. It adds specific enhancements
to some of the aggregates. All of those enhancements are optional and should not be used by a client unless
the server indicates support in its FI Profile. Applications that conform to this version are referred to as 1.6
clients and 1.6 servers. The OFX 1.6 DTD fully incorporates the OFX 1.0.2 and 1.5.1 message sets, so it
can be used to support both 1.0.2 and 1.5.1 applications.

Version 2.0 supports all V1 message sets available in the OFX 1.6 DTD. It adds support for 401(k)
investment statement download. The Tax OFX addendum to OFX 2.0 adds support for 1099 and W2
download. An important change for 2.0 is that it adds the requirement of XML compliance to OFX 2.0
clients and servers. See chaptdo2more information.

For a complete description of OFX message sets, see section 2.4.5.3

As of the publication of this document, only versions 1.0.2, 1.5.1, 1.6 and 2.0 of OFX are supported. This
document describes OFX version 2.0.

OFX 2.0 Specification 6/30/00 25

1.5 Conventions

The conventions used in the element and aggregate descriptions include the following:

¢ Required elements and aggregates afmid . Regular face indicates elements and aggregates that are
optional. Required means that a client must always include the element or aggregate in a request, and a
server must always include the element or aggregate in a response.

¢ Required elements and aggregates occur once unless noted as one or more in the description, in which
case the specification allows multiple occurrences.

¢ Optional elements and aggregates occur once if present unless noted as zero or more in the description,
in which case the specification allows multiple occurrences.

¢ Character fields are identified with a data type &ff”, where n is the maximum number of allowed
Unicode characters.

Note: nrefers to the number of characters in the resultant string. Each multi-byte or encoded
character counts as a single character. UTF-8 encodes “high” Latin-1 characters (decimal 128-
255) using two bytes, and double-byte characters using three bytes. In addition, XML encodes
ampersands, less-than symbols, greater-than symbols, and spaces (where required) using multi-
character escape strings (see section 2.3.1.1). Therefore, an element of type A-40 may require
more than 40 bytes in a UTF-8-encoded XML stream.

¢ N-nidentifies an element of numeric type wheres the maximum number of characters in the value.
Values of this type are generally whole numbers, but the data type allows negative numbers. OFX
includes a few fixed-position numeric values (such as <APPVER>, see section Pcallied out in the
text. In all cases, elements of this type may contain only the characters 0 through 9 and - (hyphen, the
negative sign indicator). So an element of type “N-6" may take values from -99999 to 999999. The
value “0000000” would be illegal for an N-6 element. White space is not allowed within the numeric
value. Leading zeroes are allowed, but discouraged except where noted in the text. For example, a
<MIN> element containing zero might be sent as “<MIN>0", “<MIN>00", “<MIN> 0", but not
“<MIN>0 0".

& Common value types, such as a dollar amount, are referenced by name. Chapter 3, "Common
Aggregates, Elements, and Data Typksts value types that are referenced by name.

26 1.5 Conventions

¢ Explanatory information is ifitalics

Tag Description

<REQUIRED> Required element or aggregate (1 or more)

<REQUIRED2> Required element or aggregate that occurs only once

<OPTIONAL> Optional element or aggregate; this element or aggregate can occur
multiple times (0 or more)

<SPECIFIC> Values are A, B, and C

<ALPHAVALUE> Takes a value up to 32 characters in length32

Explanatory text Hopefully useful information.

OFX 2.0 Specification 6/30/00 27

28

1.5 Conventions

CHAPTER 2 STRUCTURE

This chapter describes the basic structure of an Open Financial Exchange request and response. Structure
includes headers, basic syntax, and the Signon request and response. This chapter also describes how Open
Financial Exchange encodes external data, such as bit maps.

Open Financial Exchange data consists of a declaration plus one Open Financial Exchange data block.
This block consists of a signon message and zero or more additional messages. When sent over the Internet
using HTTP, standard HTTP and (optionally) multipart MIME headers and formats surround the Open
Financial Exchange data. A simple file that contained only Open Financial Exchange data would have the
following form:

HTTP headers

MIME type application/x-ofx

XML declaration

Open Financial Exchange declaration
Open Financial Exchange XML block

A more complex file that contained additional Open Financial Exchange data would have this form:
HTTP headers

MIME type multipart/x-mixed-replace; boundary =XYZZY24x7

--XYZZY24x7

MIME type application/x-ofx

XML declaration

Open Financial Exchange declaration

Open Financial Exchange XML block

--XYZZY24x7
MIME type imageljpeg

FI logo

--XYZZY24xX7--

Version 1.0.2 of the Open Financial Exchange specification did not specify how to properly separate the
various components of an OFX request. In particular, separation of the HTTP headers, the MIME
attachments, the OFX declaration, the OFX header elements, and the OFX SGML block.

OFX 1.0.2 clients used a mix of LF and CRLF constructs and OFX 1.0.2 servers handled either linefeed
(LF) or carriage return/line feed (CRLF), but not often both. In the future, it is expected that 1.0.2 servers
will be upgraded to handle both CRLF and LF.

OFX 2.0 clients and servers are expected to follow standard XML 1.0 conventions regarding the use of CR
and LF. XML 1.0 is an accepted World Wide Web Consortium (W3C) recommendation.

http://www.w3.0rg (W3C home page)

http://www.w3.0rg/TR/REC-xml (XML 1.0 recommendation)

OFX 2.0 Specification 6/30/00 29

http://www.w3.org

The text has been included below for ease of reference:

2.1 HTTP Headers

Data delivered by way of HTTP places the standard HTTP result code on the first line. HTTP defines a
number of status codes. Servers can return any standard HTTP result. However, FIs should expect clients
to collapse these codes into the following three cases:

Code Meaning Action

200 OK The request was processed and a valid Open Financial Exchange result ig
returned.

400s Bad request The request was invalid and was not processed. Clients will report an internal

error to the user. Invalid requests include: general HTTP transport errors, XML
formatting errors, invalid OF X syntax, and invalid data values. This error should
not appear for request files the server is able to parse.

500s Server error The server is unavailable. Clients should advise the user to retry shortly.

Note: The server must return a code in the 400s for any problem that prevents it from
processing the request file. Processing problems include failures relating to security,
communication, parsing, or the Open Financial Exchange declaration (for example, the client
requested an unsupported language). For content errors such as wrong USERPASS or invalid
account, the server must return a valid Open Financial Exchange response along with code 200.
If a communication time-out error occurs while an OFX server and a back-end server are
communicating to fill a request, then the server MUST return a code in the 500s.

Open Financial Exchange requires the following HTTP standard headers:

Explanation
Content- application/x- | The MIME type for Open Financial Exchange
type ofx
Content- length Length of the data after removing HTTP headers
length

When responding with multipart MIME (likely only if the request included a <GETMIMERQ> request),
the main type will be multipart/x-mixed-replace; one of the parts will use application/x-ofx.

2.2 Open Financial Exchange File Format

The contents of an Open Financial Exchange file consists of simple declarations followed by contents
defined by those declarations.

30 2.1 HTTP Headers

The first line should be the standard XML declaration. This Processing Instruction (PI) includes options to
specify the version of XML being used, the encoding declaration, and the standalone status of the
document.

The XML declaration takes the form:
<?xml version="1.0" encoding="UTF-8" standalone="no"?>

The next line must be the OFX declaration. This Pl identifies the contents as an Open Financial Exchange
file and provides the version number of the Open Financial Exchange declaration itself (not the version
number of the contents). The Open Financial Exchange PI contains the following attributes:

OFXHEADER
VERSION
SECURITY
OLDFILEUID
NEWFILEUID

All these attributes are required. "NONE" should be returned if client or server does not make use of an
individual attribute, e.g., OLDFILEUID="NONE".

The entire declaration takes the form:

<?0FX OFXHEADER="200" VERSION="200" SECURITY="NONE" OLDFILEUID="NONE"
NEWFILEUID="NONE"?>

OFX 2.0 Specification 6/30/00 31

For information about each of the OFX declaration attributes, refer to the following sections.

2.2.1 OFXHEADER

OFXHEADER specifies the version number of the Open Financial Exchange declaration.

The OFXHEADER value changes its major number only if an existing client is unable to process the new
header. This can occur because of a complete syntax change in a header, or a significant change in the
semantics of an existing header element.

Because OFX 2.0 uses an XML compliant header which significantly differs from the 1.x header, the value
of OFXHEADER is now 2.0 (OFXHEADER="200").

2.2.2 VERSION
VERSION specifies the version number of the following OFX data block.

The OFX 2.0 DTD supports the following:
¢ All version 1 message sets found in OFX 1.6.

¢ 401(k) extensions to Investment Statement Download.

The current accepted value for VERSION is 200.

2.2.2.1 Tax OFX Versioning

A separate version of the OFX 2.0 DTD exists for Tax forms. The Tax OFX DTD contains the basic OFX
entities and aggregates along with the W2 and 1099 form definitions. As the OFX tax forms change due to
IRS changes, only the Tax OFX DTD shall change. The current OFX version will remain unchanged
unless changes to core OFX require it.

2.2.3 SECURITY

SECURITY defines the type of application-level security, if any, that is used for the <OFX> block. The
values for SECURITY can be NONE or TYPEL.

For more information about security, refer to Chapter GEX Security"

2.2.4 OLDFILEUID and NEWFILEUID

NEWFILEUID uniquely identifies this request file. The NEWFILEUID, which clients must send with
every request file and which servers must echo in the response, serves two purposes:

& Servers can use the NEWFILEUID to quickly identify duplicate request files.

32 2.2 Open Financial Exchange File Format

¢ Clients and servers can use NEWFILEUID in conjunction with OLDFILEUID for file-based error
recovery. For more information about using file-based error recovdite®ynchronizationsee
Chapter 6, Data Synchronizatiah

OLDFILEUID is used together with NEWFILEUID only when the client and server support file-based
error recovery. OLDFILEUID identifies the last request and response that was received and processed by
the client.

OFX 2.0 Specification 6/30/00 33

2.3 XML Details

2.3.1 Compliance

XML is the basis for Open Financial Exchange 2.0 and later. To enable OFX clients and servers to use off-
the-shelf XML parsers, OFX 2.0 is fully XML compliant. Therefore, in contrast to the guidelines for OFX
1.6 and below, unrecognized tags may not be present. If clients and servers wish to extend OFX with
private tags and true DTD validation is necessary, a modified OFX DTD which contains those new tags
must be passed along with the OFX document.

2.3.1.1 Special Characters

Special characters in OFX 2.0 are handled according to the XML standard. Characters such as '<’, >,
'&’,", and """ are predefined in XML. Other character strings with many special characters should be
enclosed in a CDATA section.

Note: The space macro () should be used if leading or trailing blanks are meant to be
preserved as part of a data element’s value. Alternatively, a CDATA block may be used to
force the handling of leading or trailing spaces. No special formatting of space characters in
the middle of an element’s text value is needed.

2.4 Open Financial Exchange XML Structure

2.4.1 Overview
Open Financial Exchange hierarchically organizes request and response blocks:

Top Level <OFX>

Message Set and Version < xxx MSGSVn>
Synchronization Wrappers < xxx SYNCRQ>, <xxx SYNCRS>
Transaction Wrappers < xxx TRNRQ>, <xxx TRNRS>
Specific requests and responses

The following sections describe these levels.

2.4.2 Case Sensitivity

OFX requires upper case letters for tag names and enumerated values. In the example below,
<SEVERITY> is an element with an enumerated value and <MESSAGE> is an element with a value that
is not enumerated.

<STATUS>
<CODE>2000</CODE>

34 2.3 XML Details

<SEVERITY>ERROR</SEVERITY>
<MESSAGE>General Error</MESSAGE>
</STATUS>

2.4.3 Top Level

An Open Financial Exchange request or response has the following top-level form:

Tag Description
<OFX> Opening tag
<SONRQ> or Required signon request or response. See section 2.5.1
<SONRS>
... Open Financial 0 or more transaction requests and responses inside appropriate message set
Exchange requests or | aggregates
responses ...
</OFX> Closing tag for the Open Financial Exchange record

This chapter specifies the order of requests and responses.

A single file MUST contain only one OFX block.

2.4.4 Messages

A message is the unit of work in Open Financial Exchange. It refers to a request and response pair, and the
status codes associated with that response. For example, the message to download a bank statement
consists of the request <STMTRQ> and the response <STMTRS>.

OFX uses several common message types to perform specific functions. Within OFX, the following
naming conventions are used, where the genepainessages may be:

¢ Basic (or Add) requestxoRQ> and responsexsxRS>

¢ Modify request xxxMODRQ> and responsexxxMODRS>

¢ Delete requestxDELRQ> and responsexxDELRS>
.

Cancel requestxxCANRQ> and responsexxxCANRS> (these pairs may also be named
<XXXCANCRQ> and xxxCANCRS)

OFX 2.0 Specification 6/30/00 35

2.4.4.1 Basic and Add Messages

ThebasicOFX message has a name structurexobQ>/<xxxRS>. It is used for read actions of a
specific object (such as a bank statement using <STMTENDRQ>). It is encapsulated in a transaction
wrapper «xXXTRNRQ> or xxXTRNRS> (therefore, <STMTENDTRNRQ> and <STMTENDTRNRS> in
the example above).

Theadd OFX message, like the Basic message, has a name structuxex@>/<xooRS>. Itis used to
create a new instance of objectx(such as creating a new payment using <PMTRQ>). It is encapsulated
in a transaction wrappenxXTRNRQ> or xxXTRNRS> (therefore, <PMTTRNRQ> and <PMTTRNRS>

in the example above).

2.4.4.2 Modify Message

ThemodifyOFX message has a name structurexof#1ODRQ>/<xxxMODRS>. It is used to modify an
existing instance of objeatxx (such as modifying an existing payment using <PMTMODRQ>). It is
encapsulated in a transaction wrappexxd@ RNRQ> or «xxXTRNRS> (therefore, <PMTTRNRQ> and
<PMTTRNRS> in the example above).

The <tcxdMODRQ> request contains tliemplete replacementata for an existing objeetxx Therefore,
both changed and unchanged elementsiust be included in the request.

2.4.4.3 Delete and Cancel Messages

ThedeleteandcancelOFX messages have a name structurexod®ELRQ>/<xxXDELRS> and
<XXXCANRQ>/<XxXCANRS> or skxxXCANCRQ>/<xxxCANCRS>, respectively. They are used to delete
an existing instance of objegkx(such as deleting a payee from a payee list using <PAYEEDELRQ>), or
to cancel an existing scheduled object (such as canceling a pending payment using <PMTCANCRQ>).
They are encapsulated in a transaction wrapp@xRRNRQ> or sxxXTRNRS> (therefore,
<PAYEETRNRQ> and <PMTTRNRQ> in the examples above).

2.4.4.4 Inquiry Message

Theinquiry OFX message sometimes has a name structursofNQRQ>/<xxXNQRS>. It is used to
search for and/or gain information about (an) existing objegizjsuch as finding one or more existing
payments using <PMTINQRQ>). It is encapsulated in a transaction wrapgaNQTRNRQ> or
<XXXMNQTRNRS> (therefore, <PMTINQTRNRQ>and <PMTINQTRNRS> in the example above).

Inquiry messages limit the response set to records matchirggtietion criteriaused in the request.

Selection criterion elements in the request are generally repeating elements. Where more than one value is
given for a particular element, the query ORs those values. Where multiple different elements (matches for
different fields of the objects) are provided, the query ANDs those values. Where an element is absent
from the request, the query is not filtering on that element. If an element has a history associated with it,
only the most recent value is intended by the inquiry.

36 2.4 Open Financial Exchange XML Structure

Note: A server is not obligated to support filtering on all selection criterion elements. If a
server chooses not to support a particular element as a selection critenust itreat that

element as if it were not present. That is, the server must return the appropriate record set for
the elements on which it does support filtering. As a result, clients should be prepared to
receive records outside the scope of the selection criteria submitted in the request.

Note: Many inquiry messages do not presently follow the naming conventions detailed above.
They may be named <xxxINFORQ>/<xxXINFORS> (<ACCTINFORQ> and

<ACCTINFORS> for example) or without reference to an obvious convention
(<PRESLISTRQ> and <PRESLISTRS> for example).

2.4.5 Message Sets and Version Control

Message sets are collections of messages. Generally they form all or part of what a user would consider a
service something for which they might have signed up, such as “banking.” Message sets are the basis of
version control, routing, and security. They are also the basis for the required ordering in Open Financial
Exchange files.

Within the OFX block, OFX organizes messages by message set. Message sets follow these rules:
¢ Arequest file may include at most one message set wrapper of each type.
¢ All messages within any message set must be from the same version of that message set.

& Servers must respond using the same message sets and versions as sent in the request file. For example,
if <SIGNUPMSGSRQV1> appears in the request file, <SIGNUPMSGSRSV1> must appear in the
response file. There is one exception to this rule: servers may return the <SECLISTMSGSRSV1>
wrapper (see 13.7.2 and 13.8.4) in response to an investment statement download request that may or
may not include <SECLISTMSGSRQV1>.

2.4.5.1 Message Set Aggregates

For each message setofxand versiom, there are two aggregates, one for requesistMSGSRQW>)

and one for responsesxxdMSGSRS\h>. All of the messages from that message set must be enclosed in

the appropriate message set aggregate. In the following example, the Open Financial Exchange block
contains a signon request inside the signon message set, and two statement requests and a transfer request
inside the bank message set.

<OFX>
<SIGNONMSGSRQV1> <l-- Signon message set -->
<SONRQ> <!-- Signon message -->
</SONRQ>

</SIGNONMSGSRQV1>

<BANKMSGSRQV1> <l-- Banking message set -->

OFX 2.0 Specification 6/30/00 37

<STMTTRNRQ> <l-- Statement request -->

</[STMTTRNRQ>

<STMTTRNRQ> <l-- Another stmt request -->
</STMTTRNRQ>
<INTRATRNRQ> <l-- Intrabank transfer request -->

</INTRATRNRQ>
</BANKMSGSRQV1>
</OFX>

2.4.5.2 Message Set Ordering

Message sets must appear in the following order:
Signon

Signup

Banking

Credit card statements
Investment statements
Interbank funds transfers
Wire funds transfers
Payments

General e-mail
Investment security list
Biller Directory

Bill Delivery

FI Profile

® ¢ 6 6 6 6 O 0 0 O O o o

The definition of each message set can further prescribe an order of its messages within that message set.

38 2.4 Open Financial Exchange XML Structure

2.4.5.3 Message Set Version Numbers

The following table lists each message set, along with its aggregate name and the DTD versions that

support it.

Message Set

Credit Card Statements
Investment Statements
Interbank Funds Transfers
Wire Funds Transfers
Payments

General e-mail

Message Set Aggregate

<CREDITCARDMSGSETV1>
<INVSTMTMSGSETV1>
<INTERXFERMSGSETV1>
<WIREXFERMSGSETV1>
<BILLPAYMSGSETV1>
<EMAILMSGSETV1>

DTD Support

Signon <SIGNONMSGSETV1> 1.0.2,15.1,1.6,20
Signup <SIGNUPMSGSETV1> 1.0.2,15.1,16,20
Banking <BANKMSGSETV1> 1.0.2,15.1,1.6,2.p

1.0.2,1.5.1,1.6,2.0

1.0.2,1.5.1, 1.6,

2.0

1.0.2,15.1,1.6/2.0

1.0.2,1.5.1, 1.6,

1.0.2,15.1,1.6, 20
1.0.2,1.5.1,1.6, 2|0

2.0

Investment security list <SECLISTMSGSETV1> 1.0.2,15.1,1.6,pR.0
Biller directory <PRESDIRMSGSETV1> 15.1,1.6,2.0

Bill delivery <PRESDLVMSGSETV1> 15.1,1.6,20

FI Profile <PROFMSGSETV1> 1.0.2,15.1,1.6,2)0

Note: For each message set that it is supporting, a financial institution must indicate which
version numbers of that message set it supports. The financial institution includes the message
set version number in the <MSGSETCORE> aggregate of the FI profile. For more information
about the FI profile, refer to Chapter EI'Profile. OFX 2.0 servers should use version

number 1.

2.4.6 Transactions

Other than the signon message, each request is made as a transaction. Transactions contain a client-
assigned globally-unique 1D, optional client-supplied pass-back data, and the request aggregate. A
transaction similarly wraps each response. The response transaction returns the client ID sent in the
request, along with a status message, the pass-back data if present, and the response aggregate. This
technique allows a client to track responses against requests. Sectioprdvides more information

about the format of information exchanged by the client and server.

The <STATUS> aggregate, defined_in Chapter Gofthmon Aggregates, Elements, and Data Types

provides feedback on the processing of the request. If the <SEVERITY> of the status is ERROR, the
server provides the transaction response without the nested response aggregate. Otherwise, the response
must be complete even though a warning might have occurred.

OFX 2.0 Specification 6/30/00 39

Clients can send additional information in <CLTCOOKIE> that servers will return in the response. This
allows clients that do not maintain state, and thus do not save <TRNUID>s, to cause some additional
descriptive information to be present in the response. For example, a client might identify a request as
relating to a user or a spouse.

<CLTCOOKIE> must only be returned by the server in the initial response to the client (and any crash
recovery from that response). The <CLTCOOKIE> should not be present in a sync response, except for
those transactions whose requests were wrapped in the sync request.

In some countries, some banks may require that a customer-supplied authorization number be included to
authenticate certain kinds of individual transactions such as payment requests. For those banks, the
<TAN> element passes this information to servers.

Note that if a <CLTCOOKIE> is given to an OFX server in a request, the OFX server is required to return
it. This return of the <CLTCOOKIE> will necessitate server-side storage of <CLTCOOKIE> data. In the
case of an OFX client getting a <CLTCOOKIE> that it didn’t send in a request, the default behavior is to
ignore it.

2.4.6.1 Transaction Wrapper

With the exception of the <SONRQ>/<SONRS> message, each message has a corresprgiintion
wrapper For requests, the transaction wrapper adds a transaction unique ID <TRNUID>. For responses,
the transaction wrapper adds the same transaction unique ID <TRNUID> (an echo of that found in the
request), plus a <STATUS> aggregate.

Thetransaction wrappehas a name structure okxXTRNRQ>/<xxXTRNRS>. A transaction wrapper pair
encapsulates a single message¢®Q>/<xxxRS>, soxxMODRQ>/<xxXMODRS>, etc.).

While the same name may be used for addition, modification and deletion messages, a single transaction
wrapper may contain at most one request or response. The request transaction wrapper must contain a
single request. The response transaction wrapper must contain a single response unless the contained
<STATUS> aggregate indicates an error. The <MULTIINTERTRNRQ>/<MULTIINTERTRNRS> pair
(section 11.8.5) is an exception to these rules.

Note: Some requests and responses (generally, Add, Modify, and Delete/Cancel types) share a
transaction wrapper and synchronization wrapper. In these cases, the names of the transaction
and synchronization wrappers reflect the Add message.

40 2.4 Open Financial Exchange XML Structure

A typical request is as follows:

Tag Description
<xxx TRNRQ> Transaction-request aggregate
<TRNUID> Client-assigned globally-unique ID for this transactitinpid

<CLTCOOKIE> Data to be echoed in the transaction respoAsg2

<TAN> Transaction authorization number; used in some countries with some types of
transactions. The FI Profile defines messages that require a <TAI88,
Request Aggregate for the request
aggregate
</xxx TRNRQ>

A typical response is as follows:

Tag Description
<XxxTRNRS> Transaction-response aggregate
<TRNUID> Client-assigned globally-unique ID for this transactitnpid

<CLTCOOKIE> Client provided datai\-32

<STATUS> Status aggregate
</STATUS>
Response Aggregate for the response
aggregate

</xxxTRNRS>

List of status code values for the <CODE> element of <STATUS>:

Meaning

0 Success (INFO)
2000 General error (ERROR)
2022 Invalid TAN (ERROR)

OFX 2.0 Specification 6/30/00

41

2.4.7 Synchronization Wrapper

Thesynchronization wrappdnas a name structure okxxSYNCRQ>/<xxXSYNCRS>. It contains
synchronization parameters and optionally encapsulates one or more transaction wrappers. For details on
the use of synchronization wrappers, see Chapter 6.

When embedded transactions are not present, the synchronization request contains no transaction
wrappers. If the client is up to date when the server processes such a request, the synchronization response
also contains no transaction wrappers.

Note: If a request/response is a sync request/response only, the transaction wrapper and
request that it wraps are omitted.

2.4.8 Message Set Wrapper
The profilemessage set wrappehave a name structure okx¥MISGSET> and xxXMSGSETV1>.

The request and responsessage set wrappehnsve a name structure okxMSGSRQW> and
XM SGSRSW> respectively. For OFX 2.0 must be “1”. This number indicates the version of the
message set used by the contained messages.

2.5 The Signon Message Set

The Signon message set includes the signon message, USERPASS change message, and challenge
message, which must appear in that order. The <SIGNONMSGSRQV1> and <SIGNONMSGSRSV1>
aggregates wrap the message.

2.5.1 Signon <SONRQ> and <SONRS>

The signon record identifies and authenticates a user to an Fl. It also includes information about the
application making the request, because some services might be appropriate only for certain clients. Every
Open Financial Exchange block contains exactly one <SONRQ>. Every response must contain exactly one
<SONRS> record. Use of Open Financial Exchange presumes that Fls authenticate each customer and
then give the customer access to one or more accounts or services. Authentication of a <SONRQ> is
required, even when in Error Recovery. If passwords are specific to individual services or accounts, a
separate Open Financial Exchange request must be made for each user ID or password required. This will
not necessarily be in a manner visible to the user. Note that some situations, such as joint accounts or
business accounts, will have multiple user IDs and multiple passwords that can access the same account.

FlIs assign user IDs for the customer. Although the user ID may be the customer’s social security number,
the client must not make any assumptions about the syntax of the ID, add check-digits, or do similar
processing.

42 2.5 The Signon Message Set

To improve server efficiency in handling a series of Open Financial Exchange request files sent over a
short period of time, clients can request that a server return a <USERKEY> in the signon response. If the
server provides a user key, clients will send the <USERKEY> instead of the user ID and password in
subsequent sessions, until the <USERKEY> expires. This allows servers to authenticate subsequent
requests more quickly. Servers must accept a <GENUSERKEY> element in a <SONRQ>. However, a
server may decide <USERKEY> does not afford sufficient security and may optionally not return a
<USERKEY> in the <SONRS>.

The client returns <SESSCOOKIE> if the server sent one in a previous <SONRS>. Servers can use the
value of <SESSCOOKIE> to track client usage but cannot assume that all requests come from a single
client, nor can they deny service if they did not expect the returned cookie. Use of a backup file, for
example, could lead to an unexpected <SESSCOOKIE> value that nevertheless should not stop a user
from connecting.

A client may use an anonymous form of <USERID> and <USERPASS> on those rare occasions when a
server need not authenticate the <SONRQ>. The only present situations in this class are first-time
<PROFRQ>, <FINDBILLERRQ>, and all <ENROLLRQ> transactions. Any request sent by the client
after a successful <ENROLLRQ> response (or out of band enrollment) for the service must provide the
user’s <USERID> and <USERPASS>. The anonymous <USERID> or <USERPASS> value is left aligned
and padded with 0 to a length of 32 characters: anonymous00000000000000000000000

Note: This anonymous password length may exceed the <MAX> value for the profile server
(in the corresponding <SIGNONINFO> aggregate). Nonetheless, servers supporting
anonymous signon must not reject this password due to its length.

Servers can request that a consumer change his or her password by returning status code 15000. Servers
should keep in mind that only one status code can be returned. If the current signon response status should
be 15500 (invalid ID or password), the request to change the password must wait until an otherwise
successful signon is achieved.

An OFX 2.0 server has the option of allowing or disallowing “empty” signon transactions. In the context

of signon, “empty” means a simple signon without any other transaction (a sync, statement download,

etc.). If the OFX 2.0 server does not support empty signon, it should return error 15506. If the OFX 2.0
server does support empty signon, it should process the signon and return the appropriate error or success
code.

If the server returns any signon error, it must respond to all other requests in the same <OFX> block with
status code 15500. For example, if the server returns status code 15502 to the <SONRQ> request, it must
return status code 15500 to all other requests in the same <OFX> block. The server must return status
code 15500 for all requests; it cannot simply ignore the requests. In addition, any sync responses must
indicate an error with <TOKEN>-1</TOKEN>, <LOSTSYNC>N </LOSTSYNC>(<LOSTSYNC> is an
optional element). Responses for any transactions embedded in the sync request should contain the same
<STATUS><CODE>15500</CODE></STATUS>. Otherwise, they must be omitted from the sync

response wrapper. (See section 6.2 for data synchronization specifics.)

OFX 2.0 Specification 6/30/00 43

2.5.1.1 Signon Request <SONRQ>

Unlike other requests, the signon request <SONRQ> does not appear within a transaction wrapper.

Tag
<SONRQ>

<DTCLIENT>

User identification.
Either <USERID> and
<USERPASS> or
<USERKEY>, but not
both.

<USERID>

<USERPASS>

<USERKEY>

<GENUSERKEY>
<LANGUAGE>

<FI>

</FI>

<SESSCOOKIE>

<APPID>
<APPVER>

</SONRQ>

Description

Signon-request aggregate

Date and time of the request from the client compudatetime

This value should reflect the time (according to the client machine) when the request
file is sent to the server, not the (original) creation time of the request file. While npot
required for existing software, OFX 2.0 clients must comply with this rule. This
clarification is particularly important in error recovery situations in which the request
file may be sent to the server after its initial creation.

User identification stringA-32
User password on serve;171

Note: The maximum clear text length of USERPASS is 32 characters: a client must

not send a longer password. However, when using Type 1 security, the encrypted|value

may extend to 171 characters.

Log in using previously authenticated conteki64
Request server to return a USERKEY for future iBeolean
Requested language for text respontasyuage
Financial-Institution-identification aggregate

Note: The client will determine out-of-band whether a Fl aggregate should be used
and if so, the appropriate values for it. If the Fl aggregate is to be used, then the ¢lient
should send it in every request, and the server should return it in every response.

Session cookie value received in previous <SONRS>, not sent if first login or if nopne
sent by FI,A-1000

ID of client application A-5

Version of client application, (6.00 encoded as 0608

44

2.5 The Signon Message Set

2.5.1.2 Signon Response <SONRS>

Unlike other responses, the signon response <SONRS> does not appear within a transaction wrapper.

Note: A client should use <DTPROFUP> and <DTACCTUP> only when the service provider
that originated <SONRS> is the same provider that is specified by <SPNAME> in the profile
message set. A client can determine if the service provider is the same by comparing the value
of <SPNAME> in the appropriate message set with the value for <SPNAME> in the profile

message set.

Tag

<SONRS>
<STATUS>
</STATUS>

<DTSERVER>

<USERKEY>

<TSKEYEXPIRE>
<LANGUAGE >

<DTPROFUP>

<DTACCTUP>

<FI>

</FI>
<SESSCOOKIE>

</SONRS>

Description

Record-response aggregate

Status aggregate, see section 3.$&e list of possible code values in section 2.5.1.8

Date and time of the server respondatetime

This value should reflect the time (according to the server) when the response file was

originally created. While not required for existing software, OFX 2.0 servers must
comply with this rule. This clarification is particularly important in error recovery

situations: The server should (must for OFX 2.0 servers) return the time the requéest

was first processed. If the previous attempt failed after transactions were process
<DTSERVER> in the response file would reflect that processing time.

Use user key instead of USERID and USERPASS for subsequent requests.
TSKEYEXPIRE can limit lifetime A-64

Date and time that USERKEY expiredatetime
Language used in text responsesguage

Date and time of last update to profile information for any service supported by th
(see Chapter 7F1 Profile"), datetime

Date and time of last update to account information (see Chapter 8, “Activation &
Account Information”) datetime

Financial-Institution-identification aggregate

Note: The client will determine out-of-band whether an Fl aggregate should be
and, if so, the appropriate values for it. If the Fl aggregate is to be used, then the
should send it in every request, and the server should return it in every response.

Session cookie that the client should return on the next <SONRQE00

ed,

used
client

OFX 2.0 Specification

6/30/00 45

2.5.1.3 Status Codes

List of status code values for the <CODE> element of <STATUS>:

Value Meaning

0 Success (INFO)

2000 General error (ERROR)

13504 <FI> Missing or Invalid in <SONRQ> (ERROR)

15000 Must change USERPASS (INFO)

15500 Signon invalid (see section 2. 5(ERROR)

15501 Customer account already in use (ERROR)

15502 USERPASS Lockout (ERROR)

15505 Country system not supported by server (ERROR)

15506 Empty signon transaction not supported (ERROR)

15507 Signon invalid without supporting pin change request (ERROR)
46 2.5 The Signon Message Set

2.5.1.4 Financial Institution ID <FI>

Some service providers support multiple Fls, and assign each Fl an ID. The signon allows clients to pass
this information along, so that providers know to which FI the user is signing on.

If a server does not require an Fl aggregate in a request but receives one anyway, it should echo the Fl
aggregate back. This is compliant with the general rule that the server should echo elements and aggregates
in the response if they are received and understood in the request.

If a server requires the <FI> aggregate in <SONRQ> requests and it contains incorrect information there
are several different specification compliant ways to respond. These are given in the order of preference:

¢ Return a 2000 error with appropriate text message — since the Fl aggregate information is incorrect the
user’s information (<USERID> and <USERPASS>) cannot be verified. Returning a 15500 might cause
clients to display messages to the user that the attempt to communicate with the server failed. A client
would probably suggest that the user verify their <USERID> and <USERPASS> values.

¢ Return a 15500 error — since the Fl aggregate information is incorrect or unknown the server cannot
verify the <USERID>, <USERPASS>, etc.

¢ Return an http 400 error — this is the least desirable option since it will provide no useful feedback to
the client communicating with the server, however it is legal.

Tag Description
<FI> Fl-record aggregate

<ORG> Organization defining this FI name spaée32

<FID> Financial Institution ID (unique within <ORG>}-32
</FI>

OFX 2.0 Specification 6/30/00 47

2.5.2 USERPASS Change <PINCHRQ> <PINCHRS>

The client sends a request to change the customer password as a separate request from the signon. The
transaction request <PINCHTRNRQ> aggregate contains <PINCHRQ>. Responses are placed inside the
transaction response <PINCHTRNRS>.

Password changes pose a special problem for error recovery. If the client does not receive a response, it
cannot know whether or not the password change was successful. OFX recommends that servers accept
either the old password or the new password on the connection following the one containing a password
change. When file-based error recovery is in use, the server must reject the old password except when
received with NEWFILEUID/OLDFILEUID headers indicating an error recovery attempt.

Also, if the client does not receive a response that has a status code of 15000 from a server, it cannot know
that a password change is required. In this case, the server must accept the old password when the
NEWFILEUID/OLDFILEUID headers indicate an error recovery attempt.

Servers that do not support file-based error recovery (or, when interacting with a client that does not utilize
file-based error recovery) must not complete a <PINCHRQ> until after the next request file arrives. If that
request file uses the new password, the new password must be permanently associated with the
<USERID>. Otherwise, the old password may authenticate the user. (For security, servers may return a
signon error if the next request file uses the old password but does not include a <PINCHRQ>.)
Conforming clients should re-send request files (unchanged beyond the <SONRQ>) after a failure whether
or not file-based error recovery is in use.

2.5.2.1 <PINCHRQ>

A USERPASS change request changes the customer’s password for the specific realm associated with the
messages contained in the OFX block. Based on the properties of an OFX profile, defined in Chapter 7,
"FI Profile," a single OFX block contains instructions related to a single realm. The USERPASS change
request thus changes the USERPASS for all message sets associated with one realm. For more information
about signon realms, see section 7.2.2

Tag Description
<PINCHRQ> USERPASS-change-request aggregate
<USERID> User identification string. Often a social security number, but if so, does not include

any check digitsA-32

Note: The maximum clear text length of USERPASS is 32 characters: a client
must not send a longer password. However, when using Type 1 security, the
encrypted value may extend to 171 characters.

<NEWUSERPASS> New user passwordy-171

Note: The effective size of NEWUSERPASS is A-32. However, if Type 1 securi
is used, then the actual field length is A-171.

ty

</PINCHRQ>

48 2.5 The Signon Message Set

2.5.2.2 <PINCHRS>

Tag Description
<PINCHRS> USERPASS-change-response aggregate
<USERID> User identification string. Often a social security number, but if so, does not include|any

check digits A-32
<DTCHANGED> | Date and time the password was changkdetime

</PINCHRS>

2.5.2.3 Status Codes

Value Meaning

0 Success (INFO)
2000 General error (ERROR)
15503 Could not change USERPASS (ERROR)

15508 Transaction not authorized (ERROR)

OFX 2.0 Specification 6/30/00 49

2.5.3 <CHALLENGERQ> <CHALLENGERS>

A challenge request is the first step in Type 1 application-level security. Essentially, it asks for some
random data from the server. The challenge response provides that server-generated random data and is the
second step in Type 1 security.

The challenge message is part of the signon message set and is not subject to data synchronization.

2.5.3.1 <CHALLENGERQ>

A <CHALLENGERQ> is part of a <CHALLENGETRNRQ> transaction, a <CHALLENGERS> part of a
<CHALLENGETRNRS>.

The client includes <FICERTID> in the request if it already has the server’s certificate. If that is included
and matches the server’s current certificate, the server may omit the actual certificate from the response.

Tag Description

<CHALLENGERQ> Opening tag for the challenge request.
<USERID> User identification stringA-32
<FICERTID> Optional server certificate IDA-64

</CHALLENGERQ> Closing tag for challenge request.

2.5.3.2 <CHALLENGERS>

Tag Description

<CHALLENGERS > Opening tag for the challenge response.

<USERID> User identification stringA-32
<NONCE> Server-generated random dafal6
<FICERTID> ID of server certificate used to encrypt:64

</CHALLENGERS> | Closing tag for challenge response.

When generating the <NONCE>, make sure the data is as unpredictable as possible. See RFC 1750 for
recommendations.

The server includes <FICERTID> in the response to identify the certificate in a separate MIME part. Even
if the certificate itself is not attached, <FICERTID> is still included in the response.

50 2.5 The Signon Message Set

2.5.3.3 Status Codes

Status code values for the <CODE> element (contained within the <STATUS> aggregate):

Value Meaning

0 Success (INFO)
2000 General error (ERROR)
15504 Could not provide random data (ERROR)

15508 Transaction not authorized (ERROR)

2.5.4 Signon Message Set Profile Information

A server must include the signon message set <SIGNONMSGSET> as part of the <MSGSETLIST>
aggregate in the Fl profile, since every server must support signon requests.

The information that is part of the <MSGSETCORE> aggregate (for example, the URL and security level)

is used only when no other message sets are used. Otherwise, the other message sets override the signon
message set for the purposes of batching and routing. For example, if bill payments are sent to a URL that
is different from the one used for signon, the client uses the URL specified in the bill payment message set
<BILLPAYMSGSET>. For more information about how clients batch and route messages, refer to section
7.1.3

Tag Description
<SIGNONMSGSET> Signon-message-set-profile-information aggregate
<SIGNONMSGSETV1> Opening tag for V1 of the message set profile information

<MSGSETCORE> Common message set information, defined in ChapteiF[7Rtofile"

</MSGSETCORE>
</SIGNONMSGSETV1>

</SIGNONMSGSET>

OFX 2.0 Specification 6/30/00 51

2.5.5 Examples

User requests a password change:

<PINCHTRNRQ>

<TRNUID>888</TRNUID>
<PINCHRQ>
<USERID>123456789</USERID>
<NEWUSERPASS>5321</NEWUSERPASS>
</PINCHRQ>
</PINCHTRNRQ>

The server responds with:

<PINCHTRNRS>

<TRNUID>888</TRNUID>
<STATUS>
<CODE>0</CODE>
<SEVERITY>INFO</SEVERITY>
</STATUS>
<PINCHRS>
<USERID>123456789</USERID>
</PINCHRS>
</PINCHTRNRS>

2.6 External Data Support

Some data, such as binary data, cannot easily be sent within XML. For these situations, the specification
defines an element that references some external data. The way that clients pick up the external data
depends on the transport used. For the HTTP-based transport described in this document, servers can send
the data in one of two ways:

¢ Send the same response, using multipart MIME types to separate the response into the Open Financial
Exchange file and one or more external data files

¢ Client can make a separate HTTP get against the supplied URL, if it really needs the data
For example, to retrieve a logo, a <GETMIMERS> might answer a <GETMIMERQ> as follows:

<GETMIMERS>

<URL>https://www.fi.com/xxx/yyy/zzz.jpg</URL>
</GETMIMERS>

If the file includes the same response using multipart MIME, clients must have the local file, zzz.jpg.

52 2.6 External Data Support

2.7 Extensions to Open Financial Exchange

An organization that provides a customized client and server that communicate by means of Open
Financial Exchange might wish to add new requests and responses or even specific elements to existing
requests and responses. To ensure that each organization can extend the specification without the risk of
conflict, Open Financial Exchange defines a style of tag naming that lets each organization have its own
naming convention.

Organizations can register a specific tag name prefix. (The specific procedure or organization to manage
this registration will be detailed at a later time.) If an organization registers “ABC,” then they can safely
add new elements and aggregates named <ABC.SOMETHING> without:

¢ Colliding with another party wishing to extend the specification

¢ Confusing a client or server that does not support the extension

The extensions are not considered proprietary. An organization is free to publish their extensions and
encourage client and server implementors to support them.

All tag names that do not contain a period (.) are reserved for use in future versions of the Open Financial
Exchange specification.

Note: Because OFX 2.0 forces XML compliance, unrecognized tags (per the DTD) are no
longer allowed in OFX documents. If a client or server wishes to send an OFX document with
tags or elements not found in the official OFX DTD, a modified DTD must be sent with the

OFX document containing the new content so that validating parsers will not fail on parsing the
new tags or elements.

The requirement to send a modified DTD with the document itself can be relaxed for clients

and servers which do not use validating parsers. However, clients and servers using extensions
to OFX must still conform to a mutually agreed upon DTD.

2.8 Backward Compatibility with Pre-OFX 2.0 Systems

OFX 2.0 differs with previous versions of OFX mainly through the required use of end tags on all elements
and through the use of an XML compliant header. OFX 1.0.2 required any parser to accept end tags but
did not require clients or servers to send elements with end tags. Therefore, because the actual content of
the OFX message sets has not changed, the transformation between OFX 1.0.2 and OFX 2.0 is fairly
simple.

2.8.1 End Tag Usage

OFX 2.0 requires the use of end tags in the OFX block of requests and responses. This is necessary to
enforce XML compliance.

OFX 2.0 Specification 6/30/00 53

2.8.2 XML Compliant Header

Any client or server using OFX 2.0 will have to use the XML compliant header. Mapping between the old
and new style of OFX headers is straightforward.

The old OFX header looks like:

OFXHEADER: 100
DATA: OFXSGML
VERSION: 102
SECURITY: NONE
ENCODING: USASCII
CHARSET: NONE
COMPRESSION: NONE
OLDFILEUID:NONE
NEWFILEUID: NONE

The new XML compliant OFX header looks like:

<?0FX OFXHEADER="200" VERSION="200" SECURITY="NONE" OLDFILEUID="NONE"
NEWFILEUID="NONE"?>

The old OFX header maps to the new header as follows:

OFXHEADER has the same meaning in both versions.

DATA is not necessary because XML is assumed.

VERSION has the same meaning in both versions.

SECURITY has the same meaning in both versions.

ENCODING is not necessary because it is specified in the standard XML declaration.
CHARSET is not necessary because it is handled by the XML declaration.
COMPRESSION is not necessary because it will not be handled at this data level.

OLDFILEUID has the same meaning in both versions.

® ¢ ¢ 6 6 O O 0 o

NEWFILEUID has the same meaning in both versions.

2.8.3 International Support

XML supports many different types of character encoding An OFX 2.0 server would have to support the
full range of encoding specified in the XML 1.0 recommendation to be fully XML compliant. However,
OFX 1.x only required support for USASCII and UTF-8. Therefore, to guarantee compatibility with older
servers, it will be necessary to limit the encoding of characters to USASCII and UTF-8.

54 2.8 Backward Compatibility with Pre-OFX 2.0 Systems

2.8.4 Message Set Versioning

OFX 2.0 supports all V1 message sets found in the OFX 1.6 specification.

OFX 2.0 Specification 6/30/00

55

56

2.8 Backward Compatibility with Pre-OFX 2.0 Systems

CHAPTER 3 COMMON AGGREGATES, ELEMENTS, AND
DATA TYPES

3.1 Common Aggregates

This section describes aggregates used in more than one service of Open Financial Exchange (for example,
investments and payments).

3.1.1 Identification of Financial Institutions and Accounts

Open Financial Exchange does not provide a universal space for identifying financial institutions,
accounts, or types of accounts. The way to identify an Fl and an account at that Fl depends on the service.
For information about service-specific ID aggregates, see Chapter 11, "Banking," Chapter 12,
"Payments,’and_Chapter 13, "Investments."

3.1.2 Punctuation in Certain User-Supplied Values

This section discusses the addition or removal of punctuation in certain user-supplied values by a client or
server. The term punctuation is loosely used to pertain to the manipulation of these values in such a way as
to make them more readable to either a user or processor, or make them more precise or correct. Making
user-supplied values more readable to the user or processor involves the utilization of punctuation
characters, for example, the stripping out of dashes in a user-supplied account number. Making the values
more precise or correct might involve an actual syntactic change to data, for example, the extension of a
Zip code to use the full zip+4 value.

3.1.2.1 Manipulation of User-Supplied Values by a Client

The user-supplied values under consideration here fall into three broad groups:
¢ Values provided for security reasons
& Values of critical ID fields

¢ Values of non-critical fields

3.1.2.1.1 Values provided for security reasons

This group pertains to values provided for security reasons such as <USERID> and <USERPASS>
elements. These values must never be manipulated by a client; they are sent without change to the server.

3.1.2.1.2 Values of critical ID fields

This group pertains to critical ID fields, generally account numbers, routing numbers and the like. These
values also should never be manipulated by a client unless the server has supplied the client with a

OFX 2.0 Specification 6/30/00 57

normalizing mask (not available to the customer) such as an <ACCTFORMAT> or <ACCEDITMASK>.
Values in this group, supplied to the client, must be in the correct format already if a server requires it. For
this reason, it is recommended that a server support <ACCTINFORQ> which supplies the information in
the form it is needed. In any event, as part of the enrollment process (either via OFX, the internet, or out of
band) a financial institution should communicate to the end-user which formatting is required. This is
recommended since there may be times when <ACCTINFO> is, for some reason, unavailable.

3.1.2.1.3 Values of non-critical fields

This third group of values relates to certain non-critical fields such as postal codes, addresses and
telephone numbers. Such values should not be manipulated by the client unless there is information that
the client has, which the user may not be aware of, for example, the four additional digits in a U.S. zip
code. In the case where such manipulated data is sent to the server (as opposed to simply displaying it
differently in the application) the client should inform the user that this change will be made, thereby
allowing the user to prevent the change if desired. An example of this would be the substitution of the
name of a township for the name of the larger city encompassing it, based on the postal code value.

3.1.2.2 Validation by a Server

When matching user-supplied text against stored information, servers are free to ignore all supplied
punctuation characters. For example, a server might remove all punctuation from an <ACCTID> before
performing validation. This temporary modification affects neither how the data would be returned, nor its
storage format. Such transformations should not occur with values provided for security reasons such as
<USERID> and <USERPASS> elements.

Servers are permitted to add or remove punctuation or otherwise modify client-supplied information, while
storing the data after processing a (successi)dRQ> or sxxxMODRQ> request. For example, a server
might store only the first five digits of a US <POSTALCODE> value, abbreviate common address
components (storing "St." when the request specified "Street"), or use a special address for well-known
payees. If a server does make such modifications, it must return the client-supplied values verbatim in the
initial response, and treat the modification as a server-initiated action. Therefore, a subsequent
synchronization should include axMODRS> with the server-stored values and <TRNUID>0 (zero) to
indicate that the server modified the client-supplied values.

This last requirement does not distinguish between insignificant changes (case or abbreviations) and
semantic differences (use of a completely different address for well-known payees). Although it is
recommended that clients be notified of all insignificant storage discrepancies and modifications, it is
required that clients be informed of all other such modifications.

In summary, if, for security reasons, a server will not accept a value that is punctuated differently than
expected, it must force compliance as described in section 3.1.2.1. In some cases where this is not possible,
sending a xxXMODRS> to force a change on the client side might also be in order. (Note that a
PAYEEMODRS will not affect pending payments so a server may also have to send out-of-band payment
modifications, if applicable.)

58 3.1 Common Aggregates

3.1.3 Echoing in Responses

A server should echo back unedited element values in the immediate response, but may store values in
edited form. In the cases where the stored value is changed, it is recommended that the server respond with
an out-of-band modification synchronization response whenever possible. For example, if a client sends a
payee name of “Sears” but the server stores it as “SEARS”, the server should send a <PAYEEMODRS> in
the next sync response. (See Chapter 12, "Payméantslarification of payee issues.) However, if the

server simply edits punctuation in or out of client-supplied numbers such as account numbers and will
match both forms in future requests, it is not required to notify the client.

Any intermediate software should avoid any modifications to these values, thus avoiding the need to
resolve this issue out-of-band.

3.1.4 Balance Records <BAL>

Several responses allow Fls to send an arbitrary set of balance information as part of a response, for
example a bank statement download. FIs might want to send information on outstanding balances,
payment dates, interest rates, and so forth. Balances can report the date the given balance reflects in
<DTASOF>.

Tag Description

<BAL > Balance-response aggregate
<NAME> Balance nameA-32
<DESC> Balance descriptior-80
<BALTYPE> Balance type.

DOLLAR = dollar (value formatted DDDD.cc)
PERCENT = percentage (value formatted XXXX.YYYY)
NUMBER = number (value formatted as is)

<VALUE> Balance value.

Interpretation depends on <BALTYPE> fieldmount

<DTASOF> Effective date of the given balanadgtetime
<CURRENCY> If dollar formatting, can optionally include currency
</CURRENCY>

</BAL>

OFX 2.0 Specification 6/30/00 59

3.1.5 Error Reporting <STATUS>

To provide as much feedback as possible to clients and their users, Open Financial Exchange defines a
<STATUS> aggregate. The most important element is the code that identifies the error. Each response
defines the codes it uses. Codes 0 through 2999 have common meanings in all Open Financial Exchange
transactions. Codes from 3000 and up have meanings specific to each transaction.

Clients should assume the burden of checking the profile and not sending a transaction which the server
does not support. If the client goes ahead and sends such a transaction, the server may either return an
HTTP 400 syntax error, or ignore unsupported elements and aggregates. In the latter case, assuming no
other problems occur in processing that request, servers may return warning code 2028 (Request element
unknown). The response file should not contain the unsupported elements or aggregates.

The last 200 error codes in each assigned range of 1000 are reserved for server-specific status codes. For
example, of the general status codes, 2800-2999 are reserved for status codes defined by the server. Of the
banking status codes, codes 10800-10999 are reserved for the server. If a client receives a server-specific
status code of <SEVERITY> ERROR that it does not know, it must handle it as a general error 2000.

Tag Description
<STATUS> Error-reporting aggregate.
<CODE> Error codeN-6

<SEVERITY> Severity of the error:

INFO = Informational only

WARN = Some problem with the request occurred but a valid response still present
ERROR = A problem severe enough that response could not be made

<MESSAGE> A textual explanation from the Fl. Note that clients will generally have messages of their
own for each error ID. Use this element only to provide more details or for the general
errors.A-255

</STATUS>

60 3.1 Common Aggregates

For general errors, the server can respond with one of the following <CODE> values. However, not all
codes are possible in a specific context.

Code Meaning

0 Success (INFO)
2000 General error (ERROR)

Note: Servers should provide a more specific error whenever possible. Error 200d
should be reserved for cases in which a more specific code is not available.

2021 Unsupported version (ERROR)

2028 Requested element unknown (WARNING)

6502 Unable to process embedded transaction due to out-of-date <TOKEN> (ERROR)
15500 Signon invalid (See section 2.5(ERROR)

Note: Clients will generally have error messages that are based on <CODE>. Therefore, do not
use <MESSAGE> to replace that text. Use <MESSAGE> only to explain an error not well
described by one of the defined codes, or to provide some additional information.
<MESSAGE> should be returned whenever the <CODE> can be refined. For example,
<CODE>2000 should always be accompanied with a <MESSAGE> explaining the problem.

3.2 Common Elements

This section defines elements used in several services of Open Financial Exchange. The format of the
value is either character (A} or numeric (Nn) with a maximum lengtt; or as a named type. Section
3.2.8describes the named types.

3.2.1 Client-Assigned Transaction UID <TRNUID>
Format: A-36

Open Financial Exchange uses <TRNUID>s to identify transactions within transaction wrappers
(<XXXTRNRQ>, <kxXTRNRQ>).

In most cases, clients originate <TRNUID>s. When a client originates a <TRNUID>, the value of the
<TRNUID> is always set to a unique identifier. The server must return the same <TRNUID> in the
corresponding response and any later synchronization responses that include this response. Clients may
use this <TRNUID> to match up requests and responses or to recognize synchronized responses for
transactions they did not initiate. Servers can use <TRNUID>s to reject duplicate requests. Because
multiple clients might be generating requests to the same server, transaction IDs must be unique across
clients. Thus, <TRNUID> must be a globally unique ID.

OFX 2.0 Specification 6/30/00 61

In some cases, servers can originate a transaction that was not specifically requested by a client. For
instance, a client might set up a recurring payment model. Although the client originates the payment
model, the server originates the individual payments. Whenever the server originates a transaction, the
value of the <TRNUID> must be set to zero. Lite synchronization servers (see Chapter 6, "Data
Synchronization)'must respond to synchronization requests with information about all changes of this

type.

The Open Software Foundation Distributed Computing Environment standards specify a 36-character
hexadecimal encoding of a 128-bit number and an algorithm to generate it. Clients are free to use their own
algorithm, to use smaller <TRNUID>s, or to relax the uniqueness requirements. However, it is
RECOMMENDED that clients allow for the full 36 characters in responses to work better with other
clients.

For example: A client creates a new recurring payment using <RECPMTRQ> in a <RECPMTTRNRQ>
with <TRNUID>123. Later, the same client might cancel the model using <RECPMTCANRQ> in a
<RECPMTTRNRQ> with <TRNUID>456. The server would inform the client of any spawned payments
using <PMTRS> responses with <TRNUID>0 in later payment synchronization responses
(KPMTSYNCRS>).

Usage:All services

3.2.2 Server-Assigned ID <SRVRTID>

Format: A-10 for <SRVRTID>, used in V1 message sets

A <SRVRTID> is a server-assigned ID for an object that is stored on the server. It should remain constant
throughout the lifetime of the object on the server. The client will consider the SRVRTID as its “receipt” or
confirmation and will use this ID in any subsequent requests to change, delete, or inquire about this object.

A <SRVRTID> is not unique across FI's or Service Providers, and clients might need to use FI +
<SPNAME> + <SRVRTID> when a unique key is necessary.

Where the context allows, a server may use the sahefor a given server object for both <SRVRTID>
and <FITID>, but the client will not know this. In this case, the server must assign <SRVRTID> and

<FITID> values that are more unique than otherwise required. Because of the differing uniqueness

constraints on the individual elements, such a reused value must be unigue throughout the FI.

For example: The server creates the new recurring model from the example in sectiom!2.1
<RECSRVRTID>1234:5687. The server uses this identifier in the initial <RECPMTRS> and any
synchronization responses that reference this model. The client references the same <RECSRVRTID> in
the later <RECPMTCANCRQ>.

62 3.2 Common Elements

If any payments are spawned from this model before it is cancelled, they would each have their own
<SRVRTID> value (for example, <SRVRTID>8765:4321 and <SRVRTID>8765:4322). The <SRVRTID>
value for one of the spawned payments may match the <RECSRVRTID> of the model. Such a match is not
required for any spawned payment. To guarantee uniqueness of the payment identifiers, no more than one
spawned payment may use the <RECSRVRTID> value of its model.

Usage:Payments, Banking

Elements of this type:RECSRVRTID and SRVRTID

3.2.3 Financial Institution Transaction ID <FITID>
Format: A-255

An FI (or its Service Provider) assigns an <FITID> to uniquely identify a financial transaction that can
appear in an account statement. Its primary purpose is to allow a client to detect duplicate responses. Open
Financial Exchange intends <FITID> for use in statement download applications, where every transaction
(not just those that are client-originated or server-originated) requires a unique ID.

An <FITID> also uniquely identifies the closing statement in <CLOSINGRS> and <CCCLOSINGRS>.
Again, the OFX client should detect repeated closing statements (duplicate downloads) using these
identifiers.

FITIDs must be unique within the scope of an account but need not be sequential or even increasing.
Clients should be aware that FITIDs are not unique across Fls. If a client performs the same type of request
within the same scope at two different Fls, clients will need to use FI + <ACCTID> + <FITID> as a

globally unique key in a client database. That is, the <FITID> value must be unigue within the account and
Financial Institution (independent of the service provider).

Note: Although the specification allows FITIDs of up to 255 characters, client performance
may significantly improve if servers use fewer characters. It is recommended that servers use
32 characters or fewer.

For example: The two spawned payments mentioned in section & Jrocessed and later downloaded

in a <STMTRS>. The first payment's <STMTTRN> would list <SRVRTID>8765:4321,
<RECSRVRTID>1234:5678, and <FITID>9999:8888:7777. The second payment would be described in a
<STMTTRN> containing <SRVRTID>8765:4322, <RECSRVRTID>1234:5678, and
<FITID>6666:5555:4444.

Usage:Bank statement download, investment statement download

Elements of this type:<CORRECTFITID>, <FITID>, <RELFITID>, and <REVERSALFITID>

OFX 2.0 Specification 6/30/00 63

3.2.4 Token <TOKEN>

Format: A-10 for <TOKEN>, used in V1 message sets

Open Financial Exchange us€e8SOKEN> as part of data synchronization requests to identify the pointin
history that the client has already received data, and in responses to identify the server’s current end of
history. See Chapter 6, “Data Synchronization,” for more information.

<TOKEN> is unigue within an Fl and the scope of the synchronization request. For example, if the
synchronization request includes an account ID, the <TOKEN> needs to be unique only within an account.
Servers are free to use a <TOKEN> that is unique across the entire Fl. Clients must save separate
<TOKEN->s for each account, FI, and type of synchronization request.

Usage:All synchronization requests and responses

3.2.5 Transaction Amount <TRNAMT>

Format: Amount

Open Financial Exchange uses <TRNAMT> in any request or response that reports the total amount of an
individual transaction.

Usage:Bank statement download, investment statement download, payments

3.2.6 Memo <MEMO>
Format: A-255 for <MEMO>, used in V1 message sets
A <MEMO> provides additional information about a transaction.

Usage:Bank statement download, investment statement download, payments, transfers

64 3.2 Common Elements

3.2.7 Date Start and Date End <DTSTART> <DTEND>

Format: Datetime

Clients use these elements in requests to indicate the range of response that is desired. Servers use these
elements in responses to let clients know what the Fl was able to produce.

In requests, the following rules apply:

¢ If <DTSTART> is absent, the client is requesting all available history (up to the <DTEND>, if
specified). Otherwise, it indicates tireelusivedate and time in history where the client expects servers
to start sending information.

¢ |f <DTEND> is absent, the client is requesting all available history (starting from <DTSTART>, if
specified). Otherwise, it indicates te&clusivedate and time in history where the client expects servers
to stop sending information.

In responses, the following rules apply:

¢ <DTSTART> is the date and time where the server bdgakingfor information, not necessarily the
date of the earliest returned information. If the response <DTSTART> is later than the requested
<DTSTART>, clients can infer that the user has not signed on frequently enough to ensure that the
client has retrieved all information. If the user has been calling frequently enough, <DTSTART> in the
response will match <DTSTART> in the request.

¢ <DTEND-> is the date and time that, if used by the client as the next requested <DTSTART>, it would
pick up exactly where the current response left off. It isekelusivedate and time in history where the
server stoppetbokingfor information, based on the request <DTEND> rules.

Because the system add date for a transaction is not necessarily the post date for the transaction (the latter
occurring when the account is actually debited or credited), a server should consider the <DTSTART> and
<DTEND> dates in a <(CC)STMTRQ> as a request for any transactions that were posted or added to the
Fl system at that time. In addition, the transactions returned should probably span a greater window of time
than that included in the <DTSTART>/<DTEND> dates since a transaction might be added to the system
after a statement download request was made for that time period. (Clients should be able to filter out the
unnecessary transactions.) If a client is always requesting a download sequentially, through time, is never
requesting an end date using <DTEND> and is always substituting <DTEND> in the response for
<DTSTART> in the next request, it is safe for a server to return only those transactions that had a system
add date on or after <DTSTART> in the request. In all cases, servers are miniatpliyed to use a

“system add datetime” as the basis for deciding which details match the requested date range. For example,
if an Fl posts a transaction dated Jan 3 to a user’s account on Jan 5, and a client connects on Jan 4 and
again on Jan 6, the serverrixjuired to return that Jan 3-dated transaction when the client calls on Jan 6.

Usage:Bank statement download, investment statement download

OFX 2.0 Specification 6/30/00 65

3.2.8 Common Data Types

3.2.8.1 Dates, Times, and Time Zones
There is one format for representing dates, times, and time zones. The complete form is:

YYYYMMDDHHMMSS. XXX [gmt offset:tz nanje

3.2.8.1.1 Ranges for Years, Months, Days, Hours, Seconds

Portion of Date/Time Field Range

YYYY 0000 - 9999
MM 1-12
DD 1-31
HH 0-23
MM 0-59
SS 0-60
60 is only used in the case of the leap second

3.2.8.2 Date and Datetime

Elements specified as tymiate or datetimend generally starting with the letters “DT” accept a fully
formatted date-time-timezone string. For example, “19961005132200.124[-5:EST]” represents October 5,
1996, at 1:22 and 124 milliseconds p.m., in Eastern Standard Time. This is the same as 6:22 p.m.
Greenwich Mean Time (GMT).

Dateanddatetimealso accept values with fields omitted from the right. They assume the following
defaults if a field is missing:

Specified date or datetime Assumed defaults
YYYYMMDD 12:00 AM (the start of the day), GMT
YYYYMMDDHHMMSS GMT

YYYYMMDDHHMMSS. XXX |GMT

Note that times zones are specified by an offset and optionally, a time zone name. The offset defines the
time zone. Valid offset values are in the range from —12 to +12 for whole number offsets. Formatting is
+12.00 to -12.00 for fractional offsets, plus sign may be omitted.

Take care when specifying an ending date without a time. If the last transaction returned for a bank
statement download was Jan 5 1996 10:46 a.m. and if the <DTEND> was given as just Jan 5, the

66 3.2 Common Elements

transactions on Jan 5 would be resent. If results are available only daily, then just using dates and not times
will work correctly.

Note: Open Financial Exchange does not require servers or clients to use the full precision
specified. However, they aREQUIRED to accept any of these forms without complaint.

Some services extend the general notion ddteby adding special values, such as “TODAY.” These
special values are called “smart dates.” Specific requests indicate when to use these extra values, and list
the element as having a special data type.

OFX 2.0 Specification 6/30/00 67

3.2.8.3 Time

Elements specified as typieneand generally ending with the letters “TM” accept times in the following
format:

HHMMSS.XXX[gmt offset:tz nanje

The milliseconds and time zone are still optional, and default to GMT.

3.2.8.4 Time Zone Issues

Several issues arise when a customer and Fl are not in the same time zone, or when a customer moves a
computer into new time zones. In addition, it is generally unsafe to assume that computer users have
correctly set their time or time zone.

Although most transactions are not sensitive to the exact time, they often are sensitive to the date. In some
cases, time zone errors lead to actions occurring on a different date than intended by the customer. For this
reason, servers should always use a complete local time plus GMT offset in any datetime values in a
response. If a customer’s request is for 5 p.m. EST, and a server in Europe responds with 1 a.m. MET the
next day, a smart client can choose to warn the customer about the date shift.

Clients that maintain local state, especially of long-lived server objects, should be careful how they store
datetime values. If a customer initiates a repeating transaction for 5 p.m. EST, then moves to a new time
zone, the customer might have intended that the transaction remain 5 p.m. in the new local time, requiring
a change request to be sent to the server. If, however, the customer intended it to remain fixed in server
time, this would require a change in the local time stored in the client.

Client software that doesn’t know the current local time zone for the user, or client proxies that don’t know
the current local time zone of their end users, should maintain and display the datetime value in the time
zone indicated by the originator of the value and explicitly marked with that time zone. As an example,
consider <DTPMTDUE> in section 11.5.4.2. If the biller gave a due date of 23:59pm EST on Dec. 29,
1997, this is best displayed as 23:59pm EST rather than rendered in local time if there is any doubt at all as
to the current local time zone of the end user looking at the due date.

68 3.2 Common Elements

When considering timezone conversions, remember the following differences betwektehnd
datetimedatatypes:

¢ Date= A date without time; this date is explicit. Clients and servers will not convert the value in any
way. Examples include birth date and billing date.

¢ Datetime= A date and time format; clients and servers may convert this date to their local timezone.
Examples include last account update date and bill summary fetch date.

Note: Developers should consider the possibility of a date change due to timezone conversion.
A datetimevalue in the GMT timezone with a time of 12:00:00 (noon) would be converted to
another time on the same date in every timezone. For example, 199812251200 remains
Christmas Day in every timezone.

3.2.9 Amounts, Prices, and Quantities

3.2.9.1 Basic Format
Format: A-32

This section describes the format of numerical values used for amounts, prices, and quantities. In all cases,
a numerical value that does not contain a decimal point has an implied decimal point at the end of the
value. For example, a numerical value of “550” is equivalent to “550.” Trailing and leading spaces should
be stripped. Number format uses a leading sign. Negative number format uses a minus sign (-). Positive
number format uses a plus sign (+). The plus sign is implied for all amounts and can be omitted.

The following types are defined to have a maximum of 32 characters, including alphabetic characters,
digits and punctuation. However, clients and servers may have specific limits for the maximum number of
digits to the left or right of a decimal point. If a server cannot support a client request due to the size or
precision of a number, the server should return status code 2012.

Amount:Amounts that do not represent whole numbers (for example, 540.32), must include a decimal
point or comma to indicate the start of the fractional amount. Amounts should not include any punctuation
separating thousands, millions, and so forth. The maximum value accepted depends on the client.

Quantity: Use decimal notation.
Unitprice: Use decimal notation. Unless specifically noted, prices should always be positive.

Rate:Use decimal notation, with the rate specified out of 100%. For example, 5.2 is 5.2%. Rates can be
greater than 100 and can be negative.

Some services define special values, such as INFLATION, which you can use instead of a designated
value. Open Financial Exchange refers to these as “smart types,” and identifies them in the specification.

OFX 2.0 Specification 6/30/00 69

3.2.9.2 Positive and Negative Signs

Most OFX transaction aggregates describe the flow of funds. Amounts in transactions which clearly
describe the flow of funds should normally be positive. For example, investment buys and sells, bank
statement credits and debits should be positive.

Servers should sign amounts from the perspective of the user in cases where the flow of funds cannot be
determined from the transaction aggregate alone. For example, interest amounts can be either positive or
negative, depending on whether the interest is earned or paid. Servers should also sign amounts in cases of
corrections to transaction. For example, a correction to an Investment Buy Mutual Fund transaction,
BUYMF, would contain negatively signed UNITS.

3.2.10 Language

Languageadentifies the human-readable language used for such things as status messages and e-mail.
Languagds specified as a three-letter code based on ISO-639.

3.2.11 Other Basic Data Types

Boolean:Y = yes or true, N = no or false.

currsymbol A three-letter code that identifies the currency used for a request or response. The currency
codes are based on ISO-4217. For more information about currencies, refer to section 5.2.

URL: String form of a World Wide Web Uniform Resource Location. It should be fully qualified including
protocol, host, and patii-255.

70 3.2 Common Elements

CHAPTER 4 OFX SECURITY

OFX provides several options for ensuring the security of customer transactions. This chapter describes the
OFX security framework, security goals, types of security, and financial institution (FI) responsibilities.

4.1 Security Concepts in OFX

4.1.1 Architecture

OFX security applies to the communication paths between a client and the profile server, a client and the
Web server, and, when the OFX server is separate from the Web server, a client and the OFX server. The
diagram below illustrates the initial order in which these communications occur, assuming that the client
already has the URL for the FI profile server.

The bootstrap process for a client is:

¢ From the FI Profile Server, the client gets the URL of the FI Web server, so that it can retrieve a
particular message set.

¢ The client sends an OFX request to the FI Web Server URL, from which it is forwarded to the OFX
Server.

¢ The OFX Server sends back a response to the client via the Web Server.

I PROFILE
FI Profile ! SERVER
—| including L
Web Server URL |
|
|
|

CLIENT | = mmm s —m e —m e m e m——————————
Financial Institution or 3rd Party

SERVER SERVER
OFX Response

|
|
|
|
|
WEB OFX |
|
|
|
|
|
|

OFX 2.0 Specification 6/30/00 71

4.1.2 Security Goals

The main goals of OFX security are:

¢ Privacy: Only the intended recipient can read a messkgeryptionis a technique often used to
ensure privacy.

¢ Authentication: The recipient of a message can verify the identity of the sender. In P&3§words
allow an FI to authenticate a client, aodrtificatesallow a client to authenticate a server.

¢ Integrity: A message cannot be altered after it is created A cryptogrdyaisiis often used to assist
integrity verification.

OFX specifies the minimum security required for Internet transactions and provides several security
options, based on existing standards. Through its choice of security techniques and related options, an Fl
can achieve privacy, authentication, and integrity with varying degrees of assurance. For example, there
are many kinds of encryption algorithms, most of which can be strengthened or weakened by changing the
key size.

4.1.3 Security Standards

Several standards underlie Type 1 security:
¢ Certificates (X.509 v3) are used to identify and authenticate servers, and to convey their public keys.
¢ PKCS #1 block type 2 is the encryption format specified by the recipe (See section 4)2.2.4.3

¢ RSA is the encryption algorithm.

4.1.3.1 Certificates and Certification Authorities

A certificate is a digitally signed document that binds a public key to an identity. It contains a public key
that identifies information such as the name of the person or organization to whom the key belongs, an
expiration date, a unique serial number, and additional descriptive information.

A certificate is useful for authentication because it is signed by a trusted third-party. This assures the
verifier that the certificate has not been changed since it was signed. The entity which signs certificates is
called acertification authority or CA. A CA acts somewhat like a notary public: the reader of a document
stamped by a notary public knows that the notary has checked the identity of the person who originated the
document. By digitally signing someone’s identity and public key, the CA affirms that the two go together.

If the client and server do not share a common CA, the client cannot validate the server’s certificate. For
this reason, OFX specifies a number of trusted CAs that all clients must accept and all servers must use.

Certificates are used in Type 1 security, as well as channel-level security through SSL. The format for
these is defined by X.509 version 3. For more information, refer to ITU-T Rec. X.509, ISO/IEC 9594-8.

72 4.1 Security Concepts in OFX

4.1.3.2 PKCS #1

The acronym, PKCS, stands for “Public Key Cryptography Standards,” a set of standards developed by a
consortium and hosted by RSA. PKCS #1 is the RSA Encryption Standard, the rules for using RSA public
key encryption. For the complete syntax of the PKCS #1 standard, refer to “Public-Key Cryptography
Standards (PKCS)” published by RSA Data Security, Inc. at http://www.rsa.com/.

4.1.4 Fl Responsibilities

OFXis designed with the understanding that there must be a security policy in place at each supporting
financial institution. That policy must clearly delineate how customer data is secured, and how transactions
are managed such that all parties to the transaction are protected according to accepted and recognized best
common practices.

The decision regarding which users may perform a given operation on a given account must be determined
by the financial institution. For example, is the specified user authorized to perform a transfer from the
specified account? The financial institution must also determine whether the user has exceeded allowed
limits on withdrawals, whether the activity on this account is unusual given past history, and other context-
sensitive issues.

Although OFX provides many security options, an FI must support a minimal level of security. To ensure
the proper security configuration, an FI must follow the steps outlined below.

1. Obtain one certificate for the profile server. This certificate must be rooted in one of the approved
Certification Authorities (CAs). Establish appropriate safeguards for this certificate and its private key.

2. Obtain a certificate, rooted in an acceptable CA, for each OFX server, whether it is operated by the FI
or by a third party.

3. Decide whether to use Type 1 application-level security for any message sets. For each message set to
be secured by Type 1, obtain a certificate.

Type 1 security can be used on any message set, except for the Profile message set.

There are a number of other security issues beyond OFX proper, especially those relating to the Internet
and network engineering. These issues are beyond the scope of this document. Fls are advised to conduct a
complete security review of all servers associated with OFX.

OFX 2.0 Specification 6/30/00 73

4.1.5 Security Levels: Channel vs. Application

With OFX, security can be applied at two different levels in the message exchange process.

¢ Channel level: Generally transparent to a client or server, channel-level security is built into the
communication process, protecting messages between two ends of the “pipe.” To secure messages
during HTTP transport, client and server applications use the Secure Sockets Layer (SSL) protocol.
SSL transparently protects messages exchanged between the client and the destination Web server. SSL
authenticates the destination Web server using the Web server’s certificate. Additionally, it provides
privacy via encryption, and SSL-record integrity, i.e. the block of data sent in each transmission cannot
be altered without detection.

¢ Application level: Transparent to and independent of the transport process, application-level security
protects the user password sent from the client application all the way to the server application that
handles the OFX messages. The server application typically resides beyond the destination Web server,
secured behind an Internet firewall. Application-level security requires channel-level security.

The following diagram illustrates how channel-level and application-level security relate. The diagram
shows the path of a request from the client to the server when application-level encryption is used.

Passwords are encrypted by the The Web server removes the
client application and by the SSL encryption and forwards
SSL Protocol the encrypted password and

plaintext OFX data

SSL Encryption

OFX Data OFX Data
CLIENT Encrypted WEB Encrypted | OFx
Password SERVER Password "| SERVER

Channel-level security is sufficient for most message sets, provided that the network architecture at the
destination is adequately secure; however, application-level password encryption can allow a more flexible
back-end architecture with a high level of security.

74 4.1 Security Concepts in OFX

4.2 Security Implementation in OFX

4.2.1 Channel-Level Security

4.2.1.1 Specification in FI Profile

For each message set listed in the FI profile response, the <MSGSETCORE> aggregate describes the
channel-level security required for that message set.

The <TRANSPSEC> element defines whether or not channel-level security is required. It can have one of
the following values:

Description
N Do not use any channel-level security
Y Use channel-level security

All currently defined message sets require channel-level security.

4.2.1.2 SSL Protocol

Secure Sockets Layer (SSL) is a cryptographic protocol commonly used for channel-level security on the
Internet. Central to the security of SSL is therver certificate This certificate assures clients that the

server is who it claims to be. It contains the public key of the server, which the client uses to encrypt the
session keys it generates as part of each connection.

All of this function is available without significant software development on either the client or server side;
however, the client and server must be configured to use appropriate encryption algorithms (CipherSuites).
In addition, clients and servers must share a trusted root certificate, or the client will not be able to validate
the server’s certificate.

Note: Although SSL supports client-side certificates to allow a server to authenticate a client,
OFX does not require them at this time. To identify and authenticate a customer, servers should
use the information provided in the signon request <SONRQ>.

Setting the <TRANSPSEC> element to Y means that the client must use SSL v3 or higher.

OFX 2.0 Specification 6/30/00 75

4.2.1.3 Trusted Certificate Authorities

Both channel-level and application-level security rely on clients and servers having at least one trusted
certification authority (CA) in common. To ensure that clients can test the validity of a certificate, servers
must have their certificates signed by an approved OFX CA. Clients are assumed to have access to this
trusted CA.

4.2.1.4 CipherSuites

The following SSL CipherSuites are approved for use with OFX:
SSL_RSA_WITH_RC4 128 SHA
SSL_RSA_WITH_IDEA_CBC_SHA

SSL_RSA WITH_DES_CBC_SHA
SSL_RSA_WITH_3DES_EDE_CBC_SHA
SSL_DH_DSS WITH_DES_CBC_SHA
SSL_DH_DSS WITH_3DES_EDE_CBC_SHA
SSL_DH_RSA_WITH_DES_CBC_SHA
SSL_DH_RSA WITH_3DES_EDE_CBC_SHA
SSL_DHE_DSS_WITH_DES_CBC_SHA
SSL_DHE_DSS_WITH_3DES_EDE_CBC_SHA
SSL_DHE_RSA_WITH_DES_CBC_SHA
SSL_DHE_RSA WITH_3DES_EDE_CBC_SHA

® 6 & 6 4 6 O O 0 O o o

Other CipherSuites are not approved.

4.2.1.5 Key Size
Signing keys must be either RSA with a minimum 1024-bit modulus, or DSS with a 1024-bit modulus.

Server RSA keys and Diffie-Hellman keys must both have a minimum 1024-bit modulus. The Diffie-
Hellman base must be primitive.

76 4.2 Security Implementation in OFX

4.2.2 Application-Level Security

4.2.2.1 Specification in FI Profile

For each message set listed in the FI profile response, the <MSGSETCORE> aggregate describes the
security required for that message set.

The <OFXSEC> element defines the type of application-level security required for the message set.
<OFXSEC> can have one of the following values, which also are used in the SECURITY element of the
OFX headers:

Description
NONE Do not use any application-level security
TYPE1 Use Type 1 application-level security

Application-level security requires channel-level security.

4.2.2.2 Type 1 Protocol Overview

The goal of the Type 1 protocol is to protect the user password all the way to the destination OFX server. In
the absence of client certificates, this password is the primary vehicle for client authentication and is
therefore worthy of special consideration.

Type 1 requires channel-level securitg. SSL. Though the password is well protected by SSL alone in
the client to Web server connection, the server-side network architecture may render the password less
secure while it is in transit between the Web and OFX servers. With Type 1, the user password is not
decrypted until the request reaches the OFX server.

Type 1 applies only to the request part of a message; the server response is unaffected.

A simple approach would be to deliver the server’s Type 1 certificate in the profile and use it to encrypt the
password, but that would permiteplay attack An attacker could capture a transaction, including
encrypted password, and replay it to the server. It wouldn’'t matter that the password remained unknown.

To prevent theeplay attack the server introduces some random data to the process, data which is
unpredictably different for each transmission. The client asks for the random data with a challenge request.
The server sends it, along with its Type 1 certificate, in the challenge response. The client then uses that
random data in the encryption process, thereby assuring the server that the client response is associated
with this and only this interaction.

OFX 2.0 Specification 6/30/00 77

The following diagram illustrates:

CLIENT

—| Challerge reguest |—’

OFX request w/
encrypted password

WEB
SERVER

Challenge responseg
w/ random data

OFX

SERVER

]

OFX regponse |—

4.2.2.3 Type 1 Protocol Notation

In this section, the expression, C 3 M), means that plain text M is encrypted either symmetrically or
asymmetrically with key A into ciphertext C. The expression, M g D) signifies the inverse operation

(decryption), in which ciphertext C is decrypted into plain text M using key A. If C was encrypted
asymmetrically, then A in the latter case is understood to be the private component of the key. The
expression, A || B, indicates that B is concatenated to A.

4.2.2.4 Type 1 Protocol Implementation

Type 1 application-level security provides additional password secrecy. These are the steps for conducting
a Type 1 transaction (unless otherwise noted, the term “Server” in this section refers to the Financial
Institution Server):

1. Client obtains the Server’s profile from the Profile Server (Seepter 7, "FI Profile)

2. Client establishes an SSL connection with the Server (see sectiop 4.2.1

3. Client sends <CHALLENGERQ> to Server (see section 4.2.2.4.1

4. Server sends <CHALLENGERS> which contains a nonce and the Server’s Type 1 certificate (see
section 4.2.2.4p

5. Client builds a transaction request and sends it to the Server (see section 4.2.2.4.3
Server parses the request, verifying the user password, and either rejects or processes the transaction
(see section 4.2.2.4.4

78 4.2 Security Implementation in OFX

The following table lists data elements used in the Type 1 protocol:

1%
D

\1%4

Zero

Field Type Description

BT octet, length 1 Block Type byte.
BT = 0x02

CT1 octet string, length 128 Ciphertext: the PKCS #1 RSA encryption of EB with KS.
CT1=Eg(EB)

CT2 printable ASCII, length 171 Encoded Ciphertext: the RADIX-64 encoding of CT1 (s
RFC 1113, 84.3.2.4 and §4.3.2.5).
CT2 = RADIX64(CT1)

D octet string, length 68 Data: the user data to be encrypted.
D=NC||P||T

EB octet string, length 128 Encryption Block: the formatted plain text block, ready for
encryption.
EB =0x00 || BT || PS || 0x00 || D

KS RSA key, modulus length 1,024 bits Server’s Type 1 RSA key

NC octet string, length 16 Client Nonce: string of random octets generated by the
Client

NS octet string, length 16 Server Nonce: string of random octets generated by thg
Server

P printable ASCII, null-padded, length 32 Password: shared by the Client and Financial Institutign,
null-padded on the right

PS octet string, length 57 Padding String: each octet is pseudo-random and non-

T octet string, length 20 Authentication Token.

T = SHAL(NS || P || NC)

OFX 2.0 Specification

6/30/00 79

struct {

unsigned char nc[16];
unsigned char p[32];
unsigned char t[20];

} D;
struct {

unsigned char nulll = 0x00;
unsigned char bt = 0x02;
unsigned char ps[57];
unsigned char null2 = 0x00;
struct D d;

} EB;

4.2.2.4.1 Challenge request

Client sends a <CHALLENGERQ> to the Server.

4.2.2.4.2 Challenge response

Server sends a <CHALLENGERS> to the client. This response contains the Server’s Type 1 certificate and
NS.

4.2.2.4.3 Building the OFX Request

1.

9.

Client generates 16 random octets and places them in NC (see RFC 1750 for recommendations on
entropy generation)

Client obtains the User’s password (P)
Client computes T = SHAL(NS || P || NC)

Client generates 57 pseudo-random, non-zero octets and places them in PS (NC may be used to seed
the pseudo-random number generator)

ClientsetsD=NC||P || T
Client sets EB = 0x00 || BT || PS || 0x00 || D

Client RSA-encrypts EB using the Server’s Type 1 public key (obtained from the Server’s Type 1
certificate): CT1 = gg(EB) (see PKCS #1, §88.2-8.4)

Client encodes the ciphertext for transport: CT2 = RADIX64(CT1). See RFC 1113, §4.3.2.4 and
84.3.2.5. This is a standard encoding method supported by RSA's Bsafe library and others.

Client constructs the body of its OFX request

10. Client copies CT2 to the <USERPASS> field of the OFX <SONRQ>

11. Client sends the complete OFX request to the Server

In <PINCHRQ>, the steps are identical, except that in step 2, P is set to <NEWUSERPASS> and in step
10, CT2 is copied to the <NEWUSERPASS> field of the <PINCHRQ>.

80

4.2 Security Implementation in OFX

The diagram below illustrates the creation of CT2.

Legend NS P NC
16 bytes 32 bytes 16 bytes
‘ SHA-1 hash
SHA-1
concatenation
RSA encryption with Server's
public key
NC P T
16 bytes 32 bytes 20 bytes
‘ RADIX-64 encoding
0x00 BT PS 0x00 D
1 byte 1 byte 57 bytes 1 byte 68 bytes
EB CT1 CT2
128 bytes 128 bytes 171 bytes

OFX 2.0 Specification

6/30/00

81

4.2.2.4.4 Parsing the OFX Request

1. Serverreads the OFX SECURITY header in the request file to ascertain whether Type 1 processing
should be used on this message. If Type 1 is not used, skip to step 6

2. Server extracts CT2 from the <USERPASS> field of the OFX <SONRQ> and removes the encoding to
obtain CT1 (see RFC 1113, 84.3.2.4 and 84.3.2.5)

3. Server decrypts CT1 to obtain EB: EB %E(CT1) (see PKCS #1, §9)

4. Server extracts D from EB, then extracts NC, P, and T from D

Server looks up the Client’'s password in its database, and computes SHAL(NS || P || NC). If the result
does not match T, Server terminates the session and reports the error to the client

6. Server processes the request and returns confirmation to the Client
In <PINCHRQ>, the steps are identical except that in step 2, CT2 is obtained from the

<NEWUSERPASS> field of the <PINCHRQ> and in steplte server does not look up the extracted new
password in a database.

82 4.2 Security Implementation in OFX

CHAPTER 5 INTERNATIONAL SUPPORT

5.1 Language and Encoding

Most of the content in OFX is language-neutral. However, some error messages, balance descriptions, and
similar elements contain text meant to appear to the financial institution customers. There are also cases,
such as e-mail records, where customers need to send text in other languages. To support worldwide
languages, OFX relies on standard XML mechanisms to encode text.

The encoding declaration of the standard XML declaration specifies the character set being used. Servers
should respond to clients using the same encoding as was sent in the client’s request.

Clients identify the language in the signon request. OFX specifies languages by three-letter codes as
defined in 1ISO-639. Servers report their supported languages in the profilel{aper 7, "Fl Profile). If a

server cannot support the language requested by the client, it must return an error and not process the rest
of the transactions.

5.2 Currency <CURDEF> <CURRENCY> <ORIGCURRENCY>

In each transaction involving amounts, responses include a default currency identification, <CURDEF>.
The values are based on the 1SO-4217 three-letter currency identifiers.

Within each transaction, specific parts of the response might need to report a different currency. Where
appropriate, aggregates include an optional <CURRENCY> aggregate. The scope of a <CURRENCY>
aggregate is everything within the same aggregate that the <CURRENCY> aggregate appears in, including
nested aggregates, unless overridden by a nested <CURRENCY> aggregate. For example, specifying a
<CURRENCY> aggregate in an investment statement detail means that the unit price, transaction total,
commission, and all other amounts are in terms of the given currency, not the default currency.

Note that there is no way for two or more individual elements that represent amounts—and are directly
part of the same aggregate—to have different currencies. For example, there is no way in a statement
download to have a different currency for the <LEDGERBAL> and the <AVAILBAL>, because they are
both directly members of <STMTRS>. In most cases, you can use the optional <BAL> aggregates to
overcome this limitation, since <BAL> aggregates accept individual <CURRENCY> aggregates.

The default currency for a request is the currency of the source account. For example, the currency for
<BANKACCTFROM>.

The <CURRATE> should be the one in effect throughout the scope of the <CURRENCY> aggregate. Itis
not necessarily the current rate. Note that the <CURRATE> needs to take into account the choice of the Fl
for formatting of amounts (that is, where the decimal is) in both default and overriding currency, so that a

OFX 2.0 Specification 6/30/00 83

client can do math. This can mean that the rate is adjusted by orders of magnitude (up or down) from what
is commonly reported in newspapers.

Tag Description

<CURRENCY> or Currency aggregate

<ORIGCURRENCY>
<CURRATE> Ratio of <CURDEF> currency to <CURSYM> currency, in decimal notatiate
<CURSYM> 1ISO-4217 3-letter currency identifiesurrsymbol

</CURRENCY> or
</ORIGCURRENCY>

In some cases, OFX defines transaction responses so that amounts have been converted to the home
currency. However, OFX allows Fls to optionally report the original amount and the original (foreign)
currency. In these cases, transactions include a specific aggregate for the original amount, and then an
<ORIGCURRENCY> aggregate to report the details of the foreign currency.

Again, <CURRENCY> means that OFxas notconverted amounts. Whereas, <ORIGCURRENCY>
means that OFXasalready converted amounts.

84 5.2 Currency <CURDEF> <CURRENCY> <ORIGCURRENCY>

5.3 Country-Specific Element Values

Some of the elements in OFX have values that are country-specific. For example, <USPRODUCTTYPE>
is useful only within the United States. OFX will extend in each country as needed to provide elements that
accept values useful to that country. Clients in other countries that do not know about these elements must
simply skip them.

In some cases, an element value represents a fundamental way of identifying something, yet there does not
exist a world-wide standard for such identification. Examples include bank accounts and securities. In
these cases, OFX must define a single, extensible approach for identification. For example, CUSIPs are
used within the U.S., but not in other countries. However, CUSIPs are fundamental to relating investment
securities, holdings, and transactions. Thus, a security ID consists of a two-part aggregate: one to identify
the naming scheme, and one to provide a value. OFX will define valid naming schemes as necessary for
each country.

OFX 2.0 Specification 6/30/00 85

86

5.3 Country-Specific Element Values

CHAPTER 6 DATA SYNCHRONIZATION

6.1 Overview

Currently, some systems provide only limited support for error recovery and no support for backup files or
multiple clients. This chapter defines OFX’s powerful means of data synchronization between clients and
servers.

OFX data synchronization addresses the following problems:
& Error recovery
¢ Use of multiple data files, including multiple client applications

¢ Restoring from an outdated backup file

This chapter first provides a brief introduction to synchronization problems and then presents the strategy
used in OFX to ensure data integrity. Additional details about synchronization requests and responses may
be found in the relevant sections of this document. The final section in this chapter discusses alternatives to
full synchronization and summarizes the options for each.

6.2 Background

When a connection between the client and the server does not successfully complete, there are two main
areas of concern:

¢ Unconfirmed requests
If a client does not receive a response to work it initiates, it has no way of knowing whether the server
processed the request. It also does not have any server-supplied information about the request, such as a
server ID number.

¢ Unsolicited data
Some message sets allow a server to send data to the client without first receiving a request. OFX
assumes that the first client to connect after the unsolicited data is available receives it. If the
connection fails, this information could be forever lost to the client. Examples of unsolicited data
include updates to the status of a bill payment and e-mail messages.

Unsolicited data presents problems beyond error recovery. Because the first client that connects to a server
is the only one to receive unsolicited data, this situation precludes use of multiple clients without a data
synchronization method. For example, if a user has a computer at work and one at home, and wants to
perform online banking from both computers, a bank server could send unsolicited data to one but not the
other.

An even greater problem occurs when a user resorts to an outdated backup copy of the client data file. This
backup file may be missing recent unsolicited data with no way to retrieve it from the server again.

OFX 2.0 Specification 6/30/00 87

6.3 Data Synchronization Approach

A simple solution is to make sure that clients can always obtain information from the server for a
reasonable length of time after it is initially sent. Clients can request recent responses—whether due to
client-initiated work or other status changes on the server—by supplying the previous endpoint in the
response history. Servers should always supply a new endpoint whenever they supply responses. These
endpoints are described by the <TOKEN> element.

To ensure a consistent state after a failure (for example, dropped client connections or a client crash before
updating its database), the client must store all data returned in a sync response before updating the saved
token for that account and object type. After a failure, the next sync attempt using the old token might
download information already reflected in the client database. But, re-integration of that data is much
preferred over losing all changes between the old and new token values.

If a user switches to an outdated backup file, then the most recent endpoint known to the client will be
older than the most recent endpoint known to the server.

If multiple clients are in use, each will send requests based on its own current endpoint, so that both clients
will obtain complete information from the server. This is one reason why OFX responses carry enough
information from the request to enable them to be processed independent from the requests. The diagram
below shows the interaction between clients and servers.

Transaction 9
Transaction 8
Transaction 7
Transaction 6
Transaction 5
Transaction 4
Transaction 3
Transaction 2
Transaction 1

DATA SERVER

(Financial Institution)

Client sends
token #4

Client sends
token #7

Server responds
with transactions 8-9

Server responds
with transactions 5-9

CLIENT #1

(Customer)

Transaction 7
Transaction 6
Transaction 5
Transaction 4
Transaction 3
Transaction 2
Transaction 1

CLIENT #2

(Customer)

Transaction 4
Transaction 3
Transaction 2
Transaction 1

6.3 Data Synchronization Approach

OFX relieves the server from maintaining any special error-recovery state information. However, OFX
requires the server to maintain a history of individual responses and a <TOKEN> to identify a position in
the history. This token is commonly a time stamp, but it need not be. Because of the freedom a server has
in choosing values for its <TOKEN>s, a client must not assume any sequential relationship between
<TOKEN->s based on the <TOKEN> values.

Note: OFX does not require servers to store responses based on individual connections. Also,
not all requests are subject to synchronization. For example, OFX does not require servers to
store statement-download responses separately for data synchronization.

6.4 Data Synchronization Specifics

OFX performs synchronization separately for each type of response. In addition, a synchronization request
might include further identifying information, such as a specific account number. This specification
defines the additional information for each synchronization request.

Each OFX service identifies the objects that are subject to data synchronization. For example, a bank-
statement download is a read-only operation from the server. A client can request it again; consequently,
there is no data synchronization for this type of response.

6.4.1 Tokens

The basis for synchronization ig@kenas defined by the <TOKEN> element. The server can create a
token in any way it wishes. The client simply holds the token for possible use in a future synchronization
request.

The server can derive a token from one of the following:

¢ Time stamp

¢ Sequential number

¢ Unique nonsequential number

.

Other convenient values for a server

OFX reserves the following tokens:

¢ <TOKEN>0 (zero) requests all available history for the referenced account (if specified) and object
type. Servers should send all relevant transactions that are accessible, allowing a new client to know
about work done by other clients. If a user’s account has never been used with OFX, the server returns
no history.

¢ Servers should return <TOKEN>-1 (negative one) in the event they must respond with an error. For
more information, see section 6.4.4

In all other cases, the server can use different types of tokens for different types of responses, if suitable for
the server.

OFX 2.0 Specification 6/30/00 89

Clients must send either a <REFRESH>Y request (if supported by the server) or <TOKEN>O0 in their

initial synchronization request for each account (if necessary) and object type. As described in_ section 6.6
a server’s response to either request should bring the client up-to-date. The <REFRESH>Y response would
not detail how or when an object reached its current state. But, the <TOKEN>0 response might not list
every relevant object (for example, some early history that the server has already purged, which might
include a payment that was scheduled far in the past, but not yet due.) Should the client require full history
information initially, OFX recommends a <REFRESH>Y request together with a <TOKEN>0 request.

Tokens can contain up to 10 characters in V1 message sets; see Chapter 3, "Common Aggregates,
Elements, and Data Typeslbkens must be unique only with respect to the type of synchronization

request and the additional information in that request. For example, a bill payment synchronization request
takes an account number; therefore, a token needs to be unique only within payments for the account. In
sync requests which do not include an account number, token values are scoped to the current user. For
example, a token in a payee synchronization request needs to be unique only within payees for the signed
on user.

The server can use different types of tokens for different types of responses, if suitable for the server.

Servers will not have infinite history available, so synchronization responses can optionally include a
<LOSTSYNC>Y (yes) if the old token in the synchronization request was older than the earliest available
history. This element allows clients to alert users that some responses have been lost.

Note: Tokens are unrelated to <TRNUID>s, <SRVRTID>s, and <FITID>s, each of which
serves a specific purpose and has its own scope and lifetime.

A <SRVRTID> is not appropriate as a <TOKEN> for bill payment. A single payment has a single
<SRVRTID>, but it can undergo several state changes over its life and thus have several entries in the
token history.

6.4.2 The Synchronization Process

There are three different ways a client and a server can conduct their requests and responses:

¢ Explicit synchronization—A client can request synchronization without sending any other OFX
requests. The client sends a synchronization request, including the current token for that type of
request. The response includes responses more recent than the given token, along with the current
token.

¢ Synchronization with new requests—A client can request synchronization as part of any new request.
The client gives the latest token it has. The response includes responses to the new requests plus any
others that became available since the time of the token in the request, along with the current token. An
aggregate contains the requests so that the server can process the new requests and update the token as
a single action.

¢ New requests without synchronization—A client can make new requests without providing a token. In
this case, it expects only responses to the new requests. A subsequent request for synchronization will
cause the server to send this response again, because the client did not receive the current token.

90 6.4 Data Synchronization Specifics

SYNC responses should return a new <TOKEN> only if new activity was generated for a set of
transactions (e.g. payee, payment, intrabank transfers, payment email, etc.). Alternatively, if a server
always returns a new <TOKEN> even if no new activity was generated, the server should remember that
the old and new <TOKEN> values are both up-to-date with respect to <REJECTIFMISSING>Y

Each request and response that requires data synchronization will define a synchronization aggregate. The
aggregate tells the server which kind of data it should synchronize. By convention, these aggregates
always have SYNC as part of their names, for example, <PMTSYNCRQ>. These aggregates can be used
on their own to perform explicit synchronization, or as wrappers around one or more new transactions. For
example, <PMTSYNCRQ> aggregates request synchronization and may include new work.

Some clients can choose to perform an explicit synchronization before sending any new requests. This
practice allows clients to be up-to-date before sending any new requests. Other clients can simply send
new requests as part of the synchronization request.

If a client synchronizes in one file, then sends new work inside a synchronization request in a second file,
there is a small chance that additional responses became available between the two connections. There is
an even smaller chance that these would be conflicting requests, such as modifications to the same object.
However, some clients and some requests might require absolute control, so that the user can be certain
that they are changing known data. To support this, synchronization requests can optionally specify
<REJECTIFMISSING> element. The element tells a server that it should reject all enclosed requests if the
supplied <TOKEN> is out of date before considering the new requests. That is, if any new responses
became available, whether related to the incoming requests or not (but in scope of the synchronization
request), the server should immediately reject the requests. It should still return the new responses. A client
can then try again until it finds a stable window to submit the work. See sectidon®ore information

about conflict detection and resolution.

Note: If <REJECTIFMISSING>Y causes enclosed requests to be rejected, this rejection can

be done in one of two ways:

¢ Embedded requests are completely ignored — they are not included in the response.

¢ Embedded requests are returned with a 2000 (or 6502 for recent servers) error. This is the preferred

approach.

The password change request and response present a special problem. See sedhioriZthet
information.

OFX 2.0 Specification 6/30/00 91

6.4.3 Synchronizable Objects

OFX allows synchronization of email (in all message sets), service activations, changes to user
information, stop checks, banking notifications, transfers (both types), recurring transfers (both types),
wire transfers, payees, payments, and recurring payments. OFX includes the following synchronization
request/response pairs.

Section Request Response

8.6.4 <ACCTSYNCRQ> <ACCTSYNCRS>

8.7 <CHGUSERINFOSYNCRQ> <CHGUSERINFOSYNCRS>
9.2.4 <MAILSYNCRQ> <MAILSYNCRS>
11.12.1 | <STPCHKSYNCRQ> <STPCHKSYNCRS>
11.12.2 | <INTRASYNCRQ> <INTRASYNCRS>
11.12.3 | <INTERSYNCRQ> <INTERSYNCRS>
11.12.4 | <WIRESYNCRQ> <WIRESYNCRS>
11.12.5 | <RECINTRASYNCRQ> <RECINTRASYNCRS>
11.12.6 | <RECINTERSYNCRQ> <RECINTERSYNCRS>
11.12.7 | <BANKMAILSYNCRQ> <BANKMAILSYNCRS>
12.8.2 <PMTMAILSYNCRQ> <PMTMAILSYNCRS>
12.9.4 <PAYEESYNCRQ> <PAYEESYNCRS>
12.10.1 | <PMTSYNCRQ> <PMTSYNCRS>
12.10.2 | <RECPMTSYNCRQ> <RECPMTSYNCRS>
13.10.2 | <INVMAILSYNCRQ> <INVMAILSYNCRS>
14.6 <PRESMAILSYNCRQ> <PRESMAILSYNCRS>

6.4.4 Token and Full Syncronization Summary

In review, tokens are used to identify a point in an activity continuum. Each client maintains a current
token that identifies a place on that continuum. When sent to the server, the server can determine whether
or not the client is up-to-date and send history if not. For instance, if ten activities have occurred for a
particular type of synchronized activity and a client knows about the first eight activities, the token sent in
the request will show this and the server will respond with the missing two, along with the newest token,
thus bringing the client up to date. Several clients may be kept up-to-date with each other in this way,
presuming all are accessing the same userid/accountid (depending on the activity) within the same FI.

92 6.4 Data Synchronization Specifics

The term "activity" denotes a discrete unit before which and after which a token is generated. It is not
necessary for a server to generate a new token for each OFX response it sends. Rather, a server can
generate a token to identify several responses as long as there is no chance that these two or more
responses were generated by two different clients. For instance, if an OFX block is sent containing three
bank transfer requests, one token can be generated to represent all three activities. If all requests fail, a
server does not need to update the token unless failed requests are reported in sync history. However, if
even one activity succeeds, a new token must be generated for the next sync. (If the server updates a token
when there is no activity representing that token, for example when all requests fail or the request is for
sync only, the server must remember that now the current and newer tokens are both "up to date" with
respect to REJECTIFMISSING.)

Note that tokens are not ordered, that is, a client should not assume that they are either incremented or
decremented in succeeding updates. The server determines how the tokens are updated/changed based on
its own algorithm.

If a request(s) is sent which is subject to synchronization but the request(s) is not "wrapped" in a
synchronization request, the server must still generate a new token internally to represent the activity that
occurred. This token is returned in the next synchronization response.

Some OFX transactions are not associated with tokens and no synchronization history is kept for them. An
example is bank statement download (STMTRQ/STMTRS). A statement download is a read-only
operation from the server. A client can request it again; consequently, there is no data synchronization for
this type of response.

In other cases, one OFX transaction is associated exclusively with a particular synchronization response.
That is, synchronization is associated with only one OFX request/response pair. An example of this is
PMTMAILR[Q/S]. PMTMAILRS is the only type of OFX response that will appear in the payment mail
synchronization response (PMTMAILSYNCRS).

Finally, there are several OFX transactions that will cause activity to be saved for later synchronization
under the umbrella of one synchronization response. An example of this is payment synchronization,
where payment responses (PMTRS), payment modification responses (PMTMODRS) and payment delete
responses (PMTCANCRS) can all appear in a payment synchronization response (PMTSYNCRS).

Tokens are generated, maintained and recognized only within the scope of the synchronization request/
response pair. For instance a <TOKEN>50511 sent in a payee synchronization request is unrelated to a
<TOKEN>50522 sent in a payment synchronization request because the tokens are associated with
different synchronization transactions (PAYEESYNC versus PMTSYNC). While clients must keep track
of the most up-to-date token within each synchronization type, servers must also keep a history of tokens
and associated activity within each type.

Note that server-initiated activity will also appear in a synchronization response, in addition to user/client-
initiated activity. In a token-based sync, this activity is identified by a response containing a <TRNUID>0.
(In a refresh, all TRNUID values are 0.) A payment spawned by a model and appearing in the payment
synchronization response is an example of such activity. In this case, the server will update the payment
synchronization token (associated with PMTSYNCR[Q/S] but not the recurring payment synchronization

OFX 2.0 Specification 6/30/00 93

token (associated with RECPMTSYNCR[Q/S]). The next time a client syncs on payments, its token will
be out-of-date and the server will return the newer token along with the spawned payment.

This summary pertains to full synchronization implementations only.

6.5 Conflict Detection and Resolution

Conflicts arise whenever two or more clients or servers modify the same data. This can happen to any
object that has a <SRVRTID> that supports change or delete requests. For example, two spouses might
independently modify the same recurring bill payment model. From a server perspective, there is usually
no way to distinguish between the same user making two intended changes and two separate users making
perhaps unintended changes. Therefore, OFX provides enough tools to allow clients to detect and resolve
conflicts.

A careful client always synchronizes before sending any new requests. If any responses come back that
could affect a user’s pending requests, the client can ask the user whether it should still send those pending
requests. Because there is a small chance for additional server actions to occur between the initial
synchronization request and sending the user’s pending requests, extremely careful clients can use the
<REJECTIFMISSING> element. Clients can iterate sending pending requests inside a synchronization
request with <REJECTIFMISSING> and testing the responses to see if they conflict with pending
requests. A client can continue to do this until a window of time exists wherein the client is the only agent
trying to modify the server. In reality, this will almost always succeed on the first try.

6.6 Synchronization Options

There are some situations and some types of clients for which it is preferable that the client ask the server
to send—by way of a refresh—everything it knows, rather than just a set of changes by way of a synch
response. For example, a client that has not connected often enough may have lost synchronization, a user
may create a new data file, or the user might be using a completely stateless client, such as a Web browser.

Note: OFX does not require a client to refresh just because it has lost synchronization.

Clients will mainly want to refresh lists of long-lived objects on the server; generally objects with a
<SRVRTID>. A brand new client, or a client that lost synchronization, might want to learn about in-
progress payments by doing a synchronization refresh of the payment requests. It would almost certainly
want to do a synchronization refresh of the recurring payment models, because those often live for months
or years.

A client may request a refresh by using <REFRESH>Y instead of the <TOKEN> element. Servers must
send responses that emulate a client creating or adding each of the objects governed by the particular
synchronization request.

When responding to a <REFRESH>Y sync request, servers must send <TRNUID>0 in each contained
transaction wrapper, the standard value for server-generated responses (except responses for embedded
transactions).

94 6.5 Conflict Detection and Resolution

There is no need to recreate a stream of responses that emulate the entire history of the object. An add
response that reflects the current state is sufficient. For example, if you create a model and then modify it
several times, even if this history would have been available for a regular synchronization, servers should
only send a single add that reflects the current state.

Due to the large volume of data which might be included in the response, clients should not perform
<MAILSYNCRQ> (or, one of the service-specific equivalents such as <BANKMAILSYNCRQ>) with
<REFRESH>Y.

A client that wants only the current token, without refresh or synchronization, makes requests with
<TOKENONLY>Y.

In all cases, servers should send the current ending <TOKEN> for the synchronization request in refresh
responses. This allows a client to perform regular synchronization requests in the future.

The following table summarizes the options in a client synchronization request:

Tag Description

Client synchronization

option; <TOKEN>,

<TOKENONLY>, or

<REFRESH>

<TOKEN> Previous value of <TOKEN> received for this type of synchronization reques
from server; 0 for first-time requestiken

<TOKENONLY> Request for just the current <TOKEN> without the hist@golean

<REFRESH> Request for refresh of current staBnolean

<REJECTIFMISSING> If Y, do not process requests if client <TOKEN> is out of d&eplean

Note: Compliant clients should not send synchronization requests matching those listed
below. Nonetheless, servers should handle such requests and respond as described.

¢ <TOKENONLY>N has the same meaning as <TOKENONLY>Y and should be treated identically.
¢ <REFRESH>N has the same meaning as <REFRESH>Y and should be treated identically.

+ |If a client embeds transaction requests in a <REFRESH> or <TOKENONLY> sync request, the
server should respond in such a way that the <REFRESH> data or returned <TOKEN> reflects a
specific state, after the transactions have processed. Since servers are not required to reduce the data
about any particular object to a single addition response, embedded transactions may be processed
before or after the <REFRESH> data is retrieved. As with all synchronization responses, the
returned <TOKEN> must reflect the actions of all embedded transactions.

¢ <REJECTIFMISSING>Y is illegal unless accompanied by <TOKEN>. If received in the same
wrapper as <TOKENONLY> or <REFRESH>, the server should fail that synchronization request
(as described in section 6.6.1)

OFX 2.0 Specification 6/30/00 95

6.6.1 Synchronization Errors

When a client sends an unrecognized or “bad” token, the server response should be one of the following.
(Note that <LOSTSYNC> is an optional element):

¢ Return <TOKEN>-1, <LOSTSYNC>N, with no history
¢ Return <TOKEN>X (the current token), <LOSTSYNC>N, with no history

¢ Return <TOKEN>X (the current token), <LOSTSYNC>N, with full history (i.e. treat as if it were a
<TOKEN>0)

If the synchronization request included a bad account number or BANKID, or signon failed, or an account
was closed, etc. the response should include <TOKEN>-1, optionally <LOSTSYNC>N, and no history.

6.7 Typical Server Architecture for Synchronization

This section describes how an FI can approach supporting synchronization based on the assumption that
modifications to an existing financial server will be kept to a minimum.

The simplest approach is to create a history database separate from the existing server. This history could
consist of the actual OFX transaction responsexXkRNRS> aggregates) that are available to a
synchronization request, or simply the information required to re-create the responses upon request from
the client. The history database could index records by token, response type, and any other identifying
information for that type, such as account number. Clearly, this database must include all <TRNUID>s for
all transactions it contains. OFX recommends that <TRNUID>s be stored for as long as possible so that
they may be used to detect duplicate client requests even after the original requests have been purged from
the synch database.

The diagram below shows a high-level model of the OFX architecture for a financial institution. Notice
that the diagram shows the presence of a history journal.

96 6.7 Typical Server Architecture for Synchronization

Client FINANCIAL INSTITUTION

ENVIRONMENT

Teller
Services

OFX
Server

Transaction
Manager

Bank Server

Synchronization
Request/Response

Account
Records

The server adds responses to the history journal for any action that takes place on the existing server. This
is true whether the OFX requests initiate the action or, in the case of recurring payments, it happens
automatically on the server. Once added to the history journal, the server can forget them.

The areas of the OFX server that process synchronization requests need only search this history database
for matching responses that are more recent than the incoming token.

For a refresh request, an OFX server would access the actual bank server to obtain the current state rather
than recent history.

Periodically the bank server would purge the history server of older entries.

OFX 2.0 Specification 6/30/00 97

Only requests that are subject to synchronization need to have entries in the history database. Statement
downloads do not involve synchronization; therefore, the Fl server should not add these responses to the
history database. Since statement downloads are usually the largest in space and the most frequent,
eliminating these saves much of the space a response history might otherwise require.

More sophisticated implementations can save even more space. The history database could save responses
in a coded binary form that is more compact than the full OFX response format. Some FIs might have

much or all of the necessary data already in their servers; consequently, they would not require new data.
An FI could regenerate synchronization responses rather than recall them from a database.

6.8 Typical Client Processing of Synchronization Results

The diagram below shows a general flowchart of what an OFX client would do with the results of a
synchronization request. Most requests and responses subject to data synchronization contain both
<TRNUID> and <SRVRTID>.

l The response is a modification or chamge in status.
Does the <SRVRTID> in v Client applies all updated
this response match one €S linformation to its copy of
already recorded by the the matching transaction.
client?
No

The regponse is a new transaction createdyanother client.

Was the <TRNUID> N Client adds the transaction
returned in the response © ltoits local list of
created by this client? "|transactions.

Yes

The regponse is to an add rguest from this client.

This is a response to a The client should record the
request initiated by this associated <SRVRTID>, if
client. response status=SUCCES$S

98 6.8 Typical Client Processing of Synchronization Results

6.9 Simultaneous Connections

Itis increasingly common for a server to get simultaneous or overlapping requests from the same user from
two different front ends. OFX requires a server to process each set of requests sent in a file as an atomic
action. Servers can deal with the problems that arise with simultaneous use in two ways:

¢ Allow simultaneous connections, ensure each is processed atomically, and use the data synchronization
mechanism to bring the two clients up to date. This is the preferred method.

¢ Lock out all but one user at a time, returning the error code 15501 for multiple users.

6.10 Synchronization Alternatives

Although itisRECOMMENDED that OFX servers implement full synchronization as described in this
chapter, an alternate approach, “lite synchronization,” could be easier for some servers to support. This
approach focuses only on error recovery and does not provide any support for multiple clients, multiple
data files, or use of backup files. The approach is to preserve the message sets while simplifying the
implementation.

In addition, some clients might prefer to use file-based error recovery with all servers, even if the client
and some servers support full synchronization. This section first describes file-based error recovery and
lite synchronization, and then explains the rules that clients and servers use to decide how to communicate.

Lite synchronizing servers may support both file-based error recaretgREFRESH>Y. This type of
server is called a Refresh-capable Lite Synchronizing Server.

For information on how these types of synchronization are profiled, see section 7.2.1

OFX 2.0 Specification 6/30/00 99

6.10.1 File-Based Error Recovery

Because only full synchronization supports error recovery, an alternative is needed for lite
synchronization. Servers using lite synchronization keep a copy of the entire response file they last sent.
This is the basis for what is often called “file-based error recovery.” Clients requesting that servers prepare
for error recovery generate a globally unique ID for each file they send. Two OFX headers are associated
with error recovery:

¢ OLDFILEUID—UID of the last request and response that was successfully received and processed by
the client

¢ NEWFILEUID—UID of the current file
The format of these is the same as used with <TRNUID> as documented in section 2.4.6

Servers use the following rules:

¢ I NEWFILEUID is set to NONE, the client is not requesting file-based error recovery for this session.
The server does not need to save the response file. If NEWFILEUID is set to NONE and
OLDFILEUID matches a previous request file (see below), the client may be ending use of file-based
error recovery.

¢ If NEWFILEUID matches a previous request file, the client is requesting error recovery. The server
should send the matching saved response file.

Note: If NEWFILEUID matches a previous request file then the request file identified by the
NEWFILEUID must contain exactly the same set of transactions as the previous request file.
Servers can reject the file if it contains new or modified transactions. In particular, clients
should disallow new <PINCHRQ> transactions during error recovery. For more information
about <PINCHRQ> and synchronization, see section 2.5.2.

¢ If NEWFILEUID is not set to NONE and does not match a previous request file, the client is preparing
for error recovery. The server should save the response file in case the data does not reach the client.

¢ If OLDFILEUID is set to NONE, the server may ignore the presence of this header. The server should
not search for a response file to delete. Clients should initiate file-based error recovery by sending
OLDFILEUID set to NONE and NEWFILEUID set to a unique value.

¢ |If OLDFILEUID matches a file saved on the server, then OLDFILEUID is a file that the client has
successfully processed and the server can delete it.

¢ If OLDFILEUID is not set to NONE and does not match a previous request file, the server should
ignore the presence of this header. Either the server has purged the associated request file without
explicit request from the client or the client is requesting error recovery with identical headers to the
initial request attempt (NEWFILEUID should match a previous request file in this case).

Note: While it may indicate a client error for OLDFILEUID and NEWFILEUID to hold
identical values other than NONE, the server should ignore this OLDFILEUID header. Earlier
rules in this list detail how the server should handle the request file (based solely upon the
NEWFILEUID value).

100 6.10 Synchronization Alternatives

A server should not save more than one file per client data file thread (history of FILEUID values). Servers
should purge response files in response to an explicit client request (reference in the OLDFILEUID
header) or after some long period (at least 2 months). Clients must not abuse this storage requirement by
(for example) setting OLDFILEUID to the header used three request files previously. The server should
preserve response files on a per-thread basis. This approach would support multiple clients or data files per
user. But, the server has the option to ignore these needs and purge response files as soon as another valid
request arrives for the same <USERID>. In either case, if an error recovery attempt comes after the
corresponding error recovery file is purged, the server will not recognize the request as an attempt at error
recovery. The server would simply process it as a new request. In this case, the server should recognize
duplicate transaction UIDs for client-initiated work, such as payments, and then reject them individually.
Server-generated responses would be lost to the client.

A server should not save a response file when it is useless to do so. Specifically, the server should not save
a response file when the request fails parsing or when the request was rejected due to a <SONRQ>
problem (e.g. invalid <USERID>).

If all accounts are shared between two (or more) users (for example, husband and wife have separate
online access to the same list of joint accounts and none others), some identifiers may differ and should be
maintained separately by the client. Thus, clients should initiate error recovery and maintain/generate
xX¥FILEUID values on a per-user basis.

6.10.1.1 File-Based Error Recovery and Authentication

There are two aspects of error recovery authentication which must be considered, request validation and
password validation.

6.10.1.1.1 Request Validation

When error recovery is being attempted the server should first perform signon authentication on the
request file. Once this is done, it should validate that the rest of the transactions in the request file received
match those of the request file that was archived for the corresponding response file which was also
archived. Recommended matching is defined at two levels:

¢ Minimal—Verify that the transactions correspond to the archived file

¢ Recommended—Verify the current request and archived request files exactly match. It is recommended
that checksums for all characters after the </SONRQ> be used to verify an exact match. (The signon
request itself may change between attempts.)

6.10.1.1.2 Password Validation

In all cases, the server must not store response files for the purposes of file-based error recovery when the
<SONRQ> has failed. A saved response file matching the OLDFILEUID header (if any) must not be
deleted when this occurs.In error recovery situations, the possibility exists that the user will have entered
the correct password when a request was originally sent, but will mistype the password when prompted for
it again during the recovery attempt. The server should respond as it would whenever sign on fails: It
should return 15500 errors in all transaction response aggregates. The server should return synchronization

OFX 2.0 Specification 6/30/00 101

wrappers with <TOKEN>-1 and any embedded transaction response aggregates with the same 15500 error.
(The response file should contain nexRS> aggregates apart from the <SONRS>.) This particular

situation (sign on failure during an error recovery attempt) merits careful attention to the rules described in
the previous paragraph.

6.10.2 Lite Synchronization

Lite synchronization requires servers to accept all synchronization messages, but does not require them to
keep any history or tokens. Responses need to be sent only once and then the server can forget them.
Responses to client requests, whether or not they are made inside a synchronization request, are processed
normally. Responses that represent server-initiated work, such as payment responses that arise from
recurring payments, are sent only in response to synchronization requests. A server does not have to hold
responses in case a second client makes a synchronization request.

Basic lite synchronization servers do not support <REFRESH>Y. These servers may implement
<TOKEN>0 responses as a pseudo-refresh (as described in section 6. Rekd3h-capable lite

synchronizing servers, however, do support <REFRESH>Y. That, in fact, is the only difference in function
between a Basic Lite Synch server and a Refresh-capable Lite Synch Server. The purpose of the distinction
is to allow a server to provide refresh capability without the burden of supporting full synchronization.

For a server accustomed to sending unsolicited responses, lite synchronization should closely match the
current implementation of file-based error recovery. The only difference is that a server should hold the
unsolicited responses until the client makes the first appropriate synchronization request; rather than
automatically adding them to any response file. Once added, the server can mark them as delivered, relying
on error recovery to ensure actual delivery.

Note: OFX requires a server to authenticate a client in Error Recovery.

6.10.2.1 Lite Synchronization and <REFRESH>

Basic lite synchronization servers do not support <REFRESH>Y. These servers may implement
<TOKEN>0 responses as a pseudo-refresh. If a server does not support <REFRESH>Y requests, they may
still choose to respond to a <TOKEN>0 request as if <REFRESH>Y were requested. In this case, the
response should be returned with a <TOKEN>1. This token never again increments and would be handled
as described in section 6.1dr2turning only unsolicited responses). This has the advantage of allowing all
unsolicited responses to be discarded immediately after they have been includedtx8d¥NCRS> (with
<TOKEN>1) response.

Refresh-capable Lite Synchronization servers may support both file-based error recovery and
<REFRESH>Y. OFX 2.0 supports Refresh-capable Lite Synchronization. (Existing clients may ignore this
new feature.)

For more information on profiling synchronization support, see section.7.2.1

102 6.10 Synchronization Alternatives

6.10.3 Relating Synchronization and Error Recovery

Client and server developers should first decide whether or not they will support full synchronization. If
they can, then they can support file-based error recovery as well, or they can rely on synchronization to
perform error recovery. If they adopt only lite synchronization, OFX requires file-based error recovery. A
server describes each of these choices in its server profile records. The following combinations are valid:

& Full synchronization with file-based error recovery

¢ Full synchronization without separate file-based error recovery

& Lite synchronization with file-based error recovery (with or without <REFRESH>Y support)

Clients request file-based error recovery by including the old and new session UIDs in the header. If these

are absent, servers need not save the response file for error recovery. Clients request synchronization by
using those synchronization requests defined throughout this specification.

OFX 2.0 Specification 6/30/00 103

6.11 Examples

Here is an example of full synchronization using bill payment as the service. OFX Payments provides two
different synchronization requests and responses, each with their own token; one for payment requests and
one for repeating payment model requests. Note that these simplified examples do not include the outer
<OFX> layer, <SONRQ>, and so forth.

Client A requests synchronization:

<PMTSYNCRQ>
<TOKEN>123</TOKEN>
<REJECTIFMISSING>N</REJECTIFMISSING>
<BANKACCTFROM>
<BANKID>121000248</BANKID>
<ACCTID>123456789</ACCTID>
<ACCTTYPE>CHECKING</ACCTTYPE>
</BANKACCTFROM>
</PMTSYNCRQ>

The server sends in response:

<PMTSYNCRS>

<TOKEN>125</TOKEN>
<LOSTSYNC>N</LOSTSYNC>
<BANKACCTFROM>
<BANKID>121000248</BANKID>
<ACCTID>123456789</ACCTID>
<ACCTTYPE>CHECKING</ACCTTYPE>
</BANKACCTFROM>
<PMTTRNRS>
<TRNUID>123</TRNUID>
<STATUS>
. status details
</STATUS>
<PMTRS>
. details on a payment response
</PMTRS>
</PMTTRNRS>
<PMTTRNRS>
<TRNUID>546</TRNUID>
<STATUS>
. Status details
</STATUS>

104 6.11 Examples

<PMTRS>
. details on another payment response
</PMTRS>
</PMTTRNRS>
</PMTSYNCRS>

Client A was missing two payment responses, which the server provides. At this point, client A is
synchronized with the server. Client A now makes a new payment request, and includes a synchronization
update as part of the request. This update avoids having to re-synchronize the expected response at a later
time.

<PMTSYNCRQ>

<TOKEN>125</TOKEN>
<REJECTIFMISSING>N</REJECTIFMISSING>
<BANKACCTFROM>
<BANKID>121000248</BANKID>
<ACCTID>123456789</ACCTID>
<ACCTTYPE>CHECKING</ACCTTYPE>
</BANKACCTFROM>
<PMTTRNRQ>
<TRNUID>12345</TRNUID>
<PMTRQ>
. details of a new payment request
</PMTRQ>
</PMTTRNRQ>
</PMTSYNCRQ>

The response to this new request:

<PMTSYNCRS>

<TOKEN>126</TOKEN>
<LOSTSYNC>N</LOSTSYNC>
<BANKACCTFROM>
<BANKID>121000248</BANKID>
<ACCTID>123456789</ACCTID>
<ACCTTYPE>CHECKING</ACCTTYPE>
</BANKACCTFROM>
<PMTTRNRS>
... details on a payment response to the new request
</PMTTRNRS>
</PMTSYNCRS>

The client now knows that the server has processed the payment request it just made, and that nothing else
has happened on the server since it last synchronized with the server.

OFX 2.0 Specification 6/30/00 105

Assume client B was synchronized with respect to payments for this account up through token 125. If it
called in now and synchronized—uwith or without making additional requests—it would pick up the
payment response associated with token 126. It records the same information that was in client A, which
would give both clients a complete picture of payment status.

106 6.11 Examples

CHAPTER 7 FI PROFILE

7.1 Overview

OFX clients use the profile to learn the capabilities of an OFX server. This information includes general
properties such as account types supported, user password requirements, specific messages supported, and
how the client should batch requests and where to send the requests. A client obtains a portion of the

profile when a user first selects an Fl. The client obtains the remaining information prior to sending any
actual requests to that Fl. The server uses a time stamp to indicate whether the server has updated the
profile, and the client checks periodically to see if it should obtain a new profile.

In more detail, a profile response contains the following sections, which a client can request
independently:

¢ Message Sets — list of services and any general attributes of those services. Message sets are collections
of messages that are related functionally. They are generally subsets of what users see as a service.

¢ Signon realms — Fls can require different signons (user ID and/or password) for different message sets.
Because there can only be one signon per <OFX> block, a client needs to know which signon the server
requires and then provide the right signon for the right batch of messages.

The profile message is itself a message set. In files, OFX uses the <PROFMSGSETV1> aggregate to
identify this profile message set.

The following sections describe the general use of profile information.

7.1.1 Message Sets

A message set may be thought of as representing an available financial service. A message set itself is a
collection of related messages. For example, Chapter 11, "Bankiafjfies several message sets:

statement download, credit card statement download, intrabank transfers, and so forth. A server may route
all of the messages in a message set to a single URL and merge their versions together.

Clients and servers generally use message sets as the granularity to decide what functionality they will
support. A “banking” server can choose to support the statement download and intrabank transfer message
sets, but not the wire transfer message set. Attributes are available in many cases to further define how
OFX supports a message set.

The profile applies only to the requests a client might expect the server to honor. That is, clients should not
send requests to servers unless support is indicated. However, the server may send unsupported responses
in a sync response as information is entered out of band. A client is required to at least parse such a file.

Clients should assume the burden of checking the profile and not sending a transaction which the server
does not support. If the client goes ahead and sends such a transaction, the server may either return an

OFX 2.0 Specification 6/30/00 107

HTTP 400 syntax error, or ignore unsupported elements and aggregates. In the latter case, assuming no
other problems occur in processing that request, servers may return warning code 2028 (Request element
unknown). The response file should not contain the unsupported elements or aggregates.

Each portion of the OFX specification that defines messages also defines the message set to which those
messages belong. This includes what additional attributes are available for those messages and whether
OFX requires the message set or it is optional.

7.1.2 Version Control

Message sets are the basis of version control. Over time there will be new versions of the message sets, and
at any given time servers will likely want to support more than one version of a message set. Clients should
also be capable of supporting as many versions as possible. Through the profile, clients discover which
versions are supported for each message set. Clients and servers exchange messages at the highest
common level for each message set.

If banking version 1 is at one URL (A) and billpay version 1 is at another URL (B), both may need version
1 of signon to be used. In that case, <MSGSETCORE> inside <BANKMSGSETV1> would refer to
<URL>A and <MSGSETCORE> inside <BILLPAYMSGSETV1> would refer to <URL>B, but
<MSGSETCORE> inside <SIGNONMSGSETV1>may refer to either URL or to some other. As
mentioned in Section 2.5.4he <URL> included in <SIGNONMSGSETV1> does not restrict where the
<SIGNONMSGSRQV1> wrapper may be sent.

108 7.1 Overview

7.1.3 Batching and Routing

To allow Fls to set up different servers for different message sets, different versions, or to directly route

some messages to third party processors, message sets define the URL to which a server sends messages in
that message set. Each version of a message set can have a different URL. In the common case where
many or all message sets are sent to a single URL, clients will consolidate messages across compatible
message sets. Clients may consolidate when all of the following are true:

¢ Message sets have the same URL,;
¢ Message sets have a common security level; and

¢ Message sets have the same signon realm.

Note: Signon messages can be sent with all other message sets even if the
<SIGNONMSGSET> contains incompatible settings for the URL, security level, or signon
realm. The message set information for signon messages is used only if the signon message is
sent by itself. Otherwise, the settings are inherited from the accompanying service message set.

The same message set may be supported by multiple servers. In this case, each server that supports a
particular message set must have a unique URL.

7.1.4 Client Signon for Profile Requests

Clients must include a signon request <SONRQ> with every message, including profile requests. The first
time that a client requests the Fl profile, the signon request will be present, but the user ID and password
will not be valid and will be ignored by the server.

Note: Since elements cannot be set to a blank value, <USERID> and/or <USERPASS> may
be set to lower case “anonymous” followed by 23 zeroes.

Once the user has enrolled and received his or her user ID and password, the client must request the profile
again, even if the profile is not yet out-of-date. Once it has received a successful <PROFRS> (with or
without a profile download) while signed on as the user, the client must not log in anonymously when
sending any later <PROFRQ> to this server.

At this point, the server can respond with a profile response that indicates that the profile is up-to-date or
return a new FI profile in response. If the Fl wants to return a customer-specific profile, the FI must use the
second approach. Servers must handle <PROFRQ> without an error whether or not a request arrives with
an anonymous <SONRQ>.

Note: OFX 1.0.2 business rules violate these restrictions, which were added in later versions.
Clients interacting with 2.0 servers based on 1.0.2 business rules should gracefully handle
<PROFRS> errors in their first per-user attempt, reverting to anonymous requests for
subsequent requests (until the next response with <STATUS><CODE>0, when they should
once again make a per-user attempt to retrieve the profile). Servers interacting with 2.0 clients
based on 1.0.2 business rules should not require support for customer-specific profiles. Servers

OFX 2.0 Specification 6/30/00 109

correcting problems with per-user <PROFRQ> requests (which previously caused error
responses) must update the FI Profile to tell compliant clients to retry.

For more information about signon requests, refer to sectian 2.5

7.1.5 Profile Request <PROFRQ>

A profile request indicates which profile components a client desires. It also indicates what the client’s
routing capability is. Profiles returned by the FI must be compatible with the requested routing style, or the
server returns an error.

Profile requests are not subject to synchronization.
Profile requests must appear within a <PROFTRNRQ> transaction wrapper.
Tag Description

<PROFRQ> Profile-request aggregate

<CLIENTROUTING> | Identifies client routing capabilities, see table below

<DTPROFUP> Date and time client last received a profile updaigetime
</PROFRQ>
Tag Description
NONE Client cannot perform any routing. All URLs must be the same. All message sets share a
single signon realm.
SERVICE Client can perform limited routing. See details below.
MSGSET Client can route at the message-set level. Each message set can have a different URL and/

or signon realm.

The SERVICE option supports clients that can route bill payment messages to a separate URL from the

rest of the messages. Because the exact mapping of message sets to the general concept of bill payment can
vary by client and by locale, this specification does not provide precise rules for the SERVICE option.

Each client will define its requirements.

110 7.1 Overview

7.2 Profile Response <PROFRS>

To determine whether the client has the latest version of the FI profile, the server checks the date and time
passed by the clientin <DTPROFUP>.

If the client has the latest version of the Fls profile, the server returns status code 1 in the <STATUS>
aggregate of the profile-transaction aggregate <PROFTRNRS>. The server does not return a profile-
response aggregate <PROFRS>.

Note: Not sending a response aggregate in this case is an exception to rules outlined in

sections 2.4.6nd 3.1.5

If the client does not have the latest version of the FI profile, the server responds with the profile-response
aggregate <PROFRS> in the profile-transaction aggregate <PROFTRNRS>. The response includes
message set descriptions, signon information, and general contact information.

Tag
<PROFRS>
<MSGSETLIST>
<XXXMSGSET>
</XXXMSGSET>
</MSGSETLIST>
<SIGNONINFOLIST>

<SIGNONINFO>

</SIGNONINFO>
</SIGNONINFOLIST>
<DTPROFUP>
<FINAME>
<ADDR1>
<ADDR2>
<ADDR3>
<CITY>
<STATE>
<POSTALCODE>

<COUNTRY>

Description
Profile-response aggregate
Beginning list of message set information

One or more message set aggregates

Beginning of signon information

Zero or more signon information aggregates.
Though the DTD allows an empty <SIGNONINFOLIST>, servers should prof

e

at list one signon realm (include a minimum of one <SIGNONINFO> aggregate in

the <PROFRS> response).

Time this was updated on servdgtetime

Name of institution A-32

Fl address, line 1A-32

Fl address, line 2A-32

Fl address, line 3. Use of <ADDR3> requires the presence of <ADDRZ3%,
Fl address cityA-32

Fl address stat&-5

Fl address postal codA;11

Fl address country; 3-letter country code from ISO/DIS-3168,

OFX 2.0 Specification

6/30/00 111

Tag Description

<CSPHONE> Customer service telephone numb&32
<TSPHONE> Technical support telephone numba&r32
<FAXPHONE> Fax numberA-32
<URL> URL for general information about FI (not for sending dataiRL
<EMAIL> E-mail address for FIA-80
</PROFRS>

7.2.1 Message Set

An aggregate describes each message set supported by an Fl. Message sets in turn contain an aggregate for
each version of the message set that is supported. For a message sexxwatmedconvention is to name

the outer aggregatexxxMSGSET> and the tag for each versioxdMSGSETVn>. The reason for

message set-specific aggregates is that the set of attributes depends on the message set. These can change
from version to version, so there are version-specific aggregates as well.

The general form of the response is:

Tag Description
<XXXMSGSET> Service aggregate
<XXxMSGSETVn> Version-of-message-set aggregate, <xxxMSGSETV1> is required. As mentioned in

\

Sections 14.7.and 14.7.3<PRESDIRMSGSETV1> and <PRESDLVMSGSETV]
may appear one or more times.

</XXxXMSGSETVn>

</IXXXMSGSET>

The<xxxMSGSETVn> aggregate has the following form:

Tag Description
<XXXMSGSETVn> Message-set-version aggregate

<MSGSETCORE> | Common message set information aggregate.

</MSGSETCORE>
Message-set Zero or more attributes specific to this version of this message set, as defined by|each
specific message set

</xxXxMSGSETVn>

112 7.2 Profile Response <PROFRS>

The common message set information <MSGSETCORE> is as follows:

Tag
<MSGSETCORE>

<VER>

<URL>

<OFXSEC>

<TRANSPSEC>

<SIGNONREALM>

<LANGUAGE>

<SYNCMODE>

<REFRESHSUPT>

<RESPFILEER>

<SPNAME>

</MSGSETCORE>

Description
Common-message-set-information aggregate

Version number of the message set, (for example, <VER>1 for version 1 of the
message setN-5

Because this information is already provided by the surroundicgMSGSETWh>
wrapper, <VER> should be ignored by OFX clients. Nonetheless, servers should
the supported value (<VER>1) consistent with that wrapper.

URL where messages in this set are to be d¢Ri,

Security level required for this message set;Sbapter 4, "OFX Security. NONE
or TYPE 1.

Y if transport-level security must be used, N if not used; Gémapter 4, "OFX
Security." Boolean

Signon realm to use with this message $e82

1 or more.

Language supportethnguage.

If more than one language is supported, multiple <LANGUAGE> elements can be¢

sent.

FULL for full synchronization capability
LITE for lite synchronization capability

See Chapter 6, "Data Synchronizatiofof more information.

Y if server supports <REFRESH>Y within synchronizations. This option is irrelev.
for full synchronization servers. Clients must ignore <REFRESHSUPT> (or its
absence) if the profile also specifies <SYNCMODE>FULL. For lite synchronizatig
the default is N. Without <REFRESHSUPT?>Y, lite synchronization servers are no
required to support <REFRESH>Y reque&splean

Y if server supportfile-based error recoverpoolean

See Chapter 6, "Data Synchronizatiofof more information.

Service provider namey-32

Some financial institutions out-source their OFX servers to a service provider. In
cases, the SPNAME element should be included in the MSGSETCORE.

use

ant

such

Note: For all message sets currently defined in OFX, <TRANSPSEC>Y must be specified.

Note: Withina <MSGSETCORE> aggregate, the <VER> element defines the version number
of that message set. It does not refer to the version number of the OFX specification or the
DTD files. For more information about message sets and version numbers, refer to section

2.4.5.

OFX 2.0 Specification

6/30/00 113

Note: Within a message set, there can be more than one <MSGSETCORE> aggregate with the
same value for <VER>, or the same value for <URL>, but not the same value for both. The pair
must be unique for each instance of <MSGSETCORE> within a message set. Multiple
<MSGSETCORE>s with the same value for <VER> are used in instances such as signon or
registration, which may have the same version sent to multiple URLSs for different services.

7.2.2 Signon Realms

A signon realm identifies a set of messages that can be accessed using the same password. Realms are used
to disassociate signons from specific services, allowing Fls to require different signons for different

message sets. In practice, Fls will want to use the absolute minimum number of realms possible to reduce
the user’s workload.

Tag Description
<SIGNONINFO> Signon-information aggregate
<SIGNONREALM> | |dentifies this realmA-32

<MIN> Minimum number of password characteks2
<MAX> Maximum number of password characteMs?
<CHARTYPE> Type of characters allowed in password:
ALPHAONLY Password may not contain numeric characters
The server would allow “abbc”, but not “1223" of
“al22”.
NUMERICONLY Password may not contain alphabetic characters.
The server would allow “1223”, but not “abbc” of
“al22”.
ALPHAORNUMERIC Password may contain alphabetic or numeric

characters (or both). The server would allow
“abbc”, “1223", or “al22".

ALPHAANDNUMERIC Password must contain both alphabetic and
numeric characters. The server would allow
“al22”, but not “abbc” or “1223".

<CASESEN> Y if password is case-sensitivBpolean

<SPECIAL> Y if special characters are allowed over and above those characters allowed by
<CHARTYPE> and <SPACES:Boolean

<SPACES> Y if spaces are allowed over and above those characters allowed by <CHARTYPE>
and <SPECIAL>Boolean

<PINCH> Y if server supports <PINCHRQ> (PIN change requefsplean

<CHGPINFIRST> Y if server requires clients to execute <PINCHRQ> as part of first signon. Clients must
ignore <CHGPINFIRST> if the profile also specifies <PINCH>Bholean

</SIGNONINFO>

114 7.2 Profile Response <PROFRS>

7.2.3 Status Codes

Meaning
0 Success (INFO)
1 Client is up-to-date (INFO)
2000 General error (ERROR)

7.3 Profile Message Set Profile Information

The profile message set functions the same way as all other message sets; therefore, it contains a profile
description for that message set. Because <PROFMSGSET> is always part of a message set response, itis
described here. Servers must include the <PROFMSGSET> as part of the profile response
<MSGSETLIST>. There are no attributes, but the aggregate must be present to indicate support for the
message set.

Tag Description
<PROFMSGSET> Message-set-profile-information aggregate
<PROFMSGSETV1> Opening tag for V1 of the message set profile information
<MSGSETCORE> Common message set information
</MSGSETCORE>
</PROFMSGSETV1>
</PROFMSGSET>

OFX 2.0 Specification 6/30/00 115

116 7.3 Profile Message Set Profile Information

CHAPTER 8 ACTIVATION & ACCOUNT INFORMATION

8.1 Overview

The Signup message set defines three messages to help users get setup with their FI:
¢ Enroliment — informs FI that a user wants to use OFX and requests that a password be returned
¢ Accounts — asks the FI to return a list of accounts and the services supported for each account

& Activation — allows a client to tell the FI which services a user wants on each account
There is also a message to request name and address changes.

Clients use the account information request on a regular basis to look for changes in a user’s account
information. A time stamp is part of the request so that a server has to report only new changes. Account
activation requests are subject to data synchronization, and will allow multiple clients to learn how the
other clients have been enabled.

In OFX request files, the <SIGNUPMSGSRQV1> aggregate identifies the Signup messages.

8.2 Approaches to User Sign-Up with OFX

The message sets in this chapter are designed to allow both Fls and clients to support a variety of sign-up
procedures. There are four basic steps a user needs to go through to complete the sign-up:

1. Selectthe FI.OFX does not define this step or provide message sets to support it. Client developers
and FlIs can let a user browse or search this information on a web site, or might define additional
message sets to do this within the client. At the conclusion of this step, the client will have some
minimal profile information about the FlI, including the set of services supported and the URL to use
for the next step.

2. Enrollment and password acquisition.In this step, the user identifies and authenticates itself to the
Fl without a passwordin return, the user obtains a password (possibly temporary) to use with OFX.
Fls can perform this entire step over the telephone, through a combination of telephone requests and a
mailed response, or at the Fl web site. FIs can also use the OFX enrollment message to do this by
means of the client. The response can contain a temporary password or users can wait for a mailed
welcome letter containing the password.

3. Account Information. In this step, the user obtains a list of accounts available for use with OFX, and
which specific services are available for each account. Even if users have enrolled over the telephone,
clients will still use this message set to help users properly set up the accounts within the client. Clients
periodically check back with the FI for updates.

4. Service Activation.The last step is to activate specific services on specific accounts. The activation
messages support this step. Synchronization is applied to these messages to ensure that other clients
are aware of activated services.

OFX 2.0 Specification 6/30/00 117

The combination of media-interface through which an FI accomplishes these steps can vary. Fls might
wish to do steps two through four over the telephone. Clients will still use OFX messages in steps 3 and 4
to automatically set up the client based on the choices made by the user over the phone. Other FIs might
wish to have the entire user experience occur within the client. Either way, the OFX sign-up messages
support the process.

8.3 Users and Accounts

To support the widest possible set of FIs, OFX assumes that individual users and accounts are in a many-
to-many relationship. Consider a household with three accounts:

¢ Checking 1 - held individually by one spouse
¢ Checking 2 — held jointly by both
¢ Checking 3 - held individually by the other spouse

Checking 2 should be available to either spouse, and the spouse holding Checking 1 should be able to see
both Checking 1 and 2.

OFX expects Fls to give each user their own user ID and password. Each user will go through the
enroliment step separately. A given account need only be activated once for a service; not once for each
user. Clients will use the account information and activation messages to combine information about
jointly held accounts.

If an FI prefers to have a single user ID and password per household or per master account, it will have to
make this clear to users through the enroliment process. It is up to the Fl to assign a single user ID and
password that can access all three of the checking accounts described above.

8.4 Enroliment and Password Acquisition

The main purpose of the enrollment message is to communicate a user’s intent to access the Fl by way of
OFX and to acquire a password for future use with OFX. Some Fls might return a user ID and an initial
password in the enroliment response, while others will send them by way of regular mail.

Note: The client may not know the user ID and password when it sends the enrollment
request, in such a case the <USERID> and/or <USERPASS> may be set to lower case
“anonymous” followed by 23 zeroes.

Enroliment requests are not subject to synchronization. If the client does not receive a response, it will
simply re-request the enroliment. If a user successfully enrolls from another client before the first client
obtains a response, the server should respond to subsequent requests from the first client with status code:

13501 - user already enrolled.

118 8.3 Users and Accounts

8.4.1 User IDs

The OFX <SONRQ> requires a user ID to uniquely identify a user to an FI. The server must accept the
user ID with or without punctuation.

Many Fls in the United States use social security numbers (SSNs) as the ID. Others create IDs that are
unrelated to the users’ SSNs. Some Fls have existing user IDs that they use for other online activities that
they want to use for OFX as well. FIs might also create new IDs specifically for OFX. Finally, some Fls
might assign IDs while others might allow users to create them. Because users do not usually know either
their OFX sign-on user ID or their password at time of enrollment, the enrollment response is designed to
return both. The enroliment request allows users to optionally provide a user ID, which an Fl can interpret
as their existing online ID or a suggestion for what their new user ID should be. Ideally, the enroliment
process should explain ID syntax to users.

8.4.2 Enroliment Request <ENROLLRQ>

The enrollment request captures enough information to identify and authenticate a user as being legitimate
and that it has a relationship with the FI.

Fls might require that an account number be entered as part of the identification process. However, this is
discouraged since the account information request is designed to automatically obtain all account
information, avoiding the effort and potential mistakes of a user-supplied account number.

Itis RECOMMENDED that Fls provide detailed specifications for user IDs and passwords along with
information about the services available when a user is choosing an Fl.

OFX 2.0 Specification 6/30/00 119

The enrollment request must appear within an <ENROLLTRNRQ> transaction wrapper.

Tag

<EN

ROLLRQ>
<FIRSTNAME>

<MIDDLENAME>

Description
Enrollment-request aggregate
First name of usei-32

Middle name of useA-32

<LASTNAME> Last name of useA-32

<ADDR1> Address line 1A-32

<ADDR2> Address line 2A-32

<ADDR3> Address line 3. Use of <ADDR3> requires the presence of <ADDR232
<CITY> City, A-32

<STATE> State or provinceA-5

<POSTALCODE> Postal codeA-11

<COUNTRY> 3-letter country code from ISO/DIS-3164;3

<DAYPHONE> Daytime telephone numbek-32

<EVEPHONE> Evening telephone numbek;32

<EMAIL> Electronic e-mail addres#$,-80

<USERID> Actual user ID if already known, or preferred user ID if user can chobsz
<TAXID> ID used for tax purposes (such as SSN), may be same as us&3D,

<SECURITYNAME>

<DATEBIRTH>

Mother’s maiden name or equivaleAt;32

Date of birth,date

<xxxACCTFROM> An account description aggregate for an existing account at the Fl, for
identification purposes only. For example, <BANKACCTFROM> or
<INVACCTFROM>.
</xxxACCTFROM>
</ENROLLRQ>

This enrollment request is intended for use only by individuals. Business enrollment will be defined in a
later release.

8.4.3 Enrollment Response <ENROLLRS>

The main purpose of the enrollment response is to acknowledge the request. In those cases where Fls
permit delivery of an ID and a temporary password, the response also provides for this. Otherwise the
server will send the real response to the user by way of regular mail, electronic mail, or over the telephone.

120 8.4 Enrollment and Password Acquisition

If enrollment is successful, but the server does not return the ID and password in the response, a server is
REQUIRED to use status code 13000 and provide some information to the user by means of the
<MESSAGE> element in the <STATUS> aggregate about what to expect next.

The enrollment response must appear within an <ENROLLTRNRS> transaction wrapper.

Tag Description
<ENROLLRS> Enrollment-response aggregate

<TEMPPASS> Temporary password-32

<USERID> User ID,A-32

<DTEXPIRE> Time the temporary password expires (if <TEMPPASS> includéafetime
</ENROLLRS>

8.4.4 Enrollment Status Codes

Code Meaning

0 Success (INFO)

2000 General error (ERROR)

13000 User ID & password will be sent out-of-band (INFO)
13500 Unable to enroll user (ERROR)

13501 User already enrolled (ERROR)

15508 Transaction not authorized (ERROR)

OFX 2.0 Specification 6/30/00 121

8.4.5 Examples

An enrollment request:

<ENROLLTRNRQ>

<TRNUID>12345</TRNUID>

<ENROLLRQ>
<FIRSTNAME>Joe</FIRSTNAME>
<MIDDLENAME>Lee</MIDDLENAME>
<LASTNAME>Smith</LASTNAME>
<ADDR1>21 Main St.</ADDR1>
<CITY>Anytown</CITY>
<STATE>TX</STATE>
<POSTALCODE>87321</POSTALCODE>
<COUNTRY>USA</COUNTRY>
<DAYPHONE>123-456-7890</DAYPHONE>
<EVEPHONE>987-654-3210</EVEPHONE>
<EMAIL>jsmith@isp.com</EMAIL>
<USERID>jls</USERID>
<TAXID>123-456-1234</TAXID>
<SECURITYNAME>jbmam</SECURITYNAME>
<DATEBIRTH>19530202</DATEBIRTH>

</ENROLLRQ>

</ENROLLTRNRQ>

And the reply might be:

<ENROLLTRNRS>

<TRNUID>12345</TRUNID>

<STATUS>
<CODE>0</CODE>
<SEVERITY>INFO</SEVERITY>

</STATUS>

<ENROLLRS>
<TEMPPASS>changeme</TEMPPASS>
<USERID>jls</USERID>
<DTEXPIRE>20000105</DTEXPIRE

</ENROLLRS>

</ENROLLTRNRS>

122

8.4 Enrollment and Password Acquisition

8.5 Account Information

Account information requests ask a server to identify and describe all of the accounts accessible by the
signed-on user. The definition afl is up to the FI. At a minimum, it RECOMMENDED that a server
include information about all accounts that it can activate for one or more OFX services. To give the user a
complete picture of his relationship with an Fl, FIs can give information on other accounts, even if those
accounts are available only for limited OFX services.

Some service providers do not have prior knowledge of user account information. The profile allows these
servers to report this, and clients then know to ask users for account information rather than reading it from
the server.

Clients can perform several tasks for users with this account information. First, the information helps a
client set up a user for online services by giving it a precise list of its account information and available
services for each. Clients can set up their own internal state as well as prepare service activation requests
with no further typing by users. This can eliminate data entry mistakes in account numbers, routing transit
numbers, and so forth.

Second, FlIs can provide limited information on accounts that would not ordinarily be suitable to OFX
services. For example, a balance-only statement download would be useful for certificates of deposits even
though a customer or an FI might not want or allow CDs to be used for full statement download.

For each account, there is one <ACCTINFO> aggregate returned. The aggregate includes one service-
specific account information aggregate for each service available to that account. That, in turn, provides
the service-specific account identification. Common to each service-specific account information
aggregate is the <SVCSTATUS> element, which indicates the status of this service on this account.

A server should return joint accounts (accounts for which more than one user ID can be used to access the
account) for either user.

Requests and responses include a <DTACCTUP> element. Responses contain the last time a server
updated the information. Clientsse REQUIRED to send this in a subsequent request, and servers are
REQUIRED to compare this to the current modification time and only send information if it is more
recent. The server sends the entire account information response if the client’s time is older; there is no
attempt to incrementally update specific account information. <ACCTINFORS> should not be sent when
the client is up-to-date.

Note: Not sending a response aggregate in the case of <ACCTINFORS> is an exception to the
rules outlined in 2.4.and 3.1.5

OFX 2.0 Specification 6/30/00 123

8.5.1 Request <ACCTINFORQ>

The <ACCTINFORQ> request must appear within an <ACCTINFOTRNRQ> transaction wrapper.

Description
<ACCTINFORQ> Account-information-request aggregate
<DTACCTUP> Last <DTACCTUP> received in a respons@tetime

</ACCTINFORQ>

8.5.2 Response <ACCTINFORS>

The <ACCTINFORS> response must appear within an <ACCTINFOTRNRS> transaction wrapper.

Tag Description

<ACCTINFORS> Account-information-response aggregate
<DTACCTUP> Date and time of last update to this information on the sedeggtime
<ACCTINFO> Zero or more account information aggregates

Left out of the response when nothing is found for the current user.

Note: When <DTACCTUP> indicates the client is up-to-date, server shoul|d
not return surrounding <ACCTINFORS>.

</ACCTINFO>

</ACCTINFORS> End of account information response

124 8.5 Account Information

8.5.3 Account Information Aggregate <ACCTINFO>

Tag Description
<ACCTINFO> Account-information-record aggregate
<DESC> Description of the accounf-80
<PHONE> Telephone number for the accouAt32
<xxXACCTINFO> Service-specific account information, defined in each service chapter.
Some services may include additional elements. Refer to service chapters
for details.
<XXXACCTFROM> Service-specific account identification. For a given service there can

be at most onexxACCTINFO> returned. For example, you cannot
return two <BANKACCTINFO> aggregates.

</xxxACCTFROM>

<SVCSTATUS> AVAIL = Available, but not yet requested
PEND = Requested, but not yet available
ACTIVE = In use

</xxxACCTINFO>

</ACCTINFO>

Note: A server uses the <DESC> field to convey the FI's preferred name for the account, such
as “PowerChecking.” It should not include the account number.

8.5.4 Status Codes

Meaning
0 Success (INFO)
1 Client is up-to-date (INFO)
2000 General error (ERROR)

OFX 2.0 Specification 6/30/00 125

8.5.5 Examples
An account information request:

<ACCTINFOTRNRQ>
<TRNUID>12345</TRNUID>
<ACCTINFORQ>
<DTACCTUP>19990101</DTACCTUP>
</ACCTINFORQ>
</ACCTINFOTRNRQ>

And a response for a user with access to one account, supporting banking:

<ACCTINFOTRNRS>

<TRNUID>12345</TRNUID>
<STATUS>
<CODE>0</CODE>
<SEVERITY>INFO</SEVERITY>
</STATUS>
<ACCTINFORS>
<DTACCTUP>19990102</DTACCTUP>
<ACCTINFO>
<DESC>Power Checking</DESC>
<PHONE>8002223333</PHONE>
<BANKACCTINFO>
<BANKACCTFROM>
<BANKID>1234567789</BANKID>
<ACCTID>12345</ACCTID>
<ACCTTYPE>CHECKING</ACCTTYPE>
</BANKACCTFROM>
<SUPTXDL>Y</SUPTXDL>
<XFERSRC>Y</XFERSRC>
<XFERDEST>Y</XFERDEST>
<SVCSTATUS>ACTIVE</SVCSTATUS>
</BANKACCTINFO>
</ACCTINFO>
</ACCTINFORS>
</ACCTINFOTRNRS>

126 8.5 Account Information

8.6 Service Activation

Clients inform Fls that they wish to start, modify, or terminate a service for an account by sending service
activation requests. These are subject to data synchronization, and servers should send responses to inform
clients of any changes, even if the changes originated on the server.

Clients use these records during the initial user sign-up process. Once a client learns about the available
accounts and services (by using the account information request above, or by having a user directly enter
the required information), it sends a series of service ADD requests.

If a user changes any of the identifying information about an account, the client sends a service activation
request containing both the old and the new account information. Servers should interpret this as a change
in the account, not a request to transfer the service between two existing accounts, and all account-based
information such as synchronization tokens should continue. If a user or Fl is reporting that a service
should be moved between two existing accounts, service must be terminated for the old account and
started for the new account. The new account will have reset token histories, as with any new service.

Each service to be added, changed, or removed is contained in its own request because the same real-world
account might require differentxxxXACCTFROM> aggregates depending on the type of service.

8.6.1 Activation Request <ACCTRQ>

The <ACCTRQ> request must appear within an <ACCTTRNRQ> transaction wrappetr.

Tag Description
<ACCTRQ> Account-service-request aggregate

Action identification. Specify | Action aggregate, either <SVCADD>, <SVCCHG>, or <SVCDEL>
either <SVCADD>,
<SVCCHG>, or <SVCDEL>

<SVCADD> Service-addition aggregate
</SVCCADD>

Or
<SVCCHG> Service-change aggregate
</SVCCHG>

Or
<SVCDEL> Service-deletion aggregate
</SVCDEL>
<SvC> Service to be added/changed/deleted

BANKSVC = Banking service
BPSVC = Payments service

INVSVC = Investments

PRESSVC = Bill presentment service

</ACCTRQ>

OFX 2.0 Specification 6/30/00 127

8.6.1.1 Service Add Aggregate <SVCADD>

When a client sends a <SVCADD> to a financial institution routing particular messages to another service
provider, it is up to the financial institution to determine whether or not an <ENROLLRQ> needs to be sent
to the service provider along with the <SVCADD>. The FI may choose to always send an <ENROLLRQ>
and ignore the 13550 error message responses, though this would only be reliable if <xxxACCTFROM> is
included in the <ENROLLRQ>. The FI may also choose to keep a database of enrolled services, so as to
send an <ENROLLRQ> only when the client is sending a <SVCADD> for a new service. The Fl also has
the option of sending <ENROLLRQ>s to all service providers when the client sends the initial
<ENROLLRQ> to the FI.

Tag Description
<SVCADD> Service-addition aggregate
<xxxACCTTO> Service-specific-account-identification aggregate (for example,
<BANKACCTTO> or <INVACCTTO>)
</xxxACCTTO>
</SVCADD>

8.6.1.2 Service Change Aggregate <SVCCHG>

Tag Description
<SVCCHG> Service-change aggregate
<xxx ACCTFROM> Service-specific-account-identification aggregate (for example,

<BANKACCTFROM> or <INVACCTFROM>)

</xxx ACCTFROM>
<xxxACCTTO> Service-specific-account-identification aggregate (for example, <BANKACCTTO>
or <INVACCTTO>)
</xxxACCTTO>
</SVCCHG>

8.6.1.3 Service Delete Aggregate <SVCDEL>

Tag Description
<SVCDEL> Service-deletion aggregate
<xxx ACCTFROM> Service-specific-account-identification aggregate (for example,
<BANKACCTFROM> or <INVACCTFROM>)
</xxxACCTFROM>
</SVCDEL>

128 8.6 Service Activation

8.6.2 Activation Response <ACCTRS>

The <ACCTRS> response must appear within an <ACCTTRNRS> transaction wrapper.

Tag
<ACCTRS>

Action identification. Specify
either <SVCADD>,
<SVCCHG>, or <SVCDEL>

<SVCADD>
</SVCADD>
Or
<SVCCHG>
</SVCCHG>
Or
<SVCDEL>
</SVCDEL>

<SvC>

<SVCSTATUS>

</ACCTRS>

Description

Account-service-response aggregate

Service-addition aggregate

Service-change aggregate

Service-deletion aggregate

Service to be added/changed:

BANKSVC = Banking service

BPSVC = Payments service

INVSVC = Investments

PRESSVC = Bill Presentment service
AVAIL = Available, but not yet requested
PEND = Requested, but not yet available

ACTIVE = In use

OFX 2.0 Specification

6/30/00

129

8.6.3 Status Codes

Code Meaning

0 Success (INFO)

2000 General error (ERROR)

2002 General account error (ERROR)

2006 Source account not found (ERROR)

2007 Source account closed (ERROR)

2008 Source account not authorized (ERROR)

2009 Destination account not found (ERROR)

2010 Destination account closed (ERROR)

2011 Destination account not authorized (ERROR)

6502 Unable to process embedded transaction due to out-of-date <TOKEN>
(ERROR)

13502 Invalid service (ERROR)

15508 Transaction not authorized (ERROR)

130 8.6 Service Activation

8.6.4 Service Activation Synchronization

Service activation requests are subject to the standard data synchronization protocol. The scope of these
requests and the <TOKEN> is the user ID. The request and response tags are <ACCTSYNCRQ> and
<ACCTSYNCRS>.

8.6.4.1 Request <ACCTSYNCRQ>

Tag Description
<ACCTSYNCRQ> Activation synchronization request aggregate

Client synchronization
option; <TOKEN>,
<TOKENONLY>, or

<REFRESH>
<TOKEN> Previous value of <TOKEN> received for this type of synchronization request
from server; O for first-time requestsiken
<TOKENONLY> Request for just the current <TOKEN> without the histdgolean
<REFRESH> Request for refresh of current staBnolean

<REJECTIFMISSING> | If Y, do not process requests if client <TOKEN> is out of d&8eplean
<ACCTTRNRQ> Account-service-request transactions (O or more)
</ACCTTRNRQ>

</ACCTSYNCRQ>

8.6.4.2 Response <ACCTSYNCRS>

Tag Description
<ACCTSYNCRS> Payee-list-request aggregate
<TOKEN> New synchronization tokenoken

<ACCTTRNRS> Account-service-response transactions (O or more)

</ACCTTRNRS>
<LOSTSYNC> Y if the token in the synchronization request is older than the earliest entry in the
server’s history table. In this case, some responses have been lost.
N if the token in the synchronization request is newer than or matches a token in the
server’s history tabléBoolean
</ACCTSYNCRS>

OFX 2.0 Specification 6/30/00 131

8.6.5 Examples
Activating a payment:

<ACCTTRNRQ>

<TRNUID>12345</TRNUID>
<ACCTRQ>
<SVCADD>
<BANKACCTTO>
<BANKID>1234567789</BANKID>
<ACCTID>12345</ACCTID>
<ACCTTYPE>CHECKING</ACCTTYPE>
</BANKACCTTO>
</SVCADD>
<SVC>BPSVC
</ACCTRQ>
</ACCTTRNRQ>

A response:

<ACCTTRNRS>

<TRNUID>12345</TRNUID>
<STATUS>
<CODE>0</CODE>
<SEVERITY>INFO</SEVERITY>
</STATUS>
<ACCTRS>
<SVCADD>
<BANKACCTTO>
<BANKID>1234567789</BANKID>
<ACCTID>12345</ACCTID>
<ACCTTYPE>CHECKING</ACCTTYPE>
</BANKACCTTO>
</SVCADD>
<SVC>BPSVC</SVC>
<SVCSTATUS>ACTIVE</SVCSTATUS>
</ACCTRS>
</ACCTTRNRS>

132

8.6 Service Activation

8.7 Name and Address Changes

Users may request that an FI update the official name, address, phone, and e-mail information using the
<CHGUSERINFORQ>. All modified and unmodified elements are submitted in a change user

information request, <CHGUSERINFORQ>. The lack of inclusion of a field in a change user request
when that field was previously populated implies its deletion on the server. The response reports all of the
current values. If the USERID element is not present in CHGUSERINFO, then the USERID from the
SONRQ is assumed to be the identifier for the user in question. For security reasons, some of the fields in

the <ENROLLRQ> cannot be changed online, such as tax ID and userID.

The transaction tags are <CHGUSERINFOTRNRQ> and <CHGUSERINFOTRNRS>. These messages

are subject to synchronization, <CHGUSERINFOSYNCRQ>, and <CHGUSERINFOSYNCRS>.

8.7.1 Change User Information Request <CHGUSERINFORQ>

Tag

<CHGUSERINFORQ>
<FIRSTNAME>
<MIDDLENAME>
<LASTNAME>
<ADDR1>
<ADDR2>
<ADDR3>
<CITY>
<STATE>
<POSTALCODE>
<COUNTRY>
<DAYPHONE>
<EVEPHONE>
<EMAIL>

</CHGUSERINFORQ>

Description

Change-user-information-request aggregate

First name of usei-32

Middle name of user\-32

Last name of useA-32

Address line 1A-32

Address line 2. Use of <ADDR2> requires the presence of <ADDR132
Address line 3. Use of <ADDR3> requires the presence of <ADDR23?2
City, A-32

State or provinceA-5

Postal codeA-11

3-letter country code from ISO/DIS-3164;3

Daytime telephone numbek-32

Evening telephone numbek;32

Electronic e-mail address,-80

OFX 2.0 Specification

6/30/00

133

8.7.2 Change User Information Response <CHGUSERINFORS>

Tag

<CHGUSERINFORS>
<FIRSTNAME>
<MIDDLENAME>
<LASTNAME>
<ADDR1>
<ADDR2>
<ADDR3>
<CITY>
<STATE>
<POSTALCODE>
<COUNTRY>
<DAYPHONE>
<EVEPHONE>
<EMAIL>
<DTINFOCHG>

</CHGUSERINFORS>

Description

Change-user-information-request aggregate

First name of usei-32

Middle name of user\-32

Last name of useA-32

Address line 1A-32

Address line 2. Use of <ADDR2> requires the presence of <ADDR:32
Address line 3. Use of <ADDR3> requires the presence of <ADDR232
City, A-32

State or provincei-5

Postal codeA-11

3=letter country code from ISO/DIS-3164;3

Daytime telephone numbek-32

Evening telephone numbek;32

Electronic e-mail addres#\,-80

Date and time of updatgatetime

8.7.3 Status Codes

Code Meaning

0 Success (INFO)
2000 General error (ERROR)
6502 Unable to process embedded transaction due to out-of-date <TOKEN>
(ERROR)
13503 Cannot change user information (ERROR)
15508 Transaction not authorized (ERROR)
134 8.7 Name and Address Changes

8.7.4 Change User Information Synchronization

Change user information requests are subject to the standard data synchronization protocol. The scope of
these requests and the <TOKEN> is the user ID. The request and response tags are
<CHGUSERINFOSYNCRQ> and <CHGUSERINFOSYNCRS>.

8.7.4.1 Request <CHGUSERINFOSYNCRQ>

Tag Description
<CHGUSERINFOSYNCRQ> Activation synchronization request aggregate

Client synchronization option;
<TOKEN>, <TOKENONLY>, or

<REFRESH>
<TOKEN> Previous value of <TOKEN> received for this type of synchronization
request from server; O for first-time requegtsken
<TOKENONLY> Request for just the current <TOKEN> without the histdgolean
<REFRESH> Request for refresh of current staBnolean
<REJECTIFMISSING> If Y, do not process requests if client <TOKEN> is out of dd&eplean
<CHGUSERINFOTRNRQ> Change user information request transactions (0 or more)

</CHGUSERINFOTRNRQ>

</CHGUSERINFOSYNCRQ>

8.7.4.2 Response <CHGUSERINFOSYNCRS>

Tag Description
<CHGUSERINFOSYNCRS> Payee-list-request aggregate
<TOKEN> New synchronization tokenoken
<LOSTSYNC> Y if the token in the synchronization request is older than the earliest entry

in the server’s history table. In this case, some responses have been Igst.

N if the token in the synchronization request is newer than or matches a
token in the server’s history tablBoolean

<CHGUSERINFOTRNRS> Change user information response transactions (0 or more)
<CHGUSERINFOTRNRS>

</CHGUSERINFOSYNCRS>

OFX 2.0 Specification 6/30/00 135

8.8 Signup Message Set Profile Information

A server must include the following aggregates as part of the profile <MSGSETLIST> response, since
every server must support at least the account information and service activation messages. Servers
indicate how enrollment should proceed: via the client, a given web page, or a text message directing users
to some other method (such as a phone call).

Tag Description
<SIGNUPMSGSET> Signup-message-set-profile-information aggregate
<SIGNUPMSGSETV1> Opening tag for V1 of the message set profile information
<MSGSETCORE> Common message set information, defined in Chapter 7, "FI Profile"
</MSGSETCORE>

Enrollment options. Choose one of
<CLIENTENROLL>,
<WEBENROLL>, or

<OTHERENROLL>.
<CLIENTENROLL> Client-based enrollment supported
<ACCTREQUIRED> Y if account number is required as part of enrollmédplean

</CLIENTENROLL>
_Or-

<WEBENROLL> Web-based enrollment supported
<URL> URL to start enrollment processRL
</WEBENROLL>
Or
<OTHERENROLL> Some other enrollment process
<MESSAGE> Message to consumer about what to do next (for example, a phone
number),A-80
</OTHERENROLL>
<CHGUSERINFO> Y if server supports client-based user information changes|ean
<AVAILACCTS> Y if server can provide information on accounts with SVCSTATUS
available, N means client should expect to ask user for specific account
information,Boolean
<CLIENTACTREQ> Y if server allows clients to make service activation requests

(<ACCTRQ>), N if server will only advise clients via synchronization
of service additions, changes, or deletioBeolean

</SIGNUPMSGSETV1>

</SIGNUPMSGSET>

136 8.8 Signup Message Set Profile Information

OFX 2.0 Specification 6/30/00 137

138 8.8 Signup Message Set Profile Information

CHAPTER 9 CUSTOMER TO FI COMMUNICATION

9.1 The E-Mail Message Set

The e-mail message set includes two messages: generic e-mail and generic MIME requests by way of
URLs. In OFX files, the message set name is EMAILMSGSV1.

9.2 E-Mail Messages

OFX allows consumers and Fls to exchange messages. The message body can be placed in HTML so that
Fls can provide some graphic structure to the message. Keep in mind that, as with regular World Wide Web
browsing, an OFX client might not support some or all of the HTML formatting, so the text of the message
must be clear on its own. Clients can request the server to send graphics (the images referenced in an
 tag) as part of the response file, or clients can separately request those elements. If a server sends
images, it should use the standard procedure for incorporating external data as described in Chapter 2,
"Structure."Servers are not required to support HTML or to send images, even if the client asks.

A user or an Fl can originate a message. E-mail messages are subject to data synchronization so that a
server can send a response again if it is lost or if multiple clients use it.

Because e-mail messages cannot be replied to immediately, the response should just echo back the original
message (so that data synchronization will get this original e-mail message to other clients). When the Fl is
ready to reply, it should generate an unsolicited response (<KTRNUID>0) and the client will pick this up
during synchronization.

Client Sends Server Responds

Account information
From, To

Subject

Message

Account information
From, To

Subject

Message

Type

OFX 2.0 Specification 6/30/00 139

9.2.1 Regular vs. Specialized E-Malil

Several services with OFX define e-mail requests and responses that contain additional information
specific to that service. To simplify implementation for OFX clients and servers, this section defines a
<MAIL> aggregate that OFX uses in all e-mail requests and responses. For regular e-mail, the only
additional information is an account-from aggregate and whether to include images in the e-mail response
or not.

When users want to send messages about service-specific problems, service-specific messages are best.
However, when service-specific mail transactions are not available, general mail is acceptable.

9.2.2 Basic <MAIL> Aggregate

Tag Description
<MAIL> Core e-mail aggregate
<USERID> User ID such as SSM-32

<DTCREATED> | When message was creatddfetime

<FROM> Who the message is frorA-32

<TO> Who the message should be delivered&e32

<SUBJECT> Subject of message (plain text, not HTMI460

<MSGBODY> Body of message, HTML-encoded or plain text depending on <USEHTML>,

HTML-encoded text A-10000
Plain text -A-2000

<INCIMAGES> Include images in the message bodgolean
<USEHTML> Y for HTML-formatted text. N for plain text. See section 9.2.202 more information.
Boolean
</MAIL>

140 9.2 E-Mail Messages

9.2.2.1 <INCIMAGES>

The meaning of the <INCIMAGES> element depends on whether the element appears in a request or
response.

When used in a request, <INCIMAGES> indicates whether the client accepts mail that includes images in
the message body.

When used in a request... Description

<INCIMAGES>Y The client accepts mail that includes images in the message body. In this|case,
the server can choose whether to send images in the response.

<INCIMAGES>N The client does not accept mail that includes images in the message body. In
this case, the server must not send images in the response.

When used in a response, <INCIMAGES> indicates whether the server included images in the message
body.

When used in a response... Description
<INCIMAGES>Y The server included images in the message body.
<INCIMAGES>N The server did not include images in the message body.

9.2.2.2 <USEHTML>

The meaning of the <USEHTML> element depends on whether the element appears in a request or
response.

When used in a request, <USEHTML> indicates whether the client sends and accepts HTML-formatted
text in the message body. If a server receives a <xxxMAILSYNCRQ> request with <USEHTML>Y set,
the server should process the request whether or not it supports HTML mail. If a server does not support
HTML mail, it should simply set the <USEHTML> flag to N in any transactions which are returned in the
sync response.

When used in a request... Description

<USEHTML>Y The client is including HTML-formatted text in the message body. In additipn,
the client will accept mail responses that include HTML-formatted text in the
message body. In this case, a server can choose whether to respond with
HTML-formatted text or plain text.

<USEHTML>N The client is not including HTML-formatted text in the message body. In
addition the client will not accept mail responses that include HTML-
formatted text in the message body.

OFX 2.0 Specification 6/30/00 141

When used in a response, <USEHTML> indicates whether the message body includes HTML-formatted
text or plain text.

When used in a response... Description
<USEHTML>Y The server is including HTML-formatted text in the message body.
<USEHTML>N The server is including only plain text in the message body.

Note: When using HTML for the message body, clients and servers are REQUIRED to
enclose the HTML in a CDATA section to protect the HTML markup: <![CDATA] ... html ...
]]>. For an example, see section 9.2.5

9.2.3 E-Mail <MAILRQ> <MAILRS>

E-mail is subject to synchronization. The transaction aggregate is <MAILTRNRQ>/ <MAILTRNRS> and
the synchronization aggregate is <MAILSYNCRQ> / <MAILSYNCRS>.

Tag Description

<MAILRQ> E-mail-message-request aggregate
<MAIL> Core e-mail aggregate
</MAIL>

</MAILRQ>

In a response, the <TRNUID> is zero if this is an unsolicited message or an out-of-band reply to a prior
email request. Immediate responses (acknowledgments) to a request should contain the <TRNUID> of the
user’s original message. It is RECOMMENDED that servers include the <MESSAGE> of the user’s
message as part of the reply <MESSAGE>. The <MESSAGE> contents can include carriage returns to
identify desired line breaks.

Tag Description

<MAILRS> E-mail-message-response aggregate
<MAIL> Core e-mail aggregate
</MAIL>

</MAILRS>

142 9.2 E-Mail Messages

9.2.3.1 Status Codes

Code Meaning

0 Success (INFO)
2000 General error (ERROR)
6502 Unable to process embedded transaction due

to out-of-date <TOKEN> (ERROR)

15508 Transaction not authorized (ERROR)
16500 HTML not allowed (ERROR)
16501 Unknown mail To: (ERROR)

OFX 2.0 Specification 6/30/00 143

9.2.4 E-Mail Synchronization <MAILSYNCRQ> <MAILSYNCRS>

E-mail presents a special case with regards to synchronization. Since FlIs will not immediately reply to a
user’s e-mail, the response to the user’s e-mail only echoes the request and confirms that the e-mail was
successfully received. The client receives the real response to the e-mail following a synchronization

request.

Note that this synchronization action expects only the basic <MAILRS> responses. Specialized e-mail is
received by means of their own synchronization requests.

Tag
<MAILSYNCRQ>

Client synchronization
option; <TOKEN>,
<TOKENONLY>, or
<REFRESH>

<TOKEN>

<TOKENONLY>

<REFRESH>

<REJECTIFMISSING>

<INCIMAGES>

<USEHTML>
<MAILTRNRQ>
</MAILTRNRQ>

</MAILSYNCRQ>

Description

E-mail-synchronization-request aggregate

Previous value of <TOKEN> received for this type of synchronization request

from server; 0O for first-time requestiken

Request for just the current <TOKEN> without the hist@golean

Request for refresh of current staBnolean

If Y, do not process requests if client <TOKEN> is out of d&eplean

Y if the client accepts mail with images in the message body, N if the client da

not accept mail with images in the message b@&hglean

Y if client wants an HTML response, N if client wants plain teRgolean

Mail-transaction-request aggregate (O or more)

144

9.2 E-Mail Messages

es

Tag Description

<MAILSYNCRS> E-mail-synchronization-response. aggregate
<TOKEN> Server history marketpken
<LOSTSYNC> Y if the token in the synchronization request is older than the earliest entry in the

server’s history table. In this case, some responses have been lost.

N if the token in the synchronization request is newer than or matches a token in the
server’s history tableBoolean

<MAILTRNRS> Missing e-mail response transactions (0 or more)
</MAILTRNRS>

</MAILSYNCRS>

9.2.5 E-Mail Example

In this example, a consumer requests information about the checking statement just downloaded. Since the
financial institution will not immediately answer the inquiry, the immediate response only echoes the
consumer’s request and confirms that the request was successfully received.

The client receives the real response at a later time following a mail synchronization request. For an
example of the mail synchronization request and response, see section.9.2.5.1

Note: This example omits the <OFX> top level and the signon <SONRQ>. Since this example
uses HTML for the message body, it must protect the HTML content in an CDATA-marked
section.

The request:

<MAILTRNRQ>

<TRNUID>54321</TRNUID>
<MAILRQ>
<MAIL>

<USERID>123456789</USERID>
<FROM>James Hackleman</FROM>
<TO>Noelani Federal Savings</TO>
<SUBJECT>What do | need to earn interest?</SUBJECT>
<DTCREATED>19990305</DTCREATED>

<MSGBODY><![CDATA[<HTML><BODY>| didn’'t earn any interest this
month. Can you please tell me what | need to do to earn interest on this
account?</BODY></HTML>

1I></MSGBODY>
<INCIMAGES>N</INCIMAGES>
<USEHTML>Y</USEHTML>
</MAIL>

OFX 2.0 Specification 6/30/00 145

</MAILRQ>
</MAILTRNRQ>

The response from the FI.

<MAILTRNRS>

<TRNUID>54321</TRNUID>
<STATUS>
<CODE>0</CODE>
<SEVERITY>INFO</SEVERITY>
</STATUS>
<MAILRS>
<MAIL>
<USERID>123456789</USERID>
<FROM>James Hackleman</FROM>
<TO>Noelani Federal Savings</TO>
<SUBJECT>What do | need to earn interest?</SUBJECT>
<DTCREATED>19990305</DTCREATED>

<MSGBODY><I[CDATA[<HTML><BODY>| didn't earn any interest this
month. Can gou please tell me what | need to do to earn interest on this
account?</BODY></HTML>]]></MSGBODY>

<INCIMAGES>N</INCIMAGES>
<USEHTML>Y</USEHTML>
</MAIL>
</MAILRS>
</MAILTRNRS>

9.2.5.1 E-Mail Synchronization Example

In the following example, the client has not yet received the reply to the e-mail sent in the previous
example, so its <TOKEN> is one less than the server’s. The server replies by giving the current <TOKEN>
and the missed response.

<MAILSYNCRQ>
<TOKEN>101</TOKEN>
<REJECTIFMISSING>N</REJECTIFMISSING>
<INCIMAGES>N</INCIMAGES>
<USEHTML>Y</USEHTML>

</MAILSYNCRQ>

<MAILSYNCRS>
<TOKEN>102</TOKEN>
<MAILTRNRS>

146 9.2 E-Mail Messages

<TRNUID>0</TRNUID> <!-- server initiated response -->
<STATUS>

<CODE>0</CODE>
<SEVERITY>INFO</SEVERITY>
</STATUS>
<MAILRS>
<MAIL>
<USERID>123456789</USERID>
<DTCREATED>19990307</DTCREATED>
<FROM>Noelani Federal Savings</FROM>
<TO>James Hackleman</TO>
<SUBJECT>Re: What do | need to earn interest?</SUBJECT>

<MSGBODY>><![CDATA[<HTML><BODY>You need to maintain $1000 in
this account to earn interest. Because your balance was only $750 this
month, no interest was earned. You could also switch to our new Checking
Extra plan that always Hoays interest. Call us or check our web page
http://www.fi.com/check-plans.html for more information.

Sincerely,
Customer Service Department

Original message:

| didn’t earn any interest this month. Can you please tell me what |
need to do to earn interest on this account?</BODY></HTML>]]></MSGBODY>

<INCIMAGES>N</INCIMAGES>
<USEHTML>Y</USEHTML>
</MAIL>
</MAILRS>
</MAILTRNRS>
</MAILSYNCRS>

OFX 2.0 Specification 6/30/00 147

9.3 Get HTML Page

Some responses (<PROFRS> and <FINDBILLERRS> for example) contain values that are URLs
intended to be separately fetched by clients. Clients can use their own HTTP libraries to perform this fetch
outside of the OFX specification. However, to insulate clients against changes in transport technology, and
to allow for fetches that require the protection of an authenticated signon by a specific user, OFX defines a
transaction roughly equivalent to an HTTP Get. Any MIME type can be retrieved, including images as
well as HTML pages.

When a <GETMIMERQ> request appears in a request file and no error occurs in processing, the server
must return a response file containing multiple entities (defined in the MIME protocol to include the
MIME headers and content for one part of the transmission). Such a response file has content type
“multipart/x-mixed-replace”, as discussed in section e entity contains the OFX response. Other
entities contain the content of individual retrievals corresponding to each <GETMIMERS> in the OFX
entity.

When multiple <GETMIMERS> responses (corresponding to successful <GETMIMERQ> requests)
appear in an OFX response entity, the server must return individual entities in the same order as the
corresponding response aggregates. Since the OFX response itself should be the only entity with content
type “application/x-ofx” in the response file, the client may find the retrieved information in predictable
locations within the multipart response.

9.3.1 MIME Get Request and Response <GETMIMERQ>
<GETMIMERS>

The following table lists the components of a request:

Description
<GETMIMERQ> Get-MIME-request aggregate
<URL> URL, URL

</GETMIMERQ>

The response simply echoes the URL. The actual response, whether HTML, an image, or some other type,
is always sent as a separate part of the file using multipart MIME.

Description
<GETMIMERS> Get-MIME-response aggregate
<URL> URL, URL

</GETMIMERS>

148 9.3 Get HTML Page

9.3.1.1 Status Codes

Code Meaning

0 Success (INFO)

2000 General error (ERROR)
2019 Duplicate request (ERROR)
16502 Invalid URL (ERROR)
16503 Unable to get URL (ERROR)

9.3.2 MIME Example

A request:

<GETMIMETRNRQ>
<TRNUID>54321</TRNUID>
<GETMIMERQ>
<URL>http://www.fi.com/apage.htmI</URL>
</GETMIMERQ>
</GETMIMETRNRQ>

A response — the full file is shown here to illustrate the use of multipart MIME:

HTTP 1.0 200 OK
Content-Type: multipart/x-mixed-replace; boundary =boundary =XYZZY24x7

--XYZZY24x7

Content-Type: application/x-ofx
Content-Length: 8732

<?xml version="1.0"?>

<?0FX OFXHEADER="200" VERSION="200" SECURITY="NONE" OLDFILEUID="NONE"
NEWFILEUID="NONE"?>

<OFX>
<!I-- signon not shown
message set wrappers not shown -->
<GETMIMETRNRS>
<TRNUID>54321</TRNUID>
<STATUS>
<CODE>0</CODE>

OFX 2.0 Specification 6/30/00 149

<SEVERITY>INFO</SEVERITY>
</STATUS>
<GETMIMERS>
<URL>http://www.fi.com/apage.htmI</URL>
</GETMIMERS>
</GETMIMETRNRS>
</OFX>

--XYZZY?24x7
Content-Type: text/html
<HTML>
<l-- standard HTML page -->
</HTML>

--XYZZY24xX7--

150

9.3 Get HTML Page

9.4 E-Malil Message Set Profile Information

If either or both of the messages in the e-mail message set are supported, the following aggregate must be
included in the profile <MSGSETLIST> response. If <EMAILMSGSET> is supported by the server, you
must also support <MAILSYNCRQ>.

Tag Description
<EMAILMSGSET> E-mail-message-set-profile-information aggregate
<EMAILMSGSETV1> Opening tag for V1 of the message set profile information
<MSGSETCORE> Common message set information, defined in Chapter 7, "FI Profile"
</MSGSETCORE>
<MAILSUP> Y if server supports <MAILRQ> request. N if server supports only the

<MAILSYNCRQ> requestBoolean
<GETMIMESUP> Y if server supports get MIME messad&golean
</EMAILMSGSETV1>

</[EMAILMSGSET>

OFX 2.0 Specification 6/30/00 151

152 9.4 E-Mail Message Set Profile Information

CHAPTER 10 RECURRING TRANSACTIONS

OFX enables users to automate transactions that occur on a regular basis. Recurring transactions are useful
when a customer has payments or transfers, for example, that repeat at regular intervals. The customer can
create a “model” at the server for automatic generation of these instructions. The model in turn creates
payments or transfers until it is canceled or expires. After the user creates a recurring model at the server,
the server can relieve the user from the burden of creating these transactions; it generates the transactions
on its own, based on the operating parameters of the model.

10.1 Creating a Recurring Model

The client must provide the following information to create a model:

¢ Type of transaction generated by the model (payment or transfer)

¢ Frequency of recurring transaction

¢ Total number of recurring transactions to generate

& Service-specific information, such as transfer date, payment amount, payee address

The model creates each transaction some time before its due date, usually thirty days. This allows the user

to retrieve the transactions in advance of posting. This also gives the user the opportunity to modify or
cancel individual transactions without changing the recurring model itself.

When a model is created, it can generate several transactions immediately. The model does not
automatically return responses for the newly created transactions. It returns a response only to the request
that was made to create the model. For this reason, clients should send a synchronization request along
with the request to create a model. This allows the server to return the newly created transaction responses,
as well as the response to the request to set up a new model.

OFX 2.0 Specification 6/30/00 153

10.2 Recurring Instructions <RECURRINST>

The Recurring Instructions aggregate is used to specify the schedule for a repeating instruction. It is passed
to the server when a recurring transfer or payment model is first created.

Tag Description
<RECURRINST> Recurring-Instructions aggregate
<NINSTS> Number of instructions

If this element is absent, the schedule is open-endedl,
<FREQ> Frequency, see section 10.2.1

</RECURRINST>

10.2.1 Values for <FREQ>

Value Description

WEEKLY Weekly
BIWEEKLY Biweekly
TWICEMONTHLY | Twice a month

MONTHLY Monthly
FOURWEEKS Every four weeks
BIMONTHLY Bimonthly
QUARTERLY Quarterly

SEMIANNUALLY Semiannually

ANNUALLY Annually

Rules for calculating recurring dates of WEEKLY, BIWEEKLY, and TWICEMONTHLY are as follows:
¢ WEEKLY = starting date for first transaction, starting date + 7 days for the second

¢ TWICEMONTHLY = starting date for first, starting date + 15 days for the second

¢ BIWEEKLY = starting date for first, starting date + 14 days for the second

154 10.2 Recurring Instructions <RECURRINST>

Examples:
Start date of May 2: next transaction date for WEEKLY is May 9; TWICEMONTHLY is May 17; next transfer
date for BIWEEKLY is May 16.

Start date of May 20: next date for WEEKLY is May 27; TWICEMONTHLY is June 4; next date for BIWEEKLY
is June 3.

TWICEMONTHLY recurring transactions will occur each month on those days adjusting for weekends and
holidays. BIWEEKLY will occur every 14 days.

10.2.2 Examples

The following example illustrates the creation of a repeating payment. The payment repeats on a monthly
basis for 12 months. All payments are for $395.

The request:

<RECPMTRQ>
<RECURRINST>
<NINSTS>12</NINSTS>
<FREQ>MONTHLY</FREQ>
</RECURRINST>
<PMTINFO>
<BANKACCTFROM>
<BANKID>555432180</BANKID>
<ACCTID>763984</ACCTID>
<ACCTTYPE>CHECKING</ACCTTYPE>
</BANKACCTFROM>
<TRNAMT>395.00</TRNAMT>
<PAYEEID>77810</PAYEEID>
<PAYACCT>444-78-97572</PAYACCT>
<DTDUE>19991115</DTDUE>
<MEMO>Auto loan payment</MEMO>
</PMTINFO>
</RECPMTRQ>

OFX 2.0 Specification 6/30/00 155

The response includes the <RECSRVRTID> that the client can
use to cancel or modify the model:

<RECPMTRS>
<RECSRVRTID>387687138</RECSRVRTID>
<RECURRINST>
<NINSTS>12</NINSTS>
<FREQ>MONTHLY</FREQ>

</RECURRINST>
<PMTINFO>
<BANKACCTFROM>
<BANKID>555432180</BANKID>
<ACCTID>763984</ACCTID>
<ACCTTYPE>CHECKING</ACCTTYPE>
</BANKACCTFROM>
<TRNAMT>395.00</TRNAMT>
<PAYEEID>77810</PAYEEID>
<PAYACCT>444-78-97572</PAYACCT>
<DTDUE>19991115</DTDUE>
<MEMO>Auto loan payment</MEMO>
</PMTINFO>
</RECPMTRS>

156 10.2 Recurring Instructions <RECURRINST>

10.3 Retrieving Transactions Generated by a Recurring
Model

Once created, a recurring model independently generates instructions. At the time the instance is
generated, its status is pending. At this point, the pending/spawned transaction is treated as a single
transaction, and the rules for what happens to this transaction are the same as if it had been generated from
an explicit request. Since the client has not directly generated these transactions, the client has no record of
their creation. To enable users to modify and/or cancel these transactions, the client must use data
synchronization in order to retrieve these transactions. (Some message sets also support an inquiry request,
which may be used once the SRVRTID of the transaction is obtained via synchronization.)

The client has two purposes for synchronizing state with the server with respect to recurring models:
¢ Retrieve any added, modified, or canceled recurring models
¢ Retrieve any added, modified, or canceled transactions generated by any models

The client must be able to synchronize with the state of any models at the server, as well as the state of any
transactions generated by the server.

10.4 Modifying and Canceling Individual Transactions

Once created and retrieved by the customer, recurring payments and transfers are almost identical to
customer-created payments or transfers. As with ordinary payments or transfers, you can cancel or modify
transactions individually. However, because servers generate these transfers, they are different in the
following respects:

& Recurring transactions must be retrieved as part of a synchronization request.

¢ Recurring transactions are related to a model. A server can modify or cancel transactions if the model is
modified or canceled.

10.5 Modifying and Canceling Recurring Models

A recurring model can be modified or canceled. When a model is modified, all transactions that it
generates in the future will change as well. The client can indicate whether transactions that have been
generated, but have not been sent, should be modified as well. The actual elements within a transaction
that can be modified differ by service. See the recurring sections within Chapter 11, "Barskidg,"

Chapter 12, "Paymentsfdr details. When a model is cancelled, the server cancels any transactions that it
has not yet sent.

If a client indicates that the modification or cancellation of a model should also affect its pending
transactions, those individual modifications/cancellations must appear in the appropriate synchronization
response the next time a synchronization request is made. For example, a recurring payment cancellation

OFX 2.0 Specification 6/30/00 157

request that affects pending payments should cause payment cancellation responses to show up in the
payment synchronization response for all pending payments belonging to the model.

10.5.1 Examples

Canceling a recurring payment model requires the client to pass the <RECSRVRTID> of the model. The
client requests that pending payments also be canceled. The server cancels the model immediately and
notifies the client that the model was canceled.

The request:

<RECPMTCANCRQ>
<RECSRVRTID>387687138</RECSRVRTID>
<CANPENDING>Y</CANPENDING>
</RECPMTCANCRQ>

The response:

<RECPMTCANCRS>
<RECSRVRTID>387687138</RECSRVRTID>
<CANPENDING>Y</CANPENDING>
</RECPMTCANCRS>

The server also cancels any payments that have been generated but not executed. In the example shown
above, the client would not learn of this immediately. To receive natification that all pending payments
were canceled, the client would need to send a synchronization request in the file. The following example
illustrates this.

158 10.5 Modifying and Canceling Recurring Models

The next request file contains a synchronization request:

<PMTSYNCRQ>
<TOKEN>12345</TOKEN>
<REJECTIFMISSING>N</REJECTIFMISSING>
<BANKACCTFROM>
<BANKID>123432123</BANKID>
<ACCTID>516273</ACCTID>
<ACCTTYPE>CHECKING</ACCTTYPE>
</BANKACCTFROM>
</PMTSYNCRQ>

The response file contains one response (assuming one payment was pending).

<PMTSYNCRS>
<TOKEN>123456</TOKEN>
<BANKACCTFROM>
<BANKID>123432123</BANKID>
<ACCTID>516273</ACCTID>
<ACCTTYPE>CHECKING</ACCTTYPE>
</BANKACCTFROM>
<PMTTRNRS>
<TRNUID>0</TRNUID>
<STATUS>
<CODE>0</CODE>
<SEVERITY>INFO</SEVERITY>
</STATUS>
<PMTCANCRS>
<SRVRTID>1030155</SRVRTID>
</PMTCANCRS>
</PMTTRNRS>
</PMTSYNCRS>

OFX 2.0 Specification 6/30/00

159

Note that because requests are not guaranteed to be executed in order, a PMTSYNCRQ in the same file as
the RECPMTCANCRQ would not guarantee that the cancelled payments would be returned, since the
PMYSYNCRQ might be executed first. This is the reason two OFX files are required in the example

above.

10.6 Expired Models

A model should (preferably) expire after the last pending transfer/payment has been executed for that
model, rather than when the last transfer/payment has been spawned. This enables the user to change and/
or cancel the model (possibly, with the <MODPENDING>Y or <CANPENDING>Y flags) during this

period.

Models should show up in synchronization responses even after they have expired (at least for a time),
since the RECSRVRTID will be in payment synchronization responses and a client needs to find the
corresponding model. Servers may safely remove this information shortly after the final payment or
transfer has posted to the source account.

160 10.6 Expired Models

CHAPTER 11 BANKING

OFX enables financial institution (FI) customers to keep their finances up-to-date and to manage their
bank accounts conveniently in several ways. Customers can download transactions and update account
balances on a daily basis. They can retrieve a closing statement that contains the same information that
they are accustomed to seeing on a paper statement. They can transfer funds between accounts at a
financial institution, either immediately upon going online or on a regular schedule. Customers can
schedule transfers between accounts on a recurring basis and can transfer funds between accounts at
different financial institutions. If necessary, customers can request a wire funds transfer. OFX also enables
requests to stop payment on pending checks.

Using customer notification, an Fl can notify customers of important events regarding their accounts, such

as returned checks or deposits.

11.1 Consumer and Business Banking
OFX supports banking for both consumers and businesses. Some customers might use some areas more
heavily within OFX Banking (such as credit card download); other areas might be more appropriate for

businesses (such as wire transfers). Yet all of the functionality defined for Banking is appropriate to some
extent for both consumer and business applications.

11.2 Credit Card Data

Credit card data is available to OFX clients through the statement download facility. Statement download
provides a way to download credit card transaction data and balances on an as-needed basis. Statement
closing information can be made available to clients as well.

11.3 Common Banking Aggregates

This section describes several aggregates used throughout the Banking portion of OFX.

OFX 2.0 Specification 6/30/00 161

11.3.1 Banking Account <BANKACCTFROM> and <BANKACCTTO>

OFX uses the Banking Account aggregates to identify an account at an FI. The aggregates contain enough
information to uniquely identify an account for the purposes of statement download, bill payment, and
funds transfer. <CCACCTFROM> identifies credit card accounts; see section.11.3.2

Tag Description
<BANKACCTFROM> Bank-account-from aggregate

<BANKID> Bank identifier,A-9
Use of this field by country:
COUNTRY Interpretation
BEL Bank code
CAN Routing and transit number
CHE Clearing number
DEU Bankleitzahl
ESP Entidad
FRA Banque
GBR Sort code
ITA ABI
NLD Not used (field contents ignored)
USA Routing and transit number

<BRANCHID> Branch identifier. May be required for some non-US bank22
Use of this field by country:
COUNTRY Interpretation
BEL Not present
CAN Not present
CHE Not present
DEU Not present
ESP Oficina
FRA Agence
GBR Not present
ITA CAB
NLD Not present
USA Not present

<ACCTID> Account numberA-22

<ACCTTYPE> Type of account, see section 11.3.1.1

162 11.3 Common Banking Aggregates

Tag Description

<ACCTKEY> ChecksumA-22
Use of this field by country:

COUNTRY Interpretation
BEL Check digits
CAN Not present
CHE Not present
DEU Not present
ESP D.C.

FRA Clé

GBR Not present
ITA CIN

NLD Not present
USA Not present

</BANKACCTFROM>

OFX 2.0 Specification 6/30/00 163

Tag Description
<BANKACCTTO> Bank-account-to aggregate

<BANKID> Bank identifier,A-9
Use of this field by country:

COUNTRY Interpretation

BEL Bank code

CAN Routing and transit number

CHE Clearing number

DEU Bankleitzahl

ESP Entidad

FRA Banque

GBR Sort code

ITA ABI

NLD Not used (field contents ignored)

USA Routing and transit number
<BRANCHID> Branch identifier. May be required for some banks22

Use of this field by country:

COUNTRY Interpretation

BEL Not present

CAN Not present

CHE Not present

DEU Not present

ESP Oficina

FRA Agence

GBR Not present

ITA CAB

NLD Not present

USA Not present
<ACCTID> Account numberA-22
<ACCTTYPE> Type of account, see section 11.3.1.1
<ACCTKEY> ChecksumA-22

Use of this field by country:

164 11.3 Common Banking Aggregates

Tag Description

COUNTRY Interpretation

BEL Check digits

CAN Not present

CHE Not present

DEU Not present

ESP D.C.

FRA Clé

GBR Not present

ITA CIN

NLD Not present

USA Not present
</BANKACCTTO>

11.3.1.1 Account Types for <ACCTTYPE>Elements

Type Description

CHECKING Checking
SAVINGS Savings
MONEYMRKT Money Market
CREDITLINE Line of credit

OFX 2.0 Specification 6/30/00 165

11.3.2 Credit Card Account <CCACCTFROM> and <CCACCTTO>

OFX uses the Credit Card Account aggregate to identify a credit card account at an Fl. The aggregate
contains enough information to uniquely identify an account for the purposes of statement downloads and
funds transfer. It is not necessary to support the Credit Card Message Set in order to use the Credit card

account aggregate.

Tag Description
<CCACCTFROM> Credit-card-account-from aggregate
<ACCTID> Account numberA-22
<ACCTKEY> Checksum for international bank&;22
</CCACCTFROM>

The <CCACCTTO> aggregate contains the same elements.

166 11.3 Common Banking Aggregates

11.3.3 Bank Account Information <BANKACCTINFO>

OFX uses the bank account information aggregate to download account information from an FI. Itincludes
account number specification in <BANKACCTFROM> as well as the status of the service.

Tag Description
<BANKACCTINFO> Bank-account-information aggregate
<BANKACCTFROM> Bank-account-from aggregate
</BANKACCTFROM>
<SUPTXDL> Y if account supports transaction detail downloads, N if it is balance-only,
Boolean
<XFERSRC> Y if account is enabled as a source for an intrabank or interbank traBsfelean
<XFERDEST> Y if account is enabled as a destination for an intrabank or interbank transfer,
Boolean
<SVCSTATUS> Status of the account
AVAIL = Available, but not yet requested
PEND = Requested, but not yet available
ACTIVE = In use
</BANKACCTINFO>

OFX 2.0 Specification 6/30/00 167

11.3.4 Credit Card Account Information <CCACCTINFO>

OFX uses the credit card account information aggregate to download account information from an Fl. It
includes credit card number specification in <CCACCTFROM> as well as the status of the service.

Tag Description
<CCACCTINFO> Credit-card-account-information aggregate
<CCACCTFROM> Credit-card-account-from aggregate
</CCACCTFROM>
<SUPTXDL> Y if account supports transaction detail downloads, N if it is balance-only,
Boolean
<XFERSRC> Y if account is enabled as a source for an intrabank or interbank traBsfelean
<XFERDEST> Y if account is enabled as a destination for an intrabank or interbank transfer,
Boolean
<SVCSTATUS> Status of the account
AVAIL = Available, but not yet requested
PEND = Requested, but not yet available
ACTIVE = In use
</CCACCTINFO>

11.3.5 Transfer Information <XFERINFO>

Many of the transfer requests and responses use an <XFERINFO> aggregate. This aggregate identifies
accounts that are part of the transfer, amount of money to be transferred, and the date of the transfer.

The <DTDUE> in a response may have been adjusted by a server. For example, the server may adjust
<DTDUE> to comply with non-processing days. If a client sends a request to make a transfer on July 4 and
July 4 happens to be a non-processing day, the <DTDUE> in the response may be July 4 (because the
server hasn't adjusted it yet), July 5 (because this server rolls dates forward), or some other date. For this
reason, a client should pay attention to the <DTDUE> in the response.

168 11.3 Common Banking Aggregates

Tag
<XFERINFO>

Account-from options.
Choose either
<BANKACCTFROM> or
<CCACCTFROM>.

<BANKACCTFROM>
</BANKACCTFROM>
-or-
<CCACCTFROM>

</CCACCTFROM>

Account-to options. Choose
either <BANKACCTTO> or
<CCACCTTO>.

<BANKACCTTO>
</BANKACCTTO>
-or-
<CCACCTTO>

</CCACCTTO>

<TRNAMT>

<DTDUE>

</XFERINFO>

Description

Transfer-information aggregate

Account-from aggregate, see section 11.3.1

Credit-card-account-from aggregate, see section 11.3.2

Account-to aggregate, see section 11.3.1

Credit-card-account-to aggregate, see section 11.3.2

Amount of the transfemmount

This amount should be specified as a positive number.

Date that the transfer is to be sent. If the client does not specify <DTDUE>,
transfer occurs as soon as possible. <DTDUE> is required for scheduled or

repeating transferglatetime

OFX 2.0 Specification

6/30/00

169

he

11.3.6 Transfer Processing Status <XFERPRCSTS>

The Transfer Processing Status aggregate contains the current processing status for a transfer. This
aggregate is intended to describe status changes to the associated transfer after creation. The interpretation
of the date value depends on the value of <XFERPRCCODE>.

Tag Description
<XFERPRCSTS> Transfer processing status aggregate

<XFERPRCCODE> See section 11.3.6.1

<DTXFERPRC> Transfer processing date; value depends on <XFERPRCCODE>
</XFERPRCSTS>

11.3.6.1 Transfer Processing Status Values <XFERPRCCODE>

Value Description

WILLPROCESSON Will be processed on <DTXFERPRC>

POSTEDON Posted on <DTXFERPRC>

NOFUNDSON Funds not available to make transfer on <DTXFERPRC>
CANCELEDON User canceled payment on <DTXFERPRC>

FAILEDON Unable to make transfer for unspecified reasons on <DTXFERPRC>

170 11.3 Common Banking Aggregates

11.4 Downloading Transactions and Balances

Statement download allows a customer to receive transactions and balances that are typically part of a
regular paper statement. Clients can retrieve transactions and balances on a daily basis if they wish.
Coupled with the information returned by statement closing information request (see sectjoa thieht

can construct an “electronic statement” that contains all of the information that appears on a regular paper
statement.

Clients typically allow customers to view these transactions and guide customers through a process of
updating their account registers based on the downloaded transactions. By using transaction IDs supplied
by financial institutions, OFX makes it possible for clients to ensure that a server downloads each
transaction only once. The request also contains starting and ending dates to limit the amount of
downloaded data. Clients can remember the last date they received data and use it as the starting date in the
next request.

The messages in this chapter are appropriate for checking, savings, money market, credit card, and line of
credit accounts. Investment statement download is a superset of bank statement download. Chapter 13,
"Investments,'tlescribes the messages specific to investment statement download.

Statement download requires the client to designate an account for the download, and to indicate if the
server should download transactions and/or balances. If the client wishes to download transactions, it can
specify a date range that the transactions fall within.

The server returns transactions that match the date range (if the client specifies one), and balance
information for the account.

Client Sends Server Responds

Account information
Include transactions?
Date range

Transactions

Cycle-ending information

OFX 2.0 Specification 6/30/00 171

11.4.1 Bank Statement Download

A client can request a download of balances separately from transaction detail. The server downloads
transactions only if the <INCTRAN> aggregate is present and the <INCLUDE> flag is setto Y. The
current ledger balance (and balance date) are always downloaded.

If a statement download request does not contain <DTSTART> or <DTEND> elements but does request
transactions and no transactions are found on the server, the response may or may not include a
<BANKTRANLIST> without any <STMTTRN> aggregates. The server should leave out the useless
<BANKTRANLIST>.

You can use the <STMTRQ> ... <STMTRS> request and response pair to download transactions and
balances for checking, savings, money market, and line of credit accounts. SectiordgésgtiBes
download for credit card accounts.

Clients and servers should interpret <DTSTART> and <DTEND> as described in Chapter 3, "Common
Aggregates, Elements, and Data Types."

11.4.1.1 Request <STMTRQ>

The <STMTRQ> request must appear within a <STMTTRNRQ> transaction wrapper.

Tag Description
<STMTRQ> Statement-request aggregate
<BANKACCTFROM> Bank-account-from aggregate, see section 11.3.1
</BANKACCTFROM>
<INCTRAN> Include-transactions aggregate
<DTSTART> Start date of statement requestédtetime
<DTEND> End date of statement requestddietime
<INCLUDE> Include transactions flaggoolean
</INCTRAN>
</STMTRQ>

172 11.4 Downloading Transactions and Balances

11.4.1.2 Response <STMTRS>

A statement response comprises elements supplying various balances, plus zero or more <STMTTRN>
aggregates, each describing one statement transaction.

The <STMTRS> response must appear within a <STMTTRNRS> transaction wrapper.

See Chapter 3, "Common Aggregates, Elements, and Data Typesize and type information for
common elements (such as currency values).

Tag Description
<STMTRS> Statement-response aggregate
<CURDEF> Default currency for the statemetyrrsymbol
<BANKACCTFROM> Account-from aggregate, see section 11.3.1
</BANKACCTFROM>
<BANKTRANLIST> Statement-transaction-data aggregate
<DTSTART> Start date for transaction datigte
<DTEND> Value that client should send in next <DTSTART> request to ensure that it does

not miss any transactiondate
<STMTTRN> Opening tag for each statement transaction (0 or more), see section 11.4.3
</STMTTRN> End tag for each statement transaction

</BANKTRANLIST>

<LEDGERBAL> Ledger balance aggregate
<BALAMT> Ledger balance amourgmount
<DTASOF> Balance datejatetime

</LEDGERBAL>

<AVAILBAL> Available balance aggregate
<BALAMT> Available balance amourgmount
<DTASOF> Balance datejatetime

</AVAILBAL>
<MKTGINFO> Marketing information (at most 13-360

</STMTRS>

OFX 2.0 Specification 6/30/00 173

11.4.1.3 Status Codes

Code Meaning

0 Success

2000 General error (ERROR)

2002 General account error (ERROR)
2003 Account not found (ERROR)
2004 Account closed (ERROR)

2005 Account not authorized (ERROR)
2019 Duplicate request (ERROR)
2020 Invalid date (ERROR)

2027 Invalid date range (ERROR)

11.4.2 Credit Card Statement Download

The credit card download request is semantically identical to the bank statement download request.
However, the <CCSTMTRQ> aggregate contains the credit card request, not the <STMTRQ> aggregate.

If a statement download request does not contain <DTSTART> or <DTEND> elements but does request
transactions and no transactions are found on the server, the response may or may not include a
<BANKTRANLIST> without any <STMTTRN> aggregates. The server should leave out the useless
<BANKTRANLIST>.

174 11.4 Downloading Transactions and Balances

11.4.2.1 Request <CCSTMTRQ>

The <CCSTMTRQ> request must appear within a <CCSTMTTRNRQ> transaction wrapper.

Tag
<CCSTMTRQ>
<CCACCTFROM>
<ACCTID>
<ACCTKEY>
</CCACCTFROM>
<INCTRAN>
<DTSTART>
<DTEND>
<INCLUDE>
</INCTRAN>

</CCSTMTRQ>

Description
Credit-card-download-request aggregate
Credit-card-account-from aggregate
Account numberA-22

Checksum for international bank&;22

Include transactions
Start date of statement requestddtetime
Ending date of statement requestddtetime

Include transactions flaggoolean

OFX 2.0 Specification

6/30/00

175

11.4.2.2 Response <CCSTMTRS>

The credit card download response is semantically identical to the bank statement download response.
However, the <CCSTMTRS> aggregate contains the credit card response, not the <STMTRS> aggregate.

The <CCSTMTRS> response must appear within a <CCSTMTTRNRS> transaction wrapper.

Tag
<CCSTMTRS>
<CURDEF>
<CCACCTFROM>
</CCACCTFROM>
<BANKTRANLIST>
<DTSTART>

<DTEND>

<STMTTRN>
</STMTTRN>
</BANKTRANLIST>
<LEDGERBAL>
<BALAMT>
<DTASOF>
</LEDGERBAL>
<AVAILBAL>
<BALAMT>
<DTASOF>
</AVAILBAL>
<MKTGINFO>

</CCSTMTRS>

Description
Credit-card-download-response aggregate
Default currency for the statemeryrrsymbol

Account from aggregate, see section 11.3.2

Opening tag for statement transaction data
Start date for transaction datiate

Value client should send in next <DTSTART> request to ensure that it does
miss any transactiondate

Opening tag for each statement transaction (0O or more), see section 11.4.3

Ledger-balance aggregate
Ledger balance amouramount

Balance datejatetime
Available balance aggregate
Available balance amourdmount

Balance datedatetime

Marketing information (at most 1A-360

176

11.4 Downloading Transactions and Balances

not

11.4.2.3 Status Codes

Code Meaning

0 Success

2001 Invalid account (ERROR)

2002 General account error (ERROR)
2003 Account not found (ERROR)
2004 Account closed (ERROR)

2005 Account not authorized (ERROR)
2019 Duplicate request (ERROR)
2020 Invalid date (ERROR)

2027 Invalid date range (ERROR)

11.4.3 Statement Transaction <STMTTRN>

A <STMTTRN> aggregate describes a single transaction. It identifies the type of the transaction and the
date it was posted. The aggregate can also provide additional information to help the customer recognize
the transaction: check number, payee name, and memo. The transaction can have a Standard Industrial
Code that a client can use to categorize the transaction.

Each <STMTTRN> contains an <FITID> that the client uses to detect whether the server has previously
downloaded the transaction.

Transaction amounts are signed from the perspective of the customer. For example, a credit card payment
is positive while a credit card purchase is negative.

OFX 2.0 Specification 6/30/00 177

Tag
<STMTTRN>

<TRNTYPE>

<DTPOSTED>
<DTUSER>
<DTAVAIL>
<TRNAMT>

<FITID>

<CORRECTFITID>

Description
Statement-transaction aggregate

Transaction type, see section 11.4 fdrpossible values. This element does n
change the effect of the transaction upon the balance (increases and decreg
are indicated by the sign of the <TRNAMT>).

Date transaction was posted to accodatetime
Date user initiated transaction, if knowstetime
Date funds are available (value dat@atetime
Amount of transactioramount

Transaction ID issued by financial institution.
Used to detect duplicate downloa@s$T1D
If present, the FITID of a previously sent transaction that is corrected by thi

record. This transaction replaces or deletes the transaction that it corrects,
on the value of <CORRECTACTION> below|TID

ot
raSEeS

S
based

ch as

<CORRECTACTION> Actions can be REPLACE or DELETE. REPLACE replaces the transaction
referenced by CORRECTFITID; DELETE deletes it.

<SRVRTID> Server assigned transaction ID; used for transactions initiated by client, su
payment or funds transfeBRVRTID

<CHECKNUM> Check (or other reference) numbAr12

<REFNUM> Reference number that uniquely identifies the transaction. Can be used in
addition to or instead of a <CHECKNUM®A-32

<SIC> Standard Industrial Codé&l-6

<PAYEEID> Payee identifier if availablei-12

Payee options. Choose eithef
<NAME> or <PAYEE>.

<NAME>

-O r_

<PAYEE>

</PAYEE>

Name of payee or description of transactiér32

Note: Provide NAME or PAYEE, not both

Payee aggregate, see section 12.5.2.1

178

11.4 Downloading Transactions and Balances

Tag

Account-to options. Choose
either <BANKACCTTO> or
<CCACCTTO>.

<BANKACCTTO>

</BANKACCTTO>
-0r-
<CCACCTTO>

</CCACCTTO>

<MEMO>

Currency options. Choose
either <CURRENCY> or
<ORIGCURRENCY>.

<CURRENCY>

</CURRENCY>
Or
<ORIGCURRENCY>

</ORIGCURRENCY>

Description

If this was a transfer to an account and the account information is available
section 11.3.1

Extra information (not in <NAME>)MEMO

Currency, if different from CURDEF

<INV401KSOURCE>

Source of cash for this transaction. See section 13.9.2.4.2.

</STMTTRN>

, See

OFX 2.0 Specification

6/30/00 179

11.4.3.1 Transaction types used in <TRNTYPE>

Transfers generated from a model are treated identically to individually requested transfers by OFX.
Therefore, they should have the transaction types listed below once they are processed. Transfers initiated
out of band with respect to OFX should also be handled in this fashion when they appear in a statement
download.

Type Description

CREDIT Generic credit
DEBIT Generic debit
INT Interest earned or paid
Note: Depends on signage of amount
DIV Dividend
FEE Fl fee
SRVCHG Service charge
DEP Deposit
ATM ATM debit or credit
Note: Depends on signage of amount
POS Point of sale debit or credit
Note: Depends on signage of amount
XFER Transfer
CHECK Check
PAYMENT Electronic payment
CASH Cash withdrawal
DIRECTDEP Direct deposit
DIRECTDEBIT Merchant initiated debit
REPEATPMT Repeating payment/standing order
OTHER Other
180 11.4 Downloading Transactions and Balances

11.5 Statement Closing Information

OFX provides a way for customers to receive closing statement information that typically appears as part
of a paper statement. This information includes opening and closing dates and balances for a statement
period, as well as a detailed breakdown of debits, credits, fees, and interest that are usually part of a paper
statement. In addition to this information, clients receive a date range for transactions that correspond to
the closing statement. Clients might wish to use this date range to retrieve transactions through statement
download in order to present the user with an “electronic” statement.

To request statement information, the clierREQUIRED to designate an account for the download. The
client can also specify a date range to limit the number of closing information aggregates that the server
returns. If the client does not specify a date range, the server returns as many closing information
aggregates as it can.

Client Sends Server Responds

Account Information
Date range

Cycle-ending information (O or more)

11.5.1 Statement Closing Download

You can use the <STMTENDRQ> ...<STMTENDRS> request and response pair to download statement
closing information for checking, savings, money market, and line of credit accounts. Section 11.5.3
describes download for credit card accounts.

11.5.1.1 Request <STMTENDRQ>

The <STMTENDRQ> request must appear within a <STMTENDTRNRQ> transaction wrapper.

Tag Description

<STMTENDRQ> Closing-statement-request aggregate
<BANKACCTFROM> Bank-account-from aggregate
</BANKACCTFROM>
<DTSTART> Start date for statement closing informatidiatetime
<DTEND> End date of statement closing informatialatetime

</STMTENDRQ>

OFX 2.0 Specification 6/30/00 181

11.5.1.2 Response <STMTENDRS>

The <STMTENDRS> response must appear within a <STMTENDTRNRS> transaction wrapper.

Tag Description

<STMTENDRS> Closing-statement-response aggregate
<CURDEF> Default currency used for closing informatiazyrrsymbol
<BANKACCTFROM> Account from aggregate, see section 11.3.1
</BANKACCTFROM>
<CLOSING> Statement information (0 or more), see section 11.5.2
</CLOSING>

</STMTENDRS>

11.5.1.3 Status Codes

Code Meaning

0 Success

2000 General error (ERROR)

2002 General account error (ERROR)
2003 Account not found (ERROR)
2004 Account closed (ERROR)

2005 Account not authorized (ERROR)
2019 Duplicate request (ERROR)
2020 Invalid date (ERROR)

2027 Invalid date range (ERROR)

11.5.2 Non-Credit Card Statement <CLOSING>

A checking, savings, or money market account uses the <CLOSING> aggregate to describe statement
closing information.

The <FITID> provides a way for the client to distinguish one closing statement from another.

182 11.5 Statement Closing Information

For each <CLOSING> aggregate returned, clients can retrieve corresponding transactions by using
<DTPOSTSTART> and <DTPOSTEND> as <DTSTART> and <DTEND> in a <STMTRQ> request.

Tag

<CLOSING>

<FITID>
<DTOPEN>
<DTCLOSE>
<DTNEXT>
<BALOPEN>
<BALCLOSE>
<BALMIN>
<DEPANDCREDIT>
<CHKANDDEB>
<TOTALFEES>
<TOTALINT>

<DTPOSTSTART>

<DTPOSTEND>

<MKTGINFO>

Currency options. Choose
either <CURRENCY> or
<ORIGCURRENCY>

<CURRENCY>
</CURRENCY>

Or

<ORIGCURRENCY>

</ORIGCURRENCY>

</CLOSING>

Description

Non-credit-card-account-types aggregate
Unique identifier for this statemerf) TID
Opening statement datgate

Closing statement datdate

Closing date of next statemeuate

Opening statement balan@mount

Closing statement balancamount

Minimum balance in statement periamount
Total of deposits and credits, including interestjount
Total of checks and debits, including feasount
Total of all feesamount

Total of all interestamount

Start date of transaction data for this statemdate

A client should be able to use this date in a <STMTRQ> to request transactions

that match this statement.

End date of transaction data for this statemdate

A client should be able to use this date in a <STMTRQ> to request transac
that match this statement.

Marketing information (at most 13-360

Currency, if different from CURDEF

tions

OFX

2.0 Specification

6/30/00 183

11.5.3 Credit Card Statement Closing Request <CCSTMTENDRQ>

The credit card statement closing request is semantically identical to the bank statement closing request.
However, the <CCSTMTENDRQ> aggregate contains the credit card request, not the <STMTENDRQ>

aggregate.

The <CCSTMTENDRQ> request must appear within a <CCSTMTENDTRNRQ> transaction wrapper.

Tag Description

<CCSTMTENDRQ> Credit-card-closing-statement-request aggregate
<CCACCTFROM> Credit-card-account-from aggregate
</CCACCTFROM>
<DTSTART> Start date for statement closing informatidatetime
<DTEND> End date of statement closing informatialatetime

</CCSTMTENDRQ>

11.5.4 Credit Card Statement Closing Response <CCSTMTENDRS>

The credit card statement closing response is semantically identical to the bank statement closing response.
However, the <CCSTMTENDRS> aggregate contains the credit card response, not the <STMTENDRS>

aggregate.

The <CCSTMTENDRS> response must appear within a <CCSTMTENDTRNRS> transaction wrapper.

Tag Description

<CCSTMTENDRS> Credit-card-closing-statement-response aggregate
<CURDEF> Default currency for closing informatioeurrsymbol
<CCACCTFROM> Account from aggregate, see section 11.3.2
</CCACCTFROM>
<CCCLOSING> Statement information (0 or more). See section 11.5.4.2
</CCCLOSING>

</CCSTMTENDRS>

184 11.5 Statement Closing Information

11.5.4.1 Status Codes

Code Meaning

0 Success

2000 General error (ERROR)

2002 General account error (ERROR)
2003 Account not found (ERROR)
2004 Account closed (ERROR)

2005 Account not authorized (ERROR)
2019 Duplicate request (ERROR)
2020 Invalid date (ERROR)

2027 Invalid date range (ERROR)

11.5.4.2 Credit Card Statement <CCCLOSING>
A credit card account uses the <CCCLOSING> aggregate to describe statement closing information.

The <FITID> provides a way for the client to distinguish one closing statement from another.

OFX 2.0 Specification 6/30/00 185

For each <CCCLOSING> returned, clients should be able to retrieve corresponding transactions by using
<DTPOSTSTART> and <DTPOSTEND> as <DTSTART> and <DTEND> in a <CCSTMTRQ> request.

Tag

<CCCLOSING>

<FITID>

<DTOPEN>

<DTCLOSE>

<DTNEXT>

<BALOPEN>

<BALCLOSE>

<DTPMTDUE>

<MINPMTDUE>

<FINCHG>

<PAYANDCREDIT>

<PURANDADV>

<DEBADJ>

<CREDITLIMIT>

<DTPOSTSTART>

<DTPOSTEND>

<MKTGINFO>

Currency options. Choose
either <CURRENCY> or
<ORIGCURRENCY>.

<CURRENCY>
</CURRENCY>

-0r-

<ORIGCURRENCY>
</ORIGCURRENCY>

</CCCLOSING>

Description
Credit-card-statement-information aggregate
Unique identifier for this statemerf)TID
Opening statement datdate

Closing statement datdate

Closing date of next statemeiate

Opening statement balan@mount

Closing statement balancamount

Payment due datelate

Minimum amount dueamount

Finance chargesgmount

Total of payments and creditamount

Total of purchases and cash advaneesount
Debit adjustmentsamount

Current credit limitamount

Start date of transaction data for this statemdate

A client should be able to use this date in a <CCSTMTRQ> to request
transactions that match this statement.

End date of transaction data for this statemdate

A client should be able to use this date in a <CCSTMTRQ> to request
transactions that match this statement.

Marketing information (at most 1A-360

Currency, if different from CURDEF

186

11.5 Statement Closing Information

11.6 Stop Check

OFX supports a request to issue a stop payment for one or more outstanding checks. The stop request can
be for a single check or for a range of checks. There must be one request for each check or range of checks

the user wants to stop.

When stopping a single check, the client can provide a payee name and optionally an amount instead of a
check number to describe the check to stop. Not all servers can support this behavior.

Examples:
Stop check 22 —one request
Stop check to “Acme Lighting” — one request
Stop checks 200-224 —one request
Stop checks 275-280, 283 —two requests (first stops 275-280, the next stops 283)

Client Sends Server Responds

Account information

Check number(s) to stop
Or

Check description

Status for each check

OFX 2.0 Specification 6/30/00 187

11.6.1 Stop Check Add

Stop Check Add is subject to synchronization.

11.6.1.1 Request <STPCHKRQ>

The <STPCHKRQ> request must appear within a <STPCHKTRNRQ> transaction wrapper.

Tag

<STPCHKRQ>
<BANKACCTFROM>
</BANKACCTFROM>

Check options. Choose
either<CHKRANGE> or
<CHKDESC>.

<CHKRANGE>
</CHKRANGE>
-or-
<CHKDESC>

</CHKDESC>

</STPCHKRQ>

Description
Stop-check-request aggregate

Account-from aggregate, see section 11.3.1

Check range aggregate, see section 11.6.1.1.1

Check description aggregate, see section 11.6.1.1.2

11.6.1.1.1 Check Range <CHKRANGE>

Tag Description
<CHKRANGE> Check-range aggregate
<CHKNUMSTART> Start check number to cancél;12
<CHKNUMEND> Ending check number to cancel; omit if only one check is to be stopgfe
12
</CHKRANGE>
188 11.6 Stop Check

11.6.1.1.2 Check Description <CHKDESC>

A check description must include a payee name or description. It can also include a check number, the date
the user wrote the check, and a transaction amount.

Tag Description

<CHKDESC> Check description aggregate
<NAME> Payee name or descriptiof;32
<CHECKNUM> Check numberA-12
<DTUSER> Date on checkdatetime
<TRNAMT> Amount,amount

</CHKDESC>

11.6.1.2 Response <STPCHKRS>

Consistent with all responses, the stop check response contains a global status that describes whether the
response could be delivered. If the server provides a response, it returns a <STPCHKNUM> aggregate for
each check for which the client requested a stop payment. Status code 10000 should be returned if the stop
check request is in process; a subsequent synchronization should obtain an updated response with a final
status.

The <STPCHKRS> response must appear within a <STPCHKTRNRS> transaction wrapper.

Tag Description

<STPCHKRS> Stop-check-response aggregate
<CURDEF> Default currency for stop check responeetrsymbol
<BANKACCTFROM> Account-from aggregate, see section 11.3.1
</BANKACCTFROM>
<STPCHKNUM> Stopped check aggregate (1 or more), see section 11.6.1.2.1
</STPCHKNUM>
<FEE> Fee for stop checlamount
<FEEMSG> Description of feeA-80

</STPCHKRS>

OFX 2.0 Specification 6/30/00 189

11.6.1.2.1 Stopped Check <STPCHKNUM>

This aggregate contains a status code that indicates whether or not a specific check was canceled.

Tag

<STPCHKNUM>
<CHECKNUM>
<NAME>
<DTUSER>
<TRNAMT>

<CHKSTATUS>

<CHKERROR>

Currency options. Choose
either <CURRENCY> or
<ORIGCURRENCY¥.

<CURRENCY>
</CURRENCY>

_Or-

<ORIGCURRENCY>
</ORIGCURRENCY>

</STPCHKNUM>

Description
Stopped-check-item aggregate
Check numberA-12

Payee name or descriptioft;32
Date on checkgatetime
Amount,amount

Status code for individual stop check request
0=0K

1 =rejected

100 = check not found

101 = check already posted

Further textual explanatior-255

Currency, if different from CURDEF

190

11.6 Stop Check

11.6.2 Status Codes

Code Meaning

0

2000
2002
2003
2004
2005
2019
6502

10000
10500

Success

General error (ERROR)

General account error (ERROR)
Account not found (ERROR)
Account closed (ERROR)
Account not authorized (ERROR)
Duplicate request (ERROR)

Unable to process embedded transaction due

to out-of-date <TOKEN> (ERROR)
Stop check in process (INFO)
Too many checks to process (ERROR)

OFX 2.0 Specification 6/30/00

191

11.7 Intrabank Funds Transfer

OFX supports transferring funds between two accounts at the same financial institution. Funds transfers in
OFX can be immediate or scheduled. Scheduled transfers can repeat at specified intervals.

Financial institutions can choose to support:
¢ Immediate transfers
¢ Immediate and scheduled transfers

¢ Immediate, scheduled, and recurring transfers
Recurring transfers require support for scheduled transfers.

In general, an OFX server may not choose which transactions to support unless the profile can be used to
indicate to the client that a transaction is not supported. However, immediate intrabank funds transfers
usually cannot be modified or canceled, so a server that does not support scheduled transfers may return an
error code on any request for cancel or modify. A preferred approach would be to return status code 2016,
which means the transfer may not be modified or canceled because it is already committed. (An immediate
transfer may not actually commit until the end of the business day. For more information, see the
discussion on the support of INTRASYNCRQ in section 11.152.2

After a transfer has executed, the server can either issue a transfer modification response in the sync or it
can do nothing. In the latter case, it would be up to the client to get status from a statement download. Ifa
transfer fails, it is recommended, but not required, that a transfer modification response with the
appropriate XFERPRCCODE be sent in the sync.

In general, all Intrabank Funds Transfer requests are subject to synchronization. The only exception occurs
when the request is for an immediate transfer and the server is able to successfully perform the transfer in
real time. In that case, the server may choose whether or not the transfer affects the sync history. After
receiving an immediate response indicating that a transfer took place in real time, the client must not
expect the relevant token to change or to receive information about that transfer in a later sync response.
Servers choosing to ignore real time immediate transfers in the sync history force additional clients to wait
until the transfer appears in a statement download for information about the transfer.

Note: If a server batches up immediate transfers, to be processed that night or possibly the next day, it
should return a <WILLPROCESSON?> status in the immediate transfer response. At that pointitis up to
the server whether or not to send the <INTRARS> in the sync before the transfer actually tcthosld

be noted that servers that dont sync such "batched, but not yet transferred" responses prevent other clients
accessing the same account from getting accurate balance information during thig\fterehe transfer,

the up-to-date balance information can be obtained from either the sync (if the server supports this) or the
statement downloaded.

192 11.7 Intrabank Funds Transfer

11.7.1 Intrabank Funds Transfer Addition

The Intrabank Funds Transfer Add request provides a way for a client to set up a single transfer. The
request designates source and destination accounts and the amount of the transfer. The client must provide
a date if it has scheduled the transfer. Imnmediate funds transfers cannot be modified or canceled.

Client Sends Server Responds

Source account
Destination account
Amount

Date of transfer (optional
Server ID for the transfer
Source account
Destination account

Amount

Expected/actual posting date

Intrabank Funds Transfer Add is subject to synchronization.

11.7.1.1 Request <INTRARQ>

The <INTRARQ> request must appear within an <INTRATRNRQ> transaction wrapper.

Tag Description
<INTRARQ> Intrabank-transfer-request aggregate
<XFERINFO> Transfer information aggregate, see section 11.3.5

</XFERINFO>

</INTRARQ>

11.7.1.2 Response <INTRARS>

A server cannot, in all cases, provide complete confirmation for the transfer. The server can confirm only
that it received the transfer instruction; and possibly whether it validated the accounts, amount, and date
specified in the transfer. For any transfer where the client does not know the status at the time of the
response, a server should confirm that it accepted the instruction and indicate the expected posting date of
the transfer. A client can pick up the confirmation at a later date through a synchronization request. Servers
should inform clients of any errors found while processing this transaction using the <STATUS>

aggregate. A response containing <STATUS><CODE>0 and

OFX 2.0 Specification 6/30/00 193

<XFERPRCSTS><XFERPRCCODE>FAILEDON should be avoided for problems such as an invalid
account or amount.

If the request is for an immediate transfer and the server can perform the transfer in real time, the server
should indicate whether the transfer succeeded and should return the date of the transfer in
<DTPOSTED>. In this case, synchronization is not required.

The <INTRARS> response must appear within an <INTRATRNRS> transaction wrapper.

Tag Description

<INTRARS> Intrabank-transfer-response aggregate
<CURDEF> Default currency for the intrabank transfer resporsersymbol
<SRVRTID> Server ID for this transfeSRVRTID
<XFERINFO> Transfer information aggregate, see section 11.3.5

</XFERINFO>

Transfer-date options.
Choose either
<DTXFERPRJ> or

<DTPOSTED>
<DTXFERPRJ> Projected date of the transfer; response can contain either a <DTXFERPRJ> or a
<DTPOSTED> but not botldatetime
-or-
<DTPOSTED> Actual date of the transfedatetime
<RECSRVRTID> If the response is generated by a recurring transfer model, this ID references |t, see
section 11.10SRVRTID
<XFERPRCSTS> Transfer-processing status, see section 11.3.6
</XFERPRCSTS>
</INTRARS>

Note: The server can deliver this response to a client immediately after the request is made
(for an immediate or one-time scheduled transfer). The server should also return this response
for any transfers that were generated by a model.

194 11.7 Intrabank Funds Transfer

11.7.1.3 Status Codes

Code Meaning

0

2000
2002
2006
2007
2008
2009
2010
2011
2012
2014
2015
2019
6502

10504

Success (INFO)

General error (ERROR)

General account error (ERROR)

Source account not found (ERROR)
Source account closed (ERROR)

Source account not authorized (ERROR)
Destination account not found (ERROR)
Destination account closed (ERROR)
Destination account not authorized (ERROR)
Invalid amount (ERROR)

Date too soon (ERROR)

Date too far in future (ERROR)

Duplicate request (ERROR)

Unable to process embedded transaction dug
out-of-date <TOKEN> (ERROR)

Insufficient funds (ERROR)

OFX 2.0 Specification 6/30/00

195

11.7.2 Intrabank Funds Transfer Modification

The client sends a Transfer Modification request to modify a scheduled transfer. Inmediate transfers
cannot be modified, so this request should only be used for scheduled transfers. Once created and retrieved
by the customer, spawned transfers are almost identical to customer-created transfers. (The exception is
when a spawned transfer is modified or cancelled due to a recurring modification or cancellation request.)
As with ordinary transfers, you can cancel or modify transactions individually. When modifying a transfer,
the client must specify all of the elements and aggregates within the <XFERINFO> aggregate that were
specified when the transfer was created, not just the elements and aggregates that the client wants to
modify. <SRVRTID> specifies the transfer the user wants to modify. Some servers cannot support the
modification of certain values. Servers must indicate this by returning status code 10505 when the client
requests an unsupported modification. Clients must not change <BANKACCTFROM> or
<CCACCTFROM?> in a funds transfer modification.

Intrabank Funds Transfer Maodification is subject to synchronization.

11.7.2.1 Request <INTRAMODRQ>

The <INTRAMODRQ> request must appear within an <INTRATRNRQ> transaction wrapper.

Tag Description

<INTRAMODRQ> Modification-request aggregate
<SRVRTID> ID assigned by the server to the transfer being modifgRYRTID
<XFERINFO> Transfer information aggregate, see section 11.3.5

</XFERINFO>

</INTRAMODRQ>

196 11.7 Intrabank Funds Transfer

11.7.2.2 Response <INTRAMODRS>

This response normally just echoes the values passed by the client. However, if the status of a scheduled
transfer changes in any way, clients should expect to receive modification responses when they
synchronize with the server. For example, when a server completes a transfer, the status of the transfer
goes frompendingto posted Clients should expect servers to notify them of this status change.

The <INTRAMODRS> response must appear within an <INTRATRNRS> transaction wrapper.

Tag Description

<INTRAMODRS> Modification-response aggregate
<SRVRTID> ID assigned by the server to the transfer being modifsRVRTID
<XFERINFO> Transfer information aggregate, see section 11.3.5

</XFERINFO>
<XFERPRCSTS> Transfer processing status, see section 11.3.6
</XFERPRCSTS>

</INTRAMODRS>

OFX 2.0 Specification 6/30/00 197

11.7.2.3 Status Codes

Code Meaning

0 Success (INFO)

2000 General error (ERROR)

2002 General account error (ERROR)

2006 Source account not found (ERROR)

2007 Source account closed (ERROR)

2008 Source account not authorized (ERROR)

2009 Destination account not found (ERROR)

2010 Destination account closed (ERROR)

2011 Destination account not authorized (ERROR)

2012 Invalid amount (ERROR)

2014 Date too soon (ERROR)

2015 Date too far in future (ERROR)

2016 Transaction already committed (ERROR)

2017 Already canceled (ERROR)

2018 Unknown server ID (ERROR)

2019 Duplicate request (ERROR)

6502 Unable to process embedded transaction dug to

out-of-date <TOKEN> (ERROR)

10500 Too many checks to process (ERROR)

10505 Cannot modify element (ERROR)

10514 Transaction already processed (ERROR)
198 11.7 Intrabank Funds Transfer

11.7.3 Intrabank Funds Transfer Cancellation

The client sends a Transfer Cancellation request to cancel a scheduled transfer, where <SRVRTID>
identifies the transfer. Immediate transfers cannot be canceled, so this request should be used only for
scheduled transfers.

Intrabank Funds Transfer Cancellation is subject to synchronization.

11.7.3.1 Request <INTRACANRQ>

The <INTRACANRQ> request must appear within an <INTRATRNRQ> transaction wrapper.

Tag Description
<INTRACANRQ> Transfer-cancellation-request aggregate
<SRVRTID> ID of the transfer the user wants to cancel. The server must have previously

assigned this ID to a transf@RVRTID

</INTRACANRQ>

11.7.3.2 Response <INTRACANRS>

The <INTRACANRS> response must appear within an <INTRATRNRS> transaction wrapper.

Tag Description
<INTRACANRS> Transfer-cancellation-response aggregate
<SRVRTID> ID of the transfer the user wants to cancel. The server must have previously

assigned this ID to a transf@RVRTID

</INTRACANRS>

OFX 2.0 Specification 6/30/00 199

11.7.3.3 Status Codes

Code Meaning

0 Success (INFO)

2000 General error (ERROR)

2016 Transaction already committed (ERROR)

2017 Already canceled (ERROR)

2018 Unknown server ID (ERROR)

2019 Duplicate request (ERROR)

6502 Unable to process embedded transaction due to
out-of-date <TOKEN> (ERROR)

10514 Transaction already processed (ERROR)

11.7.3.4 DTDUE, DTPOSTED, and DTXFERPRJ in Immediate Transfers

The following is a list of what might be returned in an immediate mode transfer response. The
interpretation of each response is provided. All responses referenced in this section are immediate and
describe success conditions. That is, we are not attempting to describe the INTRARS aggregates that may
be returned within a INTRASYNCRS response. Further, successful INTRARS aggregates for immediate
transfers are not expected to appear in lite synchronization INTRASYNCRS responses.

*

DTDUE and INTRARQ

DTDUE should not be present if the client is requesting an immediate mode transfer. If it is, then this is a client
error, and will be treated by the server as if the client were attempting to create a scheduled transfer.

DTDUE, DTPOSTED, and DTXFERPRJ NOT returned in INTRARS

The client should interpret this from the server as indicating that the immediate transfer request was processed in
real-time.

DTDUE only returned

DTDUE should not be present in the response to a request for an immediate transfer. If it were present, the
XFERINFO aggregate would not match that found in the request.

DTPOSTED only returned

If this is not equal to today’s date and an earlier time than “now”, then this is a server error. Otherwise, the client
should interpret this as confirmation from the server that the request was processed in real-time.

DTXFERPRJ only returned

The client should interpret this as indication that the transfer request will be completed by the specified date. The
client may receive an INTRAMODRS or INTRARS with updated information about this transfer when it is
actually processed. That future INTRARS or INTRAMODRS will contain the DTPOSTED to reflect when the
transfer occurred. This response is not required for successful transfers processed at the originally specified
projected date and time.

200 11.7 Intrabank Funds Transfer

11.8 Interbank Funds Transfer

The Interbank Funds Transfer Add request provides a way for a client to set up a single transfer between
accounts at different financial institutions. Like intrabank funds transfers, the request designates source
and destination accounts and the amount of the transfer. Also, as in intrabank funds transfers, the FI must
be able to authenticate the source account. However, interbank funds transfers differ from intrabank funds
transfers in the following respects:

¢ The routing and transit number of the destination account differs from the source account.
¢ Atthe discretion of an FlI, the destination account can be subject to pre-natification.
¢ Source and destination accounts must be enabled for the Automated Clearing House (ACH).

Use the ACH system to implement the Interbank Funds Transfer, which is subject to the rules and
regulations governing the ACH network.

In all other respects, interbank funds transfers function like intrabank funds transfers. The user can
schedule them for a future date or request an immediate transfer. The user can modify or cancel scheduled
transfers, but not immediate transfers. Scheduled transfers can recur at regular intervals.

11.8.1 Interbank Funds Transfer — US

In the United States, interbank funds transfers usually use only the <XFERINFO> portion of the request
and response.

Client Sends Server Responds

Source account
Destination account
Amount

Date of transfer (optional
Server ID for the transfer
Source account
Destination account
Amount

Expected/actual posting
date

Interbank Funds Transfer Add is subject to synchronization.

OFX 2.0 Specification 6/30/00 201

11.8.2 Interbank Funds Transfer — International Usage

In countries where the funds transfer is the basis of the payments system, the OFX payments messages
allow specifying payees by destination account (see Chapter 12, "Payjnents"

Interbank Funds Transfer Add is subject to synchronization.

11.8.2.1 Interbank Funds Transfer Request <INTERRQ>

The <INTERRQ> request must appear within an <INTERTRNRQ> transaction wrapper.

Tag Description
<INTERRQ> Interbank-transfer-request aggregate
<XFERINFO> Transfer information aggregate, see section 11.3.5

</XFERINFO>

</INTERRQ>

202 11.8 Interbank Funds Transfer

11.8.2.2 Interbank Funds Transfer Response <INTERRS>

The server cannot provide complete confirmation for interbank transfer. It can confirm only that the FI
received the transfer instruction and possibly validated the source account, amount, and date specified in
the transfer. Since the client does not know the status of the transfer at the time of the response, the server
should confirm that it accepted the instruction and indicate the expected posting date of the transfer. The
client can pick up the confirmation at a later date through a synchronization request. Servers should inform
clients of any errors found while processing this transaction using the <STATUS> aggregate. A response

containing <STATUS><CODE>0 and <XFERPRCSTS><XFERPRCCODE>FAILEDON should be

avoided for problems such as an invalid account or amount.

The <INTERRS> response must appear within an <INTERTRNRS> transaction wrapper.

Tag

<INTERRS>
<CURDEF>
<SRVRTID>
<XFERINFO>

</XFERINFO>

Choose either

Transfer-date options.

Description
Interbank-transfer-response aggregate
Currency used in transfezpurrsymbol
Server ID for this transfeSRVRTID

Transfer information aggregate, see section 11.3.5

<DTXFERPRJ> or
<DTPOSTED>
<DTXFERPRJ> Projected date of the transfer; response can contain either a <DTXFERPRJ>or a
<DTPOSTED> but not bottdatetime
Or
<DTPOSTED> Actual date of the transfedatetime
<REFNUM> Server can generate a reference or check for the traksfa,
<RECSRVRTID> If server generates the response by a recurring transfer model, this ID references it.
SRVRTID
<XFERPRCSTS> Transfer-processing status, see section 11.3.6
</XFERPRCSTS>
</INTERRS>
Note: A server can deliver this response to a client immediately after the client makes the
request (for an immediate or one-time scheduled transfer). In response to a synchronization
request by a client, the server should provide a second response containing complete status
regarding the transfer. It should also return any transfers that it generates by a model.
OFX 2.0 Specification 6/30/00 203

11.8.2.3 Status Codes

Code Meaning

0 Success (INFO)
2000 General error (ERROR)
2002 General account error (ERROR)
2006 Source account not found (ERROR)
2007 Source account closed (ERROR)
2008 Source account not authorized (ERROR)
2009 Destination account not found (ERROR)
2010 Destination account closed (ERROR)
2011 Destination account not authorized (ERROR)
2012 Invalid amount (ERROR)
2014 Date too soon (ERROR)
2015 Date too far in future (ERROR)
2019 Duplicate request (ERROR)
6502 Unable to process embedded transaction dug to
out-of-date <TOKEN> (ERROR)
10504 Insufficient funds (ERROR)
204 11.8 Interbank Funds Transfer

11.8.3 Interbank Funds Transfer Modification

The client sends a Transfer Modification request to modify a scheduled transfer. Immediate transfers
cannot be modified, so this request should only be used for scheduled transfers. Once created and retrieved
by the customer, spawned transfers are almost identical to customer-created transfers. (The exception is
when a spawned transfer is modified or cancelled due to a recurring modification or cancellation request.)
As with ordinary transfers, you can cancel or modify transactions individually. When modifying a transfer,
the client must specify all of the elements and aggregates within the <XFERINFO> aggregate that were
specified when the transfer was created, not just the elements and aggregates that the client wants to
modify. <SRVRTID> specifies which transfer to modify. Some servers cannot support the modification of
certain values. Servers must indicate this by returning status code 10505 when the client requests an
unsupported modification. Clients must not change <BANKACCTFROM> or <CCACCTFROM> in a
funds transfer modification.

Interbank Funds Transfer Modification is subject to synchronization.

11.8.3.1 Request <INTERMODRQ>

The <INTERMODRQ> request must appear within an <INTERTRNRQ> transaction wrapper.

Tag Description

<INTERMODRQ> Modification-request aggregate
<SRVRTID> ID assigned by the server to the transfer being modifsRVRTID
<XFERINFO> Transfer information aggregate, see section 11.3.5
</XFERINFO>

</INTERMODRQ>

OFX 2.0 Specification 6/30/00 205

11.8.3.2 Response <INTERMODRS>

The <INTERMODRS> response must appear within an <INTERTRNRS> transaction wrapper.

Tag

<INTERMODRS>

<SRVRTID>

<XFERINFO>

</XFERINFO>
<XFERPRCSTS>

</XFERPRCSTS>

</INTERMODRS>

Description

Modification-response aggregate

ID assigned by the server to the transfer being modifgRyYRTID

Transfer information aggregate; server returns if client provided an <XFERINH

in the request, see section 11.3.5

Processing status for transfer, see section 11.3.6

:O>

206

11.8

Interbank Funds Transfer

11.8.3.3 Status Codes

Code Meaning

0

2000
2002
2006
2007
2008
2009
2010
2011
2012
2014
2015
2016
2017
2018
2019
6502

10504
10505
10514

Success (INFO)

General error (ERROR)

General account error (ERROR)

Source account not found (ERROR)
Source account closed (ERROR)

Source account not authorized (ERROR)
Destination account not found (ERROR)
Destination account closed (ERROR)
Destination account not authorized (ERROR)
Invalid amount (ERROR)

Date too soon (ERROR)

Date too far in future (ERROR)
Transaction already committed (ERROR)
Already canceled (ERROR)

Unknown server ID (ERROR)

Duplicate request (ERROR)

Unable to process embedded transaction dug
out-of-date <TOKEN> (ERROR)

Insufficient funds (ERROR)
Cannot modify element (ERROR)

Transaction already processed (ERROR)

OFX 2.0 Specification 6/30/00

207

11.8.4 Interbank Funds Transfer Cancellation

The client sends a Transfer Cancellation request to cancel a scheduled interbank transfer, where
<SRVRTID> identifies the transfer. Inmediate transfers cannot be canceled, so this request should only be
used for scheduled transfers.

Interbank Funds Transfer Cancellation is subject to synchronization.

11.8.4.1 Request <INTERCANRQ>

The <INTERCANRQ> request must appear within an <INTERTRNRQ> transaction wrapper.

Tag Description
<INTERCANRQ> Transfer-cancellation-request aggregate
<SRVRTID> ID of the transfer to cancel. The server must have previously assigned

this ID to a transferSRVRTID

</INTERCANRQ>

11.8.4.2 Response <INTERCANRS>

The <INTERCANRS> response must appear within an <INTERTRNRS> transaction wrapper.

Tag Description
<INTERCANRS> Transfer-cancellation-response aggregate
<SRVRTID> ID of the transfer to cancel. The server must have previously assigned

this ID to a transferSRVRTID

</INTERCANRS>

208 11.8 Interbank Funds Transfer

11.8.4.3 Status Codes

Code Meaning

0 Success (INFO)

2000 General error (ERROR)

2016 Transaction already committed (ERROR)

2017 Already canceled (ERROR)

2018 Unknown server ID (ERROR)

2019 Duplicate request (ERROR)

6502 Unable to process embedded transaction due
to out-of-date <TOKEN> (ERROR)

10514 Transaction already processed (ERROR)

OFX 2.0 Specification 6/30/00 209

11.9 Wire Funds Transfer

OFX enables clients to set up wire funds transfers. Wire funds transfers are similar to other types of funds
transfers. Clients designate a source account that the Fl can authenticate and a destination account at the
same or a different institution. Clients also designate an amount and an optional date.

The FI must know the originator of the transfer. The beneficiary of the transfer might be an established
customer at the same institution.

OFX implements wire funds transfers using the FedWire system, and is subject to its rules and regulations.

In almost all respects, wire funds transfers work like interbank funds transfers. A user can schedule and
cancel them. Unlike interbank funds transfers, a user cannot modify Wire funds transfers once they have
been set up. A user cannot set up wire funds transfers to recur at regular intervals.

Client Sends Server Responds

Source account
Originator

Receiver

Amount

Date of transfer (optional
Server ID for the transfer
Originator

Receiver

Amount

Expected/actual posting
date

210 11.9 Wire Funds Transfer

11.9.1 Wire Funds Transfer Addition

Wire Funds Transfer Add is subject to synchronization.

11.9.1.1 Request <WIRERQ>

The client prepares a <BANKACCTFROM> aggregate to describe the source account. The
<WIREBENEFICIARY> aggregate specifies the destination account. The <WIREDESTBANK>
aggregate describes the beneficiary’s bank.

The <WIRERQ> request must appear within a <WIRETRNRQ> transaction wrapper.

Tag
<WIRERQ>
<BANKACCTFROM>
</BANKACCTFROM>
<WIREBENEFICIARY>
</WIREBENEFICIARY>
<WIREDESTBANK>
<EXTBANKDESC>
</EXTBANKDESC>
</WIREDESTBANK>
<TRNAMT>
<DTDUE>

<PAYINSTRUCT>

</WIRERQ>

Description
Wire-transfer-request aggregate

Source of funds, see section 11.3.1

Wire transfer beneficiary, see section 11.9.1.1.1

Beneficiary’s bank

Extended bank description, see section 11.9.1.1.2

Transfer amountamount
Date to occurdatetime

Payment instruction#\-255

OFX 2.0 Specification

6/30/00 211

11.9.1.1.1 Wire Beneficiary Aggregate <WIREBENEFICIARY>

The wire beneficiary aggregate describes the receiver of a wire transfer.

Tag

<WIREBENEFICIARY>
<NAME>
<BANKACCTTO>
</BANKACCTTO>
<MEMO>

</WIREBENEFICIARY>

Description
Wire-beneficiary aggregate
Name of beneficiaryA-32

Bank details for beneficiary, see section 11.3.1

Information for the beneficiarynemo

11.9.1.1.2 Extended Bank Description aggregate <EXTBANKDESC>

Y

Tag Description

<EXTBANKDESC> Extended-bank-description aggregate
<NAME> Abbreviated name of bani-32
<BANKID> Routing: ABA number or S\W.I.F.T. numbek;:9
<ADDR1> Bank’s address line 14-32
<ADDR2> Bank’s address line -32
<ADDR3> Bank’s address line 3. Use of <ADDR3> requires the presence of <ADDR2>,

32

<CITY> Bank’s city,A-32
<STATE> Bank’s state or provinced-5
<POSTALCODE> Bank’s postal codei-11
<COUNTRY> Bank’s country; 3-letter country code from ISO/DIS-31663
<PHONE> Bank’s phone numbeA-32

</[EXTBANKDESC>

212 11.9 Wire Funds Transfer

11.9.1.2 Response <WIRERS>

The server cannot provide complete confirmation for the transfer. It can confirm only that the server
received the transfer instruction and possibly that it validated the source account, amount, and date
specified in the transfer. For any transfer where the client does not know the status at the time of the
response, the server should confirm that it accepted the instruction and indicate the expected posting date
of the transfer. The client can pick up the confirmation at a later date through a synchronization request.

The server can indicate the fee assessed for the transfer by using the <FEE> element in the response. The
server can also include a confirmation message in the response.

The <DTDUE> in a response may have been adjusted by a server. For example, the server may adjust
<DTDUE> to comply with non-processing days. If a client sends a request to make a transfer on July 4 and
July 4 happens to be a non-processing day, the <DTDUE> in the response may be July 4 (because the
server hasn't adjusted it yet), July 5 (because this server rolls dates forward), or some other date. For this
reason, a client should pay attention to the <DTDUE> in the response.

OFX 2.0 Specification 6/30/00 213

The <WIRERS> response must appear within a <WIRETRNRS> transaction wrapper.

Tag
<WIRERS>
<CURDEF>
<SRVRTID>
<BANKACCTFROM>
</BANKACCTFROM>
<WIREBENEFICIARY >
</WIREBENEFICIARY>
<WIREDESTBANK>
<EXTBANKDESC>
</EXTBANKDESC>
</WIREDESTBANK>
<TRNAMT>
<DTDUE>
<PAYINSTRUCT>

Transfer-date options. Choose
either <DTXFERPRJ> or
<DTPOSTED>

<DTXFERPRJ>

-0r-

<DTPOSTED>

<FEE>
<CONFMSG>

</WIRERS>

Description

Wire-transfer-response aggregate
Currency used in transfesurrsymbol
Server ID for this transfeSRVRTID

Source of funds, see section 11.3.1

Wire transfer beneficiary, see section 11.9.1.1.1

Beneficiary’s bank

Extended bank description, see section 11.9.1.1.2

Transfer amount@mount
Date to occur, echoed if provided in requeakitetime

Payment instructions, echoed if provided in requas?55

Projected date of the transfer; response can contain either a <DTXFER
or a <DTPOSTED?> but not botldatetime

Actual date of the transfedatetime
Fee assessed for the transtamount

Confirmation messagé-255

PRJ>

214

11.9 Wire Funds Transfer

11.9.1.3 Status Codes

Code Meaning

0 Success (INFO)

2000 General error (ERROR)

2002 General account error (ERROR)

2006 Source account not found (ERROR)

2007 Source account closed (ERROR)

2008 Source account not authorized (ERROR)

2012 Invalid amount (ERROR)

2014 Date too soon (ERROR)

2015 Date too far in future (ERROR)

2019 Duplicate request (ERROR)

6502 Unable to process embedded transaction due to
out-of-date <TOKEN> (ERROR)

10504 Insufficient funds (ERROR)

10516 Wire beneficiary invalid (ERROR)

11.9.2 Wire Funds Transfer Cancellation

The client sends a Wire Funds Transfer Cancellation Request to cancel a scheduled transfer, where
<SRVRTID> identifies the transfer.

Wire Funds Transfer Cancellation is subject to synchronization.

11.9.2.1 Request <WIRECANRQ>

The <WIRECANRQ> request must appear within a <WIRETRNRQ> transaction wrapper.

Tag Description
<WIRECANRQ> Wire-transfer-cancellation-request aggregate
<SRVRTID> ID of the transfer to cancel; server must have previously assignged

this ID to a transferSRVRTID
</WIRECANRQ>

OFX 2.0 Specification 6/30/00 215

11.9.2.2 Response <WIRECANRS>

The <WIRECANRS> response must appear within a <WIRETRNRS> transaction wrapper.

Description
<WIRECANRS> Wire-transfer-cancellation-response aggregate
<SRVRTID> ID of the transfer to cancel; server must have previously assigned this ID tq

transfer,SRVRTID
</WIRECANRS>

11.9.2.3 Status Codes

Code Meaning

0 Success (INFO)

2000 General error (ERROR)

2016 Transaction already committed (ERROR)

2017 Already canceled (ERROR)

2019 Duplicate request (ERROR)

6502 Unable to process embedded transaction due to out-gf-
date <TOKEN> (ERROR)

10514 Transaction already processed (ERROR)

216 11.9 Wire Funds Transfer

11.10 Recurring Funds Transfer

OFX uses a Recurring Funds Transfer Add request to set up a recurring transfer model. The transfer model
generates transfers according to its schedule. Transfers created by a model and retrieved by a customer can
be modified or canceled without impacting the model.

A user can create recurring funds transfer models to generate two types of scheduled transfers: interbank
and intrabank. You cannot set up recurring wire funds transfers.

For more information on recurring transactions, see Chapter 10, "Recurring Transactions."

11.10.1 Recurring Intrabank Funds Transfer Addition

A Recurring Intrabank Funds Transfer Add request sets up an intrabank funds transfer that repeats at a
specified interval for a specified period of time.

Model-created transfers are retrieved by means of a synchronization request.

Client Sends Server Responds

Source account
Destination account
Amount

Date of first transfer
Frequency

Duration

Server ID for the model
Source account
Destination account
Amount

Date of first transfer
Frequency

Duration

Recurring Intrabank Funds Transfer Add is subject to synchronization.

OFX 2.0 Specification 6/30/00 217

11.10.1.1 Request <RECINTRARQ>

The <RECINTRARQ> request must appear within a <RECINTRATRNRQ> transaction wrapper.

Tag Description
<RECINTRARQ> Recurring-transfer-request aggregate
<RECURRINST> Recurring-instructions aggregate, see section

</RECURRINST>
<INTRARQ> Intrabank-transfer-request aggregate, see section 11.7.1.1
</INTRARQ>

</RECINTRARQ>

11.10.1.2 Response <RECINTRARS>
The <RECINTRARS> response must appear within a <RECINTRATRNRS> transaction wrappetr.

For version 1 of the message set, the <SRVRTID> included in the <INTRARS> should be set to the same
value as the <RECSRVRTID>.

Note: This is the response to the recurring model only. Servers must still generate an
INTRARS for each instance of the recurring transfer.

Tag Description

<RECINTRARS> Recurring-transfer-response aggregate
<RECSRVRTID> Server-assigned ID for this mod&RVRTID
<RECURRINST> Recurring-instructions aggregate

</RECURRINST>

<INTRARS> Intrabank-transfer-response aggregate, see section 11.7.1.2
</INTRARS>

</RECINTRARS>

218 11.10 Recurring Funds Transfer

11.10.1.3 Status Codes

Code Meaning

0

2000
2002
2006
2007
2008
2009
2010
2011
2014
2015
2019
6502

10508

Success (INFO)

General error (ERROR)

General account error (ERROR)

Source account not found (ERROR)
Source account closed (ERROR)
Source account not authorized (ERROR)
Destination account not found (ERROR)
Destination account closed (ERROR)
Destination account not authorized (ERROR)
Date too soon (ERROR)

Date too far in future (ERROR)

Duplicate request (ERROR)

Unable to process embedded transaction dug
out-of-date <TOKEN> (ERROR)

Invalid frequency (ERROR)

OFX 2.0 Specification 6/30/00

219

11.10.2 Recurring Intrabank Funds Transfer Modification

The client sends a Recurring Intrabank Funds Transfer Modification request to modify a recurring
intrabank transfer model.

Recurring Intrabank Funds Transfer Modification is subject to synchronization.

Clients must not change <BANKACCTFROM> in a recurring funds transfer modification.

11.10.2.1 Request <RECINTRAMODRQ>

<RECSRVRTID> identifies the model. The client can indicate whether the changes should apply to
pending transfers.

The <RECINTRAMODRQ> request must appear within a <RECINTRATRNRQ> transaction wrapper.

Tag Description

<RECINTRAMODRQ> Recurring-modification-request aggregate
<RECSRVRTID> ID assigned by the server to the model being modified\VRTID
<RECURRINST> Recurring-instructions aggregate

</RECURRINST>

<INTRARQ> Intrabank-transfer-request aggregate, see section 11.7.1.1
</INTRARQ>
<MODPENDING> Modify pending flag,Boolean

If the client sets this flag, the server must modify pending and future transfers.

</RECINTRAMODRQ>

220 11.10 Recurring Funds Transfer

11.10.2.2 Response <RECINTRAMODRS>

The <RECINTRAMODRS> response must appear within a <RECINTRATRNRS> transaction wrapper.

Tag Description

<RECINTRAMODRS> Recurring-transfer-modification-request aggregate
<RECSRVRTID> ID assigned by the server to the model being modifeYRTID
<RECURRINST> Recurring-instructions aggregate

</RECURRINST>

<INTRARS> Intrabank transfer response aggregate, see section 11.7.1.2
</INTRARS>
<MODPENDING> Y if client requested that the server modify pending and future transfers. N if the

client did not request that the server modify pending and future trangfecdean

</RECINTRAMODRS>

OFX 2.0 Specification 6/30/00 221

11.10.2.3 Status Codes

Code Meaning

0 Success (INFO)
2000 General error (ERROR)
2002 General account error (ERROR)
2006 Source account not found (ERROR)
2007 Source account closed (ERROR)
2008 Source account not authorized (ERROR)
2009 Destination account not found (ERROR)
2010 Destination account closed (ERROR)
2011 Destination account not authorized (ERROR)
2012 Invalid amount (ERROR)
2014 Date too soon (ERROR)
2015 Date too far in future (ERROR)
2016 Transaction already committed (ERROR)
2017 Already canceled (ERROR)
2019 Duplicate request (ERROR)
6502 Unable to process embedded transaction dug to
out-of-date <TOKEN> (ERROR)
10500 Too many checks to process (ERROR)
10505 Cannot modify element (ERROR)
10508 Invalid frequency (ERROR)
10514 Transaction already processed (ERROR)
10518 Unknown model ID (ERROR)
222 11.10 Recurring Funds Transfer

11.10.3 Recurring Intrabank Funds Transfer Cancellation

The client sends a Recurring Intrabank Funds Transfer Cancellation request to cancel a recurring intrabank
transfer model.

Recurring Intrabank Funds Transfer Cancellation is subject to synchronization.

11.10.3.1 Request <RECINTRACANRQ>

<RECSRVRTID> identifies the model the user wants to cancel. The client can indicate whether the cancel
should apply to pending transfers.

The <RECINTRACANRQ> request must appear within a <RECINTRATRNRQ> transaction wrapper.

Tag Description

<RECINTRACANRQ> Recurring-transfer-cancellation-request aggregate
<RECSRVRTID> ID assigned by the server to the model being canc&8Y/RTID
<CANPENDING> Cancel pending flaggdoolean

If Y, server should cancel all pending and unspawned transfers. If N, server should
cancel only the model (and unspawned transfers).

</RECINTRACANRQ>

11.10.3.2 Response <RECINTRACANRS>

The <RECINTRACANRS> response must appear within a <RECINTRATRNRS> transaction wrapper.

Tag Description

<RECINTRACANRS> Recurring-transfer-cancellation-response aggregate
<RECSRVRTID> ID assigned by the server to the model being canc&8Y/RTID
<CANPENDING> Cancel pending flagdoolean

Y if the client requested that the server cancel all pending and unspawned transfers. N
if the client requested that the server cancel only unspawned transfers.

</RECINTRACANRS>

OFX 2.0 Specification 6/30/00 223

11.10.3.3 Status Codes

Code Meaning

0 Success (INFO)

2000 General error (ERROR)

2016 Transaction already committed (ERROR)
2019 Duplicate request (ERROR)

6502 Unable to process embedded transaction due

to out-of-date <TOKEN> (ERROR)

10509 Model already canceled (ERROR)
10514 Transaction already processed (ERROR)
10518 Unknown model ID (ERROR)

11.10.4 Recurring Interbank Funds Transfer Addition

A Recurring Interbank Funds Transfer Add request sets up an interbank funds transfer that repeats at a
specified interval for a specified period of time.

The client retrieves model-created transfers by means of a synchronization request.

Client Sends Server Responds

Source account
Destination account
Amount

Date of first transfer
Frequency

Duration

Server ID for the model
Source account
Destination account
Amount

Date of first transfer
Frequency

Duration

Recurring Interbank Funds Transfer Add is subject to synchronization

224 11.10 Recurring Funds Transfer

11.10.4.1 Request <RECINTERRQ>

The <RECINTERRQ> request must appear within a <RECINTERTRNRQ> transaction wrapper.

Tag Description

<RECINTERRQ> Recurring-transfer-request aggregate
<RECURRINST> Recurring-instructions aggregate
</RECURRINST>
<INTERRQ> Interbank-transfer-request aggregate, see section 11.8.2.1

</INTERRQ>

</RECINTERRQ>

11.10.4.2 Response <RECINTERRS>

The <RECINTERRS> response must appear within a <RECINTERTRNRS> transaction wrapper.

For version 1 of the message set, the <SRVRTID> included in the <INTERRS> should be set to the same
value as the <RECSRVRTID>.

Note: This is the response to the recurring model only. Servers must still generate an
<INTERRS> for each instance of the recurring transfer.

Tag Description

<RECINTERRS> Recurring-transfer-response aggregate
<RECSRVRTID> Server-assigned ID for this mod&RVRTID
<RECURRINST> Recurring-instructions aggregate, see section 10.2
</RECURRINST>
<INTERRS> Interbank funds transfer response, see section 11.8.2.2

</INTERRS>

</RECINTERRS>

OFX 2.0 Specification 6/30/00 225

11.10.4.3 Status Codes

Code Meaning

0 Success (INFO)

2000 General error (ERROR)

2002 General account error (ERROR)

2006 Source account not found (ERROR)

2007 Source account closed (ERROR)

2008 Source account not authorized (ERROR)

2009 Destination account not found (ERROR)

2010 Destination account closed (ERROR)

2011 Destination account not authorized (ERROR)

2012 Invalid amount (ERROR)

2014 Date too soon (ERROR)

2015 Date too far in future (ERROR)

2019 Duplicate request (ERROR)

6502 Unable to process embedded transaction due to out-of-date <TOKEN>
(ERROR)

10504 Insufficient funds (ERROR)

10508 Invalid frequency (ERROR)

226 11.10 Recurring Funds Transfer

11.10.5 Recurring Interbank Funds Transfer Modification

The client sends a Recurring Interbank Funds Transfer Modification request to modify a recurring
interbank transfer model.

Recurring Interbank Funds Transfer Modification is subject to synchronization.

Clients must not change <BANKACCTFROM?> in a recurring funds transfer modification.

11.10.5.1 Request <RECINTERMODRQ>

<RECSRVRTID> identifies the model. The client can indicate whether the changes should apply to
pending transfers.

The <RECINTERMODRQ> request must appear within a <RECINTERTRNRQ> transaction wrapper.

Tag Description

<RECINTERMODRQ> | Recurring-modification-request aggregate
<RECSRVRTID> ID assigned by the server to the model being modifieYRTID
<RECURRINST> Recurring-instructions aggregate
</RECURRINST>
<INTERRQ> Interbank-funds-transfer-request aggregate, see section 11.8.2.1
</INTERRQ>

<MODPENDING> | Modify pending flag

If the client sets this flag, the server must modify pending and future tranBfeodean

</RECINTERMODRQ>

OFX 2.0 Specification 6/30/00 227

11.10.5.2 Request <RECINTERMODRS>

The <RECINTERMODRS> response must appear within a <RECINTERTRNRS> transaction wrapper.

Tag Description

<RECINTERMODRS> | Recurring-transfer-modification-response aggregate
<RECSRVRTID> ID assigned by the server to the model being modifie/YRTID
<RECURRINST> Recurring-instructions aggregate
</RECURRINST>
<INTERRS> Interbank-funds-transfer-response, see section 11.8.2.2
</INTERRS>

<MODPENDING> | Modify pending flag,Boolean

Y if the client requested that the server modify pending and future transfers. N if the
client did not request that the server modify pending and future transfers.

</RECINTERMODRS>

228 11.10 Recurring Funds Transfer

11.10.5.3 Status Codes

Code Meaning

0

2000
2002
2006
2007
2008
2009
2010
2011
2012
2014
2015
2016
2017
2019
6502

10504
10505
10508
10510
10514
10518

Success (INFO)

General error (ERROR)

General account error (ERROR)

Source account not found (ERROR)
Source account closed (ERROR)

Source account not authorized (ERROR)
Destination account not found (ERROR)
Destination account closed (ERROR)
Destination account not authorized (ERROR)
Invalid amount (ERROR)

Date too soon (ERROR)

Date too far in future (ERROR)
Transaction already committed (ERROR)
Already canceled (ERROR)

Duplicate request (ERROR)

Unable to process embedded transaction due to out-of-date <TOK
(ERROR)

Insufficient funds (ERROR)

Cannot modify element (ERROR)

Invalid frequency (ERROR)

Invalid payee ID (ERROR)

Transaction already processed (ERROR)

Unknown model ID (ERROR)

EN>

OFX 2.0 Specification 6/30/00

229

11.10.6 Recurring Interbank Funds Transfer Cancellation
The client sends a Recurring Transfer Cancellation request to cancel a recurring transfer model.

Recurring Transfer Cancellation is subject to synchronization.

11.10.6.1 Request <RECINTERCANRQ>

<RECSRVRTID> identifies the model the client wants to cancel. The client can indicate whether the
cancel should apply to pending transfers.

The <RECINTERCANRQ> request must appear within a <RECINTERTRNRQ> transaction wrapper.

Tag Description

<RECINTERCANRQ> Recurring-transfer-cancellation-request aggregate
<RECSRVRTID> ID assigned by the server to the model being canc&&8Y/RTID
<CANPENDING> Cancel pending flagBoolean

If Y, server should cancel all pending and unspawned transfers. If N, server should

cancel only the model (and unspawned transfers).

</RECINTERCANRQ>

11.10.6.2 Response <RECINTERCANRS>

The <RECINTERCANRS> response must appear within a <RECINTERTRNRS> transaction wrapper.

Tag Description

<RECINTERCANRS> Recurring-transfer-cancellation-response aggregate
<RECSRVRTID> ID assigned by the server to the model being canc&&8Y/RTID
<CANPENDING> Cancel pending flagdoolean

Y if the client requested that the server cancel all pending and unspawned transfers. N
if the client requested that the server cancel only unspawned transfers.

</RECINTERCANRS>

230 11.10 Recurring Funds Transfer

11.10.6.3 Status Codes

Code Meaning

0 Success (INFO)

2000 General error (ERROR)

2016 Transaction already committed (ERROR)

2019 Duplicate request (ERROR)

6502 Unable to process embedded transaction due
to out-of-date <TOKEN> (ERROR)

10509 Model already canceled (ERROR)

10514 Transaction already processed (ERROR)

10518 Unknown model ID (ERROR)

OFX 2.0 Specification 6/30/00 231

11.11 E-Mail and Customer Notification

OFX enables customers to contact their FIs when they have questions regarding their accounts. Fls can
also notify their customers of significant events that have occurred regarding their accounts. For example,
notification can occur if a customer writes a check that does not clear due to insufficient funds. The server
prepares the naotification and the client picks it up the next time it synchronizes with the server.

11.11.1 Banking E-Mail

OFX currently defines one banking e-mail message that clients can send to an Fl. With this message, the
user can prepare a message to the Fl regarding one of his accounts. The server acknowledges receipt of the
message. The FI prepares the response that the client picks up when it synchronizes with the server.

Client Sends Server Responds

Addressed message
Bank account information

Acknowledgment

Synchronization request

Response to customer

232 11.11 E-Mail and Customer Notification

11.11.1.1 Request <BANKMAILRQ>
The client must identify to which bank account the customer query is related.

The <BANKMAILRQ> request must appear within a <BANKMAILTRNRQ> transaction wrapper.

Tag Description
<BANKMAILRQ> Bank-e-mail-request aggregate
Account-from options. Choose
either <BANKACCTFROM>
or <CCACCTFROM>.
<BANKACCTFROM> Account-from aggregate, see section 11.3.1
</BANKACCTFROM>
-or-
<CCACCTFROM> Credit-card-account-from aggregate, see section 11.3.2
</CCACCTFROM>
<MAIL> To, from, message information, see Chapter 9, "Customer to Fl
Communication"
</MAIL>
</BANKMAILRQ >

OFX 2.0 Specification 6/30/00 233

11.11.1.2 Response <BANKMAILRS>

The <BANKMAILRS> response must appear within a <BANKMAILTRNRS> transaction wrapper.

Tag Description
<BANKMAILRS> Bank-e-mail-response aggregate
Account-from options. Choose
either <BANKACCTFROM>
or <CCACCTFROM>.
<BANKACCTFROM> Account-from aggregate, see section 11.3.1
</BANKACCTFROM>
-or-
<CCACCTFROM> Credit-card-account-from aggregate, see section 11.3.2
</CCACCTFROM>
<MAIL> To, from, message information, see Chapter 9, "Customer to Fl
Communication"
</MAIL>
</BANKMAILRS >

11.11.1.3 Status Codes

Code Meaning

0 Success (INFO)

2000 General error (ERROR)

2002 General account error (ERROR)

2003 Account not found (ERROR)

2004 Account closed (ERROR)

2005 Account not authorized (ERROR)

2019 Duplicate request (ERROR)

6502 Unable to process embedded transaction due
to out-of-date <TOKEN> (ERROR)

15508 Transaction not authorized (ERROR)

16500 HTML not allowed (ERROR)

16501 Unknown mail To: (ERROR)

234 11.11 E-Mail and Customer Notification

11.11.2 Notifications

OFX currently defines two banking notifications that an FI can support:

¢ Returned check

¢ Returned deposit

You can implement banking notifications through e-mail and synchronization. The client provides a

<TOKEN> representing its current state with regard to banking notification. (See section B4
server can respond by returning a new token and one or more notification e-mail responses.

Client Sends Server Responds

Synchronization request
with current token

New token
Bank e-mail

Mail for returned check

Mail for returned deposit

OFX 2.0 Specification 6/30/00 235

11.11.3 Returned Check and Deposit Notification

11.11.3.1 Response <CHKMAILRS>

The server returns this response (when a check has been returned), if it receives a banking e-mail
synchronization message.

The <CHKMAILRS> response must appear within a <BANKMAILTRNRS> transaction wrapper.

Tag Description

<CHKMAILRS> Notification-message-response aggregate
<BANKACCTFROM> Account-from aggregate, see section 11.3.1
</BANKACCTFROM>
<MAIL> To, from, message information, see Chapter 9, "Customer to Fl

Communication"

</MAIL>

<CHECKNUM> Check numberA-12
<TRNAMT> Amount of checkamount
<DTUSER> Customer date on chectlate
<FEE> Fee assessed for NSknount

</CHKMAILRS>

236 11.11 E-Mail and Customer Notification

11.11.3.2 Response <DEPMAILRS>

The server returns this response (when a deposit has been returned), if it receives a banking e-mail
synchronization message.

The <DEPMAILRS> response must appear within a <BANKMAILTRNRS> transaction wrapper.

Tag Description

<DEPMAILRS> Notification-message-response aggregate
<BANKACCTFROM> Account-from aggregate, see section 11.3.1
</BANKACCTFROM>
<MAIL> To, from, message information, see Chapter 9, "Customer to FI

Communication”

</MAIL>

<TRNAMT> Amount of depositamount
<DTUSER> Customer date of deposdate
<FEE> Fee assessed for NSknount

</DEPMAILRS >

11.12 Data Synchronization for Banking

Banking customers must be able to obtain the current status of transactions previously sent to the server for
processing. For example, once a client schedules a transfer and the transfer date has passed, the customer
might wish to verify that the server made the transfer as directed. Also, OFX allows for interactions with

the server through multiple clients. This means, for example, that the customer can perform some
transactions from a home PC and others from an office computer, with each session seamlessly
incorporating the activities performed on the other.

To accomplish these actions, the client uses a synchronization scheme to ensure that it has an accurate copy
of the server data that is relevant to the client application.

Banking requires synchronization in the following areas: Stop Check, IntraBank Transfers, InterBank
Transfers, Wire Transfers, and Banking Notifications.

OFX 2.0 Specification 6/30/00 237

11.12.1 Data Synchronization for Stop Check

11.12.1.1 Request <STPCHKSYNCRQ>

Tag Description
<STPCHKSYNCRQ> Synchronization-request aggregate
Client synchronization option;
<TOKEN>, <TOKENONLY>, or
<REFRESH>
<TOKEN> Previous value of <TOKEN> received for this type of synchronization
request from server; 0O for first-time requegtsken
<TOKENONLY> Request for just the current <TOKEN> without the histdgolean
<REFRESH> Request for refresh of current staBnolean
<REJECTIFMISSING> If Y, do not process requests if client <TOKEN> is out of d&eplean
<BANKACCTFROM> Bank account of interest; token must be interpreted in terms of this account,
see section 11.3.1
</BANKACCTFROM>
<STPCHKTRNRQ> Stop-check transactions (0 or more)
</STPCHKTRNRQ>
</STPCHKSYNCRQ>

238 11.12 Data Synchronization for Banking

11.12.1.2 Response <STPCHKSYNCRS>

Tag Description
<STPCHKSYNCRS> Synchronization-response aggregate
<TOKEN> New synchronization tokenoken
<LOSTSYNC> Y if the token in the synchronization request is older than the earliest entry in the

server’s history table. In this case, some responses have been lost.

N if the token in the synchronization request is newer than or matches a token in the
server’s history tableBoolean

<BANKACCTFROM> | Bank account of interest; token must be interpreted in terms of this account, see
section 11.3.1

</BANKACCTFROM>
<STPCHKTRNRS> Stop-check transactions (0 or more)
</STPCHKTRNRS>

</STPCHKSYNCRS>

11.12.2 Data Synchronization for Intrabank Funds Transfers

<INTRASYNCRQ> must be supported by all servers, even if it will always return <TOKEN>0 without

sync history, because a client cannot know whether or not the server would ever return updated transfer
information. Specifically, the client cannot know if a transfer will be processed immediately or at the end

of the business day until it has performed at least one transfer operation (then DTPOSTED vs.
DTXFERPRJ indicates which “mode” the server operates in). As such, the client must always send an
<INTRASYNCRQ> in case the server has updated information about a transfer, including immediate
transfers which were actually batch processed at the end of the business day or the next day and which may
have failed due to other account activity.

Transfers into an account do not show up in the sync for the recipient account. Only transfers out of an
account show up in the sync for that account.

OFX 2.0 Specification 6/30/00 239

11.12.2.1 Request <INTRASYNCRQ>

Tag
<INTRASYNCRQ>

Client synchronization option;
<TOKEN>, <TOKENONLY>, or
<REFRESH>

<TOKEN>

<TOKENONLY>

<REFRESH>

<REJECTIFMISSING>

Account-from options. Choose
either <BANKACCTFROM> or
<CCACCTFROM>.

<BANKACCTFROM>
</BANKACCTFROM>
-or-
<CCACCTFROM>

</CCACCTFROM>

<INTRATRNRQ>

</INTRATRNRQ>

</INTRASYNCRQ>

Description

Synchronization-request aggregate

Previous value of <TOKEN> received for this type of synchronization
request from server; 0O for first-time requegtsken

Request for just the current <TOKEN> without the hist@golean
Request for refresh of current staBxnolean

If Y, do not process requests if client <TOKEN> is out of d&eplean

Account-from aggregate, see section 11.3.1

Credit-card-account-from aggregate, see section 11.3.2

Intrabank-funds-transfer transactions (O or more)

240

11.12 Data Synchronization for Banking

11.12.2.2 Response <INTRASYNCRS>

Tag Description
<INTRASYNCRS> Synchronization-response aggregate
<TOKEN> New synchronization tokenoken
<LOSTSYNC> Y if the token in the synchronization request is older than the earliest entfy in

the server’s history table. In this case, some responses have been lost.

N if the token in the synchronization request is newer than or matches a
token in the server’s history tablBoolean

Account-from options. Choose
either <BANKACCTFROM> or

<CCACCTFROM>.
<BANKACCTFROM> Account-from aggregate, see section 11.3.1
</BANKACCTFROM>
or-
<CCACCTFROM> Credit-card-account-from aggregate, see section 11.3.2
</CCACCTFROM>
<INTRATRNRS> Intrabank-funds-transfer transactions (0 or more)

</INTRATRNRS>

</INTRASYNCRS>

The <INTRASYNCRS> responses contain only intrabank transfers where the BANKACCTFROM
matches that submitted in the sync request.

OFX 2.0 Specification 6/30/00 241

11.12.3 Data Synchronization for Interbank Funds Transfers

Transfers into an account do not show up in the sync for the recipient account. Only transfers out of an
account show up in the sync for that account.

11.12.3.1 Request <INTERSYNCRQ>

Tag Description
<INTERSYNCRQ> Synchronization-request aggregate

Client synchronization option;
<TOKEN>, <TOKENONLY>, or

<REFRESH>
<TOKEN> Previous value of <TOKEN> received for this type of synchronization
request from server; 0O for first-time requegtsken
<TOKENONLY> Request for just the current <TOKEN> without the histdgolean
<REFRESH> Request for refresh of current stalBnolean
<REJECTIFMISSING> If Y, do not process requests if client <TOKEN> is out of d&eplean

Account-from options. Choose
either <BANKACCTFROM> or

<CCACCTFROM>.
<BANKACCTFROM> Account-from aggregate, see section 11.3.1
</BANKACCTFROM>
or-
<CCACCTFROM> Credit-card-account-from aggregate, see section 11.3.2
</CCACCTFROM>
<INTERTRNRQ> Interbank-funds-transfer transactions (O or more)

</INTERTRNRQ>

</INTERSYNCRQ>

242 11.12 Data Synchronization for Banking

11.12.3.2 Response <INTERSYNCRS>

Tag Description
<INTERSYNCRS> Synchronization-response aggregate
<TOKEN> New synchronization tokenoken
<LOSTSYNC> Y if the token in the synchronization request is older than the earliest entfy in

the server’s history table. In this case, some responses have been lost.

N if the token in the synchronization request is newer than or matches a
token in the server’s history tablBoolean

Account-from options. Choose
either <BANKACCTFROM> or

<CCACCTFROM>.
<BANKACCTFROM> Account-from aggregate, see section 11.3.1
</BANKACCTFROM>
or-
<CCACCTFROM> Credit-card-account-from aggregate, see section 11.3.2
</CCACCTFROM>
<INTERTRNRS> Interbank-funds-transfer transactions (0 or more)

</INTERTRNRS>

</INTERSYNCRS>

The <INTERSYNCRS> responses contain only interbank transfers where the BANKACCTFROM
matches that submitted in the sync request.

OFX 2.0 Specification 6/30/00 243

11.12.4 Data Synchronization for Wire Funds Transfers

11.12.4.1 Request <WIRESYNCRQ>

Tag
<WIRESYNCRQ>

Client synchronization option;
<TOKEN>, <TOKENONLY>, or
<REFRESH>

<TOKEN>

<TOKENONLY>

<REFRESH>

<REJECTIFMISSING>
<BANKACCTFROM >
</BANKACCTFROM>
<WIRETRNRQ>
</WIRETRNRQ>

</WIRESYNCRQ>

Description

Synchronization-request aggregate

Previous value of <TOKEN> received for this type of synchronization
request from server; 0O for first-time requegtsken

Request for just the current <TOKEN> without the hist@golean
Request for refresh of current staBnolean
If Y, do not process requests if client <TOKEN> is out of d&eplean

Bank account of interest; token must be interpreted in terms of this accq

Wire-transfer transactions (O or more)

11.12.4.2 Response <WIRESYNCRS>

Tag
<WIRESYNCRS>
<TOKEN>

<LOSTSYNC>

<BANKACCTFROM>
</BANKACCTFROM>
<WIRETRNRS>
</WIRETRNRS>

</WIRESYNCRS>

Description
Synchronization-response aggregate
New synchronization tokemoken

Y if the token in the synchronization request is older than the earliest e
in the server’s history table. In this case, some responses have been Id

N if the token in the synchronization request is newer than or matches
token in the server’s history tablBoolean

Bank account of interest; token must be interpreted in terms of this acc

Wire-transfer transactions (0O or more)

unt.

ntry
st.

A

ount

244

11.12 Data Synchronization for Banking

11.12.5 Data Synchronization for Recurring Intrabank Funds Transfers

11.12.5.1 Request <RECINTRASYNCRQ>

This request will synchronize the client with the server in relation to recurring intrabank transfer models.
To synchronize individual transfers that were created by the model (and perhaps canceled by another
client), the client must also issue an <INTRASYNCRQ>.

Tag Description
<RECINTRASYNCRQ> Synchronization request

Client synchronization option;
<TOKEN>, <TOKENONLY>, or

<REFRESH>
<TOKEN> Previous value of <TOKEN> received for this type of synchronization
request from server; 0 for first-time requedtken
<TOKENONLY> Request for just the current <TOKEN> without the hist@golean
<REFRESH> Request for refresh of current staBnolean
<REJECTIFMISSING> If Y, do not process requests if client <TOKEN> is out of d&eplean

Account-from options. Choose
either <BANKACCTFROM> or

<CCACCTFROM>.
<BANKACCTFROM> Account-from aggregate, see section 11.3.1
</BANKACCTFROM>
or-
<CCACCTFROM> Credit-card-account-from aggregate, see section 11.3.2
</CCACCTFROM>
<RECINTRATRNRQ> Recurring-intrabank-funds-transfer transactions (0O or more)

</RECINTRATRNRQ>

</RECINTRASYNCRQ>

OFX 2.0 Specification 6/30/00 245

11.12.5.2 Response <RECINTRASYNCRS>

Tag
<RECINTRASYNCRS>
<TOKEN>

<LOSTSYNC>

Account-from options. Choose
either <BANKACCTFROM> or
<CCACCTFROM>.

<BANKACCTFROM>
</BANKACCTFROM>
-or-
<CCACCTFROM>

</CCACCTFROM>

<RECINTRATRNRS>
</RECINTRATRNRS>

</RECINTRASYNCRS>

Description
Synchronization-response aggregate
New synchronization tokemoken

Y if the token in the synchronization request is older than the earliest ent
the server’s history table. In this case, some responses have been lost.

N if the token in the synchronization request is newer than or matches g
token in the server’s history tablBoolean

Account-from aggregate, see section 11.3.1

Credit-card-account-from aggregate, see section 11.3.2

Recurring-intrabank-funds-transfer transactions (0 or more)

ry in

The <RECINTRASYNCRS> responses contain only intrabank transfer models where the
BANKACCTFROM matches that submitted in the sync request.

246

11.12 Data Synchronization for Banking

11.12.6 Data Synchronization for Recurring Interbank Funds Transfers

11.12.6.1 Request <RECINTERSYNCRQ>

This request will synchronize the client with the server in relation to recurring interbank transfer models.
To synchronize individual funds transfers that were created by the model (and perhaps canceled by another
client), the client must also issue an <INTERSYNCRQ>.

Tag Description
<RECINTERSYNCRQ> Synchronization-request aggregate

Client synchronization option;
<TOKEN>, <TOKENONLY>, or

<REFRESH>
<TOKEN> Previous value of <TOKEN> received for this type of synchronization
request from server; 0 for first-time requedtken
<TOKENONLY> Request for just the current <TOKEN> without the hist@golean
<REFRESH> Request for refresh of current staBnolean
<REJECTIFMISSING> If Y, do not process requests if client <TOKEN> is out of d&eplean

Account-from options. Choose
either <BANKACCTFROM> or

<CCACCTFROM>.
<BANKACCTFROM> Account-from aggregate, see section 11.3.1
</BANKACCTFROM>
or-
<CCACCTFROM> Credit-card-account-from aggregate, see section 11.3.2
</CCACCTFROM>
<RECINTERTRNRQ> Recurring-transfer transactions (0 or more)

</RECINTERTRNRQ>

</RECINTERSYNCRQ>

OFX 2.0 Specification 6/30/00 247

11.12.6.2 Response <RECINTERSYNCRS>

Tag Description
<RECINTERSYNCRS> Synchronization-response aggregate
<TOKEN> New synchronization tokenoken
<LOSTSYNC> Y if the token in the synchronization request is older than the earliest entfy in

the server’s history table. In this case, some responses have been lost.
N if the token in the synchronization request is newer than or matches g
token in the server’s history tablBoolean

Account-from options. Choose
either <BANKACCTFROM> or

<CCACCTFROM>.
<BANKACCTFROM> Account-from aggregate, see section 11.3.1
</BANKACCTFROM>
or-
<CCACCTFROM> Credit-card-account-from aggregate, see section 11.3.2
</CCACCTFROM>
<RECINTERTRNRS> Recurring-interbank-funds-transfer transactions (0 or more)

</RECINTERTRNRS>

</RECINTERSYNCRS>

248 11.12 Data Synchronization for Banking

11.12.7 Data Synchronization for Bank Mail

11.12.7.1 Request <BANKMAILSYNCRQ>

Tag

<BANKMAILSYNCRQ>

Client synchronization option;
<TOKEN>, <TOKENONLY>, or

<REFRESH>

<TOKEN>

<TOKENONLY>

<REFRESH>

<REJECTIFMISSING>

Description

Synchronization-request aggregate

Previous value of <TOKEN> received for this type of synchronization

request from server; 0 for first-time requedtken
Request for just the current <TOKEN> without the hist@golean
Request for refresh of current staBnolean

If Y, do not process requests if client <TOKEN> is out of dd&eplean

1%

v

<INCIMAGES> Y if the client accepts mail with images in the message body. N if the clig
does not accept mail with images in the message tBaglean
<USEHTML> Y if client wants an HTML response, N if client wants plain teRgolean
<BANKACCTFROM> Account-from aggregate, see section 11.3.1
</BANKACCTFROM>
-or- Credit-card-account-from aggregate, see section 11.3.2
<CCACCTFROM>
</CCACCTFROM>
<BANKMAILTRNRQ> Bank-mail transactions (0 or more)
</BANKMAILTRNRQ>
</BANKMAILSYNCRQ>
OFX 2.0 Specification 6/30/00 249

nt

11.12.7.2 Response <BANKMAILSYNCRS>

Tag Description
<BANKMAILSYNCRS> Synchronization-response aggregate
<TOKEN> New synchronization tokenoken
<LOSTSYNC> Y if the token in the synchronization request is older than the earliest entfy in

the server’s history table. In this case, some responses have been lost.
N if the token in the synchronization request is newer than or matches g
token in the server’s history tablBoolean

Account-from options. Choose
either <BANKACCTFROM> or

<CCACCTFROM>.
<BANKACCTFROM> Account-from aggregate, see section 11.3.1
</BANKACCTFROM>
or-
<CCACCTFROM> Credit-card-account-from aggregate, see section 11.3.2
</CCACCTFROM>
<BANKMAILTRNRS> Bank-mail transactions (0 or more)

</BANKMAILTRNRS>

</BANKMAILSYNCRS>

250 11.12 Data Synchronization for Banking

11.13 Message Sets and Profile

OFX separates messages that the client and server send into groups called message sets. Each FI defines
the message sets that the institution supports. The messages described in this section fall into the following
types:

¢ Banking —includes statement download, closing statement download, bank e-mail, notification, and
intrabank funds transfer

¢ Credit Card — credit card statement download and closing statement download

+ Interbank Funds Transfers

¢ Wire Funds Transfers

Each message set contains options and attributes that allow an Fl to customize its use of OFX. For

example, an institution can support the Interbank Funds Transfer Message Set
(INTERXFERMSGSETV1), but it can choose not to support the recurring form of these transfers.

The profile defines the options and attributes as part of each message-set definition. Each set of options
and attributes appears within an aggregate that is specific to a message set. For example,
<WIREXFERMSGSETV1> contains all of the options and attributes that pertain to wire transfers.

OFX 2.0 Specification 6/30/00 251

11.13.1 Message Sets and Messages

11.13.1.1 Bank Message Set and Messages

11.13.1.1.1 Bank Message Set Request Messages

Message Set Message

<BANKMSGSET>

<BANKMSGSETV1>
<BANKMSGSRQV1>

</BANKMSGSRQV1>

</BANKMSGSETV1>

</BANKMSGSET>

STMTTRNRQ
STMTRQ
STMTENDTRNRQ
STMTENDRQ
STPCHKTRNRQ
STPCHKRQ
INTRATRNRQ
INTRARQ
INTRAMODRQ
INTRACANRQ
RECINTRATRNRQ
RECINTRARQ
RECINTRAMODRQ
RECINTRACANRQ
BANKMAILTRNRQ
BANKMAILRQ
STPCHKSYNCRQ
INTRASYNCRQ
RECINTRASYNCRQ
BANKMAILSYNCRQ

252

11.13 Message Sets and Profile

11.13.1.1.2 Bank Message Set Response Messages

Message Set Message

<BANKMSGSET>
<BANKMSGSETV1>
<BANKMSGSRSV1> STMTTRNRS
STMTRS
STMTENDTRNRS
STMTENDRS
STPCHKTRNRS
STPCHKRS
INTRATRNRS
INTRARS
INTRAMODRS
INTRACANRS
RECINTRATRNRS
RECINTRARS
RECINTRAMODRS
RECINTRACANRS
BANKMAILTRNRS
BANKMAILRS
CHKMAILRS
DEPMAILRS
STPCHKSYNCRS
INTRASYNCRS
RECINTRASYNCRS
BANKMAILSYNCRS
</BANKMSGSRSV1>
</BANKMSGSETV1>

</BANKMSGSET>

OFX 2.0 Specification 6/30/00 253

11.13.1.2 Credit Card Message Set and Messages

11.13.1.2.1 Credit Card Message Set Request Messages

Message Set Message

<CREDITCARDMSGSET>
<CREDITCARDMSGSETV1>

<CREDITCARDMSGSRQV1> CCSTMTTRNRQ

CCSTMTRQ
CCSTMTENDTRNRQ
CCSTMTENDRQ
</CREDITCARDMSGSRQV1>
</CREDITCARDMSGSETV1>
</CREDITCARDMSGSET>

11.13.1.2.2 Credit Card Message Set Response Messages

Message Set Message

<CREDITCARDMSGSET>
<CREDITCARDMSGSETV1>

<CREDITCARDMSGSRSV1> | CCSTMTTRNRS

CCSTMTRS
CCSTMTENDTRNRS
CCSTMTENDRS
</CREDITCARDMSGSRSV1>
</CREDITCARDMSGSETV1>
</CREDITCARDMSGSET>

254 11.13 Message Sets and Profile

11.13.1.3 Interbank Transfer Message Set and Messages

11.13.1.3.1 Interbank Transfer Message Set Request Messages

Message Set Message

<INTERXFERMSGSET>
<INTERXFERMSGSETV1>

<INTERXFERMSGSRQV1>

</INTERXFERMSGSRQV1>
</INTERXFERMSGSETV1>

</INTERXFERMSGSET>

INTERTRNRQ
INTERRQ
INTERMODRQ
INTERCANRQ

RECINTERTRNRQ
RECINTERRQ
RECINTERMODRQ
RECINTERCANRQ

INTERSYNCRQ

RECINTERSYNCRQ

OFX 2.0 Specification

6/30/00

255

11.13.1.3.2 Interbank Transfer Message Set Response Messages

Message Set Message

<INTERXFERMSGSET>
<INTERXFERMSGSETV1>

<INTERXFERMSGSRSV1>

</INTERXFERMSGSRSV1>
</INTERXFERMSGSETV1>

</INTERXFERMSGSET>

INTERTRNRS
INTERRS
INTERMODRS
INTERCANRS

RECINTERTRNRS
RECINTERRS
RECINTERMODRS
RECINTERCANRS

INTERSYNCRS

RECINTERSYNCRS

256

11.13 Message Sets and Profile

11.13.1.4 Wire Transfer Message Set and Messages

11.13.1.4.1 Wire Transfer Message Set Request Messages

Message Set Message

<WIREXFERMSGSET>
<WIREXFERMSGSETV1>
<WIREXFERMSGSRQV1> WIRETRNRQ
WIRERQ
WIRECANRQ
WIRESYNCRQ
</WIREXFERMSGSRQV1>
</WIREXFERMSGSETV1>

</WIREXFERMSGSET>

11.13.1.4.2 Wire Transfer Message Set Response Messages

Message Set Message

<WIREXFERMSGSET>
<WIREXFERMSGSETV1>
<WIREXFERMSGSRSV1> WIRETRNRS
WIRERS
WIRECANRS
WIRESYNCRS
</WIREXFERMSGSRSV1>
</WIREXFERMSGSETV1>

</WIREXFERMSGSET>

OFX 2.0 Specification 6/30/00 257

11.13.2 Bank Message Set Profile

11.13.2.1 <BANKMSGSET>, <BANKMSGSETV1>

Tag Description
<BANKMSGSET> Message set for banking
<BANKMSGSETV1> Version 1 of message set
<MSGSETCORE> Common message-set core
</MSGSETCORE>
<INVALIDACCTTYPE> Account type not supported in <BANKACCTFROM>; 0 or more 0
account types, see section 11.3 folvalues
<CLOSINGAVAIL> Closing statement information availabBgolean
<XFERPROF> Intrabank transfer profile (if supported), see section 11.13.2.2
</XFERPROF>
<STPCHKPROF> Stop check profile (if supported), see section 11.13.2.3
</STPCHKPROF>
<EMAILPROF> E-mail profile, see section 11.13.2.4
</EMAILPROF>
</BANKMSGSETV1> End of bank message set version 1
</BANKMSGSET>
258 11.13 Message Sets and Profile

11.13.2.2 Banking Profile, Funds Transfer <XFERPROF>

Tag
<XFERPROF>

<PROCDAYSOFF>

<PROCENDTM>
<CANSCHED>
<CANRECUR>
<CANMODXFERS>
<CANMODMDLS>

<MODELWND>

<DAYSWITH>
<DFLTDAYSTOPAY>

</XFERPROF>

Description
Intrabank transfer profile (if supported)

Days of week that no processing occurs: MONDAY, TUESDAY,
WEDNESDAY, THURSDAY, FRIDAY, SATURDAY, or SUNDAY. 0 or more
<PROCDAYSOFF> can be sent.

Time of day that day’s processing entlme

Supports scheduled transfeBnolean

Supports recurring transfeiBpolean Requires <CANSCHED>
Permit modifications to transfers, i.e. <INTRAMODR@0olean
Permit modifications to models, i.e. <RECINTRAMODR@9olean

Model window; the number of days before a recurring transaction is schedt
to be processed that it is instantiated on the sysis3,

Number of days before processing date that funds are withdidvan,

Default number of days to pai-3

uled

11.13.2.3 Banking Profile, Stop Checks <STPCHKPROF>

Tag
<STPCHKPROF>

<PROCDAYSOFF>

<PROCENDTM>
<CANUSERANGE>
<CANUSEDESC>
<STPCHKFEE>

</STPCHKPROF>

Description
Stop check profile (if supported)

Days of week that no processing occurs: MONDAY, TUESDAY,
WEDNESDAY, THURSDAY, FRIDAY, SATURDAY, or SUNDAY. 0
or more <PROCDAYSOFF> can be sent.

Time of day that day’s processing entlme
Can stop a range of checioolean.
Can stop by descriptioBoolean.

Default stop check freAmount

OFX 2.0 Specification

6/30/00 259

11.13.2.4 Banking Profile, Email <EMAILPROF>

Tag Description
<EMAILPROF> E-mail profile
<CANEMAIL> Supports generalized banking e-m&golean
<CANNOTIFY> Supports notification (of any kindBoolean
</[EMAILPROF>

11.13.3 Credit Card Message Set Profile

Tag Description
<CREDITCARDMSGSET> Beginning tag for credit card message set
<CREDITCARDMSGSETV1> Version 1 of message set
<MSGSETCORE> Common message-set core
</MSGSETCORE>
<CLOSINGAVAIL> Closing statement information availabBgolean
</CREDITCARDMSGSETV1> Ending tag of credit card message set version 1
</CREDITCARDMSGSET> Ending tag of credit card message set

260 11.13 Message Sets and Profile

11.13.4 Interbank Funds Transfer Message Set Profile

Tag Description
<INTERXFERMSGSET> Beginning tag for interbank transfers message set
<INTERXFERMSGSETV1> Version 1 of message set
<MSGSETCORE> Common message-set core
</MSGSETCORE>
<XFERPROF> Interbank transfer profile, same as XFERPROF in banking, see
section 11.13.2.2
</XFERPROF>
<CANBILLPAY> Server is capable of handling bill payment as a form of transfers,
Boolean
<CANCELWND> Number of days after an interbank transfer occurs that it can be
canceledN-3
<DOMXFERFEE> Standard fee for a domestic interbank transderpunt
<INTLXFERFEE> Standard fee for an international interbank transferpunt
</INTERXFERMSGSETV1> End of interbank transfer message set version 1
</INTERXFERMSGSET> End of interbank transfer message set

OFX 2.0 Specification 6/30/00 261

11.13.5 Wire Transfer Message Set Profile

Tag
<WIREXFERMSGSET>
<WIREXFERMSGSETV1>
<MSGSETCORE>
</MSGSETCORE>

<PROCDAYSOFF>

<PROCENDTM>
<CANSCHED>
<DOMXFERFEE>
<INTLXFERFEE>
</WIREXFERMSGSETV1>

</WIREXFERMSGSET>

Description
Core message set for wire transfers
Version 1 of message set

Common message-set core

Days of week that no processing occurs: MONDAY, TUESDAY,
WEDNESDAY, THURSDAY, FRIDAY, SATURDAY, or SUNDAY. 0
or more <PROCDAYSOFF> can be sent.

Time of day that day’s processing entime
Supports scheduled transfeBnolean

Standard fee for a domestic wire transgmmount
Standard fee for an international wire transéenount
End of wire transfer message set version 1

Ending tag of wire transfer message set

262

11.13 Message Sets and Profile

11.14 Examples

11.14.1 Statement Download

This example represents a customer who requests a statement download for a checking account. The
request omits <DTSTART> and <DTEND> because the client is interested in getting all available data.
The response contains an updated balance for the account and two transactions.

The request file:

<OFX> <I-- Begin request data -->
<SIGNONMSGSRQV1>
<SONRQ> <!-- Begin signon -->

<DTCLIENT>19991029101000</DTCLIENT><!-- Oct. 29, 1999, 10:10:00
am -->
<USERID>123-45-6789</USERID> <l-- User ID (User SSN) -->
hole) <USERPASS>MyPassword</USERPASS> <l--Password(SSLencrypts
whole) -->
<LANGUAGE>ENG</LANGUAGE> <!-- Language used for text -->

<FI> <I-- ID of receiving institution -->
<ORG>NCH</ORG> <l-- Name of ID owner -->
<FID>1001</FID> <Il-- Actual ID -->

</FI>

<APPID>MyApp</APPID>
<APPVER>0500</APPVER>
</SONRQ> <!-- End of signon -->
</SIGNONMSGSRQV1>

<BANKMSGSRQV1>
<STMTTRNRQ> <!-- Begin request -->
<TRNUID>1001</TRNUID>
<STMTRQ> <l-- Begin statement request -->
<BANKACCTFROM> <!-- |dentify the account -->
<BANKID>121099999</BANKID><!-|;I F\:Butin>g transit or other

<ACCTID>999988</ACCTID><!-- Account number -->
<ACCTTYPE>CHECKING</ACCTTYPE><!-- Account type -->

</BANKACCTFROM> <l-- End of account ID -->
<INCTRAN> <I-- Begin include transaction -->
<INCLUDE>Y</INCLUDE> <!-- Include transactions -->
</INCTRAN> <l-- End of include transaction -->
</STMTRQ> <l-- End of statement request -->
</STMTTRNRQ> <l-- End request -->

OFX 2.0 Specification 6/30/00 263

</BANKMSGSRQV1>
</OFX> <l-- End of request data -->

The response file:

<OFX> <!-- Begin response data -->
<SIGNONMSGSRSV1>
<SONRS> <l-- Begin signon -->
<STATUS> <l-- Begin status aggregate -->
<CODE>0</CODE> <l-- OK -->
<SEVERITY>INFO</SEVERITY>
</STATUS>

<DTSERVER>19991029101003</DTSERVER><!-- Oct. 29, 1999, 10:10:03
<LANGUAGE>ENG</LANGUAGE> <!-- Language used in response
<DTPROFUP>19991029101003</DTPROFUP><!-- Last update to profile--

<DTACCTUP>19991029101003</DTACCTUP><!-- Last account update -->
</SONRS> <l-- End of signon -->
</SIGNONMSGSRSV1>

<BANKMSGSRSV1>
<STMTTRNRS> <!-- Begin response -->

<TRNUID>1001</TRNUID> <l-- Client ID sent in request -->

<STATUS> <I-- Start status aggregate -->
<CODE>0</CODE> <l-- OK -->
<SEVERITY>INFO</SEVERITY>

</STATUS>

<STMTRS> <l-- Begin statement response -->
<CURDEF>USD</CURDEF>
<BANKACCTFROM> <l-- Identify the account -->

<BANKID>121099999</BANKID><|!:—|— IBouting transit or other
-—->

<ACCTID>999988</ACCTID><!-- Account number -->
<ACCTTYPE>CHECKING</ACCTTYPE><!-- Account type -->

</BANKACCTFROM> <l-- End of account ID -->
<BANKTRANLIST> <l-- Begin list of statement
trans. -->

<DTSTART>19991001</DTSTART><!-- Start date: Oct. 1, 1999 -->

<DTEND>19991028</DTEND><!-- End date: Oct. 28, 1999 -->

<STMTTRN> <I-- First statement transaction -->
<TRNTYPE>CHECK</TRNTYPE><!--Check -->

264 11.14 Examples

<DTPOSTED>19991004</DTPOSTED><!-- Posted on Oct. 4, 1999
->

<TRNAMT>-200.00</TRNAMT><!-- $200.00 -->
<FITID>00002</FITID><!-- Unique ID -->
<CHECKNUM>1000</CHECKNUM><!-- Check number -->
</STMTTRN> <l-- End statement transaction -->
<STMTTRN> <l-- Second transaction -->
<TRNTYPE>ATM</TRNTYPE><!-- ATM transaction -->
<DTPOSTED>19991020</DTPOSTED><!-- Posted on Oct. 20, 1999

<DTUSER>19991020</DTUSER><!-- User date of Oct. 20, 1999 -

<TRNAMT>-300.00</TRNAMT><!-- $300.00 -->
<FITID>00003</FITID><!-- Unique ID -->
</STMTTRN> <l-- End statement transaction -->
</BANKTRANLIST> <l-- End list of statement trans. -->
<LEDGERBAL> <!-- Ledger balance aggregate -->
<BALAMT>200.29</BALAMT><!-- Bal amount: $200.29 -->

<DTASOF>199910291120</DTASOF><!-- Bal date: 10/29/99, 11:20
am -->

</LEDGERBAL> <l-- End ledger balance -->
<AVAILBAL> <!-- Available balance aggregate -->
<BALAMT>200.29</BALAMT><!-- Bal amount: $200.29 -->

<DTASOF>199910291120</DTASOF><!-- Bal date: 10/29/99, 11:20
am -->

</AVAILBAL> <l-- End available balance -->
</STMTRS> <!-- End statement response -->
</STMTTRNRS> <l-- End of transaction -->

</BANKMSGSRSV1>
</OFX> <l-- End of response data -->

11.14.2 Intrabank Funds Transfer

This example is for a customer who requests an immediate funds transfer of $200.00 from a checking
account to a savings account.

The request file:

<OFX> <l-- Begin request data -->
<SIGNONMSGSRQV1>
<SONRQ> <I-- ...Sign on request.

For a complete example,
see section 11.14.1-->

</SONRQ> <l-- End of sighon -->
</SIGNONMSGSRQV1>

OFX 2.0 Specification 6/30/00 265

<BANKMSGSRQV1>
<l-- Begin request -->

<INTRATRNRQ>

<TRNUID>1001</TRNUID> <!-- Client's ID for this request -->
<INTRARQ> <!-- Begin transfer request -->

<XFERINFO> <l-- Begin transfer aggregate -->
<BANKACCTFROM> <l-- Identify the account -->

<BANKID>121099999</Bé:\|II<II3D><!-- Routing transit or other
->

<ACCTID>999988</ACCTID><!-- Account number -->
<ACCTTYPE>CHECKING</ACCTTYPE><!-- Account type -->

</BANKACCTFROM> <l-- End of account ID -->
<BANKACCTTO> <I-- Identify the account -->

<BANKID>121099999</BANKID><!-- Routing transit or other
FI ID -->

<ACCTID>999977</ACCTID><!-- Account number -->
<ACCTTYPE>SAVINGS</ACCTTYPE><!-- Account type -->

</BANKACCTTO> <l-- End of account ID -->

<TRNAMT>200.00</TRNAMT><!-- Amount of transfer -->
</XFERINFO> <l-- End of transfer aggregate -->
<l-- End of transfer request -->

</INTRARQ>
</INTRATRNRQ> <I-- End request -->
</BANKMSGSRQV1>
</OFX> <I-- End of request data -->

The response file:
<I-- Begin response data -->

<OFX>
<SIGNONMSGSRSV1>
<SONRS> <I-- ...Signh on response.
For a complete example,
see section 11.14.1-->
</SONRS> <I-- End of signon -->

</SIGNONMSGSRSV1>

<BANKMSGSRSV1>
<INTRATRNRS> <l-- Begin response -->
<TRNUID>1001</TRNUID> <l-- Client ID sent in request -->
<STATUS> <I-- Start status aggregate -->
<CODE>0<CODE> <l-- OK -->
<SEVERITY>INFO</SEVERITY>
</STATUS>
<INTRARS> <!-- Begin transfer response -->
11.14 Examples

266

<CURDEF>USD</CURDEF>
<SRVRTID>1001</SRVRTID> <!-- Server assigned ID -->

<XFERINFO> <l-- Begin transfer aggregate -->
<BANKACCTFROM> <!-- Identify the account -->
<BANKID>121099999</Bé{\l||<lI)D><!—— Routing transit or other
-->

<ACCTID>999988</ACCTID><!-- Account number -->
<ACCTTYPE>CHECKING</ACCTTYPE><!-- Account type -->

</BANKACCTFROM> <l-- End of account ID -->
<BANKACCTTO> <l-- Identify the account -->
<BANKID>121099999</B|A:{\1I|<EI)D><!—— Routing transit or other
-->

<ACCTID>999977</ACCTID><!-- Account number -->
<ACCTTYPE>SAVINGS</ACCTTYPE><!-- Account type -->

</BANKACCTTO> <!-- End of account ID -->
<TRNAMT>200.00</TRNAMT><!-- Amount of transfer -->
</XFERINFO> <l-- End of transfer aggregate -->
date > <DTXFERPRJ>19990829100000</DTXFERPRJ><!-- Projected posting
ate --
</INTRARS> <I-- End of transfer response -->
</INTRATRNRS> <!-- End response -->
</BANKMSGSRSV1>
</OFX> <l-- End of response data -->

11.14.3 Stop Check

This example represents a customer who requests a stop for checks 200 through 202. The response
indicates that the first check (200) has already posted; the server has stopped the rest of the checks in the

range.

The request file:

<OFX> <!-- Begin request data -->
<SIGNONMSGSRQV1>
<SONRQ> <I-- ...Sign on request.

For a complete example,
see section 11.14.1-->

</SONRQ> <I-- End of signon -->
</SIGNONMSGSRQV1>

<BANKMSGSRQV1>
<STPCHKTRNRQ> <I-- Begin request -->
<TRNUID>1001</TRNUID> <l-- Client's ID for this request -->
<STPCHKRQ> <l-- Begin stop check request -->

OFX 2.0 Specification 6/30/00 267

<BANKACCTFROM> <l-- Identify the account -->

<BANKID>121099999</BANKID><!--F?olgting transit or other
-->

<ACCTID>999988</ACCTID><!-- Account number -->
<ACCTTYPE>CHECKING</ACCTTYPE><!-- Account type -->

</BANKACCTFROM> <l-- End of account ID -->
<CHKRANGE> <l-- Cancel a range of checks -->

<CHKNUMSTART>200</CHKNUMSTART><!-- Starting check number -->
<CHKNUMEND>202</CHKNUMEND><!-- Ending check number -->

</CHKRANGE> <l-- End range -->
</STPCHKRQ> <!-- End of stop check request -->
</STPCHKTRNRQ> <l-- End request -->
</BANKMSGSRQV1>

</OFX> <I-- End of request data -->

The response file:

<OFX> <!-- Begin response data -->
<SIGNONMSGSRSV1>
<SONRS> <I-- ...Signh on response.

For a complete example,
see section 11.14.1-->

</SONRS> <I-- End of signon -->
</SIGNONMSGSRSV1>

<BANKMSGSRSV1>
<STPCHKTRNRS> <I-- Begin response -->
<TRNUID>1001</TRNUID> <l-- Client ID sent in request -->
<STATUS> <I-- Begin status aggregate -->
<CODE>0<CODE> <l-- OK -->
<SEVERITY>INFO</SEVERITY>
</STATUS> <I-- End of status aggregate -->
<STPCHKRS> <!-- Begin stop check response -->
<CURDEF>USD</CURDEF>
<BANKACCTFROM> <!-- Identify the account -->
<BANKID>121099999</BANKID><!-- Routing transit or other

FI ID -->
<ACCTID>999988</ACCTID><!-- Account number -->
<ACCTTYPE>CHECKING</ACCTTYPE><!-- Account type -->

</BANKACCTFROM> <l-- End of account ID -->

<STPCHKNUM> <!I-- First stopped check -->
<CHECKNUM>200</CHECKNUM><!-- Check 200 -->
<CHKSTATUS>101</CHKSTATUS><!-- Too late - already posted -->

</STPCHKNUM> <l-- End of first stopped check -->

268 11.14 Examples

<STPCHKNUM> <!-- Second stopped check -->
<CHECKNUM>201</CHECKNUM><!-- Check 201 -->
<CHKSTATUS>0</CHKSTATUS><!-- OK -->

</STPCHKNUM> <l-- End of second stopped check -->

<STPCHKNUM> <!-- Third stopped check -->
<CHECKNUM>202</CHECKNUM><!-- Check 202 -->
<CHKSTATUS>0</CHKSTATUS><!-- OK -->

</STPCHKNUM> <l-- End of third stopped check -->

<FEE>10.00</FEE>

<FEEMSG>Fee for stop payment</FEEMST>

</STPCHKRS> <!-- End stop check response -->
</STPCHKTRNRS> <!-- End of transaction -->
</BANKMSGSRSV1>
</OFX> <l-- End of response data -->

OFX 2.0 Specification 6/30/00 269

11.14.4 Recurring Transfers

This example represents a customer who creates a transfer model and then cancels it. To follow the life of
the model (and the transfers it creates), the example includes sessions that occur over a two month period.

The model is added on November 1 and scheduled to start on November 15. The model creates transfers of
$1000 from a checking to a savings account. The schedule is open-ended.

Because requests within a message set are not guaranteed to be executed in order, the client initially sends
two request files: one to create the model and another to collect any transfers generated by the model. The
second request file contains a simple transfer synchronization request.

The client sends the file to create the model on November 1:

<OFX> <I-- Begin request data -->
<SIGNONMSGSRQV1>
<SONRQ> <l-- ..Sign on request.

For a complete example,
see section 11.14.1-->

</SONRQ> <l-- End of signon -->
</SIGNONMSGSRQV1>

<BANKMSGSRQV1>
<RECINTRATRNRQ> <!-- Begin request -->
<TRNUID>1001</TRNUID> <!-- Client's ID for this request -->
<RECINTRARQ> <I-- Begin request -->
<RECURRINST> <l-- Begin recurring aggregate -->
<FREQ>MONTHLY</FREQ> <!-- Monthly schedule -->
</RECURRINST> <!-- End recur aggregate -->
<INTRARQ>
<XFERINFO> <!-- Begin transfer aggregate -->
<BANKACCTFROM> <!-- Identify the account -->
<BANKID>121099999</BANKID><!-- Routing transit or other

FI ID -->
<ACCTID>999988</ACCTID><!-- Account number -->
<ACCTTYPE>CHECKING</ACCTYPE><!-- Account type -->
</BANKACCTFROM> <l-- End account ID -->

<BANKACCTTO> <!-- |dentify the account -->
<BANKID>121099999</Bé:\|l|<|:l)D><!-- Routing transit or other
-->

<ACCTID>999977</ACCTID><!-- Account number -->
<ACCTTYPE>SAVINGS</ACCTTYPE><!-- Account type -->
</BANKACCTTO> <l-- End of account ID -->
<TRNAMT>1000.00</TRNAMT><!-- Amount of transfer-->

270 11.14 Examples

<DTDUE>19991115</DTDUE><!-- First transfer - Nov.15 -->

</XFERINFO> <I-- End transfer aggregate -->
</INTRARQ>
</RECINTRARQ> <!-- End transfer request -->
</RECINTRATRNRQ> <l-- End request -->
</BANKMSGSRQV1>

</OFX>

The response file shows that the model has been successfully created:

<OFX> <l-- Begin response data -->
<SIGNONMSGSRSV1>
<SONRS> <l-- ...Sign on response.

For a complete example,
see section 11.14.1-->

</SONRS> <!-- End of signon -->
</SIGNONMSGSRSV1>

<BANKMSGSRSV1>
<RECINTRATRNRS> <I-- Begin response -->
<TRNUID>1001</TRNUID> <l-- Client ID sent in request -->
<STATUS> <I-- Start of status aggregate -->
<CODE>0</CODE> <l-- OK -->
<SEVERITY>INFO</SEVERITY>
</STATUS>
<RECINTRARS> <!-- Begin response -->
<RECSRVRTID>20000</RECSRVRTID><!-- Server assigned ID -->
<RECURRINST> <I-- Begin recurring aggregate -->
<FREQ>MONTHLY</FREQ> <!-- Monthly schedule -->
</RECURRINST> <!I-- End of recurring aggregate -->
<INTRARS>
<CURDEF>USD</CURDEF?
<SRVRTID>120000</SRVRTID>
<XFERINFO> <!-- Begin transfer aggregate -->
<BANKACCTFROM> <l-- Identify the account -->
<BANKID>121099999</BANKID><!-- Routing transit or other

FI ID -->
<ACCTID>999988</ACCTID><!-- Account number -->
<ACCTTYPE>CHECKING</ACCTTYPE><!-- Account type -->
</BANKACCTFROM> <l-- End of account ID -->

<BANKACCTTO> <!-- Identify the account -->
<BANKID>121099999</Bé:\”|<||3[)><!“ Routing transit or other
->

<ACCTID>999977</ACCTID><!-- Account number -->

OFX 2.0 Specification 6/30/00

271

<ACCTTYPE>SAVINGS</ACCTTYPE><!-- Account type -->
</BANKACCTTO> <l-- End of account ID -->
<TRNAMT>1000.00</TRNAMT><!-- Amount of transfer -->
<DTDUE>19991115</DTDUE><!-- First transfer - Nov. 15 -->

</XFERINFO> <!-- End of transfer aggregate -->
</INTRARS>
</RECINTRARS> <l-- End of response -->
</RECINTRATRNRS> <!-- End of response -->
</BANKMSGSRSV1>
</OFX> <l-- End of response data -->

The client sends the payment synchronization request later on November 1:

<OFX> <l-- Begin request data -->
<SIGNONMSGSRQV1>
<SONRQ> <I-- ...Sign on request.

For a complete example,
see section 11.14.1-->

</SONRQ> <l-- End of signon -->
</SIGNONMSGSRQV1>
<BANKMSGSRQV1>
<INTRASYNCRQ> <l-- Sync intrabank transfers -->
<TOKEN>0</TOKEN> <l-- Token held by client -->
<REJECTIFMISSING>N</REJECTIFMISSING>
<BANKACCTFROM> <l-- Identify the account -->

<BANKID>121099999</BANKID>
<ACCTID>999988</ACCTID>
<ACCTTYPE>CHECKING<ACCTTYPE>

</BANKACCTFROM>
</INTRASYNCRQ> <I-- End of sync request -->
</BANKMSGSRQV1>
</OFX> <l-- End of request data -->

Assuming that the server creates transfers 30 days prior to posting, the server returns status for one
pending transfer. This response comes back since the first transfer is scheduled to occur on November 15
and this date falls within 30 days of our session. Had the starting date been more than 30 days from our
signon date, the response would not have contained any pending transfers since the model would not have
generated any yet.

272 11.14 Examples

The response file from the server shows one pending transfer:

<OFX> <!-- Begin response data -->
<SIGNONMSGSRSV1>
<SONRQ> <l-- ...Sign on request.

For a complete example,
see section 11.14.1-->

</SONRQ> <!-- End of signon -->
</SIGNONMSGSRSV1>
<BANKMSGSRSV1>
<INTRASYNCRS> <l-- Sync intrabank transfers -->
<TOKEN>22243</TOKEN> <l-- Token updated -->
<BANKACCTFROM> <!-- Identify the account -->

<BANKID>121099999</BANKID>
<ACCTID>999988</ACCTID>
<ACCTTYPE>CHECKING</ACCTTYPE>

</BANKACCTFROM>
<INTRATRNRS> <l-- begin response -->
<TRNUID>0</TRNUID> <l-- Server generated, so 0-->
<STATUS> <I-- Success -->
<CODE>0</CODE> <l-- OK -->
<SEVERITY>INFO</SEVERITY>
</STATUS>
<INTRARS> <!-- Begin transfer response -->
<CURDEF>USD</CURDEF>
<SRVRTID>100100000</SRVRTID> <!-- Server assigned ID -->
<XFERINFO> <l-- Begin transfer aggregate -->
<BANKACCTFROM> <!I-- Identify the account -->

<BANKID>121099999</BANKID> <!-- Routing transit or
other FI ID -->

<ACCTID>999988</ACCTID> <!-- Account number -->

<ACCTTYPE>CHECKING</ACCTTYPE><!-- Account type -->
</BANKACCTFROM> <l-- End of account ID -->
<BANKACCTTO> <!-- Identify the account -->

<BANKID>121099999</BANKID> <!-- Routing transit or
other FI ID -->

<ACCTID>999977</ACCTID> <!-- Account number -->

<ACCTTYPE>SAVINGS</ACCTTYPE> <!-- Account type -->
</BANKACCTTO> <l-- End of account ID -->
<TRNAMT>1000.00</TRNAMT> <!-- Amount of transfer -->
</XFERINFO> <I-- End transfer aggregate -->

<DTXFERPRJ>19991115</DTXFERPRJ> <!-- Projected date of the
transfer -->

OFX 2.0 Specification 6/30/00

273

<RECSRVRTID>20000</RECSRVRTID> <!-- Model that created this

xfer -->
</INTRARS> <!-- End of transfer response -->
</INTRATRNRS> <l-- End of response -->
</INTRASYNCRS> <l-- End of sync response -->
</BANKMSGSRSV1>
</OFX> <!-- End of response data -->

Suppose the customer does not attempt to connect between November 16 and January 1. When the
customer does attempt to connect, it is to cancel the recurring transfer model. The client also sets the
<CANPENDING> flag, causing any pending transfers to be immediately cancelled as well. In order to get
all synchronization information (since requests are not guaranteed to be executed in order), the client sends
two request files, the first to cancel the model and the next to retrieve all transfer activity. This time, the
recurring request is wrapped in synchronization wrappers. It should be assumed that the token below was
received in a previous RECPMTSYNCRS. (The use of synchronization wrappers in requests is entirely up
to the client. Both ways are shown here for explanatory purposes.)

274 11.14 Examples

The request file:

<OFX>
<SIGNONMSGSRQV1>
<SONRQ>

</SONRQ>
</SIGNONMSGSRQV1>

<BANKMSGSRQV1>
<RECINTRASYNCRQ>
<TOKEN>324789987</TOKEN>

<!-- Begin request data -->

<l-- ...Sign on request.
For a complete example,
see section 11.14.1-->

<!-- End of signon -->

<I-- Sync recurring transfers -->
<l-- Token held by the client -->

<REJECTIFMISSING>Y</REJECTIFMISSING><!-- Cancel only if up to

date -->
<BANKACCTFROM>

<BANKID>121099999</BANKID>

<ACCTID>99998</ACCTID>

<ACCTTYPE>CHECKING</ACCTTYPE>

</BANKACCTFROM>

<RECINTRATRNRQ>
<TRNUID>1005</TRNUID>
<RECINTRACANRQ>

<l-- Begin request -->

<I-- Client's ID for this request -->

<l-- Begin recur transfer cancel -->

<RECSRVRTID>20000</RECSRVRTID><!-- ID of the model -->
<CANPENDING>Y</CANPENDING><!-- Cancel pending transfers -->

</RECINTRACANRQ>
</RECINTRATRNRQ>
</RECINTRASYNCRQ>
</BANKMSGSRQV1>
</OFX>

The response file:

<OFX>
<SIGNONMSGSRSV1>
<SONRS>

</SONRS>
</SIGNONMSGSRSV1>

<BANKMSGSRSV1>
<RECINTRASYNCRS>
<TOKEN>324789988</TOKEN

<l-- End request -->
<l-- End request -->
<l-- End of sync request -->

<I-- End of request data -->

<!-- Begin response data -->

<l-- ..Sign on response.
For a complete example,
see section 11.14.1-->

<l-- End of signhon -->

<l-- Sync response -->
<!-- New token -->

OFX 2.0 Specification

6/30/00

275

<BANKACCTFROM>
<BANKID>121099999</BANKID>
<ACCTID>99998</ACCTID>
<ACCTTYPE>CHECKING</ACCTTYPE>

</BANKACCTFROM>
<RECINTRATRNRS> <l-- Begin response -->
<TRNUID>1005</TRNUID> <l-- Client ID sent in request -->
<STATUS> <l-- Start of status aggregate -->
<CODE>0</CODE> <l-- OK -->
<SEVERITY>INFO</SEVERITY>
</STATUS>
<RECINTRACANRS> <l-- Begin cancel model -->

<RECSRVRTID>20000</RECSRVRTID><!-- Model that was canceled -

->
<CANPENDING>Y</CANPENDING>

</RECINTRACANRS> <l-- End of cancel model -->
</RECINTRATRNRS> <I-- End response -->
</RECINTRASYNCRS> <l-- End sync response -->
</BANKMSGSRSV1>
</OFX> <!-- End response -->

Next request file:

<OFX> <l-- Begin request data -->
<SIGNONMSGSRQV1>
<SONRQ> <I-- ...Sign on request.

For a complete example,
see section 11.14.1-->

</SONRQ> <I-- End of signon -->
</SIGNONMSGSRQV1>
<BANKMSGSRQV1>
<INTRASYNCRQ> <l-- Sync intrabank transfers -->
<TOKEN>22243</TOKEN> <I-- Token held by the client -->
<REJECTIFMISSING>N</REJECTIFMISSING>
<BANKACCTFROM>

<BANKID>121099999</BANKID>
<ACCTID>99998</ACCTID>
<ACCTTYPE>CHECKING</ACCTTYPE>

</BANKACCTFROM>
</INTRASYNCRQ> <l-- End of sync request -->
</BANKMSGSRQV1>
</OFX> <!-- End of request data -->
276 11.14 Examples

Since the customer last connected, the November 15 transfer has posted, the December 15 transfer has
been scheduled, the December 15 transfer has posted and a transfer has been scheduled for January 15. The
response file shows these four transfer responses and the cancellation response for the January 15 transfer.
Note that servers are not required to show the post of transfers via a transfer modification response in the
sync. Alternatively, a client may need to note that the transfer happened in a subsequent statement
download.

The response file:

<OFX> <!-- Begin response data -->
<SIGNONMSGSRSV1>
<SONRS> <l-- ...Sign on response.

For a complete example,
see section 11.14.1-->

</SONRS> <!-- End of signon -->
</SIGNONMSGSRSV1>
<BANKMSGSRSV1>
<INTRASYNCRS>
<TOKEN>22244</TOKEN> <l-- New token -->
<BANKACCTFROM>
<BANKID>121099999</BANKID>
<ACCTID>99998</ACCTID>
<ACCTTYPE>CHECKING</ACCTTYPE>

</BANKACCTFROM>
<INTRATRNRS> <l— 11/15 post -->
<TRNUID>0</TRNUID> <l—- Server generated, so 0 -->
<STATUS>
<CODE>0</CODE> <l-- OK -->
<SEVERITY>INFO
</STATUS>
<INTRAMODRS> <I-- This is the Nov. 15 post -->
<SRVRTID>100100000</SRVRTID><!-- Server assigned ID -->
<XFERINFO> <!-- Begin transfer aggregate -->
<BANKACCTFROM> <!-- Identify the account -->
<BANKID>121099999</BANKID><!-- Routing transit or other

FI ID -->
<ACCTID>999988</ACCTID><!-- Account number -->
<ACCTTYPE>CHECKING</ACCTTYPE><!-- Account type -->
</BANKACCTFROM> <l-- End of account ID -->

<BANKACCTTO> <!-- Identify the account -->
<BANKID>121O99999</Bé:\III<IIDD><!—— Routing transit or other
-—->

<ACCTID>999977</ACCTID><!-- Account number -->
<ACCTTYPE>SAVINGS</ACCTTYPE><!-- Account type -->

OFX 2.0 Specification 6/30/00 277

</BANKACCTTO> <!-- End of account ID -->
<TRNAMT>1000.00</TRNAMT><!-- Amount of transfer -->
</XFERINFO> <!-- End of transfer aggregate -->
<XFERPRCSTS> <l-- Status of transfer -->
<XFERPRCCODE>POSTEDON</XFERPRCCODE><!-- Status code -->
<DTXFERPRC>19991115</DTXFERPRC<!-- Date transfer was

posted -->
</XFERPRCSTS> <l-- End of transfer status -->
</INTRAMODRS> <l-- End of Nov. 15 post -->
</INTRATRNRS> <!-- End of response -->
<INTRATRNRS> <I--12/15 pending transfer -->
<TRNUID>0</TRNUID>
<STATUS> <!-- Success -->
<CODE>0</CODE> <l-- OK -->
<SEVERITY>INFO</SEVERITY>
</STATUS>
<INTRARS> <l-- This is the Dec. 15 pending -->
<CURDEF>USD</CURDEF>
<SRVRTID>112233</SRVRTID> <!-- Server assigned ID -->
<XFERINFO> <I-- Begin transfer aggregate -->
<BANKACCTFROM> <l-- Identify the account -->
<BANKID>121099999</BéINI|<[I)D><>!—— Routing transit or other
<ACCTID>999988</ACCTID> <!-- Account number -->
<ACCTTYPE>CHECKING</ACCTTYPE><!-- Account type -->
</BANKACCTFROM> <!-- End of account ID -->
<BANKACCTTO> <l-- Identify the account -->
<BANKID>121099999</BéINI|<[I)D><>!—— Routing transit or other
<ACCTID>999977</ACCTID> <!-- Account number -->
<ACCTTYPE>SAVINGS</ACCTTYPE><!-- Account type -->
</BANKACCTTO> <l-- End of account ID -->
<TRNAMT>1000.00</TRNAMT> <!-- Amount of transfer -->
</XFERINFO> <I-- End of transfer aggregate -->
<DTXFERPRJ>19991215</DTXFERPRJ> <!-- Projected date of the
transfer -->
<RECSRVRTID>20000</RECSRVRTID> <!-- Model -->
</INTRARS> <l-- End of Dec. 15 pending -->
</INTRATRNRS> <I-- End response -->
<INTRATRNRS> <l-- 12/15 post -->
<TRNUID>0</TRNUID> <l-- Client ID sent in request -->

278 11.14 Examples

<STATUS>

<CODE>0</CODE> <l-- OK -->
<SEVERITY>INFO

</STATUS>

<INTRAMODRS> <l-- This is the Dec. 15 post -->
<SRVRTID>112233</SRVRTID><!-- Server assigned ID -->
<XFERINFO> <l-- Begin transfer aggregate -->

<BANKACCTFROM> <l-- Identify the account -->
<BANKID>121O99999</Bé:\III<IIDD><>!—— Routing transit or other

<ACCTID>999988</ACCTID><!-- Account number -->
<ACCTTYPE>CHECKING</ACCTTYPE><!-- Account type -->

</BANKACCTFROM> <!-- End of account ID -->
<BANKACCTTO> <l-- Identify the account -->
<BANKID>121099999</A|C:)|C'|IB'YPE><!—— Routing transit or other
-->

<ACCTID>999977</ACCTID><!-- Account number -->
<ACCTTYPE>SAVINGS</ACCTTYPE><!-- Account type -->

</BANKACCTTO> <l-- End of account ID -->

<TRNAMT>1000.00</TRNAMT><!-- Amount of transfer -->
</XFERINFO> <l-- End of transfer aggregate -->
<XFERPRCSTS> <I-- Status of transfer -->

<XFERPRCCODE>POSTEDON</XFERPRCCODE><!-- Status code -->
<DTXFERPRC>19991215</DTXFERPRC><I!-- Date transfer was posted

</XFERPRCSTS> <!-- End of transfer status -->
</INTRAMODRS> <!-- End of Dec. 15 post -->
</INTRATRNRS> <l-- End of response -->
<INTRATRNRS> <I—This is the 1/15 pending -->
<TRNUID>0</TRNUID> <l-- Client ID sent in request -->
<STATUS>
<CODE>0</CODE> <l-- OK -->
<SEVERITY>INFO</SEVERITY>
</STATUS>
<INTRARS> <!-- This is the Jan. 15 pending -->
<CURDEF>USD</CURDEF>
<SRVRTID>112255</SRVRTID><!-- Server assigned ID -->
<XFERINFO> <l-- Begin transfer aggregate -->
<BANKACCTFROM> <!I-- Identify the account -->
<BANKID>121099999</B,'6:\I\II|<[I)D><!-- Routing transit or other
-—->

<ACCTID>999988</ACCTID><!-- Account number -->

OFX 2.0 Specification 6/30/00

279

<ACCTTYPE>CHECKING</ACCTTYPE><!-- Account type -->

</BANKACCTFROM> <l-- End of account ID -->
<BANKACCTTO> <!-- |dentify the account -->
<BANKID>121099999</B|A:||\”|<||3D><!“ Routing transit or other
-->

<ACCTID>999977</ACCTID><!-- Account number -->
<ACCTTYPE>SAVINGS</ACCTTYPE><!-- Account type -->

</BANKACCTTO> <l-- End of account ID -->
<TRNAMT>1000.00</TRNAMT><!-- Amount of transfer -->
</XFERINFO> <l-- End of transfer aggregate -->

<DTXFERPRJ>19990115</DTXFERPRJ><!-- Projected date of transfer

<RECSRVRTID>20000</RECSRVRTID><!-- Model -->

</INTRARS> <I-- End of Jan. 15 pending -->
</INTRATRNRS> <l-- Cancellation of 1/15 pending-->
<INTRATRNRS> <I-- response -->
<TRNUID>0</TRNUID> <I-- Client ID sent in this
request -->
<STATUS>
<CODE>0</CODE> <l-- OK -->
<SEVERITY>INFO</SEVERITY>
</STATUS>
<INTRACANRS> <!-- This is the Jan. 15 cancel -->
<SRVRTID>11225</SRVRTID> <!-- Server ID for Jan. 15 xfer -->
</INTRACANRS> <l-- End of Jan. 15 cancel -->
</INTRATRNRS> <I-- End of response -->
</INTRASYNCRS> <l-- End of sync response -->
</BANKMSGSRSV1>
</OFX> <l-- End of response -->

280 11.14 Examples

CHAPTER 12 PAYMENTS

This section describes the Payments portion of OFX. OFX Payments consists of a set of functions for
scheduling and maintaining payment transactions, and for synchronizing with the server to obtain an
accurate status of all recent and scheduled transactions.

Clients use payment requests to schedule payments and to modify or delete payments if necessary. OFX
also supports business payments, as described in saétibn

The recurring payments function allows the client to schedule automatic generation of a series of recurring
payments by means of a single request. As with individual payments, the client can modify or delete these
requests.

The payments function incorporates the synchronization features of OFX, allowing multiple client
applications to synchronize with the server to obtain the current status of all payment transactions known
to the server.

In many international environments, payments are performed using interbank funds transfers. OFX
Payments supports this by allowing a payee to be designated as a destination bank account. Servers can
implement these messages as transfers where appropriate.

12.1 Consumer and Business Payments

OFX Payments is designed to support both consumer and business payments. Businesses have additional
requirements for payments. In particular, there is a need to include itemized instructions that specify how a
payment should be disbursed across multiple invoices and/or line items. OFX supports this requirement
through the inclusion of the <EXTDPMT> aggregate within payment requests. The Payment Maodification
Request <PMTMODRQ> also supports changes to <EXTDPMT> data.

12.2 The Payee Model

The payee model in OFX is designed to provide support for both “pay-some” and “pay-any” payment
systems. “Pay-some” systems are those that restrict users to only make payments to payees that appear on
an approved list. Such payees are often referred to as “standard payees,” or “standard merchants.” These
are generally larger corporations that receive high volumes of payments, such as telephone companies or
power utilities. In contrast,pay-any” systems allow payments to any payee for which the user provides
accurate billing information. These systems often also include a list of standard payees.

12.2.1 Payee Identifiers

OFX is designed to be flexible in the requirements for payee identifiers. It supports systems where all,
some, or no payees are assigned a payee ID. In addition, it enables the server to assign an ID to a payee that
was previously being paid by billing address.

OFX 2.0 Specification 6/30/00 281

You must implement the scope of payee such that the ID is at least global across the user’s set of payments-
enabled accounts with the payments provider. For example, if the user has both a checking and a money
market account enabled for payments with the payments provider, then a payee ID obtained for a payment
made from one of these accounts should identify the same payee if used for a payment drawn on the other
account. This simplifies client support for allowing a user to choose from which account to make a
payment.

OFX requires payee identifiers to have a one-to-one relationship with the corresponding <PAYEE>
information. In other words, different payee IDs must also differ in their corresponding payee billing
description or payee name <NAME>. Similarly, a payee ID must be independent of a user’s account
number with the payee. However, the payment system is free to use the user’s account number in
combination with the payee ID to determine the routing of a payment. These rules are intended to simplify
the payee model for the user, insuring that different payee IDs will have discernibly different descriptions
associated with them. They also insure that the user will not be required to maintain multiple payee entries
for a payee with which the user holds multiple accounts.

OFX includes an element for indicating the scope of a payee ID returned from the server. This allows
clients to adapt by expanding or restricting their functionality depending on the scope of payee IDs it
encounters.

A payee list for each user, maintained on the server, allows the server to manage the identifiers assigned to
a user’s payees. This functionality is described in sectivn.2

12.2.2 Payee Lists

OFX specifies that a server-hosted payee list is maintained for each payments user. This list contains the
payees that a user has paid through the payment system, or has set up to pay. Updates to this list are
available through the synchronization mechanism. This insures that multiple clients have access to the full
list of payees the user has configured. It is only necessary to enter each payee once.

Some payment systems require a first time setup before using a payee. This can occur externally to the
client and server software, for example by filling out a paper form or telephoning the bank. In this case,
payee list synchronization provides a way for the payee to become accessible to the client software when
the Fl completes the setup.

The list can contain payees with or without payee IDs. An important function of the payee listis to
communicate payee changes from the server to the client. This includes changes in processing date
parameters and conversion of a payee to a standard payee.

Once added to the list, the payment system makes payments by the payee list ID. This makes it clear to a
client when the user is adding to a payee list, and when he or she modifies an existing payee on the list.

Although the messages make it clear whether a client is trying to add a new payee, a careful server will
check for exact matches on payee adds and not create new payee list entries unnecessarily.

282 12.2 The Payee Model

“Pay-any” systems can perform background processing that matches billing addresses with standard
payees. When this occurs, the server can update the relevant payee lists and update the clients when they
synchronize with the modified list data.

Each payee entry in the list can also include a list of the user’s accounts with that payee. This further
reduces the data entry required by a user to make a payment, and facilitates the implementation of
lightweight clients.

For a single account, it is important that references to a payee by <PAYEELSTID> do not resolve to
different physical payees even if the account is being used by more than one user. The same
<PAYEELSTID> must map to the same corresponding payee billing descrigtidpayee name

<NAME>. For example, <PAYEELSTID>12345 may be used for ABC Rentals for one user of a single
account. If the same account is used for a second user, <PAYEELSTID>12345 cannot be used for XYZ
Supplies.

12.2.3 Standard Payee Lists

Many payment systems maintain a list of payees that receive payments from a large number of users.
Payments to these payees are usually consolidated into a few electronic funds transfers or are mailed in
large batches to the payee. Payees that receive this special processing are generally referred to as standard
payees. In a “pay-some” system, all the approved payees can be considered to be standard payees. When a
user pays a standard payee, there might be different processing lead-times used to calculate the payment
and/or processing date of a payment.

When a payment system includes a standard payee list, it might be desirable to present the list to the user,
who can then select payees he or she wants to pay. Unfortunately, it is cumbersome to provide this
functionality in the client software due to the potential size of this list, which makes it problematic to keep
updated and to present to the user. While the list can contain thousands of payee entries, a user will
typically need less than ten or twenty entries from the list. It can also be difficult for a user to choose the
correct payee entry when the list contains a number of similarly named payees.

Therefore, OFX does not provide a mechanism for delivering these lists to the client. However, there are
several ways that an external presentation of such a list can be integrated into the client or server. For
example, a payment provider’s Web site could present a search engine that assists the user to locate the
correct payee. Once identified, the payees can either be imported into the client, or inserted into the user’s
payee list on the server. In the latter case, synchronizing the payee list will make the newly added payees
visible to the client.

12.2.4 ldentifying Payees

Payees can be identified in several ways:

OFX 2.0 Specification 6/30/00 283

¢ Name and address, by means of <PAYEE>, must be identified only once for each payee. Thereatfter,
clients must use the assigned <PAYEELSTID> and, if assigned, <PAYEEID>. If the clients send both
<PAYEE> and <PAYEELSTID> in a <PMTRQ>, <PMTMODRQ>, <RECPMTRQ>, or
<RECPMTMODRQ>, the client is making an implicit payee modification request.
In <BILLPAYMSGSRSV1>, the server must return a <PAYEEMODRS> in a subsequent
<PAYEESYNCRS> for all actual changes. This is not necessary (though still allowed) if no change
were made.

If a client sends just <PAYEE> in a <PMTRQ> or <RECPMTRQ>, the client is making an implicit
payee add request. (Clients must include the known <PAYEELSTID> in a <PMTMODRQ> or
<RECPMTMODRQ>.) For more information about implicit payee adds and modifications, see section
12.2.5

¢ Destination bank account <BANKACCTTO> should be done only once for each payee. Thereatfter,
clients should use the assigned <PAYEELSTID> or <PAYEEID>, as with name and address payees.
The <PAYEE> aggregate is required to provide name and address information as a backup to account
transfers.

¢ Payee list ID <PAYEELSTID> after a payee has been added to the list.

Note: Duplicate payee list entries can occur if clients are not careful to send the payee list ID
in subsequent requests.

¢ Standard payee ID <PAYEEID> for any payee that has been assigned a standard payee ID. This could
happen before a closed system makes any payments, or anytime after the server has notified the client
that a payee has a standard payee ID. If a <PAYEELSTID> also exists for the payee, it is required in the
request and response, in addition to the <PAYEEID>.

Note: Servers must always assign <PAYEELSTID>s to payees. Once <PAYEELSTID>s have
been assigned, clients must always send the <PAYEELSTID>, even if a payee has both a
<PAYEEID> and a <PAYEELSTID>.

284 12.2 The Payee Model

12.2.5 Side Effects of Payee Adds and Modifications

Payees are added either implicitly or explicitly. Explicit adds occur by executing a <PAYEERQ>. Implicit
payee adds occur with the execution of a <PMTRQ> or <RECPMTRQ> where a payee list ID is not sent
with the request. (Thus, duplicate payee list entries can occur if clients are not careful to send the payee list
ID if itis known.) In the case of an implicit payee add, a server must create and store a <PAYEERS> to be
returned to the client in subsequent payee synchronization responses. Since the change was not generated
by an explicit request, the <TRNUID> in this response would be zero.

Payees are modified either implicitly or explicitly. Explicit changes occur by executing a
<PAYEEMODRQ>. Implicit payee changes occur with the execution of a <PMTRQ>, <PMTMODRQ>,
<RECPMTRQ>, or <RECPMTMODRQ>, if the payee list ID is sent along with the payee aggregate. In
<BILLPAYMSGSETV1>, a <PAYEE> aggregate must accompany these requests. In such cases, since the
<PAYEELSTID> is present, a server may check to see if the payee information has changed, and only if
S0, process an implicit payee modification. An implicit payee change must cause the server to create and
store a <PAYEEMODRS>, to be returned to the client in subsequent payee synchronization responses.
Since the change was not generated by an explicit request, the <TRNUID> in these responses will be zero.

In addition to the above, a payee change (implicit or otherwise) may also affect models and their future
(though not pending) payments. Thus, for any model that is affected by an explicit or implicit payee
modification, the server must create and store a <RECPMTMODRS>, to be returned to the client in
subsequent recurring payment synchronization responses. The <TRNUID> in this response will be zero.

12.3 Identifiers Used in Payment Transactions

Payment transactions use four types of identifiers. It is important to understand the purpose, scope, and life
span of these identifiers.

The client-to-request messages assign the Transaction Universal Identifier <TRNUID>. Its purpose is to
allow the client to easily match responses from the server to their corresponding requests. A given
transaction ID is used only for a client request and the corresponding server response.

The Server Identifier, <SRVRTID> or <RECSRVRTID>, is assigned by the server to a payment “object,”
which can either be a payment or a recurring payment model (in which case it is named
<RECSRVRTID>). Both the client and server use the ID thereafter to refer to the payment or model in any
transactions that operate on them. For example, the <SRVRTID> is used to identify a payment in a request
to modify or cancel it. The <SRVRTID> is valid for the life span of the payment within the payment
system. Similarly the <RECSRVRTID> is valid as long as the associated model exists, that is until the
model generates all payments, or the model is canceled. Once a server processes a payment or a model
generates all its required payments, the associated <SRVRTID> (or <RECSRVRTID>) is no longer known
to the server. Note that the payment system might continue to maintain knowledge of a payment
<SRVRTID> or model <RECSRVRTID> for some specified period after it completes processing. This
allows clients to access the “completed” status of these operations.

OFX 2.0 Specification 6/30/00 285

A payment system can assign the Payee Identifier <PAYEEID> to a payee. There is no requirement that all
or any payees are assigned a <PAYEEID>. The usage of this identifier will vary by payment system. For
example, in “pay-some” systems usually every payee has a payee ID with a scope that is known globally,
while in “pay-any” systems there might only be <PAYEEID>s assigned to standard payees. When a payee
has an assigned <PAYEEID>, the life span of the ID will depend on its scope. If the scope is global, such
as for payees in some “pay-some” systems or those with standard payees, then the <PAYEEID> is
expected to be valid as long as that payee is identifiable by ID. If the payee ID is user-specific in scope,
then the <PAYEEID> is valid as long as the payee appears in the user’s server-hosted payee list.

The Payee List Identifier <PAYEELSTID> is assigned by the server to each entry in a user’s server-hosted
payee list. The need for this identifier is to support the variety of payee models employed in various
payment systems. As discussed above, some payment systems assign a payee identifier <PAYEEID> to
every payee (this is particularly the case with pay-some systems); others assign <PAYEEID>s only to
standard payees. There are also systems that cannot map a payee billing address to a <PAYEEID> in real
time. Also, there are systems that can convert a payee from a standard payee with an assigned <PAYEEID>
to one that is identified only by billing address. Therefore, systems employ the <PAYEELSTID> to insure
that, in systems where payees will not always have a <PAYEEID>, there is another identifier that can be
used to reference every payee. This insures that a client can correctly link payments to their payees. The
<PAYEELSTID> must be valid as long as the user’s payee list includes the payee it identifies, even if the
server subsequently assigns a <PAYEEID> to the payee. In order to ensure that <PAYEELSTID>s are
unambiguous to the client, <PAYEELSTID> must be unique for all classes of a particular <SPNAME> and
<USERID>. Therefore, a given payment provider may use <PAYEELSTID>12345 to refer to ABC

Rentals for one <USERID>, and XYZ Cable for a different <USERID>. Likewise, a client cannot assume
that <PAYEELSTID>54321 at payment provider 1 will refer to the same payee as <PAYEELSTID>54321
at payment provider 2.

Note: If a service provider allows the sharing of accounts between users, the scope of
<PAYEELSTID> must be stricter than that described above. For a single account it is
important that references to a payee by <PAYEELSTID> do not resolve to more than one
physical payee. The same <PAYEELSTID> must map to the same corresponding payee billing
description and payee name <NAME>. For example, <PAYEELSTID>12345 may be used for
ABC Rentals for one user of an account. It the same account is used for a second user,
<PAYEELSTID>12345 cannot be used for XYZ Supplies.

286 12.3 Identifiers Used in Payment Transactions

12.4 The Payment Life Cycle

12.4.1 Payment Creation

The client formulates a <PMTRQ> that includes the payee, the date, the amount of the payment, the
funding account, and the user’s account number with the payee. If supported by the user’s payment system,
the billing address can specify the payee.

The server will look up the payee in the user’s payee list. If it is not already in the table, the server will add
it and issue a payee list identifier <PAYEELSTID>. This form of payment request performs an implicit
Payee Request <PAYEERQ>, which is equivalent to explicitly adding the payee (by means of a
<PAYEERQ>), prior to issuing the <PMTRQ>. It has the advantage of being atomic. If the payment
request fails, the payee is not added to the user’s payee list. Conversely the payment request will fail if the
payee information is invalid.

The server responds to the <PMTRQ> with a Payment Response <PMTRS>. Some servers will not be able
to immediately return a payee ID at this point, or might not issue payee IDs for all payees. Therefore the
<PAYEELSTID> contained in the response functions as the linkage between the payee and the payment.
Payment systems use the <SRVRTID> returned in the <PMTRS> to identify the payment for the length of
its instantiation on the payment system.

Note: Servers should generate explicit responses to implicit requests. In other words, implicit
payee additions or modifications resulting from a new or changed payment should generate
explicit payee add or payee change responses from the server. Such explicit responses are only
returned to the client in a SYNC response. If the payment transactions containing implicit

payee additions or maodifications fail, then the payee actions are not executed, since such a
compound payment transaction represents a single unit of work (comprised of both payee and
payment actions).

12.4.2 Payment Modification

Between the time the client schedules a payment and the time the server processes the payment, the client
can request changes to the parameters of that payment. For example, the amount or date of the payment
can be modified. The system uses the Payment Modification Request <PMTMODRQ> for this purpose,
where the <SRVRTID> from the <PMTRS> identifies the targeted payment. The user request must specify
the full contents of the payment request, including both modified and unmodified data.

Full-featured servers will use <PMTMODRS> messages, conveyed to the client during synchronization
<PMTSYNCRS>, to inform the client about changes in the state of the client that occur due to server
processing. This would include reporting the date the server actually processed a payment, or it failed due
to insufficient funds. Servers that are unable to generate <PMTMODRS> responses for this purpose must
support the <PMTINQRQ> message described below.

OFX 2.0 Specification 6/30/00 287

12.4.3 Payment Status Inquiry

As a scheduled payment progresses through its “life-cycle” on the server, the processing status changes
accordingly from “scheduled to be processed” to “was processed” or “failed processing.” A processing
date is associated with these states. The preferred method for providing updated processing status to a
clientis by use of server-generated Payment Modification messages <PMTMODRS>, as discussed above.
However it is possible that less full-featured servers might have difficulty in implementing this form of
notification. In this case, OFX requires such servers to implement the Payment Status Inquiry message
<PMTINQRQ>, which provides an interface for the client to explicitly request the processing status of
individual payments.

12.4.4 Payment Cancellation

In the interval between successful processing of a <PMTRQ> and the actual processing of the payment,
the client can cancel the payment by issuing a Payment Cancellation Request <PMTCANCRQ>. The
<SRVRTID> value returned in <PMTRS> identifies the payment.

When a payment system cancels a payment, servers can generate a <PMTCANCRS>. This might occur if
the user requests payment cancellation by way of a telephone call to customer support or through an e-mail
message. The client will receive this response when performing a payment synchronization
<PMTSYNCRQ>/<PMTSYNCRS>.

12.4.5 Delayed Payee Matching

Payment systems that allow payment by payee billing address often perform a matching operation to
determine if the payee is a standard payee. If this matching occurs in the processing of a <PMTRQ>, and
the server recognizes the payee as a standard one, then the server returns the payee ID and payment
parameters in the <EXTDPAYEE> aggregate of the <PMTRS>. However some payment systems will not
be able to perform “payee matching” at this point in processing. In this case, the server sends updated
payee information to the client by using <PAYEESYNCRS> to synchronize the payee list. The client can
link payee information in the <PAYEESYNCRS> messages to payments with matching <PAYEELSTID>
identifiers.

288 12.4 The Payment Life Cycle

12.5 Common Payments Aggregates

This section documents several aggregates used throughout the Payments portion of the OFX
specification.

12.5.1 Payments Account Information <BPACCTINFO>

OFX uses the payments account information aggregate to download account information from an FI. It
includes account number specification in <BANKACCTFROM> as well as the status of the service. In
OFX, Banking and Payments share the <BANKACCTFROM> aggregate to identify a specific account.
For more information, see sectian.3.1

Tag Description

<BPACCTINFO> Payments-account-information aggregate
<BANKACCTFROM> Bank-account-from aggregate, see section 11.3.1
</BANKACCTFROM>
<SVCSTATUS> Status of the account

AVAIL = Available, but not yet requested
PEND = Requested, but not yet available
ACTIVE = In use

</BPACCTINFO>

OFX 2.0 Specification 6/30/00 289

12.5.2 Payment Information <PMTINFO>

The Payment Information aggregate is used to specify detailed payment information. It is used for both
single payments and recurring payments. Clients must send the <PAYEELSTID> and <PAYEEID> if
known. Clients send a <PAYEE> aggregate if this is an implicit payee add or modify. See gecfidon
identifying payees, above. The <EXTDPMT> aggregate (see ser2i6r.9 allows the inclusion of
disbursement instructions to be printed with the payment. This aggregate is optional.

In the case of an implicit add, the returned <PMTINFO> aggregate found in <PMTRS> and
<RECPMTRS> must include the generated <PAYEELSTID>. This aggregate may also include

<EXTDPMT> information.

The <DTDUE> in a response may have been adjusted by a server. For example, the server may adjust
<DTDUE> to comply with non-processing days. If a client sends a request to make a transfer on July 4 and
July 4 happens to be a non-processing day, the <DTDUE> in the response may be July 4 (because the
server hasn't adjusted it yet), July 5 (because this server rolls dates forward), or some other date.

Tag

<PMTINFO>
<BANKACCTFROM>
</BANKACCTFROM>

<TRNAMT>

Specify payee; either
<PAYEEID> or <PAYEE>.

<PAYEEID>

<PAYEE>

</PAYEE>

<PAYEELSTID>

<BANKACCTTO>

</BANKACCTTO>

<EXTDPMT>

Description

Account-from aggregate, see section 11.3.1

Payment amoungmount

This amount should be specified as a positive number

Server payee identifier (required if assigned). Either <PAYEEID> or <PAYEE>
be sent, but not bott-12

Complete payee billing information, see section 12.5.2.1
Either <PAYEEID> or <PAYEE> can be sent, but not both.

Payee list ID (required if assignedy;12

Destination account (see section 11)3nformation for systems that pay by
transfers (<PAYEE> also required)

Zero or more extended Payment aggregates, see section 12.5.2.2

Note: Although PMTINFO allows multiple occurrences of EXTDPMT, it is
recommended that multiple invoices be expressed using multiple occurrences
INVOICE aggregate. This usage will correspond with the requirements of
PMTINFO?2.

can

of the

290

12.5 Common Payments Aggregates

Tag Description

</EXTDPMT>

<PAYACCT> User account number with the payde32

<DTDUE> Payment due date or the date by which payment must be received by payee,
datetime

<MEMO> Memo from user to payeepemo

<BILLREFINFO> Biller-supplied reference information when paying a bill, if availale80
Note: If the client user interface has a single field that can contain either freet
form memo text or a structured reference number, then the contents of that field
should be passed in the <MEMO> element rather than the <BILLREFINFO>
element.

</PMTINFO>

OFX 2.0 Specification 6/30/00 291

12.5.2.1 Payee <PAYEE>,

<PAYEE> specifies a complete billing address for a payee.

Tag Description
<PAYEE>
<NAME> Name of payeeA-32
<ADDR1> Payee’s address line A;32
<ADDR2> Payee’s address line &;32
<ADDR3> Payee’s address line 3. Use of <ADDR3> requires the presence of <ADDR22,
<CITY> Payee’s cityA-32
<STATE> Payee’s statei\-5
<POSTALCODE> | Payee’s postal codé-11
<COUNTRY> Payee’s country; 3-letter country code from ISO/DIS-3166
<PHONE> Payee’s telephone numb@ér32
</PAYEE>

292 12.5 Common Payments Aggregates

12.5.2.2 Extended Payment <EXTDPMT>

The Extended Payment aggregate provides the payee with information for applying a payment across
multiple invoices. Itis structured to allow for electronic processing of the invoice data, and allows multiple

invoices, as well as multiple line items per invoice, to be specified.

In this case, <EXTDPMT> can specify a block of free text to be transmitted with the payment, by using the
<EXTDPMTDSC> instead of the <EXTDPMTINV> element.

Tag Description
<EXTDPMT> Extended Payment aggregate
<EXTDPMTFOR> INDIVIDUAL or BUSINESS. Indicates whether the payment is for an individyal

or business account. This allows the payment processor to remit payments to the
appropriate address for consumers or businesses.

<EXTDPMTCHK> Check number to use for this payment. Overrides “next check in rahy&0

Payment description. At least
one of the following:
<EXTDPMTDSC>, or
<EXTDPMTINV>.

<EXTDPMTDSC> Free text to communicate with the payme&t255
<EXTDPMTINV>
<INVOICE> One or more invoice aggregates. See section 12.5.2.3
</INVOICE>

</[EXTDPMTINV>

</[EXTDPMT>

OFX 2.0 Specification 6/30/00 293

12.5.2.3 Invoice Description <INVOICE>

Tag

<INVOICE>

<INVNO>

<INVTOTALAMT>

<INVPAIDAMT>

<INVDATE>

<INVDESC>

<DISCOUNT>
<DSCRATE>

<DSCAMT>

<DSCDATE>

<DSCDESC>
</DISCOUNT>
<ADJUSTMENT>
</ADJUSTMENT>
<LINEITEM>
</LINEITEM>

</INVOICE>

Description

Start tag for the invoice aggregate. There can be one or more invoices per
payment request.

Invoice number associated with the paymeén32

This value represents the total invoice amoantpunt

This amount should be specified as a positive number

This value represents the amount of the invoice being pamhunt

This amount should be specified as a positive number

Date to apply the invoicejatetime

Invoice descriptionA-80

Discount aggregate; only one discount aggregate per invoice
Discount raterate

Discount amountamount

This amount should be specified as a positive number
Date to apply the discoundatetime

Discount descriptionA-80

Adjustment aggregate; only one adjustment aggregate per invoice, see 12.5.2.

Line item aggregate; there can be multiple line items per invoice, see 12.5.2.

294

12.5 Common Payments Aggregates

12.5.2.4 <ADJUSTMENT>

Tag

<ADJUSTMENT>
<ADJNO>
<ADJDESC>

<ADJAMT>

<ADJDATE>

</ADJUSTMENT>

Description

Adjustment number associated with the paym@&ng2
Adjustment descriptioniA-80

Amount of the adjustmengmount

This amount should be signed + or -, as appropriate. A positive adjustment m
that the payment amount has been reduced.

Date of adjustmentjatetime

eans

12.5.2.5 <LINEITEM>

Tag
<LINEITEM>

<LITMAMT>

<LITMDESC>

</LINEITEM>

Description
Line item aggregate; there can be multiple line items per invoice

Amount of the line itemamount

This amount should be signed + or -, as appropriate. A positive line item am
is an addition to the payment amount, and a negative line item is a discount
reduction in the payment amount.

Line item descriptionA-80

OFX 2.0 Specification

6/30/00 295

ount
or

12.5.2.6 Extended Payee <EXTDPAYEE>

The Extended Payee aggregate communicates a payee identifier to the client. It also contains the
processing day parameters for a payee. It can be sent to the client for any payee whose processing day
parameters are different from the processor’s default values, even for payees with no <PAYEEID>.

Tag Description
<EXTDPAYEE> Extended-payee aggregate
<PAYEEID> Server-assigned payee |B;12

If <PAYEEID> is present, <IDSCOPE> and <NAME> are required. Should not be
included unless the payee is a standard payee.

<IDSCOPE> Scope of the payee ID; one of (GLOBAL, USER), where

GLOBAL = payee ID valid across the entire payment system
USER = payee ID valid with all FI accounts set up for the user’s payments account
Required if <PAYEEID> is present

<NAME> Standard payee nam&;32
Required if <PAYEEID> is present.

<DAYSTOPAY> Minimum number of business days needed to prodéss,

</[EXTDPAYEE>

12.5.2.7 Payment Processing Status <PMTPRCSTS>

The Payment Processing Status aggregate contains the current processing status for a payment. This
aggregate is intended to describe status changes to the associated payment after creation. The interpretation
of the date value depends on the value of <PMTPRCCODE>.

Tag Description
<PMTPRCSTS>
<PMTPRCCODE> | See table 12.6.2.1

<DTPMTPRC> Payment processing date; interpretation depends on <PMTPRCCQatetime

</PMTPRCSTS> Ending tag for payment processing status

296 12.5 Common Payments Aggregates

12.6 Payments Functions

Payments functions allow a client to create a Payment Request to pay a bill on a specified date. The
Payment Request identifies the payee and the amount to pay. Because the flow of money is unambiguous,
bill payment amounts are usually specified as positive numbers. See tables for details.

Client Sends Server Responds

Account information
Payment date
Amount

Payee address, list ID,
transfer acct, or standard
ID

Payment status
Check number

Server-assigned ID

From the time the client issues a Payment Request until it is paid, the client can modify the transaction
through the Payment Modification Request, <PMTMODRQ>; see section 1ZHi2request allows
payment parameters such as the payment date and payment amount to be changed.

Client Sends Server Responds

Account information
Server-assigned 1D
Information to change:
Payment date,

Amount,...

Acknowledgment or Error

The client can cancel a Payment Request with a Payment Cancellation Request, <PMTCANCRQ>; see
section 12.4.4

Client Sends Server Responds

Account information
Server-assigned 1D

Acknowledgment or Error

OFX 2.0 Specification 6/30/00 297

12.6.1 Payment Creation

A Payment Request is used to schedule an electronic payment. The server responds with a Payment
Response. Separate transactions are provided for modifying and canceling a Payment Request.

12.6.1.1 Payment Request <PMTRQ>

The <PMTRQ> request must appear within a <PMTTRNRQ> transaction wrapper.

Tag Description

<PMTRQ> Payment-request aggregate
<PMTINFO> Payment Information aggregate, see section 12.5.2
</PMTINFO>

</PMTRQ>

Note: If the <PMTRQ> created a new payee or modified an existing one, the server must

create and store a payee response that would be available for subsequent payee synchronization
requests. In addition, the server should be aware of the fact that implicit payee modifications
may affect models. Such changes to models must also appear in subsequent recurring
synchronization responses. In all cases, the server need only send the <PMTRS> as a response
to the <PMTRQ>, but any implicit payee and recurring changes must be made by the server,
and be returned in later synchronization responses. See sectionfb? fsher discussion of

implicit payee adds and modifications.

12.6.1.2 Payment Response <PMTRS>

The server sends a Payment Response in response to a Payment Request. The processing status code for a
new payment is normally WILLPROCESSON, but in the case of synchronization it can return other status
codes. Servers should inform clients of any errors found while processing this transaction using the
<STATUS> aggregate. A response containing <STATUS><CODE>0 and
<PMTPRCSTS><PMTPRCCODE>FAILEDON should be avoided for problems such as an invalid

account or amount.

The <PMTRS> response must appear within a <PMTTRNRS> transaction wrapper.

Note: When processing a <PMTRQ> request that does not contain a <PAYEEID> or
<PAYEELSTID>, a server may check the payee against the user's current payee list and return
the found <PAYEELSTID> and <PAYEEID> (if any). If the server does this, it should only

find a match when all <PAYEE> data, including all <PAYACCT> elements, match exactly. If

the <PAYACCT> or any other element is different, the server must perform an implicit payee
addition. If a server doesn’t check for duplicate payees, a client could show duplicate entries in
the payee list.

298 12.6 Payments Functions

Note: Servers matching well-known payees against entries in a user's payee list must ignore

the <PAYACCT> information in the user's list. No corresponding information appears in the

list of well-known payees.

Tag
<PMTRS>
<SRVRTID>

<PAYEELSTID>

<CURDEF>
<PMTINFO>
</PMTINFO>

<EXTDPAYEE>

</[EXTDPAYEE>
<CHECKNUM>
<PMTPRCSTS>
</PMTPRCSTS>

<RECSRVRTID>

</PMTRS>

Description

Payment-response aggregate

ID assigned by the server to the payment being cre&B¥RTID
Server-assigned payee list record ID for this payeé?

Note: This identifier must match that found (and required) in the
returned <PMTINFO>.

Default currency for the Recurring Payment Respoosgasymbol

Payment Information aggregate, see section 12.5.2

Standard payee information if payee is a standard payee, or payee h
non-default processing day parameters; see section 12.5.2.6

Check numberA-12

Payment processing status

References the payment if it was generated by a recurring payment,
SRVRTID

as

OFX 2.0 Specification

6/30/00

299

12.6.1.3 Status Codes

Code Meaning

0 Success (INFO)

2000 General error (ERROR)

2002 General account error (ERROR)

2006 Source account not found (ERROR)

2007 Source account closed (ERROR)

2008 Source account not authorized (ERROR)
2009 Destination account not found (ERROR)
2010 Destination account closed (ERROR)

2011 Destination account not authorized (ERROR)
2012 Invalid amount (ERROR)

2014 Date too soon (ERROR)

2015 Date too far in future (ERROR)

2019 Duplicate request (ERROR)

6502 Unable to process embedded transaction due to out-of-date

<TOKEN> (ERROR)

10501 Invalid payee (ERROR)

10502 Invalid payee address (ERROR)

10503 Invalid payee account number (ERROR)
10510 Invalid payee ID (ERROR)

10511 Invalid payee city (ERROR)

10512 Invalid payee state (ERROR)

10513 Invalid payee postal code (ERROR)
10517 Invalid payee name (ERROR)

10519 Invalid payee list ID (ERROR)

300 12.6 Payments Functions

12.6.1.4 Discussion

Once the server has assigned a payee identifier <PAYEEID> to the payee, it includes the <EXTDPAYEE>
in any <PMTRS> for that transaction. If the <EXTDPAYEE> aggregate is present in the Payment
Response <PMTRS>, the client records the standard payee information for use in future payments to the
same payee.

When a payment is made using the <PAYEE> aggregate, and no <PAYEELSTID> is present, the payee is
implicitly added to the payee list. This is therefore equivalent to first transmitting a <PAYEERQ> for the
payee. For payment systems that can immediately return payee IDs, it is preferable to use the single
<PMTRQ> message to both add the payee and create the payment. If either operation fails, the server will
not complete the other.

If <PAYEELSTID> and <PAYEE> are both included, it is equivalent to sending a <PAYEEMODRQ>. In
<BILLPAYMSGSRSV1>, the server must return a <PAYEEMODRS> in a subsequent
<PAYEESYNCRS> for all actual changes. This is not necessary (though still allowed) if no change were
made.

The <PMTRS> response will include the <EXTDPAYEE> aggregate if the processor has assigned a payee
ID to the payee specified in the payment. It will also appear in the response when the payee has no
assigned ID, but has processing day parameters that different from the processor’s defaults for these
values. This might occur, for instance, if the processor notes that the postal code of the payee indicates a
certain proximity to the payer, and therefore wishes to offer a shorter <DAYSTOPAY> value.

12.6.2 Payment Modification

The Payment Modification Request allows a client to modify a previously scheduled payment. Once
created and retrieved by the customer, spawned payments are almost identical to customer-created
payments. (The exception is when a spawned payment is modified or cancelled due to a recurring
moadification or cancellation request.) As with ordinary payments, you can cancel or modify transactions
individually. When modifying a payment, the client must specify all of the elements and aggregates within
the <PMTINFO> aggregate that were specified during the payment creation or previous modification, not
just the elements and aggregates that it wants to modify. Some servers cannot support the modifications of
certain values. Servers must indicate this by returning status code 10505 when the client requests an
unsupported modification.

OFX 2.0 Specification 6/30/00 301

12.6.2.1 Payment Processing Status Values <PMTPRCCODE>

Value Description

WILLPROCESSON | Will be processed on <DTPMTPRC>

PROCESSEDON Was processed for payment on <DTPMTPRC>

NOFUNDSON Funds not available to make payment on <DTPMTPRC>
FAILEDON Unable to make payment for unspecified reasons on <DTPMTPRC>
CANCELEDON User canceled payment on <DTPMTPRC>

12.6.2.2 Payment Modification Request <PMTMODRQ>

The client sends a Payment Modification Request to request modification of a payment. The client must
provide the full <PMTINFO> including both changed and unchanged values.

The client may modify any data in <PMTINFO> except the recipient or funding account. In particular,
payee list ID <PAYEELSTID>, payee ID <PAYEEID>, funding bank account <BANKACCTFROM>, and
the <NAME> element of <PAYEE> must match that returned in the original <PMTRS>. Implicit payee
modifications (changes in address information for example) are allowed.

If the <PMTMODRQ> caused a payee modification to an existing payee, the server must create and store
a <PAYEEMODRS> to be returned in subsequent payee synchronization responses. If the
<PMTMODRQ> created a new payee (possible only if the payment were originally created outside of the
OFX protocol), the server must, similarly, create and store a <PAYEERS> for later payee synchronization
responses. In addition, the server should be aware of the fact that implicit payee modifications may affect
models. Such changes to models must also appear in subsequent recurring synchronization responses. In
all cases, the server need only send the <PMTMODRS> as a response to the <PMTMODRQ>, but any
implicit payee and recurring changes must be made by the server, and be returned in later synchronization
responses. See section 12 #bfurther discussion of implicit payee adds and modifications.

302 12.6 Payments Functions

The <PMTMODRQ> request must appear within a <PMTTRNRQ> transaction wrapper.

Tag Description

<PMTMODRQ> Moadification-request this references
<SRVRTID> ID assigned by the server to the payment being modifsRlRTID
<PMTINFO> Payment Information aggregate, see section 12.5.2
</PMTINFO>

</PMTMODRQ>

12.6.2.3 Payment Modification Response <PMTMODRS>
The server sends a Payment Modification Response in response to a Payment Modification Request.

The <PMTMODRS> response must appear within a <PMTTRNRS> transaction wrapper.

Tag Description

<PMTMODRS> Payment-modification-response this references
<SRVRTID> ID assigned by the server to the payment being modifsRlYRTID
<PMTINFO> Payment Information aggregate, see section 12.5.2
</PMTINFO>

<PMTPRCSTS> Payment processing status, see section 12.5.2.7
</PMTPRCSTS>

</PMTMODRS>

OFX 2.0 Specification 6/30/00 303

12.6.2.4 Status Codes

Code Meaning

0 Success (INFO)

2000 General error (ERROR)

2002 General account error (ERROR)

2006 Source account not found (ERROR)
2007 Source account closed (ERROR)

2008 Source account not authorized (ERROR)
2009 Destination account not found (ERROR)
2010 Destination account closed (ERROR)
2011 Destination account not authorized (ERROR)
2012 Invalid amount (ERROR)

2014 Date too soon (ERROR)

2015 Date too far in future (ERROR)

2016 Transaction already committed (ERROR)
2017 Already canceled (ERROR)

2018 Unknown server ID (ERROR)

2019 Duplicate request (ERROR)

6502 Unable to process embedded transaction due to out-of-date <TOKEN> (ERROR)
10501 Invalid payee (ERROR)

10502 Invalid payee address (ERROR)

10503 Invalid payee account number (ERROR)
10505 Cannot modify element (ERROR)

10510 Invalid payee ID (ERROR)

10511 Invalid payee city (ERROR)

10512 Invalid payee state (ERROR)

10513 Invalid payee postal code (ERROR)
10514 Transaction already processed (ERROR)
10517 Invalid payee name (ERROR)

10519 Invalid payee list ID (ERROR)

304 12.6 Payments Functions

12.6.2.5 Discussion

Servers can initiate <PMTMODRS> messages to communicate changes in the processing status of a
payment as it moves through the payment system. This mechanism allows a client to capture the updated
status of payments every time it synchronizes.

Implicit payee changes contained in a payment modification transaction do not affect any other existing
pending payments. The changes are propagated to the server’s payee list and affect payments to that payee
as subsequently initiated by the client after the change, or as subsequently spawned from a recurring
model. Explicit payee changes are not propagated to payments pending for the changed payee at the time
of the change.

12.6.3 Payment Cancellation

The Payment Cancellation Request allows a client to cancel a previously scheduled payment created with a
Payment Request (<PMTRQ> in section 12.6.1.1

Servers cannot initiate <PMTCANCRS> when communicating status changes. This response should be
used only when a payment was actually cancelled (by an OFX client or at users request via the phone).
When conveying information about a failure in payment processing (such as insufficient funds), a
<PMTMODRS> (with the updated <PMTPRCSTS>) should be added to the next <PMTSYNCRS>
download.

12.6.3.1 Request <PMTCANCRQ>

The client sends a Payment Cancellation to cancel a scheduled payment request.

The <PMTCANCRQ> request must appear within a <PMTTRNRQ> transaction wrapper.

Description
<PMTCANCRQ> Cancellation-request this references
<SRVRTID> ID assigned by the server to the payment being canceiB¥,RTID
</PMTCANCRQ>

OFX 2.0 Specification 6/30/00 305

12.6.3.2 Response <PMTCANCRS>

The server sends a Payment Cancellation Response in response to a Payment Cancellation Request.

The <PMTCANCRS> response must appear within a <PMTTRNRS> transaction wrapper.

Description
<PMTCANCRS> Cancellation-response this references
<SRVRTID> ID assigned by the server to the payment being canc8lR¥RTID
</PMTCANCRS>

12.6.3.3 Status Codes

Code Meaning

0 Success (INFO)

2000 General error (ERROR)

2016 Transaction already committed (ERROR)

2017 Already canceled (ERROR)

2018 Unknown server ID (ERROR)

2019 Duplicate request (ERROR)

6502 Unable to process embedded transaction due to out-of-date
<TOKEN> (ERROR)

10514 Transaction already processed (ERROR)

306 12.6 Payments Functions

12.6.4 Payment Status Inquiry

The Payment Status Inquiry Request allows a client to obtain the current processing status of a payment
from the server.

12.6.4.1 Request <PMTINQRQ>

The client sends a Payment Status Inquiry Request to obtain the current processing status of a payment.

The <PMTINQRQ> request must appear within a <PMTINQTRNRQ> transaction wrapper.

Description
<PMTINQRQ> Payment-status-inquiry-request aggregate
<SRVRTID> ID assigned by the server to the payment being queS8&Y/RTID

</PMTINQRQ>

12.6.4.2 Response <PMTINQRS>
The server sends a Payment Status Inquiry Response in response to a Payment Status Inquiry Request.

The <PMTINQRS> response must appear within a <PMTINQTRNRS> transaction wrapper.

Tag Description
<PMTINQRS> Payment-status-inquiry-response aggregate
<SRVRTID> ID assigned by the server to the payment being queS8&YRTID

<PMTPRCSTS> | Payment processing status
</PMTPRCSTS>
<CHECKNUM> Check number assigned by the server to this paynfedf

</PMTINQRS>

OFX 2.0 Specification 6/30/00 307

12.6.4.3 Status Codes

Code Meaning

0 Success (INFO)

2000 General error (ERROR)

2018 Unknown server ID (ERROR)

2019 Duplicate request (ERROR)

6502 Unable to process embedded transaction due to out-of-dgte
<TOKEN> (ERROR)

12.7 Recurring Payments

Recurring payments are used when a payment is to be made repeatedly at some known interval. Setting up
arecurring payment is similar to creating an individual payment, but with additional information about the
frequency and number of payments. After a recurring payment is created, the server will generate
payments transactions when there are a specified number of days remaining until the next projected
payment is due (usually 30 days). The client will be made aware of any generated payment transactions
through the synchronization process. Chapter 10, "Recurring Transactioth€hapter 11, "Banking,"

provide additional details on models and recurring transactions, and define the recurring transaction
aggregates.

Note: As with individual payments, if the recurring payment request adds a payee or changes
payee information, the server must create and store a payee response, to be returned in
subsequent payee synchronization responses. Furthermore, implicit payee modifications may
affect other models (but not their pending payments). The server must also create and store
recurring modification responses for these models, to be returned in subsequent recurring
synchronization responses. See section 12d2 turther discussion of implicit payee adds and
changes.

Note: The <MODELWND> profile value indicates when the server spawns a payment. If
<MODELWND>0 is specified, the server only spawns one payment at a time for each model.
In other words, there is always one pending payment per model, unless the model has expired.
If <MODELWND?> is greater than 0, its value is the number of days before a payment is due to
be paid that it is spawned from the model. In this case, it is possible to have zero or more
pending payments instantiated at a time.

308 12.7 Recurring Payments

The table below lists the functional elements for creating a recurring payment:

Client Sends Server Responds

Account information
Payment frequency
Number of payments
Payment date
Amount

Payee address, list ID or
payee ID

Standard payee information

Server-assigned ID

The table below lists the functional elements for modifying a recurring payment:

Client Sends Server Responds

Account information
Server-assigned 1D
Information to change:
Payment frequency,
Number of payments,
Payment date,
Amount,...

Acknowledgment or Error

The table below lists the functional elements for canceling a recurring payment:

Client Sends Server Responds

Account information
Server-assigned 1D

Acknowledgment or Error

OFX 2.0 Specification 6/30/00

309

12.7.1 Creating a Recurring Payment

Use a Recurring Payment Request to set up a recurring electronic payment. The user can specify the
frequency and duration of the payments using the Recurring Instructions aggregate <RECURRINST>. The
<PMTINFO> aggregate (see section 12)s@ecifies the payment information for the model, as well as

the initial and final amounts (if present and where applicable).

12.7.1.1 Request <RECPMTRQ>

The <RECPMTRQ> request must appear within a <RECPMTTRNRQ> transaction wrapper.

Tag Description
<RECPMTRQ> Recurring-payment-request aggregate
<RECURRINST> Recurring Instructions aggregate, see section.10.2

</RECURRINST>

<PMTINFO> Payment-information aggregate, see section 12.5.2
</PMTINFO>
<INITIALAMT> Amount of the initial payment, if different than the following paymertsiount

This amount should be specified as a positive number

<FINALAMT> Amount of the final payment, if different than the preceding paymentsyunt
This amount should be specified as a positive number

</RECPMTRQ>

310 12.7 Recurring Payments

12.7.1.2 Response <RECPMTRS>

The server sends a Recurring Payment Response upon receipt of a Recurring Payment Request.

The <RECPMTRS> response must appear within a <RECPMTTRNRS> transaction wrapper.

Tag
<RECPMTRS>
<RECSRVRTID>

<PAYEELSTID>

<CURDEF>
<RECURRINST>
</RECURRINST>
<PMTINFO>
</PMTINFO>

<INITIALAMT>

<FINALAMT>

<EXTDPAYEE>
</[EXTDPAYEE>

</RECPMTRS>

Description

Recurring-payment-response aggregate
Server-assigned ID for this transacti@RVRTID
Server-assigned record ID for this payee recérd,2

Note: This identifier must match that found (and required) in the returned
<PMTINFO>.

Default currency for the Recurring Payment Respoosgasymbol

Recurring-instructions aggregate, see section.10.2

Payment-information aggregate, see section 12.5.2

Amount of the initial payment, if different than the following paymemtsiount

This amount should be specified as a positive number

Amount of the final payment, if different than the preceding paymemsunt

This amount should be specified as a positive number

Extended payee information, see section 12.5.2.3

OFX 2.0 Specification

6/30/00

311

12.7.1.3 Status Codes

Code Meaning

0 Success (INFO)

2000 General error (ERROR)

2002 General account error (ERROR)

2006 Source account not found (ERROR)

2007 Source account closed (ERROR)

2008 Source account not authorized (ERROR)
2009 Destination account not found (ERROR)
2010 Destination account closed (ERROR)

2011 Destination account not authorized (ERROR)
2012 Invalid amount (ERROR)

2014 Date too soon (ERROR)

2015 Date too far in future (ERROR)

2019 Duplicate request (ERROR)

6502 Unable to process embedded transaction due to out-of-dgte

<TOKEN> (ERROR)

10501 Invalid payee (ERROR)

10502 Invalid payee address (ERROR)

10503 Invalid payee account number (ERROR)
10508 Invalid frequency (ERROR)

10510 Invalid payee ID (ERROR)

10511 Invalid payee city (ERROR)

10512 Invalid payee state (ERROR)

10513 Invalid payee postal code (ERROR)
10517 Invalid payee name (ERROR)

10519 Invalid payee list ID (ERROR)

312 12.7 Recurring Payments

12.7.1.4 Discussion

The <DTDUE> element of <PMTINFO> specifies payment due date or the date by which the first
payment must be received by payee (see sedtidh?.

The <DTDUE> in a response may have been adjusted by a server. For example, the server may adjust
<DTDUE> to comply with non-processing days. If a client sends a request to make a transfer on July 4 and
July 4 happens to be a non-processing day, the <DTDUE> in the response may be July 4 (because the
server hasn't adjusted it yet), July 5 (because this server rolls dates forward), or some other date. For this
reason, a client should pay attention to the <DTDUE> in the response.

12.7.2 Recurring Payment Modification

The client sends a Recurring Payment Modification Request to request modifications to a recurring
payment previously created with a Recurring Payment Request. The payment frequency
<RECURRINST>, the payment parameters <PMTINFO>, or both, can be changed.

12.7.2.1 Request <RECPMTMODRQ>

The client sends a Recurring Payment Modification Request to request changes to a recurring payment
model.

The client may modify any data in <PMTINFO> except the recipient or funding account. In particular,
payee list ID <PAYEELSTID>, payee ID <PAYEEID>, funding bank account <BANKACCTFROM>, and
the <NAME> element of <PAYEE> must match that returned in the original <RECPMTRS>. Implicit
payee modifications (changes in address information for example) are allowed. Clients can modify both
elements in the <RECURRINST> aggregate (i.e. <NINSTS> and <FREQ>). Client should send the
original number of payments scheduled if there is no change. If there is a change in the number of
payments scheduled, clients should send the new number of payments.

A <RECPMTMODRQ> that modifies pending payments via the <MODPENDING> flag is a compound
transaction and the server should create and store <PMTMODRS>s, which are returned to the client in
subsequent payment synchronization responses. For example, a change to the <TRNAMT> element would
cause the server to create and store a <PMTMODRS> for each pending payment, to be returned in a
subsequent payment synchronization response. Changes to payment information apply to all future
payments.

Note: The <RECPMTMODRQ> element may implicitly modify a payee. A payee

modification can, in turn, modify other existing models (though not their pending payments).

In such cases, the server must create and store the appropriate responses (<PAYEEMODRS>
and, possibly, additional, <RECPMTMODRS>), to be returned to the client in subsequent
synchronization responses. See section 12 further discussion of implicit payee adds and
changes. If the <RECPMTMODRQ> created a new payee (this is only possible if the payment
were originally created outside of the OFX protocol), the server must create and store a
<PAYEERS> that would be available for a payee synchronization request. In all cases, the
server need only send the <RECPMTMODRS> as a response to the <RECPMTMODRQ>, but

OFX 2.0 Specification 6/30/00 313

any implicit payee and recurring changes must be made by the server, and be returned in later
synchronization responses.

The <RECPMTMODRQ> request must appear within a <RECPMTTRNRQ> transaction wrapper.

Tag Description

<RECPMTMODRQ> Modification-request aggregate
<RECSRVRTID> | ID assigned by the server to the payment being modifs&lyRTID
<RECURRINST> | Recurring Instructions aggregate, see section 10.2

</RECURRINST>

<PMTINFO> Payment-Information aggregate, see section 12.5.2
</PMTINFO>
<INITIALAMT> Amount of the initial payment, if different than the following paymemtsiount

This amount should be specified as a positive number
<FINALAMT> Amount of the final payment, if different than the preceding paymemtsunt
This amount should be specified as a positive number

<MODPENDING> | Modify pending flag
If the client sets this flag, the server must modify pending and future payniBotgean

</RECPMTMODRQ>

314 12.7 Recurring Payments

12.7.2.2 Response <RECPMTMODRS>

The server sends a Recurring Payment Modification Response in response to a Recurring Payment
Modification Request.

The <RECPMTMODRS> response must appear within a <RECPMTTRNRS> transaction wrapper.

Tag Description

<RECPMTMODRS> Modification-response aggregate
<RECSRVRTID> ID assigned by the server to the payment being modifs&lyRTID
<RECURRINST> | Recurring-Instructions aggregate, see section 10.2

</RECURRINST>

<PMTINFO> Payment-Information aggregate, see section 12.5.2
</PMTINFO>
<INITIALAMT> Amount of the initial payment, if different than the following paymemtsiount

This amount should be specified as a positive number

<FINALAMT> Amount of the final payment, if different than the preceding paymemtmunt
This amount should be specified as a positive number

<MODPENDING> | Y if the client requested that the server modify pending and future payments. N if the
client did not request that the server modify pending and future paymBotdgan

</RECPMTMODRS>

12.7.2.3 Status Codes

Code Meaning

0 Success (INFO)

2000 General error (ERROR)

2002 General account error (ERROR)

2006 Source account not found (ERROR)
2007 Source account closed (ERROR)

2008 Source account not authorized (ERROR)
2009 Destination account not found (ERROR)
2010 Destination account closed (ERROR)
2011 Destination account not authorized (ERROR)
2012 Invalid amount (ERROR)

2014 Date too soon (ERROR)

OFX 2.0 Specification 6/30/00 315

Code Meaning

2015 Date too far in future (ERROR)
2016 Transaction already committed (ERROR)
2019 Duplicate request (ERROR)
6502 Unable to process embedded transaction due to out-of-date
<TOKEN> (ERROR)
10501 Invalid payee (ERROR)
10502 Invalid payee address (ERROR)
10503 Invalid payee account number (ERROR)
10505 Cannot modify element (ERROR)
10508 Invalid frequency (ERROR)
10511 Invalid payee city (ERROR)
10512 Invalid payee state (ERROR)
10513 Invalid payee postal code (ERROR)
10514 Transaction already processed (ERROR)
10517 Invalid payee name (ERROR)
10518 Unknown model ID (ERROR)
10519 Invalid payee list ID (ERROR)
316 12.7 Recurring Payments

12.7.3 Recurring Payment Cancellation

The client sends a Recurring Payment Cancellation Request to cancel a recurring payment previously
created with a Recurring Payment Request.

12.7.3.1 Request <KRECPMTCANCRQ>

The <RECPMTCANCRQ> request must appear within a <KRECPMTTRNRQ> transaction wrapper.

Note: A <RECPMTCANCRQ> that cancels pending payments via the <CANPENDING>
flag is a compound transaction, and generates the appropriate explicit payment responses that
reflect such cancellations, which are returned to the client via synchronization.

Tag Description
<RECPMTCANCRQ> Cancellation-request aggregate
<RECSRVRTID> ID assigned by the server to the payment being canc8IR¥RTID

<CANPENDING> | Cancel pending flagBoolean

If Y, server should cancel all pending and unspawned payments. If N, server should
cancel only the model (and unspawned payments).

</RECPMTCANCRQ>

OFX 2.0 Specification 6/30/00 317

12.7.3.2 Response <RECPMTCANCRS>

The server sends a Recurring Payment Cancellation Response in response to a Recurring Payment

Cancellation Request.

The <RECPMTCANCRS> response must appear within a <RECPMTTRNRS> transaction wrapper.

Tag
<RECPMTCANCRS>
<RECSRVRTID>

<CANPENDING>

</RECPMTCANCRS>

Description

Modification-request aggregate

ID assigned by the server to the payment being modifs&lyRTID

Cancel pending flagdoolean

Y if the client requested that the server cancel all pending and unspawned payme

if the client requested that the server cancel only unspawned payments.

12.7.3.3 Status Codes

Code Meaning

0 Success (INFO)

2000 General error (ERROR)

2016 Transaction already committed (ERROR)
2019 Duplicate request (ERROR)

6502 Unable to process embedded transaction du

out-of-date <TOKEN> (ERROR)

e to

10514 Transaction already processed (ERROR)
10518 Unknown model ID (ERROR)
318 12.7 Recurring Payments

nts. N

12.8 Payment Mail

Users can correspond by way of e-mail to resolve problems or ask questions about their payments
accounts. This function makes use of the general OFX e-mail facility, which is described in Chapter 9,
"Customer to FI Communication."

Note: There is no way to indicate non-support of payment e-mail in the profile. A server that
doesn’t support <PMTMAILSYNCRQ> should return an “empty” payment mail sync response
rather than just ignore the request. This empty sync response includes <TOKEN=>0 and no

history.
12.8.1 Payment Mail Request and Response

12.8.1.1 Request <PMTMAILRQ>

The <PMTMAILRQ> allows a client to issue an e-mail to the payments processor. If the message refers to
a specific payment, then both <SRVRTID> and <PMTINFO> are required to identify the payment to the

processor.

The <PMTMAILRQ> request must appear within a <PMTMAILTRNRQ> transaction wrapper.

Tag Description
<PMTMAILRQ> Payment e-mail-request aggregate
<MAIL> General e-mail aggregate
</MAIL>
<SRVRTID> Transaction ID of the payment that is the subject of the correspond8RMRTID
<PMTINFO> Payment Information aggregate, see section 12.5.2
</PMTINFO>
</PMTMAILRQ>

OFX 2.0 Specification 6/30/00 319

12.8.1.2 Response <PMTMAILRS>

The server sends <PMTMAILRS> in response to a Payment E-mail request.

The <PMTMAILRS> response must appear within a <PMTMAILTRNRS> transaction wrapper.

Tag

<PMTMAILRS>
<MAIL>
</MAIL>
<SRVRTID>
<PMTINFO>
</PMTINFO>

</PMTMAILRS>

Description
Payment e-mail-response aggregate

General e-mail aggregate, see Chapter 9, "Customer to FI Communication."

Transaction ID of the payment that is the subject of the correspond8RS&RTID

Payment Information aggregate, see section 12.5.2

320

12.8 Payment Mail

12.8.1.3 Status Codes

Code Meaning

0

2000
2002
2003
2004
2005
2018
2019
6502

15508
16500
16501

Success (INFO)

General error (ERROR)

General account error (ERROR)
Account not found (ERROR)
Account closed (ERROR)
Account not authorized (ERROR)
Unknown server ID (ERROR)
Duplicate request (ERROR)

Unable to process embedded transaction d
to out-of-date <TOKEN> (ERROR)

Transaction not authorized (ERROR)
HTML not allowed (ERROR)
Unknown mail To: (ERROR)

OFX 2.0 Specification 6/30/00

321

12.8.2 Payment Mail Synchronization

Payment mail is subject to synchronization. The scope of the synchronization request is all of the accounts
for which the user might have sent mail, not a specific account.

12.8.2.1 Request <PMTMAILSYNCRQ>

Tag Description
<PMTMAILSYNCRQ> Synchronization-request aggregate
Client synchronization option;
<TOKEN>, <TOKENONLY>, or
<REFRESH>
<TOKEN> Previous value of <TOKEN> received for this type of synchronization
request from server; 0O for first-time requegtsken
<TOKENONLY> Request for just the current <TOKEN> without the histdgolean
<REFRESH> Request for refresh of current stalBnolean
<REJECTIFMISSING> If Y, do not process requests if client <TOKEN> is out of d&eplean
<INCIMAGES> Y if the client accepts mail with images in the message body. N if the client
does not accept mail with images in the message Badglean
<USEHTML> Y if client wants an HTML response, N if client wants plain teBholean
<PMTMAILTRNRQ> Payment-mail transactions (0 or more)
</PMTMAILTRNRQ>
</PMTMAILSYNCRQ>

322 12.8 Payment Mail

12.8.2.2 Response <PMTMAILSYNCRS>

Tag Description
<PMTMAILSYNCRS> Synchronization-response aggregate
<TOKEN> New synchronization tokenoken
<LOSTSYNC> Y if the token in the synchronization request is older than the earliest entry in the

server’s history table. In this case, some responses have been lost.

N if the token in the synchronization request is newer than or matches a token in the
server’s history tableBoolean

<PMTMAILTRNRS> Payment-mail transactions (0 or more)
</PMTMAILTRNRS>

</PMTMAILSYNCRS>

12.9 Payee Lists

Payments-system servers store lists of payees set up for payment by each user. Some systems require this
before the user can issue a payment to a payee. In other payment systems, this feature enables the sharing
of payee entry among multiple clients, and simplifies server payee maintenance.

A server-assigned payee list-entry ID identifies entries in the payee list. The following set of messages
allows clients to obtain this list of payees. Users can add, modify, and delete individual entries in the list.
The user-defined Payee list is subject to synchronization, so that multiple clients can use the list.

Creating a payee:

Client Sends Server Responds

Server-assigned payee
identifier, or payee billing
address

User’s account number
with the payee

Payee address

Standard payee information

OFX 2.0 Specification 6/30/00 323

Modifying a payee:

Client Sends Server Responds

Server-assigned payee
identifier

User’s account number
with the payee

Information to change:
payee name

address

city

state

postal code

phone number

new payee account #

Extended payee information
if payee is a standard payee
or has non-default processin
lead times

Acknowledgment or Error

Deleting a payee:

Client Sends Server Responds

Server-assigned payee
identifier

User’s account number
with the payee

Acknowledgment or Error

324

12.9 Payee Lists

12.9.1 Adding a Payee to the Payee List

The user can use the Payee Request to add a payee to the server payee list. The server responds with a
Payee Response, which can contain a complete billing address for the payee, or if the payee is a standard
payee, the lead-time and payee name values.

12.9.1.1 Payee Request <PAYEERQ>

The <PAYEERQ> requests the addition of a payee entry to the server’s payee list. Note that the user can
use a <PMTRQ> to simultaneously set up a payee. OFX does not require the client to send a <PAYEERQ>
before making an initial <PMTRQ> to a payee.

The <PAYEERQ> request must appear within a <PAYEETRNRQ> transaction wrapper.

Tag Description
<PAYEERQ> Payee-request aggregate

Specify payee; either
<PAYEEID> or

<PAYEE>.
<PAYEEID> Server-assigned payee identifiér12
<PAYEE> Complete payee billing information, see section 12.5.2.1
</PAYEE>

<BANKACCTTO> | The destination bank account (see section 11,.3dgcified in countries that pay usin
transfers. The <PAYEE> (above) must also be specified.

\\]

</BANKACCTTO>

<PAYACCT> User’s account number(s) with the payee (0 or moke32

</PAYEERQ>

OFX 2.0 Specification 6/30/00 325

12.9.1.2 Payee Response <PAYEERS>

The server sends the Payee Response in response to a Payee Request. It contains the full billing
information for the payee if it is not a standard payee. Otherwise, it contains the standard payee
information, including lead time and payee name. If the server identifies the payee as having an assigned
payee ID, then the server will include the <EXTDPAYEE> aggregate in the response.

If the response indicates that the payee does not have an assigned <PAYEEID>, the client should specify
the full billing address <PAYEE> information in subsequent payment requests <PMTRQ> to the payee
when the payee is being modified.Otherwise the <PAYEELSTID> is used in lieu of the <PAYEE>
aggregate.

If the response indicates that the payee does have a <PAYEEID>, then the client should use the
<PAYEEID> for making payments to that payee.

The <PAYEERS> response must appear within a <PAYEETRNRS> transaction wrapper.

Tag Description

<PAYEERS> Payee-response aggregate
<PAYEELSTID> Server-assigned record ID for this payee recérd,2
<PAYEE> Complete payee billing information, see section 12.5.2.1
</PAYEE>

<BANKACCTTO> The destination bank account (see section 11,.8dgcified in countries that pay using
transfers. The <PAYEE> (above) must also be specified.

</BANKACCTTO>

<EXTDPAYEE> Extended payee information, see section 12.5.2.3

</[EXTDPAYEE>

<PAYACCT> User’s account number(s) with the payee (0 or moke32
</PAYEERS>

326 12.9 Payee Lists

12.9.1.3 Status Codes

Code Meaning

0 Success (INFO)

2000 General error (ERROR)

2001 Invalid account (ERROR)

2002 General account error (ERROR)

2009 Destination account not found (ERROR)

2010 Destination account closed (ERROR)

2011 Destination account not authorized (ERROR)

2019 Duplicate request (ERROR)

6502 Unable to process embedded transaction due to out-of-dgte
<TOKEN> (ERROR)

10501 Invalid payee (ERROR)

10502 Invalid payee address (ERROR)

10503 Invalid payee account number (ERROR)

10511 Invalid payee city (ERROR)

10512 Invalid payee state (ERROR)

10513 Invalid payee postal code (ERROR)

12.9.2 Payee Modification

The Payee Madification Request allows the client to make changes to payee entries in the server’s payee
list. Payments spawned from a model after the payee modification will use the updated information from
the server’s payee list as modified by the Payee Modification request.

12.9.2.1 Request <PAYEEMODRQ>

The client sends the Payee Modification Request to request changes to an existing payee list entry. The
<PAYEE> aggregate must specify the changed and unchanged payee information. Absence of a
<PAYACCT> in a <PAYEEMODRQ> could be interpreted as an implicit disassociation of the
<PAYACCT> with the payee. Presence or absence of a <PAYACCT> does not imply selective <PAYEE>
aggregate changes for the same <PAYEELSTID> as referenced by more than one <PAYACCT>. The
<PAYEEMODRQ> request must appear within a <PAYEETRNRQ> transaction wrapper.

OFX 2.0 Specification 6/30/00 327

A payee modification may also affect models (though not their pending payments). In this case, a server
must create and store <RECPMTMODRS> responses, to be returned to the client in subsequent recurring
synchronization responses. See section 12.2.5 for further discussion of implicit payee changes.

Tag Description

<PAYEEMODRQ> Modification-request aggregate
<PAYEELSTID> Server-assigned record ID for this payee recévd,2
<PAYEE> Payee information to modify
</PAYEE>

<BANKACCTTO> Destination account (see section 11.3dk)countries that pay using transfers
(<PAYEE> required)

</BANKACCTTO>
<PAYACCT> Payer account number(s) with the payee (0 or makej2

</PAYEEMODRQ>

328 12.9 Payee Lists

12.9.2.2 Response <PAYEEMODRS>
The server returns a Payee Modification Response in reply to a Payee Modification Request.

When a server-initiated change occurs to the extended payee information for a payee (for example a
change in the payee’s lead-time), the server can include this information in the <EXTDPAYEE> of the
response.

If a server-initiated response indicates either that a payee now has a payee ID, or no longer has one, then
the client should use the appropriate form of designating the payee in any future payment requests
<PMTRQ> to that payee.

The <PAYEEMODRS> response must appear within a <PAYEETRNRS> transaction wrapper.

Tag Description

<PAYEEMODRS> Modification-response aggregate
<PAYEELSTID> Server-assigned record ID for this payee recéd.2
<PAYEE> Payee information that was modified, see section 12.5.2.1
</PAYEE>

<BANKACCTTO> Destination account (see section 11.3dk)countries that pay bills using transfers
(<PAYEE> required as well)

</BANKACCTTO>
<PAYACCT> Payer’s account number(s) with the payee (0 or maxed2
<EXTDPAYEE> Extended payee information, see section 12.5.2.3
</EXTDPAYEE>

</PAYEEMODRS>

OFX 2.0 Specification 6/30/00 329

12.9.2.3 Status Codes

Code Meaning

0 Success (INFO)
2000 General error (ERROR)
2001 Invalid account (ERROR)
2002 General account error (ERROR)
2009 Destination account not found (ERROR)
2010 Destination account closed (ERROR)
2011 Destination account not authorized (ERROR)
2019 Duplicate request (ERROR)
6502 Unable to process embedded transaction due to out-of-date
<TOKEN> (ERROR)
10501 Invalid payee (ERROR)
10502 Invalid payee address (ERROR)
10503 Invalid payee account number (ERROR)
10510 Invalid payee ID (ERROR)
10511 Invalid payee city (ERROR)
10512 Invalid payee state (ERROR)
10513 Invalid payee postal code (ERROR)
10515 Payee not modifiable by client (ERROR)
330 12.9 Payee Lists

12.9.3 Payee Deletion

The Payee Deletion Request allows a client to delete a payee entry from the server’s list of the user’s
payees. To delete specific <PAYACCT> associations with a payee, clients should use the <PAYEELSTID>
combined with absent <PAYACCT>s via a <PAYEEMODRQ>.

The Payee delete request does not cancel payments that are pending at the time of the payee’s deletion.
References to pending payments subsequent to a payee’s deletion pose issues regarding <PAYEELSTID>
assignment at both the client and server levels. Therefore, it is suggested that the client disallow payee
deletes if there are pending payments/models.

12.9.3.1 Request <PAYEEDELRQ>
The <PAYEEDELRQ> requests the deletion of a payee entry.

The <PAYEEDELRQ> request must appear within a <PAYEETRNRQ> transaction wrapper.

Description

<PAYEEDELRQ> Deletion-request aggregate
<PAYEELSTID> Server-assigned record ID for this payee recérd,2

</PAYEEDELRQ>

OFX 2.0 Specification 6/30/00 331

12.9.3.2 Response <PAYEEDELRS>

The server sends the Payee Deletion Response <PAYEEDELRS> in response to a Payee Deletion Request
<PAYEEDELRQ>.

The <PAYEEDELRS> response must appear within a <PAYEETRNRS> transaction wrapper.

Description

<PAYEEDELRS> Deletion-response aggregate

<PAYEELSTID> Server-assigned record ID for this payee recérd,2

</PAYEEDELRS>

12.9.3.3 Status Codes

Code Meaning

0 Success (INFO)

2000 General error (ERROR)

2019 Duplicate request (ERROR)
6502 Unable to process embedded

transaction due to out-of-date
<TOKEN> (ERROR)

10519 Invalid payee list ID (ERROR)

332 12.9 Payee Lists

12.9.4 Payee List Synchronization

This message allows clients to obtain a list of payees stored on the server that it has configured for use in
payments. In a “pay some” system, users are sometimes required to explicitly configure the payees to
whom the system will make payments. This can be done by means of a telephone call to the payments
provider or through some other interface. The client can then use this message to obtain the user’s list of
configured payees. In other systems, the payments provider can elect to store a list of all payees that the
user has paid. This is a convenience to the client. It allows payees set up on one client to be accessible from
a user’s other clients and ensures each client has the latest version of this list.

12.9.4.1 Request <PAYEESYNCRQ>

Tag Description
<PAYEESYNCRQ> Payee-list-request aggregate

Client synchronization
option; <TOKEN>,
<TOKENONLY>, or

<REFRESH>
<TOKEN> Previous value of <TOKEN> received for this type of synchronization request
from server; O for first-time requestsiken
<TOKENONLY> Request for just the current <TOKEN> without the hist@golean
<REFRESH> Request for refresh of current staBxnolean

<REJECTIFMISSING> | If Y, do not process requests if client <TOKEN> is out of d&8eplean
<PAYEETRNRQ> Payee transactions (0 or more)

</PAYEETRNRQ>

</PAYEESYNCRQ>

OFX 2.0 Specification 6/30/00 333

12.9.4.2 Response <PAYEESYNCRS>

Tag
<PAYEESYNCRS>
<TOKEN>

<LOSTSYNC>

<PAYEETRNRS>
</PAYEETRNRS>

</PAYEESYNCRS>

Description
Payee-list-request aggregate
New synchronization tokemoken

Y if the token in the synchronization request is older than the earliest entry in the
server’s history table. In this case, some responses have been lost.

N if the token in the synchronization request is newer than or matches a token in tf
server’s history tableBoolean

Payee transactions (0 or more)

ne

334

12.9 Payee Lists

12.10 Data Synchronization for Payments

Users of OFX Payments need to be able to obtain the current status of transactions previously sent to the
server for processing. For example, once the user schedules a payment and the payment date has passed,
the user might want to verify that the server made the payment as directed. Additionally, OFX allows for
interactions with the server through multiple clients. This means, for example, that the user can perform
some transactions from a home PC and others from an office computer with each session incorporating the
activities performed on the other.

In order to accomplish these tasks, the client uses a synchronization scheme to insure that it has an accurate
copy of the server data that is relevant to the client application. The intent of this scheme is to address three
scenarios in which the client might lose synchronization with the server:

¢ Atransaction has changed its state based on processing actions on the server. For example, a scheduled
payment has passed its due date and has been paid or rejected.

¢ Transactions relevant to the client’s application state have been added, deleted, or modified by a second
client. For example, a user might enter or change transactions from more than one PC or application.

¢ A communications session between the client and server was interrupted or completed abnormally. As
a result the client does not have responses from the server indicating that all the transactions were
received and processed.

Note: Except for the <REFRESH>Y sync response, no payee information in any particular
response in a sync should have changed from that in the response when it was originally sent.
In other words, if a <PMTMODRS> caused a change to that payment’s payee address, the
original <PMTRS> in the sync should have the old address in it. The <PMTMODRS>,
appearing later in the sync, would cause the client to update the payment appropriately.

OFX 2.0 Specification 6/30/00 335

12.10.1 Payment Synchronization

12.10.1.1 Request <PMTSYNCRQ>

Tag
<PMTSYNCRQ>

Client synchronization
option; <TOKEN>,
<TOKENONLY>, or
<REFRESH>

<TOKEN>

<TOKENONLY>

<REFRESH>

<REJECTIFMISSING>
<BANKACCTFROM>
</BANKACCTFROM>
<PMTTRNRQ>

</PMTTRNRQ>

</PMTSYNCRQ>

Description

Synchronization-request aggregate

Previous value of <TOKEN> received for this type of synchronization reques
from server; O for first-time requestsiken

Request for just the current <TOKEN> without the hist@golean
Request for refresh of current staBnolean
If Y, do not process requests if client <TOKEN> is out of d&eplean

Opening tag for account from aggregate, see section 11.3.1

Payment transactions (O or more)

t

336

12.10 Data Synchronization for Payments

12.10.1.2 Response <PMTSYNCRS>

Tag Description
<PMTSYNCRS> Synchronization-response aggregate
<TOKEN> New synchronization tokenoken
<LOSTSYNC> Y if the token in the synchronization request is older than the earliest entry injthe

server’s history table. In this case, some responses have been lost.

N if the token in the synchronization request is newer than or matches a token in
the server’s history tabl&oolean

<BANKACCTFROM> Opening tag for account from aggregate, see section 11.3.1
</BANKACCTFROM>
<PMTTRNRS> Payment transactions (0 or more)
</PMTTRNRS>

</PMTSYNCRS>

OFX 2.0 Specification 6/30/00 337

12.10.2 Recurring Payment Synchronization
12.10.2.1 Request <RECPMTSYNCRQ>

Tag Description
<RECPMTSYNCRQ> Synchronization-request aggregate

Client synchronization
option; <TOKEN>,
<TOKENONLY>, or

<REFRESH>
<TOKEN> Previous value of <TOKEN> received for this type of synchronization request
from server; 0O for first-time requestgken
<TOKENONLY> Request for just the current <TOKEN> without the hist@gplean
<REFRESH> Request for refresh of current staBnolean

<REJECTIFMISSING> | If Y, do not process requests if client <TOKEN> is out of dd&@eplean
<BANKACCTFROM> Opening tag for account from aggregate, see section 11.3.1

</BANKACCTFROM>
<RECPMTTRNRQ> Recurring-payment transactions (0 or more)

</RECPMTTRNRQ>

</RECPMTSYNCRQ>

338 12.10 Data Synchronization for Payments

12.10.2.2 Response <RECPMTSYNCRS>

Tag Description
<RECPMTSYNCRS> Synchronization-response aggregate
<TOKEN> New synchronization tokenoken
<LOSTSYNC> Y if the token in the synchronization request is older than the earliest entry in the

server’s history table. In this case, some responses have been lost.

N if the token in the synchronization request is newer than or matches a token in the
server’s history tableBoolean

<BANKACCTFROM> | Opening tag for account from aggregate, see section 11.3.1
</BANKACCTFROM>
<RECPMTTRNRS> Recurring-payment transactions (O or more)
</RECPMTTRNRS>

</RECPMTSYNCRS>

OFX 2.0 Specification 6/30/00 339

12.10.3 Discussion

This section describes specific synchronization processing for the OFX Payments functions. Chapter 6,
"Data Synchronization,provides a more extensive discussion of the OFX synchronization mechanism.

The client follows the steps below to synchronize:

1. The client sends a <PMTSYNCRQ> and/or <RECPMTSYNCRQ> containing the token it has stored
from its last successful synchronization (or the special initial token value).

2. The client processes the <PMTSYNCRS> and/or <RECPMTSYNCRS> response from the server.

When the client has requested the server to add a transaction, a response that contains a <TRNUID>
matching a transaction originally sent by the client—for which the client has not recorded an associated
<SRVRTID>—is the normal scenario. This scenario could also occur if the server response did not reach
the client in the previous session. In either case, the client should add these server IDs to their associated
transactions at this point.

If the client previously recorded the <SRVRTID>, this response is a change in status or in the contents of
the transaction. The request might have originated from this client, another client, or might be the result of
server processing.

If the <TRNUID> does not match any transaction known to the client, a second client initiated this
transaction. In rarer cases the response might be a transaction initially requested by this client, for which
the client has lost its record; for example, the client has reverted to a backup.

340 12.10 Data Synchronization for Payments

The diagram below describes the processing and interpretation of <SRVRTID> and <TRNUID> identifiers
by the client:

l The regponse is a modification or chame in status.

Does the <SRVRTID> in v Client applies all updated
this response match one €S linformation to its copy of
already recorded by the the matching transaction.

A 4

client?
No
The regponse is a new transaction created ypanother client.
Was the <TRNUID> N Client adds the transaction
returned in the response 0 _|to its local list of
created by this client? "|transactions.
Yes
The regponse is to an add rguest from this client.
This is aresponse to a The client should record the
request initiated by this »associated <SRVRTID>, i
client. response status=SUCCE$S

After receiving the synchronization responses from the server, the client scans its database of transactions
to verify that they have all been assigned a <SRVRTID>. Any transactions missing this identifier were
never received by the server and should be resent (using the originally assigned <TRNUID> to avoid
duplicate requests). Additionally, the client should record the <TOKEN> received in the response.

12.11 Message Sets and Profile

OFX separates messages that the client and server send into groups called message sets. Each financial
institution defines the message sets that a particular institution will support. Currently, all the payment
messages described in this chapter fall into a single message set.

The message set contains options and attributes that allow a financial institution to customize its use of
OFX. The options and attributes are defined in the profile as part of the message set definition. Each set of
options and attributes appears within an aggregate that is specific to a message set. Specifically, all of the
options and attributes that pertain to payments are contained within <BILLPAYMSGSETV1>.

OFX 2.0 Specification 6/30/00 341

12.11.1 Bill Pay Message Sets and Messages

12.11.1.1 Bill Pay Message Set Request Messages

Clients should not send an empty <BILLPAYMSGSRQV1> (although allowed by the DTD, such a
message is meaningless). Although the DTD imposes a certain transaction order (payee transactions and
sync requests go first), the transactions in <BILLPAYMSGSRQV1> may be executed in any order.

Message Set Messages

<BILLPAYMSGSET>
<BILLPAYMSGSETV1>
<BILLPAYMSGSRQV1> PMTTRNRQ
PMTRQ
PMTMODRQ
PMTCANCRQ
RECPMTTRNRQ
RECPMTRQ
RECPMTMODRQ
RECPMTCANCRQ
PAYEETRNRQ
PAYEERQ
PAYEEMODRQ
PAYEEDELRQ
PMTINQTRNRQ
PMTINQRQ
PMTMAILTRNRQ
PMTMAILRQ
PMTSYNCRQ
RECPMTSYNCRQ
PAYEESYNCRQ
PMTMAILSYNCRQ
</BILLPAYMSGSRQV1>
</BILLPAYMSGSETV1>
</BILLPAYMSGSET>

342 12.11 Message Sets and Profile

12.11.1.2 Bill Pay Message Set Response Messages

Message Set Messages

<BILLPAYMSGSET>

</BILLPAYMSGSET>

<BILLPAYMSGSETV1>

<BILLPAYMSGSRSV1>

</BILLPAYMSGSRSV1>

</BILLPAYMSGSETV1>

PMTTRNRS
PMTRS
PMTMODRS
PMTCANCRS

RECPMTTRNRS
RECPMTRS
RECPMTMODRS
RECPMTCANCRS

PAYEETRNRS
PAYEERS
PAYEEMODRS
PAYEEDELRS

PMTINQTRNRS
PMTINQRS

PMTMAILTRNRS
PMTMAILRS

PMTSYNCRS

RECPMTSYNCRS

PAYEESYNCRS

PMTMAILSYNCRS

OFX 2.0 Specification

6/30/00

343

12.11.2 Bill Pay Message Set Profile <BILLPAYMSGSET>

Tag
<BILLPAYMSGSET>
<BILLPAYMSGSETV1>
<MSGSETCORE>
</MSGSETCORE>

<DAYSWITH>

<DFLTDAYSTOPAY>

<XFERDAYSWITH>

<XFERDFLTDAYSTOPAY>

<PROCDAYSOFF>

<PROCENDTM>

<MODELWND>

<POSTPROCWND>

<STSVIAMODS>

<PMTBYADDR>

<PMTBYXFER>

Description

Version 1 of bill pay message set

Offset to withdrawal date, such that (DTDUE — DAY STOPAY) +
(DAY SWITH) determines the date on which the funds are withdrawn
from the user’s accouni-3

Note: If <DAYSWITH>-1 is specified, then the withdrawal date is the
same as the payment date (<DTDUE>).

Default number of days to pay by check (except by transk3,

Can be overridden for each payee, by <DAYSTOPAY> in the
<EXTDPAYEE> aggregate, see section 12.5.2.3

Number of days before processing date that funds are withdrawn for
payment by transfei\-3

Default number of days to pay by transfir3

Can be overridden for each payee, by <DAYSTOPAY> in the
<EXTDPAYEE> aggregate, see section 12.5.2.3

Days of week that no processing occurs; 0 or more of (MONDAY,
TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY,
SUNDAY). <PROCDAYSOFF> indicate days to exclude when
calculating dates that utilize other bill payment bits, such as
<DAYSWITH> and <DFLTDAYSTOPAY> values.

Time of day that day’s processing entime

Model window; the number of days before a recurring transaction is
scheduled to be processed that it is instantiated on the system;
<MODELWND>0 indicates that the server will always maintain a sing
spawned payment for each modst3

Number of days after a transaction is processed that it is accessible f
status inquiriesN-3

If Y, server supports communication of server-initiated payment statug
changes by means of the PMTMODRS message

The payment provider supports payments to payees identified by billi
address, that is, the PAYEE aggreg&eplean

The payment provider supports payments to payees identified by
destination accounBoolean

Dr

ng

344

12.11 Message Sets and Profile

Tag Description

<PMTBYPAYEEID> The payment provider supports payments to payees identified by a user-
supplied payee IDBoolean

<CANADDPAYEE> User can add payees. if no, the user is restricted to payees added to the
user’s payee list by the payment syst@oplean

<HASEXTDPMT> Supports the EXTDPMT business payment aggredgdelean

<CANMODPMTS> Permits modifications to payments, that is PMTMODHRBpplean

<CANMODMDLS> Permits modifications to models, that is REQPMTMODHRB®plean

<DIFFFIRSTPMT> Support for specifying a different amount for the first payment generated

by a modelBoolean
</BILLPAYMSGSETV1>

</BILLPAYMSGSET>

OFX 2.0 Specification 6/30/00 345

12.12 Examples

12.12.1 Scheduling a Payment

Create a payment to “J.C. Counts” for $123.45 to be paid on October 1,1999 using funds in a checking
account:

<I-- payment example 1 -->

<OFX>
<SIGNONMSGSRQV1>
<SONRQ> <l-- ...Sign on request. For a
complete example, see section
11.14.1-->
</SONRQ>

</SIGNONMSGSRQV1>
<BILLPAYMSGSRQV1>
<PMTTRNRQ>
<TRNUID>1001</TRNUID>
<PMTRQ>
<PMTINFO>
<BANKACCTFROM>
<BANKID>123432123</BANKID>
<ACCTID>516273</ACCTID>
<ACCTTYPE>CHECKING</ACCTTYPE>
</BANKACCTFROM>
<TRNAMT>123.45</TRNAMT>
<PAYEE>
<NAME>J. C. Counts</NAME>
<ADDR1>100 Main St.</ADDR1>
<CITY>Turlock</CITY>
<STATE>CA</STATE>
<POSTALCODE>90101</POSTALCODE>
<PHONE>415.987.6543</PHONE>
</PAYEE>
<PAYACCT>10101</PAYACCT>
<DTDUE>19991001</DTDUE>
<MEMO>payment #3</MEMO>
</PMTINFO>
</PMTRQ>
</PMTTRNRQ>
</BILLPAYMSGSRQV1>
</OFX>

346 12.12 Examples

The server responds, indicating that it will make the payment on the date requested and that the payee is a
standard payee:

<OFX>
<SIGNONMSGSRSV1>

<SONRS> <l-- ..Sign on response. For a
complete example, see section
11.14.1-->

</SONRS>
</SIGNONMSGSRSV1>
<BILLPAYMSGSRSV1>
<PMTTRNRS>
<TRNUID>1001</TRNUID>
<STATUS>
<CODE>0</CODE>
<SEVERITY>INFO</SEVERITY>
</STATUS>
<PMTRS>
<SRVRTID>1030155</SRVRTID>
<PAYEELSTID>123214<PAYEELSTID>
<CURDEF>USD</CURDEF>
<PMTINFO>
<BANKACCTFROM>
<BANKID>123432123</BANKID>
<ACCTID>516273</ACCTID>
<ACCTTYPE>CHECKING</ACCTTYPE>
</BANKACCTFROM>
<TRNAMT>123.45</TRNAMT>
<PAYEE>
<NAME>J. C. Counts</NAME>
<ADDR1>100 Main St.</ADDR1>
<CITY>Turlock</CITY>
<STATE>CA</STATE>
<POSTALCODE>90101</POSTALCODE>
<PHONE>415.987.6543</PHONE>
</PAYEE>
<PAYEELSTID>123214</PAYEELSTID>
<PAYACCT>10101</PAYACCT>
<DTDUE>19991001</DTDUE>
<MEMO>payment #3</MEMO>
</PMTINFO>
<EXTDPAYEE>
<PAYEEID>9076</PAYEEID>

OFX 2.0 Specification 6/30/00 347

<IDSCOPE>USER</IDSCOPE>
<NAME>J. C. Counts</NAME>
<DAYSTOPAY>3</DAYSTOPAY>
</[EXTDPAYEE>
<PMTPRCSTS>
<PMTPRCCODE>WILLPROCESSON</PMTPRCCODE>
<DTPMTPRC>19991001</DTPMTPRC>
</PMTPRCSTS>
</PMTRS>
</PMTTRNRS>
</BILLPAYMSGSRSV1>
</OFX>

Create a second payment to the payee, using the payee ID returned in the previous example:

<l-- payment example 2 -->

<OFX>
<SIGNONMSGSRQV1>
<SONRQ> <l-- ...Sign on request. For a
complete example, see section
11.14.1-->
</SONRQ>

</SIGNONMSGSRQV1>
<BILLPAYMSGSRQV1>
<PMTTRNRQ>
<TRNUID>1002</TRNUID>
<PMTRQ>
<PMTINFO>
<BANKACCTFROM>
<BANKID>123432123</BANKID>
<ACCTID>516273</ACCTID>
<ACCTTYPE>CHECKING</ACCTTYPE>
</BANKACCTFROM>
<TRNAMT>123.45</TRNAMT>
<PAYEEID>9076</PAYEEID>
<PAYEELSTID>123214</PAYEELSTID>
<PAYACCT>10101</PAYACCT>
<DTDUE>19991101</DTDUE>
<MEMO>Payment #4</MEMO>
</PMTINFO>
</PMTRQ>
</PMTTRNRQ>

348 12.12

Examples

</BILLPAYMSGSRQV1>
</OFX>

The server responds, indicating that it will make the payment on the date requested:

<OFX>

<SIGNONMSGSRSV1>

<SONRS> <l-- ..Sign on response. For a
complete example, see section
11.14.1-->

</SONRS>
</SIGNONMSGSRSV1>
<BILLPAYMSGSRSV1>
<PMTTRNRS>
<TRNUID>1002</TRNUID>
<STATUS>
<CODE>0</CODE>
<SEVERITY>INFO</SEVERITY>
</STATUS>
<PMTRS>
<SRVRTID>1068405<SRVRTID>
<PAYEELSTID>123214</PAYEELSTID>
<CURDEF>USD</CURDEF>
<PMTINFO>
<BANKACCTFROM>
<BANKID>123432123</BANKID>
<ACCTID>516273</ACCTID>
<ACCTTYPE>CHECKING</ACCTTYPE>
</BANKACCTFROM>
<TRNAMT>123.45</TRNAMT>
<PAYEEID>9076</PAYEEID>
<PAYEELSTID>123214</PAYEELSTID>
<PAYACCT>10101</PAYACCT>
<DTDUE>19991101</DTDUE>
<MEMO>payment #4</MEMO>
</PMTINFO>
<EXTDPAYEE>
<PAYEEID>9076</PAYEEID>
<IDSCOPE>USER</IDSCOPE>
<NAME>J. C. Counts</NAME>
<DAYSTOPAY>3</DAYSTOPAY>
</[EXTDPAYEE>
<PMTPRCSTS>

OFX 2.0 Specification 6/30/00 349

<PMTPRCCODE>WILLPROCESSON</PMTPRCCODE>
<DTPMTPRC>19991101</DTPMTPRC>
</PMTPRCSTS>
</PMTRS>
</PMTTRNRS>
</BILLPAYMSGSRSV1>
</OFX>

12.12.2 Modifying a Payment
Change the amount of the first payment to $125.99

<OFX>

<SIGNONMSGSRQV1>

<SONRQ> <!-- ..Sign on request. For a
complete example, see section
11.14.1-->

</SONRQ>
</SIGNONMSGSRQV1>
<BILLPAYMSGSRQV1>
<PMTTRNRQ>
<TRNUID>1021</TRNUID>
<PMTMODRQ>
<SRVRTID>1030155</SRVRTID>
<PMTINFO>
<BANKACCTFROM>
<BANKID>123432123</BANKID>
<ACCTID>516273</ACCTID>
<ACCTTYPE>CHECKING</ACCTTYPE>
</BANKACCTFROM>
<TRNAMT>125.99</TRNAMT><!-- changed amount -->
<PAYEE>
<NAME>J. C. Counts</NAME>
<ADDR1>100 Main St.</ADDR1>
<CITY>Turlock</CITY>
<STATE>CA</STATE>
<POSTALCODE>90101</POSTALCODE>
<PHONE>415.987.6543</PHONE>
</PAYEE>
<PAYEELSTID>123214</PAYEELSTID>
<PAYACCT>10101</PAYACCT>
<DTDUE>19991001</DTDUE>

350 12.12

Examples

<MEMO>payment #3</MEMO>
</PMTINFO>
</PMTMODRQ>
</PMTTRNRQ>
</BILLPAYMSGSRQV1>
</OFX>

The server responds:

<OFX>
<SIGNONMSGSRSV1>

<SONRS> <l-- ..Sign on response. For a
complete example, see section
11.14.1-->

</SONRS>
</SIGNONMSGSRSV1>
<BILLPAYMSGSRSV1>
<PMTTRNRS>
<TRNUID>1021</TRNUID>
<STATUS>
<CODE>0</CODE>
<SEVERITY>INFO</SEVERITY>
</STATUS>
<PMTMODRS>
<SRVRTID>1030155</SRVRTID>
<PMTINFO>
<BANKACCTFROM>
<BANKID>123432123</BANKID>
<ACCTID>516273</ACCTID>
<ACCTTYPE>CHECKING</ACCTTYPE>
</BANKACCTFROM>
<TRNAMT>125.99</TRNAMT><!-- changed amount -->
<PAYEE>
<NAME>J. C. Counts</NAME>
<ADDR1>100 Main St.</ADDR1>
<CITY>Turlock</CITY>
<STATE>CA</STATE>
<POSTALCODE>90101</POSTALCODE>
<PHONE>415.987.6543</PHONE>
</PAYEE>
<PAYEELSTID>123214</PAYEELSTID>
<PAYACCT>10101</PAYACCT>
<DTDUE>19991001</DTDUE>

OFX 2.0 Specification 6/30/00 351

<MEMO>payment #3</MEMO>
</PMTINFO>
</PMTMODRS>
</PMTTRNRS>
</BILLPAYMSGSRSV1>
</OFX>

Change the date of the same payment to December 12, 1999.

<OFX>

<SIGNONMSGSRQV1>

<SONRQ> <l-- ..Sign on request. For a
complete example, see section
11.14.1-->

</SONRQ>
</SIGNONMSGSRQV1>
<BILLPAYMSGSRQV1>
<PMTTRNRQ>
<TRNUID>32456</TRNUID>
<PMTMODRQ>
<SRVRTID>1030155</SRVRTID>
<PMTINFO>
<BANKACCTFROM>
<BANKID>123432123</BANKID>
<ACCTID>516273</ACCTID>
<ACCTTYPE>CHECKING</ACCTTYPE>
</BANKACCTFROM>
<TRNAMT>125.99</TRNAMT>
<PAYEE>
<NAME>J. C. Counts</NAME>
<ADDR1>100 Main St.</ADDR1>
<CITY>Turlock</CITY>
<STATE>CA</STATE>
<POSTALCODE>90101</POSTALCODE>
<PHONE>415.987.6543</PHONE>
</PAYEE>
<PAYEELSTID>123214</PAYEELSTID>
<PAYACCT>10101</PAYACCT>
<DTDUE>19991212</DTDUE><!-- changed date -->
<MEMO>payment #3</MEMO>
</PMTINFO>
</PMTMODRQ>
</PMTTRNRQ>

352 12.12

Examples

</BILLPAYMSGSRQV1>
</OFX>

The server responds:

<OFX>

<SIGNONMSGSRSV1>

<SONRS> <l-- ..Sign on response. For a
complete example, see section
11.14.1-->

</SONRS>
</SIGNONMSGSRSV1>
<BILLPAYMSGSRSV1>
<PMTTRNRS>
<TRNUID>32456</TRNUID>
<STATUS>
<CODE>0</CODE>
<SEVERITY>INFO</INFO>
</STATUS>
<PMTMODRS>
<SRVRTID>1030155</SRVRTID>
<PMTINFO>
<BANKACCTFROM>
<BANKID>123432123</BANKID>
<ACCTID>516273</ACCTID>
<ACCTTYPE>CHECKING</ACCTTYPE>
</BANKACCTFROM>
<TRNAMT>125.99</TRNAMT>
<PAYEE>
<NAME>J. C. Counts</NAME>
<ADDR1>100 Main St.</ADDR1>
<CITY>Turlock</CITY>
<STATE>CA</STATE>
<POSTALCODE>90101</POSTALCODE>
<PHONE>415.987.6543</PHONE>
</PAYEE>
<PAYEELSTID>123214</PAYEELSTID>
<PAYACCT>10101</PAYACCT>
<DTDUE>19991212</DTDUE><!-- changed date -->
<MEMO>payment #3</MEMO>
</PMTINFO>
</PMTMODRS>
</PMTTRNRS>

OFX 2.0 Specification 6/30/00 353

</BILLPAYMSGSRSV1>
</OFX>

12.12.3 Canceling a Payment

Cancel a payment:

<OFX>

<SIGNONMSGSRQV1>
<SONRQ>

</SONRQ>
</SIGNONMSGSRQV1>
<BILLPAYMSGSRQV1>
<PMTTRNRQ>
<TRNUID>54601</TRNUID>
<PMTCANCRQ>

<!-- ..Sign on request. For a
complete example, see section
11.14.1-->

<SRVRTID>1030155</SRVRTID>

</PMTCANCRQ>
</PMTTRNRQ>
</BILLPAYMSGSRQV1>
</OFX>

The server responds:

<OFX>

<SIGNONMSGSRSV1>
<SONRS>

</SONRS>
</SIGNONMSGSRSV1>
<BILLPAYMSGSRSV1>
<PMTTRNRS>
<TRNUID>54601</TRNUID>
<STATUS>
<CODE>0</CODE>

<l-- ..Sign on response. For a
complete example, see section
11.14.1-->

<SEVERITY>INFO</SEVERITY>

</STATUS>
<PMTCANCRS>

<SRVRTID>1030155</SRVRTID>

</PMTCANCRS>
</PMTTRNRS>

354

12.12 Examples

</BILLPAYMSGSRSV1>
</OFX>

12.12.4 Updating Payment Status

Update payment status:

<OFX>
<SIGNONMSGSRQV1>
<SONRQ> <I-- ...Sign on request. For a
complete example, see section
11.14.1-->
</SONRQ>

</SIGNONMSGSRQV1>
<BILLPAYMSGSRQV1>
<PMTINQTRNRQ>
<TRNUID>7865</TRNUID>
<PMTINQRQ>
<SRVRTID>565321</SRVRTID>
</PMTINQRQ>
</PMTINQTRNRQ>
</BILLPAYMSGSRQV1>
</OFX>

The server responds with updated status and check number:

<OFX>
<SIGNONMSGSRSV1>

<SONRS> <l-- ..Sign on response. For a
complete example, see section
11.14.1-->

</SONRS>
</SIGNONMSGSRSV1>
<BILLPAYMSGSRSV1>
<PMTINQTRNRS>
<TRNUID>7865</TRNUID>
<STATUS>
<CODE>0</CODE>
<SEVERITY>INFO</SEVERITY>
</STATUS>
<PMTINQRS>
<SRVRTID>565321</SRVRTID>
<PMTPRCSTS>
<PMTPRCCODE>PROCESSEDON</PMTPRCCODE>

OFX 2.0 Specification 6/30/00 355

<DTPMTPRC>19990201</DTPMTPRC>
</PMTPRCSTS>
<CHECKNUM>6017</CHECKNUM>
</PMTINQRS>
</PMTINQTRNRS>
</BILLPAYMSGSRSV1>
</OFX>

12.12.5 Scheduling a Recurring Payment

Create a recurring payment of 36 monthly payments of $395 to a (previously known) standard payee. The
first payment will be on November 15, 1999:

<OFX>

<SIGNONMSGSRQV1>

<SONRQ> <l-- ...Sign on request. For a
complete example, see section
11.14.1-->

</SONRQ>
</SIGNONMSGSRQV1>
<BILLPAYMSGSRQV1>
<RECPMTTRNRQ>
<TRNUID>12354</TRNUID>
<RECPMTRQ>
<RECURRINST>
<NINSTS>36</NINSTS/
<FREQ>MONTHLY</FREQ>
</RECURRINST>
<PMTINFO>
<BANKACCTFROM>
<BANKID>555432180</BANKID>
<ACCTID>763984</ACCTID>
<ACCTTYPE>CHECKING</ACCTTYPE>
</BANKACCTFROM>
<TRNAMT>395.00</TRNAMT>
<PAYEEID>77810</PAYEEID>
<PAYEELSTID>27983</PAYEELSTID>
<PAYACCT>444-78-97572</PAYACCT>
<DTDUE>19991115</DTDUE>
<MEMO>Auto loan payment</MEMO>
</PMTINFO>
</RECPMTRQ>
</RECPMTTRNRQ>

356 12.12 Examples

</BILLPAYMSGSRQV1>
</OFX>

The server responds with the assigned server transaction ID:

<OFX>
<SIGNONMSGSRSV1>

<SONRS> <l-- ..Sign on response. For a
complete example, see section

11.14.1-->
</SONRS>
</SIGNONMSGSRSV1>
<BILLPAYMSGSRSV1>
<RECPMTTRNRS>
<TRNUID>12345</TRNUID>
<STATUS>
<CODE>0</CODE>
<SEVERITY>INFO</INFO>
</STATUS>
<RECPMTRS>
<RECSRVRTID>387687138</RECSRVRTID>
<PAYEELSTID>27983</PAYEELSTID>
<CURDEF>USD</CURDEF>
<RECURRINST>
<NINSTS>36</NINSTS>
<FREQ>MONTHLY</FREQ>
</RECURRINST>
<PMTINFO>
<BANKACCTFROM>
<BANKID>555432180</BANKID>
<ACCTID>763984</ACCTID>
<ACCTTYPE>CHECKING</ACCTTYPE>
</BANKACCTFROM>
<TRNAMT>395.00</TRNAMT>
<PAYEEID>77810</PAYEEID>
<PAYEELSTID>27983</PAYEELSTID>
<PAYACCT>444-78-97572</PAYACCT>
<DTDUE>19991115</DTDUE>
<MEMO>Auto loan payment
</PMTINFO>
<EXTDPAYEE>
<PAYEEID>77810</PAYEEID>
<IDSCOPE>USER</IDSCOPE>

OFX 2.0 Specification 6/30/00

357

<NAME>Mel's Used Cars</NAME>
<DAYSTOPAY>3</DAYSTOPAY>
</EXTDPAYEE>
</RECPMTRS>
</RECPMTTRNRS>
</BILLPAYMSGSRSV1>
</OFX>

12.12.6 Modifying a Recurring Payment

Change the amount of a recurring payment:

<OFX>
<SIGNONMSGSRQV1>
<SONRQ> <l-- ..Sign on request. For a
complete example, see section
11.14.1-->
</SONRQ>

</SIGNONMSGSRQV1>
<BILLPAYMSGSRQV1>
<RECPMTTRNRQ>
<TRNUID>98765</TRNUID>
<RECPMTMODRQ>
<RECSRVRTID>387687138</RECSRVRTID>
<RECURRINST>
<NINSTS>36</NINSTS>
<FREQ>MONTHLY</FREQ>
</RECURRINST>
<PMTINFO>
<BANKACCTFROM>
<BANKID>555432180</BANKID>
<ACCTID>763984</ACCTID>
<ACCTTYPE>CHECKING</ACCTTYPE>
</BANKACCTFROM>
<TRNAMT>399.95</TRNAMT><!-- changing amount -->
<PAYEEID>77810</PAYEEID>
<PAYEELSTID>27983</PAYEELSTID>
<PAYACCT>444-78-97572</PAYACCT>
<DTDUE>19991115</DTDUE>
<MEMO>Auto loan payment</MEMO>
</PMTINFO>
<MODPENDING>N</MODPENDING>
</RECPMTMODRQ>

358 12.12

Examples

</RECPMTTRNRQ>
</BILLPAYMSGSRQV1>
</OFX>

The server responds:

<OFX>

<SIGNONMSGSRSV1>

<SONRS> <l-- ...Sign on response. For a
complete example, see section
11.14.1-->

</SONRS>
</SIGNONMSGSRSV1>
<BILLPAYMSGSRSV1>
<RECPMTTRNRS>
<TRNUID>98765</TRNUID>
<STATUS>
<CODE>0</CODE>
<SEVERITY>INFO</SEVERITY>
</STATUS>
<RECPMTMODRS>
<RECSRVRTID>387687138</RECSRVRTID>
<RECURRINST>
<NINSTS>36</NINSTS>
<FREQ>MONTHLY</FREQ>
</RECURRINST>
<PMTINFO>
<BANKACCTFROM>
<BANKID>555432180</BANKID>
<ACCTID>763984</ACCTID>
<ACCTTYPE>CHECKING</ACCTTYPE>
</BANKACCTFROM>
<TRNAMT>399.95</TRNAMT><!-- changing amount -->
<PAYEEID>77810</PAYEEID>
<PAYEELSTID>27983</PAYEELSTID>
<PAYACCT>444-78-97572</PAYACCT>
<DTDUE>19991115</DTDUE>
<MEMO>Auto loan payment</MEMO>
</PMTINFO>
<MODPENDING>N</MODPENDING>
</RECPMTMODRS>

OFX 2.0 Specification 6/30/00 359

</RECPMTTRNRS>
</BILLPAYMSGSRSV1>
</OFX>

12.12.7 Canceling a Recurring Payment

Cancel a recurring payment:

<OFX>
<SIGNONMSGSRQV1>
<SONRQ> <l-- ..Sign on request. For a
complete example, see section
11.14.1-->
</SONRQ>

</SIGNONMSGSRQV1>
<BILLPAYMSGSRQV1>
<RECPMTTRNRQ>
<TRNUID>11122</TRNUID>
<RECPMTCANCRQ>
<RECSRVRTID>387687138</RECSRVRTID>
<CANPENDING>Y</CANPENDING>
</RECPMTCANCRQ>
</RECPMTTRNRQ>
</BILLPAYMSGSRQV1>
</OFX>

The server responds:

<OFX>

<SIGNONMSGSRSV1>

<SONRS> <l-- ..Sign on response. For a
complete example, see section
11.14.1-->

</SONRS>
</SIGNONMSGSRSV1>
<BILLPAYMSGSRSV1>
<RECPMTTRNRS>
<TRNUID>11122</TRNUID>
<STATUS>
<CODE>0</CODE>
<SEVERITY>INFO</SEVERITY>
</STATUS>
<RECPMTCANCRS>
<RECSRVRTID>387687138</RECSRVRTID>

360 12.12

Examples

<CANPENDING>Y</CANPENDING>
</RECPMTCANCRS>
</RECPMTTRNRS>
</BILLPAYMSGSRSV1>
</OFX>

12.12.8 Adding a Payee to the Payee List

The user sends a request to add a payee to the user’s payee list:

<OFX>
<SIGNONMSGSRQV1>
<SONRQ> <l-- ..Sign on request. For a
complete example, see section
11.14.1-->
</SONRQ>

</SIGNONMSGSRQV1>
<BILLPAYMSGSRQV1>
<PAYEETRNRQ>
<TRNUID>127677</TRNUID>
<PAYEERQ>
<PAYEE>
<NAME>ACME Rocket Works</NAME>
<ADDR1>101 Spring St.</ADDR1>
<ADDR2>Suite 503</ADDR2>
<CITY>Watkins Glen</CITY>
<STATE>NY</STATE>
<POSTALCODE>12345-6789</POSTALCODE>
<PHONE>888.555.1212</PHONE>
</PAYEE>
<PAYACCT>1001-99-8876</PAYACCT>
</PAYEERQ>
</PAYEETRNRQ>
</BILLPAYMSGSRQV1>
</OFX>

OFX 2.0 Specification 6/30/00

361

The server responds:

<OFX>

<SIGNONMSGSRSV1>

<SONRS> <!-- ..Sign on response. For a
complete example, see section
11.14.1-->

</SONRS>
</SIGNONMSGSRSV1>
<BILLPAYMSGSRSV1>
<PAYEETRNRS>
<TRNUID>127677</TRNUID>
<STATUS>
<CODE>0</CODE>
<SEVERITY>INFO</SEVERITY>
</STATUS>
<PAYEERS>
<PAYEELSTID>78096786</PAYEELSTID>
<PAYEE>
<NAME>ACME Rocket Works</NAME>
<ADDR1>101 Spring St.</ADDR1>
<ADDR2>Suite 503</ADDR2>
<CITY>Watkins Glen</CITY>
<STATE>NY</STATE>
<POSTALCODE>12345-6789</POSTALCODE>
<PHONE>888.555.1212</PHONE>
</PAYEE>
<EXTDPAYEE>
<PAYEEID>88878</PAYEEID>
<IDSCOPE>GLOBAL</IDSCOPE>
<NAME>ACME Rocket Works, Inc.</NAME>
<DAYSTOPAY>2</DAYSTOPAY>
</[EXTDPAYEE>
<PAYACCT>1001-99-8876</PAYACCT>
</PAYEERS>
</PAYEETRNRS>
</BILLPAYMSGSRSV1>
</OFX>

362 12.12

Examples

12.12.9 Synchronizing Scheduled Payments
A client wishes to obtain all Payments active on the server for a particular account:

<OFX>

<SIGNONMSGSRQV1>

<SONRQ> <l-- ...Sign on request. For a
complete example, see section
11.14.1-->

</SONRQ>
</SIGNONMSGSRQV1>
<BILLPAYMSGSRQV1>
<PMTSYNCRQ>
<REFRESH>Y</REFRESH>
<REJECTIFMISSING>N</REJECTIFMISSING>
<BANKACCTFROM>
<BANKID>123432123</BANKID>
<ACCTID>516273</ACCTID>
<ACCTTYPE>CHECKING</ACCTTYPE>
</BANKACCTFROM>
</PMTSYNCRQ>
</BILLPAYMSGSRQV1>
</OFX>

Assuming the only activity on this account has been the two payments created above, the server responds
with one payment since the other payment was cancelled. The server also includes the current <TOKEN>

value.

Note: If the one outstanding payment had a modification to it, the modification should have
been integrated into the one <PMTRS> since this is a refresh, not a sync of all history. In that
case, <TRNUID>0 must be returned in the response transaction (no client initiated an exact
matching transaction).

<OFX>

<SIGNONMSGSRSV1>

<SONRS> <l-- ...Sign on response. For a
complete example, see section
11.14.1-->

</SONRS>
</SIGNONMSGSRSV1>
<BILLPAYMSGSRSV1>
<PMTSYNCRS>
<TOKEN>3247989384</TOKEN>
<BANKACCTFROM>
<BANKID>123432123</BANKID>

OFX 2.0 Specification 6/30/00 363

<ACCTID>516273</ACCTID>
<ACCTTYPE>CHECKING</ACCTTYPE>
</BANKACCTFROM>
<PMTTRNRS>
<TRNUID>0</TRNUID>
<STATUS>
<CODE>0</CODE>
<SEVERITY>INFO</SEVERITY>
</STATUS>
<PMTRS>
<SRVRTID>1068405</SRVRTID>
<PAYEELSTID>123214</PAYEELSTID>
<CURDEF>USD</CURDEF>
<PMTINFO>
<BANKACCTFROM>
<BANKID>123432123</BANKID>
<ACCTID>516273</ACCTID>
<ACCTTYPE>CHECKING</ACCTTYPE>
</BANKACCTFROM>
<TRNAMT>123.45</TRNAMT>
<PAYEEID>9076</PAYEEID>
<PAYEELSTID>123214</PAYEELSTID>
<PAYACCT>10101</PAYACCT>
<DTDUE>19991001</DTDUE>
<MEMO>payment #4</MEMO>
</PMTINFO>
<EXTDPAYEE>
<PAYEEID>9076</PAYEEID>
<IDSCOPE>USER</IDSCOPE>
<NAME>J. C. Counts</NAME>
<DAYSTOPAY>3</DAYSTOPAY>
</EXTDPAYEE>
<PMTPRCSTS>
<PMTPRCCODE>WILLPROCESSON</PMTPRCCODE>
<DTPMTPRC>19991001</DTPMTPRC>
</PMTPRCSTS>
</PMTRS>
</PMTTRNRS>
</PMTSYNCRS>
</BILLPAYMSGSRSV1>
</OFX>

364 12.12

Examples

CHAPTER 13 INVESTMENTS

OFX supports download of security information and detailed investment account statements including
transactions, open orders, balances, and positions.

Client Sends Server Responds

Account identifier
Whether to download open orders
Whether to download transactions

Date range if transactions should be
downloaded

Whether to download positions
Whether to download balances

Additional securities to send information
about

Date and time for statement
Default currency for statement
Account identifier
Investment transactions
Banking transactions

Open orders

Positions

Account balances

Available Cash Balance
Short Balance

Margin Balance

Buying power

Marketing message

List of securities

Note: This release of OFX does not support trading or tax lots.

OFX 2.0 Specification 6/30/00 365

13.1 Types of Response Information

The response consists of five types of information:

& Transactions — a combination of bank transaction detail records and investment transaction detail
records. Transactions only within the specified start and stop dates are sent.

¢ Positions — positions a user has at a brokerage. Each statement response must contain a complete set of
position records, even if no transactions occurred in the requested statement period for a particular
holding.

¢ Balances — current balances typically reported on an Fl statement, such as cash balance or buying
power. They can also convey other numbers of interest, such as current interest rates.

¢ Open Orders — current open trading orders that a user has at a brokerage.

& Securities — any security referenced in either transactions, positions, open orders or explicitly
requested.

13.2 Sub-Accounts

Many Fls distinguish between activity and positions in cash, margin, and short accounts, with some Fls
having many other types of “sub-accounts.” OFX defines four standard types of sub-accounts: Cash,
Margin, Short, Other. Position, Transaction, and Open Order records identify the sub-account.

13.3 Units, Precision, and Signs

This section provides information about numerical values for investment transactions. For more
information about common data types used within OFX, refer to Chapter 3, "Common Aggregates,
Elements, and Data Types."

13.3.1 Units

The units for security units and unit price are those commonly used on brokerage statements, and differ for
each type of security.

¢ Stocks and Other — use number of shares for units and dollar value for unit price.

¢ Mutual Funds —in most cases shares are used, but in some cases the dollar value is used. The unit type
is specified in cases in which it can be either.

¢ Bonds — use face value for units and percentage of par for unit price. For example, a $25,000 bond
trading at $88 would use 25000 as the units and 88 as the unit price.

¢ Options — use number of contracts (not shares) for units, and price per share (not contract) for unit
price.

366 13.1 Types of Response Information

13.3.2 Precision

OFX does not specify the precision of fields since the precision is client-dependent. However, it is
recommended that clients and servers follow these rules:

¢ Clients and servers should send as much precision as they have

¢ Clients and servers should use a precision equal to or better than 1/256 of a share

13.3.3 Signs

Chapter 3, "Common Aggregates, Elements, and Data Tyges¢tibes how to use positive and negative
numbers. Briefly, quantities and total values should be signed from the perspective of the user. In a stock
buy, the total value is negative, the unit price is always positive, and the number of units is positive.

UNITS and TOTALS are signed from the perspective of the user (positive currency amount for SELLS,
negative currency amount for BUYs). All other Investment transaction amounts are always positively
signed. In other words UNITPRICE, COMMISSION, FEES, TAXES, PENALTY, WITHHOLDING,
STATEWITHHOLDING, LOAD, MARKUP and MARKDOWN are always positive numbers.

A positive COMMISSION, TAXES, LOAD, PENALTY, WITHHOLDING, STATEWITHHOLDING or
FEES increases the negatively signed TOTAL on a BUYSTOCK and decreases the positively signed
TOTAL on a SELLSTOCK.

MARKUP and MARKDOWN increase or decrease, respectively, the UNITPRICE.

Servers should return corrections to investment buys or sells as the opposite transaction type, e.g., a
correction to a buy is returned as a sell. A correction to MARGININTEREST or RETOFCAP is returned
as an INVEXPENSE.

OFX 2.0 Specification 6/30/00 367

13.4 Bank and Investment Transactions

Many Fls provide investment accounts that allow users to write checks and perform other traditional
banking transactions, as well as investment transactions. OFX requires Fls to indicate in the download
whether check-writing privileges exist for a given account.

Fls need to use the correct transaction record, bank or investment, for each real-world transaction. Use the
following guidelines:

¢ Checks, electronic funds transfers, and ATM transactions associated with CMA or money market
sweep accounts are always represented with a bank transaction record.

¢ Investment actions that involve securities (buy, sell, stock split, reinvest, etc.) are always represented
with an investment record. Actions that are cash-only but are directly associated with a security are also
investment actions (for example, dividends).

¢ Other cash-only actions require careful analysis by the FI. Those that affect investment performance
analysis should be sent using the appropriate investment action (investment income - miscellaneous,
investment expense). Those that are completely unrelated to investment should be sent as a bank
record.

13.5 Money Market Funds

Money market funds can be handled in one of three different ways depending on how the fund is modeled
at the financial institution

& Separate account at the financial institution
& Sweep account within an investment account

& Position within an investment account

13.5.1 Separate Account at the Financial Institution

In this case, the money market fund is in its own account with its own account number, distinct from the
investment account. In OFX, you should model the money market fund as a separate money market bank
account; see Chapter 11, "Bankin@le banking <STMTRQ> request aggregate and <STMTRS>
response aggregate will be used to download transactions.

368 13.4 Bank and Investment Transactions

13.5.2 Sweep Account Within an Investment Account

OFX uses the money market as a “sweep” account, where cash is “swept” as needed when buying and
selling securities. The money market fund does not have its own account number. The customer sees the
money market fund as an investment-account cash balance. In OFX, checks, ATMs, electronic fund
transfer, deposit, and withdrawal transactions should be downloaded using banking transactions within the
investment account. However, the sweep transactions in and out of the money market fund should not be
downloaded to the client.

13.5.3 Position Within an Investment Account

The customer purchases the money market fund and is held in the account as a position. The money market
fund does not have its own account number. In OFX, the money market fund should be returned as a
<POSOTHER> position in the <INVPOSLIST>, with a <UNITPRICE> of 1.00 and <UNITS> as the

current value of the position. Purchases and redemptions should be modeled as <BUYOTHER> and
<SELLOTHER> transactions with a <UNITPRICE> of 1.00 and <UNITS> as the transaction amount.

13.6 Investment Accounts

Investment account information is downloaded using the account information response aggregate
<ACCTINFORS>. For more information, refer to Chapter 8, "Activation & Account Information."
<INVACCTFROM> specifies the account. The <INVACCTINFO> aggregate specifies the investment-
specific information.

13.6.1 Specifying the Investment Account <INVACCTFROM>

Tag Description

<INVACCTFROM> Account-from aggregate
<BROKERID> Unique identifier for the FIA-22
<ACCTID> Account number at FIA-22

</INVACCTFROM>

Brokers should use the domain name of their company’s URL as the BROKERID, e.g.,

If URL=www.broker.com
then BROKERID=broker.com

The <INVACCTTO> aggregate contains the same elements.

OFX 2.0 Specification 6/30/00 369

13.6.2 Investment Account Information <INVACCTINFO>

The <INVACCTINFO> aggregate should appear in the <ACCTINFO> aggregate for accounts that support
investment statement download. For more information about the <ACCTINFO> aggregate, refer to
Chapter 8, "Activation & Account Information."

Tag Description

<INVACCTINFO> Investment-account-information-record aggregate
<INVACCTFROM> Account at FI, see 13.6.1
</INVACCTFROM>

<USPRODUCTTYPE> | Classification of account. See section 13.6frlvalues
<CHECKING> Whether the account has check writing privileggeplean

<SVCSTATUS> Activation status for investment statement download for the account.
ACTIVE (signed up), PEND (in the process of signing up), AVAIL
(have not signed up).

<INVACCTTYPE> Type of account. INDIVIDUAL, JOINT, TRUST, CORPORATE
<OPTIONLEVEL> Text description of option trading privilege&;40

</INVACCTINFO>

If an investment account has payments functionality, the analogous PMTINFO aggregate (s§e 12.5.2
should also be sent in the ACCTINFO for the account. Payment information will be sent using the message
sets described in the 12.5.2 |, "Payment Information <PMTINFO>."

370 13.6 Investment Accounts

13.6.2.1 Values for <USPRODUCTTYPE>

<USPRODUCTTYPE> classifies accounts according to their account type. Valid values are:

Product Type Description

401K A 401(K) account

403B A 403(B) account

IRA An IRA account

KEOGH Keogh (Money Purchase/Profit
Sharing)

OTHER Other account type

SARSEP Salary Reduction Simplified Employer
Pension plan

SIMPLE Savings Incentive Match Plan for
employees

NORMAL Regular account

TDA Tax Deferred Annuity

TRUST Trust (including UTMA)

UGMA Custodial account

Note: Server should return 401K as the value for <USPRODUCTTYPE> in the
<INVACCTINFO> aggregate for 401(k) accounts.

13.6.2.2 International Note

The <USPRODUCTTYPE> element is intended for use by Fls in the United States. OFX will be expanded
to provide equivalent elements to support the needs for other countries.

13.6.3 Brokerage, Mutual Fund, and 401K Accounts

Investment accounts include brokerage accounts, mutual fund accounts, 401(k) accounts, and other
retirement accounts. OFX supports transactions, positions, balances, and open orders for all of these
account types.

13.6.3.1 401(k) Accounts

401(k) accounts have the following additional characteristics:

¢ Funds can be provided which are to be considered “before tax” or “after tax”. In addition, funds can be
provided which are not immediately available to the user (vesting of employer contributed funds). The
separate sources of funds must be tracked separately in order to properly report the user’s account.

OFX 2.0 Specification 6/30/00 371

¢ The user may, in some circumstances, borrow cash from the account, then repay it over time. Securities
are sold to raise cash for the loan to be made; securities are purchased as loans are repaid.Repayments
use the same source of money from which the loan was withdrawn.

¢ Some servers may not report the cash transactions, e.g. deposits are immediately used to purchase
securities and only the buy transactions are reported. Similarly, securities are sold to fund a withdrawal
and only the sell transactions are reported and not the actual withdrawal transaction.

13.6.3.2 Note on Downloading Positions and Transaction Detail for Investment
Accounts

In order for clients to properly show the user the state of an investment account (especially 401(k)
accounts), it is important that position and transaction detail information be downloaded. This allows the
reporting of account performance down to the level of the individual securities.

Note: For 401(k) accounts, even though OFX does not require the downloading of the
<INVPOSLIST> in the response when the <INCPOS> flag is set in the request, it is highly
recommended that servers return this information. Similarly, even though OFX does not
require the downloading of the <INVTRANLIST> in the response when the <INCTRAN> flag
is set in the request, it is highly recommended that servers return this information for 401(k)
accounts.

13.7 Investment Message Sets and Profile

OFX separates messages that the client and server send into groups called message sets. Each financial
institution defines the message sets that the institution supports. The messages described in this chapter fall
into two message sets:

¢ Investment Statement Download

¢ Security Information

Each message set contains options that allow a financial institution to customize its use of OFX. For
example, an institution can support the Investment Statement Download Set (INVSTMTMSGSETV1), but
it can choose not to support the download of open orders.

The options and attributes are defined in the profile as part of each message set definition. Each set of
options and attributes appears within an aggregate that is specific to a message set. For example,
<INVSTMTMSGSETV1> contains all the options and attributes that pertain to investment statement
download.

372 13.7 Investment Message Sets and Profile

13.7.1 Investment Statement Download

13.7.1.1 Investment Message Set Profile <INVSTMTMSGSET>

The investment statement message set profile aggregate <INVSTMTMSGSET> is used in the response to

a financial institution profile request (s€@hapter 7, "FI Profile)' to specify which activities it supports.

Tag
<INVSTMTMSGSET>
<INVSTMTMSGSETV1>
<MSGSETCORE>
</MSGSETCORE>
<TRANDNLD>
<OODNLD>
<POSDNLD>
<BALDNLD>

<CANEMAIL>

<INV401KDNLD>

Description
Investment-statement-message-set-profile aggregate
Version 1 message set

Common message set information, see Chapter 7, "FI Profile"

Whether the FI server downloads investment statement transadioolean
Whether the FI server downloads investment open ortarslean
Whether the FI server downloads investment statement posiBamdean

Whether the F| server downloads investment balari8eslean

Whether the FI supports investment e-mail. Use generic e-mail profile to specify

whether generic e-mail is supported; see Chapter 9, "Customer to FlI
Communication."Boolean

Whether the FI server downloads 401(k) account informatmglean

</INVSTMTMSGSETV1>

</INVSTMTMSGSET>

OFX 2.0 Specification

6/30/00 373

13.7.1.2 Investment Statement Message Set and Messages

13.7.1.2.1 Investment Statement Message Set Request Messages

Tag
<INVSTMTMSGSET>
<INVSTMTMSGSETV1>

<INVSTMTMSGSRQV1>

</INVSTMTMSGSRQV1>
</INVSTMTMSGSETV1>

</INVSTMTMSGSET>

Description

INVSTMTTRNRQ
INVSTMTTRQ

INVMAILTRNRQ
INVMAILRQ

INVMAILSYNCRQ

374

13.7 Investment Message Sets and Profile

13.7.1.2.2 Investment Statement Message Set Response Messages

Tag Description
<INVSTMTMSGSET>
<INVSTMTMSGSETV1>
<INVSTMTMSGSRSV1> INVSTMTTRNRS
INVSTMTRS
INVMAILTRNRS
INVMAILRS
INVMAILSYNCRS
</INVSTMTMSGSRSV1>
</INVSTMTMSGSETV1>

</INVSTMTMSGSET>

OFX 2.0 Specification 6/30/00 375

13.7.2 Security Information

13.7.2.1 Security List Message Set Profile <SECLISTMSGSET>

The security list message set profile aggregate <SECLISTMSGSET> is used in the response to an Fl
profile request (see Chapter 7, “FI Profile”) to specify which activities it supports.

Tag Description
<SECLISTMSGSET> Security-information-message-set-profile aggregate
<SECLISTMSGSETV1> Version 1 message set

<MSGSETCORE> Common message set information, see Chapter 7, "FI Profile"

</MSGSETCORE>
<SECLISTRQDNLD> | Whether the FI server responds to security list requéstslean

</SECLISTMSGSETV1>

</SECLISTMSGSET>

376 13.7 Investment Message Sets and Profile

13.7.2.2 Security List Message Set and Messages

13.7.2.2.1 Security List Message Set Request Messages

Tag Description

<SECLISTMSGSET>

<SECLISTMSGSETV1>
<SECLISTMSGSRQ> SECLISTTRNRQ
SECLISTRQ
</SECLISTMSGSRQV1>

</SECLISTMSGSETV1>

</SECLISTMSGSET>

OFX 2.0 Specification 6/30/00 377

13.7.2.2.2 Security List Message Set Response Messages

Tag Description
<SECLISTMSGSET>
<SECLISTMSGSETV1>
<SECLISTMSGSRSV1> SECLISTTRNRS
SECLISTRS
SECLIST
</SECLISTMSGSRSV1>

</SECLISTMSGSETV1>

</SECLISTMSGSET>

Note: The <SECLISTMSGSRS> aggregate may appear in a response file when no
corresponding <SECLISTMSGSRQ> aggregate appears in the request file. Servers should add
the message set response wrapper only when downloading a statement and providing the
<SECLIST>.

378 13.7 Investment Message Sets and Profile

13.8 Investment Securities

13.8.1 Security ldentification <SECID>

Securities must be consistently identified to allow client applications to prepare accurate investment
reports across all user investment accounts, even at multiple Fls. At this time, neither a security name nor
its symbol is standardized. Therefore, OFX uses CUSIP numbers (a unique 9-digit alphanumeric
identifier) to identify securities. CUSIP numbers are available for the vast majority of securities traded
today, including those without symbols such as bonds. For a security that does not have a CUSIP, a
financial institution must follow the standard procedure of assigning a CUSIP by using itself as the issuer
to avoid conflict with any other CUSIP.

Tag Description
<SECID> Security-identifier aggregate
<UNIQUEID> Unique identifier for the security. CUSIP for US FI5-32

<UNIQUEIDTYPE> | Name of standard used to identify the security i.e., “CUSIP” for Fls in the United
StatesA-10

</SECID>

13.8.1.1 International Note

Non-US financial institutions that do not have access to CUSIP numbers must supply a unique identifier
for each security in the UNIQUEID field of this aggregate. OFX will be expanded to include other security
identifying standards.

13.8.2 Security List Request

The user can use the SECLISTTRNRQ and SECLISTRQ aggregates to request information about specific
securities. The SECLISTTRNRQ is the transaction-level aggregate that contains the SECLISTRQ. The
SECLISTRQ aggregate specifies for which securities information is being requested.

OFX 2.0 Specification 6/30/00 379

13.8.2.1 Security List Transaction Request <SECLISTTRNRQ>

Tag Description

<SECLISTTRNRQ> Transaction-request aggregate
<TRNUID> Client-assigned globally unique 1D for this transacttomuid
<CLTCOOKIE> Data to be echoed in the transaction respoAsg&?2

<TAN> Transaction authorization number; used in some countries with some types of
transactions. Country-specific documentation will define messages that require a <TAN>,
A-80

<SECLISTRQ> Aggregate for the security list request (see section 13)8.2.2

</SECLISTRQ>

</SECLISTTRNRQ>

13.8.2.2 Security List Request <SECLISTRQ>

For the security list request, securities must be specified with either a SECID aggregate, a ticker symbol, or
an Fl assigned identifier.

Tag Description
<SECLISTRQ> Security-list-request aggregate
<SECRQ> Security request (one or more)
Security identification.
Specify either
<SECID>,
<TICKER>, or
<FIID> .
<SECID> Security identifier aggregate
</SECID>
_Or-
<TICKER> Ticker symbol A-32
_or-
<FIID> FI specific ID for the securityA-32
</SECRQ>
</SECLISTRQ>

380 13.8 Investment Securities

13.8.3 Security List Response

If the client sends a security list request to an FI, then the server must send back a security list response to
the client application. The security list response is used primarily to report the status of the security list
request. The actual security information should be sent in the security list SECLIST aggregate described in
section13.8.4

13.8.3.1 Security List Transaction Response <SECLISTTRNRS>

Tag Description

<SECLISTTRNRS> Transaction-response aggregate

<TRNUID> Client-assigned globally unique ID for this transacttomuid
<STATUS> Status aggregate
</STATUS>

<CLTCOOKIE> Client-provided dataREQUIRED if provided in requesti-32
<SECLISTRS> Aggregate for the security list response, see 1338.3
</SECLISTRS>

</SECLISTTRNRS>

13.8.3.2 Status Codes

Code Meaning

0 Success (INFO)

2000 General error (ERROR)

2019 Duplicate request (ERROR)

12500 One or more securities not found (ERROR)

13.8.3.3 Security List Response <SECLISTRS>

The security list response aggregate, the only empty aggregate in OFX, is used to respond to the
<SECLISTRQ>. It is used to signify that the security list is generated as a result of a security list request.
The actual security information should be included in the <SECLIST> aggregate.

Description

<SECLISTRS> Security-list-response (the only empty aggregate in OFX).

</SECLISTRS>

OFX 2.0 Specification 6/30/00 381

13.8.4 Security List <SECLIST>

The SECLIST should be sent in the following two cases.
¢ Inresponse to a <SECLISTRQ>.

Note: An empty <SECLISTRS> is sent in response to the <SECLISTRQ>. The <SECLIST>
aggregate is sent after the <SECLISTTRNRS> aggregate that wraps the <SECLISTRS>.

¢ When the response file contains an investment statement download that has positions, transactions, or
open orders. The <SECLIST> should contain information about each security referenced in the
investment statement download. Clients are completely dependent on the security list to provide
descriptive information for the securities referenced in positions, transactions, and open orders.

Note: The <SECLISTMSGSRSV1> aggregate may appear in a response file when no
corresponding <SECLISTMSGSRQV1> aggregate appears in the request file. Servers should
add the message set response wrapper only when downloading a statement and providing the
<SECLIST>.

Tag Description
<SECLIST> Security-list-request aggregate
<xxxINFO> Security information aggregates (zero or more): <DEBTINFO>, <MFINFO>,

<OPTINFO>, <OTHERINFO>, or <STOCKINFO>.
While allowed by the DTD, servers should not send an empty <SECLIST> aggregate.

</xxxINFO>

</SECLIST>

13.8.5 Securities Information

The <MFINFO>, <STOCKINFO>, <OPTINFO>, <DEBTINFO>, and <OTHERINFO> aggregates

provide security information. They define the type of security, and one or more sets of descriptive
information. These aggregates relate the <SECID> used in positions, transactions, and open orders to
descriptive information about those securities. In this way, the system describes a given security only once,
no matter how many times it is referenced.

382 13.8 Investment Securities

13.8.5.1 General Securities Information <SECINFO>

The <SECINFO> aggregate contains fields that are common to all security types. This aggregate is used in
the security type specific aggregates in the following sections.

Tag Description
<SECINFO> Security-information aggregate
<SECID> Security-identifier aggregate
</SECID>
<SECNAME> Full name of securityA-120
<TICKER> Ticker symbol (at most onep-32
<FIID> FI ID number for this security (at most oné);32
<RATING> Rating,A-10
<UNITPRICE> Current price of securitynitprice
<DTASOF> Date as of for the unit pricalatetime
<CURRENCY> Overriding currency aggregate for unit price, see section 5.2
</CURRENCY>
<MEMO> Memo
</SECINFO>

OFX 2.0 Specification 6/30/00 383

13.8.5.2 Debt Information <DEBTINFO>

Tag

<DEBTINFO>

<SECINFO>
</SECINFO>
<PARVALUE>

<DEBTTYPE>

<DEBTCLASS>
<COUPONRT>
<DTCOUPON>

<COUPONFREQ>

<CALLPRICE>
<YIELDTOCALL>
<DTCALL>
<CALLTYPE>
<YIELDTOMAT>
<DTMAT>

<ASSETCLASS>

<FIASSETCLASS>

</DEBTINFO>

Description
Opening tag for debt information aggregate

Security information aggregate

Par valueamount

Debt type (at most one)
COUPON = coupon
ZERO = zero coupon

Classification of debt. TREASURY, MUNICIPAL, CORPORATE, OTHER.
Bond coupon rate for next closest call date (at most aadg,
Maturity date for next couporate

When coupons mature. One of the following values: MONTHLY, QUARTERLY,
SEMIANNUAL, ANNUAL, or OTHER.

Bond call price (at most onednitprice

Yield to next call rate

Next call date (at most onedate

Type of next call. CALL, PUT, PREFUND, MATURITY
Yield to maturity,rate

Debt maturity date (at most onalate

Asset Class (at most one), DOMESTICBOND, INTLBOND, LARGESTOCK
SMALLSTOCK, INTLSTOCK, MONEYMRKT, OTHER

Text string containing an Fl defined asset clas82

384

13.8 Investment Securities

13.8.5.3 Mutual Fund Information <MFINFO>

Tag

<MFINFO>
<SECINFO>
</SECINFO>
<MFTYPE>
<YIELD>
<DTYIELDASOF>
<MFASSETCLASS>

<PORTION>

<ASSETCLASS>

<PERCENT>
</PORTION>
</MFASSETCLASS>
<FIMFASSETCLASS>
<FIPORTION>
<FIASSETCLASS>
<PERCENT>
</FIPORTION>
</FIMFASSETCLASS>

</MFINFO>

Description
Mutual-fund-information aggregate

Security-information aggregate

Mutual fund type. OPENEND, CLOSEEND, OTHER

Current yield reported as portion of the fund’s assets (at most mate),
As-of date for yield valuedatetime

Asset class breakdown for the mutual fund

Portion of the mutual fund with a specific asset classification (one or m

Asset Class, DOMESTICBOND, INTLBOND, LARGESTOCK
SMALLSTOCK, INTLSTOCK, MONEYMRKT, OTHER

Percentage of the fund that falls under this asset ctatss,

FI defined asset class breakdown for the mutual fund
Portion of the mutual fund with a specific asset classification (one or m
Text string containing an Fl defined asset clas82

Percentage of the fund that falls under this asset ctatss,

OFX 2.0 Specification

6/30/00 385

ore)

ore)

13.8.5.4 Option Information <OPTINFO>

Tag

<OPTINFO>
<SECINFO>
</SECINFO>

<OPTTYPE>

<STRIKEPRICE>
<DTEXPIRE>
<SHPERCTRCT>
<SECID>
</SECID>

<ASSETCLASS>

<FIASSETCLASS>

</OPTINFO>

Description
Option-information aggregate

Security-information aggregate

Option type:
PUT = put
CALL =call

Strike priceunitprice
Expiration datedate
Shares per contradtl-5

Security ID of the underlying security

Asset Class (at most one), DOMESTICBOND, INTLBOND, LARGESTOCK
SMALLSTOCK, INTLSTOCK, MONEYMRKT, OTHER

Text string containing an Fl defined asset clasg2

13.8.5.5 Other Security Type Information <OTHERINFO>

Use this aggregate for security types other than debts, mutual funds, options, and stocks.

Tag

<OTHERINFO>
<SECINFO>
</SECINFO>
<TYPEDESC>

<ASSETCLASS>

<FIASSETCLASS>

</OTHERINFO>

Description
Other aggregate.

Security information aggregate

Description of security typei-32

Asset Class (at most one), DOMESTICBOND, INTLBOND, LARGESTOCK
SMALLSTOCK, INTLSTOCK, MONEYMRKT, OTHER

Text string containing an Fl defined asset clasg2

386

13.8 Investment Securities

13.8.5.6 Stock Information <STOCKINFO>

Tag Description
<STOCKINFO> Stock-information aggregate
<SECINFO> Security-information aggregate
</SECINFO>
<STOCKTYPE> Stock type: COMMON, PREFERRED, CONVERTIBLE, OTHER
<YIELD> Current yield reported as the dividend expressed as a portion of the current stock

price (at most oneyate
<DTYIELDASOF> As-of date for yield valuedatetime

<ASSETCLASS> Asset Class (at most one): DOMESTICBOND, INTLBOND, LARGESTOCK
SMALLSTOCK, INTLSTOCK, MONEYMRKT, OTHER

<FIASSETCLASS> Text string containing an FI defined asset class2

</STOCKINFO>

13.8.5.7 Asset Class Descriptions

Asset Class Description

DOMESTICBOND The Domestic Bonds asset class consists of government or corporate bonds issued in
the United States.

INTLBOND The International Bonds asset class consists of government or corporate bonds
issued in foreign countries or the United States.

LARGESTOCK The Large Cap Stocks asset class consists of stocks for U.S. companies with market
capitalizations of $2 billion or more.

SMALLSTOCK The Small Cap Stocks asset class consists of stocks for U.S. companies with market
capitalizations of approximately $100 million to $2 billion.

INTLSTOCK The International Stocks asset class consists of publicly-traded stocks for companies
based in foreign countries.

MONEYMRKT The Money Market asset class consists of stable, short-term investments which
provide income that rises and falls with short-term interest rates.

OTHER The Other asset class consists of investments which do not fit in any of the other
asset classes.

OFX 2.0 Specification 6/30/00 387

13.9 Investment Statement Download

Investment statement download allows a customer to receive transactions, positions, open orders, and
balances that are typically part of a regular paper statement.

Clients usually allow customers to view investment transactions and guide customers through a process of
updating their account registers based on the downloaded transactions. By using <FITID> values supplied
by Fls, OFX makes it possible for clients to insure that each transaction is downloaded only once. The
request also contains starting and ending dates to limit the amount of downloaded data. Clients can
remember the last date they receive a download, and use that date as the starting date in the next request.

Investment statement download requires the client to designate an account for the download, and to
indicate what type of data should be downloaded. If the client wishes to download transactions, it can
specify a date range that the transactions fall within. The server returns transactions that match the date
range, if one is specified. If a date range is not specified, the server returns all available transactions for the
account.

13.9.1 Investment Statement Request

Investment statement download can be requested using the INVSTMTTRNRQ and INVSTMTRQ
aggregates. The INVSTMTTRNRAQ is the transaction level aggregate that contains the INVSTMTRQ. The
INVSTMTRQ aggregate specifies what types of information to include in the statement download and
from which account to download the information.

13.9.1.1 Investment Statement Transaction Request <INVSTMTTRNRQ>

Tag Description
<INVSTMTTRNRQ> Transaction-request aggregate
<TRNUID> Client-assigned globally unique ID for this transactitnpid
<CLTCOOKIE> Data to be echoed in the transaction respoAsg2
<TAN> Transaction authorization number; used in some countries with some types of
transactions. Country-specific documentation will define messages that require a
<TAN>, A-80
<INVSTMTRQ> Aggregate for the investment statement download request (see section 33.9.1.2
</INVSTMTRQ>
</INVSTMTTRNRQ>

388 13.9 Investment Statement Download

13.9.1.2 Investment Statement Request <INVSTMTRQ>

The following table shows the Investment Statement Request record. It is similar to a bank statement
request, except that there are extra elements to indicate which pieces the user desires. Note that because
transaction and position requests require date information, they use aggregates, whereas the other requests
are elemental of type Boolean.

Clients and servers should interpret <DTSTART> and <DTEND> as described in Chapter 3, "Common
Aggregates, Elements, and Data Types."

If <DTASOF> is not included with the <INCPOS> aggregate, the server should return the most current
position information available.

If the profile indicates that 401(k) investment information is available, the <INC401K> and
<INC401KBAL> can be used.

Tag Description and Type
<INVSTMTRQ> Investment-request aggregate
<INVACCTFROM> | Account-from aggregate, see 13.6.1
</INVACCTFROM>
<INCTRAN> Include-transactions aggregate (at most one)
<DTSTART> Start date of requestiatetime
<DTEND> Ending date of request (at most ondatetime
<INCLUDE> Whether to include transactions in the statement downiBadlean
</INCTRAN>
<INCOO> Include investment open orders in resporid@ylean
<INCPOS> Include investment positions in response
<DTASOF> Date that positions should be sent down ttatetime
<INCLUDE> Whether to include positions in the statement down|@mblean
</INCPOS>
<INCBAL> Include investment balance in resporBeplean
<INC401K> Include 401(k) information in responsBoolean
<INC401KBAL> Include 401(k) balance information in responBeplean
</INVSTMTRQ>

OFX 2.0 Specification 6/30/00 389

13.9.2 Investment Statement Response
13.9.2.1 Investment Statement Transaction Response <INVSTMTTRNRS>

Tag Description

<INVSTMTTRNRS> Transaction-response aggregate

<TRNUID> Client-assigned globally unique 1D for this transactitnpid
<STATUS> Status aggregate
</STATUS>

<CLTCOOKIE> Client-provided dataREQUIRED if provided in requestA-32

<INVSTMTRS> Aggregate for the investment statement download response (see section 13.9.2.2

</INVSTMTRS>

</INVSTMTTRNRS>

13.9.2.2 Investment Statement Response <INVSTMTRS>

The response can contain transaction, position, open order, and/or balance detail records; each in its own
aggregate. The transaction list aggregate can contain a mixture of bank statement records and investment
transactions, as specified below.

For 401(k) accounts, both the <INV401KBAL> and the <INVBAL> aggregates can be returned if asked
for specifically. In other words, for 401(k) accounts the <INV401KBAL> aggregate is returned if asked for
by the client with the <INC401KBAL> flag, and the <INVBAL> aggregate is returned if <INCBAL> is Y.

Tag Description

<INVSTMTRS> Investment-response aggregate
<DTASOF> As of date & time for the statement downloathtetime
<CURDEF> Default currency for the statemetyrrsymbol
<INVACCTFROM> Which account at FI, see 13.6.1

</INVACCTFROM>

<INVTRANLIST> Begin transaction list (at most one)
<DTSTART> Start date for transaction datigtetime
<DTEND> This is the value that should be sent in the next <DTSTART> request to insure that
no transactions are missethtetime
(investment transaction Investment statement transaction aggregates (zero or more); see section
aggregatey 13.9.2.4.4

390 13.9 Investment Statement Download

Tag Description

<INVBANKTRAN> Banking-related transactions for the investment account (zero or more)
</INVBANKTRAN> | (See section 13.9.2.3
</INVTRANLIST> End of investment transaction list
<INVPOSLIST> Beginning of investment position list
Though the DTD allows an empty <INVPOSLIST> in the response, servers
should instead leave out the optional list aggregate.
<POSxXxxxx> Security type specific position aggregates (zero or more): POSMF, POSSTQCK,
POSDEBT, POSOPT, POSOTHER
</POSxXxxxx>
</INVPOSLIST> End of investment position list
<INVBAL> Balances aggregate, see section 13.9.2.7
</INVBAL>
<INVOOLIST> Beginning of investment open order list
Though the DTD allows an empty <INVOOLIST> in the response, servers shpuld
instead leave out the optional list aggregate.
<OO0XXXXX> Action and security type specific open order aggregates (zero or more): see
section 13.9.2.5.2
</OOXxXXX>
</INVOOLIST> End of investment open order list
<MKTGINFO> Marketing information (at most onel\-36Q
<INV401K> 401(k) information aggregate (at most one) (See section 13.9.2.8).
</INV401K> End of 401(k) information.
<INV401KBAL> 401(k) balance information aggregate (see section 13.9.2.8).
</INV401KBAL> End of 401(k) balance information.
</INVSTMTRS>

The various sections of the investment statement download are returned only if requested.

13.9.2.2.1 Note on Margin Calls

For investment statement download, margin call information should be included in the balances section.
Margin call information should be contained in a <BAL> aggregate and included in the balance list
<BALLIST>.

OFX 2.0 Specification 6/30/00 391

13.9.2.3 Bank Transactions <INVBANKTRAN>

Use the INVBANKTRAN aggregate to download bank transactions in an investment statement download.

Tag Description

<INVBANKTRAN> Banking related transactions for the investment account
<STMTTRN> Bank (cash) transaction aggregates
</STMTTRN> (See Chapter 11, "Banking"

<SUBACCTFUND> | The sub-account associated with the funds for the transaction; see section 13.9.2.4.2

</INVBANKTRAN>

13.9.2.4 Investment Transactions

Note that the following types of investment actions found on statements shotilok sent in OFX:

¢ Transaction-specific miscellaneous/fees—fees or other amounts that affect the basis of the transaction
should be incorporated into the <COMMISSION>, <FEES>, <LOAD>, <PENALTY>,
<WITHHOLDING>, <STATEWITHHOLDING> or <TAXES> amounts.

¢ Settlement actions.

¢ Sweeps, unless handled as any other investment position.

For transactions that involve securities, the client can create transactions based on the formula
total = (units * (unitprice +/- markup/markdown)) +/- (commission + fees + load + taxes + penalty +

withholding + statewithholding)
(after adjusting quantity and unitprice to standard units based on the type of security.)

Thus, it is important the Fls incorporate all other transactional fees into the commission field. Clients can
account for bond accrued interest and withholding using separate client transactions.

392 13.9 Investment Statement Download

13.9.2.4.1 General Transaction Aggregate <INVTRAN>

The INVTRAN aggregate contains fields common to many of the investment transactions. It is referenced
within the transaction aggregates in the following sections.

Each <INVTRAN> contains an <FITID> that the client uses to detect whether the server previously
downloaded the transaction.

Tag Description
<INVTRAN> Investment-transaction-response aggregate
<FITID> Unique Fl-assigned transaction ID.

This ID is used to detect duplicate downloaBETID

<SRVRTID> Server assigned transaction IBRVRTID

<DTTRADE> Trade date; for stock splits, day of recodditetime

<DTSETTLE> Settlement date; for stock splits, execution ddtgetime

<MEMO> Other information about transaction (at most ome¢mo
</INVTRAN>

OFX 2.0 Specification 6/30/00 393

13.9.2.4.2 Transaction Aggregate Elements

The following elements are referenced within of the following investment transaction aggregates.

Tag

<ACCRDINT>
<AVGCOSTBASIS>
<BUYTYPE>
<COMMISSION>
<DENOMINATOR>

<DTPAYROLL>

<DTPURCHASE>
<GAIN>

<FEES>
<FRACCASH>

<INCOMETYPE>

<INV401KSOURCE>

<LOAD>

<LOANID>

<LOANINTEREST>

<LOANPRINCIPAL>

<MARKDOWN>

Description

For debt purchases, accrued interastount
Average cost basigmount

Type of purchase: BUY, BUYTOCOVER
Transaction commissioamount

For stock splits, split ratio denominatguiantity

For 401(k)accounts, date the funds for this transaction was obtained via pa
deductiondatetime

The security’s original purchase datiate
For sales, total gairmmount
Fees applied to tradamount

Cash for fractional units., (used for stock splisount

Type of investment income: CGLONG (capital gains-long term), CGSHORT

(capital gains-short term), DIV (dividend), INTEREST, MISC

For 401(k) accounts, source of money used for this security. Must be one o
following:

PRETAX
AFTERTAX
MATCH
PROFITSHARING
ROLLOVER
OTHERVEST
OTHERNONVEST

Default if not present is OTHERNONVEST. The following cash source type
are subject to vesting: MATCH, PROFITSHARING, and OTHERVEST.

Load on the transactiommount

For 401(k) accounts only. Indicates that the transaction was due to aloan @
loan repayment, and which loan it was.32

For 401(k) accounts only. Indicates how much of the loan repayment was
interestAmount

For 401(k) accounts only. Indicates how much of the loan repayment was
principal. Amount

Portion of the unit price that is attributed to the dealer markdawitprice

yroll

f the

S

394

13.9 Investment Statement Download

Tag

<MARKUP>
<NEWUNITS>
<NUMERATOR>
<OLDUNITS>
<OPTACTION>
<OPTBUYTYPE>
<OPTSELLTYPE>
<PENALTY>
<POSTYPE>

<PRIORYEARCONTRIB>

<RELFITID>
<RELTYPE>
<SECURED>

<SELLREASON>

<SELLTYPE>

<SHPERCTRCT>

<STATEWITHHOLDING>

<SUBACCTFROM>

<SUBACCTFUND>

<SUBACCTSEC>

<SUBACCTTO>

<TOTAL>

<TAXES>

<TAXEXEMPT>

Description

Portion of the unit price that is attributed to the dealer markanitprice
For stock splits, number of shares after the spliantity

For stock splits, split ratio numeratapiantity

For stock splits, number of shares before the spligintity

For options, action type: EXERCISE, ASSIGN, EXPIRE

For options, type of purchase: BUYTOOPEN, BUYTOCLOSE

For options, type of sell: SELLTOCLOSE, SELLTOOPEN
Indicates an amount withheld due to a penakyount

Position type. LONG, SHORT

For 401(k) accounts, indicates that this Buy was made with a prior year
contribution.Boolean

ID of related tradeFITID
Related option transaction type: SPREAD, STRADDLE, NONE, OTHER
How an option is secured: NAKED, COVERED

Reason the sell of a debt security was generated: CALL (the debt was calle
SELL (the debt was sold), MATURITY (the debt reached maturity)

Type of sell. SELL, SELLSHORT
For options, number of shares per contr&cg

Used for withholdings for state taxes on a withdrawal. The (existing)
<WITHHOLDING> tag is used for identifying withholdings for Federal Taxe
amount

Sub-account that security or cash is being transferred from: CASH, MARGI
SHORT, OTHER

Where did the money for the transaction come from or go to? CASH, MARG
SHORT, OTHER

Sub-account type for the security: CASH, MARGIN, SHORT, OTHER

Sub-account that security or cash is being transferred to: CASH, MARGIN,
SHORT, OTHER

Transaction total. Buys, sells, etc.:((quan. * (price +/- markup/markdown)) 4
(commission + fees + load + taxes + penalty + withholding + statewithholdin
Distributions, interest, margin interest, misc. expense, etc.: amount. Return
cap: cost basigmount

Taxes on the trademount

/-
9))-
of

Tax-exempt transactioloolean

OFX 2.0 Specification

6/30/00 395

Tag
<TFERACTION>

<UNITPRICE>

<UNITS>

<UNITTYPE>

<WITHHOLDING>

Description
Action for transfers: IN, OUT

Price per commonly-quoted unit. Does not include markup/markdown,
unitprice

Share price for stocks, mutual funds, and others
Percentage of par for bonds
Per share (not contract) for options

For security-based actions other than stock spjitgntity
Shares for stocks, mutual funds, and others.

Face value for bonds.

Contracts for options.

Type of the units value: SHARES, CURRENCY

Federal Tax withholdinggmount

13.9.2.4.3 Investment Buy/Sell Aggregates <INVBUY>/<INVSELL>

These aggregates are referenced within investment transaction aggregates

Note: For 401(k) accounts, securities can be sold to fund loans or other withdrawals. Loans
and loan repayments, and penalties are shown as part of the Buy and Sell transactions, rather
than directly on any associated Deposit or Withdrawal bank transactions (see section 11.4.3.1)
because some 401(k) providers might not report these bank transactions.

Also, for 401(k) accounts, as loans are repaid the funds are disbursed into the 401(k) sources of
money from they were originally withdrawn. To accurately reflect the disbursement of repaid
funds into each source, a separate Buy transaction will be issued with the
<INV401KSOURCE> tag set to indicate the source of money. Each of these transactions will
include the amount of principle and/or interest paid to the source.

396

13.9 Investment Statement Download

Aggregate Name
INVBUY

ISEES

<INVTRAN> aggregate
<SECID> aggregate
<UNITS>
<UNITPRICE>
<MARKUP>
<COMMISSION>
<TAXES>

<FEES>

<LOAD>

<TOTAL>
<CURRENCY> aggregate

<ORIGCURRENCY> aggregate

<SUBACCTSEC>
<SUBACCTFUND>

<LOANID>

<LOANPRINCIPAL>

<LOANINTEREST>

<INV401KSOURCE>

<DTPAYROLL>
<PRIORYEARCONTRIB>

Description

Though the DTD allows
<CURRENCY> and
<ORIGCURRENCY> together in
this aggregate, servers should
return neither or one of the two,
but not both.

Required if <LOANPRINCIPAL>
and <LOANINTEREST> are
provided. See section 13.9.2.4.2

<LOANID> and
<LOANINTEREST> must be
provided if <LOANPRINCIPLE>
is provided. See section 13.9.2.4.

<LOANID> and
<LOANPRINCIPAL> must be
provided if <LOANINTEREST>
is provided. See section 13.9.2.4.

Source of money for this
transaction. See section 13.9.2.4.

See section 13.9.2.4.2
See section 13.9.2.4.2

OFX 2.0 Specification

6/30/00

397

Aggregate Name
INVSELL

Elements

<INVTRAN> aggregate
<SECID> aggregate
<UNITS>
<UNITPRICE>
<MARKDOWN>
<COMMISSION>
<TAXES>

<FEES>

<LOAD>
<WITHHOLDING>
<TAXEXEMPT>
<TOTAL>

<GAIN>
<CURRENCY> aggregate

<ORIGCURRENCY> aggregate

<SUBACCTSEC>
<SUBACCTFUND>
<LOANID>
<STATEWITHHOLDING>
<PENALTY>
<INV401KSOURCE>

Description

Though the DTD allows
<CURRENCY> and
<ORIGCURRENCY> together in
this aggregate, servers should
return neither or one of the two,
but not both.

See section 13.9.2.4.2
See section 13.9.2.4.2
See section 13.9.2.4.2

Source of money for this
transaction. See section 13.9.2.4.

398

13.9

Investment Statement Download

13.9.2.4.4 Investment Transaction Aggregates

Aggregate Name Elements Description
<BUYDEBT> <INVBUY> aggregate Buy debt security
<ACCRDINT> Accrued interest. This amount is not reflected
the <TOTAL> field of a containing aggregate.
<BUYMF> <INVBUY> aggregate Buy mutual fund
<BUYTYPE> The BUYTOCOVER buy type used to close
<RELEITID> short sales.
RELFITID used to relate transactions associated
with mutual fund exchanges.
<BUYOPT> <INVBUY> aggregate Buy option
<OPTBUYTYPE> The BUYTOOPEN buy type is like “ordinary”
<SHPERCTRCT> buying of option and works like stocks.
<BUYOTHER> <INVBUY> aggregate Buy other security type
<BUYSTOCK> <INVBUY> aggregate Buy stock
<BUYTYPE> The BUYTOCOVER buy type used to close
short sales.
<CLOSUREOPT> <INVTRAN> aggregate Close a position for an option.
<SECID> aggregate The EXERCISE action is used to close out an
<OPTACTION> option that is exercised. The ASSIGN action ig
used when an option writer is assigned. The
<UNITS> EXPIRE action is used when the option’s
<SHPERCTRCT> expired date is reached.
<SUBACCTSEC> When the action is EXERCISE or ASSIGN
another transaction must be generated by the
<RELFITID> server to represent the buy or sell of the
<GAIN> underlying security.
RELFITID refers to the transaction ID of the
underlying buy or sell.

OFX 2.0 Specification

6/30/00

399

Aggregate Name

<INCOME>

ISEES

<INVTRAN> aggregate

<SECID> aggregate
<INCOMETYPE>
<TOTAL>

<SUBACCTSEC>
<SUBACCTFUND>
<TAXEXEMPT>
<WITHHOLDING>
<CURRENCY> aggregate
<ORIGCURRENCY> aggregate

<INV401KSOURCE> aggregate

Description

Investment income is realized as cash into the
investment account.

A negative TOTAL is used to denote
adjustments to income.

Though the DTD allows <CURRENCY> and

<ORIGCURRENCY> together in this aggregat
servers should return neither or one of the twag
but not both.

Source of money for this transaction. See sect
13.9.2.4.2.

<INVEXPENSE>

<INVTRAN> aggregate

<SECID> aggregate

<TOTAL>

<SUBACCTSEC>
<SUBACCTFUND>
<CURRENCY> aggregate
<ORIGCURRENCY> aggregate

<INV401KSOURCE> aggregate

Misc. investment expense that is associated w
a specific security.

If the expense is associated with the account th
an INVBANKTRAN - DEBIT should be used.

Though the DTD allows <CURRENCY> and

<ORIGCURRENCY> together in this aggregat
servers should return neither or one of the twag
but not both.

Source of money for this transaction. See sect
13.9.2.4.2.

D

on

ith

en

A

on

<JRNLFUND> <INVTRAN> aggregate Journaling cash holdings between sub-accou
<SUBACCTTO> within the same investment account.
<SUBACCTFROM>
<TOTAL>
400 13.9 Investment Statement Download

Aggregate Name

<JRNLSEC>

Elements

<INVTRAN> aggregate
<SECID> aggregate
<SUBACCTTO>
<SUBACCTFROM>
<UNITS>

Description

Journaling security holdings between sub-
accounts within the same investment account

<MARGININTEREST>

<INVTRAN> aggregate
<TOTAL>

<SUBACCTFUND>
<CURRENCY> aggregate
<ORIGCURRENCY> aggregate

Margin interest expense

Though the DTD allows <CURRENCY> and
<ORIGCURRENCY> together in this aggregat
servers should return neither or one of the twag
but not both.

D

<REINVEST>

<INVTRAN> aggregate
<SECID> aggregate
<INCOMETYPE>
<TOTAL>
<SUBACCTSEC>
<UNITS>

<UNITPRICE>
<COMMISSION>
<TAXES>

<FEES>

<LOAD>

<TAXEXEMPT>
<CURRENCY> aggregate
<ORIGCURRENCY> aggregate

<INV401KSOURCE> aggregate

Reinvestment of income

REINVEST is a single transaction that contain
both income and an investment transaction. If
servers can't track this as a single transaction
they should return an INCOME transaction an
an INVTRAN.

TOTAL and UNITS are signed as for an
investment buy. Corrections to a REINVEST a
signed as for an investment sell.

Though the DTD allows <CURRENCY> and
<ORIGCURRENCY> together in this aggregat
servers should return neither or one of the twag
but not both.

Source of money for this transaction. See sect
13.9.2.4.2.

[e

D

OFX 2.0 Specification

6/30/00

401

Aggregate Name

ISEES

Description

D

on

<RETOFCAP> <INVTRAN> Return of capital
<SECID>
<TOTAL>
<SUBACCTSEC>
<SUBACCTFUND> Though the DTD allows <CURRENCY> and
<CURRENCY> aggregate <ORIGCURRENCY> together in this aggregat
servers should return neither or one of the twog
<ORIGCURRENCY> aggregate | put not both.
<INV401KSOURCE> aggregate | Source of money for this transaction. See sect
13.9.2.4.2.
<SELLDEBT> <INVSELL> aggregate Sell debt security. Used when debt is sold,
<SELLREASON> called, or reached maturity.
<ACCRDINT>
<SELLMF> <INVSELL> aggregate Sell mutual fund
:i\?égggfg ASIS> RELFITID used to relate transactions associated
with mutual fund exchanges.
<RELFITID>
<SELLOPT> <INVSELL> aggregate Sell option
<OPTSELLTYPE> The SELLTOCLOSE action is selling a
<SHPERCTRCT> previously bought option. The SELLTOOPEN
<RELFITID> action is writing an option
<RELTYPE>
<SECURED>
<SELLOTHER> <INVSELL> aggregate Sell other type of security
<SELLSTOCK> <INVSELL> aggregate Sell stock
<SELLTYPE>
402 13.9 Investment Statement Download

Aggregate Name

Elements

Description

<SPLIT> <INVTRAN> aggregate Stock or Mutual Fund Split
<SECID> aggregate Note: the trade date is interpreted as the “day of
record” for the split.
<SUBACCTSEC>
<OLDUNITS>
<NEWUNITS>
<NUMERATOR>
<DENOMINATOR>
<CURRENCY> aggregate
<ORIGCURRENCY> aggregate | Though the DTD allows <CURRENCY> and
<ORIGCURRENCY> together in this aggregate
servers should return neither or one of the twa,
but not both.
<FRACCASH>
<SUBACCTFUND>
<INV401KSOURCE> aggregate | Source of money for this transaction. See section
13.9.2.4.2.
<TRANSFER> <INVTRAN> aggregate Transfer holdings in and out of the investment

<SECID> aggregate
<SUBACCTSEC>

<UNITS>

<TFERACTION>

<POSTYPE>
<INVACCTFROM> aggregate
<AVGCOSTBASIS>
<UNITPRICE>
<DTPURCHASE>
<INV401KSOURCE> aggregate

account.

Source of money for this transaction. See section

13.9.2.4.2.

OFX 2.0 Specification

6/30/00

403

13.9.2.4.5 Valid Transactions by Security Type

Debt Mutual Fund Option Other Stock
BUYDEBT x

BUYMF X

BUYOPT X

BUYOTHER X

BUYSTOCK X

CLOSUREOPT X

INCOME x X X X

INVEXPENSE x X x x X

JRNLFUND

JRNLSEC x X x x X

MARGININTEREST

REINVEST X X X X
RETOFCAP x X X X X
SELLDEBT X

SELLMF X

SELLOPT X

SELLOTHER X
SELLSTOCK X
SPLIT X x
TRANSFER x X X X X

Since JRNLFUND and MARGININTEREST do not refer to securities, there are no checks in any of the
security columns for these transactions.

13.9.2.4.6 Notes on Mutual Fund Exchanges

In investment statement download, two transactions are needed to reflect mutual fund exchanges. A
SELLMF should be generated for the mutual fund being switched from and a BUYMF should be
generated for the mutual fund being switched to. You can use the RELFITID element to link these two
transactions to each other. You should use the MEMO element of the individual transactions to explain that
a mutual fund exchange occurred.

404 13.9 Investment Statement Download

13.9.2.4.7 Notes on Corporate Actions

Since corporate actions can often be very complicated, it is difficult to define a single action aggregate that
encompasses all possible scenarios. Instead, you should describe corporate actions using one or more of
the provided basic action types. You should use the memo field of the individual transactions to link
transactions to an encompassing corporate action.

13.9.2.4.8 Notes on Option Splits

When the underlying security for an option splits, a new security is generated for the option since the strike
price changes. In investment statement download, you need two transactions to reflect this activity. There
should be a TRANSFER transaction to show that the old option security is removed from the account and
another TRANSFER transaction to show that the new option security is moved into the account.

13.9.2.4.9 Notes on Option actions

For options, the overall sequence of actions is as follows:
For an option writer:

Position is opened with Sell to Open.

Position is closed with one of the following:
¢ Buyto Close
¢ Expire

¢ Assigned
For an option buyer:
Position is opened with Buy to Open.

Position is closed with one of the following:
¢ Sellto Close
¢ Expire

¢ Exercise

OFX 2.0 Specification 6/30/00 405

13.9.2.5 Open Orders
13.9.2.5.1 General Open Order Aggregate <OO>

The <OO> aggregate contains fields common to all open orders. Use this aggregate to define the open
order aggregates as show in the following section.

Tag Description
<00> General-open-order aggregate
<FITID> Unique Fl-assigned transaction IBITID
<SRVRTID> Unique server-assigned transaction 8RVRTID
<SECID> Security identified aggregate
</SECID>
<DTPLACED> Date-time the order was placeathtetime
<UNITS> Quantity of the security the open order is fonitprice
<SUBACCT> Sub-account type. CASH, MARGIN, SHORT, OTHER
<DURATION> How long the order is good for: DAY, GOODTILCANCEL, IMMEDIATE
<RESTRICTION> Special restriction on the order: ALLORNONE, MINUNITS, NONE
<MINUNITS> Minimum number of units that must be filled for the ordguantity
<LIMITPRICE> Limit price, unitprice
<STOPPRICE> Stop priceunitprice
<MEMO> Other information about order (at most on@gmo
<CURRENCY> Overriding currency aggregate
</CURRENCY>
<INV401KSOURCE> | For 401(k) accounts, source of money for this order. See section 13.9.2.4.2.
</00>

Note: An open order is assumed to be a market order if no limit price or stop price is specified.

406 13.9 Investment Statement Download

13.9.2.5.2 Investment Open Order Aggregates

Open Order
Aggregates Elements Description of Elements
<OOBUYDEBT> <0OO0> aggregate
<AUCTION> Whether the debt should be purchased at the audBioolean
<DTAUCTION> Date of the auctiondate
<OOBUYMF> <OO> aggregate
<BUYTYPE> Type of purchase: BUY, BUYTOCOVER.
<UNITTYPE> What the units represent: SHARES, CURRENCY
<OOBUYOPT> <OO> aggregate
<OPTBUYTYPE> Type of purchase: BUYTOOPEN, BUYTOCLOSE
<OOBUYOTHER> | <OO> aggregate
<UNITTYPE> What the units represent: SHARES, CURRENCY
<OOBUYSTOCK> | <OO> aggregate
<BUYTYPE> Type of purchase: BUY, BUYTOCOVER
<OOSELLDEBT> <OO0O> aggregate
<OOSELLMF> <0OO0> aggregate
<SELLTYPE> Type of sale: SELL, SELLSHORT
<UNITTYPE> What the units represent: SHARES, CURRENCY.
<SELLALL> Sell entire holdingBoolean
<OOSELLOPT> <0OO0> aggregate
<OPTSELLTYPE> Type of sale: SELLTOOPEN, SELLTOCLOSE
<OOSELLOTHER> | <OO> aggregate
<UNITTYPE> What the units represent: SHARES, CURRENCY
<OOSELLSTOCK> | <OO> aggregate
<SELLTYPE> Type of sale: SELL, SELLSHORT
<SWITCHMF> <OO0O> aggregate
<SECID> aggregate | Security ID of the mutual fund to switch to or purchase
<UNITTYPE>
<SWITCHALL> What the units represent: SHARES, CURRENCY

Switch entire holdingBoolean

OFX 2.0 Specification

6/30/00 407

13.9.2.6 Investment Positions

Position records represent a user’s current positions, regardless of the transactional history. Prices and
values should be the most recent available, even if different from a transaction price on the same day.

In position records, securities are identified as being either short or long. Because each Fl has different
rules regarding which sub-accounts can be used for short compared to long activity, FIs must explicitly
indicate the type of position in addition to specifying the sub-account where the position takes place.

For options, position type SHORT is equivalent to WRITING an option, and position type LONG is
equivalent to HOLDING an option. For security types where there is only one type (for example, bonds),
use LONG.

For 401(k) accounts, securities can be purchased with any of the 401(k) cash sources. Any securities
purchased from more than one cash source will appear as a separate position for each.

408 13.9 Investment Statement Download

13.9.2.6.1 General Position Information <INVPOS>

The INVPOS aggregate contains fields relevant to all investment position types. It is included in the
position aggregates as shown in the following sections.

Tag Description

<INVPOS> General-position aggregate
<SECID> Security identifier
</SECID>
<HELDINACCT> Sub-account type

CASH, MARGIN, SHORT, OTHER

<POSTYPE> SHORT = Writer for options, Short for all others.
LONG = Holder for options, Long for all others.

<UNITS> For stocks, MFs, other, number of shares held.
Bonds = face value.

Options = number of contracts

guantity

<UNITPRICE> For stocks, MFs, other, price per share.

Bonds = percentage of par

Option = premium per share of underlying security

unitprice
<MKTVAL> Market value of this positiormmount
<DTPRICEASOF> Date and time of unit price and market value.

Can be 0 if unit price and market value are unknodatgetime

<CURRENCY> Currency information if different from default currency.
</CURRENCY>
<MEMO> Commentmemo

<INV401KSOURCE> | Source of money for this security in this position. See section 13.9.2.4.2.

</INVPOS>

OFX 2.0 Specification 6/30/00 409

13.9.2.6.2 Investment Positions

Investment
Position
Aggregates

Elements

Description of Elements

<POSDEBT> <INVPOS> aggregate
<POSMF> <INVPOS> aggregate
<UNITSSTREET> Units in the FI's street nam@psitive quantity
<UNITSUSER> Units in the user’s name directlgpsitive quantity
<REINVDIV> Reinvest dividendsBoolean
<REINVCG> Reinvest capital gaingoolean
<POSOPT> <INVPOS> aggregate
<SECURED> How the option is secured. NAKED, COVERED.
<POSOTHER> <INVPOS> aggregate
<POSSTOCK> <INVPOS> aggregate

<UNITSSTREET>
<UNITSUSER>
<REINVDIV>

Units in the FI's street nam@gsitive quantity

Units in the user’s name directlgpsitive quantity

Reinvest dividend€Boolean

410

13.9 Investment Statement Download

13.9.2.7 Investment Balances <INVBAL>

The <INVBAL> aggregate contains five specified balances. It can also contain a <BALLIST> aggregate
that contains one or more <BAL> aggregates. The <BAL> aggregate (see Chapter 3, “Common
Aggregates, Elements, and Data Types”) allows an Fl to send any number of balances to the user, complete
with description and Help text. The intent is to capture the same type of balance information present on the
first page of many Fl brokerage statements. You can also use the <BAL> aggregate to send margin call
information.

Tag Description
<INVBAL> Balances aggregate
<AVAILCASH> Cash balance across all sub-accounts. Should include sweep Amdant

<MARGINBALANCE> Margin balance. A positive balance indicates a positive cash balance, while g
negative balance indicates the customer has borrowed fAnasunt

<SHORTBALANCE> Market value of all short positions. This is a positive balafaapunt

<BUYPOWER> Buying poweramount
<BALLIST> Beginning of Investment balance list (at most one)
<BAL> Balance aggregates (0 or more)
</BAL> SeeChapter_3, "Common Aggregates, Elements, and Data Types"
</BALLIST>
</INVBAL>

OFX 2.0 Specification 6/30/00 411

13.9.2.8 Status Codes

Code Meaning

0 Success (INFO)

2000 General error (ERROR)

2002 General account error (ERROR)

2003 Account not found (ERROR)

2004 Account closed (ERROR)

2005 Account not authorized (ERROR)

2019 Duplicate request (ERROR)

2020 Invalid date (ERROR)

2027 Invalid date range (ERROR)

12250 Investment transaction download not supported (WARN)
12251 Investment position download not supported (WARN)
12252 Investment positions for specified date not available (WARN)
12253 Investment open order download not supported (WARN)
12254 Investment balances download not supported (WARN)

412 13.9 Investment Statement Download

13.9.2.9 401(k) Balances <INV401KBAL>

The <INV401KBAL> aggregate contains an optional cash balance. It also contrains the balances of the
standard 401(k) sub-accounts. The date of these balances is taken from the <DTASOF> element of the

<INVSTMTRS>aggregate.

Tag

<INV401KBAL>
<CASHBAL>
<PRETAX>

<AFTERTAX>

<MATCH>

<ROLLOVER>
<OTHERVEST>

<TOTAL>
<BALLIST>
<BAL>

</BAL>
</BALLIST>
</INV401KBAL>

<PROFITSHARING>

<OTHERNONVEST>

Description
Beginning of 401(k) balances list (at most one)
Cash balance available for the 401(k) account

Current value of all securities purchased with Before Tax Employee
contributionsamount

Current value of all securities purchased with After Tax Employee contributi
amount

Current value of all securities purchased with Employer Match contributions

amount

Current value of all securities purchased with Employer Proit Sharing
contributionsamount

Current value of all securities purchased with Rollover contributamsunt

Current value of all securities purchased with Other (vesting) Employer
contributionsamount

Current value of all securities purchased with Other (non-vesting) Employe

contributionsamount
Current value of all securities purchased with all contributi@nsount
Beginning of generic balance list (at most one)

Balance aggregates (zero or more), see Chapter 3, "Common Aggregates,
Elements, and Data Types"

Dns,

Py

D

-

OFX 2.0 Specification

6/30/00 413

13.9.2.10 Status Codes

Code Meaning

0 Success (INFO)

2000 General error (ERROR)

2002 General account error (ERROR)

2003 Account not found (ERROR)

2004 Account closed (ERROR)

2005 Account not authorized (ERROR)

2019 Duplicate request (ERROR)

2020 Invalid date (ERROR)

2027 Invalid date range (ERROR)

12250 Investment transaction download not supported (WARN)
12251 Investment position download not supported (WARN)

12252 Investment positions for specified date not available (WARN)
12253 Investment open order download not supported (WARN)
12254 Investment balances download not supported (WARN)
12255 401(k) information requested from a non-401(k) account (ERRQ

13.9.3 401(k) Account Information

R)

The following is included in the investment statement response for 401(k) accounts to provide a summary
of the user’s 401(k) plan information. Note that some of this information may not be available at the server
and may be omitted.

Tag Description

<INV401K> 401(k) Summary aggregate
<EMPLOYERNAME> Name of the employeA-32
<PLANID> Plan numberA-32

<PLANJOINDATE>

<EMPLOYERCONTACTINFO>

<BROKERCONTACTINFO>

Date the employee joined the platgte

Name of contact person at broker, plus any available contac
information, such as phone number,

Name of contact person at employer, plus any available contact
information, such as phone numbAr255

A-255

414

13.9 Investment Statement Download

Tag
<DEFERPCTPRETAX>
<DEFERPCTAFTERTAX>

<MATCHINFO>

<MATCHPCT>

<MAXMATCHAMT>

<MAXMATCHPCT>

<STARTOFYEAR>

<BASEMATCHAMT>

<BASEMATCHPCT>

</MATCHINFO>

<CONTRIBINFO>

<CONTRIBSECURITY>

<SECID>
</SECID>

Current contribution allocation. Specify eithe
<XXXPCT> or <xxxAMT>. The new
contributions to each security are either all
specified by a percentage of contributions o
by a fixed dollar amount, but not both. At lea
one source must be provided.

Description
Percent of employee salary deferred before tate
Percent of employee salary deferred after taie

Aggregate containing employer match information. Absent if
employer does not contribute matching funds.

Percent of employee contribution matched, e.g., 75% if
contribution rate is $0.75/$1.0tqte

Maximum employer contribution amount in any yeamount.

Current maximum employer contribution percentage. Maxim
match in a year is MAXMATCHPCT up to the
MAXMATCHAMT, if provided. rate

Specifies when the employer contribution max is reset. Som
plans have a maximum based on the company fiscal year ra
than calendar year. Assume calendar year if omitted. Only th
month and day (MMDD) are used; year (YYYY) and time arg
ignored.date

Specifies a fixed dollar amount contributed by the employer
the employee participates in the plan at all. This may be preg
in addition to the <MATCHPCT>. $0 if omitteamount

Specifies a fixed percent of employee salary matched if the
employee participates in the plan at all. This may be present
addition to the MATCHPCT>. 0% if omitted. Base match in &
year is BASEMATCHPCT up to the BASEMATCHAMT, if
provided.rate

Aggregate to describe how new contributions are distributed
among the available securities.

Identifies current contribution allocation for a security (1 or
more)

Security identifier. See section 13.8.1.

=

L

D

OFX 2.0 Specification

6/30/00 415

a)

ther

e

=2

ent

n

Tag Description

<PRETAXCONTRIBPCT> Percentage of each new employee pretax contribution allocated
-or- to this securityrate.
<PRETAXCONTRIBAMT> Fixed amount of each new employee pretax contribution
allocated to this securitgmount
<AFTERTAXCONTRIBPCT> Percentage of each new employee after tax contribution
-or- allocated to this securityate.
<AFTERTAXCONTRIBAMT> Fixed amount of each new employee pretax contribution
allocated to this securitgmount.
<MATCHCONTRIBPCT> Percentage of each new employer match contribution allocated
-or- to this securityrate.
<MATCHCONTRIBAMT> Fixed amount of each new employer match contribution

allocated to this securitgmount.

<PROFITSHARINGCONTRIBP Percentage of each new employer profit sharing contribution

cT> allocated to this securityate.
-or- Fixed amount of each new employer profit sharing contributipn
<PROFITSHARINGCONTRIBA | allocated to this securitgmount.
MT>
<ROLLOVERCONTRIBPCT> Percentage of new rollover contributions allocated to this
-or- security,rate.
<ROLLOVERCONTRIBAMT> Fixed amount of new rollover contributions allocated to this
security,amount.
<OTHERVESTPCT> Percentage of each new other employer contribution allocated to
-or- this securityrate.
<OTHERVESTAMT> Fixed amount of each new other employer contribution allocated
to this securityamount.
<OTHERNONVESTPCT> Percentage of each new other employee contribution allocated to
-or- this securityrate.
<OTHERNONVESTAMT> Fixed amount of each new other employee contribution

allocated to this securitgmount
</CONTRIBSECURITY>
</CONTRIBINFO>

<CURRENTVESTPCT> Estimated percentage of employer contributions vested as of the
current date. If omitted, assume 100&ite.

<VESTINFO> Vest change dates. Provides the vesting percentage as of any
particular past, current, or future date. O or more.

<VESTDATE> Date at which vesting percentage changes. Default is that the
vested percentage applies to the current dkee

<VESTPCT> Estimated vested percentage as of the correspondingrete.

416 13.9 Investment Statement Download

Tag Description

</VESTINFO>

<LOANINFO> List of loans outstanding against this account. O or more.
<LOANID> Indentifier of this loanA-32
<LOANDESC> Loan descriptionA-32
<INITIALLOANBAL> Initial loan balanceamount
<LOANSTARTDATE> Start date of loardate
<CURRENTLOANBAL> Current loan principal balancamount
<DTASOF> Date and time of the current loan balandatetime
<LOANRATE> Loan annual interest rateate
<LOANPMTAMT> Loan payment amounamount
<LOANPMTFREQ> Frequency of loan repayments: WEEKLY, BIWEEKLY,

TWICEMONTHLY, MONTHLY, FOURWEEKS,
BIMONTHLY, QUARTERLY, SEMIANNUALLY,
ANNUALLY, OTHER. See section 10.2.1 for calculation rules.

<LOANPMTSINITIAL> Initial number of loan payments.
<LOANPMTSREMAINING> Remaining number of loan paymenk&5
<LOANMATURITYDATE> Expected loan end datdate
<LOANTOTALPROJINTEREST> Total projected interest to be paid on this loamount
<LOANINTERESTTODATE> Total interested paid to date on this loamount
<LOANNEXTPMTDATE> Next payment due dateate

</LOANINFO>

<INV401KSUMMARY> List of contributions to 401(k) account.
<YEARTODATE> Contributions to date for this calendar year.
<DTSTART> Start date for this calendar yedate
<DTEND> End date for this year-to-date informatiatate
<CONTRIBUTIONS> 401 (k) contribution aggregate (at most one) (See section
13.9.3.1)

</CONTRIBUTIONS>

OFX 2.0 Specification 6/30/00 417

Tag
<WITHDRAWALS>

</WITHDRAWALS>
<EARNINGS>
</EARNINGS>
</YEARTODATE>
<INCEPTODATE>
<DTSTART>
<DTEND>

<CONTRIBUTIONS>

</CONTRIBUTIONS>

<WITHDRAWALS>

</WITHDRAWALS>
<EARNINGS>
</EARNINGS>
</INCEPTODATE>
<PERIODTODATE>
<DTSTART>
<DTEND>

<CONTRIBUTIONS>

</CONTRIBUTIONS>

<WITHDRAWALS>

</WITHDRAWALS>
<EARNINGS>
</[EARNINGS>
</PERIODTODATE>
</INV401KSUMMARY>

</INV401K>

Description

401 (k) withdrawals aggregate (at most one) (See section
13.9.3.2)

401(k) earnings aggregate (at most one) (See section 13.9.3

Total contributions to date (since inception)
Start date for the inception of this accouddte
End date for the inception-to-date informaticlate

401(k) contribution aggregate (at most one) (See section
13.9.3.1)

401 (k) withdrawals aggregate (at most one) (See section
13.9.3.2)

401(k) earnings aggregate (at most one) (See section 13.9.3

Start date for the current periodate
End date for the period-to-date informatiatate

401(k) contribution aggregate (at most one) (See section
13.9.3.1)

401(k) withdrawals aggregate (at most one) (See section
13.9.3.2)

401(k) earnings aggregate (at most one) (See section 13.9.3

418

13.9 Investment Statement Download

3)

3)

3)

13.9.3.1 401(k) Contribution Aggregate <CONTRIBUTIONS>

The following table shows the new 401(k) contribution aggregate and its tags.

Tag Description
<CONTRIBUTIONS> 401(k) contribution aggregate. Note: this includes loan payments.
<PRETAX> Pretax contributionamount
<AFTERTAX> After tax contributionamount
<MATCH> Employer matching contributiommount
<PROFITSHARING> Profit sharing contributioramount
<ROLLOVER> Rollover contributionamount
<OTHERVEST> Other vesting contributionemount
<OTHERNONVEST> Other non-vesting contributionamount
<TOTAL> Sum of contributions from all fund sourcesnount
</CONTRIBUTIONS>

OFX 2.0 Specification 6/30/00 419

13.9.3.2 401(k) Withdrawals Aggregate <WITHDRAWALS>

Tag Description
<WITHDRAWALS> 401(k) withdrawals aggregate. Note: this includes loan withdrawals.
<PRETAX> Pretax withdrawalsamount
<AFTERTAX> After tax withdrawalsamount
<MATCH> Employer matching withdrawalsmount
<PROFITSHARING> Profit sharing withdrawalsamount
<ROLLOVER> Rollover withdrawalsamount
<OTHERVEST> Other vesting withdrawal@mount
<OTHERNONVEST> Other non-vesting withdrawalamount
<TOTAL> Sum of withdrawals from all fund sourcesmount
</WITHDRAWALS>

13.9.3.3 401(k) Earnings Aggregate <EARNINGS>

Tag Description
<EARNINGS> 401(k) earnings aggregate. This is the market value change. It includes dividends/
interest, and capital gains - realized and unrealized.
<PRETAX> Pretax earningamount
<AFTERTAX> After tax earningsamount
<MATCH> Employer matching earningamount
<PROFITSHARING> Profit sharing earningamount
<ROLLOVER> Rollover earningsamount
<OTHERVEST> Other vesting earningamount
<OTHERNONVEST> Other non-vesting earningamount
<TOTAL> Sum of earnings from all fund sourcesnount
</[EARNINGS>

420 13.9 Investment Statement Download

13.10 Investment E-Mall

OFX currently defines one investment e-mail message that clients can send to an FI. With this message, the
user can prepare a message to the Fl regarding one of their accounts. The server acknowledges receipt of
the message. The FI prepares the response that the client picks up when it synchronizes with the server. E-
mail is subject to synchronization, using <INVMAILSYNCRQ> / <INVMAILSYNCRS>.

Client Sends Server Responds

Addressed message
Inv. account information

Acknowledgment

Synchronization request

Response to customer

13.10.1 Investment E-Mail Request and Response

13.10.1.1 Request <INVMAILRQ>

The client must identify to which investment account the customer query is related.

Tag Description

<INVMAILRQ> Investment-e-mail-request aggregate
<INVACCTFROM > Account-from aggregate, see 13.6.1
<ANVACCTFROM>
<MAIL> To, from, message information, see section 9.2.2
</MAIL>

</INVMAILRQ>

OFX 2.0 Specification 6/30/00 421

13.10.1.2 Response <INVMAILRS>

Tag

<MAIL>

</MAIL>

<INVMAILRS>
<INVACCTFROM>

<ANVACCTFROM>

</INVMAILRS>

Description
Investment-e-mail-response aggregate

Account-from aggregate, see 13.6.1

To, from, message information, see section 9.2.2

13.10.1.3 Status Codes

Code Meaning

0 Success (INFO)

2000 General error (ERROR)

2002 General account error (ERROR)

2003 Account not found (ERROR)

2004 Account closed (ERROR)

2005 Account not authorized (ERROR)

2019 Duplicate request (ERROR)

6502 Unable to process embedded transaction due
to out-of-date <TOKEN> (ERROR)

15508 Transaction not authorized (ERROR)

16500 HTML not allowed (ERROR)

16501 Unknown mail To: (ERROR)

422 13.10 Investment E-Mail

13.10.2 Investment E-Mail Synchronization

13.10.2.1 Request <INVMAILSYNCRQ>

Tag
<INVMAILSYNCRQ>

Client synchronization option;
<TOKEN>, <TOKENONLY>, or
<REFRESH>

<TOKEN>

<TOKENONLY>

<REFRESH>

<REJECTIFMISSING>

<INCIMAGES>

<USEHTML>

<INVACCTFROM>

</INVACCTFROM>
<INVMAILTRNRQ>

</INVMAILTRNRQ>

</INVMAILSYNCRQ>

Description

Synchronization-request aggregate

Previous value of <TOKEN> received for this type of
synchronization request from server; O for first-time request
token

Request for just the current <TOKEN> without the history,
Boolean

Request for refresh of current staBnolean

If Y, do not process requests if client <TOKEN> is out of datg
Boolean

Y if the client accepts mail with images in the message body|.

if the client does not accept mail with images in the messags
body.Boolean

Y if client wants an HTML response, N if client wants plain
text, Boolean

Investment account of interest; token must be interpreted in
terms of this account, see 13.6.1

Investment-mail transactions (0 or more)

b,

v

v

OFX 2.0 Specification

6/30/00

423

13.10.2.2 Response <INVMAILSYNCRS>

Tag Description
<INVMAILSYNCRS> Synchronization-response aggregate
<TOKEN> New synchronization tokemoken
<LOSTSYNC> Y if the token in the synchronization request is older than the earligst
entry in the server’s history table. In this case, some responses haye
been lost.

N if the token in the synchronization request is newer than or matches a
token in the server’s history tablBoolean

<INVACCTFROM> Investment account of interest; token must be interpreted in terms pf
this account, see 13.6.1

</INVACCTFROM>
<INVMAILTRNRS> Investment-mail transactions (0 or more)
</INVMAILTRNRS>

</INVMAILSYNCRS>

424 13.10 Investment E-Mail

13.11 Complete Example

This example is for a user who requests an investment statement download for a single account.

The request file:

<OFX> <l--Beginning of request data-->
<SIGNONMSGSRQV1>
<SONRQ> <l-- ..Sign on request. For a
complete example, see section
11.14.1-->
</SONRQ> <l--End of signon-->

</SIGNONMSGSRQV1>
<INVSTMTMSGSRQV1>

<INVSTMTTRNRQ> <!I--First request in file-->
<TRNUID>1001</TRNUID> <!--Unique ID for this request-->
<INVSTMTRQ> <I--Beginning of statement download-->
<INVACCTFROM> <l--ldentify the account: -->

<BROKERID>121099999</BROKERID><!--FI ID-->
<ACCTID>999988</ACCTID><!--Account number-->

</INVACCTFROM> <l--End of account ID-->
<INCTRAN> <l--Request transactions-->
fer.> <DTSTART>19990824130105</DTSTART><!--Send transactions posted
after--
<l--Aug 24, 1999 1.01:05pm-->
<INCLUDE>Y</INCLUDE> <!--Include transactions -->
</INCTRAN>
<INCOO>Y</INCOO> <l--Include open orders in response-->
<INCPOS> <l--Request positions -->
<INCLUDE>Y</INCLUDE> <!--Include current positions -->
</INCPOS>
<INCBAL>Y</INCBAL> <!--Include balances in request-->
</INVSTMTRQ>
</INVSTMTTRNRQ> <l--End of first request-->
</INVSTMTMSGSRQV1>
</OFX> <l--End of OFX request data-->

OFX 2.0 Specification 6/30/00 425

A typical server response:

This user has one investment transaction, one bank transaction, one open order, two position entries, and
one balance entry. The user deposits some money and buys shares in Acme. The user has an open limit
order to buy 100 shares of Hackson Unlimited at $50/share. The holdings show the user already had 100
shares of Acme and now has 200 shares. The user also has one option contract to sell Lucky Airlines
shares, bought before this download.

<OFX> <!--Beginning of request data-->
<SIGNONMSGSRSV1>
<SONRS> <l-- ...Sign on response. For a
complete example, see section
11.14.1-->
</SONRS> <l--End of signon-->

</SIGNONMSGSRSV1>
<INVSTMTMSGSRSV1>
<INVSTMTTRNRS> <I--First request in file-->
<TRNUID>1001</TRNUID> <!--Client ID for this request-->
<STATUS>
<CODE>0</CODE> <l--0 = accepted, good data follows-->
<SEVERITY>INFO</SEVERITY>
</STATUS>
<INVSTMTRS> <!--Beginning of statement download-->

L <DTASOF>19990827010000</DTASOF> <!--Statement as of Aug 27, 1999
am-->

<CURDEF>USD</CURDEF> <I--Default currency is US Dollar-->
<INVACCTFROM> <l--Beginning of account information-->
<BROKERID>121099999</BROKERID><!--F| ID-->
<ACCTID>999988</ACCTID><!--Account number-->
</INVACCTFROM> <!--End of account information-->
<INVTRANLIST> <!--Beginning of transactions-->

. <DTSTART>19990824130105</DTSTART><!--Send transactions posted
after-->

<l--Aug 24, 1999 1.01:05pm-->
<DTEND>19990828101000</DTEND><!--End timestamp (now) -->
<BUYSTOCK> <I--Buy stock transaction-->
<INVBUY>
<INVTRAN>
<FITID>23321</FITID><!--FI transaction ID-->

999 <DTTRADE>19990825</DTTRADE><!--Trade date Aug 25,
1999-->

<DTSETTLE>19990828</DTSETTLE><!--Settlement date Aug
28, 1999-->

</INVTRAN>

426 13.11 Complete Example

<SECID> <!--Security ID-->
<UNIQUEID>123456789</UNIQUEID><!--CUSIP for ACME -->
<UNIQUEIDTYPE>CUSIP</UNIQUEIDTYPE>

</SECID>

<UNITS>100</UNITS><!--100 shares-->

<UNITPRICE>50.00</UNITPRICE><!--$50/share-->

<COMMISSION>25.00</COMMISSION><!--$25 commission -->

<TOTAL>5025.00</TOTAL><!--Total amount $5025.00-->

<SUBACCTSEC>CASH</SUBACCTSEC><!--Holding resides in cash

account-->
<SUBACCTFUND>CASH</SUBACCTFUND><!--Bought in cash
account-->
</INVBUY>
<BUYTYPE>BUY</BUYTYPE><!--Normal buy-->
</BUYSTOCK> <l--End of buy stock transaction-->
<INVBANKTRAN> <l--Investment acct bank transaction-->
<STMTTRN> <l--Beginning of a bank transaction-->

<TRNTYPE>CREDIT</TRNTYPE><!--Generic credit-->
<DTPOSTED>19990825</DTPOSTED><!--Aug 25, 1999-->
<DTUSER>19990825</DTUSER><!--Aug 25, 1999-->
<TRNAMT>1000.00</TRNAMT><!--$1,000.00-->
<FITID>12345</FITID><!--F| transaction ID 12345-->

_ <NAME>Customer deposit</NAME><!--Description of
transaction-->

<MEMO>Your check #1034</MEMO><!--Optional memo from FI-->

</STMTTRN> <l--End of bank transaction-->
<SUBACCTFUND>CASH</SUBACCTFUND><!--Credited to the cash

account -->
</INVBANKTRAN>
</INVTRANLIST> <l--End of transactions-->
<INVPOSLIST> <!--Beginning of positions list-->
<POSSTOCK> <I--Beginning of position -->
<INVPOS>
<SECID> <I--Security ID-->

<UNIQUEID>123456789</UNIQUEID><!--CUSIP for Acme
Development,

Inc.-->
<UNIQUEIDTYPE>CUSIP</UNIQUEIDTYPE>
</SECID>
<HELDINACCT>CASH</HELDINACCT><!--Cash account-->
<POSTYPE>LONG</POSTYPE><!--Long position-->
<UNITS>200</UNITS><!--200 shares-->
<UNITPRICE>49.50</UNITPRICE><!--Latest price-->

OFX 2.0 Specification 6/30/00 427

<MKTVAL>9900.00</MKTVAL><!--Current market value
$9900.00-->

<DTPRICEASOF>19990827010000</DTPRICEASOF> <!--Prices as
of Aug27,1999

lam-->
<MEMO>Next dividend payable Sept 1</MEMO>
</INVPOS>
</POSSTOCK> <!--End of position-->
<POSOPT> <!--Beginning of position-->
<INVPOS>
<SECID> <!--Security ID-->

<UNIQUEID>000342222</UNIQUEID><!--CUSIP for the option

<UNIQUEIDTYPE>CUSIP</UNIQUEIDTYPE>
</SECID>
<HELDINACCT>CASH</HELDINACCT><!--Cash account-->
<POSTYPE>LONG</POSTYPE><!--Long position-->
<UNITS>1</UNITS> <!--100 shares-->
<UNITPRICE>5</UNITPRICE><!--Latest price-->
<MKTVAL>500</MKTVAL><!--Current market value $500.00-->

<DTPRICEASOF>19990827010000</DTPRICEASOF> <!--Prices as
of Aug27,1999 lam-->

<MEMO> Option is in the money</MEMO>

</INVPOS>
</POSOPT> <l--End of option position -->
</INVPOSLIST> <!--End of position -->
<INVBAL>

<AVAILCASH>200.00</AVAILCASH><!--$200.00 cash balance-->

bal <MARGINBALANCE>-50.00</MARGINBALANCE><!--$50.00 owed on margin
alance-->

<SHORTBALANCE>0</SHORTBALANCE><!--$0 short balance-->

<BALLIST> <I--Beginning of Fl-defined balances-->
<BAL> <l--Beginning of a balance-->

<NAME>Margin Interest Rate</NAME> <!--Name of balance
entry-->

<DESC>Current interest rate on margin balances</DESC>
<l--Help text for this balance-->

<BALTYPE>PERCENT</BALTYPE><!--Format as percent-->

<VALUE>7.85</VALUE><!--Will be formatted 7.85%-->

<DTASOF>19990827010000</DTASOF> <!--Rate as of Aug 27,
1999 lam-->

</BAL> <l--End of balance entry-->
</BALLIST> <l--End of balances-->

428 13.11 Complete Example

</INVBAL>
<INVOOLIST>
<OOBUYSTOCK>
<00>
<FITID>23321</FITID><!--F| transaction |D-->
<SECID> <!--Security ID-->

<UNIQUEID>666678578</UNIQUEID><!--CUSIP for Hackson
Unlimited-->

<UNIQUEIDTYPE>CUSIP</UNIQUEIDTYPE>
</SECID>

<DTPLACED>19990624031505</DTPLACED> <!--Order placed 6/
24/96 3:15:05pm-->

<UNITS>100</UNITS><!--100 shares-->
<SUBACCT>CASH</SUBACCT><!--Purchase with cash-->
<DURATION>GOODTILCANCEL</DURATION><!--GOODTILCANCEL-->

o <RESTRICTION>NONE</RESTRICTION><!--No special
restrictions-->

<LIMITPRICE>50.00</LIMITPRICE><!--Limit price $50/share-->
</00>
<BUYTYPE>BUY</BUYTYPE><!--Normal buy-->
</OOBUYSTOCK>
</INVOOLIST>
</INVSTMTRS>
</INVSTMTTRNRS> <I--End of first response-->
</INVSTMTMSGSRSV1>
<SECLISTMSGSRSV1>

<SECLIST> <!--Beginning of securities list-->
<STOCKINFO> <!--Beginning of 1st security ID-->
<SECINFO>
<SECID> <I--Security ID-->

<UNIQUEID>123456789</UNIQUEID><!--CUSIP for the stock -->
<UNIQUEIDTYPE>CUSIP</UNIQUEIDTYPE>
</SECID>
<SECNAME>Acme Development, Inc.</SECNAME>
<TICKER>ACME</TICKER> <!--Ticker symbol-->

<FIID>1024</FIID> <I--Fl internal security identifier-->
</SECINFO>
<YIELD>10</YIELD> <1--10% vyield-->
I . <ASSETCLASS>SMALLSTOCK</ASSETCLASS><!--Small Capital Stock asset
class--
</STOCKINFO> <I--End of security ID-->
<STOCKINFO>

<SECINFO>

OFX 2.0 Specification 6/30/00 429

<SECID> <!--Security ID-->
<UNIQUEID>666678578</UNIQUEID><!--CUSIP for the stock -->
<UNIQUEIDTYPE>CUSIP</UNIQUEIDTYPE>
</SECID>
<SECNAME>Hackson Unlimited, Inc.</SECNAME>
<TICKER>HACK</TICKER> <!--Ticker symbol-->
<FIID>1027</FIID> <l--FI internal security identifier-->
</SECINFO>
<YIELD>17</YIELD> <1--17% vyield-->

I <ASSETCLASS>SMALLSTOCK</ASSETCLASS><!--Small Capital Stock asset
class-->

</STOCKINFO>
<OPTINFO> <!--End of security ID-->
<SECINFO>
<SECID> <I--Security ID-->
<UNIQUEID>000342222</UNIQUEID><!--CUSIP for the option -->
<UNIQUEIDTYPE>CUSIP</UNIQUEIDTYPE>
</SECID>
<SECNAME>Lucky Airlines Jan 97 Put</SECNAME>
<TICKER>LUAXX</TICKER> <!--Ticker symbol-->
<FIID>0013</FIID> <!I--FI internal security identifier-->
</SECINFO>
<OPTTYPE>PUT</OPTTYPE>
<STRIKEPRICE>35.00</STRIKEPRICE><!--Strike price $35/share-->
<DTEXPIRE>19990121</DTEXPIRE><!--Option expires Jan 21, 1999-->
<SHPERCTRCT>100</SHPERCTRCT> <!--100 shares per contract-->
<SECID> <I--Security ID-->

. <UNIQUEID>000342200</UNIQUEID><!--CUSIP for the underlying
stock -->

<UNIQUEIDTYPE>CUSIP</UNIQUEIDTYPE>
</SECID>

I <ASSETCLASS>LARGESTOCK</ASSETCLASS><!--Large Capital Stock asset
class-->

</OPTINFO> <I--End of option information-->
</SECLIST> <!--End of securities list-->
</SECLISTMSGSRSV1>
</OFX> <I--End of OFX request data-->

13.12 Complete 401(k) Example

This example is for a user who requests a 401(k) investment statement download for a single account.

430 13.12 Complete 401(k) Example

The request file:

<OFX> <!--Beginning of request data-->
<SIGNONMSGSRQV1>
<SONRQ> <l-- ...Sign on request. For a
complete example, see section
11.14.1-->
</SONRQ> <!--End of signon-->

</SIGNONMSGSRQV1>
<INVSTMTMSGSRQV1>

<INVSTMTTRNRQ> <l--First request in file-->
<TRNUID>1002</TRNUID> <I--Unique ID for this request-->
<INVSTMTRQ> <!--Beginning of statement download-->
<INVACCTFROM> <l--ldentify the account: -->

<BROKERID>121099999</BROKERID><!--F| ID-->

<ACCTID>999988</ACCTID><!--Account number-->
</INVACCTFROM> <I--End of account ID-->
<INCTRAN> <!--Request transactions-->

<DTSTART>20000101120000</DTASOF><!--Send transactions posted
after Jan 1, 2000 12pm-->

<INCLUDE>Y</INCLUDE> <l--Include transactions -->

</INCTRAN>

<INCPOS> <l--Request positions -->
<INCLUDE>Y</INCLUDE> <!--Include current positions -->

</INCPOS>

<INC401K>Y</INC401K> <!--Include 401(k) account info -->

<INC401KBAL>Y</INC401KBAL><!--Include 401(k) balances -->
</INVSTMTRQ>

</INVSTMTTRNRQ> <l--End of first request-->
</INVSTMTMSGSRQV1>
</OFX> <l--End of OFX request data-->

OFX 2.0 Specification 6/30/00

431

A typical server response:

This user is paying back a loan from the 401(k) account and then contributing pretax dollars. A transaction
is shown paying principle to Rollover and another paying interest to Rollover. Following that is a pretax
contribution transaction. This is then followed by the list of the 401(k) balances and finally the 401(k)
account information including a year-to-date summary.

<OFX> <I--Beginning of request data-->
<SIGNONMSGSRSV1>
<SONRS> <l-- ..Sign on response. For a
complete example, see section
11.14.1-->
</SONRS> <l--End of signon-->

</SIGNONMSGSRSV1>
<INVSTMTMSGSRSV1>

<INVSTMTTRNRS> <I--First request in file-->
<TRNUID>1002</TRNUID><!--Client ID for this request-->
<STATUS>

<CODE>0</CODE> <!--0 = accepted, good data follows-->
<SEVERITY>INFO</SEVERITY>

</STATUS>

<INVSTMTRS> <!--Beginning of statement download-->

<DTASOF>>20000131172605.000[-4:EST|</DTASOF> <!--Statement as
of Jan 31, 2000 5:26pm-->

<CURDEF>USD</CURDEF><!--Default currency is US Dollar-->
<INVACCTFROM><!--Beginning of account information-->
<BROKERID>121099999</BROKERID><!--F| ID-->
<ACCTID>999988</ACCTID><!--Account number-->
</INVACCTFROM><!--End of account information-->
<INVTRANLIST>
<DTSTART>20000105172532.000[-5:EST]
<DTEND>20000131172532.000[-4:EST]
<BUYMF>
<INVBUY>
<INVTRAN>
<FITID>212839062820295310723</FITID>
<DTTRADE>20000119000000.000[-5:EST]</DTTRADE>
</INVTRAN>
<SECID>
<UNIQUEID>744316100</UNIQUEID>
<UNIQUEIDTYPE>CUSIP</UNIQUEIDTYPE>
</SECID>
<UNITS>14.6860</UNITS>

432 13.12 Complete 401(k) Example

<UNITPRICE>18.9000</UNITPRICE>
<TOTAL>277.5700</TOTAL>
<CURRENCY>
<CURRATE>1.0000</CURRATE>
<CURSYM>USD</CURSYM>
</CURRENCY>
<SUBACCTSEC>0OTHER</SUBACCTSEC>
<SUBACCTFUND>OTHER</SUBACCTFUND>
<LOANID>2</LOANID>
<LOANPRINCIPAL>277.5700</LOANPRINCIPAL>
<LOANINTEREST>0.0000</LOANINTEREST>
<INV401KSOURCE>ROLLOVER</INV401KSOURCE>
<DTPAYROLL>20000114000000.000[-5:EST]</DTPAYROLL>
<PRIORYEARCONTRIB>N</PRIORYEARCONTRIB>
</INVBUY>
<BUYTYPE>BUY
</BUYMF>
<BUYMF>
<INVBUY>
<INVTRAN>
<FITID>212839062820510822977</FITID>
<DTTRADE>20000119000000.000[-5:EST]|</DTTRADE>
</INVTRAN>
<SECID>
<UNIQUEID>744316100</UNIQUEID>
<UNIQUEIDTYPE>CUSIP</UNIQUEIDTYPE>
</SECID>
<UNITS>2.0220</UNITS>
<UNITPRICE>18.9000</UNITPRICE>
<TOTAL>38.2200</TOTAL>
<CURRENCY>
<CURRATE>1.0000</CURRATE>
<CURSYM>USD</CURSYM>
</CURRENCY>
<SUBACCTSEC>0OTHER</SUBACCTSEC>
<SUBACCTFUND>OTHER</SUBACCTFUND>
<LOANID>2</LOANID>
<LOANPRINCIPAL>0.0000</LOANPRINCIPAL>
<LOANINTEREST>38.2200</LOANINTEREST>
<INV401KSOURCE>ROLLOVER</INV401KSOURCE>
<DTPAYROLL>20000114000000.000[-5:EST]</DTPAYROLL>
<PRIORYEARCONTRIB>N</PRIORYEARCONTRIB>

OFX 2.0 Specification 6/30/00 433

</INVBUY>
<BUYTYPE>BUY
</BUYMF>
<BUYMF>
<INVBUY>
<INVTRAN>
<FITID>212849815151950488609</FITID>
<DTTRADE>20000106000000.000[-5:EST|</DTTRADE>
</INVTRAN>
<SECID>
<UNIQUEID>744316100</UNIQUEID>
<UNIQUEIDTYPE>CUSIP</UNIQUEIDTYPE>
</SECID>
<UNITS>4.9010</UNITS>
<UNITPRICE>18.7900</UNITPRICE>
<TOTAL>92.0900</TOTAL>
<CURRENCY>
<CURRATE>1.0000</CURRATE>
<CURSYM>USD</CURSYM>
</CURRENCY>
<SUBACCTSEC>0OTHER</SUBACCTSEC>
<SUBACCTFUND>OTHER</SUBACCTFUND>
<INV401KSOURCE>PRETAX</INV401KSOURCE>
<DTPAYROLL>19991231000000.000[-5:EST]|</DTPAYROLL>
<PRIORYEARCONTRIB>Y</PRIORYEARCONTRIB>
</INVBUY>
<BUYTYPE>BUY</BUYTYPE>
</BUYMF>
</INVTRANLIST>
<INV401KBAL>
<PRETAX>31690.340000</PRETAX>
<PROFITSHARING>10725.640000</PROFITSHARING>
<ROLLOVER>15945.750000</ROLLOVER>
<OTHERVEST>108.800000</OTHERVEST>
<TOTAL>58470.530000</TOTAL>
</INV401KBAL>
<INV401K>
<EMPLOYERNAME>ELGIN NATIONAL INDUSTRIES INC</EMPLOYERNAME>
<PLANID>4343</PLANID>
<PLANJOINDATE>19940101000000.000[-5:EST]</PLANJOINDATE>
<MATCHINFO>
<MATCHPCT>0.00</MATCHPCT>

434

13.12 Complete 401(k) Example

</MATCHINFO>
<CONTRIBINFO>
<CONTRIBSECURITY>
<SECID>
<UNIQUEID>744316100</UNIQUEID>
<UNIQUEIDTYPE>CUSIP</UNIQUEIDTYPE>
</SECID>
<PRETAXCONTRIBPCT>50.0000</PRETAXCONTRIBPCT>

<PROFITSHARINGCONTRIBPCT>100.0000
</PROFITSHARINGCONTRIBPCT>

<ROLLOVERCONTRIBPCT>100.0000</ROLLOVERCONTRIBPCT>
<OTHERVESTPCT>100.0000</OTHERVESTPCT>
</CONTRIBSECURITY>
<CONTRIBSECURITY>
<SECID>
<UNIQUEID>74431M105</UNIQUEID>
<UNIQUEIDTYPE>CUSIP</UNIQUEIDTYPE>
</SECID>
<PRETAXCONTRIBPCT>25.0000</PRETAXCONTRIBPCT>

<PROFITSHARINGCONTRIBPCT>0.0000
</PROFITSHARINGCONTRIBPCT>

<ROLLOVERCONTRIBPCT>0.0000</ROLLOVERCONTRIBPCT>
<OTHERVESTPCT>0.0000</OTHERVESTPCT>
</CONTRIBSECURITY>
<CONTRIBSECURITY>
<SECID>
<UNIQUEID>743969107</UNIQUEID>
<UNIQUEIDTYPE>CUSIP</UNIQUEIDTYPE>
</SECID>
<PRETAXCONTRIBPCT>25.0000</PRETAXCONTRIBPCT>

<PROFITSHARINGCONTRIBPCT>0.0000
</PROFITSHARINGCONTRIBPCT>

<ROLLOVERCONTRIBPCT>0.0000</ROLLOVERCONTRIBPCT>
<OTHERVESTPCT>0.0000</OTHERVESTPCT>
</CONTRIBSECURITY>
</CONTRIBINFO>
<INV401KSUMMARY>
<YEARTODATE>
<DTSTART>20000101000000</DTSTART>
<DTEND>20000131000000</DTEND>
<CONTRIBUTIONS>
<PRETAX>843.2500</PRETAX>
<AFTERTAX>43.4200</AFTERTAX>

OFX 2.0 Specification 6/30/00 435

<MATCH>421.6200</MATCH>
<TOTAL>1308.2900</TOTAL>
</CONTRIBUTIONS>
</INV401KSUMMARY>
</INV401K>
</INVSTMTRS>
</INVSTMTTRNRS>
</INVSTMTMSGSRSV1>
</OFX>

436 13.12 Complete 401(k) Example

CHAPTER 14 BIiLL PRESENTMENT

14.1 Overview

Bill Presentment (PRES) is the electronic delivery of a bill from a biller to a customer.

Although some billers may provide Bill Presentment service themselves, many will choose to work with a
bill publisher that provides Bill Presentment service on behalf of many billers. For this reason, Bill
Presentment focuses on connecting customers to bill publishers.

14.1.1 Bill Presentment Model

This section summarizes the process of receiving bills electronically, starting with the steps required to
find a bill publisher and set up Bill Presentment service.

To receive bills electronically, the client:

¢ Finds one or more billers by searching a biller directory server.

¢ Determines which bill publishers provide Bill Presentment service for the billers.

¢ Enrolls with a bill publisher for Bill Presentment service

& Signs on with the bill publisher and activates Bill Presentment service for one or more accounts with
one or more billers.

¢ Requests electronic bills from the bill publisher.

¢ (Optionally) Pays bills using the OFX Bill Payment service.

14.1.2 Servers and Message Sets

During the billing process, the client typically communicates with two OFX servers:

+ Biller directory server:An independent server that stores information about billers and bill publishers.
Clients can query this server to find the bill publishers that serve the billers in which the customer is
interested.

¢ Bill publisher serverThe server that delivers bills to customers. A single bill publisher can provide Bill
Presentment service for many billers. In some cases, a biller might act as its own bill publisher.

OFX 2.0 Specification 6/30/00 437

Although it is possible for a single server to perform both of the functions listed above, it is more likely
that independent directory servers will provide clients with a single source for finding billers. To allow
these functions to be routed separately by clients, Bill Presentment defines separate message sets for
directory query and bill delivery.

¢ Biller Directory message set <PRESDIRMSGSETV1>
¢ Bill Delivery message set <PRESDLVMSGSETV1>

For additional information about the message sets defined for Bill Presentment, see section 14.7

14.2 Biller Directory

To find billers, the client sends a <FINDBILLERRQ> request to the biller directory server. The biller
directory server returns a <FINDBILLERRS> response.

<FINDBILLERRQ> and <FINDBILLERRS> are part of the Biller Directory message set
<PRESDIRMSGSETV1>. The message set tags are <PRESDIRMSGSRQV1> and
<PRESDIRMSGSRSV1>.

14.2.1 Client Signon to the Biller Directory Server

Because the client does not enroll with the biller directory server and the directory does not contain private
data, the client may perform an anonymous signon (as described in section 2.5.1) when requesting this
service. Unlike the FI Profile message set (see Chapter 7, especially section 7.1.4), this message set does
not currently support customer-specific directories. The response should be identical whether or not the
request arrived with an anonymous <SONRQ>. Compliant servers must support both request forms. For
more information about signon requests, refer to Chapter 2, "Structure."

14.2.2 Search Arguments

If the client omits all elements in the <FINDBILLERRQ>, the client is requesting a complete directory of
billers. Otherwise, the client wants to filter results based on the included elements. For each biller that
matches the elements in the request, the biller directory server returns the complete name and address of
the biller, plus the biller ID and bill publisher name. Servers can return information using case-insensitive
matching, but this is not required.

14.2.3 ldentification of Bill Publishers

Bill Publishers must be uniquely and consistently identified by name. Clients need some way to relate the
bill publisher name given by a directory server to their own databases of known and approved bill
publishers. Since the number of bill publishers is relatively small, and the number of directory servers that
must be coordinated even smaller, the official corporate name of a bill publisher will serve as an ID for that
publisher.

438 14.2 Biller Directory

14.2.4 Find Biller Request <FINDBILLERRQ>

The <FINDBILLERRQ> request must appear within a <FINDBILLERTRNRQ> transaction wrapper.

The Biller directory timestamp in the <FINDBILLERRQ> (<DTUPDATE>) selection criterion allows the
client to request all directory entries that have been added or changed since a point in time. Clients that
want to receive an updated list of billers and bill publishers can use <DTUPDATE> to avoid receiving a
response if nothing has changed. <DTUPDATE> is returned by servers in responses to indicate the date
and time of the newest or most recently changed entry, whether or not it was included in the response.
Clients performing narrow searches cannot use <DTUPDATE> unless they save the value for each query,
and send the corresponding value in future requests. Servers can return information using case-insensitive
matching, but this is not required.

OFX 2.0 Specification 6/30/00 439

The name and address fields refer to the biller, except for <CONSUPOSTALCODE> which refers to the
customer’s address.

Tag Description
<FINDBILLERRQ>

<DTUPDATE> Date and time of last change to any biller entry as reported by the server on
previous querydatetime.

If present, <FINDBILLERRS> will include only Billers whose information hgs
changed or been added since this time.

<BILLERID> ID of this biller at this bill publisherA-32
<NAME> Biller’s name,A-32

<ADDR1> Biller’s address line 1A-32

<ADDR2> Biller's address line 2A-32

<ADDR3> Biller’'s address line 3A-32

<CITY> Biller’s city, A-32

<STATE> Biller’s state,A-5

<POSTALCODE> Biller’s postal codeA-11

<COUNTRY> ISO/DIS-3166 3-letter country code standake3
<SIC> Standard Industry Codé\l-6

<CONSUPOSTALCODE> | Postal code of customer, to allow server to filter out billers that do not do
business in the customer’s arédall

<INCIMAGES> Y if the client wants images (logos) returnézholean

</FINDBILLERRQ>

Note: Future versions of OFX will require <ADDR1> if <ADDR2> is specified and
<ADDR2> if <ADDR3> is specified.

440 14.2 Biller Directory

14.2.5 Find Biller Response <FINDBILLERRS>
<FINDBILLERRS> must appear within a <FINDBILLERTRNRS> transaction wrapper.

The response is a list of <BILLERINFO> aggregates.

Tag Description

<FINDBILLERRS>

<DTUPDATE> Date and time of last addition or modification to the entries in the directory, whether
part of this response or natatetime

<BILLERINFO> Zero or more <BILLERINFO> aggregates
</BILLERINFO>

</FINDBILLERRS>

14.2.5.1 Biller Information <BILLERINFO>
<BILLERINFO> includes information about a single biller.

Besides basic name and address information, <BILLERINFO> includes the <BILLPUB> and
<BILLERID> elements. These elements will be used with the customer’s account number to identify the
customer’s account with the biller. For more information about the account-identification aggregates, refer
to <PRESACCTFROM> and <PRESACCTTO> in section 14.3.2.2

<BILLERINFO> can optionally include elements that specify the format of valid account numbers.
<ACCTFORMAT> and <ACCTEDITMASK> provide information to the client. <HELPMESSAGE>
provides a text message that the client can display to the customer.

To avoid the complications caused by invalid account numbers, <BILLERINFO> can also include a
<VALIDATE> URL element that the client application can use to validate the customer’s account number.
See section 14.2 for more detail on this.

Tag Description

<BILLERINFO>
<BILLPUB> Official standard name of the bill publishe¥;32
<BILLERID> ID of this biller at this bill publisherA-32
<NAME> Name of the billerA-32
<ADDR1> Biller's address line 1A-32
<ADDR2> Biller's address line 2A-32
<ADDR3> Biller's address line 3A-32

OFX 2.0 Specification 6/30/00 441

Tag
<CITY>
<STATE>
<POSTALCODE>
<COUNTRY>
<SIC>

<PHONE>

<PAYMENTINSTRUMENTS>

</PAYMENTINSTRUMENTS>

<ACCTFORMAT>

<ACCTEDITMASK>

<HELPMESSAGE>

<RESTRICT>

<LOGO>

<VALIDATE>

<BILLERINFOURL>

</BILLERINFO>

Description

Biller’s city, A-32

Biller’s state,A-5

Biller's postal codeA-11

Biller’s country; 3-letter country code from ISO/DIS-316%,3
Standard Industrial Classification Codé¢:6

Biller's phone number for customer information (if a special number ex
for electronic billing information, use that numbef),32

Types of payment that the biller can accept electronically, see section
14.2.8.1

Regular expression describing the account number format. For examy

sts

le,

7[0-9]{8,10}$ means the account number must be numbers only, and the

length must be 8 to 10 numbe#s-255

An alternative string describing the account number format. See beloy
details. The client can use the edit mask to assist the user in entering
account numbeA-255

Human-readable message that the client can display to assist the cus
in entering his or her account number. For example: “Enter in the last

digits of your account number without any spaces or dashes.” This is

defined by the biller during the implementation pha&e255

Human-readable description of any restrictions on who may sign up w
this biller. For example: “Please be sure to enter each account numbe
separately if you have more than one account with us. Your mail bill w
be turned off only after another paper billing cycle has passed. Please
that this program is initially available for account numbers beginning w
XY and Z only.” This is defined by the biller during the implementation
phaseA-255

URL of the biller’s logo. If the client requested images, the logo should
included via multipart MIME in this respons&RL

URL for validation. The client application may use this to validate the
customer’s account number, see section 1412R1

URL of human-readable description of additional information the biller
would like the customer to have with regard to signingUpRL

v for
the

tomer
10

ith
!

Il
note
ith

be

Note: Future versions of OFX will require <ADDR1> if <ADDR2> is specified and
<ADDR2> if <ADDR3> is specified.

442

14.2 Biller Directory

While <ACCTFORMAT> uses Unix-style regular expressions to describe the account number format,
<ACCTEDITMASK> provides a simpler, alternative method. It uses two special characters. The character
@ matches one letter, upper or lowercase. The character # matches one number. All other characters match
themselves (letters are case insensitive).

Usage examples:
The following represents a 16-digit account number:
HHHHHHHH B
A 16-digit account number, separated by hyphens into 4-digit chunks. First four characters must be 4128:
A1 2 8-##Ht-HHHE-#HHHE
4 |etters, a hyphen, a number, a hyphen, 5 numbers:
@ @ @ @-H#-H#HHHH#H
10-digit account number that must begin with 153AG, and whose final 5 characters are numbers:

153AGHHHH#

14.2.6 Status Codes <FINDBILLERRS>

Meaning
0 Success (INFO)
2000 General error (ERROR)

OFX 2.0 Specification 6/30/00 443

14.2.7 Account Number Validation

Servers should implement a lightweight CGI (or equivalent) to validate account numbers. The URL
provided in the <VALIDATE> can be accessed with an HTTP GET with three arguments: BILLERID,
ACCOUNTNUMBER and CUSTOMERPOSTALCODE. The URL should respond with a text file that
includes the following values:

1.

Status: (Mandatory)

Error: An error condition (wrong number of parameters, Database error, etc.). Clarifying text may
accompany the error status.

Passed: The account number is in an acceptable form for this biller (this is not a guarantee that the
account will be accepted for the service).

Failed: The account number does not correspond to an acceptable account number for this biller.
Clarifying text may accompany the failed status.

Account: (Optional) The preferred format or version of the account number presented in the request.

Heading: (Optional) Additional text to help explain problems to end-users.

Example:

<VALIDATE> = http://testit.com/validate.cgi

Client application uses HTTP GET with “http://testit.com/validate.cgi?billerid=5454&accountnumber=123-456-
7890&customerpostalcode=12345"

The server would respond with one of these:

1.

Error
Content-type: text/plain

<STATUS>error

<HEADING>The server is unable to process your request at this time. Please resubmit.

Failure
Content-type: text/plain

<STATUS>failed
<HEADING>123-456-7890 does not appear to be a valid account number

Passed
Content-type: text/plain

<STATUS>passed
<ACCOUNT>1234567890

444 14.2 Biller Directory

14.2.8 Biller Payment Restrictions

In the <PAYMENTINSTRUMENTS> aggregate of <BILLERINFO> aggregate (see section 14, 2fel

biller specifies the type of payment instruments it can accept for electronic payment. Since electronic
payment does not have to occur through the OFX Bill Payment message set, the payment instruments can
include some that OFX doesn't support—for example, CyberCash.

In some cases, a biller may have arranged for a certain party to act as its payment concentrator. This means
that the biller expects to receive good funds and remit advice in a pre-arranged format from these
concentrators. Such a biller will want to have customers direct their payments to the payment concentrator.

The <PAYMENTINSTRUMENTS> aggregate supports the specification of a payment concentrator from
which the biller wants to receive funds. However, OFX currently does not provide a way for clients to get
information about payment concentrators. Knowledge of payment concentrators will have to be
“hardwired” into client applications. For example, the client application may know that a certain payment
concentrator, BigConcentrator, is capable of receiving DigiCash funds. A biller who has BigConcentrator
as its payment concentrator can then accept DigiCash funds from the customer without having to support
the DigiCash protocol and infrastructure directly. The application would direct the DigiCash funds to the
concentrator, who would in turn transfer funds and remit advice to the biller using the agreed-upon
method.

14.2.8.1 Payment Instruments <PAYMENTINSTRUMENTS>

In the <PAYMENTINSTRUMENTS> aggregate, billers list which payment instruments they accept.

Tag Description
<PAYMENTINSTRUMENTS> Opening tag for payment instruments
<PAYMENTINSTRUMENT> One or more payment instrument aggregates, see section 14.2.8.2

</PAYMENTINSTRUMENT>

</PAYMENTINSTRUMENTS> Closing tag for payment instruments

OFX 2.0 Specification 6/30/00 445

14.2.8.2 Payment Type and Brand <PAYMENTINSTRUMENT>

Each payment instrument is described by <PMTINSTRUMENTTYPE> and <BRAND>. If the server does
not specify <BRAND>, the client assumes that all brands of the given <PMTINSTRUMENTTYPE> are
acceptable.

Tag Description

<PAYMENTINSTRUMENT> Opening tag for payment instrument aggregate
<PMTINSTRUMENTTYPE> | Payment type, see section 14.2.8.3
<BRAND> Accepted brand for given payment typge32

</PAYMENTINSTRUMENT> Closing tag for payment instrument aggregate

14.2.8.3 Payment Instrument Types <PMTINSTRUMENTTYPE>

Type Description

CONCENTRATOR Organization that has a business agreement with the biller to send the biller|funds
and remittance advice.

CHECKINGACCOUNT Draft on a demand deposit account (US)
CREDITCARD Payment by Auth/Settle using Credit Card networks
ECOIN Protocol for payment with electronic cash

If the <BILLERINFO> does not list <PAYMENTINSTRUMENTS>, the following single
<PAYMENTINSTRUMENT> is implied:

<PAYMENTINSTRUMENT>

<PMTINSTRUMENTTYPE>CHECKINGACCOUNT</PMTINSTRUMENTTYPE>
</PAYMENTINSTRUMENT>

14.3 Customer Signup

Once the customer has located a biller and its associated bill publisher, the customer must enroll with the
bill publisher for Bill Presentment service and activate accounts for one or more billers at that bill
publisher.

Bill Presentment uses the standard OFX Signup message set. This section discusses only those portions of
signup that differ for Bill Presentment. For more information about the Signup message set, refer to
Chapter 8, "Activation & Account Information.”

446 14.3 Customer Signup

14.3.1 Enrollment

To enroll with a bill publisher, the client uses the standard OFX enrollment aggregate <ENROLLRQ>. The
bill publisher server returns an <ENROLLRS> that provides status about the enrollment and optionally
returns a user ID and password to be used during subsequent signons.

14.3.2 Account Inquiry

To receive account information from a bill publisher, the client can use the standard OFX
<ACCTINFORQ> aggregate, contained in the <ACCTINFOTRNRQ> wrapper.

The <ACCTINFORS> response returns a <PRESACCTINFO> aggregate for each of the customer’s
accounts with the billers at that bill publisher. Typically, the response will list only those accounts that have
been activated for Bill Presentment service, not all available accounts.

Unlike a financial institution, bill publishers generally won’t have information about all the accounts of its
supported billers. Billers that also serve as their own bill publishers may be able return available accounts
as well as activated accounts. The bill publisher can use the <AVAILACCTS> element in the profile for the
Signup message set to indicate whether the server can return available account information.

If the server cannot return information about all available accounts, the client must ask customers for
account information prior to requesting service activation for one or more accounts.

OFX 2.0 Specification 6/30/00 447

14.3.2.1 Bill Presentment Account Information <PRESACCTINFO>

The <PRESACCTINFO> aggregate appears within the <ACCTINFORS> aggregate.

Tag Description
<PRESACCTINFO> Opening tag for bill presentment account information
<PRESACCTFROM> Bill presentment account identification, see section 14.3.2.2
</PRESACCTFROM>
<SVCSTATUS> Status of the Bill Presentment service for this account— AVAIL, PEND, ACTIVE,
or REJECTED
<REASON> Relevant only if <SVCSTATUS>REJECTED is specifidd255
</PRESACCTINFO> Closing tag for bill presentment account information

14.3.2.2 Account Identification <PRESACCTFROM> <PRESACCTTO>

The <PRESACCTFROM?> aggregate uniquely identifies a customer’s account with a biller by the
combination of bill publisher, biller ID, and account number. Biller IDs must be unique within a bill
publisher.

Clients can optionally include a <USERID> in <PRESACCTFROM/TO> that is different from the one
used in the <SONRQ>. This <USERID> supports account activation by a third party on behalf of a user.
Based on access rights granted to the <SONRQ>, it is up to the server whether to honor such a request.
More than one <SVCADD> can be present in a a single <OFX> request file on behalf of multiple
<USERID>s.

The <USERID> element is disallowed for single-customer OFX request files. When sent by or returned to
a client proxy (or, other group context), any <PRESACCTFROM/TO> aggregates must include the
USERID element. A client proxy would include (and receive) this element when initiating an OFX

session. But, customer-specific clients initiating a session with the same server would never use or see this
information.

Note: <USERID> is not intended to identify individual users of joint accounts. If a transaction
might include two different USERIDs within otherwise identical <PRESACCTFROM>
aggregates, servers should deliver two separate bills (download the same bill twice in
<PRESLISTRS>), allow either to update the bill status (in <PRESNOTIFYRQ> or
<BILLSTATUSMODRQ>), or deliver two separate <PRESACCTINFO> aggregates in
<PRESGRPACCTINFOTRNRS>. It is up to the server to keep track of activity on joint
accounts.

The Bill Publisher would not normally know the <PAYEEID> and <PAYEELSTID> (or their <SPNAME>
context) information relevant to a particular client or user. But, after setting up (or changing) Biller as a
payee with some Payment provider, a client may execute a <SVCCHG> <ACCTRQ> request that updates
the corresponding <PRESACCTFROM?> at the Bill Publisher. This request could pass payment identifiers

448 14.3 Customer Signup

to the Bill Publisher. Since this information does not make the <PRESACCTFROM> more unique, clients
may omit <SPNAME>, <PAYEEID> and <PAYEELSTID> when using <PRESACCTFROM> outside an
<ACCTRQ> request. Servers should return this information in all contexts. After a client has supplied
payee information, servers must not make server-initiated changes to the information unless the given (or
implied) <SPNAME> is controlled by the same provider. Such servers may include (and update) payment
identifiers from their Payment provider prior to the client including them in an <ACCTRQ> request.

Tag Description

<PRESACCTFROM>
<BILLPUB> Official standard name of bill publishe#-32
<BILLERID> ID of this biller at this bill publisherA-32

<BILLERNAME> Name of the biller; matches <NAME> element in <BILLERINFO>. See
section 14.2.5.1This element may be used only in cases where
<PRESACCTFROM?> is sent by the server (for example, in
<PRESBILLINFO> or <PRESACCTINFO>A-32

<ACCTID> Account numberA-22

<PRESNAMEADDRESS> | Customer’s name/address with the biller, see section 14.3.2.2.1
</PRESNAMEADDRESS>
<USERID> Customer’s user IDA-32

<SPNAME> Service provider name. Used to scope the <PAYEEID> and /or
<PAYEELSTID> (if provided) to a particular Payment service. Allowed only
when <PAYEEID> or <PAYEELSTID> appear in <PRESACCTFROM=32

Note: <SPNAME> must be supplied with <PAYEELSTID> unless Bill
Publisher also provides a payment service.

<PAYEEID2> Payee identifier. Identifies this Biller at the user's Payment provider. When sent
in account activation, it is intended for storage on the Bill Presentment
database, such that it can be returned in subsequent inquiries utilizing thig
aggregate. Used by clients to facilitate accurate Payee add or change requests
when the Bill Presentment service (possibly, due to a prior client <ACCTRQ>
request) knows the Payee ID at a Payment provider. The client may use this
identifier to match the Biller as known by the Bill Presentment service to a
Payee as known by the Payment provider.See section 3RBRTID

<PAYEELSTID> Payee list identifier. Identifies this Biller on the user's payee list at their
Payment provider. When sent in account activation, it is intended for storage on
the Bill Presentment database, such that it can be returned in subsequent
inquiries utilizing this aggregate. Used by clients to facilitate accurate Payge
add or change requests when the Bill Presentment service (possibly, due to a
prior client <ACCTRQ> request) knows the Payee List ID at a Payment
provider. The client may use this identifier to match the Biller as known by the
Bill Presentment service to a Payee as known by the Payment provider. See

section 14.5SRVRTID

</PRESACCTFROM>

OFX 2.0 Specification 6/30/00 449

<PRESACCTTO> follows the same structure as <PRESACCTFROM>.

14.3.2.2.1 Customer Information with the biller <PRESNAMEADDRESS>

Tag Description
<PRESNAMEADDRESS> Customer name and address information
<NAMEACCTHELD> Customer’s name as it appears on the accoAH®%
<BUSNAMEACCTHELD> | Optional “Does Business As” name associated with this accéufg
<ADDR1> Customer’s address line A;32
<ADDR2> Customer’s address line &;32
<ADDR3> Customer’s address line 8;32
<CITY> Customer’s cityA-32
<STATE> Customer’s statéh-5
<POSTALCODE> Customer’s postal codé-11
<COUNTRY> Customer’s country; 3-letter country code from ISO/DIS-316&
<DAYPHONE> Customer’s telephone numbé32
<EVEPHONE> Customer’s telephone numbés32
</PRESNAMEADDRESS>

Note: Future versions of OFX will require <ADDR1> if <ADDR2> is specified and
<ADDR2> if <ADDR3> is specified.

14.3.3 Service Activation

Bill Presentment uses the standard service activation messages defined in Chapter 8, "Activation &
Account Information."

The account service request aggregate <ACCTRQ> accepts action-specific aggregates for service
additions, changes, and deletions. To add Bill Presentment service to an account, the client sends an
<ACCTRQ> with an <SVCADD> for the service <SVC>PRESSVC.

14.3.3.1 Service Addition <SVCADD>

When requesting service activation using <SVCADD>, <PRESACCTTO> is used to specify the
customer’s account with a specific biller. <PRESACCTTO> includes the optional
<PRESNAMEADDRESS> aggregate to identify the customer’s name and address as it is registered at the
biller. In most cases however, the address specified in the <ENROLLRQ> or most recent
<CHGUSERINFORQ> is used to provide the <PRESNAMEADDRESS> when activating an account.
Clients need only include <PRESNAMEADDRESS> if a special billing address is specified for the

450 14.3 Customer Signup

customer at the given biller. For example, some billers and service providers may require exact matches for
remittance addresses. The user’s enrollment data may specify the same location described in the biller’s
database, but not provide an exact match. In that case, <PRESNAMEADDRESS> may be required for
successful service activation.

In cases where <PRESACCTTO> is forwarded to other servers but enroliment information was used rather
than a client-provided <PRESNAMEADDRESS> aggregate, the <PRESNAMEADDRESS> information

is neither stored at the server nor returned to the originating client with the <PRESACCTTO> aggregate.
That is, clients which do not include the <PRESNAMEADDRESS> aggregate in their requests should
never see it in a later response from the server.

14.3.3.2 Service Change <SVCCHG>

The server’s profile indicates support for storing <PRESNAMEADDRESS> information by including
<CANUPDATEPRESNAMEADDRESS>Y. In this case, <SVCCHG> requests may be used to update or
delete the <PRESNAMEADDRESS> information stored by the server. <CHGUSERINFORQ> requests
have no effect upon this information. Furthermore, no server-initiated transactions change the stored
address data. Servers must always return <PRESNAMEADDRESS> data exactly as the client sent it. The
presentment server may however forward a customer’s change of address entered via <SVCCHG> to the
proper biller.

For servers that support storing <PRESNAMEADDRESS>, the <PRESNAMEADDRESS> data can also
be used to support users who receive bills at multiple locations.

If a server’s profile includes <CANUPDATEPRESNAMEADDRESS>N, the <PRESNAMEADDRESS>
should not be included in any <SVCCHG> requests. <PRESNAMEADDRESS> data is used only for the
initial activation in this case.

OFX 2.0 Specification 6/30/00 451

14.3.4 Service Status Update for Groups of Customers

The service activation requested with <SVCADD> will often not happen immediately. In this case, a
request for account information <ACCTINFORQ> will return an <ACCTINFORS> with a
<SVCSTATUS>PEND. To find out whether the account has been activated, the client can either send
<ACCTINFORQ> once per session until it returns <SVCSTATUS>ACTIVE, or it can include an
<ACCTSYNCRQ> in each session to catch an unsolicited <ACCTRS> response to the <SVCADD>
message.

This section describes a method of checking for status changes on behalf of a group of customers within
the Bill Presentation service. This method is designed to be used by customer service representatives and
client proxy systems. This method applies only where <SVC> is PRESSVC. To check status for a single
customer, use the standard signup messages. For more information, see Chapter 8, "Activation & Account
Information."

14.3.4.1 Account Information Request <ACCTINFORQ>

The client uses <ACCTINFORQ> to request information about accounts whose status has changed since
the last time the request was made. This request is typically used to retrieve a list of accounts whose status
has changed from <SVCSTATUS>PEND to <SVCSTATUS>ACTIVE.

For use in the Bill Presentation message set, the <ACCTINFORQ> request must appear within a
<PRESGRPACCTINFOTRNRQ> transaction wrapper. This transaction wrapper includes the identifier for
the requested group. The <ACCTINFORQ> request may also appear in the <ACCTINFOTRNRQ>
wrapper described in Chapter 8, "Activation & Account Information."

Tag Description
<ACCTINFORQ> Opening tag for billing account information request
<DTACCTUP> Last <DTACCTUP> received in a respons@tetime
<SsvC> Zero or more. Services to be included in <ACCTINFORS>. If absent, all suppdrted

services are being requested.

BANKSVC = Banking service

BPSVC = Payment service

INVSVC = Investments

PRESSVC = Bill Presentment service

Note: If used in this message set, the value must be PRESSVC.

</ACCTINFORQ> Closing tag for billing account information request

452 14.3 Customer Signup

14.3.4.2 Account Information Response <ACCTINFORS>

The <ACCTINFORS> aggregate contains zero or more <ACCTINFO> aggregates, which provide the
updated account information.

For use in this message set, the <ACCTINFORS> response must appear within a
<PRESGRPACCTINFOTRNRS> transaction wrapper.

Tag Description

<ACCTINFORS> Opening tag for billing account information response
<DTACCTUP> Date and time of last update to account information on the sethagztime
<ACCTINFO> Zero or more account information aggregates, see section &&cB

<ACCTINFO> aggregate contains at most one <PRESACCTINFO> aggregate
consistent with section 8.5.3

Left out of the response when no <SVC>PRESSVC accounts for the specified
<USERID> or <GROUPID> or current user are found.

Note: When <DTACCTUP> indicates the client is up-to-date, server should not
return surrounding <ACCTINFORS>.

</ACCTINFO>

</ACCTINFORS> Closing tag for billing account information response

14.3.4.3 Group Account Information Transaction Request
<PRESGRPACCTINFOTRNRQ>

As a special transaction wrapper for <ACCTINFORQ>, <PRESGRPACCTINFOTRNRQ> specifies
whether the client is requesting account information for a single user or a group of users.

If the client specifies <GROUPID>, the client is requesting updated account information for a group of
users. The server returns an <ACCTINFORS> response with a <PRESACCTINFO> aggregate for each
account whose status has changed.

Standard signup messages are the preferred method for checking the status of a single customer, however
<PRESGRPACCTINFOTRNRQ> may also be used for a single customer. (Standard signup messages are
described in Chapter 8, "Activation & Account Information.")

OFX 2.0 Specification 6/30/00 453

The client should specify either <USERID> or <GROUPID>; if both are absent, the server uses the
<USERID> from the signon request <SONRQ>.

Tag Description

<PRESGRPACCTINFOTRNRQ> Opening tag for the transaction request
<TRNUID> Client-assigned globally unique ID for this transactitrnuid
<CLTCOOKIE> Data to be echoed in the transaction respoAsg2
<TAN> Transaction authorization numbés80

Specify either <USERID> or

<GROUPID>
<USERID> Requests account information for the specified use32
-or-
<GROUPID> Requests account information for users in the gréu32
<ACCTINFORQ> Account information request aggregate, (See section 8.5.1).
</ACCTINFORQ>

</PRESGRPACCTINFOTRNRQ> Closing tag for the transaction request

14.3.4.4 Group Account Information Transaction Response
<PRESGRPACCTINFOTRNRS>

As a special transaction wrapper for <ACCTINFORS>, <PRESGRPACCTINFOTRNRS> contains an
<ACCTINFORS> aggregate with zero or more <PRESACCTINFO> aggregates. The <ACCTINFORS>
aggregate returns one <PRESACCTINFO> aggregate for each account for which there was a change of
status since the <DTACCTUP> date specified. <ACCTINFORS> should not be sent when the client is up-
to-date.

Note: Not sending a response aggregate in this case is an exception to rules outlined in
sections 2.4.6nd_3.1.5And, sending a partial response (not every <ACCTINFO> aggregate
for the user or group, just changed information) differs from the normal processing of
<ACCTINFORQ> (see section 8.8Vithin the Signup message set, the <ACCTINFORS>
contains all account information if any portion is out of date.

The server includes information for only those USERIDs for which the requester has access rights.

Note: <USERID> is notintended to identify individual users of joint accounts. If a transaction
might include two different USERIDs within otherwise identical <PRESACCTFROM>
aggregates, servers should deliver two separate copies of the account information (download
almost the same account information twice). It is up to the server to keep track of activity on
joint accounts. This may occur if, for example, joint account holders are associated with the
same <GROUPID>,

454 14.3 Customer Signup

Tag
<PRESGRPACCTINFOTRNRS>
<TRNUID>
<STATUS>
</STATUS>
<CLTCOOKIE>
<ACCTINFORS>
</ACCTINFORS>

</PRESGRPACCTINFOTRNRS>

Description
Opening tag for the transaction response

Client-assigned globally unique ID for this transactitnuid

Data to be echoed in the transaction respoAsg2

Account information response aggregate. See section 8.5.2.

Closing tag for the transaction response

14.3.4.5 Status Codes <PRESGRPACCTINFORS>

Code Meaning

0 Success (INFO)

1 The client is up-to-date

2000 General error (ERROR)

2002 General account error (ERROR)
2006 Account not found (ERROR)

2008 Account not authorized (ERROR)
15508 Transaction not authorized (ERROR)

OFX 2.0 Specification

6/30/00

455

14.4 Bill Delivery

The Bill Delivery message set contains messages to obtain bills. The message set
<PRESDLVMSGSETV1> contains the following aggregates: <PRESDLVMSGSRQV1> and
<PRESDLVMSGSRSV1>.

14.4.1 Bill Delivery Process

Typically, the client periodically requests a list of bills from the bill publisher. The bill publisher responds
with a list of bills, each of which contains summary data such as the due date and amount due. For each
bill, the bill publisher might also return a URL to a Web site that contains an HTML-rendered version of
the bill. Depending on the client’s request, the server might also return structured bill detail for a given bill.

The aggregate for a bill list request is <PRESLISTRQ>. This request must be wrapped inside
<PRESLISTTRNRQ>. There is no synchronization wrapper for bill list requests, since clients that require
a list of bills can send another <PRESLISTRQ>.

The transaction wrapper <PRESLISTTRNRQ> contains optional elements that allow bills for one or more
customers to be accessed by customer service representatives or client proxy systems. Itis up to the server
to decide who can access bills other than their own; it is recommended that all such access be logged in an
audit trail.

14.4.2 Bill List Retrieval

<PRESLISTRQ> retrieves bills from the bill publisher. The bill publisher returns a <PRESLISTRS>
response that contains a list of one or more bills.

14.4.2.1 Bill List Request <PRESLISTRQ>

The client requests bills from a bill publisher by date range. To specify the date range, clients use
<DTSTART> and <DTEND>, as described in section 3.Z.lie date range includes all bills that were
added or modified within the date range.

The bill publisher returns information sufficient to identify the biller and provide the amount due, due date,
and remittance information so that a payment can be made to the biller. The bill publisher does not provide
a viewable form of the bill, but returns a URL to an HTML rendering of the bill. Billing detail, such as
individual purchases or transactions, can be included in the original response or obtained from a
subsequent <PRESDETAILRQ>.

456 14.4 Bill Delivery

The <PRESLISTRQ> must be wrapped in the <PRESLISTTRNRQ> transaction wrapper.

Tag

<PRESLISTRQ>
<BILLPUB>
<DTSTART>
<DTEND>

<DTDUEBY>

<BILLERID>
<BILLID>

<BILLTYPE>

<BILLSTATUSCODE>

Description

Opening tag for bill list request

Official standard name of bill publishe#-32

If present, indicates earliest date for which to include bdktetime
If present, indicates latest date for which to include bdlstetime

If present, indicates that the customer is requesting bills due on or befor
date/time specified in <DTDUEBY >datetime

Biller Identifier, If present, restricts the response to the given BieB2
If present, restrict response to given statement identiie32

0 or more. If present, indicates which types of bills the customer is
requesting. Possible values are:

BILL = Invoice of an amount due to the biller that is payable.

STATEMENT = History of activity on an account with the biller that is ng
payable.

NOTICE = Generic letter from either the biller or the bill publisher that i
not payable.

0 or more. If present indicates which bill statuses the customer is reques
Possible values are:

NEW = The server has not sent the bill to either the client or client prox
This is the initial status code of a bill.

DELIVERED = The server has sent the bill to either a client or client prg

VIEWED = The customer has seen the bill. Implies previous status of
DELIVERED.

RETIRED = The customer no longer wishes to see this bill. Implies
previous status of DELIVERED.

WITHDRAWN = The biller or publisher no longer wishes this bill to be
displayed.

UNDELIVERABLE = Attempts to deliver this bill to the consumer in a

timely fashion have failed. This status is not generally used when prese
a bill to a consumer. However, notifications using this status cover man
useful cases.

e the

—

°Z

ting.

XY.

nting
y

OFX 2.0 Specification

6/30/00 457

Tag

<BILLPMTSTATUSCODE>

<NOTIFYWILLING>

<INCLUDEDETAIL>

<INCLUDEBILLSTATUS>

<INCLUDEBILLPMTSTATUS>

<INCLUDESTATUSHIST>

Description

0 or more. Bill payment status code. If present, indicates the customer |s
requesting bills matching the bill payment status code. Possible values|are:

NONE = There is neither a payment scheduled, nor has one been made
against this bill. This may be the initial payment status of a bill.

SCHEDULED = A payment has been scheduled, but not yet processed
against this bill.

PROCESSED = The payment has been processed against this bill, ang can

no longer be cancelled.
POSTED = The biller has posted the payment against this bill.

PAIDOUTOFBAND = A Payment has been initiated for this bill via a
mechanism that does not report status via OFX. This status is intended to
indicate the customer has paid the biller directly with cash or a check of has
initiated an electronic payment through a mechanism that does not repprt
payment status through OFX.

AUTOPAY = The Biller or Service Provider will initiate the payment based
on a pre-authorization by the customer, typically a “good until cancelled”
instruction with no defined end date. In the US this is often implemented
using a recurring pre-authorized ACH debit, though some Billers offer pre-
authorized automatic payment through credit card. Examples include
monthly deductions to cover a mortgage, regular payments from a chegking
account to a credit card, and the Automatic Payment Service (APS) offered
by many utilities. Like NONE, this may be the initial payment status of the
bill.

CANCELLED = The customer cancelled the payment that was previous
scheduled.

y

UNPAYABLE = None of the Payment Instruments allowed for this bill are
supported by the Payment Provider. This is intended to be used where|the

bill restricts payment to a subset of the Payment Instruments allowed in the
Biller Directory entry. This could occur if the Payment Provider or the
Biller changed their supported payment instrument types after enroliment
and account activation.
Flag indicating that client is prepared to send naotifications of bill delivery, if
desired (see section 14.4.Boolean

Flag indicating bill detail should be included td®polean

Flag indicating bill status should be included t&molean
Default is N.

Flag indicating bill payment status should be includgdplean
Default is N.

Flag indicating bill status history and/or bill payment status history should
be included too. Only valid if <INCLUDEBILLSTATUS>Y and/or
<INCLUDEBILLPMTSTATUS>Y are specifiedBoolean

Default is N.

458

14.4 Bill Delivery

Tag

<INCLUDECOUNTS>

<INCLUDESUMMARY>

</PRESLISTRQ>

Description

If Y, indicates that the response should include <PRESCOUNTS> and
<PRESBILLINFO>,Boolean

May not be Y if <INCLUDESUMMARY>Y, <INCLUDEDETAIL>Y,
<INCLUDEBILLSTATUS>Y, <INCLUDEBILLPMTSTATUS>Y, or
<INCLUDESTATUSHIST>Y are specified.

Default is N.

Include bill summaries (<PRESBILLINFO>Roolean

May not be N if <INCLUDEDETAIL>Y, <INCLUDEBILLSTATUS>Y,
<INCLUDEBILLPMTSTATUS>Y, <INCLUDESTATUSHIST>Y, or
<INCLUDECOUNTS>N are specified.

Unlike other boolean elements of this request, the defaultis Y.

Closing tag for bill list request

not

OFX 2.0 Specification

6/30/00 459

14.4.2.2 Bill List Response <PRESLISTRS>
The <PRESLISTRS> response must appear within a <PRESLISTTRNRS> transaction wrapper.

The <PRESLISTRS> response can contain zero or more bill summaries, with optional detail. Each bill
summary corresponds to a (usually monthly) bill. When a server has no bills to return, it should return
<STATUS><CODE>0 and leave out the <PRESLIST> within the <PRESLISTRS>.

When multiple selection criteria are used they are ANDed (as described in section)2\WHefh counts

are requested in the <PRESLISTRQ> (<INCLUDECOUNTS>), the server should include counts of each
status requested where the bill's <BILLSTATUSCODE> matches one of those specified in the
<PRESLISTRQ>, and the bill's <BILLPMTSTATUSCODE> matches one of those specified in the
<PRESLISTRQ>. Thus, a request containing <BILLSTATUSCODE>NEW,
<BILLSTATUSCODE>DELIVERED, <BILLSTATUSCODE>WITHDRAWN>,
<BILLPMTSTATUSCODE>NONE, and <BILLPMTSTATUSCODE>CANCELLED>, will return three
<BILLSTATUSCODE> counts and two <BILLPMTSTATUSCODE> counts. The sum of
<BILLSTATUSCODE> counts will be equal to the sum of the <BILLPMTSTATUSCODE> counts. No
inference can be drawn as to which bills have a combination of a specific <BILLSTATUSCODE> value
and a specific <BILLPMTSTATUSCODE> value.

Tag Description
<PRESLISTRS> Opening tag for bill list response
<BILLPUB> Official standard name of bill publishe-32
<USERID> User whose bill data is being returned. Must match <USERID>

provided in <PRESLISTTRNRQ> (if specified),
“anonymous00000000000000000000000” (if <GROUPID> was
specified in the <PRESLISTTRNRQ>), or the <USERID> for the
authenticated user (otherwisé),32

<DTSTART> Start date of bills returnedlatetime
<DTEND> Date to present as start date for next requsigtime
<PRESLIST> Bill summary list, see section 14.4.2.2.1
</PRESLIST>
<PRESCOUNTS> Bill Counts Aggregate

<BILLSTATUSCOUNTS> Bill Status Counts, zero or more.

The count(s) of all bills matching the given selection criteria, having
a particular status(es). If <BILLSTATUSCODE> is not included i
the request with <INCLUDECOUNTS>Y, counts are returned for
every status with a non-zero count.

<BILLSTATUSCODE> Bill Status Code, see section 14.4.2.2.3

<COUNT> Count of Bills with the given Bill Status Codéteger

460 14.4 Bill Delivery

Tag Description

</BILLSTATUSCOUNTS>

<BILLPMTSTATUSCOUNTS> Bill Payment Status Counts, zero or more. The count(s) of all bill
matching the given selection criteria, having a particular paymen
status(es). If <BILLPMTSTATUSCODE> is not included in the

request with <INCLUDECOUNTS>Y, counts are returned for every
payment status with a non-zero count.

|72}

—

<BILLPMTSTATUSCODE> | Bill Payment Status Code, see section 14.4.2.2.4
<COUNT> Count of Bills with the given Bill Payment Status Codieteger
</BILLPMTSTATUSSCOUNTS>
</PRESCOUNTS>

</PRESLISTRS> Closing tag for bill list response

14.4.2.2.1 Bill List <PRESLIST>

The bill list aggregate <PRESLIST> contains a list of zero or more <PRESBILLINFO> aggregates.

Tag Description
<PRESLIST> Opening tag for bill list
<PRESBILLINFO> Bill information aggregate (zero or more that meet the selection criteria)

While supported by the syntax of OFX, an empty <PRESLIST> aggregate should
not be transmitted.

</PRESBILLINFO>

</PRESLIST> Closing tag for bill list

14.4.2.2.2 Bill Information <PRESBILLINFO>

The bill information aggregate <PRESBILLINFO> provides information about a single bill, including the
amount due, date due, and pointers to more information.

If the client requested bill detail in the <PRESLISTRQ>, the bill publisher provides the detail in zero or
more <BILLDETAILTABLE> aggregates. If the client did not request bill detail, the server should use the
<DETAILAVAILABLE> flag to indicate whether the client can request bill detail at a later time using the
<PRESDETAILRQ> aggregate.

The bill identifier <BILLID> must uniquely identify the bill with the bill publisher (not merely with the
biller). The <BILLPUB> and <BILLID> combination must be globally unique, not the <FI> and
<BILLID> combination.

OFX 2.0 Specification 6/30/00 461

The bill date <DTBILL> is usually a fixed number of days after the end of the bill period. It is not the date
on which the bill publisher received the bill for publication.

Tag Description
<PRESBILLINFO> Opening tag for bill information
<BILLID> Identifier for this bill within the bill publisherA-32
<PRESACCTFROM> Biller account information (see section 14.3)2.2
</PRESACCTFROM>
<PAYEEID> Payee identifier. Specify only if the bill publisher is also provides Bill
Payment service. See section 14.5RVRTID
<BILLREFINFO> Biller-defined text to include with the payment, for the biller’s Accounts
Receivable reconciliation. Sections 1419.5.2 A-80
<AMTDUE> Full payment amount du@mount
<MINAMTDUE> Minimum payment amount duamount
<DTPMTDUE> Payment due datelatetime
<DTBILL> Bill date, datetime
<DTOPEN> Opening statement dat@atetime
<DTCLOSE> Closing statement datdatetime
<PREVBAL> Balance of the account as of the previous perardpunt
<ACTIVITY> Net inflows and outflows for the account since the last perdsdount
<ACCTBAL> Balance of the account at the end of the current peaathunt
<INVOICE> Optional invoice data that the biller would like to receive with a payment (See

12.5.2.3. Client applications should allow the user to edit the amounts before
returning this in a payment

</INVOICE>
<NOTIFYDESIRED> Indicator that a delivery notification (see section 14)4s5lesiredBoolean
<BILLTYPE> Bill Type. Possible values are:
BILL = Invoice of an amount due to the biller that is payable.
STATEMENT = History of activity on an account with the biller that is not
payable.
NOTICE = Generic letter from either biller or the bill publisher that is not
payable.
<BILLSTATUS> Zero or more bill status aggregates. See section 14.4.2.2.3.
</BILLSTATUS>
<BILLPMTSTATUS> Zero or more bill payment status aggregates. See section 14.4.2.2.4,

462 14.4 Bill Delivery

Tag Description
</BILLPMTSTATUS>
<STMNTIMAGE> Statement image aggregate, see section 14.4.2.2.5
</STMNTIMAGE>

Choose DETAILAVAILABLE or
BILLDETAILTABLE, but not
both

<DETAILAVAILABLE> Indicator that structured detail is availabBnolean

Or
<BILLDETAILTABLE> Bill details, when requested, see section 14.4.3.2.1

</BILLDETAILTABLE>

</PRESBILLINFO> Closing tag for bill information

If <PREVBAL>, <ACTIVITY>, and <ACCTBAL> are all present, then <PREVBAL> and <ACTIVITY>
must add up to <ACCTBAL>.

Note: This means payments from the consumer received by the biller are counted as negative
activity.

OFX 2.0 Specification 6/30/00 463

14.4.2.2.3 Bill Status <BILLSTATUS>

Tag
<BILLSTATUS>

<BILLSTATUSCODE>

<DTEFF>

<STATUSMODBY>

</BILLSTATUS>

Description

Bill status code. Possible values are:

NEW = The server has not sent the bill to either the client or client proxy. This is

the initial status code of a bill.
DELIVERED = The server has sent the bill to either a client or client proxy.

VIEWED = The customer has seen the bill. Implies previous status of
DELIVERED.

RETIRED = The customer no longer wishes to see this bill. Implies previous
status of DELIVERED.

WITHDRAWN = The biller or publisher no longer wishes this bill to be
displayed.

UNDELIVERABLE = Attempts to deliver this bill to the consumer in a timely

fashion have failed. This status is not generally used when presenting a bill o a

consumer. However, notifications using this status cover many useful cases

Date/Time at which the status became effective (for example, the date and t
bill is created in the initial status description for a bitflatetime

Status modified by. Servers are not required to store this information. Possilp

values are:

CUSTOMER = customer.

CUSTAGENT = An automated software agent acting on behalf of customer.
BILLPUBLISHER = Bill Publisher.

me a

e

BILLPUBLISHERSR = Service representative acting on behalf of the payment

provider.
PMTPROVIDER = Payment Provider.

PMTPROVIDERSR = Service representative acting on behalf of the payment

provider.
BILLER = biller.

BILLERSR = Service representative acting on behalf of the biller.

464

14.4 Bill Delivery

14.4.2.2.4 Bill Payment Status <BILLPMTSTATUS>

Tag
<BILLPMTSTATUS>

<SRVRTID>

<BILLPMTSTATUSCODE>

<DTEFF>

Description
Zero or more bill payment status aggregates

The server transaction ID of the payment against this bill (see section 3.
A-36

Bill payment status code. Possible values are:

NONE = There is neither a payment scheduled, nor has one been mad
against this bill.

SCHEDULED = A payment has been scheduled, but not yet processeq
against this hill.

PROCESSED = The payment has been processed against this bill, an
no longer be cancelled.

POSTED = The biller has posted the payment against this bill.

PAIDOUTOFBAND = A Payment has been initiated for this bill via a
mechanism that does not report status via OFX. This status is intended
indicate the customer has paid the biller directly with cash or a check o
initiated an electronic payment through a mechanism that does not rep
payment status through OFX.

AUTOPAY = The Biller or Service Provider will initiate the payment bas
on a pre-authorization by the customer, typically a “good until cancelleg
instruction with no defined end date. In the US this is often implemente
using a recurring pre-authorized ACH debit, though some Billers offer
authorized automatic payment through credit card. Examples include

monthly deductions to cover a mortgage, regular payments from a cheg
account to a credit card, and the Automatic Payment Service (APS) off

2.2),

0 can

king
ered

by many utilities. Like NONE, this may be the initial payment status of the

bill.

CANCELLED = The customer cancelled the payment that was previou
scheduled.

UNPAYABLE = None of the Payment Instruments allowed for this bill a
supported by the Payment Provider. This is intended to be used where
bill restricts payment to a subset of the Payment Instruments allowed ir
Biller Directory entry. This could occur if the Payment Provider or the

Biller changed their supported payment instrument types after enrolime

and account activation.

Date/Time at which the status became effective (for example, the date
time a bill is created in the initial status description for a bdlatetime

sly

e
the
the

2Nt

and

OFX 2.0 Specification

6/30/00 465

Tag Description

<STATUSMODBY> Status modified by. Servers are not required to store this information.
Possible values are:

CUSTOMER = customer.
CUSTAGENT = An automated software agent acting on behalf of customer.
BILLPUBLISHER = Bill Publisher.

BILLPUBLISHERSR = Service representative acting on behalf of the
payment provider.

PMTPROVIDER = Payment Provider.

PMTPROVIDERSR = Service representative acting on behalf of the
payment provider.

BILLER = biller.
BILLERSR = Service representative acting on behalf of the biller.

</BILLPMTSTATUS>

466 14.4 Bill Delivery

14.4.2.2.5 Statement Image <STMNTIMAGE>

The <STMNTIMAGE> aggregate provides one or more URLSs that point to a fully rendered image of the
bill, in HTML.

<IMAGEURL> accesses the complete bill image. This URL may contain navigation to other sites, or to
other pages of bill images at the same site.

To support off-line viewing of the bill, the server may provide one or more additional URLs. Each
<PREFETCHURL> points to a local Web page.

Each URL associated with <IMAGEURL> and <PREFETCHURL> must include an authentication token

at the end (for example, ?authtokeardomString. These embedded tokens guarantee that only the
customer can access the Web page. Accessing the statement image requires SSL. The bill publisher might
include an expiration date for the authentication token, and hence for the URLs. The expiration date could
be quite short (for example, 1 hour) or quite long (for example, 1 month). After the expiration date, the
client can obtain a new authentication token only by sending a new <PRESLISTRQ> request.

Tag Description
<STMNTIMAGE> Opening tag for statement image
<IMAGEURL> URL address for retrieving an image of the complete bill encoded as HTML. This
can be cached by the client for later display, or it can be viewed live directly from
the Web.URL
<PREFETCHURL> Advice in support of off-line viewing. Zero or morélRL
<DTEXPIRE> Date after which embedded authentication token expitatgtime
</STMNTIMAGE> Closing tag for statement image

OFX 2.0 Specification 6/30/00 467

14.4.2.3 Bill List Transaction Request <PRESLISTTRNRQ>

As the transaction wrapper for <PRESLISTRQ>, this aggregate specifies whether the client is requesting
bills for a single user or a group of users. The optional <USERID> and <GROUPID> elements support the
following scenarios:

& A customer requests his or her own bills from the bill publisher: In this case, the client can
optionally specify the customer’s <USERID> in the <PRESLISTTRNRQ>. If the client does not
specify <USERID>, the hill publisher uses the <USERID> in the signon request <SONRQ>.

& A customer service representative requests a bill on behalf of a usefFhe client sends the
representative’s <USERID> in the signon request <SONRQ>. To specify the user for which the
representative is retrieving bills, the client sends the customer’s <USERID> in the
<PRESLISTTRNRQ>. The bill publisher must ultimately decide whether the customer service
representative can access the requested bills. In its response, the bill publisher includes only those bills
for which the requester has access privileges.

¢ A client proxy system fetches bills on behalf of a group of userdnstead of sending a <USERID>,
the client sends the <GROUPID> that identifies the group of users. Within the <PRESLISTTRNRS>,
the bill publisher returns a single <PRESLISTRS> containing zero or more <PRESBILLINFO>
aggregates for each user in the named group. Individual customers are distinguished using the
<USERID> element of each <PRESACCTFROM> in the <PRESBILLINFO> aggregates. Again, the
bill publisher decides whether access should be granted. Bill publishers that support usage of
<GROUPID> must maintain knowledge of which users are in which named group. The OFX
specification does not provide a way to track membership in a named group. Any such management
must happen out-of-band.

Note: <USERID> is notintended to identify individual users of joint accounts. If a transaction
might include two different USERIDs within otherwise identical <PRESACCTFROM>
aggregates, servers should deliver two separate bills (download the same bill twice). It is up to
the server to keep track of activity on joint accounts.

468 14.4 Bill Delivery

Tag

<PRESLISTTRNRQ>
<TRNUID>
<CLTCOOKIE>

<TAN>

Specify either <USERID> or
<GROUPID>

<USERID>

-0r -

<GROUPID>

<PRESLISTRQ>
</PRESLISTRQ>

</PRESLISTTRNRQ>

Description

Opening tag for bill list transaction request
Client-assigned globally unique ID for this transactitrnuid
Data to be echoed in the transaction respoAsg?

Transaction authorization numb#=80

If present, the bill request is on behalf of this particular user,
A-32

=)

If present, the bill request is on behalf of all users in the named group. If bot
<USERID> and <GROUPID> are absent, the <USERID> in the <SONRQ> |s
implied. A-32

Bill List Request Aggregate

Closing tag for bill list transaction request

14.4.2.4 Bill List Transaction Response <PRESLISTTRNRS>

Tag

<PRESLISTTRNRS>
<TRNUID>
<STATUS>
</STATUS>
<CLTCOOKIE>
<PRESLISTRS>
</PRESLISTRS>

</PRESLISTTRNRS>

Description
Opening tag for bill list transaction response
Client-assigned globally unique ID for this transacttamuid

Status aggregate

Client provided dataREQUIRED if provided in reques#-32

Bill list response aggregate, optional

Closing tag for bill list transaction response

OFX 2.0 Specification

6/30/00 469

14.4.2.5 Status Codes <PRESLISTRS>

Code Meaning

0 Success (INFO)

2000 General error (ERROR)

2002 General account error (ERROR)
2003 Account not found (ERROR)

2004 Account closed (ERROR)

2005 Account not authorized (ERROR)
2020 Invalid date (ERROR)

2027 Invalid date range (ERROR)

15508 Transaction not authorized (ERROR)

14.4.3 Bill Detalil Retrieval
If statement detail is available for a bill, the client can retrieve the detail using a bill detail request

<PRESDETAILRQ>. One example of statement detail is the individual telephone calls from a telephone
bill.

14.4.3.1 Bill Detail Request <PRESDETAILRQ>

The <PRESDETAILRQ> request must appear within a <PRESDETAILTRNRQ> transaction wrapper.

Tag Description
<PRESDETAILRQ> Opening tag for bill detail request
<BILLID> Statement identifier from <PRESBILLINFOA-32
<BILLDETAILTABLETYPE> | If present, filters response to just tables of this type (See table 14.4,372.3)
32.
</PRESDETAILRQ> Closing tag for bill detail request

470 14.4 Bill Delivery

14.4.3.2 Bill Detail Response <PRESDETAILRS>

The <PRESDETAILRS> request must appear within a <PRESDETAILTRNRS> transaction wrapper.

The bill detail response contains zero or more <BILLDETAILTABLE> aggregates.

Tag Description
<PRESDETAILRS> Opening tag for bill detail response
<PRESDETAIL> Zero or more bill detail aggregates
<BILLID> Statement identifier from <PRESBILLINFOA-32

<PRESACCTFROM> Identifies biller account, see section 14.3.2MNust be included if in response
to an <PRESDETAILRQ>, is redundant inside <PRESBILLINFO>

</PRESACCTFROM>
<BILLDETAILTABLE> Zero or more bill detail table aggregates. See section 14.4.3.2.1
</BILLDETAILTABLE>
</PRESDETAIL> Closing tag for bill detail aggregate

</PRESDETAILRS> Closing tag for bill detail response

14.4.3.2.1 Bill Detail Table <BILLDETAILTABLE>

The bill detail table allows billers to send tabular data to the customer in a flexible way. The table might
contain phone calls from a telephone bill, or electrical meter readings for a utility bill.

A table consists of one or more rows, each having one or more columns. Within a table, all rows must have
identical structures. The <BILLDETAILTABLETYPE> determines the “shape” or schema of the table.
The <TABLENAME> gives a hame to this table, and should be unique within an <PRESDETAILRS>

Note: The bill detail table may be redesigned in the future. Please consider this area “under
construction.”.

Tag Description
<BILLDETAILTABLE> Opening tag for bill detail table
<TABLENAME> Name of bill detail tableA-32

<BILLDETAILTABLETYPE> Type of bill detail table (See section 14.4.32/8-32
<BILLDETAILROW> Zero or more bill detail row aggregates, see section 14.4.3.2.2

</BILLDETAILROW>

</BILLDETAILTABLE> Closing tag for bill detail table

OFX 2.0 Specification 6/30/00 471

14.4.3.2.2 Bill Detail Row <BILLDETAILROW>

A <BILLDETAILTABLE> contains zero or more bill detail rows <BILLDETAILROW>.

A <BILLDETAILROW?> contains zero or more columns <C>, whose meanings are specific to the type of
table <BILLDETAILTABLETYPE> in which they occur. For the purpose of the DTD parser, all columns
<C> are consider to beormat: A-255.

OFX requires all elements return data. If bill publishers do not use specific columns, they can return null
columns, represented by the element <N>. All columns <N> are considered-rimat: A-1.

Note: Bill publishers must include one character of data in a null column. Bill publishers can
omit blank columns at the end of a <BILLDETAILROW>, tag and all. DTD should not enforce
ordering, i.e. it should look like this:

<IELEMENT BILLDETAILROW - - (C | N*>
Tag Description
<BILLDETAILROW> Opening tag for bill detail row
<C> Zero or more column data elememts255
<N> Zero or more column data elemengs1
</BILLDETAILROW> Closing tag for bill detail row

14.4.3.2.3 Table Types <BILLDETAILTABLETYPE>

OFX defines some common table types. Individual billers can define their own table types, and hence their
own table structures, but must honor the custom tag naming convention outlined in section 2.7

Description
TransactionList Table defined for “payment register”-style line items
CallLog Table defined for record of telephone calls
ABC.Usage Table defined by biller, not by OFX

472 14.4 Bill Delivery

14.4.3.2.3.1 TransactionList Table Type

<BILLDETAILTABLE> aggregates marked with <BILLDETAILTABLETYPE>TransactionLists have
rows of 14 columns. The first column contains a unique identifier (like a BILLID), and must be present.
Other columns may not always apply and can be left blank.

The TransactionList table type is a subset of the <STMTTRN> aggregate in section 11.4.3

Column Name Description

1 Billld Unique identifier token from serveA-32

2 TrnType Transaction type (see section 11.4.3.1

3 DtPosted Date item was postedtetime

4 DtUser Date user initiated transaction, if knowlatetime

5 TrnAmount Amount of transactioamount

6 CorrectBillld If present, unique identifier of previously sent transaction that is corrected by this
record,A-32

7 CorrectAction Replace or delete. Specify only if column 6 is present.

8 CheckNum Check or other reference numBed,2

9 RefNum Other reference numb@ér12

10 SIC Standard Industrial Cod¥;6

11 Name Name of payee or description of transactfe32

12 Memo Extra Informatiormemo

13 OrigCurSym Original Currency Identifier (ISO 42173 3-lettér)3

14 CurRate Currency rate, ratio of currency to original curreratg

OFX 2.0 Specification 6/30/00 473

14.4.3.2.3.2 CallLog Table Type

<BILLDETAILTABLE> aggregates marked with <BILLDETAILTABLETYPE>CallLog have rows of 10
columns.

Column Name Description

1 TNCalledFrom Telephone number called fro32

2 CityStateFrom City, state (or place, region) called fréw1,6
3 TNCalled Telephone number calle®32

4 CityState City, state (or place, region) calléd16

5 Originated Date/time call startedatetime

6 Type Type of callA-8

7 Rate Rate (for example, Night, Day, Eve, Wkn#&)5
8 Duration Duration of call in tenths of secondi&6

9 Cost Cost of callamount

10 TNChargedTo Telephone number charged\t32

14.4.3.3 Status Codes <PRESDETAILRS>

Code Meaning

0 Success (INFO)

2000 General error (ERROR)

2023 Unknown BILLID (ERROR)
10600 Table type not found (ERROR)

14.4.4 Table Structure Definition

Clients can obtain the definition of a table structure by sending a table structure request
<BILLTBLSTRUCTRQ>.

Clients need only request the structure of tables it does not already know about. For instance, the client
might request the structure of a biller-specific table that starts witk-tpeefix. Knowing the structure of

a table allows the client to display the data more clearly or store the data in a more compact form, such as a
database table.

474 14.4 Bill Delivery

14.4.4.1 Table Structure Request <BILLTBLSTRUCTRQ>

To identify the table, the client includes the type of table <BILLDETAILTABLETYPE> and unique
identifier <BILLID> for the table. Although <BILLDETAILTABLETYPE> uniquely identifies the table,
OFX requires the <BILLID> as well to allow various server implementations.

The <BILLTBLSTRUCTRQ> request must appear within a <BILLTBLSTRUCTTRNRQ> transaction
wrapper.

Tag Description
<BILLTBLSTRUCTRQ> Opening tag for the table structure request
<BILLID> Statement IdentifierA-32

<BILLDETAILTABLETYPE> | Table type for which the structure is requested (See table 14.4,33232.

</BILLTBLSTRUCTRQ> Closing tag for the table structure request

14.4.4.2 Table Structure Response <BILLTBLSTRUCTRS>

The <BILLTBLSTRUCTRS> response must appear within a <BILLTBLSTRUCTTRNRS> transaction
wrapper.

The table structure response contains one or more column type definitions, which correspond positionally
with the <C> aggregates in a <BILLDETAILROW> in a <BILLDETAILTABLE> of the corresponding
<TABLETYPE>.

Tag Description
<BILLTBLSTRUCTRS> Opening tag for table structure response
<BILLID> Table identifier,A-32

<BILLDETAILTABLETYPE> Table type (See table 14.4.3.2.3-32.

<COLDEF> Zero or more column definition aggregates (see section 14.4)4.2.1
</COLDEF>
</BILLTBLSTRUCTRS> Closing tag for table structure response

OFX 2.0 Specification 6/30/00 475

14.4.4.2.1 Column Definition <COLDEF>

A column definition <COLDEF> associates a hame and a data type with a column.

Tag Description
<COLDEF> Opening tag for column definition
<COLNAME> Column nameA-32
<COLTYPE> Column type, valid values are (choose one): (A-255, D, NA6B, Specifying D

in this field means the column type is datetime.

</COLDEF> Closing tag for column definition

14.4.4.3 Status Codes <BILLTBLSTRUCTRS>

Code Meaning

0 Success (INFO)

2000 General error (ERROR)

2023 Unknown BILLID (ERROR)
10600 Table type not found (ERROR)

14.4.5 Delivery Notification

In OFX 1.6, a new Bill Status Modify transaction was added. This new transaction (see sectiohit44.6
semantic superset of Delivery Notification. Bill Status Modify should be used instead of Delivery
Notification.

The bill publisher can request delivery notification through the <NOTIFYDESIRED> flag in the
<PRESBILLINFO> aggregate (see section 14.4.9.ZIBe bill publisher will expect to receive the
delivery notification only if the <PRESLISTRQ> had the <NOTIFYWILLING> flag set.

The delivery notification request tells the bill publisher that the client has presented the specified bills to
the customer. This is a stronger statement than acknowledging that the bills have been received by the
client, specifically when the client software implements the pre-fetching or (push) model. Delivery
notification should be sent only once for any given bill, and it should be sent the first time that the Bill
Summary is displayed. Receipt of a delivery notification by the bill publisher has no legal significance.
OFX does not define the maximum elapsed time between the presentation of the bill and the delivery
notification.

476 14.4 Bill Delivery

14.4.5.1 Delivery Notification Request <PRESNOTIFYRQ>

In OFX 1.6, a new Bill Status Modify request, <BILLSTATUSMODRQ>, was added. This new request
(see section 14.4.6.5hould be used instead of <PRESNOTIFYRQ>.

The <PRESNOTIFYRQ> request must appear within a <PRESNOTIFYTRNRQ> transaction wrapper.

Tag Description
<PRESNOTIFYRQ> Opening tag for delivery notification request
<PRESDELIVERYID> A bill delivery ID aggregate (see section 14.4.5)1.1

</PRESDELIVERYID>

</PRESNOTIFYRQ> Closing tag for delivery notification Request

14.4.5.1.1 Bill Delivery Identification <PRESDELIVERYID>

This aggregate identifies a bill delivery instance and suggests when the bill was “seen.”

<DTSEEN> is the date and time at which the client displayed the bill to the customer. There is no legal
significance to this bill delivery identification.

Tag Description
<PRESDELIVERYID> Opening tag for the bill delivery identification
<PRESACCTFROM> Biller account information, see section 14.3.2.2
</PRESACCTFROM>
<BILLID> Identifies the bill from the given billeriA-32
<DTSEEN> Date and time at which the bill was made available to the requester’s client,
datetime
</PRESDELIVERYID> Closing tag for the bill delivery identification

OFX 2.0 Specification 6/30/00 477

14.4.5.2 Delivery Notification Response <PRESNOTIFYRS>

In OFX 1.6, a new Bill Status Modify request, <BILLSTATUSMODRS>, was added. This new request
(see section 14.4.6.2hould be used instead of <PRESNOTIFYRS>.

The <PRESNOTIFYRS> response must appear within a <PRESNOTIFYTRNRS> transaction wrapper.

The delivery notification response lets the client know that the delivery notification request was received
by the bill publisher.

Tag Description
<PRESNOTIFYRS> Opening tag for Delivery Notification Response

<PRESDELIVERYID> A bill delivery ID aggregate (See section 14.4.5)1.1

</PRESDELIVERYID>

</PRESNOTIFYRS> Closing tag for Delivery Notification Response

14.4.5.3 Status Codes <PRESNOTIFYRS>

Code Meaning

0 Success (INFO)

2000 General error (ERROR)

2023 BILLID not found (ERROR)

15508 Transaction not authorized (ERROR)

478 14.4 Bill Delivery

14.4.6 Bill Status Modification

14.4.6.1 Request <BILLSTATUSMODRQ>

The Bill Status Modify Request <BILLSTATUSMODRQ> must appear within a
<BILLSTATUSMODTRNRQ> transaction wrapper.

Tag

<BILLSTATUSMODRQ>
<BILLID>
<BILLSTATUS>
</BILLSTATUS>
<BILLPMTSTATUS>
</BILLPMTSTATUS>

</BILLSTATUSMODRQ>

Description

Identifies the bill from a given billerA-32

Bill status aggregate. See section 14.4.2.2.3

Bill payment status aggregate. See section 14.4.2.2.4

14.4.6.2 Response <BILLSTATUSMODRS>

The Bill Status Modify Response <BILLSTATUSMODRS> must appear within a
<BILLSTATUSMODTRNRS> transaction wrapper.

Tag

<BILLSTATUSMODRS>
<BILLID>
<BILLSTATUS>
</BILLSTATUS>
<BILLPMTSTATUS>
</BILLPMTSTATUS>

</BILLSTATUSMODRS>

Description

Identifies the bill from a given billerA-32

Bill status aggregate. Echoed from the request. See section 14.4.2.2.3

Bill payment status aggregate. Echoed from the request. See section 14.4.2.2.4

OFX 2.0 Specification

6/30/00

479

14.4.6.3 Status Codes <BILLSTATUSMODRS>

Code Meaning

0 Success (INFO)

2000 General error (ERROR)

2023 BILLID not found (ERROR)

15508 Transaction not authorized (ERROR)

14.5 Bill Payment

To pay a bill received through a <PRESLISTRQ> request, the client can use the Bill Payment message set
defined in_Chapter 12, "Payment38 construct the payment information <PMTINFO> (see section
12.5.9, the client can use the bill information from <PRESBILLINFO>.

14.5.1 Remittance Information
The client should include the <BILLREFINFO> from the <PRESBILLINFO> aggregate as the

<BILLREFINFO> in the <PMTINFO> aggregate. This token allows the biller to link the payment with the
bill.

14.5.2 Payee Identification
Client software can produce <PAYEEID> or <PAYEE> in one of two ways.

If the same company provides Bill Presentment and Bill Payment services, the client can use the
<PAYEEID> included in the <PRESBILLINFO> aggregate.

If the Bill Payment provider is a different company, the client must use information from the
<PRESACCTINFO> to construct the <PAYEE> information.

480 14.5 Bill Payment

14.6 Bill Presentment E-Malll

OFX currently defines a Bill Presentment e-mail message that clients can send to bill publishers. With this
message, a customer can send a message to a bill publisher regarding one of his or her accounts.

The server acknowledges receipt of the message. The bill publisher then prepares a response that the client
picks up when it synchronizes with the server. E-mail is subject to synchronization, using
<PRESMAILSYNCRQ> (defined in section 14.5.dnd <PRESMAILSYNCRS> (defined in section

14.6.5)

Client Sends Server Responds

Addressed message

PRES account
information

Acknowledgment

Synchronization request

Response to customer

OFX 2.0 Specification 6/30/00 481

14.6.1 Bill Presentment Mail Request <PRESMAILRQ>
The client must identify the account to which account the customer query is related.

The <PRESMAILRQ> request must appear with a <PRESMAILTRNRQ> transaction wrapper.

Tag Description

<PRESMAILRQ> PRES-e-mail-request aggregate
<PRESACCTFROM> Account-from aggregate, see section 14.3.2.2
</PRESACCTFROM>
<MAIL> To, from, message information, see section 9.2.2
</MAIL>

</PRESMAILRQ>

14.6.2 Bill Presentment Mail Response <PRESMAILRS>

The <PRESMAILRS> request must appear with a <PRESMAILTRNRS> transaction wrapper.

Tag Description

<PRESMAILRS> PRES-e-mail-response aggregate
<PRESACCTFROM> Account-from aggregate, see section 14.3.2.2
</PRESACCTFROM>
<MAIL> To, from, message information, see section 9.2.2
</MAIL>

</PRESMAILRS>

482 14.6 Bill Presentment E-Mail

14.6.3 Status Codes <PRESMAILRS>

Code Meaning

0 Success (INFO)

2000 General error (ERROR)

2002 General account error (ERROR)
2003 Account not found (ERROR)

2004 Account closed (ERROR)

2005 Account not authorized (ERROR)
15508 Transaction not authorized (ERROR)
16500 HTML not allowed (ERROR)

16501 Unknown mail To: (ERROR)

OFX 2.0 Specification 6/30/00 483

14.6.4 Request <PRESMAILSYNCRQ>

Tag
<PRESMAILSYNCRQ>

Client synchronization option;
<TOKEN>, <TOKENONLY>, or
<REFRESH>

<TOKEN>

<TOKENONLY>

<REFRESH>

<REJECTIFMISSING>

<INCIMAGES>

<USEHTML>
<PRESACCTFROM>
</PRESACCTFROM>
<PRESMAILTRNRQ>
</PRESMAILTRNRQ>

</PRESMAILSYNCRQ>

Description

Synchronization request aggregate

Previous value of <TOKEN> received for this type of synchronization
request from server; 0 for first-time requegtsken

Request for just the current <TOKEN> without the hist@golean
Request for refresh of current staBnolean
If Y, do not process requests if client <TOKEN> is out of d&eplean

Y if the client accepts mail with images in the message body. N if the cli
does not accept mail with images in the message Badglean

Y if client wants an HTML response, N if client wants plain teBgolean

Account-from aggregate, see section 14.3.2.2

Bill presentment mail transactions (0 or more)

2nt

484

14.6 Bill Presentment E-Mail

14.6.5 Response <PRESMAILSYNCRS>.

Tag Description
<PRESMAILSYNCRS> Synchronization response aggregate
<TOKEN> New synchronization tokeroken
<LOSTSYNC> Y if the token in the synchronization request is older than the earliest entry in

the server’s history table. In this case, some responses have been lost.

N if the token in the synchronization request is newer than or matches a token
in the server’s history tabl&oolean

<PRESACCTFROM> Account-from aggregate, see section 14.3.2.2
</PRESACCTFROM>
<PRESMAILTRNRS> Bill presentment mail transactions (0 or more)

</PRESMAILTRNRS>

</PRESMAILSYNCRS>

OFX 2.0 Specification 6/30/00 485

14.7 Message Sets and Profile

OFX separates the messages that the client and server send into groups called message sets. In its profile
response <PROFRS>, each bill publisher or other server provider defines the message sets that it supports
and any options available for those message sets.

This section defines the message sets supported by Bill Presentment. It then describes the corresponding
message set profile aggregates that can be provided in the profile response <PROFRS>. The message set
profile aggregates for the <PROFRS> allow a bill publisher or other server provider to customize its use of
OFX. For example, a server might support the Bill Delivery message set <PRESDLVMSGSET>, but not
the Group Account Information message set <PRESDIRMSGSET>.

For general information about profiles, see Chapter 7, "FI Profile."

14.7.1 Message Sets and Messages

Bill Presentment defines the following message sets:

¢ Biller Directory message set <PRESDIRMSGSET>, which includes messages for finding billers and
bill publishers

+ Bill Delivery message set <PRESDLVMSGSET>, which includes messages for delivering bills and bill
detail to customers, as well as messages for getting account information for a group of users

14.7.1.1 Biller Directory Message Set and Messages

14.7.1.1.1 Biller Directory Request Messages

Message Set Message

<PRESDIRMSGSET>
<PRESDIRMSGSETV1>
<PRESDIRMSGSRQV1> FINDBILLERTRNRQ
FINDBILLERRQ
</PRESDIRMSGSRQV1>
</PRESDIRMSGSETV1>

</PRESDIRMSGSET>

486 14.7 Message Sets and Profile

14.7.1.1.2 Biller Directory Response Messages

Message Set Message

<PRESDIRMSGSET>
<PRESDIRMSGSETV1>

<PRESDIRMSGSRSV1>

</PRESDIRMSGSRSV1>
</PRESDIRMSGSETV1>

</PRESDIRMSGSET>

FINDBILLERTRNRS
FINDBILLERRS

OFX 2.0 Specification

6/30/00

487

14.7.1.2 Bill Delivery Message Set and Messages

14.7.1.2.1 Bill Delivery Request Messages

Message Set Message

<PRESDLVMSGSET>
<PRESDLVMSGSETV1>
<PRESDLVMSGSRQV1> PRESLISTTRNRQ
PRESLISTRQ
PRESDETAILTRNRQ
PRESDETAILRQ
BILLTBLSTRUCTTRNRQ
BILLTBLSTRUCTRQ
BILLSTATUSMODTRNRQ
BILLSTATUSMODRQ
PRESNOTIFYTRNRQ
PRESNOTIFYRQ
PRESGRPACCTINFOTRNRQ
ACCTINFORQ
PRESMAILTRNRQ
PRESMAILRQ
PRESMAILSYNCRQ
</PRESDLVMSGSRQV1>
</PRESDLVMSGSETV1>

</PRESDLVMSGSET>

488 14.7 Message Sets and Profile

14.7.1.2.2 Bill Delivery Response Messages

Message Set Message

<PRESDLVMSGSET>
<PRESDLVMSGSETV1>
<PRESDLVMSGSRSV1> PRESLISTTRNRS
PRESLISTRS
PRESDETAILTRNRS
PRESDETAILRS
BILLTBLSTRUCTTRNRS
BILLTBLSTRUCTRS
BILLSTATUSMODTRNRS
BILLSTATUSMODRS
PRESNOTIFYTRNRS
PRESNOTIFYRS
PRESGRPACCTINFOTRNRS
ACCTINFORS
PRESMAILTRNRS
PRESMAILRS
PRESMAILSYNCRS
</PRESDLVMSGSRSV1>
</PRESDLVMSGSETV1>

</PRESDLVMSGSET>

OFX 2.0 Specification 6/30/00 489

14.7.2 Biller Directory Message Set Profile

This section defines the profile aggregate for the Biller Directory message set. This profile aggregate
should be included in the <PROFRS> response for those servers that support the Biller Directory message
set.

Message Set Message

<PRESDIRMSGSET> Opening tag for the Biller Directory message set profile
<PRESDIRMSGSETV1> Version 1 of Biller Directory message set, one or more
<MSGSETCORE> Common message-set core
</MSGSETCORE>
<PRESDIRPROF> Directory profile (if supported)
<PROCDAYSOFF> Days of week that no processing occurs: MONDAY, TUESDAY,

WEDNESDAY, THURSDAY, FRIDAY, SATURDAY, or SUNDAY. 0
or more <PROCDAYSOFF> can be sent.

<CANSUPPORTIMAGES> | Supports delivery of images as multipart MIMBQolean
<PROCENDTM> Time of day that day’s processing entime
</PRESDIRPROF>

</PRESDIRMSGSETV1>

</PRESDIRMSGSET> Closing tag for the Biller Directory message set profile

14.7.3 Bill Delivery Message Set Profile

This section defines the profile aggregate for the Bill Delivery message set. This profile aggregate should
be included in the <PROFRS> response for those servers that support the Bill Delivery message set.

Tag Description
<PRESDLVMSGSET> Opening tag for the Bill Delivery message set profile
<PRESDLVMSGSETV1> Version 1 of Bill Delivery message set, one or more
<MSGSETCORE> Common message-set core
</MSGSETCORE>
<PRESDLVPROF> Bill Delivery profile (if supported)
<CANSUPPORTGROUPID | Supports account information requests for a group of users, that|is
> <PRESGRPACCTINFOTRNRQ> and <GROUPID> in
<PRESLISTTRNRQ>Boolean

490 14.7 Message Sets and Profile

Tag

<PROCDAYSOFF>

<CANSUPPORTIMAGES>
<PROCENDTM>

<CANUPDATEPRESNAME
ADDRESS>

<CANMODSTATUS>

</PRESDLVPROF>
<EMAILPROF>
<CANEMAIL>
<CANNOTIFY>
</EMAILPROF>
</PRESDLVMSGSETV1>

</PRESDLVMSGSET>

Description

Days of week that no processing occurs: MONDAY, TUESDAY,
WEDNESDAY, THURSDAY, FRIDAY, SATURDAY, or SUNDAY.
0 or more <PROCDAY SOFF> can be sent.

Supports delivery of images as multipart MIMBgolean

Time of day that day’s processing entlme

Supports update of the PRESNAMEADDRESS associated with a

particular bill. See section 14.3.3.1

Y if server supports the <BILLSTATUSMODRQ>. This must be
explicitly supported by the server before it is used by the client. T
default for this option is NBoolean

Note: Servers that support <BILLSTATUSMODRQ> are require
to continue support for <PRESNOTIFYRQ>.

E-mail profile
Supports generalized e-madpolean

Supports notification (of any kindBoolean

Closing tag for the Bill Delivery message set profile

OFX 2.0 Specification

6/30/00 491

14.8 Bill Presentment Examples

14.8.1 Find Biller Examples

14.8.1.1 Get All Billers

The client sends a <FINDBILLERRQ> request, as shown in the following example, to retrieve all
available billers.

Note: These examples show the customer signing on anonymously. But, they may have
enrolled in the past and choose to use their actual <USERID> and <USERPASS>. Anonymous
signon is not required for use of the Biller Directory service (see section 14.2.1).

<OFX> <!-- Begin request data -->
<SIGNONMSGSRQV1>
<SONRQ> <!-- Begin anonymous signon -->
<DTCLIENT>19990707202000</DTCLIENT<!-- Jul. 7, 1999, 8:20:00 PM

<USERID>anonymous00000000000000000000000</USERID>
<USERPASS>anonymous00000000000000000000000</USERPASS>
<LANGUAGE>ENG</LANGUAGE> <!-- Language used for text -->

<FI> <l-- ID of receiving institution -->
<ORG>NCH</ORG> <l-- Name of ID owner -->
<FID>1001</FID> <l-- Actual ID -->

</FI>

<APPID>MyApp</APPID>
<APPVER>0500</APPVER>
</SONRQ> <l-- End of signon -->
</SIGNONMSGSRQV1>
<PRESDIRMSGSRQV1>
<FINDBILLERTRNRQ>
<TRNUID>1231239</TRNUID>

<FINDBILLERRQ> <!--Beginning of find biller request-->
<INCIMAGES>N</INCIMAGES><!--LOGO Images are not requested-->
</FINDBILLERRQ> <I--End of request-->

</FINDBILLERTRNRQ>
</PRESDIRMSGSRQV1>
</OFX>

492 14.8 Bill Presentment Examples

To keep the size of the example reasonable, we will assume that there are only four billers. Here is the
server reply.

<OFX> <!-- Begin response data -->
<SIGNONMSGSRSV1>

<SONRS> <l-- Begin signon -->
<STATUS> <!-- Begin status aggregate -->
<CODE>0</CODE> <l-- OK -->
<SEVERITY>INFO</SEVERITY>
</STATUS>

<DTSERVER>19990707202001</DTSERVER><!-- Jul. 7, 1999, 8:20:01 PM

<LANGUAGE>ENG</LANGUAGE> <!-- Language used in response -->

<DTPROFUP>19990630000000</DTPROFUP> <I!-- Last update to profile
>

<DTACCTUP>19990701233045</DTACCTUP> <!-- Last account update -->
</SONRS> <l-- End of signon -->
</SIGNONMSGSRSV1>
<PRESDIRMSGSRSV1>
<FINDBILLERTRNRS>
<TRNUID>1231239</TRNUID>
<STATUS> <!-- Begin status aggregate -->
<CODE>0</CODE> <«!-- OK -->
<SEVERITY>INFO</SEVERITY>
</STATUS>
<FINDBILLERRS> <!--Beginning of response-->

<DTUPDATE>19990415092000</DTUPDATE>
<l--Date last update 04/15/99 9:20am-->

<BILLERINFO>
<BILLPUB>Wepubbills</BILLPUB><!--Name of Bill Publisher-->
<BILLERID>123456789</BILLERID><!--Biller ID at Wepubbills-->

<NAME>RealBig Credit Co.</NAME> .
<l--Name of biller-->

<ADDR1>1324 Whatever St.</ADDR1>
<!l--Street address of biller-->

<CITY>MajorMetro</CITY><!--City of the Biller-->
<STATE>OH</STATE> <l--State of the biller-->

<POSTALCODE>12345-1234</POSTALCODE>
<l--Postal code of biller-->

<COUNTRY>USA</COUNTRY>

<SIC>23</SIC> <!--Standard Industry Code of biller-->

<PHONE>614-235-2323</PHONE><!--Biller's phone number-->

<PAYMENTINSTRUMENTS> <!--Type of payment accepted-->
<PAYMENTINSTRUMENT>

OFX 2.0 Specification 6/30/00 493

<PMTINSTRUMENTTYPE>CHECKINGACCOUNT</PMTINSTRUMENTTYPE>
</PAYMENTINSTRUMENT>
<PAYMENTINSTRUMENT>
<PMTINSTRUMENTTYPE>CONCENTRATOR</PMTINSTRUMENTTYPE>
<BRAND>CityBank</BRAND>
</PAYMENTINSTRUMENT>
</PAYMENTINSTRUMENTS>

<ACCTFORMAT>([0-9]{3\}-)\{3 F%</ACCTFORMAT>
egu ar expression descrlbmg -->

<!--b|IIers account number-->
<ACCTEDITMASK###-##-####/ACCTEDITMASK>
<!--Edit mask for account number-->
<LOGO>http://www.realbig.com/logo.gif</LOGO>
<I--URL to logo of biller-->
</BILLERINFO>
<BILLERINFO>
<BILLPUB>Wepubbills</BILLPUB><!--Name of Bill Publisher-->
<BILLERID>222334465</BILLERID><!--Biller ID at Wepubbills-->
<NAME>Aphone Company</NAME><!--Name of biller-->

<ADDR1>1324 Where Blvd<ADDR1> _
<l--Street address of biller-->

<CITY>Sometown</CITY><!--City of the biller-->
<STATE>CA</STATE> <!--State of the biller-->

<POSTALCODE>10992-1234</POSTALCODE>
<l--Postal code of biller-->

<COUNTRY>USA</COUNTRY>
<SIC>39</SIC> <l--Standard Industry Code of biller-->
<PHONE>345-345-3489</PHONE><!--Biller's phone number-->
<PAYMENTINSTRUMENTS> <!--Type of payment accepted-->
<PAYMENTINSTRUMENT>
<PMTINSTRUMENTTYPE>CHECKINGACCOUNT</PMTINSTRUMENTTYPE>
</PAYMENTINSTRUMENT>
</PAYMENTINSTRUMENTS>
<ACCTFORMAT>([1-9]\{2\}-)\{2\}[0-9]\{3\}</ACCTFORMAT>
<l--Regular expression describing-->
<!--biller's account number-->

<ACCTEDITMASK>##-##-###</ACCTEDITMASK>
<l--Edit mask for account number-->

<LOGO>http://www.webup.com/aphone.gif</LOGO>
<I--URL to logo of biller-->
</BILLERINFO>
<BILLERINFO>
<BILLPUB>Wepubbills</BILLPUB><!--Name of Bill Publisher-->

494 14.8 Bill Presentment Examples

<BILLERID>98765123454</BILLERID><!--Biller ID at Wepubbills-

<NAME>Goodol Mortgage</NAME><!--Name of biller-->

<ADDR1>8273 Magnolia St.</ADDR1>
<l|--Street address of biller-->

<CITY>Atlanta</CITY> <!--City of the Biller-->
<STATE>GA</STATE> <!--State of the biller-->

<POSTALCODE>34342-6789</POSTALCODE>
<l--Postal code of biller-->

<COUNTRY>USA</COUNTRY>

<SIC>03</SIC> <l--Standard Industry Code of biller-->

<PHONE>864-234-6745</PHONE><!--Biller's phone number-->

<PAYMENTINSTRUMENTS> <!--Type of payment accepted-->
<PAYMENTINSTRUMENT>

<PMTINSTRUMENTTYPE>CHECKINGACCOUNT</PMTINSTRUMENTTYPE>

</PAYMENTINSTRUMENT>

</PAYMENTINSTRUMENTS>

<ACCTFORMAT>[0-1]\{12\}</ACCTFORMAT> o
<!--Regular expression describing-->

<l--biller's account number-->

<HELPMESSAGE>Enter the first 13 digits of your account
number</HELPMESSAGE>

<I--to help user key account number-->
<RESTRICT> GA residents only.</RESTRICT>
<l--Indicate restricted availability-->
<LOGO>http://www.wepub.com/mort.gif</LOGO>
<I--URL to logo of biller-->
</BILLERINFO>
<BILLERINFO>
<BILLPUB>Wepubbills</BILLPUB><!--Name of Bill Publisher-->
<BILLERID>32812816734</BILLERID><!--Biller ID at Wepubbills-

<NAME>Sam’s Widgets</NAME><!--Name of biller-->
<ADDR1>Apt B3</ADDR1><!--Street address of biller-->
<ADDR2>1267 Tank Rd</ADDR2>
<CITY>Columbus</CITY><!--City of Biller-->
<STATE>OH</STATE> <!--State of the biller-->

<POSTALCODE>77723-8989</POSTALCODE>
<l--Postal code of biller-->

<COUNTRY>USA</COUNTRY>

<SIC>12</SIC> <l--Standard Industry Code of biller-->

<PHONE>614-657-8934</PHONE><!--Biller's phone number-->

<PAYMENTINSTRUMENTS> <!--Type of payment accepted-->
<PAYMENTINSTRUMENT>

OFX 2.0 Specification 6/30/00 495

<PMTINSTRUMENTTYPE>CHECKINGACCOUNT</PMTINSTRUMENTTYPE>
</PAYMENTINSTRUMENT>
<PAYMENTINSTRUMENT>
<PMTINSTRUMENTTYPE>CONCENTRATOR</PMTINSTRUMENTTYPE>
<BRAND>BigConcentrator</BRAND>
</PAYMENTINSTRUMENT>
</PAYMENTINSTRUMENTS>
<ACCTEDITMASK>A###-####-####</ACCTEDITMASK>
<l--Edit mask for account number-->
<LOGO>http://www.relbig.com/logo.gif</LOGO>
<I--URL to logo of biller-->
<VALIDATE>http://www.wepub.com/sam.cgi</VALIDATE>
<!--URL used to validate acct number-->
</BILLERINFO>
</FINDBILLERRS>
</FINDBILLERTRNRS>
</PRESDIRMSGSRSV1>
</OFX>

14.8.1.2 Find Selected Billers

In the following example, the client requests only those billers that are located in Ohio.

Note: These examples show the customer signing on anonymously. But, they may have
enrolled in the past and choose to use their actual <USERID> and <USERPASS>. Anonymous
signon is not required for use of the Biller Directory service (see section 14.2.1).

<OFX> <!-- Begin request data -->

<SIGNONMSGSRQV1>
<SONRQ> <!-- Begin anonymous signon -->

oM <DTCLIENT>19990707202003</DTCLIENT> <!-- Jul. 7, 1999, 8:20:03
>

<USERID>anonymous00000000000000000000000</USERID>
<USERPASS>anonymous00000000000000000000000</USERPASS>
<LANGUAGE>ENG</LANGUAGE> <!-- Language used for text -->

<FI> <l-- ID of receiving institution -->
<ORG>NCH</ORG> <l-- Name of ID owner -->
<FID>1001</FID> <l-- Actual ID -->

</FI>

<APPID>MyApp</APPID>
<APPVER>0500</APPVER>
</SONRQ> <l-- End of signon -->
</SIGNONMSGSRQV1>

496 14.8 Bill Presentment Examples

<PRESDIRMSGSRQV1>
<FINDBILLERTRNRQ>
<TRNUID>1231245</TRNUID>
<FINDBILLERRQ>
<STATE>OH</STATE>
<INCIMAGES>N</INCIMAGES>
</FINDBILLERRQ>
</FINDBILLERTRNRQ>
</PRESDIRMSGSRQV1>
</OFX>

In the same circumstances as before, the response would be:

<OFX> <!-- Begin response data -->
<SIGNONMSGSRSV1>

<SONRS> <I-- Begin signon -->
<STATUS> <l-- Begin status aggregate -->
<CODE>0</CODE> <l-- OK -->
<SEVERITY>INFO</SEVERITY>
</STATUS>

oM <DTSERVER>19990707202004</DTSERVER> <!-- Jul. 7, 1999, 8:20:04

<LANGUAGE>ENG</LANGUAGE> <!-- Language used in response -->
<DTPROFUP>19990630000000</DTPROFUP> <!-- Last update to profile

<DTACCTUP>19990701233045</DTACCTUP> <!-- Last account update -->
</SONRS> <l-- End of signon -->
</SIGNONMSGSRSV1>
<PRESDIRMSGSRSV1>
<FINDBILLERTRNRS>
<TRNUID>1231245</TRNUID>
<STATUS> <!-- Begin status aggregate -->
<CODE>0</CODE> <l-- OK --><
<SEVERITY>INFO</SEVERITY>

</STATUS>

<FINDBILLERRS>
<DTUPDATE>19990415092000</DTUPDATE>
<I--Date last update 04/15/99 9:20am-->
<BILLERINFO>
<BILLPUB>Wepubbills</BILLPUB><!--Name of Bill Publisher-->
<BILLERID>123456789</BILLERID><!--Biller ID at Wepubbills-->
<NAME>RealBig Credit Co.</NAME>
<!--Name of biller-->

OFX 2.0 Specification 6/30/00 497

<ADDR1>1324 Whatever St.</ADDR1>
<!--Street address of biller-->
<CITY>MajorMetro</CITY><!--City of the Biller-->
<STATE>OH</STATE> <!--State of the biller-->
<POSTALCODE>12345-1234</POSTALCODE>
<!--Postal code of biller-->
<COUNTRY>USA</COUNTRY>
<SIC>23</SIC> <l--Standard Industry Code of biller-->
<PHONE>614-235-2323</PHONE><!--Biller's phone number-->
<PAYMENTINSTRUMENTS> <!--Type of payment accepted-->
<PAYMENTINSTRUMENT>
<PMTINSTRUMENTTYPE>CHECKINGACCOUNT</PMTINSTRUMENTTYPE>
</PAYMENTINSTRUMENT>
<PAYMENTINSTRUMENT>
<PMTINSTRUMENTTYPE>CONCENTRATOR</PMTINSTRUMENTTYPE>
<BRAND>CityBank</BRAND>
</PAYMENTINSTRUMENT>
</PAYMENTINSTRUMENTS>
<ACCTFORMAT>([0-1]\{3\}-){3\}</ACCTFORMAT>
<l--Regular expression describing-->
<!--biller's account number-->
<ACCTEDITMASK>###-#it#-###-</ACCTEDITMASK>
<!--Edit mask for account number-->
<LOGO>http://www.relbig.com/logo.gif</LOGO>
<I--URL to logo of biller-->
</BILLERINFO>
</FINDBILLERRS>
</FINDBILLERTRNRS>
</PRESDIRMSGSRSV1>
</OFX>

498 14.8 Bill Presentment Examples

14.8.2 Enrollment Examples

In this example, the client wants to enroll with a bill publisher.

14.8.2.1 Enrollment Request

<OFX>

<SIGNONMSGSRQV1> <!--Signon Request-->
<SONRQ>

<DTCLIENT>19990307022243</DTCLIENT><!--Timestamp, 3/07/99,
2:22:43am-->

<USERID>anonymous00000000000000000000000</USERID>
<USERPASSznonymous00000000000000000000000</USERPASS>
<LANGUAGE>ENG</LANGUAGE>
<APPID>OFXAPP</APPID>
<APPVER>0201</APPVER>
</SONRQ>
</SIGNONMSGSRQV1>
<SIGNUPMSGSRQV1> <l--Enrollment Request-->
<ENROLLTRNRQ>
<TRNUID>10001</TRNUID>
<ENROLLRQ>
<FIRSTNAME>Cindy</FIRSTNAME>
<MIDDLENAME>P</MIDDLENAME>
<LASTNAME>Williams</LASTNAME>
<ADDR1>123 Oak St</ADDR1>
<CITY>San Jose</CITY>
<STATE>CA</STATE>
<POSTALCODE>94111<POSTALCODE>
<COUNTRY>USA</COUNTRY>
<DAYPHONE>415-555-0123</DAYPHONE>
<EVEPHONE>408-555-2323</EVEPHONE>
<EMAIL>cindy@aol.com</EMAIL>
<USERID>cindyid</USERID>
<TAXID>111-33-5555</TAXID>
<SECURITYNAME>wynona</SECURITYNAME>
<DATEBIRTH>19650402</DATEBIRTH>
</ENROLLRQ>
</ENROLLTRNRQ>
</SIGNUPMSGSRQV1>
</OFX>

OFX 2.0 Specification 6/30/00

499

14.8.2.2 Enrollment Response

For this example, the server responds with immediate acceptance. In practice, many servers would send an
enroliment status code of 13000 and send the user ID and password in a welcome letter.

<OFX>

<SIGNONMSGSRSV1> <l--Signon response->
<SONRS>
<STATUS>
<CODE>0</CODE>
<SEVERITY>INFO</SEVERITY>
</STATUS>

<DTSERVER>19990307081437</DTSERVER><!--Timestamp, 3/07/99,
8:14:37am-->

<LANGUAGE>ENG</LANGUAGE>

<DTPROFUP>19990301070000</DTPROFUP><!--Timestamp, 3/01/99,
7:00:00am-->

<DTACCTUP>19990301070000</DTACCTUP><!--Timestamp, 3/01/99,
7:00:00am-->

</SONRS>
</SIGNONMSGSRSV1>
<SIGNUPMSGSRSV1> <l--Enrollment response-->
<ENROLLTRNRS>
<TRNUID>10001</TRNUID>
<STATUS>
<CODE>0</CODE>
<SEVERITY>INFO</SEVERITY>
</STATUS>
<ENROLLRS>
<TEMPPASS>y12345</TEMPPASS>
<USERID>cindyid</USERID>
<DTEXPIRE>19990407</DTEXPIRE><!--When Temp Password Expires-->
</ENROLLRS>
</ENROLLTRNRS>
</SIGNUPMSGSRSV1>
</OFX>

500 14.8 Bill Presentment Examples

14.8.3 Activation Example

After enrollment, Cindy wants to sign up with a biller, presumably found with the directory services, with
biller ID 415-552-9923 of bill publisher Publisher, Inc.

14.8.3.1 Activation Request

<OFX>
<SIGNONMSGSRQV1> <!--Signon Request-->
<SONRQ> <l-- ...Sign on request. For a
complete example, see section
11.14.1-->
</SONRQ>
</SIGNONMSGSRQV1>
<SIGNUPMSGSRQV1> <l--Activation Request-->
<ACCTTRNRQ>
<TRNUID>10002</TRNUID>
<ACCTRQ> <l—-Activate biller acct -->
<SVCADD>
<PRESACCTTO>

<BILLPUB>Publisher, Inc.</BILLPUB>

<BILLERID>415-552-9923</BILLERID>

<ACCTID>4128 9343 2324 2314</ACCTID>
<PRESNAMEADDRESS>

<NAMEACCTHELD>Cindy P Williams</NAMEACCTHELD><!--Name as
on biller's statement-->

<ADDR1>123 Oak St</ADDR1><!--Address as on statement-->
<CITY>San Jose</CITY>
<STATE>CA</STATE>
<POSTALCODE>94111</POSTALCODE>
<COUNTRY>USA</COUNTRY>
<DAYPHONE>408-555-2323</DAYPHONE>
</PRESNAMEADDRESS>
<USERID>cindyid</USERID>
</PRESACCTTO>
</SVCADD>
<SVC>PRESSVC</SVC>
</ACCTRQ>
</ACCTTRNRQ>
</SIGNUPMSGSRQV1>
</OFX>

OFX 2.0 Specification 6/30/00 501

14.8.3.2 Activation Response

<OFX>
<SIGNONMSGSRSV1> <l--Signon Response->
<SONRS> <l-- ..Sign on response. For a
complete example, see section
11.14.1-->
</SONRS>
</SIGNONMSGSRSV1>
<SIGNUPMSGSRSV1> <l--Enrollment Response-->
<ACCTTRNRS> <!--Service Activation Response-->
<TRNUID>10002</TRNUID>
<STATUS>
<CODE>0</CODE>
<SEVERITY>INFO</SEVERITY>
</STATUS>
<ACCTRS>
<SVCADD>
<PRESACCTTO>
<BILLPUB>Publisher, Inc.</BILLPUB>
<BILLERID>415-552-9923</BILLERID>
<ACCTID>4128 9343 2324 2314</ACCTID>
<PRESNAMEADDRESS>
<NAMEACCTHELD>Cindy P Williams</NAMEACCTHELD>
<ADDR1>123 Oak St</ADDR1>
<CITY>San Jose</CITY>
<STATE>CA</STATE>
<POSTALCODE>94111</POSTALCODE>
<COUNTRY>USA</COUNTRY>
<DAYPHONE>408-555-2323</DAYPHONE>
</PRESNAMEADDRESS>
<USERID>cindyid</USERID>
</PRESACCTTO>
</SVCADD>
<SVC>PRESSVC</SVC>
</ACCTRS>
</ACCTTRNRS>
</SIGNUPMSGSRSV1>
</OFX>

502 14.8 Bill Presentment Examples

14.8.4 Bill Delivery Examples

14.8.4.1 Customer Bill Delivery

The customer, Dan North, wants to see his bills since 3/1/99, which is the last time he asked to see his bills.

14.8.4.1.1 Customer Bill Delivery Request

<OFX>
<SIGNONMSGSRQV1>
<SONRQ> <l-- ..Sign on request. For a
complete example, see section
11.14.1-->
</SONRQ>
</SIGNONMSGSRQV1>
<PRESDLVMSGSRQV1>

<PRESLISTTRNRQ>
<TRNUID>12345</TRNUID>
<PRESLISTRQ>
<BILLPUB> ABillPublisher</BILLPUB>

199 <DTSTART>19990301000000</DTSTART><!--Get Dan's bills since 3/
>

<NOTIFYWILLING>Y</NOTIFYWILLING>
<INCLUDEDETAIL>Y</INCLUDEDETAIL>
</PRESLISTRQ>
</PRESLISTTRNRQ>
</PRESDLVMSGSRQV1>
</OFX>

14.8.4.1.2 Customer Bill Delivery Response

<OFX>

<SIGNONMSGSRSV1>

<SONRS> <l-- ..Sign on response. For a
complete example, see section
11.14.1-->

</SONRS>
</SIGNONMSGSRSV1>
<PRESDLVMSGSRSV1>
<PRESLISTTRNRS>
<TRNUID>12345</TRNUID>
<STATUS>
<CODE>0</CODE>
<SEVERITY>INFO</SEVERITY
</STATUS>

OFX 2.0 Specification 6/30/00 503

<PRESLISTRS>
<BILLPUB>ABIlIPublisher</BILLPUB>
<USERID>123-45-6789</USERID>

<DTSTART>19990301000000</DTSTART><!--Same as in request: no
data loss-->

<DTEND>19990409090000</DTEND>
<!--Value for DTSTART next time-->
<PRESLIST>
<PRESBILLINFO>
<BILLID>65432</BILLID>
<PRESACCTFROM>
<BILLPUB>ABIllPublisher</BILLPUB>
<BILLERID>1001</BILLERID><!--Biller id for Power Inc-->

<ACCTID>1245678GL7</ACCTID><!--Dan North's acct w/
Power Inc-->

</PRESACCTFROM>
<BILLREFINFO>1234678GL7970501</BILLREFINFO>
<AMTDUE>124.24</AMTDUE><!--Dan North to pay $124.24-->
<DTPMTDUE>19990501</DTPMTDUE><!--by 5/1/99 -->
<DTBILL>19990401</DTBILL>
<NOTIFYDESIRED>N</NOTIFYDESIRED>
<STMNTIMAGE>
<IMAGEURL>
https://www.Power.com/bills/apr/dannorth.htm?authtoken=65j3Itfm7
<DTEXPIRE>199904101200</DTEXPIRE>
<I--Must visit url by 4/10/99 12am-->
</STMNTIMAGE>
<BILLDETAILTABLE>
<TABLENAME>usage</TABLENAME>
<BILLDETAILTABLETYPE>x_Power_usage</BILLDETAILTABLETYPE>
<!--Power Inc format for usage-->
<BILLDETAILROW>
<C>elec</C><!--Consumable-->
<C>19990228</C>
<!--Date meter reading start of period-->
<C>65543</C>
<l--Meter reading at start of period-->
<C>19990328</C>
<!--Date meter reading end of period-->

od <C>65643</C><!--Meter reading at end of
period-->

<C>100</C><!--Difference in meter readings-->
<C>KWH</C><!--Units-->

504 14.8 Bill Presentment Examples

<C>.8934</C><!--Rate (price per unit)-->
<C>89.34</C><!--Charge -->
</BILLDETAILROW>
<BILLDETAILROW>
<C>gas</C><!--Consumable -->
<C>19990226</C>

<l-Date meter reading start of
period-->

<C>509843</C>

<!--Meter reading at start of period-->
<C>19990327</C>

<!--Date meter reading end of period-->

od <C>510843</C><!--Meter reading at end of
period->

<C>1000</C><!--Difference in meter readings -

<C>Therms</C><!--Units -->
<C>.02543</C><!--Rate (price per unit) -->
<C>25.43</C><!--Charge -->
</BILLDETAILROW>
</BILLDETAILTABLE>
</PRESBILLINFO>
<PRESBILLINFO>
<BILLID>65436</BILLID>
<PRESACCTFROM>
<BILLPUB>ABIllIPublisher</BILLPUB>
<BILLERID>2021</BILLERID>
<!--Biller id of FluteRental, Inc. -->
<ACCTID>8765XY95</ACCTID>
<l--Dan North’'s account number -->
</PRESACCTFROM>
<BILLREFINFO>8765XY95970428</BILLREFINFO>
<AMTDUE>16.21</AMTDUE><!--Total to be paid -->
<DTPMTDUE>19990428</DTPMTDUE><!--by 4/28/99 -->
<DTBILL>19990408</DTBILL>
<NOTIFYDESIRED>N</NOTIFYDESIRED>
<STMNTIMAGE>
<IMAGEURL>

https://www.FluteRental.com/95rs3vix/bill.asp</
IMAGEURL>

<DTEXPIRE>19990601</DTEXPIRE><!--Must visit url by
6/1/99-->

</STMNTIMAGE>

OFX 2.0 Specification 6/30/00 505

_ _ <DETAILAVAILABLE>N</DETAILAVAILABLE><!--No structured
detail exists-->

</PRESBILLINFO>
</PRESLIST>
</PRESLISTRS>
</PRESLISTTRNRS>
</PRESDLVMSGSRSV1>
</OFX>

14.8.4.2 Bill Delivery for Customer Service Representative

This example assumes that Dan North calls Power Inc with a question about his power bill. Power's
customer service representative, Maria Smith, uses a similar application and a similar OFX request to see
the same bill that Dan sees.

14.8.4.2.1 Bill Delivery Request Example for a Customer Service Representative

<OFX>
<SIGNONMSGSRQV1>
<SONRQ> <l-- ..Sign on request. For a
complete example, see section
11.14.1-->
</SONRQ>
</SIGNONMSGSRQV1>
<PRESDLVMSGSRQV1>
<PRESLISTTRNRQ>
<TRNUID>23456/<TRNUID>
<USERID>123-45-6789</USERID><!--Asks for Dan North’s bills -->
<PRESLISTRQ>
<BILLPUB> ABiIllPublisher</BILLPUB>
<DTSTART>19990330</DTSTART><!--Approximate date -->
<DTEND>1999040410</DTSTART><!--Approximate date -->
<NOTIFYWILLING>N</NOTIFYWILLING>
<INCLUDEDETAIL>Y</INDLUDEDETAIL>
</PRESLISTRQ>
</PRESLISTTRNRQ>
</PRESDLVMSGSRQV1>
</OFX>

14.8.4.2.2 Bill Delivery Response Example for a Customer Service Representative

The response from the server includes the Power Incorporated bill, but not the FluteRental bill. This is
because the server decides that Maria Smith’s credentials are good enough to see Dan North’s Power Inc
bill, but not good enough to see anything else.

506 14.8 Bill Presentment Examples

<OFX>
<SIGNONMSGSRSV1>

<SONRS> <l-- ..Sign on response. For a
complete example, see section
11.14.1-->

</SONRS>

</SIGNONMSGSRSV1>
<PRESDLVMSGSRSV1>

<PRESLISTTRNRS>

<TRNUID>23456</TRNUID>

<STATUS>
<CODE>0</CODE>
<SEVERITY>INFO</SEVERITY>

</STATUS>

<PRESLISTRS>
<BILLPUB>ABIllPublisher</BILLPUB>

ol <USERID>123-45-6789</USERID><!--Dan North's userid, so Dan’s
ill-->

| <DTSTART>19990328</DTSTART><!--Same as in request: no data
0ss-->

<DTEND>19990409</DTEND><!--Same as in request-->
<PRESLIST>
<PRESBILLINFO>
<BILLID>65432</BILLID>
<PRESACCTFROM>
<BILLPUB>ABIllPublisher</BILLPUB>
<BILLERID>1001</BILLERID><!--Biller id for Power Inc-->
<ACCTID>1245678GL7</ACCTID>
<l--Dan's account with Power Inc-->
<USERID>123-45-6789</USERID><!--Dan North’s userid-->
</PRESACCTFROM>
<BILLREFINFO>1234678GL7970501</BILLREFINFO>
<AMTDUE>124.24</AMTDUE><!--Dan to pay $124.24-->
<DTPMTDUE>19990501</DTPMTDUE><!--by 5/1/99 -->
<DTBILL>19990401</DTBILL>
<NOTIFYDESIRED>N</NOTIFYDESIRED>
<STMNTIMAGE>

<IMAGEURL>https://www.Power.com/bills/apr/
dannorth.htm?authtoken=987ab6gr8y</IMAGEURL>

<DTEXPIRE>199904111200</DTEXPIRE>
<!--Must visit url by 4/11/99 12am-->
</STMNTIMAGE>
<BILLDETAILTABLE>

OFX 2.0 Specification 6/30/00

507

<TABLENAME>usage</TABLENAME>

<BILLDETAILTABLETYPE>Xx_Power_usage</
BILLDETAILTABLETYPE> <!--Power Inc format for usage-->

<BILLDETAILROW>
<C>elec</C><!--Consumable-->
<C>19990228</C>
<!--Date meter reading start of period-->
<C>65543</C>
<!--Meter reading at start of period-->
<C>19990328</C>
<!--Date meter reading end of period-->
<C>65643</C>
<I--Meter reading at end of period-->
<C>100</C><!--Difference in meter readings-->
<C>KWH</C><!--Units-->
<C>.8934</C><!--Rate (price per unit)-->
<C>89.34</C><!--Charge-->
</BILLDETAILROW>
<BILLDETAILROW>
<C>gas</C><!--Consumable-->
<C>19990226</C>
<!--Date meter reading start of period-->
<C>509843</C>
<l--Meter reading at start of period-->
<C>19990327</C>
<!--Date meter reading end of period-->
<C>510843</C>
<l--Meter reading at end of period-->
<C>1000</C><I!--Difference in meter readings-->
<C>Therms</C><!--Units-->
<C>.02543</C><!--Rate (price per unit)-->
<C>25.43</C><!--Charge-->
</BILLDETAILROW>
</BILLDETAILTABLE>
</PRESBILLINFO>
</PRESLIST>
</PRESLISTRS>
</PRESLISTTRNRS>
</PRESDLVMSGSRSV1>
</OFX>

508 14.8 Bill Presentment Examples

14.8.4.3 Bill Delivery for a Group of Users

In this example, Realtors Company downloads the phone bills for the employees’ office phones by asking
the bill publisher to see the bills for the group RealtorsEmployees. The composition of the group
RealtorsEmployees has been agreed upon between Realtors Company and the bill publisher; moreover, the
bill publisher has agreed to grant Realtors Company access rights to the RealtorsEmployees group. All this
took place outside of OFX.

14.8.4.3.1 Bill Delivery Request Example for a Group of Users

<OFX>
<SIGNONMSGSRQV1>
<SONRQ> <l-- ..Sign on request. For a
complete example, see section
11.14.1-->
</SONRQ>
</SIGNONMSGSRQV1>
<PRESDLVMSGSRQV1>

<PRESLISTTRNRQ>
<TRNUID>34567<TRNUID>

<GROUPID>RealtorsEmployees</GROUPID><!--Asks for Employee’s
phone bills-->

<PRESLISTRQ>
<BILLPUB> ABillPublisher</BILLPUB>
<DTSTART>19990430</DTSTART><!--since 4/30/1999-->
<NOTIFYWILLING>N</NOTIFYWILLING>
<INCLUDEDETAIL>Y</INCLUDEDETAIL>
</PRESLISTRQ>
</PRESLISTTRNRQ>
</PRESDLVMSGSRQV1>
</OFX>

14.8.4.3.2 Bill Delivery Response Example for a Group of Users

The response, not shown here, will include several bills each marked with its own <USERID>. The only
bills returned will be the employees’ phone bills for their office phones, since those bills are the only ones
to which Realtor Company has access rights.

OFX 2.0 Specification 6/30/00 509

14.8.4.4 Group Account Information
This is an example of a client proxy system that is tracking changes to the accounts of a group of users.

14.8.4.4.1 Group Account Information Request

<OFX>
<SIGNONMSGSRQV1> <l--Signon Request->
<SONRQ> <l-- ..Sign on request. For a
complete example, see section
11.14.1-->
</SONRQ>
</SIGNONMSGSRQV1>
<PRESDLVMSGSRQV1> <I--Group Account Info Request-->

<PRESGRPACCTINFOTRNRQ>
<TRNUID>10001</TRNUID>
<GROUPID>ACIlientProxysCustomers</GROUPID>
<!--Predefined group of customers-->
<ACCTINFORQ>

<DTACCTUP>19990104</DTACCTUP><I!--Last DTACCTUP received for
group-->

</ACCTINFORQ>
</PRESGRPACCTINFOTRNRQ>
</PRESDLVMSGSRQV1>
</OFX>

14.8.4.4.2 Group Account Information Response

<OFX>

<SIGNONMSGSRSV1> <l--Signon Response->

<SONRS> <l-- ..Sign on response. For a
complete example, see section
11.14.1-->

</SONRS>
</SIGNONMSGSRSV1>
<PRESDLVMSGSRSV1> <!--Group Account Info Response-->
<PRESGRPACCTINFOTRNRS>
<TRNUID>10001</TRNUID>
<STATUS>
<CODE>0</CODE>
<SEVERITY>INFO</SEVERITY>
</STATUS>
<ACCTINFORS>
<DTACCTUP>19990122092431</DTACCTUP>
<ACCTINFO>

510 14.8 Bill Presentment Examples

<PRESACCTINFO>
<PRESACCTFROM>
<BILLPUB>PUBLISHER, INC.</BILLPUB>
<BILLERID>415-552-9923</BILLERID>
<ACCTID>408-555-4342-M132</ACCTID>

<USERID>bygeorge</USERID>
<!--User from group with new status-->

</PRESACCTFROM>
<SVCSTATUS>ACTIVE</SVCSTATUS>
</PRESACCTINFO>
</ACCTINFO>
</ACCTINFORS>
<ACCTINFORS>
<DTACCTUP>19990123082423</DTACCTUP>
<ACCTINFO>
<PRESACCTINFO>
<PRESACCTFROM>
<BILLPUB>PUBLISHER, INC.</BILLPUB>
<BILLERID>415-552-9923</BILLERID>
<ACCTID>408-555-2341-U421</ACCTID>

<USERID>132-42-5242</USERID>
<I--User from group with new status-->

</PRESACCTFROM>
<SVCSTATUS>REJECTED</SVCSTATUS>
<REASON>ACCOUNT NOT FOUND</REASON>
<I--User supplied account with biller->
<!--didn't match biller's records-->
</PRESACCTINFO>
</ACCTINFO>
</ACCTINFORS>
</PRESGRPACCTINFOTRNRS>
</PRESDLVMSGSRSV1>
</OFX>

OFX 2.0 Specification 6/30/00 511

512 14.8 Bill Presentment Examples

APPENDIX A STATUS CODES

The following table provides a complete list of the status codes that can be returned by a server. For each
status code, the table includes the following information:

+ Number of the status code
¢ Meaning of the status code

+ Conditions under which a server must return the status code

Note: If a server must send an unsupported message to an earlier client, it should include a
<MESSAGE> element describing the general error.

Code Meaning Condition

Code Meaning Condition

0 Success (INFO) The server successfully processed the
request.

1 Client is up-to-date (INFO) Based on the client timestamp, the client has

the latest information. The response does not
supply any additional information.

2000 General error (ERROR) Error other than those specified by the
remaining error codes.

Note: Servers should provide a more

specific error whenever possible. Error cod
2000 should be reserved for cases in which a
more specific code is not available.

D

2001 Invalid account (ERROR)
2002 General account error (ERROR) Account error not specified by the remaining
error codes.
2003 Account not found (ERROR) The specified account number does not
correspond to one of the user’s accounts.
2004 Account closed (ERROR) The specified account number corresponds to
an account that has been closed.
2005 Account not authorized The user is not authorized to perform this
(ERROR) action on the account, or the server does npt
allow this type of action to be performed on
the account.
2006 Source account not found The specified account number does not
(ERROR) correspond to one of the user’s accounts.
2007 Source account closed (ERROR) The specified account number correspands to

an account that has been closed.

OFX 2.0 Specification 6/30/00 513

Code
2008

2009

2010

2011

2012

2014

2015

2016

2017

2018

2019

2020

2021

2022

Meaning

Source account not authorized
(ERROR)

Destination account not found
(ERROR)

Destination account closed
(ERROR)

Destination account not
authorized (ERROR)

Invalid amount (ERROR)

Date too soon (ERROR)

Date too far in future (ERROR)

Transaction already committed
(ERROR)

Already canceled (ERROR)

Unknown server ID (ERROR)

Duplicate request (ERROR)

Invalid date (ERROR)

Unsupported version (ERROR

Invalid TAN (ERROR)

Condition

The user is not authorized to perform this
action on the account, or the server does n
allow this type of action to be performed on
the account.

The specified account number does not
correspond to one of the user’s accounts.

The specified account number correspondsg
an account that has been closed.

The user is not authorized to perform this
action on the account, or the server does n
allow this type of action to be performed on
the account.

The specified amount is not valid for this
action; for example, the user specified a
negative payment amount.

The server cannot process the requeste
action by the date specified by the user.

The server cannot accept requests for a
action that far in the future.

Transaction has entered the processing log
and cannot be modified/cancelled using OF
The transaction may still be cancelled or
modified using other means (for example, 3
phone call to Customer Service).

The transaction cannot be canceled or
modified because it has already been
canceled.

The specified server ID does not exist or
longer exists.

A request with this <TRNUID> has alreal
been received and processed.

The specified datetime stamp cannot be
parsed; for instance, the datetime stamp
specifies 25:00 hours.

The server does not support the request
version. The version of the message set
specified by the client is not supported by th
server.

The server was unable to validate the TAN
sent in the request.

—

(0]

)

Xo

514

Code
2023

2025

2026

2027

2028

6500

6501

6502

10000

Meaning

Unknown FITID (ERROR)

[BILLID not found (ERROR) in
the billing message sets]

Branch ID missing (ERROR)

Bank name doesn’t match ban
ID (ERROR)

Invalid date range (ERROR)

Requested element unknown
(WARNING)

<REJECTIFMISSING>Y
invalid without <TOKEN>
(ERROR)

Embedded transactions in
request failed to process: Out 0
date (WARNING)

Unable to process embedded
transaction due to out-of-date
<TOKEN> (ERROR)

Stop check in process (INFO)

Condition

The specified FITID/BILLID does not exist
or no longer exists.

A <BRANCHID> value must be provided
the <BANKACCTFROM> aggregate for thig
country system, but this field is missing.

The value of <BANKNAME> in the
<EXTBANKACCTTO> aggregate is
inconsistent with the value of <BANKID> in
the <BANKACCTTO> aggregate.

ranges in the future, et cetera.

recognized by the server or the server (as
noted in the FI Profile) does not support the

example, the request file included private ta
in a <PMTRQ> but the server was able to
execute the rest of the request.

This error code may appear in the
<SYNCERROR> element of an
<xxXSYNCRS> wrapper (in
<PRESDLVMSGSRSV1> and V2 message
set responses) or the <CODE> contained i
any embedded transaction wrappers within
sync response. The corresponding sync
request wrapper included
<REJECTIFMISSING>Y with
<REFRESH>Y or <TOKENONLY>Y, which
is illegal.

<REJECTIFMISSING>Y and embedded

f transactions appeared in the request sync
wrapper and the provided <TOKEN> was 0
of date. This code should be used in the
<SYNCERROR> of the response sync
wrapper.

Used in response transaction wrapper for
embedded transactions when
<SYNCERROR>6501 appears in the
surrounding sync wrapper.

Response for non-overlapping dates, date

elements. The server executed the element
transactions it understood and supported. F

n

One or more elements of the request were not

or
0S

a

Stop check is already in process.

OFX 2.0 Specification

6/30/00

515

Code
10500

10501

10502

10503

10504

10505

10506

10507

10508

10509

10510

10511
10512
10513

10514

10515

10516

10517

Meaning

Too many checks to process
(ERROR)

Invalid payee (ERROR)

Invalid payee address (ERROR

Invalid payee account number
(ERROR)

Insufficient funds (ERROR)

Cannot modify element
(ERROR)

Cannot modify source account
(ERROR)

Cannot modify destination
account (ERROR)

Invalid frequency (ERROR)

Model already canceled
(ERROR)

Invalid payee ID (ERROR)

Invalid payee city (ERROR)
Invalid payee state (ERROR)

Invalid payee postal code
(ERROR)

Transaction already processed
(ERROR)

Payee not modifiable by client
(ERROR)

Wire beneficiary invalid
(ERROR)

Invalid payee name (ERROR)

)

Condition

The stop-payment request <STPCHKRQ>
specifies too many checks.

Payee error not specified by the remainir
error codes.

Some portion of the payee’s address is
incorrect or unknown.

The account number <PAYACCT> of the
requested payee is invalid.

The server cannot process the request
because the specified account does not hal
enough funds.

The server does not allow modifications to

one or more values in a modification request.

Reserved for future use.

Reserved for future use.

The specified frequency <FREQ> does n
match one of the accepted frequencies for
recurring transactions.

The server has already canceled the specif
recurring model.

The specified payee ID does not exist or
longer exists.

The specified city is incorrect or unknown.

The specified state is incorrect or unkno

The specified postal code is incorrect or
unknown.

Transaction has already been sent or date
is past

The server does not allow clients to change
payee information.

The specified wire beneficiary does not exis

or no longer exists.

The server does not recognize the spec
payee name.

ve

wn.

Hue

—

D

fied

516

Code
10518

10519

10600

12250

12251

12252

12253

12254

12255

12500

13000

13500
13501
13502

13503

13504

14500

Meaning

Unknown model ID (ERROR)

Invalid payee list ID (ERROR)

Table type not found (ERROR)

Investment transaction downlo4
not supported (WARN)

Investment position download
not supported (WARN)

Investment positions for
specified date not available
(WARN)

Investment open order downloa
not supported (WARN)

Investment balances download
not supported (WARN)

401(k) not available for this
account (ERROR)

One or more securities not four
(ERROR)

User ID & password will be sen
out-of-band (INFO)

Unable to enroll user (ERROR
User already enrolled (ERROR
Invalid service (ERROR)

Cannot change user informatiq
(ERROR)

<FI> Missing or Invalid in
<SONRQ> (ERROR)

1099 forms not available

Condition

The specified model ID does not exist or
longer exists.

The specified payee list ID does not exist
no longer exists.

The specified table type is not recognize|
does not exist.

adThe server does not support investment
transaction download.

The server does not support investment
position download.

The server does not support investment
positions for the specified date.

1dThe server does not support open order
download.

The server does not support investment
balances download.

401(k) information requested from a non-
401(k) account.

dThe server could not find the requested
securities.

t The server will send the user ID and
password via postal mail, e-mail, or anothe
means. The accompanying message will
provide details.

The server could not enroll the user.
) The server has already enrolled the use

The server does not support the service
<SVC> specified in the service-activation
request.

nThe server does not support the
<CHGUSERINFORQ> request.

The FI requires the client to provide the <FlI
aggregate in the <SONRQ> request, but
either none was provided, or the one provid
was invalid.

1099 forms are not yet available for the tax

(ERIOR)

year requested.

or

d or

r

\Y

OFX 2.0 Specification

6/30/00

517

Code
14501

14600

14601

15000

15500

15501

15502

15503

15504

15505

15506

15507

15508

16500

16501

16502
16503

Meaning

1099 forms not available for userThis user does not have any 1099 forms

ID (ERROR)

W2 forms not available
(ERROR)

W2 forms not available for use
ID (ERROR)

Must change USERPASS
(INFO)

Signon invalid (ERROR)

Customer account already in u
(ERROR)

USERPASS lockout (ERROR)

Could not change USERPASS
(ERROR)

Could not provide random datg The server could not generate random data

(ERROR)

Country system not supported
(ERROR)

Empty signon not supported
(ERROR)

Signon invalid without
supporting pin change request
(ERROR)

Transaction not authorized.
(ERROR)

HTML not allowed (ERROR)

Unknown mail To: (ERROR)

Invalid URL (ERROR)
Unable to get URL (ERROR)

Condition

available.

W?2 forms are not yet available for the tax
year requested.

The user does not have any W2 forms
available.

The user must change his or her
<USERPASS> number as part of the next
OFX request.

The user cannot signon because he or sk
entered an invalid user ID or password.

selhe server allows only one connection at a

Please try again later.

The server has received too many failed
signon attempts for this user. Please call th
FI's technical support number.

The server does not support the <PINCHR(
request.

requested by the <CHALLENGERQ>.

The server does not support the country
specified in the <COUNTRY> field of the
<SONRQ> aggregate.

The server does not support signons not
accompanied by some other transaction.

The OFX block associated with the signon
does not contain a pin change request and
should.

Current user is not authorized to perform th
action on behalf of the <USERID>.

in the request.

The server was unable to send mail to th¢
specified Internet address.

The server could not parse the URL.

The server was unable to retrieve the
information at this URL (e.g., an HTTP 400
or 500 series error).

time, and another user is already signed orj.

e

D>

as

is

The server does not accept HTML formatting

17

518

APPENDIX B DIFFERENCES BETWEEN OFX 1.6 AND
OFX 2.0

B.1 OFX 1.6t0 2.0

This appendix describes the revisions made to Open Financial Exchange that occurred between version 1.6
and version 2.0. Major changes include:

1) The Data Formatting standard has changed from that of SGML to XML.
2) V2 message sets have been removed.

3) 401(k) support has been added to Investments.

4) A new Tax OFX Addendum which adds support for 1099 and W2 download has been added and is
available separately bound from this document.

Note that some detailed changes are not shown below if they are part of one of the changes above and thus
are identified that way. 401(k) changes have been itemized in full, however.

OFX 2.0 Specification 6/30/00 519

B.1.1 Specification Changes by Chapter

Location

Global

Global

Global

Global

Global

2.3
3.1.21

6.4

11.7

12.2.2
12.9.2.1
12.9.2.2
13.3.3

13.6.3.1
13.6.3.2

13.7.1.1
13.8.4
13.9.1.2

Subject
SGML->XML

End tags required

Header changed

V2 eliminated

"1.6 add" tags eliminated

Special character handlin

Handling of user values

Token and
Synchronization
Summary

Immediate Transfers

scope of PAYEELSTID
<PAYEEMODRQ>
<PAYEEMODRS>

change to signage rules

New 401(Kk) section

New section on downloaq
detail

New profile tag

SECLIST return info

g

D

new <INVSTMTRQ> tags

Change Type
Change

Change

Change

Change

Change

Change

Clarification

Addition

Clarification

Clarification

Change

Change
Change

Addition
Addition

Addition
Clarification

Addition

Change

The Data Formatting standard has changed fro
that of SGML to XML.

Ends tags are now required. All examples we
changed as well as textual references to end tag

The OFX header has changed from that of an
SGML-type header to a standard XML declaratio

syntax. Examples were changed as appropriate.

V2 tags and message sets have been eliminat
<SRVRTID2>, <TOKEN2>, <MESSAGE2> and
<URL2> are among those tags that have been
deleted.

All "1.6 add" tags were eliminated except thos
the bill presentment message set and
<REFRESHSUPT> in <MSGSETCORE>

Special characters are predefined in XML.

This section was rewritten to clarify rules for
handling user values by a client or server.

New section added to clarify rules for token and
synchronization handling.

=

re

1*2)

se in

Clarified handling of immediate transfers which are

batched and done that night or next day.
Clarified handling of PAYEELSTID scoping
Optional tag <MODPENDING> was removed.
Optional tag <MODPENDING> was removed.

PENALTY, WITHHOLDING and
STATEWITHHOLDING were added to list of
elements affecting signage of units and totals.

Entitled "401(k) Accounts”

Entitled, "Note on Downloading Positions and
Transaction Detail for Investment Accounts"

New tag <INV401KDNLD>
better description of when to return <SECLIST

<INC401K> and <INC401KBAL>

520

B.1 OFX1.6t02.0

\Y

Y.

FLL

regate

g tags

Location Subject Change Type Change
13.9.2.2 New <INVSTMTRS> Addition <INV401K> and <INV401KBAL>
aggregates
13.9.24 New elements added to | Addition PENALTY, WITHHOLDING and
verbiage on transactions STATEWITHOLDING included in text
13.9.24 New elements added to | Addition PENALTY, WITHHOLDING and
computation of total STATEWITHOLDING included in text
13.9.2.4.2 | New elements added Addition DTPAYROLL, INV401KSOURCE,
LOANINTEREST, LOANID, LOANPRINCIPAL,
PENALTY, PRIORYEARCONTRIB,
STATEWITHHOLDING
13.9.2.4.2 | Total description changed Change calculation changed
13.9.2.4.2 | WITHHOLDING Change Indicates that this element is for federal taxes on
description changed
13.9.2.4.3 | 401(k) verbiage added Addition Describes funding loans or other withdrawals
13.9.2.4.3 | Some elements added Change New elements added to INVBUY and INVSEH
13.9.2.4.4 | New element added Change <INV401KSOURCE> added to INCOME,
INVEXPENSE, REINVEST, RETOFCAP, SPLIT
and TRANSFER aggregates
13.9.2.6.1 | New element added Change <INV401KSOURCE> added to INVPOS agg
13.9.2.7 </BAL> no longer bolded| Correction Corrected mismatch between beginning/endin
13.9.2.8 New section Addition Entitled, "401(k) Balances <INV401KBAL>"
13.9.2.9 Status code added to table Addition Error status code 12255 added
13.9.3 New section Addition Entitled "401(k) Account Information”
13.11 New section (example) Addition Entitled "Complete 401(k) Example”
Appendix | Status code 12254 Addition Investment Balances Download not supported
A (WARN)
Appendix | Status code 14500 Addition 1099 forms not available (INFO)
A
Appendix | Status code 14501 Addition 1099 forms not available for user ID (ERROR)
A
Appendix | Status code 14600 Addition W2 forms not available (INFO)
A
Appendix | Status code 14601 Addition W2 forms not available for user ID (ERROR)
A
OFX 2.0 Specification 6/30/00 521

522 B.1 OFX1l.6to02.0

TAG INDEX

Conventions

This index uses the conventions shown in the
following table to identify different entry

types.

Entry Type Text Style

Tag definition Bold text

Tag shown in example | Italic text

Tag used within body | Plain text

of text

A

ACCRDINT 394, 399, 402

ACCTBAL 462, 463

ACCTEDITMASK 441, 442, 443, 494, 496,
498

ACCTFORMAT 441, 442, 443, 494, 495, 498

ACCTID 20, 104, 105, 126, 132, 155, 156, 159,
162, 164, 166, 175, 263, 264, 266, 267,
268,270,271,275,276,277,279, 280,
346,347, 348, 349, 350, 351, 352, 353,
356, 357,358, 359, 363, 364, 369, 425,
426,431,432, 449, 501, 502, 504, 505,
507, 511

ACCTINFO 123, 124, 125, 126, 370, 453, 510,
511

ACCTINFORQ 124, 124, 126, 447, 452, 452,
452, 453, 454, 510

ACCTINFORS 123, 124, 124, 124, 126, 369,
447, 448, 452, 453, 453, 454, 455, 510,
511

ACCTINFOTRNRQ 124, 126, 447, 452

ACCTINFOTRNRS 124, 126

ACCTKEY 163, 164, 166, 175

ACCTREQUIRED 136

ACCTRQ 127,127, 131, 132, 136, 448, 449,
450, 501

ACCTRS 129, 129, 131, 132, 452, 502

ACCTSYNCRQ 92, 131, 131, 452

ACCTSYNCRS 92, 131, 131

ACCTTRNRQ 127, 132, 501

ACCTTRNRS 129, 132, 502

ACCTTYPE 20, 104, 105, 126, 132, 155, 156,
159, 162, 164, 165, 263, 264, 266, 267,
268, 270,271,272, 275, 276, 277, 279,
280, 346, 347, 348, 349, 350, 351, 352,
353, 356, 357, 358, 359, 363, 364

ACTIVITY 462, 463

ADDRI1 111, 120, 122, 133, 134, 212, 292,
346,347, 350, 351, 352, 353, 361, 362,
440, 441, 442, 450, 493, 494, 495, 498,
499, 501, 502

ADDR2 111, 120, 133, 134, 212, 292, 361,
362, 440, 441, 442, 450, 495

ADDR3 111, 120, 133, 134, 212, 292, 440,
441, 442, 450

ADJAMT 295, 295

ADJDATE 295, 295

ADJDESC 295, 295

ADJNO 295, 295

ADJUSTMENT 294, 295, 295

AFTERTAX 413, 420, 435

AFTERTAXCONTRIBAMT 416

AFTERTAXCONTRIBPCT 416

AMTDUE 462, 504, 505, 507

APPID 20, 44, 263, 492, 496, 499

APPVER 20, 26, 44, 263, 492, 496, 499

ASSETCLASS 384, 385, 386, 387, 429, 430

AUCTION 407

AVAILACCTS 136, 447

AVAILBAL 83, 173, 176, 265

AVAILCASH 411, 428

AVGCOSTBASIS 394, 402, 403

B

BAL 59, 59, 83, 391, 411, 428
BALAMT 173, 173, 176, 265
BALCLOSE 183, 186
BALDNLD 373

BALLIST 391, 411, 411, 428
BALMIN 183

OFX 1.6 Specification

6/30/00

523

BALOPEN 183, 186

BALTYPE 59, 59, 428

BANKACCTFROM 20, 83, 104, 105, 120, 126,
128, 155, 156, 159, 162, 162, 167, 169,
172,173, 181, 182, 188, 189, 196, 205,
211, 214, 220, 227, 233, 234, 236, 237,
238, 239, 240, 241, 242, 243, 244, 245,
246, 247, 248, 249, 250, 258, 263, 264,
266, 267,268, 270, 271, 275, 276, 277,
279, 289, 290, 302, 313, 336, 337, 338,
339, 346, 347, 348, 349, 350, 351, 352,
353, 356, 357, 358, 359, 363, 364, 515

BANKACCTINFO 125, 126, 167, 167

BANKACCTTO 128, 132, 162, 164, 169, 179,
212, 266, 267, 270, 271, 277, 279, 280,
284, 290, 325, 326, 328, 329, 515

BANKID 20, 104, 105, 126, 132, 155, 156,
159,162, 164, 212, 263, 264, 266, 267,
268, 270,271,275,276,277,279, 280,
346, 347, 348, 349, 350, 351, 352, 353,
356, 357, 358, 359, 363, 364, 515

BANKMAILRQ 233, 233

BANKMAILRS 234, 234

BANKMAILSYNCRQ 92, 249, 249

BANKMAILSYNCRS 92, 250, 250

BANKMAILTRNRQ 233, 249

BANKMAILTRNRS 234, 236, 237, 250

BANKMSGSET 252, 253, 258, 258

BANKMSGSETV1 39, 108, 252, 253, 258

BANKMSGSRQV1 20, 37, 252, 263, 266, 267,
270,275

BANKMSGSRSV1 253, 264, 266, 268, 271,
273,275

BANKNAME 515

BANKTRANLIST 173, 176, 264

BASEMATCHAMT 415

BASEMATCHPCT 415

BILLDETAILROW 471, 472, 472, 475, 504,
505, 508

BILLDETAILTABLE 461, 463, 471, 471, 471,
472, 473, 474, 475, 504, 507

BILLDETAILTABLETYPE 470, 471, 472, 472,
473, 474, 475, 504, 508

BILLERID 440, 441, 441, 449, 457, 493, 494,
495,497, 501, 502, 504, 505, 507, 511

BILLERINFO 441, 441, 441, 445, 446, 449,
493, 494, 495, 497

BILLERINFOURL 442

BILLERNAME 449

BILLID 457, 461, 462, 470, 471, 475, 477, 479,
504, 505, 507

BILLPAYMSGSET 51, 342, 343, 344, 344

BILLPAYMSGSETV1 39, 108, 285, 341, 342,
343, 344

BILLPAYMSGSRQV1 342, 346, 348, 350, 352,
354, 355, 356, 358, 360, 361, 363

BILLPAYMSGSRSV1 284, 301, 343, 347, 349,
351, 353, 354, 355, 357, 359, 360, 362,
363

BILLPMTSTATUS 462, 465, 479, 479

BILLPMTSTATUSCODE 458, 460, 461, 465

BILLPMTSTATUSCOUNTS 461

BILLPUB 441, 441, 449, 457, 460, 461, 493,
494, 495, 497, 501, 502, 503, 504, 505,
506, 507, 509, 511

BILLREFINFO 291, 291, 462, 480, 504, 505,
507

BILLSTATUS 462, 464, 479

BILLSTATUSCODE 457, 460, 464

BILLSTATUSCOUNTS 460

BILLSTATUSMODRQ 477, 479, 479, 491

BILLSTATUSMODRS 478, 479, 479

BILLSTATUSMODTRNRQ 479

BILLTBLSTRUCTRQ 474, 475, 475

BILLTBLSTRUCTRS 475, 475, 476

BILLTBLSTRUCTTRNRQ 475

BILLTBLSTRUCTTRNRS 475

BILLTYPE 457, 462

BODY 145, 146, 147

BPACCTINFO 289, 289

BRANCHID 162, 164, 515

BRAND 446, 446, 494, 496, 498

BROKERCONTACTINFO 414

BROKERID 369, 425, 426, 431, 432

BUSNAMEACCTHELD 450

BUYDEBT 399

BUYMF 399

BUYOPT 399

BUYOTHER 369, 399

BUYPOWER 411

BUYSTOCK 399, 426

BUYTYPE 394, 399, 407, 427, 429

524

C

C 472,472, 475, 504, 505, 508

CALLPRICE 384

CALLTYPE 384

CANADDPAYEE 345

CANBILLPAY 261

CANCELWND 261

CANEMAIL 260, 373, 491

CANMODMDLS 259, 345

CANMODPMTS 345

CANMODSTATUS 491

CANMODXEFERS 259

CANNOTIFY 260, 491

CANPENDING 158, 223, 223, 230, 275, 276,
317, 318, 360, 361

CANRECUR 259

CANSCHED 259, 259, 262

CANSUPPORTGROUPID 490

CANSUPPORTIMAGES 490, 491

CANUPDATEPRESNAMEADDRESS 451,
491

CANUSEDESC 259

CANUSERANGE 259

CASESEN 114

CASHBAL 413

CCACCTFROM 162, 166, 166, 168, 169, 175,
176, 184, 196, 205, 233, 234, 240, 241,
242, 243, 245, 246, 247, 248, 249, 250

CCACCTINFO 168

CCACCTTO 166, 166, 169, 179

CCCLOSING 184, 185, 185, 186

CCSTMTENDRQ 184, 184

CCSTMTENDRS 184, 184

CCSTMTENDTRNRQ 184

CCSTMTENDTRNRS 184

CCSTMTRQ 174, 175, 175, 186

CCSTMTRS 176, 176

CCSTMTTRNRQ 175

CCSTMTTRNRS 176

CHALLENGERQ 50, 50, 78, 80, 518

CHALLENGERS 50, 50, 78, 80

CHALLENGETRNRQ 50

CHALLENGETRNRS 50

CHARTYPE 114

CHECKING 370

CHECKNUM 178, 189, 190, 236, 265, 268,
269, 299, 307, 356

CHGPINFIRST 114, 114

CHGUSERINFO 136

CHGUSERINFORQ 133, 133, 450, 451, 517

CHGUSERINFORS 134

CHGUSERINFOSYNCRQ 92, 133, 135

CHGUSERINFOSYNCRS 92, 133, 135

CHGUSERINFOTRNRQ 133, 135

CHGUSERINFOTRNRS 133, 135

CHKANDDEB 183

CHKDESC 188, 189, 189

CHKERROR 190

CHKMAILRS 236, 236

CHKNUMEND 188, 268

CHKNUMSTART 188, 268

CHKRANGE 188, 188, 268

CHKSTATUS 190, 268, 269

CITY 111, 120, 122, 133, 134, 212, 292, 346,
347,350, 351, 352, 353, 361, 362, 440,
442, 450, 493, 494, 495, 498, 499, 501,
502

CLIENTACTREQ 136

CLIENTENROLL 136, 136

CLIENTROUTING 110

CLOSING 182, 182, 183

CLOSINGAVALIL 258, 260

CLOSUREOPT 399

CLTCOOKIE 40, 41, 380, 381, 388, 390, 454,
455, 469

CODE 34, 41, 46,51, 52, 60, 61, 122, 126, 132,
146, 147, 149, 159, 193, 203, 264, 266,
268,271, 276,277,279, 298, 347, 349,
351, 353, 354, 355, 357, 359, 360, 362,
364, 426, 432, 460, 493, 497, 500, 502,
503, 507, 510, 515

COLDEEF 475, 476, 476

COLNAME 476

COLTYPE 476

COMMISSION 392, 394, 397, 398, 401, 427

CONFMSG 214

CONSUPOSTALCODE 440, 440

CONTRIBINFO 415, 435

CONTRIBSECURITY 415, 435

CONTRIBUTIONS 417, 418, 419, 435

CORRECTACTION 178, 178

CORRECTFITID 63, 178

COUNT 460, 461

OFX 1.6 Specification

6/30/00

525

COUNTRY 111, 120, 122, 133, 134, 212, 292,
440, 442, 450, 493, 494, 495, 498, 499,
501, 502, 518

COUPONFREQ 384

COUPONRT 384

CREDITCARDMSGSET 254, 254, 260

CREDITCARDMSGSETV1 39, 254, 260

CREDITCARDMSGSRQV1 254

CREDITCARDMSGSRSV1 254

CREDITLIMIT 186

CSPHONE 112

CURDEEF 83, 83, 84, 173, 176, 182, 184, 189,
194, 203, 214, 264, 267, 268, 271, 279,
299, 311, 347, 349, 357, 364, 390, 426,
432

CURRATE 83, 84

CURRENCY 59, 83, 83, 84, 84, 179, 183, 186,
190, 383, 397, 398, 400, 401, 402, 403,
406, 409

CURRENTLOANBAL 417

CURRENTVESTPCT 416

CURSYM 84, 84

D

DATEBIRTH 120, 122, 499

DAYPHONE 120, 122, 133, 134, 450, 499,
501, 502

DAYSTOPAY 296, 301, 344, 348, 349, 362,
364

DAYSWITH 259, 344, 344

DEBAD]J 186

DEBTCLASS 384

DEBTINFO 382, 384, 384

DEBTTYPE 384

DEFERPCTAFTERTAX 415

DEFERPCTPRETAX 415

DENOMINATOR 403

DEPANDCREDIT 183

DEPMAILRS 237, 237

DESC 59, 125, 126, 428

DETAILAVAILABLE 461, 463, 506

DFLTDAYSTOPAY 259, 344, 344

DIFFFIRSTPMT 345

DISCOUNT 294, 294

DOMXFERFEE 261, 262

DSCAMT 294, 294

DSCDATE 294, 294

DSCDESC 294, 294

DSCRATE 294, 294

DTACCTUP 45, 123, 124, 124, 126, 264, 452,
453, 454, 493, 497, 500, 510, 511

DTASOF 59, 173, 176, 265, 383, 389, 390,
426,428, 432

DTAUCTION 407

DTAVAIL 178

DTBILL 462, 462, 504, 505, 507

DTCALL 384

DTCHANGED 49

DTCLIENT 20, 44, 263, 492, 496, 499

DTCLOSE 183, 186, 462

DTCOUPON 384

DTCREATED 140, 145, 146, 147

DTDUE 155, 156, 169, 169, 211, 214, 271,
272,291, 313, 344, 346, 347, 348, 349,
350, 351, 352, 353, 356, 357, 358, 359,
364

DTDUEBY 457, 457

DTEFF 464, 465

DTEND 65, 65, 66, 172, 173, 175, 176, 181,
183, 184, 186, 263, 264, 389, 390, 426,
456, 457, 460, 504, 5006, 507

DTEXPIRE 121, 122, 386, 430, 467, 500, 504,
505, 507

DTINFOCHG 134

DTMAT 384

DTNEXT 183, 186

DTOPEN 183, 186, 462

DTPAYROLL 397, 433

DTPLACED 406, 429

DTPMTDUE 68, 186, 462, 504, 505, 507

DTPMTPRC 296, 302, 348, 350, 356, 364

DTPOSTED 178, 194, 203, 214, 265, 427

DTPOSTEND 183, 183, 186

DTPOSTSTART 183, 183, 186

DTPRICEASOF 409, 428

DTPROFUP 45, 110, 111, 264, 493, 497, 500

DTPURCHASE 394, 403

DTSEEN 477, 477

DTSERVER 45, 264, 493, 497, 500

DTSETTLE 393, 426

DTSTART 65, 65, 172, 173, 175, 176, 181,
183, 184, 186, 263, 264, 389, 390, 425,
426, 431, 456, 457, 460, 503, 504, 506,
507, 509

526

DTTRADE 393, 426

DTUPDATE 439, 440, 441, 493, 497
DTUSER 178, 189, 190, 236, 237, 265, 427
DTXFERPRC 170, 170, 278, 279

DTXFERPR] 194, 194, 194, 203, 214, 267, 280
DTYIELDASOF 385, 387

DURATION 406, 429

E

EARNINGS 418, 420

EMAIL 112, 120, 122, 133, 134, 499

EMAILMSGSET 151, 151

EMAILMSGSETV1 39, 151

EMAILPROF 258, 260, 260, 491

EMPLOYERCONTACTINFO 414

EMPLOYERNAME 414, 434

ENROLLRQ 43, 119, 120, 122, 128, 133, 447,
450, 499

ENROLLRS 120, 121, 122, 447, 500

ENROLLTRNRQ 120, 122, 499

ENROLLTRNRS 121, 122, 500

EVEPHONE 120, 122, 133, 134, 450, 499

EXTBANKACCTTO 515

EXTBANKDESC 211, 212, 212, 214

EXTDPAYEE 288, 296, 296, 299, 301, 311,
326, 329, 344, 347, 349, 362, 364

EXTDPMT 281, 290, 293, 293

EXTDPMTCHK 293

EXTDPMTDSC 293, 293

EXTDPMTFOR 293

EXTDPMTINFO 290

EXTDPMTINV 293, 294, 294, 295

F

FAXPHONE 112

FEE 189, 213, 214, 236, 237, 269
FEEMSG 189, 269

FEES 392, 394, 397, 398, 401

FI 20, 44, 45, 47, 47, 263, 461, 492, 496
FIASSETCLASS 384, 385, 386, 387
FICERTID 50, 50, 50

FID 20, 47, 263, 492, 496

FIID 380, 380, 383, 429, 430
FIMFASSETCLASS 385

FINALAMT 310, 311, 314, 315

FINAME 111

FINCHG 186

FINDBILLERRQ 43, 438, 439, 439, 440, 492,
492,497

FINDBILLERRS 438, 441, 441, 493, 497

FINDBILLERTRNRQ 439, 492, 497

FINDBILLERTRNRS 441, 443, 493, 497

FIPORTION 385

FIRSTNAME 120, 122, 133, 134, 499

FITID 62, 63, 63, 63, 90, 177, 178, 182, 183,
185, 186, 265, 388, 393, 406, 426, 427,
429

FRACCASH 394, 403

FREQ 154, 154, 155, 156, 270, 271, 313, 356,
357,358, 359, 516

FROM 140, 145, 146, 147

G

GAIN 394, 398, 399

GENUSERKEY 43, 44

GETMIMERQ 52, 148, 148, 148, 149

GETMIMERS 52, 52, 148, 148, 148, 150

GETMIMESUP 151

GETMIMETRNRQ 149

GETMIMETRNRS 149

GROUPID 453, 454, 454, 460, 468, 469, 469,
469, 509, 510

H

HASEXTDPMT 345
HELDINACCT 409, 427, 428
HELPMESSAGE 441, 442, 495
HTML 145, 146, 147, 150

IDSCOPE 296, 296, 348, 349, 362, 364
IMAGEURL 467, 467, 504, 505, 507
INC401K 389, 431

INC401KBAL 389, 431

INCBAL 389, 425

INCEPTODATE 418

OFX 1.6 Specification

6/30/00

527

INCIMAGES 140, 141, 141, 144, 145, 140,
147, 249, 322, 423, 440, 484, 492, 497

INCLUDE 20, 172, 172, 175, 263, 389, 425,
431

INCLUDEBILLPMTSTATUS 458, 458, 459

INCLUDEBILLSTATUS 458, 458, 459

INCLUDECOUNTS 459, 460

INCLUDEDETAIL 458, 459, 503, 506, 509

INCLUDESTATUSHIST 458, 459

INCLUDESUMMARY 459, 459

INCOME 400

INCOMETYPE 394, 400, 401

INCOO 389, 425

INCPOS 389, 389, 425, 431

INCTRAN 20, 172,172, 175, 263, 389, 425,
431

INITIALAMT 310, 311, 314, 315

INITTALLOANBAL 417

INTERCANRQ 208, 208

INTERCANRS 208, 208

INTERMODRQ 205, 205

INTERMODRS 206, 206

INTERRQ 202, 202, 225, 227

INTERRS 203, 203, 225, 228

INTERSYNCRQ 92, 242, 242, 247

INTERSYNCRS 92, 243, 243

INTERTRNRQ 202, 205, 208, 242

INTERTRNRS 203, 206, 208, 243

INTERXFERMSGSET 255, 256, 261

INTERXFERMSGSETV1 39, 255, 256, 261

INTERXFERMSGSRQV1 255

INTERXFERMSGSRSV1 256

INTLXFERFEE 261, 262

INTRACANRQ 199, 199

INTRACANRS 199, 199

INTRAMODRQ 196, 196, 259

INTRAMODRS 197, 197, 277, 279

INTRARQ 193, 193, 218, 220, 266, 270

INTRARS 193, 194, 218, 221, 266, 271, 279

INTRASYNCRQ 92, 240, 240, 245

INTRASYNCRS 92, 241, 241

INTRATRNRQ 38, 193, 196, 199, 240, 266

INTRATRNRS 194, 197, 199, 241, 266, 277,
278

INV401K 391, 414, 434

INV401KBAL 391, 413, 434

INV401KDNLD 373

INV401KSOURCE 394, 397, 398, 400, 401,
402, 403, 406, 409, 433

INV401KSUMMARY 417, 435

INVACCTFROM 120, 128, 369, 369, 369, 370,
389, 390, 403, 421, 422, 423, 424, 425,
426,431, 432

INVACCTINFO 369, 370, 370

INVACCTTO 128, 369

INVACCTTYPE 370

INVALIDACCTTYPE 258

INVBAL 391, 411, 411, 428

INVBANKTRAN 391, 392, 392, 427

INVBUY 396, 399, 426

INVDATE 294, 294

INVDESC 294, 294

INVEXPENSE 400

INVMAILRQ 421, 421, 484

INVMAILRS 422, 422, 485

INVMAILSYNCRQ 92, 421, 423, 423

INVMAILSYNCRS 92, 421, 424, 424

INVMAILTRNRQ 423

INVMAILTRNRS 424

INVNO 294, 294

INVOICE 293, 294, 294, 462

INVOOLIST 391, 429

INVPAIDAMT 294, 294

INVPOS 409, 409, 410, 427, 428

INVPOSLIST 369, 391, 427

INVSELL 396, 402

INVSTMTMSGSET 373, 373, 374, 375

INVSTMTMSGSETV1 39, 372, 374, 375

INVSTMTMSGSRQV1 374, 425, 431

INVSTMTMSGSRSV1 375, 426, 432

INVSTMTRQ 388, 389, 389, 425, 431

INVSTMTRS 390, 390, 426, 432

INVSTMTTRNRQ 388, 388, 425, 431

INVSTMTTRNRS 390, 390, 426, 432

INVTOTALAMT 294, 294

INVTRAN 393, 393, 397, 398, 399, 400, 401,
402, 403, 426

INVTRANLIST 390, 426, 432

J

JRNLFUND 400
JRNLSEC 401

528

L

LANGUAGE 20, 44, 45, 113, 263, 264, 492,
493, 496, 497, 499, 500

LASTNAME 120, 122, 133, 134, 499

LEDGERBAL 83, 173, 176, 265

LIMITPRICE 406, 429

LINEITEM 294, 295, 295

LITMAMT 295, 295

LITMDESC 295, 295

LOAD 392, 394, 397, 398, 401

LOANDESC 417

LOANID 394, 397, 398, 417, 433

LOANINFO 417

LOANINTEREST 394, 397, 433

LOANINTERESTTODATE 417

LOANMATURITYDATE 417

LOANNEXTPMTDATE 417

LOANPMTAMT 417

LOANPMTFREQ 417

LOANPMTSINITIAL 417

LOANPMTSREMAINING 417

LOANPRINCIPAL 394, 397, 433

LOANRATE 417

LOANSTARTDATE 417

LOANTOTALPROJINTEREST 417

LOGO 442, 494, 495, 496, 498

LOSTSYNC 90, 96, 104, 105, 131, 135, 145,
239, 241, 243, 244, 246, 248, 250, 323,
334, 337, 339, 424, 485

M

MAIL 140, 140, 142, 145, 146, 147, 233, 234,
236, 237, 319, 320, 421, 422, 482

MAILRQ 142, 142, 145, 151

MAILRS 142, 142, 144, 146, 147

MAILSUP 151

MAILSYNCRQ 92, 142, 144, 144, 146, 151

MAILSYNCRS 92, 142, 144, 145, 146

MAILTRNRQ 142, 144, 145

MAILTRNRS 142, 145, 146

MARGINBALANCE 411, 428

MARGININTEREST 401

MARKDOWN 394, 398

MARKUP 395, 397

MATCH 413, 419, 420, 436

MATCHCONTRIBAMT 416

MATCHCONTRIBPCT 416

MATCHINFO 415, 434

MATCHPCT 415, 434

MAX 43, 114

MAXMATCHAMT 415

MAXMATCHPCT 415

MEMO 64, 64, 155, 156, 179, 212, 291, 346,
347,348, 349, 351, 352, 353, 356, 357,
358, 359, 364, 383, 393, 406, 409, 427,
428

MEMO?2 64

MESSAGE 34, 35, 60, 61, 121, 136, 142

MFASSETCLASS 385

MFINFO 382, 385, 385

MEFTYPE 385

MIDDLENAME 120, 122, 133, 134, 499

MIN 26, 114

MINAMTDUE 462

MINPMTDUE 186

MINUNITS 406

MKTGINFO 173, 176, 183, 186, 391

MKTVAL 409, 428

MODELWND 259, 308, 344

MODPENDING 220, 221, 227, 228, 313, 314,
315, 358, 359

MSGBODY 140, 145, 146, 147

MSGSETCORE 39, 51, 75, 77, 108, 112, 113,
113, 114, 115, 136, 151, 258, 260, 261,
262, 344, 373, 376, 490

MSGSETLIST 51, 111, 115, 136, 151

N

N 472, 472

NAME 59, 178, 179, 189, 190, 212, 282, 292,
296, 302, 313, 346, 347, 348, 349, 350,
351,352,353, 361, 362, 364, 427, 428,
440, 441, 449, 493, 494, 495, 497

NAMEACCTHELD 450, 501, 502

NEWUNITS 395, 403

NEWUSERPASS 48, 52, 80, 82

NINSTS 154, 155, 156, 313, 356, 357, 358,
359

NONCE 50, 50

NOTIFYDESIRED 462, 476, 504, 505, 507

NOTIFYWILLING 458, 476, 503, 506, 509

OFX 1.6 Specification

6/30/00 529

NUMERATOR 403

O

OFX 19, 20, 32, 34, 35, 35, 37, 107, 145, 149,
263, 264, 265, 266, 267, 268, 270, 271,
275,276, 346, 347, 348, 349, 350, 351,
352,353, 354, 355, 356, 357, 358, 359,
360, 361, 362, 363, 425, 426, 431, 432,
448, 492, 493, 496, 497, 499, 500, 501,
502, 503, 506, 507, 509, 510

OFXSEC 77, 77,113

OLDUNITS 395, 403

OO 406, 406, 407, 429

OOBUYDEBT 407

OOBUYMF 407

OOBUYOPT 407

OOBUYOTHER 407

OOBUYSTOCK 407, 429

OODNLD 373

OOSELLDEBT 407

OOSELLMF 407

OOSELLOPT 407

OOSELLOTHER 407

OOSELLSTOCK 407

OPTACTION 395, 399

OPTBUYTYPE 395, 399, 407

OPTINFO 382, 386, 386, 430

OPTIONLEVEL 370

OPTSELLTYPE 395, 402, 407

OPTTYPE 386, 430

ORG 20, 47, 47, 263, 492, 496

ORIGCURRENCY 83, 84, 84, 179, 183, 186,
190, 397, 398, 400, 401, 402, 403

OTHERENROLL 136, 136

OTHERINFO 382, 386, 386

OTHERNONVEST 413, 419, 420

OTHERNONVESTAMT 416

OTHERNONVESTPCT 416

OTHERVEST 413, 419, 420, 434

OTHERVESTAMT 416

OTHERVESTPCT 416, 435

P

PARVALUE 384

PAYACCT 155, 156, 291, 298, 325, 326, 327,
328, 329, 331, 346, 347, 348, 349, 350,
351, 352, 353, 356, 357, 358, 359, 361,
362, 364, 516

PAYANDCREDIT 186

PAYEE 178, 282, 284, 285, 290, 292, 292, 298,
301, 302, 313, 325, 326, 327, 328, 329,
346,347, 350, 351, 352, 353, 361, 362

PAYEE2 480

PAYEEDELRQ 36, 331, 331, 332

PAYEEDELRS 332, 332

PAYEEID 155, 156, 178, 284, 286, 286, 290,
296, 298, 301, 302, 313, 325, 326, 347,
348, 349, 356, 357, 358, 359, 362, 364

PAYEEID?2 286, 448, 449, 462, 480

PAYEELSTID 284, 285, 286, 286, 287, 288,
290, 298, 299, 301, 302, 311, 313, 326,
327, 328, 329, 331, 332, 347, 349, 349,
357,359, 362, 364

PAYEELSTID?2 286, 448, 449

PAYEEMODRQ 285, 301, 327, 327, 328, 331

PAYEEMODRS 284, 285, 301, 302, 313, 329,
329

PAYEERQ 285, 287, 301, 325, 325, 361

PAYEERS 285, 302, 313, 326, 326, 362

PAYEESYNCRQ 92, 131, 131, 135, 135, 288,
333, 333

PAYEESYNCRS 92, 131, 131, 135, 135, 284,
301, 334, 334

PAYEETRNRQ 36, 325, 327, 331, 333, 361

PAYEETRNRS 288, 326, 329, 332, 334, 362

PAYINSTRUCT 211, 214

PAYMENTINSTRUMENT 445, 446, 446, 493,
494, 495, 496, 498

PAYMENTINSTRUMENTS 442, 445, 445,
445, 446, 493, 494, 495, 498

PENALTY 398

PERCENT 385, 385

PERIODTODATE 418

PHONE 125, 126, 212, 292, 346, 347, 350,
351, 352, 353, 361, 362, 442, 493, 494,
495, 498

PINCH 114, 114

PINCHRQ 48, 48, 52, 80, 82, 100, 114, 518

PINCHRS 48, 49, 49, 52

PINCHTRNRQ 48, 52

PINCHTRNRS 48, 52

PLANID 414, 434

530

PLANJOINDATE 414, 434

PMTBYADDR 344

PMTBYPAYEEID 345

PMTBYXFER 344

PMTCANCRQ 36, 288, 297, 305, 305, 354

PMTCANCRS 159, 288, 305, 306, 306, 354

PMTINFO 155, 156, 290, 290, 298, 299, 301,
302, 303, 310, 311, 313, 314, 315, 319,
320, 346, 347, 348, 349, 350, 351, 352,
353, 356, 357, 358, 359, 364, 480

PMTINQRQ 36, 287, 288, 307, 307, 355

PMTINQRS 307, 307, 355

PMTINQTRNRQ 36, 307, 355

PMTINQTRNRS 307, 355

PMTINSTRUMENTTYPE 446, 446, 446, 494,
495, 496, 498

PMTMAILRQ 319, 319

PMTMAILRS 320, 320

PMTMAILSYNCRQ 92, 319, 322, 322, 482

PMTMAILSYNCRS 92, 323, 323

PMTMAILTRNRQ 319, 322

PMTMAILTRNRS 320, 323

PMTMODRQ 36, 281, 284, 285, 287, 297,
302, 302, 303, 350, 352

PMTMODRS 287, 288, 302, 303, 303, 305,
313, 335, 351, 353

PMTPRCCODE 296, 298, 302, 348, 350, 355,
364

PMTPRCSTS 296, 296, 298, 299, 303, 305,
307, 348, 349, 355, 364

PMTRQ 36, 105, 284, 285, 287, 288, 298, 298,
301, 305, 325, 326, 329, 346, 348

PMTRS 104, 105, 287, 288, 290, 298, 298, 298,
299, 301, 302, 335, 347, 349, 363, 364

PMTSYNCRQ 91, 92, 104, 105, 159, 288, 336,
336, 340, 363

PMTSYNCRS 92, 104, 105, 159, 287, 288,
305, 337, 337, 340, 363

PMTTRNRQ 36, 105, 298, 303, 305, 336, 346,
348, 350, 352, 354

PMTTRNRS 104, 105, 159, 298, 303, 306, 337,
347,349, 351, 353, 354, 364

POSSTOCK 410, 427

POSTALCODE 111, 120, 122, 133, 134, 212,
292, 346, 347, 350, 351, 352, 353, 361,
362,440, 442, 450, 493, 494, 495, 498,
499, 501, 502

POSTPROCWND 344

POSTYPE 395, 403, 409, 427, 428

PREFETCHURL 467, 467

PRESACCTFROM 441, 448, 448, 449, 450,
462,468, 471, 477, 482, 484, 485, 504,
505, 507, 511

PRESACCTINFO 447, 448, 448, 449, 453,
454, 480, 511

PRESACCTTO 441, 448, 448, 450, 451, 501,
502

PRESBILLINFO 449, 459, 461, 461, 461, 462,
468, 470, 471, 476, 480, 504, 505, 507

PRESCOUNTS 459, 460

PRESDELIVERYID 477, 477, 478

PRESDETAIL 471

PRESDETAILRQ 456, 461, 470, 470, 470, 471

PRESDETAILRS 471, 471

PRESDETAILTRNRQ 470

PRESDETAILTRNRS 471, 474

PRESDIRMSGSET 486, 487, 490

PRESDIRMSGSETV1 39, 438, 486, 487, 490

PRESDIRMSGSRQV1 438, 486, 492, 497

PRESDIRMSGSRSV1 438, 487, 493, 497

PRESDIRPROF 490

PRESDLVMSGSET 486, 488, 489, 490

PRESDLVMSGSETV1 39, 438, 456, 488, 489,
490

PRESDLVMSGSRQV1 456, 488, 503, 506,
509, 510

PRESDLVMSGSRSV1 456, 489, 503, 507, 510,
515

PRESDLVPROF 490

PRESGRPACCTINFOTRNRQ 452, 453, 453,
454, 510

PRESGRPACCTINFOTRNRS 453, 454, 454,
455, 510

PRESLIST 460, 461, 461, 504, 507

PORTION 385 PRESLISTRQ 456, 456, 457, 460, 461, 467,
POSDEBT 410 468, 469, 476, 480, 503, 506, 509
POSDNLD 373 PRESLISTRS 456, 460, 460, 468, 469, 504, 507
POSMF 410 PRESLISTTRNRQ 456, 457, 460, 468, 468,
POSOPT 410, 428 469, 503, 506, 509

POSOTHER 369, 410

OFX 1.6 Specification 6/30/00 531

PRESLISTTRNRS 460, 468, 469, 469, 470,
503, 507

PRESMAILRQ 482, 482

PRESMAILRS 482, 482

PRESMAILSYNCRQ 92, 481, 484, 484

PRESMAILSYNCRS 92, 481, 485, 485

PRESMAILTRNRQ 482, 484

PRESMAILTRNRS 482, 483, 485

PRESNAMEADDRESS 449, 450, 450, 451,
501, 502

PRESNOTIFYRQ 477, 477, 491

PRESNOTIFYRS 478, 478

PRESNOTIFYTRNRQ 477

PRESNOTIFYTRNRS 478, 480

PRETAX 413, 419, 420, 434, 435

PRETAXCONTRIBAMT 416

PRETAXCONTRIBPCT 416, 435

PREVBAL 462, 463

PRIORYEARCONTRIB 395, 397, 433

PROCDAYSOFF 259, 262, 344, 490, 491, 491

PROCENDTM 259, 262, 344, 490, 491

PROFITSHARING 413, 419, 420, 434

PROFITSHARINGCONTRIBAMT 416

PROFITSHARINGCONTRIBPCT 416, 435

PROFMSGSET 115, 115

PROFMSGSETV1 39, 107, 115

PROFRQ 43, 110

PROFRS 111, 111, 111, 486, 490

PROFTRNRQ 110

PROFTRNRS 111

PURANDADV 186

R

RATING 383

REASON 448, 511
RECINTERCANRQ 230, 230
RECINTERCANRS 230, 230
RECINTERMODRQ 227, 227
RECINTERMODRS 228, 228
RECINTERRQ 225, 225
RECINTERRS 225, 225
RECINTERSYNCRQ 247, 247
RECINTERSYNCRS 92, 248, 248
RECINTERTRNRQ 225, 227, 230, 247
RECINTERTRNRS 225, 228, 230, 248
RECINTRACANRQ 223, 223, 275

RECINTRACANRS 223, 223, 276

RECINTRAMODRQ 220, 220, 259

RECINTRAMODRS 221, 221

RECINTRARQ 218, 218, 270

RECINTRARS 218, 218, 271

RECINTRASYNCRQ 92, 245, 245, 275

RECINTRASYNCRS 92, 246, 246, 275

RECINTRATRNRQ 218, 220, 223, 245, 270,
275

RECINTRATRNRS 218, 221, 223, 246, 271,
276

RECPMTCANCRQ 158, 317, 317, 360

RECPMTCANCRS 158, 318, 318, 360

RECPMTMODRQ 284, 285, 313, 313, 314,
314, 358

RECPMTMODRS 285, 313, 315, 315, 328, 359

RECPMTRQ 155, 284, 285, 310, 310, 356

RECPMTRS 62, 156, 290, 311, 311, 313, 357

RECPMTSYNCRQ 92, 338, 338, 340

RECPMTSYNCRS 92, 339, 339, 340

RECPMTTRNRQ 310, 314, 317, 338, 356,
358, 360

RECPMTTRNRS 311, 315, 318, 339, 357, 359,
360

RECSRVRTID 62, 156, 156, 158, 158, 194,
203, 218, 220, 221, 223, 225, 227, 228,
230, 271, 275, 276, 280, 285, 299, 311,
314, 315, 317, 318, 357, 358, 359, 360

RECURRINST 154, 154, 155, 156, 218, 220,
221,225, 227, 228, 270, 271, 310, 311,
313, 314, 315, 356, 357, 358, 359

REFNUM 178, 203

REFRESH 94, 95, 95, 102, 113, 131, 135, 144,
238, 240, 242, 244, 245, 247, 249, 322,
333, 335, 336, 338, 423, 484, 515

REFRESHSUPT 113, 113

REINVCG 410

REINVDIV 410, 410

REINVEST 401

REJECTIEMISSING 91, 94, 95, 104, 105, 131,
135, 144, 146, 159, 238, 240, 242, 244,
245, 247, 249, 275, 322, 333, 336, 338,
363, 423, 484, 515

RELFITID 63, 395, 399, 402

RELTYPE 395, 402

RESPFILEER 113

RESTRICT 442, 495

RESTRICTION 406, 429

532

RETOFCAP 402

REVERSALFITID 63

ROLLOVER 413, 419, 420, 434
ROLLOVERCONTRIBAMT 416
ROLLOVERCONTRIBPCT 416, 435

S

SECID 379, 379, 380, 380, 382, 383, 386, 397,
398, 399, 400, 401, 402, 403, 406, 407,
409, 427, 428, 429, 430

SECINFO 383, 383, 384, 385, 386, 387, 429,
430

SECLIST 378, 381, 382, 382, 429

SECLISTMSGSET 376, 376, 377, 378

SECLISTMSGSETV1 39, 376, 377, 378

SECLISTMSGSRQV1 37, 377, 378, 382

SECLISTMSGSRSV1 37, 378, 382, 429

SECLISTRQ 380, 380, 381

SECLISTRQDNLD 376

SECLISTRS 381, 381

SECLISTTRNRQ 380, 380, 382

SECLISTTRNRS 381, 381

SECNAME 383, 429, 430

SECRQ 380

SECURED 395, 402, 410

SECURITYNAME 120, 122, 499

SELLALL 407

SELLDEBT 402

SELLMF 402

SELLOPT 402

SELLOTHER 369, 402

SELLREASON 395, 402

SELLSTOCK 402

SELLTYPE 395, 402, 407

SESSCOOKIE 43, 44, 45

SEVERITY 34, 35, 39, 52, 60, 60, 122, 126,
132, 146, 147, 150, 159, 264, 266, 268,
271,276,277,279, 347, 349, 351, 353,
354,355,357, 359, 360, 362, 364, 426,
432,493, 497, 500, 502, 503, 507, 510

SHORTBALANCE 411, 428

SHPERCTRCT 386, 395, 399, 402, 430

SIC 178, 440, 442, 493, 494, 495, 498

SIGNONINFO 43, 111, 114, 114

SIGNONINFOLIST 111

SIGNONMSGSET 51, 51, 109

SIGNONMSGSETV1 39, 51, 108

SIGNONMSGSRQV1 20, 37, 42, 263, 265,
267,270,272,273, 275,276, 346, 348,
350, 352, 354, 355, 356, 358, 360, 361,
363,425,431, 492, 496, 499, 501, 503,
5006, 509, 510

SIGNONMSGSRSV1 42, 264, 266, 268, 271,
275,277,347, 349, 351, 353, 354, 355,
357,359, 360, 362, 363, 426, 432, 493,
497, 500, 502, 503, 507, 510

SIGNONREALM 113, 114

SIGNUPMSGSET 136

SIGNUPMSGSETV1 39, 136

SIGNUPMSGSRQV1 37, 117, 499, 501

SIGNUPMSGSRSV1 37, 500, 502

SONRQ 20, 37, 42, 42, 43, 44, 44, 45, 48, 75,
80, 82, 101, 104, 109, 119, 145, 263,
265,267,270,272,273,275,276, 346,
348, 350, 352, 354, 355, 356, 358, 360,
361, 362,363, 425, 426, 431, 432, 438,
448, 454, 468, 469, 492, 496, 499, 501,
503, 5006, 509, 510, 518

SONRS 42, 42, 43, 44, 45, 45, 102, 264, 266,
268,271,275,277,347, 349, 351, 353,
354,355,357, 359, 362, 363, 426, 432,
493,497, 500, 501, 502, 503, 506, 507,
509, 510

SPACES 114

SPECIAL 114

SPLIT 403

SPNAME 45, 113, 286, 448, 449

SRVRTID 62, 62, 63, 90, 94, 98, 159, 178, 194,
196, 197, 199, 203, 205, 206, 208, 214,
215, 216, 218, 225, 267, 271, 277, 279,
285, 287, 288, 299, 303, 305, 306, 307,
319, 320, 340, 341, 347, 349, 350, 351,
352, 353, 354, 355, 364, 393, 406

SRVRTID?2 62, 63, 465

STARTOFYEAR 415

STATE 111, 120, 122, 133, 134, 212, 292, 346,
347,350, 351, 352, 353, 361, 362, 440,
442, 450, 493, 494, 495, 497, 498, 499,
501, 502

STATEWITHHOLDING 395, 398

OFX 1.6 Specification

6/30/00

533

STATUS 34, 39, 40, 41, 45, 46, 51, 52, 60, 60,
104,111, 121, 122,126, 132, 146, 147,
149, 159, 193, 203, 264, 266, 268, 271,
276,277,279, 298, 347, 349, 351, 353,
354, 355,357, 359, 360, 362, 364, 381,
390, 426, 432, 444, 455, 460, 469, 493,
497, 500, 502, 503, 507, 510

STATUSMODBY 464, 466

STMNTIMAGE 463, 467, 467, 467, 467, 504,
505, 507

STMTENDRQ 36, 181, 181, 181, 184

STMTENDRS 181, 182, 182, 184

STMTENDTRNRQ 36, 181

STMTENDTRNRS 182

STMTRQ 20, 24, 35, 172,172, 172, 174, 183,
263, 368

STMTRS 24, 35, 83, 172,173, 173, 176, 264,
368

STMTTRN 173, 176, 177, 177, 178, 264, 265,
392, 427,473

STMTTRNRQ 20, 38, 172, 263

STMTTRNRS 173, 264

STOCKINFO 382, 387, 387, 429

STOCKTYPE 387

STOPPRICE 406

STPCHKEFEE 259

STPCHKNUM 189, 190, 190, 268, 269

STPCHKPROF 258, 259, 259

STPCHKRQ 188, 188, 267, 516

STPCHKRS 189, 189, 268

STPCHKSYNCRQ 92, 238, 238

STPCHKSYNCRS 92, 239, 239

STPCHKTRNRQ 188, 238, 267

STPCHKTRNRS 189, 239, 268

STRIKEPRICE 386, 430

STSVIAMODS 344

SUBACCT 406, 429

SUBACCTFROM 395, 400, 401

SUBACCTFUND 392, 395, 397, 398, 400, 401,
402, 403, 427

SUBACCTSEC 395, 397, 398, 399, 400, 401,
402, 403, 427

SUBACCTTO 395, 400, 401

SUBJECT 140, 145, 146, 147

SUPTXDL 126, 167, 168

SVC 127, 129, 132, 453, 517

SVC2 450, 452, 501, 502

SVCADD 127, 128, 128, 128, 129, 132, 448,
450, 450, 450, 452, 501, 502

SVCCADD 127

SVCCHG 127, 128, 129, 448, 451

SVCDEL 127, 128, 129

SVCSTATUS 123, 125, 126, 129, 132, 167,
168, 289, 370, 511

SVCSTATUS?2 448, 452

SWITCHALL 407

SWITCHMF 407

SYNCERROR 515

SYNCMODE 113, 113

T

TABLENAME 471, 471, 504, 508

TABLETYPE 471, 475

TAN 40, 41, 380, 380, 388, 454, 469

TAXES 392, 395, 397, 398, 401

TAXEXEMPT 395, 398, 400, 401

TAXID 120, 122, 499

TEMPPASS 121, 121, 122, 500

TFERACTION 396, 403

TICKER 380, 380, 383, 429, 430

TO 140, 145, 146, 147

TOKEN 61, 64, 64, 88, 89, 90, 91, 94, 95, 96,
102, 104, 105, 130, 131, 134, 135, 143,
144, 145, 146, 146, 146, 159, 191, 195,
198, 200, 204, 207, 209, 215, 216, 219,
222,224,226, 229, 231, 234, 235, 238,
239, 240, 241, 242, 243, 244, 245, 246,
247,248, 249, 250, 275, 300, 304, 306,
308, 312, 316, 318, 321, 322, 323, 327,
330, 332, 333, 334, 336, 337, 338, 339,
341, 363, 422, 423, 424, 515

TOKEN2 64, 131, 484, 485

TOKENONLY 95, 95, 131, 135, 144, 238, 240,
242,244, 245, 247, 249, 322, 333, 336,
338, 423, 484, 515

TOTAL 395, 397, 398, 399, 400, 401, 402, 427

TOTALFEES 183

TOTALINT 183

TRANDNLD 373

TRANSFER 403

TRANSPSEC 75, 75, 113, 113

534

TRNAMT 64, 64, 155, 156, 169, 178, 189, 190,
211, 214, 236, 237, 265, 266, 267, 270,
272,278,279, 280, 290, 313, 346, 347,
348, 349, 350, 351, 352, 353, 356, 357,
358, 359, 364, 427

TRNTYPE 178, 180, 264, 265, 427

TRNUID 20, 40, 41, 52, 61, 61, 62, 90, 94, 96,
98, 100, 104, 105, 122, 126, 132, 139,
142, 145, 146, 147, 149, 263, 264, 266,
267,268,270,271,275,276,277,278,
285, 340, 341, 346, 347, 348, 349, 350,
351,352, 353, 354, 355, 356, 357, 358,
359, 360, 361, 362, 363, 364, 380, 381,
388, 390, 425, 426, 431, 432, 454, 455,
469, 492, 493, 497, 499, 500, 501, 502,
503, 506, 507, 509, 510, 514

TSKEYEXPIRE 45

TSPHONE 112

TYPEDESC 386

U

UNIQUEID 379, 427, 428, 429, 430

UNIQUEIDTYPE 379, 427, 428, 429, 430

UNITPRICE 369, 383, 396, 397, 398, 401, 403,
409, 427, 428

UNITS 369, 396, 397, 398, 399, 401, 403, 406,
409, 427, 428, 429

UNITSSTREET 410, 410

UNITSUSER 410, 410

UNITTYPE 396, 407

URL 52, 108, 112, 113, 114, 136, 148, 149,
150

USEHTML 140, 141, 141, 142, 144, 145, 140,
147,249, 322, 423, 484

USERID 20, 43, 44, 44, 48, 49, 50, 52, 109,
118,120, 121, 122, 140, 145, 146, 147,
263, 286, 448, 449, 453, 454, 460, 468,
469, 492, 492, 496, 496, 499, 500, 501,
502, 504, 5006, 507, 509, 511, 518

USERKEY 43, 44, 44, 45

USERPASS 20, 43, 44, 44, 80, 82, 109, 118,
263, 492, 492, 496, 496, 499, 518

USPRODUCTTYPE 85, 370, 371, 371

V

VALIDATE 441, 442, 444, 496
VALUE 59, 428

VER 113, 113, 113, 114
VESTDATE 416

VESTINFO 416

VESTPCT 416

W

WEBENROLL 136, 136
WIREBENEFICIARY 211, 212, 212, 214
WIRECANRQ 215, 215

WIRECANRS 216, 216
WIREDESTBANK 211, 211, 214
WIRERQ 211, 211

WIRERS 213, 214

WIRESYNCRQ 92, 244, 244
WIRESYNCRS 92, 244, 244
WIRETRNRQ 211, 215, 244
WIRETRNRS 214, 216, 244
WIREXFERMSGSET 257, 257, 262
WIREXFERMSGSETV1 39, 251, 257, 262
WIREXFERMSGSRQV1 257
WIREXFERMSGSRSV1 257
WITHDRAWALS 418, 420
WITHHOLDING 396, 398, 400

X

XFERDAYSWITH 344

XFERDEST 126, 167, 168

XFERDFLTDAYSTOPAY 344

XFERINFO 168, 168, 169, 193, 194, 196, 197,
201, 202, 203, 205, 206, 266, 267, 270,
271,277,279

XFERPRCCODE 170, 170, 170, 194, 203, 278,
279

XFERPRCSTS 170, 170, 194, 197, 203, 206,
278,279

XFERPROF 258, 259, 259, 261

XFERSRC 126, 167, 168

OFX 1.6 Specification

6/30/00 535

Y

YEARTODATE 417, 435
YIELD 385, 387, 429, 430
YIELDTOCALL 384
YIELDTOMAT 384

536

OFX 1.6 Specification 6/30/00 537

	Table of Contents
	Chapter�1 Overview
	1.1� Introduction
	1.1.1� Design Principles

	1.2� Open Financial Exchange at a Glance
	1.2.1� Data Transport
	1.2.2� Request and Response Model

	1.3� Definitions
	1.3.1� User
	1.3.2� Financial Institution
	1.3.3� Service Provider
	1.3.4� Client
	1.3.5� Server
	1.3.6� Service
	1.3.7� Tag
	1.3.8� Element
	1.3.9� Aggregate
	1.3.10� Request
	1.3.11� Response
	1.3.12� Message
	1.3.13� Transaction
	1.3.14� Synchronization
	1.3.15� Message Set

	1.4� OFX Versions
	1.5� Conventions

	Chapter�2 Structure
	2.1� HTTP Headers
	2.2� Open Financial Exchange File Format
	2.2.1� OFXHEADER
	2.2.2� VERSION
	2.2.3� SECURITY
	2.2.4� OLDFILEUID and NEWFILEUID

	2.3� XML Details
	2.3.1� Compliance

	2.4� Open Financial Exchange XML Structure
	2.4.1� Overview
	2.4.2� Case Sensitivity
	2.4.3� Top Level
	2.4.4� Messages
	2.4.5� Message Sets and Version Control
	2.4.6� Transactions
	2.4.7� Synchronization Wrapper
	2.4.8� Message Set Wrapper

	2.5� The Signon Message Set
	2.5.1� Signon <SONRQ> and <SONRS>
	2.5.2� USERPASS Change <PINCHRQ> <PINCHRS>
	2.5.3� <CHALLENGERQ> <CHALLENGERS>
	2.5.4� Signon Message Set Profile Information
	2.5.5� Examples

	2.6� External Data Support
	2.7� Extensions to Open Financial Exchange
	2.8� Backward Compatibility with Pre-OFX 2.0 Systems
	2.8.1� End Tag Usage
	2.8.2� XML Compliant Header
	2.8.3� International Support
	2.8.4� Message Set Versioning

	Chapter�3 Common Aggregates, Elements, and Data Types
	3.1� Common Aggregates
	3.1.1� Identification of Financial Institutions and Accounts
	3.1.2� Punctuation in Certain User-Supplied Values
	3.1.3� Echoing in Responses
	3.1.4� Balance Records <BAL>
	3.1.5� Error Reporting <STATUS>

	3.2� Common Elements
	3.2.1� Client-Assigned Transaction UID <TRNUID>
	3.2.2� Server-Assigned ID <SRVRTID>
	3.2.3� Financial Institution Transaction ID <FITID>
	3.2.4� Token <TOKEN>
	3.2.5� Transaction Amount <TRNAMT>
	3.2.6� Memo <MEMO>
	3.2.7� Date Start and Date End <DTSTART> <DTEND>
	3.2.8� Common Data Types
	3.2.9� Amounts, Prices, and Quantities
	3.2.10� Language
	3.2.11� Other Basic Data Types

	Chapter�4 OFX Security
	4.1� Security Concepts in OFX
	4.1.1� Architecture
	4.1.2� Security Goals
	4.1.3� Security Standards
	4.1.4� FI Responsibilities
	4.1.5� Security Levels: Channel vs. Application

	4.2� Security Implementation in OFX
	4.2.1� Channel-Level Security
	4.2.2� Application-Level Security

	Chapter�5 International Support
	5.1� Language and Encoding
	5.2� Currency <CURDEF> <CURRENCY> <ORIGCURRENCY>
	5.3� Country-Specific Element Values

	Chapter�6 Data Synchronization
	6.1� Overview
	6.2� Background
	6.3� Data Synchronization Approach
	6.4� Data Synchronization Specifics
	6.4.1� Tokens
	6.4.2� The Synchronization Process
	6.4.3� Synchronizable Objects
	6.4.4� Token and Full Syncronization Summary

	6.5� Conflict Detection and Resolution
	6.6� Synchronization Options
	6.6.1� Synchronization Errors

	6.7� Typical Server Architecture for Synchronization
	6.8� Typical Client Processing of Synchronization Results
	6.9� Simultaneous Connections
	6.10� Synchronization Alternatives
	6.10.1� File-Based Error Recovery
	6.10.2� Lite Synchronization
	6.10.3� Relating Synchronization and Error Recovery

	6.11� Examples

	Chapter�7 FI Profile
	7.1� Overview
	7.1.1� Message Sets
	7.1.2� Version Control
	7.1.3� Batching and Routing
	7.1.4� Client Signon for Profile Requests
	7.1.5� Profile Request <PROFRQ>

	7.2� Profile Response <PROFRS>
	7.2.1� Message Set
	7.2.2� Signon Realms
	7.2.3� Status Codes

	7.3� Profile Message Set Profile Information

	Chapter�8 Activation & Account Information
	8.1� Overview
	8.2� Approaches to User Sign-Up with OFX
	8.3� Users and Accounts
	8.4� Enrollment and Password Acquisition
	8.4.1� User IDs
	8.4.2� Enrollment Request <ENROLLRQ>
	8.4.3� Enrollment Response <ENROLLRS>
	8.4.4� Enrollment Status Codes
	8.4.5� Examples

	8.5� Account Information
	8.5.1� Request <ACCTINFORQ>
	8.5.2� Response <ACCTINFORS>
	8.5.3� Account Information Aggregate <ACCTINFO>
	8.5.4� Status Codes
	8.5.5� Examples

	8.6� Service Activation
	8.6.1� Activation Request <ACCTRQ>
	8.6.2� Activation Response <ACCTRS>
	8.6.3� Status Codes
	8.6.4� Service Activation Synchronization
	8.6.5� Examples

	8.7� Name and Address Changes
	8.7.1� Change User Information Request <CHGUSERINFORQ>
	8.7.2� Change User Information Response <CHGUSERINFORS>
	8.7.3� Status Codes
	8.7.4� Change User Information Synchronization

	8.8� Signup Message Set Profile Information

	Chapter�9 Customer to FI Communication
	9.1� The E-Mail Message Set
	9.2� E-Mail Messages
	9.2.1� Regular vs. Specialized E-Mail
	9.2.2� Basic <MAIL> Aggregate
	9.2.3� E-Mail <MAILRQ> <MAILRS>
	9.2.4� E-Mail Synchronization <MAILSYNCRQ> <MAILSYNCRS>
	9.2.5� E-Mail Example

	9.3� Get HTML Page
	9.3.1� MIME Get Request and Response <GETMIMERQ> <GETMIMERS>
	9.3.2� MIME Example

	9.4� E-Mail Message Set Profile Information

	Chapter�10 Recurring Transactions
	10.1� Creating a Recurring Model
	10.2� Recurring Instructions <RECURRINST>
	10.2.1� Values for <FREQ>
	10.2.2� Examples

	10.3� Retrieving Transactions Generated by a Recurring Model
	10.4� Modifying and Canceling Individual Transactions
	10.5� Modifying and Canceling Recurring Models
	10.5.1� Examples

	10.6� Expired Models

	Chapter�11 Banking
	11.1� Consumer and Business Banking
	11.2� Credit Card Data
	11.3� Common Banking Aggregates
	11.3.1� Banking Account <BANKACCTFROM> and <BANKACCTTO>
	11.3.2� Credit Card Account <CCACCTFROM> and <CCACCTTO>
	11.3.3� Bank Account Information <BANKACCTINFO>
	11.3.4� Credit Card Account Information <CCACCTINFO>
	11.3.5� Transfer Information <XFERINFO>
	11.3.6� Transfer Processing Status <XFERPRCSTS>

	11.4� Downloading Transactions and Balances
	11.4.1� Bank Statement Download
	11.4.2� Credit Card Statement Download
	11.4.3� Statement Transaction <STMTTRN>

	11.5� Statement Closing Information
	11.5.1� Statement Closing Download
	11.5.2� Non-Credit Card Statement <CLOSING>
	11.5.3� Credit Card Statement Closing Request <CCSTMTENDRQ>
	11.5.4� Credit Card Statement Closing Response <CCSTMTENDRS>

	11.6� Stop Check
	11.6.1� Stop Check Add
	11.6.2� Status Codes

	11.7� Intrabank Funds Transfer
	11.7.1� Intrabank Funds Transfer Addition
	11.7.2� Intrabank Funds Transfer Modification
	11.7.3� Intrabank Funds Transfer Cancellation

	11.8� Interbank Funds Transfer
	11.8.1� Interbank Funds Transfer – US
	11.8.2� Interbank Funds Transfer – International Usage
	11.8.3� Interbank Funds Transfer Modification
	11.8.4� Interbank Funds Transfer Cancellation

	11.9� Wire Funds Transfer
	11.9.1� Wire Funds Transfer Addition
	11.9.2� Wire Funds Transfer Cancellation

	11.10� Recurring Funds Transfer
	11.10.1� Recurring Intrabank Funds Transfer Addition
	11.10.2� Recurring Intrabank Funds Transfer Modification
	11.10.3� Recurring Intrabank Funds Transfer Cancellation
	11.10.4� Recurring Interbank Funds Transfer Addition
	11.10.5� Recurring Interbank Funds Transfer Modification
	11.10.6� Recurring Interbank Funds Transfer Cancellation

	11.11� E-Mail and Customer Notification
	11.11.1� Banking E-Mail
	11.11.2� Notifications
	11.11.3� Returned Check and Deposit Notification

	11.12� Data Synchronization for Banking
	11.12.1� Data Synchronization for Stop Check
	11.12.2� Data Synchronization for Intrabank Funds Transfers
	11.12.3� Data Synchronization for Interbank Funds Transfers
	11.12.4� Data Synchronization for Wire Funds Transfers
	11.12.5� Data Synchronization for Recurring Intrabank Funds Transfers
	11.12.6� Data Synchronization for Recurring Interbank Funds Transfers
	11.12.7� Data Synchronization for Bank Mail

	11.13� Message Sets and Profile
	11.13.1� Message Sets and Messages
	11.13.2� Bank Message Set Profile
	11.13.3� Credit Card Message Set Profile
	11.13.4� Interbank Funds Transfer Message Set Profile
	11.13.5� Wire Transfer Message Set Profile

	11.14� Examples
	11.14.1� Statement Download
	11.14.2� Intrabank Funds Transfer
	11.14.3� Stop Check
	11.14.4� Recurring Transfers

	Chapter�12 Payments
	12.1� Consumer and Business Payments
	12.2� The Payee Model
	12.2.1� Payee Identifiers
	12.2.2� Payee Lists
	12.2.3� Standard Payee Lists
	12.2.4� Identifying Payees
	12.2.5� Side Effects of Payee Adds and Modifications

	12.3� Identifiers Used in Payment Transactions
	12.4� The Payment Life Cycle
	12.4.1� Payment Creation
	12.4.2� Payment Modification
	12.4.3� Payment Status Inquiry
	12.4.4� Payment Cancellation
	12.4.5� Delayed Payee Matching

	12.5� Common Payments Aggregates
	12.5.1� Payments Account Information <BPACCTINFO>
	12.5.2� Payment Information <PMTINFO>

	12.6� Payments Functions
	12.6.1� Payment Creation
	12.6.2� Payment Modification
	12.6.3� Payment Cancellation
	12.6.4� Payment Status Inquiry

	12.7� Recurring Payments
	12.7.1� Creating a Recurring Payment
	12.7.2� Recurring Payment Modification
	12.7.3� Recurring Payment Cancellation

	12.8� Payment Mail
	12.8.1� Payment Mail Request and Response
	12.8.2� Payment Mail Synchronization

	12.9� Payee Lists
	12.9.1� Adding a Payee to the Payee List
	12.9.2� Payee Modification
	12.9.3� Payee Deletion
	12.9.4� Payee List Synchronization

	12.10� Data Synchronization for Payments
	12.10.1� Payment Synchronization
	12.10.2� Recurring Payment Synchronization
	12.10.3� Discussion

	12.11� Message Sets and Profile
	12.11.1� Bill Pay Message Sets and Messages
	12.11.2� Bill Pay Message Set Profile <BILLPAYMSGSET>

	12.12� Examples
	12.12.1� Scheduling a Payment
	12.12.2� Modifying a Payment
	12.12.3� Canceling a Payment
	12.12.4� Updating Payment Status
	12.12.5� Scheduling a Recurring Payment
	12.12.6� Modifying a Recurring Payment
	12.12.7� Canceling a Recurring Payment
	12.12.8� Adding a Payee to the Payee List
	12.12.9� Synchronizing Scheduled Payments

	Chapter�13 Investments
	13.1� Types of Response Information
	13.2� Sub-Accounts
	13.3� Units, Precision, and Signs
	13.3.1� Units
	13.3.2� Precision
	13.3.3� Signs

	13.4� Bank and Investment Transactions
	13.5� Money Market Funds
	13.5.1� Separate Account at the Financial Institution
	13.5.2� Sweep Account Within an Investment Account
	13.5.3� Position Within an Investment Account

	13.6� Investment Accounts
	13.6.1� Specifying the Investment Account <INVACCTFROM>
	13.6.2� Investment Account Information <INVACCTINFO>
	13.6.3� Brokerage, Mutual Fund, and 401K Accounts

	13.7� Investment Message Sets and Profile
	13.7.1� Investment Statement Download
	13.7.2� Security Information

	13.8� Investment Securities
	13.8.1� Security Identification <SECID>
	13.8.2� Security List Request
	13.8.3� Security List Response
	13.8.4� Security List <SECLIST>
	13.8.5� Securities Information

	13.9� Investment Statement Download
	13.9.1� Investment Statement Request
	13.9.2� Investment Statement Response
	13.9.3� 401(k) Account Information

	13.10� Investment E-Mail
	13.10.1� Investment E-Mail Request and Response
	13.10.2� Investment E-Mail Synchronization

	13.11� Complete Example
	13.12� Complete 401(k) Example

	Chapter�14 Bill Presentment
	14.1� Overview
	14.1.1� Bill Presentment Model
	14.1.2� Servers and Message Sets

	14.2� Biller Directory
	14.2.1� Client Signon to the Biller Directory Server
	14.2.2� Search Arguments
	14.2.3� Identification of Bill Publishers
	14.2.4� Find Biller Request <FINDBILLERRQ>
	14.2.5� Find Biller Response <FINDBILLERRS>
	14.2.6� Status Codes <FINDBILLERRS>
	14.2.7� Account Number Validation
	14.2.8� Biller Payment Restrictions

	14.3� Customer Signup
	14.3.1� Enrollment
	14.3.2� Account Inquiry
	14.3.3� Service Activation
	14.3.4� Service Status Update for Groups of Customers

	14.4� Bill Delivery
	14.4.1� Bill Delivery Process
	14.4.2� Bill List Retrieval
	14.4.3� Bill Detail Retrieval
	14.4.4� Table Structure Definition
	14.4.5� Delivery Notification
	14.4.6� Bill Status Modification

	14.5� Bill Payment
	14.5.1� Remittance Information
	14.5.2� Payee Identification

	14.6� Bill Presentment E-Mail
	14.6.1� Bill Presentment Mail Request <PRESMAILRQ>
	14.6.2� Bill Presentment Mail Response <PRESMAILRS>
	14.6.3� Status Codes <PRESMAILRS>
	14.6.4� Request <PRESMAILSYNCRQ>
	14.6.5� Response <PRESMAILSYNCRS>.

	14.7� Message Sets and Profile
	14.7.1� Message Sets and Messages
	14.7.2� Biller Directory Message Set Profile
	14.7.3� Bill Delivery Message Set Profile

	14.8� Bill Presentment Examples
	14.8.1� Find Biller Examples
	14.8.2� Enrollment Examples
	14.8.3� Activation Example
	14.8.4� Bill Delivery Examples

	Appendix�A Status Codes
	Appendix�B Differences Between OFX 1.6 and OFX 2.0
	B.1� OFX 1.6 to 2.0
	B.1.1� Specification Changes by Chapter

	Tag Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Y

