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Forms: Accentuating the Positive

 The PSL (Process Specification Language) project is creating a standard language for process specification to
serve as an interlingua to integrate multiple process−related applications throughout the manufacturing life
cycle. This interchange language is unique due to the formal semantic definitions (the ontology) that underlie the
language. The PSL ontology is organized modularly with a small set of core concepts and multiple extensions
which add to the core. We are developing a mapping from the PSL semantic concepts to XML (Extensible Markup
Language) that uses architectural forms to explicitly specify the relationship between the concepts in a process
specification and the PSL core and extensions. An example showing architectural form processing of an XML−
encoded process specification demonstrates the usefulness of architectural forms for managing modular
specifications, mapping non−PSL syntax to PSL terminology, and generating extension−specific data views. 
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Introduction
 

Ac−cent−tchu−ate the positive, e−lim−my−nate the negative,
Latch on to the affirmative, don’t mess with Mister In−between.

 This refrain, from the 1940s hit song Ac−Cent−Tchu−Ate the Positive [MER 44], nicely
summarizes the benefits of architectural forms [ISO 10744] [ISO 10744−1] [MEG 98].
Architectural forms enable XML (Extensible Markup Language) [W3C 98] or SGML (Standard
Generalized Markup Language) [ISO 8879] [GOL 92] applications to easily create architecture−
specific document views, retaining only relevant markup and character data while hiding all
other document content. Architectural forms also support the substitution of identifier names in a
base architecture for names in the client document, facilitating data sharing between user
communities with inconsistent terminologies. Such capabilities are possible because architectural
forms unambiguously specify how document types relate to one another. 

 This paper discusses how we are using architectural forms in an XML representation of the
proposed PSL (Process Specification Language) [SCH 99−2] [SCH 99−1] [PSL] standard. We
begin with an overview of PSL and how it can be presented as XML. Next we provide an
example showing our use of architectural forms. Then we summarize the benefits of our
approach and discuss some related issues. We assume the reader is already familiar with
architectural forms and has seen examples of them being used. If this is not the case, the reader
would be well advised to read some introductory material such as chapters 9 and 10 of David
Megginson’s book Structuring XML Documents [MEG 98] or Eliot Kimber’s on−line tutorial
[KIM 97] before proceeding further. We do not assume prior knowledge of PSL. 



Overview of PSL
 Many applications use process information, including production scheduling, process planning,
workflow, business process re−engineering, simulation, process realization process modeling,
and project management. The problem is that all of these applications represent process
information in their own internal representations. Therefore communication between them, a
growing need for industry, is nearly impossible without some kind of translator. The PSL project
at NIST (National Institute of Standards and Technology) is working with industry and academia
to create a standard language for process specification in order to integrate multiple process−
related applications throughout the manufacturing life cycle. This interchange language is unique
due to the formal definitions (the ontology) that underlie the language. Because of these explicit
and unambiguous definitions, information exchange can be achieved without relying on hidden
assumptions or subjective mappings. PSL semantics are represented using KIF (Knowledge
Interchange Format) [GEN 92]. Briefly stated, KIF is a formal language developed for the
exchange of knowledge among disparate computer programs. KIF provides the level of rigor
necessary to unambiguously define concepts, a necessary characteristic to exchange
manufacturing process information using the PSL ontology. 

 The primary components of PSL are definitions and relations expressed in KIF. These
definitions and relations constitute the PSL ontology for processes. We can include an infinite
set of terms in our ontology, but they can only be shared if we agree on their definitions. It is the
definitions that are being shared, not simply the terms. 

 The PSL ontology consists of definitions and axioms for the concepts of PSL. However, this is
not simply an amorphous set of sentences. Figure 1 gives an overview of the semantic
architecture of the PSL ontology. There are three major components — the axioms of PSL Core,
core theories, and definitions that are organized as sets of extensions to PSL Core. The PSL
ontology is organized modularly in order to facilitate the addition of new extensions as future
industrial requirements for PSL emerge. PSL’s modularity also makes it possible for
applications to support a subset of extensions responding to a particular class of process
specifications without having to support the entire PSL ontology. 

PSL CoreCore Theory

Extensions

Figure 1. The PSL Semantic Architecture



 PSL Core specifies the semantic primitives in the PSL ontology corresponding to the
fundamental intuitions about activities. Primitives are those terms for which we do not give
definitions; rather, we specify axioms that constrain the interpretation of the terms. An example
of such a primitive is the “before” relation. An example of an axiom constraining the
interpretation of “before” is the statement that the “before” relation is irreflexive. This axiom is
formally specified in KIF as follows:  

(forall (?p)
        (not (before ?p ?p)))

The terms that have definitions can be grouped into extensions of PSL Core. The extensions are
organized by logical dependencies — one extension depends on another if the definitions of any
terms in the first extension require terms defined in the second extension. PSL Core is therefore
intended to be used as the basis for defining terms of the extensions in the PSL ontology. PSL
extensions often constrain terms in the PSL Core to define new terms. In addition to PSL Core
and its extensions, other sets of axioms may be required which introduce new primitive
concepts; these axioms are grouped into core theories. Although not extensions themselves, these
core theories provide building blocks necessary to define concepts in PSL. The extensions that
introduce new primitive concepts do so because the concepts introduced in the PSL Core are not
sufficient for defining the terms introduced in the extension. Therefore, new primitive concepts
are introduced within the extensions to ensure that all other terms within the extension can be
completely defined. 

PSL and XML
 We are developing a mapping from the PSL semantic concepts to XML. The most obvious
reason for this endeavor is XML’s popularity. Vendors of mainstream software applications such
as Internet browsers, database environments, and business productivity tools are either already
supporting or intend to support XML in their products. Mapping PSL instances to XML will
enable process specifications to be interpreted by these generic applications, lowering the
barriers to data sharing. Another reason to map PSL to XML is XML’s “tag−centric” syntax.
XML is a natural fit for representing ordered sequences and hierarchies. Thus it is well suited for
describing PSL’s ordering and sub−activity relationships. 

 Although XML’s ubiquity and tag−oriented syntax make it a useful presentation format for
PSL, XML has one major weakness. XML is not as rich a representation as KIF. In particular, it
can be difficult to describe arbitrary constraints between data elements in an information model
in such a way that an XML application could enforce the constraints. For example, consider a
manufacturing process involving replacement of an old, worn−out part with a newer part. The
newer part does not necessarily have to be brand new, but its level of wear−and−tear must be
some measurable quantity less than that of the old part in order to make the replacement process
economically worthwhile. 

 Such a constraint could be represented as a relation in KIF, but there is no obvious way it can be
represented in XML. Because XML is not as powerful as KIF when it comes to specifying
constraints, XML’s presentational abilities for PSL are limited. Exactly what those limitations
are is a topic for future research, but intuitively it seems that some aspects of the PSL ontology
specified as KIF relations must either be implicitly represented (as can be done with ordering



and sub−activity relationships) or omitted in an XML presentation. Also, since portions of the
ontology are hard to specify in XML, XML is not always suitable as an authoring environment
for PSL. Still, despite XML’s representational shortcomings, its advantages outweigh its
disadvantages — particularly for applications not requiring the full power of the PSL ontology.
Furthermore, efforts are underway to develop a schema language superior to the existing DTD
(Document Type Definition) mechanism for defining the structure, content and semantics of
XML documents [W3C 99−1] [W3C 99−2]. Once it becomes standardized, the XML Schema
language will narrow the gap between XML and KIF in their respective abilities to represent
constraints. 

Use of Architectural Forms
 PSL is modular by design, and any presentation of PSL should preserve this modularity. Thus
our approach for representing PSL as XML involves specifying a DTD for PSL Core and DTDs
for each PSL extension. An XML−encoded process specification then employs architectural
forms to explicitly specify the PSL subset the process specification uses as well as how the
process specification conforms to each DTD in the subset. As an example of this approach, we
specify architectures for PSL Core and a PSL extension and then derive a client document from
these two architectures. 

 PSL Core ontology contains four primitive classes, three primitive relations, and two primitive
functions. The classes are object, activity, activity−occurrence and timepoint; the relations are
participates−in, before, and occurrence−of; and the functions are beginof, and endof. Timepoints
are assumed to be ordered by the before relation. We use the following XML DTD to represent
this core ontology:  

<!−−                    PSL Core (pslcore.dtd)                     −−>
<!ELEMENT  psl          (objects?, timepoints, activities,
                             occurrences)                            >
<!ELEMENT  objects      (object+)                                    >
<!ELEMENT  object       (name, participations?)                      >
<!ATTLIST  object
             id         ID                                 #REQUIRED >
<!ELEMENT  name         (#PCDATA)                                    >
<!−−                 occurrences in which this object participates −−>
<!ELEMENT  participations
                        (participatesin+)                            >
<!ELEMENT  participatesin EMPTY                                      >
<!ATTLIST  participatesin
             occurrence IDREF                              #REQUIRED
             beginof    IDREF                              #REQUIRED
             endof      IDREF                              #REQUIRED >
<!ELEMENT  timepoints   (timepoint+)                                 >
<!ELEMENT  timepoint    (#PCDATA)                                    >
<!ATTLIST  timepoint
             id         ID                                 #REQUIRED >
<!ELEMENT  activities   (activity+)                                  >
<!ELEMENT  activity     (#PCDATA)                                    >
<!ATTLIST  activity
             id         ID                                 #REQUIRED >
<!ELEMENT  occurrences  (occurrence+)                                >



<!ELEMENT  occurrence   (#PCDATA)                                    >
<!ATTLIST  occurrence
             activity   IDREF                              #REQUIRED
             id         ID                                 #REQUIRED >

The object , timepoint , activity , and occurrence  elements represent the four corresponding
primitive classes in the PSL Core ontology. participatesin  represents the participates−in
relation. The activity  attribute of element occurrence  corresponds to the occurrence−of
relation. Attributes of element participatesin  represent the functions beginof and endof. The
ordering of timepoint  elements in the content mode for timepoints  implicitly represents the
before relation. The  character data inside timepoint , activity , and occurrence  elements is
intended to be interpreted by an application as documentation describing the corresponding PSL
timepoint, activity, or activity−occurrence. 

 We now consider PSL’s Activity Occurrences extension, whose purpose is to describe how
activity−occurrences relate to one another with respect to the time at which they start and end.
The following DTD can be used to represent this extension:  

<!−−                 Activity occurrences extension (actoccur.dtd) −−>
<!ELEMENT  occur        (timepoints, occurrences)                    >
<!ELEMENT  timepoints   (timepoint+)                                 >
<!ELEMENT  timepoint    (#PCDATA)                                    >
<!ATTLIST  timepoint
             id         ID                                 #REQUIRED >
<!ELEMENT  occurrences  (occurrence+)                                >
<!ELEMENT  occurrence   (#PCDATA)                                    >
<!ATTLIST  occurrence
             beginof    IDREF                              #REQUIRED
             endof      IDREF                              #REQUIRED >

Like all PSL extensions, Activity Occurrences requires PSL Core axioms. Indeed the DTD uses
the core classes timepoint and occurrence and the core functions beginof and endof. The
elements corresponding to these core classes could have been derived using architectural forms
from their counterparts in the PSL Core DTD. In order to keep this paper brief, however, we do
not specify architectural forms as part of the Activity Occurrences DTD. 

 Now we consider a very simple XML−encoded process specification for building an automobile
engine. Our choice of scenario is adapted from the larger and far more complicated Camile
Motor Works manufacturing process interoperability scenario [POL 98] developed for PSL.
Building consists of two steps: assembly followed by testing. To make this example more
interesting, our process specification uses some non−PSL terminology. In particular it uses the
following jargon from the IDEF3 Process Description Capture Method [IDEF3] [IDEF], a
mechanism for modeling system behavior:

•  UoB (Unit of Behavior) — analogous to an activity in PSL. 

•  Component — analogous to a sub−activity in PSL. Sub−activities are described in a PSL
extension not included in our example. 

•  Process — analogous to an activity−occurrence in PSL. 

 We now supply the following architecture use declarations in order to make the PSL Core and
Activity Occurrences DTDs into enabling architectures for our IDEF3−influenced process



specification:  

<?IS10744:arch name="psl" 
        dtd−system−id="pslcore.dtd"
        suppressor−att="psl−processing"
        renamer−att="psl−atts"?>

<?IS10744:arch name="occur"
        dtd−system−id="actoccur.dtd"?>

These declarations declare two architectures, “psl” for PSL Core and “occur” for the Activity
Occurrences extension. Neither declaration specifies a form attribute, so the name of the element
attribute used for deriving elements defaults to the architecture name (“psl” for the PSL Core
architecture and “occur” for the Activity Occurrences architecture). The psl architecture use
declaration specifies additional element attributes for deriving attributes and selectively
suppressing architectural form processing. 

 The following IDEF3−inspired DTD for our process specification is derived from these two
architectures. Its architectural form attributes have #FIXED default values so that values do not
have to be specified in the document instance. That way, architectural forms and PSL−specific
terminology foreign to IDEF3 are hidden from document authors. The psl  and occur  attributes
make explicit the correspondence between UoBs and processes in IDEF3 and activities and
activity−occurrences in PSL. The psl−atts  attributes specify that the process in which an
IDEF3 object participates is semantically equivalent to the occurrence in which a PSL object
participates and that the UoB associated with an IDEF3 process corresponds to the activity
associated with a PSL occurrence. The value SArcForm  assigned to attribute psl−processing  of
element uob  suppresses PSL Core architectural processing for uob ’s descendants. This is needed
because sub−activities are outside the scope of the core ontology. Since character data is not
suppressed, SArcForm  has the effect of mapping the content inside the IDEF3 DTD’s
documentation  element to the content inside the PSL Core DTD’s activity  element. 

 

<!−−     process specification using IDEF3 terminology (idef3.dtd) −−>
<!ELEMENT  idef3         (objects?, timepoints, uobs, processes)     >
<!ELEMENT  objects      (object+)                                    >
<!ELEMENT  object       (name, participations?)                      >
<!ATTLIST  object
             id         ID                                 #REQUIRED >
<!ELEMENT  name         (#PCDATA)                                    >
<!ELEMENT  participations (participatesin+)                          >
<!ELEMENT  participatesin EMPTY                                      >
<!ATTLIST  participatesin
             process    IDREF                              #REQUIRED
             beginof    IDREF                              #REQUIRED
             endof      IDREF                              #REQUIRED
             psl−atts   CDATA            #FIXED "occurrence process" >
<!ELEMENT  timepoints   (timepoint+)                                 >
<!ELEMENT  timepoint    (#PCDATA)                                    >
<!ATTLIST  timepoint
             id         ID                                 #REQUIRED >
<!−−                    Units of Behavior                            >
<!ELEMENT  uobs         (uob+)                                       >



<!ATTLIST  uobs
             psl       NMTOKEN                  #FIXED "activities"  >
<!ELEMENT  uob          (documentation, components?)                 >
<!ATTLIST  uob
             id         ID                                 #REQUIRED
             psl        NMTOKEN                    #FIXED "activity"
             psl−processing NMTOKEN                #FIXED "sArcForm" >
<!ELEMENT  documentation (#PCDATA)                                   >
<!ELEMENT  components   (component+)                                 >
<!ELEMENT  component    EMPTY                                        >
<!ATTLIST  component
             uob        IDREF                              #REQUIRED >
<!ELEMENT  processes    (process+)                                   >
<!ATTLIST  processes
             psl        NMTOKEN                 #FIXED "occurrences"
             occur      NMTOKEN                 #FIXED "occurrences" >
<!ELEMENT  process      (#PCDATA)                                    >
<!ATTLIST  process
             beginof    IDREF                              #REQUIRED
             endof      IDREF                              #REQUIRED
             uob        IDREF                              #REQUIRED
             id         ID                                 #REQUIRED
             psl        NMTOKEN                  #FIXED "occurrence"
             occur      NMTOKEN                  #FIXED "occurrence"
             psl−atts   CDATA                  #FIXED "activity uob" >

 The following client document conforms to this DTD. Architectural processing attributes are
hidden from view, thanks to the use of #FIXED attributes in the DTD. The client document
specifies an automobile engine object and a set of three ordered timepoints specifying the
beginning state, the completion of assembly, and the completion of testing. There is a UoB for
building an artifact with constituent UoBs for assembly and testing. Each of these UoBs occurs
as a process making use of the automobile engine object.  

<?xml version="1.0"?>
<!DOCTYPE idef3 SYSTEM "idef3.dtd">
<idef3>
  <objects>
    <object id="o1">
      <name>automobile engine</name>
      <participations>
        <participatesin process="p1" beginof="t1" endof="t3"/>
        <participatesin process="p2" beginof="t1" endof="t2"/>
        <participatesin process="p3" beginof="t2" endof="t3"/>
      </participations>
    </object>
  </objects>
  <timepoints>
    <timepoint id="t1">start</timepoint>
    <timepoint id="t2">assembly complete</timepoint>
    <timepoint id="t3">everything complete</timepoint>
  </timepoints>
  <uobs>
    <uob id="u1">
      <documentation>build</documentation>



      <components>
        <component uob="u2"/>
        <component uob="u3"/>
      </components>
    </uob>
    <uob id="u2">
      <documentation>assemble</documentation>
    </uob>
    <uob id="u3">
      <documentation>test</documentation>
    </uob>
  </uobs>
  <processes>
    <process beginof="t1" endof="t3" uob="u1" id="p1">build automobile
engine</process>
    <process beginof="t1" endof="t2" uob="u2" id="p2">assemble engine</process>
    <process beginof="t2" endof="t3" uob="u3" id="p3">test engine</process>
  </processes>
</idef3>

 Now that all of the necessary ingredients are in place — the PSL Core and Activity Occurrences
meta−DTDs, their corresponding architecture use declarations, and an IDEF3−inspired client
document conforming to its own DTD as well as the base architectures defined using the meta−
DTDs — an architecture engine can generate architectural documents conforming to the PSL
Core and Activity Occurrences DTDs. The PSL Core architectural document generated by the
architecture engine is as follows. Note that UoBs have become activities, processes have become
occurrences, and the concept of components has been suppressed. The beginof  and endof

attributes of process  are suppressed as well, since this information is part of the Activity
Occurrences extension and is outside the scope of PSL Core. Objects, timepoints, and the notion
of participation are preserved since these concepts appear in both the IDEF3 and PSL Core
DTDs.  

<?xml version="1.0"?>
<!DOCTYPE psl SYSTEM "pslcore.dtd">
<psl>
  <objects>
    <object id="O1">
      <name>automobile engine</name>
      <participations>
        <participatesin occurrence="p1" beginof="t1" endof="t3"/>
        <participatesin occurrence="p2" beginof="t1" endof="t2"/>
        <participatesin occurrence="p3" beginof="t2" endof="t3"/>
      </participations>
    </object>
  </objects>
  <timepoints>
    <timepoint id="t1">start</timepoint>
    <timepoint id="t2">assembly complete</timepoint>
    <timepoint id="t3">everything complete</timepoint>
  </timepoints>
  <activities>
    <activity id="u1">build</activity>
    <activity id="u2">assemble</activity>



    <activity id="u3">test</activity>
  </activities>
  <occurrences>
    <occurrence activity="u1" id="p1">build automobile
engine</occurrence>
    <occurrence activity="u2" id="p2">assemble engine</occurrence>
    <occurrence activity="u3" id="p3">test engine</occurrence>
  </occurrences>
</psl>

 Here is the Activity Occurrences architectural document generated by the architecture engine.
Most of the IDEF3 markup and content is suppressed. All that remains from the IDEF3
document are the timepoints and IDEF3 processes, which have become activity−occurrences in
PSL. The uob  and id  attributes of process  are suppressed because they have no counterpart in
the Activity Occurrences DTD.  

<?xml version="1.0"?>
<!DOCTYPE occur SYSTEM "actoccur.dtd">
<occur>
  <timepoints>
    <timepoint id="t1">start</timepoint>
    <timepoint id="t2">assembly complete</timepoint>
    <timepoint id="t3">everything complete</timepoint>
  </timepoints>
  <occurrences>
    <occurrence beginof="t1" endof="t3">build automobile
engine</occurrence>
    <occurrence beginof="t1" endof="t2">assemble engine</occurrence>
    <occurrence beginof="t2" endof="t3">test engine</occurrence>
  </occurrences>
</occur>

Benefits and Practical Considerations
 We have shown that architectural forms in an XML presentation of a process specification can
be used to:

• Generate a PSL extension−specific view of the data. This is useful for situations where
the data is to be processed by an application supporting some PSL extensions but not
others.

• Convert non−PSL terms into their corresponding PSL counterparts.

 These capabilities of architectural forms benefit the PSL project in several ways:

•  Process specification terminology can easily be altered to accommodate the preferences
of different classes of users. 

•  Through judicious use of architectural forms, PSL DTDs can be extended without
breaking existing applications. 

•  If dependencies between PSL modules are documented using architectural forms,
reusability of processing software can be maximized. For instance, application software
developed for the Activity Occurrences extension can be reused for other PSL extensions



that depend on the Activity Occurrences ontology. 

 In order to truly realize the benefits of architectural forms, the PSL project must take some
practical considerations into account. One issue is the lack of maturity of XML and in particular
XML software for processing architectural forms. Because the architectural form software tools
available for XML as of this writing (Summer of 1999) are of beta quality, the automobile
engine example from the previous section was originally written in SGML, tested using an
SGML architecture engine, and then converted to XML. We expect the quality of XML
architectural form processing software to eventually improve, but in the meantime such
workarounds will be necessary. 

 We also need to create DTDs for more PSL extensions and improve our methodology for
mapping PSL concepts to XML. The PSL Core and Activity Occurrences DTDs in the previous
section’s example were developed in an ad−hoc manner without a well−defined set of principles.
The ideas stated in the section on “PSL and XML” should be expanded and formulated into a set
of guidelines for representing PSL as XML. Perhaps these guidelines should become part of the
future PSL standard. 

Architectural Forms and Modularization
 There is a growing realization among developers of frameworks for data exchange that
modularity and extensibility are essential. Past experience tells us that large monolithic
specifications are not flexible enough to meet the needs of their intended users and, as a result,
application developers end up adding their own ad−hoc customizations. These modifications
complicate data sharing and cause software maintenance problems when specifications change.
PSL’s modular approach heeds these lessons from the past. On the other hand, it introduces the
challenge of maintaining consistency between and effectively using the PSL Core and
extensions. Architectural forms help address this challenge. 

 Other projects besides PSL are using architectural forms to help achieve the benefits of
modularization. Gary Simons at the Summer Institute of Linguistics used architectural forms to
develop a “lean and mean” task−centered XML application derived from the larger and far more
general TEI (Text Encoding Initiative) DTD [SIM 98]. Simons modified the TEI DTD’s SGML
declaration to make it compatible with XML, used architectural form attributes to map element
names from the XML DTD to their TEI equivalents, and specified a TEI base architecture in his
DTD. His XML application achieves TEI conformance but without all the excess baggage
associated with the TEI DTD. 

 Architectures are also being used in a multi−level framework proposed by the HL7
SGML/XML Special Interest Group for creating, sharing, and processing electronic healthcare
records [HL7 98]. The levels in the framework represent varying degrees of markup granularity
and specificity, with the framework specifying an architectural DTD for each level. Level 1, the
least granular level, represents information identifying and classifying the document, event,
patient, and practitioner. Level 2 adds additional detail by structuring the document body into
sections. Level 3, the most granular and most detailed level, aims to meet the processing
requirements for a full electronic patient record. 

 Both of the preceding projects, like PSL, are making a conscious effort to promote extensibility



and flexibility while avoiding the mistakes of past approaches. Architectures provide a powerful
tool for achieving these goals. Architectural forms provide the rigor needed to clearly and
unambiguously document the relationships between the specifications in today’s modular
environments. That is to say, architectural forms safeguard against “messing with Mr. In−
between.” 
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