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Abstract. XML data is often used (validated, stored, queried, etc) with
respect to different types. Understanding the relationship between these
types can provide important information for manipulating this data. We
propose a notion of subsumption for XML to capture such relation-
ships. Subsumption relies on a syntactic mapping between types, and
can be used for facilitating validation and query processing. We study
the properties of subsumption, in particular the notion of the greatest
lower bound of two schemas, and show how this can be used as a guide
for selecting a storage structure. While less powerful than inclusion, sub-
sumption generalizes several other mechanisms for reusing types, notably
extension and refinement from XML Schema, and subtyping.

1 Introduction

XML [5] is a data format for Web applications. As opposed to e.g., relational
databases, XML documents do not have to be created and used with respect
to a fixed, existing schema. This is particularly useful in Web applications, for
simplifying exchange of documents and for dealing with semistructured data.
But the lack of typing has many drawbacks, inspiring many proposals [2—4, 10,
12,23,24,33] of type systems for XML. The main challenge in this context is
to design a typing scheme that retains the portability and flexibility of untyped
XML. To achieve this goal, the above proposals depart from traditional typing
frameworks in a number of ways. First, in order to deal with both structured
and semistructured data, they support very powerful primitives, such as regular
expressions [2, 10,26, 33, 28] and predicate languages to describe atomic values [2,
6, 10]. Secondly, documents remain independent from their type, which allows
the same document to be typed in multiple ways according to various application
needs. These features result in additional complexity: the fact that data is often
used with respect to different types, means that it is difficult to recover the
traditional advantages (such as safety and performance enhancements) that one
expects from type systems. To get these advantages back, one need to understand
how types of the same document relates to each other.

In this paper, we propose a notion of subsumption to capture the relation-
ship between XML types. Intuitively, subsumption captures not just the fact
than one type is contained in another, but also captures some of the structural
relationships between the two schemas. We show that subsumption can be used
to facilitate commonly used type-related operations on XML data, such as type
assignment, or for query processing.



We compare subsumption with several other mechanisms aimed at reusing
types. Subsumption is less powerful than inclusion, but it captures refinement
and extension, recently introduced by XML Schema [33], subtyping, as in tra-
ditional type systems, as well as the instantiation mechanism of [10,32]. As a
consequence, subsumption provides some formal foundations to these notions,
and techniques to take advantage of them.

We study the lattice theoretic properties of subsumption. These provide tech-

niques to rewrite inclusion into subsumption. Notably we show the existence of
a greatest lower bound. Greatest lower bound captures the information from sev-
eral schemas, while preserving the relationship with them, and can be used as
the basis for storage design.
Practical scenario. To further motivate the need for a subsumption mecha-
nism for XML, consider the following application scenario. In order to run an
integrated shopping site for some useful product, such as mobile phone jammers,
company “A” accesses catalogs from various sources. The first catalog, on the
left below, is taken from company “SESP” [22], while the second, on the right,
is extracted from miscellaneous pages.

<products> <products>

<jammer> <jammer>
<company>SESP</company> <name>Static HP Jammer</name>
<name>VHP Jammer</name> <price><onrequest/></price>
<price><onrequest/></price> <case><type>metal</type>
<case><type>Mobile Attache Case</type> <s1ze>180x180x80mm
</case></jammers> </size></case></jammer>

<jammer>

<jammer> <company>JamLogic</company>
<company>SESP</company> <name>Personal Jammer</name>
<name>Full Milspec. Portable <price><onrequest/></price>

High Power (HP) Jammer</name> <input>Digital/Analog</input>
<price><onrequest/></price> <warranty>2 years</warranty>
<case><type>Rugged military </jammer>
type case</type></case> <jammer>

<booster><range>1lkm</range></booster> <name>Cell-Phone Jammer</name>
<supplement>39</supplement></jammer> <price>749</price></jammer>

Company “SESP” only sells high power jammers, and provides precise infor-
mation about their products as the SESP schema, given on the left hand side
below!. This schema indicates that the SESPcatalog (we write types in upper
case and element names in lower case), is composed of an element with name
products, which has 0 or more children of type HPJammer (’*’ stands for the
Kleene star). HPJammers have a company sub-element which is always "SESP",
a name, etc., and may have a booster option with a supplement cost. On the
right-hand side is the schema used by company “A”. Because it accesses jam-
mer information from many places, it supports a more general description where

! Note that we will write some of the examples using the concrete schema syntax
developed for the YAT System [10]



Jammers might not have a company information, and may have any kind of
Option, with or without a supplement.

SESPCatalog := products *HPJammer; IntegratedCatalog := products
* Jammer;
HPJammer := Jammer :=
jammer [ company [ "SESP" ], jammer [ ?company [ String ],
name [ String ], name [ String ],
price [ Int | onrequest ], price [Int|onrequest],
case [ type [ String ], * (Option,
?size [ String ] 1, ?supplement [ Int ]
?(booster [ range [ Int ] 1, ) 11
supplement [ Int ] ) 1; Option := Symbol *Any;

Because it knows precisely the type of its data, company SESP can support
more efficient storage (using, for instance, techniques in [14,18,31]), with fast
access to the name, price and case information. But the fact that company “A”
assumes a different type for the same data results in a mismatch. Verifying that
type SESPCatalog is included in type IntegratedCatalog allows company “A”
to make sure the information provided by SESP will conform to the structure
expected by the application. However, this will not help in performing further
operations, such as: actually assigning types of the integrated schema to elements
of the SESP document, or understanding that the name and price elements
can be efficiently accessed using the storage used by company SESP. Doing so
requires to understand that the name and price in the Jammer type are related
to the name and the price elements in the HPJammer type. We shall see that
subsumption allows one to understand this relationship and to take advantage
of it.

Another important use of typing is to support better query processing. To

find all jammers that have a two years warranty, one can write the following
YATy, [10,16,11] query:

define q($x) = make $n
match $x with products/jammer/{ name/$n,
warranty/$w }
where contains($w,"2 years");

whose input type is:

q_type := products * jammer [ *(Name | Warranty | Other) 1;
Name := name * Anyl;

Warranty := warranty * Any2;

Other := !'nmame!warranty * Any;

Any1l := true [ Any* ]; Any2 := true [ Anyx* ]

where ! stands for tag negation, i.e., any tag other than name and warranty.
Company “A” might wish to support queries on all Jammers, but more ef-
ficient access for this query, i.e. for products with a warranty. The relational
approach [30] would be to use a specific access structure for the warranty field,
but the integrated schema does not mention it. We will see that the greatest



lower bound of the query type and the integrated schema is a new schema (with
an explicit warranty field) that can be used for storage design, while the rela-
tionships with the original schemas are preserved through subsumption.
Organization of the paper. Section 2 introduces the type system we will
use in the rest of the paper (essentially that of [2]) and the notion of type
assignment. Section 3 defines subsumption, investigates its properties and its
use for validation. Section 4 compares it to other relations on types, such as
inclusion, refinement and extension in XML Schema, etc. Section 5 studies the
greatest lower bound, the corresponding lattice, and how this can be used to
bridge the gap between inclusion and subsumption. Section 6 discusses how one
can take advantage of subsumption for storage and query processing. Section 7
summarizes related works and indicates directions for future work.

2 Data model and type system

Data model. The data model, based on ordered labeled trees with references,
is similar to other previously proposed models [10,15,25,28]. @ denotes a fixed
(infinite) set of object ids and L a fixed set of labels. References are modeled as
a special type of node, that is labeled with a distinguished symbol “&” in £ and
has exactly one child. The root of the database is treated specially: A database
1s a tree with a root “A”, which has no label, and cannot be referenced by any
node. (The reason for the special treatment of the root is explained later.)

Definition 1. A database is a structure D = (Op, labelp, childrenp), where

1. Op C O,

2. labelp 1s a mapping from Op to L;

3. childrenp 1is a mapping from Op U{a} to U;»o0%; If labelp(0) = &, then
children(o) € O};

4. The structure that we obtain by considering only children of non-reference
nodes (nodes with a label other than “€7) is a tree.

Ezample 1. The upper part of Figure 1 is a (partial) representation for the
Jammers document from Section 1 and would correspond to the following struc-
ture. D = (Op,labelp, childrenp), where Op = {o1,02,...}, children(a) =
[...,01,..], and

label(o1) = jammer  children(o1) = [011; 012; 013; 014)
label(011) = company children(o11) = [0111]
label(0111) = “SESP” children(o111) = [ ]

Type system. We adopt the type system of [2,25], where predicates are used
to describe labels and regular expressions are used to describe children. Note
though that we do not handle unordered trees, and that we model references
in a slightly different way. Also, we choose not to use XML Schema [33], which



High Power Jammers
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HPJammer Schema

Fig. 1. Type assignment and subsumption mapping

1s more a user syntax for types than a model, but we will explain later on how
subsumption can be used in the context of XML Schema.

Let 7 be a fixed, infinite, set of type names, and P a fixed set of label predi-
cates, which is closed under disjunction, conjunction, and complementation. We
use 7, 7 etc., to denote elements of 7. Regular expressions over 7 are of the
form e, 7, &7, (R1, R2), (R1 | R2), or R}, where Ry and Rs are regular expres-
sions, and 7 € T. L(R) denotes the language defined by the regular expression
R, in which &7 is treated as a single symbol.

Definition 2. A type schema is a structure S = (T, predicateg, regezpg), in
which

1. Ts is a finite subset of T ;

2. predicateg 1s a mapping from Tg to P with the property that for each T,
either predicates (7) = {&}, or & ¢ predicateg(r); and

3. regexpg is a mapping from Ts U{A} to regular expressions over Ts. When-
ever predicateg () = {&}, regexps(7) must be of the form 7 |-+ | .

For convenience, we will sometimes describe schemas as 7 — p;r, where p
and r are the predicate and regular expression corresponding to 7. We write
predicate(r) = true to mean that it is satisfied by all tags except “&” — the re-



strictions on the interaction between reference and non-reference types guarantee
that this will never cause any confusion.

Ezample 2. The middle part of Figure 1 is a (partial) representation of the
schema for HP jammers and would correspond to the structure (Teat, Peat, Tcat ),
where T.,; is the set {catalog, HPjammer, J11,J12,J13, 14, 111, - - -, J1421},
regexp(A\) is catalog, and

predicate . (HPjammer) = {jammer} regezp ,,(HPjammer) = J11,J12,J13,J14

predicate,,(J13) = {price} regespc,y (J1s) = Jis1|J1s2
predicate,, (J1s1) = {0,1,...} regezp,,,(J1s1) =€
predicate,,(J131) = {onrequest } regesp.,, (J1s2) =€

Typing and type assignment.

Definition 3. Let D be a database and S a schema. We say D s of type S
under the type assignment 0, and write D :9 S iff 6 is a function from Op U{a}
to Tg U{A} such that:

1. 0(a) = A,

2. for each o € Op, predicates(0(0)) = label(0), and

3. for each o € Op U {a} with children(o) = [o1,...,0p], 8(01)...0(0n) €
L{regexpg(6(0))).

We say that D is of type S, and write D : S, iff D :p S for some 6. Models(S)
is the set of databases of type S, i.e., {D | D : S}. It is immediate that D :y S
and D' C D (i.e., Ops € Op and the corresponding labels and children are the
same) imply D' :5j0,, 5.

Ezample 3. Figure 1 illustrates the type assignment between the Jammer docu-
ment and the HPJammer schema, corresponding to the following 8:

6(01) = HPjammer 6(011) = J11
6(o13) = J13 0(o131) = J132
0(01a) = J1a 8(0141) = J141

Type assignment is the most important information coming out of the typing
process (also called validation in the XML world). Once computed, it allows the
system to efficiently obtain the type of a given data whenever needed, e.g., in
order to chose the storage or take query processing decisions at run time. Note
that type assignment information is logically provided in the XML Query data
model [15] by the Def T reference”.

However simple, our type system is powerful enough to capture most of the
other proposals, including XML Schema. It can be used to represent existing

2 http://www.w3.org/TR/query-datamodel/#def t



type information from heterogeneous sources [10,32,2] or to describe mixes of
structured and semistructured data. The two following remarks will also play an
important role in the rest of the paper.

Remark 1. Any is the schema that such that D : Any holds for any database D:

A (Tanytype | 7—anyref)*
Tanyref = {&}a (Tanyref | 7—anytype)

. *
Tanytype = true, (Tanytype | 7—anyref)

Remark 2. For each database D, one can define a schema S that types this
database only, by taking Ts such that it contains exactly a type name 7 for each
object o in Op, with (o) = 7, predicateq(r) = {labelp(0)} and regexpg(r) =
childrenp (o). Then, D :p S and Models(S) = {D}.

We will write Sppj the schema that types the database D only. We will call
None the schema that types the empty database only. None has Tyene = # and
TEGErPyone (D) = €.

3 Subsumption

Intuitively, subsumption relies on a mapping between types (playing a role sim-
ilar to type assignment for typing) and on inclusion between regular expressions
over these types.

Definition 4. Let S and S’ be two schemas. We say that schema S subsumes
S’ under the subsumption mapping 6, and write S <o S’, iff 8 is a function
from Ts U{A} to Tsr U{A} such that:

1L o0(r)=4fr=A.

2. For all 7 € Ty, predicate4(1) C predicateg (0(7)).

3. For all 7 € Ts U{AY}, 0(L(regexpg(7))) C L(regexpg (0(7))) (where 6 is
extended to words in the language in the natural way)

We write S =< S if there exists a ¢ such that S <y S, and S & S’ for (S =<
S A(S" < S): this is clearly an equivalence relation.

Ezxample 4. Figure 1 illustrates the subsumption mapping between the Jammer
and HPJammer types, corresponding to the following #':

¢’ (HPJammer)=Jammer 0 (J11)=T%1
0'(J111)=J111 0 (J13)=J13
9/ (J14):Opti0n 9/ (J141):Any N

The following propositions cover the elementary properties of subsumption. The
first states that type checking is a special case of subsumption, and is a direct
consequence of Remark 2. The second and third propositions state the transi-
tivity of subsumption, and more importantly of their underlying subsumption
mapping, giving the means to propagate relationships between types.



Proposition 1. Let S, S’, 5" be three schemas, and D be a database.

1. DS aff Sipy <6 S.
2. 85 =g, S and 5" =<y, S” imply S <g,00, S”.
3. If D, S and S <y, 5, then D 4,00, S'.

Using subsumption for validation. An important consequence of Prop. 1 is
the ability to take advantage of subsumption for computing type assignments.
Intuitively, if one has a type assignment for a given database, and a subsumption
mapping from the original type to the new type, the new type assignment can
be obtained by composing the mappings rather than by evaluating the type
assignment from scratch.

This is especially useful as in most practical scenarios, including the one we
sketched in Section 1, XML data is generated from a legacy source, along with
its original schema (SESPCatalog). If instead of checking inclusion, company
“A” computes subsumption between the two schemas, 1t obtains the new type-
assignment at the same time. This approach has a number of advantages. First,
the size of schema is orders of magnitude smaller than the data. Secondly, this
can be done at compile time, without requiring to access the whole data.

Ezxample 5. For instance, assume Company “A” runs a query to the SESP
store that returns the jammer o;. We know from ¢ in Example 2 that o; has
type HPJammer and from ¢’ in Example 4, that HPJammers correspond to
Jammers in the integrated schema. This gives us directly that the type of 0y
with respect to the integrated schema is Jammer (see also Figure 1).

4 Comparison with inclusion, extension, et al

To get a better understanding of the scope of subsumption, we now compare it
to other relations over types, notably, inclusion, XML schema’s mechanisms of
refinement and extension, subtyping, and the instantiation mechanism of [10].

Inclusion. Type inclusion is defined in terms of containment of models.
Definition 5. S C 5’ iff Models(S) € Models(S").

Of course, subsumption provides additional information compared to inclusion
because of the subsumption mapping. A natural question is: can one always find
a subsumption mapping between two types for which inclusion holds.

Proposition 2. Let S and S’ be two schemas. Then (1) S <S5 — S C S5, but
not conversely; and (2) S X S" — S C 5, and this implication is proper.

Proof. (2) is trivial. (1) and (3) are direct consequences of Remark 2. To see why
the implications are proper, consider the following type schemas:

S, s o {a};e
> {a};e

S A 1T

S’ A1, T)



Then both S and ' type precisely those databases for which children(a) are all
leaves with tag “a”, but neither S < 5" or 5’ < S.

As shown in [20,21], type inclusion can be used to type-check XML languages.
Proposition 2 implies that some queries might type-check even though a sub-
sumption mapping does not exist. In such a case one might not be able to take
advantage of subsumption. Fortunately, we will see that there are many practical
cases for which a subsumption mapping between types exists, including: when
they are defined through XML Schema’s refinement or extension mechanisms or
when they are exported from a traditional type system with subtyping. More-
over, we will show (Proposition 1) that if $” C S, then one can construct a
schema S’ equivalent to S for which S” < 5’.

Extension and refinement in XML Schema. XML Schema: Part 1 [33]
defines two subtyping-like mechanisms, called extension and refinement, aimed
at reusing types. For obvious space limitations, we cannot explain all the complex
features of XML Schema, so our presentation will rely on a simple modeling of
these two mechanisms. In a nutshell, extension allows to add new fields at the
end of a given type, while refinement provides syntactic means to restrict the
domain of a given type.

Ezample 6. The following XML Schema declaration defines a Stated-Address
by refining an Address to always have a unique state element and US-Address
by extending Stated-Address with a new zip element.

<complexType name="Address">

<element name="street" type="string"/>

<element name="city" type="string"/>

<element name="state" type="string" minOccurs="0" maxOccurs="1"/>
</complexType>

<complexType name="Stated-Address" base="Address"
derivedBy="refinement">
<element name="street" type="string"/>
<element name="city" type="string"/>
<element name="state" type="string'" minOccurs="1" maxOccurs="1">
</complexType>

<complexType name="US-Address" base="Stated-Address"
derivedBy="extension">

<element name="zip"  type='"positivelnteger"/>

</complexType>

In our model, these three types would be defined as follows:

regezp(Address) = Street, City, State?, Tanytype*
regezp(Stated- Address) = Street, City, State, Tanytype*
regezp(US-Address) = Street, City, State, Zip, Tanytype*

The type Tanytype, as defined in Remark 1, indicates the ability to have ad-
ditional fields. Note that the subsumption relationship holds US-Address <
Stated-Address < Address.



Proposition 3. A type 7' derived by extension or refinement from a type 7 is
such that ™ < 1.

Proof Sketch: Refinement corresponds to adding a field at the end of a given
type. This corresponds to regular expressions of the form: regezp = 7, ..., 7,
Tanytype*, and regexp’ = T1,..., Ty, Tn41, Tanytype* for which subsumption holds
with #(7,41) = Tanytype-

Extension can be obtained by restricting a datatype, which yields inclusion
between predicates. minOccur and maxOccur restrictions corresponds to regular
expressions of the form:

/
regexp = (1,7, ..., 7), 70, ..., 77 and regexp’ = (r,7,.. ., 7), T, ..., 77
S— S—

n m n' m!

Subsumption holds when n < n/ and (n+m) > (n’+m’). Union type restrictions
correspond to regular expressions of the form regexp = 71| ... |m| ... |Thtm, and
regexp’ = 71| . ..|7, for which subsumption holds. The result follows by induction.

Subtyping. The literature proposes a large number of different mechanisms
called or related to subtyping [8,27,29]. Basic subtyping usually relies on two
mechanisms: additions of new attributes in tuples (e.g., { name: String; age:
Int } <: { name: String }) and restrictions on atomic types (e.g., Int <:
Float). The last mechanism is captured by predicate restrictions in our context,
while the first is captured by adding Any* types when modeling tuples®.

Instantiation. [10] proposes a notion of instantiation that corresponds to cer-
tain restrictions over types. This mechanism allows: restrictions on the label
predicates, restrictions on the arity of collections (similar to the minOccur and
max0Occur restrictions in XML schema), and restrictions on the unions. As for
XML Schema, these restrictions yields only types for which subsumption holds.

5 Greatest Lower and Least Upper Bound

Let S and S” be two schemas. We consider equivalence classes of schemas with
respect to subsumption [S],,, ordered by <, and show that this is a lattice. We
first define the greatest lower bound, which intuitively is a schema describing
the type information that is common to the given schemas.

We shall assume that whenever 7 and 7/ are in 7, so is the symbol 71 7.
We need to define appropriately intersection of regular expressions: our regular
expressions are over type names, but the intersection should be over the seman-
tics of the types, not the names. For example, if the regular expressions are 77
and (72, 13), the intersection will be ((m M 72), (11 M 73)).

® Note however that our type system does not capture the unordered semantics of
tuples.



Definition 6. Let S and S’ be two type schemas.* The greatest lower bound
SMS" and least upper bound SU S’ are the schemas with Tsng: = {07 | 7 €
Ts, 7 €Ts}, Tsusr = Ts UTs, and

Sms': A regexps (D) N regexpg: (A)
T = predicateg (7); regexp g (T) N regexp g (1)

Sus’: A = regexp e (A)|regexp g (D)
T — predicateg(T); regexp g (T) Tels
T — predicates: (T); regexp g (T) TeTly

Ezample 7. Consider the following two schemas (where Tanytype is as in the def-
inition of the schema Any).

S: A = (71, Tanytype*) S A = (Tanytype, T2)
1 {a};e T {b}; €
SN Sli A ((Tl r 7—anytype) ) (Tanytype r 7—anytype)* ) (Tanytype r TZ))

71 M Tanytype +> {a}; €
Tanytype (172 — {b}; €

where Tanytype M Tanytype 18 the same as Tanytype Up to renaming.

The greatest lower bound of schemas requires intersection of regular expres-
sions, that can lead to a blowup in the size of the schema but this is unlikely to
happen in practice.

The greatest lower bound is the best description, with respect to subsump-
tion, of all of the type information that we have about both schemas. In partic-
ular, if a database is typed by both S and S, it is also typed by S M.5’. More
generally:

Proposition 4. 1. STS' <Sand SNS <5;5<5U85 and S’ <SUS.

2. If 8" < S and 8" < 5, then 8" < S5, similarly If S < 5" and §" < 5",
then SU S < 5",

3. IfD:Sand D: S, then D:S01S" and D:SUS.

Theorem 1. £ = ([S], ,M~, Uy, [Nonel, , [Any],) is an incomplete distributive
lattice without complement.

The next theorem 1s essential as it gives a relationship between the syntactic
definitions of S S" and S 1S’ and the semantics of the respective schemas.
The proof of this theorem relies on Remark 2, that connects typing, on which
Models are defined, and subsumption.

Theorem 2. For any schemas S and S’, (1) Models(S M S") = Models(S) N
Models(S") and (2) Models(S U .S") = Models(S) U Models(5”).

* We assume for simplicity that Ts and T/ are disjoint. This can always be achieved
by appropriate renaming.



The use of untagged roots was introduced in [2]. Our results give another, tech-
nical, reason why such special treatment of the root is needed. Specifically, if the
database root were allowed to be tagged, then £ would not be distributive. On
the other hand, a data model based on forests rather than trees would not work
either, as then Models(S U .S") = Models(S) U Models(S’) would not hold.
Subsumption is weaker than inclusion, as there are schemas that are con-
tained in other schemas without subsuming them. For this reason, the following
Corollary is very important: it shows that whenever a schema S is contained in
a schema S’, S can be rewritten in an equivalent way such that .S subsumes 5”.

Corollary 1. Let S and S’ be two schemas such that Models(S) C Models(S’).
Then there erists a schema S” such that (1) Models(S”) = Models(S) and
(2) 8" =<5

6 Practical use of subsumption

We now come back to our example from the introduction and illustrate how
subsumption can be helpful for storage and query processing.

Standard relational techniques are used to design storage structures that take
into account which queries are likely to be asked. If we take query q from the
introduction, one might wish to find a schema S that would allow to store data
in such a way this query is answered in an efficient way. However, if one only
considers the integrated schema, one can only use the available information about
Jammers. Existing techniques [14,18,31] would provide the following relational
schema:

jammers (jid, company, name, price);
options(jid,att,treeid);
tree(treeid,...);

where the tree table is used to store any tree, playing a similar role to the
overflow graph in [14].

The greatest lower bound can be used to derive a schema that includes the
warranty attribute. After appropriate renaming of types, this is:

Warranty_Jammer :=
jammer [ ?Company’, Name’, Price’,
*( WarrantyOption’ | (OtherOption’, 7Supplement’) ) 1;

Company’ := company [ String 1;

Name’ := name[ String 1;

Price’ := price [ Int | onrequest ];
WarrantyOption’ := warranty * Any;
OtherOption’ := l!warranty * Any;
Supplement’ := supplement [ Int ]1;

We can then use this information to store the data with a faster access to
the warranty attribute, using the following relational schema:

jammers (jid, company, name, price);
jammers (jid, warranty);
options(jid,att,supplement,treeid);
tree(treeid,...);



We then need to evaluate query q on top of this storage. The key remark is
that YAT], [10,11] uses pattern matching with type expressions. This captures
the navigation performed in other languages [1,13].

Following [9], the match clause of a YAT], query is represented by a pattern-
matching operation called Bind. Bind matches a regular expression with the
data, and returns a binding between variables in the query and values in the
document. In the case of query q, Bind pL$n, $ul where

pl$n,$w] := products * Jammer;

Jammer  := jammer [ *(Name | Warranty | Other) J;
Name := name * ($n:Anyl);

Warranty := warranty * ($w:Any2);

Other := Iname'!warranty * Any;

Any1 := true [ Any* ]; Any2 := true [ Any* ]

Most XML processors evaluate similar operations by loading the document
in memory and parsing it according to the given filter. This can be expensive
and does not make use of the knowledge of how the document is stored (here
with using the relational schema above).

Let 8 be the subsumption mapping from the type of p[$n,$wl to the greatest
lower bound:

¢’ (Warranty_Jammer)=Jammer ¢’ (Company’)=0ther
¢’ (Name')=Name ¢'(Price’)=0ther
¢’ (WarrantyOption’)=Warranty ¢’ (OtherOption’)=0ther...

Through 6, we know that the values of $n
are the values of the elements of type Name’ in the the stored schema, hence
how to access them using the relational engine.

7 Related work and conclusion

Typing for XML is a heavily studied problem. Existing work covers the type sys-
tems themselves [2,10,12,33], type checking [20,26] and type inference [25, 28].
XML types have been used for query formulation [19], query optimization [17, 9],
storage [14,31], and compile-time error detection [20]. A notion of subsumption
for unordered semistructured data was proposed in [6] based on a graph bisim-
ulation. OQur work extends this approach to types that involve order and regular
expressions. Typing in XDuce [20] relies on full type inclusion. [7] describes a
notion of containment between XML DTDs, which are less expressive than our
type system and is based on full inclusion with tag renaming.

There are many directions in which this work can be continued. First of all,
while our work (and most other work in this area), uses a list model for data, for
database applications a set semantics may be more appropriate, and therefore
extending the results to sets (and bags) would be of interest. For applying the
results to inheritance, as indicated above, one may want to be able to type an



object in multiple ways — formally this may be captured by the greatest lower
bound, but this does not provide the intuitive semantics desired here.

We have not discussed complexity in this paper. Typing a database is a
special case of subsumption (where the database is itself the schema), and the
complexity of typing is known [2] to be hard. Note, however, that complexity
of checking subsumption is in the size of the schema rather than in the size
the database. Furthermore, many of the problems that relate to typing become
tractable in the case of unambiguous schemas: in our framework there are many
possible definitions of ambiguity, such as the existence of a single typing, un-
ambiguity up to reference nodes, unambiguous regular expressions, etc. Efficient
evaluation of queries is one of the main motivations for this work. Many complex
parameters must be taken into account in this context, such as the impact of
storage structures, memory management issues, etc. To evaluate the real impact
of subsumption, we consider an implementation of the techniques presented here
in the context of the YAT System [10,9].
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