The Java™ Architecture for
XML Binding (JAXB)

Public Draft, VO.7
September 12, 2002

Editors:

Joseph Falli,

Sekhar Vagjjhala

Comments to: jaxb-spec-comments@sun.com

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054 USA

JavaTM Architecturefor XML Binding (JAXB) Specification (" Specification")
Version:0.7

Satus: Pre-FCS

Release: September 12, 2002

Copyright 2002 Sun Microsystems, Inc.
4150 Network Circle, Santa Clara, California 95054, U.S.A
All rightsreserved.

NOTICE

The Specification is protected by copyright and the information described therein may be protected by one
or more U.S.patents, foreign patents, or pending applications. Except as provided under the following
license, no part of the Specification may be reproduced in any form by any means without the prior written
authorization of SunMicrosystems, Inc. ("Sun") and itslicensors, if any. Any use of the Specification and
the information described therein will be governed by the terms and conditions of this license and the
Export Control and General Terms as set forth in Sun’s website Legal Terms. By viewing, downloading
or otherwise copying the Specification, you agree that you have read, understood, and will comply with all
of the terms and conditions set forth herein.

Subject to the terms and conditions of thislicense, Sun hereby grants you afully-paid, non-exclusive, non-
transferable, worldwide, limited license (without the right to sublicense) under Sun’s intellectual property
rights to review the Specification internally for the purposes of evaluation only. Other than this limited
license, you acquire no right, title or interest in or to the Specification or any other Sun intellectual prop-
erty. The Specification contains the proprietary and confidential information of Sun and may only be used
in accordance with the license terms set forth herein. This license will expire ninety (90) days from the
date of Release listed above and will terminate immediately without notice from Sun if you fail to comply
with any provision of thislicense. Upon termination, you must cease use of or destroy the Specification.

TRADEMARKS

No right, title, or interest in or to any trademarks, service marks, or trade names of Sun or Sun’s licensors
isgranted hereunder. Sun, Sun Microsystems, the Sun logo, Java, the Java Coffee Cup logo, and J2EE are
trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

DISCLAIMER OF WARRANTIES

THE SPECIFICATION IS PROVIDED "AS IS' AND IS EXPERIMENTAL AND MAY CONTAIN
DEFECTS OR DEFICIENCIES WHICH CANNOT OR WILL NOT BE CORRECTED BY SUN. SUN
MAKES NO REPRESENTATIONS OR WARRANTIES, EITHER EXPRESS OR IMPLIED, INCLUD-
ING BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTIC-
ULAR PURPOSE, OR NON-INFRINGEMENT THAT THE CONTENTS OF THE SPECIFICATION
ARE SUITABLE FOR ANY PURPOSE OR THAT ANY PRACTICE OR IMPLEMENTATION OF
SUCH CONTENTS WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS,
TRADE SECRETS OR OTHER RIGHTS. This document does not represent any commitment to release
or implement any portion of the Specification in any product.

THE SPECIFICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL
ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION THEREIN; THESE
CHANGES WILL BE INCORPORATED INTO NEW VERSIONS OF THE SPECIFICATION, IF
ANY. SUN MAY MAKE IMPROVEMENTS AND/OR CHANGES TO THE PRODUCT(S) AND/OR
THE PROGRAM(S) DESCRIBED IN THE SPECIFICATION AT ANY TIME. Any use of such changes
in the Specification will be governed by the then-current license for the applicable version of the Specifi-
cation.

LIMITATION OF LIABILITY
TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL SUN ORITSLICENSORS BE
LIABLE FOR ANY DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUE, PROF-

ITS OR DATA, OR FOR SPECIAL, INDIRECT, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE
DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARIS-
ING OUT OF OR RELATED TO ANY FURNISHING, PRACTICING, MODIFYING OR ANY USE
OF THE SPECIFICATION, EVEN IF SUN AND/OR ITS LICENSORS HAVE BEEN ADVISED OF
THE POSSIBILITY OF SUCH DAMAGES.

You will indemnify, hold harmless, and defend Sun and its licensors from any claims based on your use of
the Specification for any purposes other than those of internal evaluation, and from any claims that later
versions or releases of any Specification furnished to you are incompatible with the Specification pro-
vided to you under thislicense.

RESTRICTED RIGHTSLEGEND

If this Software is being acquired by or on behalf of the U.S. Government or by aU.S. Government prime
contractor or subcontractor (at any tier), then the Government's rights in the Software and accompanying
documentation shall be only as set forth in this license; this is in accordance with 48 C.F.R. 227.7201
through 227.7202-4 (for Department of Defense (DoD) acquisitions) and with 48 C.F.R. 2.101 and 12.212
(for non DaoD acquisitions).

REPORT

You may wish to report any ambiguities, inconsistencies or inaccuracies you may find in connection with
your evaluation of the Specification ("Feedback"). To the extent that you provide Sun with any Feedback,
you hereby: (i) agree that such Feedback is provided on a non-proprietary and non-confidential basis, and
(ii) grant Sun a perpetual, non-exclusive, worldwide, fully paid-up, irrevocable license, with the right to
sublicense through multiple levels of sublicensees, to incorporate, disclose, and use without limitation the
Feedback for any purpose related to the Specification and future versions, implementations, and test suites
thereof.

(LFI#117901/Form 1D#011801)

CONTENTS

[1
1 IntroducCtion 1
1.1 Databinding 2

1.2 Goals. ... e 3

1.3 NON-GOalS. 5

1.4 RequIremMents e 6

1.5 USE CaSES. . . oottt 8

1.6 ConVENtiONSttt 9

1.7 ExpertGroup Members. 10

1.8 Acknowledgements. 10

2 Architecture 13
2.0 OVEIVIEBW . o ottt 13
2.1.1 JavaRepresentation 14

2.1.2 Binding Framework i 15

2.1.3 Binding Declarations, 16

2.2 Varietiesof validation 17
2.2.1 Handling Validation Failures 19

2.3 AneXxample. 19

3 TheBinding Framework 23
3.1 Binding Runtime Framework Rationale. 24

3.2 JAXBCONIEXL. . . ottt 25

3.3 General Validation Processing, 26

3.4 Validator 28

3.5 Unmarshalling........... ... 29

3.6 Marshalling e 31
3.6.1 Marshalling Properties i 32

3.7 ValidationHandling............... 33

4 Java Representation of XML Content 35
4.1 Mapping between XML Names and Java ldentifiers. 35

4.2 JavaPackage 36

4.3 Typesafe EnUM CIass.t 37

4.4 JavaContentlInterface i 38

A5 Propertiest 40
451 Simple Property 41

452 Collection Property.t 42

4521 Indexed Propertyc.iiiiii... 42

4522 ListProperty..........c.iiiiii i 45

9/12/02 JAXB Specification — Public Draft, V0.7 Y

Vi

453 Constant Propertyiii i 46

45.4 isSet Property Modifier. 46
455 Property Summary 47

4.6 JavaElementinterface........ 48
Binding XML Schema to Java Representations.............. 51
Bl OVEIVIBW . o ottt 51
5.2 Simple Type Definition 52
5.2.1 Type Categorizatono i 52

5.2.2 Atomic Datatype. 53

5.2.3 Type Safe Enumeration....................., 56
524 Enumeration Class. 56
5241 EnumerationClass................ o 57

5.24.2 ConstantFields. 58

5.2.4.3 XML Enumvalue To Java Identifier Mapping 58

5.2.4.4 Methods and Constructor. 59

5.25 Union Property. 59
526 Union 61

5.3 Complex Type Definition. i 62
5.3.1 Nested Interface Specification 62
5.3.2 Aggregation of Java Representation 62
5.3.2.1 Aggregation of Datatype/Interface 62

5.3.2.2 Aggregation of Property Set. 63

5.3.3 JavaContentlInterface............ 63
5.3.3.1 Simple ContentBinding 65

5.4 Attribute Group Definition 66
5.5 Model Group Definition 66
5.5.1 Bindtoasetofproperties, 67

5.5.2 Bindtoalistproperty.......... .. i 67

5.5.3 Bindto aJavacontentinterface....................... 68

5.6 Attribute Declaration 69
5.7 ElementDeclaration i 69
5.7.1 Bindto Java ElementiInterface 71

5.7.2 Bindto Java ContentlInterface........................ 72

5.7.3 Bindto TypesafeEnumClass 73
574 BindtoaProperty 74

5.8 Attributeuse e 74
5.8.1 Bindto a Java Constant property. 75
5.8.1.1 Contributions to Local Structural Constraint. 76

5.8.2 Binding an IDREF component to a Java property 76

5.9 Content Model - Particle, Model Group, Wildcard. 78
5.9.1 Bind each element declaration name to a content property. . 79
5.9.2 Generalcontentpropertyouuiiiiiiii.. 82
5.9.2.1 Generalcontentlist. 82

5.9.22 Valuecontentlist 82

JAXB Specification — Public Draft, V0.7 9/12/02

5923 Examples 83
5.9.3 Bindmixedcontent. 85
5.9.4 Bind wildcard schema component..................... 87
5.9.5 Bind a repeating occurance model group 88
5.9.6 Content Model Default Binding 88

5.9.6.1 Default binding of content model “derived by

extension”90

5.9.7 Alternative binding approach: model group binding. 91
5.9.8 Bind to Choice Content Interface. 92
5.9.8.1 Bind to a choice content property.............. 94
5.9.9 Binding algorithm for model group style binding 96
5.10 Default Binding Rule Summary. 97
6 Customization 99
6.1 BindingLanguage.t 99
6.1.1 Extending the Binding Language. 100
6.1.2 Inline Annotated Schema. 101
6.1.3 External Binding Declaration 101
6.1.3.1 Restrictions. 102
6.1.4 Invalid Customizations.ciiiiiia.. 102
6.2 NOatioN. 102
6.3 Naming Conventions.t 103
6.4 Customization OVEIVIEW oot e 103
6.4.1 SCOPE. ..o 103
6.4.2 XML SchemaParsing 105
6.5 <global Bi ndings> Declaration....................... 106
6.5.1 USage.t 106
6.5.2 Customized Name Mapping., 108
6.5.3 UnderscoreHandling............ 108
6.6 <schenmaBi ndings> Declaration....................... 109
6.6.1 USage.t 109
6.6.1.1 package 110
6.6.1.2 nameXmlTransform 111
6.7 <class> Declaration........... ... iiiiiiiiie... 112
6.7.1 USA0E. ... 112
6.7.2 Customization Overrides 113
6.7.3 Customizable Schema Elements..................... 113
6.7.3.1 Complex Type Definition 113
6.7.3.2 Model Group Definition. 114
6.7.3.3 ModelGroup. 115
6.7.3.4 Global Element Declaration 115
6.7.3.5 LocalElement................. 116
6.8 <property>Declaration i 117
6.8.1 Usage.t 117
6.8.2 Customization Overrides, 118
9/12/02 JAXB Specification — Public Draft, V0.7 Vi

O ™ >» N

viii

6.8.3 Customizable SchemaElements..................... 119
6.8.3.1 Global Attribute Declaration 119

6.8.3.2 Local Attribute. 120

6.8.3.3 Global Element Declaration 122

6.8.3.4 LocalElement............... 122

6.835 Wildcard 122

6.8.3.6 ModelGroup. 123

6.8.3.7 Model Group Reference. 126

6.9 javaType Declaration 127
6.9.1 LexicalAndValueSpace............ ... 128

6.9.2 USage. 128
6.9.2.1 name......... ... 129

6.9.2.2 XmIType 129

6.9.2.3 Relationship To XML Built-in Hiearchy. 129

6.9.2.4 XML Numerictype, 130

6.9.25 parseMethod. 130

6.9.2.6 printMethod. 131

6.9.3 Java Primitive Types 131
6.9.4 EVENIS ..ot 131
6.9.5 CustomizationOverridesciii... 132
6.9.6 Customizable SchemaElements..................... 132
6.9.6.1 Simple Type Definition 132

6.9.6.2 GlobalBindings 132

6.10 <typesafeEnum> Declaration 135
6.10.1 USAQe.i ittt e 135
6.10.2 value Attribute 136
6.10.3 Inline Annotations. i 137
6.10.4 CustomizationOverridesciiiiu... 137
6.10.5 Customizable SchemaElements..................... 138

6.11 <javadoc>Declaration i 140
6.11.1 JavadoC Sections.ttt 140
6.11.2 USA0E. ...ttt 141
6.11.3 Javadoc Customizationccv ... 141

6.12 Annotation Restrictions. i 141
References 143
Package javax.xml.bind 145
Normative Binding Schema Syntax....................... 147
Binding XML Names to Java Ildentifiers 157
C.l OVEIVIBW . . ot e e e e e e e 157
C.2 The Name to Identifier Mapping Algorithm 157
C.2.1 Caollisionsandconflicts. 160

C.3 Deriving an identifier foramodelgroup 161

JAXB Specification — Public Draft, V0.7 9/12/02

C.4 GeneratingaJavapackagename 162

C.4.1 Mapping froma Namespace URI..................... 162

C.5 Conforming Java ldentifier Algorithm 164

D External Binding Declaratation 165
D.1 Example 165
D.2 Transformation 166

E XML Schema e 169
E.1 Abstract SchemaModel 169
E.1.1 Simple Type Definition Schema Component............ 169

E.1.2 Enumeration Facet Schema Component. 170

E.1.3 Complex Type Definition Schema Component 170

E.1.4 Element Declaration Schema Component. 171

E.1.5 Attribute Declaration Schema Component. 172

E.1.6 Model Group Definition Schema Component. 172

E.1.7 ldentity-constraint Definition Schema Component. 172

E.1.8 Attribute Use Schema Component. 173

E.1.9 Particle Schema Component.............. 173

E.1.10 Wildcard Schema Component. 173

E.2 Not Required XML Schemaconcepts........................ 174

F Relationship to JAX-RPCBinding 175
F.l OVEIVIEW . . o 175

F.2 Mapping XML name to Java identifier........................ 175

F.3 Bind XML enum to a typesafe enumeration 176
F.3.1 RestrictionBase Typet 176

F.3.2 Enumeration Name Handling. 176

G Change Logottt 177
G.1 Changesfor PublicDraft............ 177

9/12/02 JAXB Specification — Public Draft, V0.7 iX

JAXB Specification — Public Draft, V0.7 9/12/02

CHAPTERI1

INTRODUCTION

XML is, essentially, a platform-independent means of structuring information.
An XML document is atree of elements. An element may have a set of
attributes, in the form of key-value pairs, and may contain other elements, text,
or a mixture thereof. An element may refer to other elements via identifier
attributes, thereby allowing arbitrary graph structures to be represented.

An XML document need not follow any rules beyond the well-formedness
criterialaid out in the XML 1.0 specification. To exchange documentsin a
meaningful way, however, requires that their structure and content be described
and constrained so that the various partiesinvolved will interpret them correctly
and consistently. This can be accomplished through the use of a schema. A
schema contains a set of rules that constrains the structure and content of a
document’s components, i.e., its elements, attributes, and text. A schema also
describes, at least informally and often implicitly, the intended conceptual
meaning of a document’s components. A schemaiis, in other words, a
specification of the syntax and semantics of a (potentially infinite) set of XML
documents. A document is said to be valid with respect to a schemaif, and only
if, it satisfies the constraints specified in the schema.

In what language are schemas written? The XML specification itself describes a
sublanguage for writing document-type definitions, or DTDs. As schemas go,
however, DTDs are fairly weak. They support the definition of simple
constraints on structure and content, but provide no real facility for expressing
datatypes or complex structural relationships. They have also prompted the
creation of more sophisticated schema languages such as XDR, SOX, RELAX,
TREX, and, most significantly, the XML Schema language recently defined by
the World Wide Web Consortium.

This specification requires support for a subset of the W3C XML Schema
language.

9/12/02 JAXB Specification — Public Draft, V0.7 1

Data binding

1.1 Data binding

Any nontrivial application of XML will, then, be based upon one or more
schemas and will involve one or more programs that create, consume, and
manipul ate documents whose syntax and semantics are governed by those
schemas. While it is certainly possible to write such programs using the low-
level SAX parser API or the somewhat higher-level DOM parse-tree API, doing
so islikely to be tedious and error-prone. The resulting code is also likely to
contain many redundancies that will make it difficult to maintain as bugs are
fixed and as the schemas evolve.

It would be much easier to write XML-enabled programs if we could simply
map the components of an XML document to in-memory objects that represent,
in an obvious and useful way, the document’s intended meaning according to its
schema. Of what classes should these objects be instances? In some cases there
will be an obvious mapping from schema components to existing classes,
especially for common typessuchas St ri ng, Dat e, Vect or, and so forth. In
general, however, classes specific to the schema being used will be required.
Rather than burden developers with having to write these classes we can
generate the classes directly from the schema, thereby creating a Java-level
binding of the schema.

An XML data-binding facility therefore contains a binding compiler that binds
components of a source schema to schema-derived Java content classes. Each
class provides access to the content of the corresponding schema component via
a set of JavaBeans-style access (i.e., get and set) methods. Binding
declarations provides a capability to customize the binding from schema
components to Java representation. Such a facility also provides a binding
framework, aruntime API that, in conjunction with the derived classes, supports
three primary operations:

« Theunmarshalling of an XML document into a tree of interrelated
instances of both existing and schema-derived classes,
« The marshalling of such content trees back into XML documents, and

« Thevalidation of content trees against the constraints expressed in the
schema.

The unmarshalling process has the capability to check incoming XML
documents for validity with respect to the schema. Similarly, aJAXB
implementation provides a means to enforce the constraints expressed in the
schema; some of these constraints may always be enforced, while others may

9/12/02 JAXB Specification — Public Draft, V0.7 2

Goals

only be checked upon explicit request. Validation of a content tree before the
marshalling process can be used to ensure that only valid documents are
generated.

compile
Schema —— 3 Classes
follows instanceof
unmarshal
Objects

Document {
marshal

Figure 1.1 A mapping of XML to Java objects

To sum up: Schemas describe the structure and meaning of an XML document,
in much the same way that a class describes an object in a program. To work
with an XML document in a program we would like to map its components
directly to a set of abjectsthat reflect the document’s meaning according to its
schema. We can achieve this by compiling the schemainto a set of derived
content classes that can be marshalled, unmarshalled and validated. Data
binding thus allows XM L-enabled programs to be written at the same
conceptual level asthe documents they manipulate, rather than at the more
primitive level of parser events or parse trees.

1.2 Goals

This specification aims to describe an XML data-binding facility with the
following general properties:

« Beeasy to use— Lower the barrier to entry to manipulating XML
documents within Java programs. Programmers should be able to access
and modify XML documents viaa Java binding of the data, not via SAX
or DOM. It should be possible for a developer who knows little about
XML to compile a simple schema and immediately start making use of
the classes that are produced.

« Be customizable — Provide a standard way to customize the binding of
existing schema’ scomponentsto Javarepresentation of the components.
Sophisticated applications sometimes require fine control over the

9/12/02 JAXB Specification — Public Draft, V0.7 3

Introduction

structure and content of schema-derived classes, both for their own
purposes and for that of coping with schema evolution.

Portability — It should be possible to write a JAXB applicationin such a
way that the JAXB implementation can be replaced without changes to
the source code. Minimally, the schema would need to be submitted to
the replacement JA X B implementations binding compiler and the output
would need to be bundled with the application.

Deliver Sooner rather than Later — Given the needs of the Java
Community for a standardized XML data-binding solution to be
delivered in atimely fashion, it was aimportant goal to identify a core
set of functionality for thisinitial version of the specification that can be
built upon in future versions. This document will identify the core
reguirementsfor theinitial version and list the requirements and features
for future consideration.

The derived classes produced by the binding compiler should, more specifically,

Benatural —Insofar as possible, derived classes should observe standard
Java APl design guidelines and naming conventions. If new conventions
are required then they should mesh well with existing conventions. A
developer should not be astonished when trying to use a derived class.

Match the conceptual level of the source schema — It should be

strai ghtforward to examine any content-bearing component of the source
schema and identify the corresponding Java language construct in the
derived classes.

Hide all the plumbing — All the details of unmarshalling, marshalling,
and validation should be completely encapsulated by schema-derived
implementation classes and the runtime APIs upon which they depend.
A developer should not have to think about SAX or DOM or any other
XML-related API in order to perform unmarshal, marshal or validation
on the schema-derived classes.

Support validation on demand — While working with a content tree
corresponding to an XML document it is often necessary to validate the
tree against the constraints in the source schema. It should be possible to
do this at any time, without the user having to first marshal the tree into
XML.

Preserve equivalence (round tripping) — Tranforming a Java content
tree to XML content and back to Java content again should result in an
equivalent Java content tree before and after the transformation.

JAXB Specification — Public Draft, V0.7 9/12/02

Non-Goals

1.3

9/12/02

Non-Goals

Defining a standardized binding framework runtime system.

The schema-derived Java implementation classes generated by one
JAXB implementation are not required to work with the runtime system
of another JAXB implementation. To switch to an aternative JAXB
implementations, one is required to regenerate the schema-derived
implementation using the alternative JAXB implementation’s binding
compiler. It was not possible to identify a common framework solution
that was a clear cut, acceptable solution. As XML processing
technologies mature, we hope to identify a common framework solution
in afuture version of this specification. See Section 3.1, “Binding
Runtime Framework Rationale,” on page 24 for further details.

Preserving equivalence of XML document when round tripping
from XML document to Java and back to XML document again.

Formally describing support for binding an existing JavaBean class
to schema.

The feature will be considered for a future release but it was considered
out of scope for this release.

Schema evolution support.

It is beyond the scope of the first version of the specification to address
this important but difficult problem.

Providing support for accessing/adding of elementsor attributesnot
initially declared in the schema.

The usage of <anyAttribute> in a schemaallow for an XML document
to dynamically introduce data of a structure and content that was not
described in the schema submitted to the binding compiler. It is not
possible to generate type safe accessors and classes for dataypes
introduced by an XML document.

A future version of the specification may provide access to dynamically
introduced XML content viathe fallback position of returning the XML
content in ageneric XML representation, DOM being one such
commonly accepted format.

Provide partial binding of an XML content root to a Java
representation, skipping descendants of the XML content root that
arenot relevant to thetask at hand.

JAXB Specification — Public Draft, V0.7 5

Introduction

1.4

If thereisonly a partial binding of all non-optional XML elements
reachable from an XML element, it would no longer be possible to
roundtrip the data back to its original XML content form. Partial
mapping results in a one-way trip from the XML to Java. There would
be no marshal method from Java back to XML sincein general it would
not be possible to produce avalid XML content from a partial Java
representation of the XML content root and its descendants.

It isnot necessary for the facility described by this specification to
implement every last featur e of the schema languages that it
supports.

More precisely, a given schema-language feature need not be
implemented if it is not commonly used in data-oriented applications of
XML and if supporting it would unduly complicate either this
specification or its implementations. This does not imply that
supporting document-oriented applications is something to be avoided;
it merely points out that some schema-language features that are used
primarily in such applications do not always fit well into the context of
an XML data-binding facility. This specification and its
implementations will support document-oriented applications insofar as
doing so does not interfere with achieving the above goals.

Explicit support for specifying the binding of DTD to a Java
representation.

While it was desired to explicitly support binding DTD to a Java
representation, it became impratical to describe both XML Schema
binding and DTD binding. The existence of several conversion tools
that automate the conversion of aDTD to XML Schemaallows DTD
users to be able to take advantage of JAXB technology by converting
their existing DTDsto XML Schema.

Requirements

Standar dized schema input to binding compiler
Supported schema language:
o Subset of W3C XML Schema.

All implementations are required to support the minimal required
subset of W3C XML Schema. Non-required constructs are specified in

JAXB Specification — Public Draft, V0.7 9/12/02

Requirements

Section E.2, “Not Required XML Schemaconcepts,” on page 174. Itis
acceptable that an implementation support more than the minimal
required subset in an implementation-dependent manner. Future
versions of the specification will consider adding more complete
support for W3C XML Schema.

« Describe default bindings from schema to Java r epresentation

There must be a detailed, unambiguous description of the default
mapping of schema components to Java representations in order to
satisfy the portability goal. The default binding will be described from
abstraction definitions of XML Schemacomponents] XML Schema Part
1]. Each JAXB implementation must generate the same group of
schema-derived interfaces and property accessors.

o Default binding from XML Schema built-in data typesto Java built-in
classes

o Default binding of XML Schema component, as described by abstract
datamodel, to a Java representation.

2. Standardized Customized Binding Schema

A binding schema language and its formats must be specified. There
must be a means to describe the binding without requiring modification
to the original schema. Additionally, the same XML Schema language
must be used for the two different mechanisms for expressing a binding
declaration.

3. Capability to specify an override for default binding behavior

Given the diverse styles that can be used to design aschema, it isquite a
daunting task to identify asingle ideal default binding solution. For
situations where several equally good binding alternatives exist, the
specification will describe the alternatives and select one to be the
default binding (see 3).

The binding schema must provide a means to specify an alternative
default binding option for the scope of an entire schema. This
mechanism ensures that if the default binding is not sufficient, that it
can easily be overridden in a portable manner.

4. Provide ability to disable schema validation for unmarshal and
mar shal operations

There exist asignificant number of scenarios that do not require
validation and/or can not afford the overhead of schema validation. An
application must be provided a means to disable schema validation

9/12/02 JAXB Specification — Public Draft, V0.7 7

Introduction

1.5

checking during unmarshal and marshal operations. The goal of this
requirement is to provide the same flexibility and functionality that a
SAX or DOM parser allows for. Please note that this specification can
not define deterministic behavior of Unmarshalling aninvalid document
or marshalling an invalid content tree when validation has been
disabled.

Use Cases

Since the JAXB architecture provides a Java application the ability to
manipulate XML content via generated Java interfaces, all of these uses cases
assume the operation is occuring from within a Java application context.

Access configuration values from a properties file stored in a XML
format.

Tool allowing for the creation or modification to a configuration
properties file represented in XML format.

Receive datain the format of an XML document and would like to
access/update the data without having to write SAX event handlers or
traverse aDOM parse tree.

Validate user-inputted data, for example, from aform presented in aweb
browser. Form data could be mapped to an XML document. JAXB
provides capability to validate the accuracy of the data using the
validation constraints of a schema that describes the data collected from
the form.

Bind an XML document into a Java representation, update the content
via Javainterfaces, validate this changes against the constraints within
the schema and then write the updated Java representation back to an
XML document format.

Unmarshal an XML document that it is known to already be valid, thus
the application disables validation checking while unmarshalling the
document to improve performance.

JAXB Specification — Public Draft, V0.7 9/12/02

Conventions

1.6 Conventions

Within normative prose in this specification, the words should and must are
defined as follows:

« should
Conforming implementations are permitted to but need not behave as
described.

o Mmust
Conforming implementations are required to behave as described;
otherwise they arein error.

The prefix xsd: isused to refer to schema components in W3C XML Schema
namespace as specified in [XSD Part 1] and [XSD Part 2].

All examples in the specification are for illustrative purposes to assist in
understanding concepts and are non-normative. If an example conflicts with the
normative prose, the normative prose always takes precedence over the
example.

9/12/02 JAXB Specification — Public Draft, V0.7 9

Introduction

1.7 Expert Group Members

The following people have contributed to this specification effort.

Arnaud Blandin, Intalio

Steve Brodsky, IBM

Christian Campo, Software AG
K ohsuke Kawaguchi, Sun
Chris Fry, BEA

Eric Johnson, TIBCO

Anjana Manian, Oracle

Ed Merks, IBM

Greg Messner, The Breeze Factor
Masaya Naito, Fujitsu

David Stephenson, HP

Keith Visco, Intalio

Scott Ziegler, BEA

1.8 Acknowledgements

This document is a derivative work of concepts and an initial draft initially led
by Mark Reinhold of Sun Microsystems. Our thanksto all who wereinvolved in
pioneering that initial effort. The feedback from the Java User community on
the initial JAXB prototype greatly assisted in identifying requirements and
directions..

The data binding experiences of the expert group members have been
instrumental in identifying the proper blend of the countless data binding
techniques that we have considered over the past year. We thank them for their
contributions and their review feedback.

K ohsuke Kawaguchi and Ryan Shoemaker have directly contributed content to
the specification and wrote the companion javadoc. The following JAXB team
members have been invaluable in keeping the specification effort on the right
track: Tom Amiro, Leonid Arbouzov, Evgueni Astigueevitch, Jennifer Ball,
Carla Carlson, Patrick Curran, Scott Fordin, Omar Fung, Peter Kacandes,
Dmitry Khukhro, Tom Kincaid, K. Ari Krupnikov, Ramesh Mandava, Bhakti
Mehta, Ed Mooney, Ilya Neverov, Oleg Oleinik, Brian Ogata, Vivek Pandey,
Cecilia Peltier, Evgueni Rouban and Leslie Schwenk. The following people, all

10 JAXB Specification — Public Draft, V0.7 9/12/02

Acknowledgements

from Sun Microsystems, have provided valuable input to this effort: Roberto
Chinnici, Chris Ferris, Mark Hapner, Eve Maler, Farrukh Najmi, Eduardo
Pelegri-llopart, Bill Shannon and Rahul Sharma.

The JAXB TCK team would like to acknowledge that the NIST XML Schema
test suite] NIST] has greatly assisted the conformance testing of this
specification.

9/12/02 JAXB Specification — Public Draft, V0.7 11

Introduction

12

JAXB Specification — Public Draft, V0.7

9/12/02

CHAPTERZ2

ARCHITECTURE

2.1 Overview

The primary components of the XML data-binding facility described in this
specification are the binding compiler, the binding framework, and the binding
language.

« The binding compiler transforms, or binds, a source schema to a set of
content classes in the Java programming language. As used in this
specification, the term schema includes the W3C XML Schemaas
defined in the XML Schema 1.0 Recommendation[XSD Part 1][XSD
Part 2].

« The binding runtime framework provides the interfaces for the
functionality of unmarshalling, marshalling, and validation for content
classes.

« The binding language is an XML -based language that describes the
binding of a source schema to a Java representation. The binding
declarations written in this language specify the details of the package,
interfaces and classes derived from a particular source schema.

9/12/02 JAXB Specification — Public Draft, V0.7 13

Architecture

Theintent of Figure 2.1 isto aid understanding the relationship between the
logical concepts to be presented in this chapter.

Application Code
Source |- .
' Schema Derived | Package
Schema \\ | Interfaces, javax.xml.bind
l Factory Methods
Binding
Compiler
: o : i . .
Dme 1| g\ e | B
| Customization L classes, ... ramework
+ | Binding | Implementation
' | Declarations |
L N B
"""""""" Application
Figure 2.1 Non-Normative JAXB Architecture diagram

Note that the binding declarations object in the above diagram is logical.
Binding declarations can either be inlined within the schema or they can appear
in an external binding file that is associated with the source schema. Also, note
that the application accesses only the derived content interfaces, factory
methods and javax.xml.bind APIs directly, this convention is necessary to enable
switching between JAXB implementations.

2.1.1 Java Representation

A coarse-grained content bearing schema component, such as a complex type
definition, is generally bound to a content interface. An XML Schema's
“derived by extension” type definition hierarcy is preserved in a corresponding
Java class hierarchy relationship between content interfaces.

A fine-grained schema component, such as an attribute declaration or an
element declaration with a simple type, is bound directly to a property within a
content interface. A property isrealized in a content interface by a set of

14 JAXB Specification — Public Draft, V0.7 9/12/02

Overview

JavaBeans-style access methods. These methodsinclude the usual get and set
methods for retrieving and modifying a property’s value; they also provide for
the deletion and, if appropriate, the re-initialization of a property’s value.

Properties are also used for references from one content instance to another. If
an instance of a schema component X can occur within, or be referenced from,
an instance of some other component Y then the content class derived from Y

will define a property that can contain instances of X.

To add flexibility within the JAXB architecture, acontent classis represented as
both a content interface and an implementation of that interface rather than just
aclass. This separation enables a sophisticated users of the JAXB architecture
to be able to specify their own implementation of the content interface to be
used withing the binding framework. Typical users will rely on the binding
compiler to generate both schema-derived content interfaces and their
implementations.

2.1.2 Binding Framework

The primary operations that can be performed on the set of schema-derived
content interfaces and implemention classes are those of unmarshalling,
marshalling, and validation.

« Unmarshalling is the process of reading an XML document and
constructing atree of content objects. Each content object corresponds
directly to an instance in the input document of the corresponding
schema component, hence this content tree reflects the document’s
content.

« Marshalling isthe inverse of unmarshalling, i.e., it is the process of
traversing a content tree and writing an XML document that reflects the
tree' s content.

« Validationisthe process of verifying that all constraints expressedinthe
source schemahold for agiven content tree. A content treeisvalidif, and
only if, marshalling the tree woul d generate a document that isvalid with
respect to the source schema.

When the unmarshalling process incorporates validation and it successfully
completes without any validation errors, both the input document and the
resulting content tree are guaranteed to be valid. The marshalling process, on
the other hand, does not actually perform validation. If only validated content

9/12/02 JAXB Specification — Public Draft, V0.7 15

Architecture

trees are marshalled, this guarantees that generated XML documents are always
valid with respect to the source schema.

However, always requiring validation during unmarshalling and only allowing
the marshalling of validated content trees proved to betoo rigid and restrictive a
requirement. Since existing XML parsers allow schema validation to be
disabled, there exist a significant number of XML processing uses that disable
schema validation to improve processing speed and/or to be able to process
documents containing invalid or incomplete content. To enable the JAXB
architecture to be able to be used in these XML processing scenarios, the
flexibility to enable or disable the validation step within unmarshalling or the
precondition of validating a content tree before marshalling had to be
introduced into the binding framework. It is an implementation specific
behavior on how a JAXB implementation handles unmarshalling of an invalid
document when validation is disabled. The same holds true for marshalling an
invalid content tree. It is expected that once an implementation is aware that it
can not unambiguously complete unmarshalling or marshalling, it will terminate
processing with an exception.

Unmarshalling is not the only means by which a content tree may be created.
Schema-derived content classes also support the programmatic construction of
content trees by direct invocation of the appropriate factory methods. Once
created a content tree may be re-validated, either in whole or in part, at any
time.

2.1.3 Binding Declarations

A particular binding of a given source schemais defined by a set of binding
declarations. Binding declarations are written in a binding language, whichis
itself an application of XML. A binding declaration can occur within the
annotation appinfo of each XML Schema component. Alternatively, binding
declarations can occur in an auxilary file, each binding declaration within the
auxilary fileis associated to a schema component in the source schema. It was
necessary to support binding declarations external to the source schemain order
to allow for customization of an XML Schemas that one prefers not to modify.
The binding compiler hence actually requires two inputs, a source schemaand a
set of binding declarations.

Binding declarations enable one to override default binding rules, thereby
allowing for user customization of the schema-derived content interfaces.
Additionally, binding declarations allows for further refinements to be

16 JAXB Specification — Public Draft, V0.7 9/12/02

Varieties of validation

introduced into the binding to Javarepresentation that could not be derived from
the schema alone.

The binding declarations need not define every last detail of abinding. The
binding compiler assumes default binding declarations for those components of
the source schemathat are not mentioned explicitly by binding declarations.
Default declarations both reduce the verbosity of the customization and make it
more robust to the evolution of the source schema. The defaulting rules are
sufficiently powerful that in many cases a usable binding can be produced with
no binding declarations at all. By defining a standardized format for the binding
declarations, it is envisioned that tools would be built to greatly aid the process
of customizing the binding from schema components to a Java representation.

2.2 Varieties of validation

The constraints expressed in a schemafall into three general categories:

« A type constraint imposes reguirements upon the values that may be
provided by constraint facets in simple type definitions.

« A local structural constraint imposes requirements upon every instance
of agiven element type, e.g., that required attributes are given values and
that a complex element’ s content matches its content specification.

« A global structural constraint imposes requirements upon an entire
document, e.g., that | D values are unique and that for every | DREF
attribute value there exists an element with the corresponding | D
attribute value.

A document isvalid if, and only if, al of the constraints expressed in its schema
are satisfied. Similarly, acontent treeisvalid if, and only if, marshalling the
tree would produce a valid document. It would be both inconvenient and
inefficient to have to marshal a content tree just to check its validity.

The manner in which constraints are enforced in a set of derived classes has a
significant impact upon the usability of those classes. All constraints could, in
principle, be checked only during unmarshalling and validation. This approach
would, however, yield classes that violate the fail-fast principle of API design:
Errors should, if feasible, be reported as soon as they are detected. In the context
of schema-derived implementation classes, this principle ensures that violations

9/12/02 JAXB Specification — Public Draft, V0.7 17

Architecture

of schema constraints are signalled when they occur rather than later on when
they may be more difficult to diagnose.

With this principle in mind we see that schema constraints can, in general, be
enforced in three ways:

« Static enforcement leverages the type system of the Java programming
language to ensure that a schema constraint is checked at application-
compile time. Type constraints are often good candidates for static
enforcement. If an attribute is constrained by a schemato have aboolean
value, \, e.g., then the access methods for that attribute’s property can
simply accept and return values of type bool ean.

« Simple dynamic enforcement performs atrivial run-time check and
throws an appropriate exception upon failure. Type constraints that do
not easily map directly to Java classes or primitive types are best
enforced in thisway. If an attribute is constrained to have an integer
value between zero and 100, e.g., then the corresponding property’s
access methods can accept and return int values and its mutation method
can throw arun-time exception if its argument is out of range.

« Complex dynamic enforcement performs a potentially costly run-time
check, usually involving more than one content object, and throws an
appropriate exception upon failure. Local structural constraints are
usually enforced in this way; the structure of a complex element’s
content, e.g., can in general only be checked by examining the types of
its children and ensuring that they match the schema’ s content model for
that element. Global structural constraints must be enforced in thisway:
the unigueness of | D values, e.g., can only be checked by examining the
entire content tree.

It is straightforward to implement both static and simple dynamic checks so as
to satisfy the fail-fast principle. Constraints that require complex dynamic
checks could, in theory, also be implemented so as to fail as soon as possible.
Theresulting classes would be rather clumsy to use, however, because it is often
convenient to violate structural constraints on atemporary basis while
constructing or manipulating a content tree.

Consider, e.g., an complex type definition whose content specification is very
complex. Suppose that an instance of the corresponding content interface is to
be modified, and that the only way to achieve the desired result involves a
sequence of changes during which the content specification would be violated.
If the content instance were to check continuously that its content is valid then
the only way to modify the content would be to copy it, modify the copy, and

18 JAXB Specification — Public Draft, V0.7 9/12/02

An example

then install the new copy in place of the old content. It would be much more
convenient to be able to modify the content in place.

A similar analysis applies to most other sorts of structural constraints, and
especially to global structural constraints. Schema-derived classes will therefore
be able to enable or disable amode that verifiestype constraints and will be able
to check structural constraints upon demand.

2.2.1 Handling Validation Failures

While it would be possible to notify a JAXB application that a validation error
has occurred by throwing a JAXBExcept i on when the error is detected, this
means of communicating a validation error resultsin only one failure at atime
being handled. Potentially, the validation operation would have to be called as
many times as there are validation errors. Both in terms of validation processing
and for the applications benefit, it is better to detect as many errors and
warnings as possible during a single validation pass. To allow for multiple
validation errors to be processed in one pass, each validation error is mapped to
avalidation error event. A validation error event relates the validation error or
warning encountered to the location of the text or object(s) involved with the
error. The stream of potential validation error events can be communicated to
the application either through a registered validation event handler at the time
the validation error is encountered or viaa collection of validation failure events
that the application can request after the operation has completed.

Unmarshalling and on-demand validation of in-memory objects are the two
operationsthat can result in multiple validation failures. The same mechanismis
used to handle both failure scenarios. See Section 3.3, “General Validation
Processing,” on page 26 for further details.

2.3 An example

Throughout this specification we will refer and build upon the familiar schema
from [XSD Part 0] which describes a purchase order, as a running example to
illustrate various binding concepts as they are defined. Note that all schema
name attributes with values in this font “componentName” are bound by JAXB
technology to either a Java interface or JavaBean like property. Please note that
the derived Java code in the exampleis close but not exactly what one would get
from the default binding of the schemato Java representation.

9/12/02 JAXB Specification — Public Draft, V0.7 19

Architecture

<xsd: schema xm ns: xsd="http://ww. w3. or g/ 2001/ XM_Schena" >
<xsd: el ement name="purchaseOrder" type="PurchaseOrderType"/ >
<xsd: el enent name="comment" type="xsd: string"/>
<xsd: conpl exType name="PurchaseOrderType">
<xsd: sequence>

<xsd: el ement narme="shipTo" t ype="USAddr ess"/ >
<xsd: el ement name="billTo" t ype="USAddr ess"/ >
<xsd: el ement ref="comment" nminQccurs="0"/>
<xsd: el ement nanme="items" type="ltens"/>

</ xsd: sequence>
<xsd: attribute name="orderDate" type="xsd:date"/>
</ xsd: conpl exType>

<xsd: conpl exType nane="USAddress">
<xsd: sequence>

<xsd: el ement name="name" type="xsd: string"/>
<xsd: el enent name="street" type="xsd: string"/>
<xsd: el ement name="City" type="xsd:string"/>
<xsd: el enent nanme="state" type="xsd: string"/>
<xsd: el ement nane="zip" type="xsd: deci mal "/ >
</ xsd: sequence>
<xsd: attribute name="country" type="xsd: NMTOKEN" fi xed="US"/>

</ xsd: conpl exType>

<xsd: conpl exType nanme="ltems">
<xsd: sequence>
<xsd: el ement nanme="item" ni nCccurs="1" maxCccur s="unbounded" >
<xsd: conpl exType>

<xsd: sequence>
<xsd: el ement name="productName" type="xsd: string"/>
<xsd: el ement name="quantity">

<xsd: si npl eType>
<xsd:restriction base="xsd: positivelnteger">
<xsd: maxExcl usi ve val ue="100"/>
</xsd:restriction>
</ xsd: si npl eType>

</ xsd: el enent >
<xsd: el ement name="USPrice" type="xsd:decinal"/>
<xsd: el enent ref="comment" nminCccurs="0">
<xsd: el ement name="shipDate" type="xsd: date" ni nQccurs="0"/>

</ xsd: sequence>

<xsd: attribute name="partNum" type="SKU' use="required"/>

</ xsd: conpl exType>
</ xsd: el ement >
</ xsd: sequence>
</ xsd: conpl exType>

<l-- Stock Keeping Unit, a code for identifying products -->
<xsd: si npl eType nanme="SKU" >
<xsd:restriction base="xsd:string">
<xsd: pattern value="\d{3}-[A-Z]{2}"/>
</xsd:restriction>
</ xsd: si npl eType>
</ xsd: schenma>

20 JAXB Specification — Public Draft, V0.7 9/12/02

An example

Binding of purchase order schemato a Java representation:

inmport java.util.Calendar; inport java.util.List;
public interface PurchaseOrderType {

USAddr ess get ShipTo() ; voi d set ShiptTo(USAddr ess) ; <
USAddr ess get BillTo() ; voi d set BillTo(USAddr ess) ;
/** Optional to set Comment property. */
String get Comment() ; voi d set Comment(String);
ItensType get Items() ; voi d set Items(1tensType);
Cal endar get OrderDate() ; voi d set OrderDate(Cal endar) ;
b
public interface USAddress {
String get Name() ; voi d set Name(String);
String get Street() ; voi d set Street(String);
String get City() ; voi d set City(String);
String get State() ; voi d set State(String);
int get Zip() ; voi d set Zip(int);
static final String COUNTRY="USA";?
b

public interface Items {
static public interface ltemType {

String get ProductName(); voi d set ProductName(Stri ng) ;
/** Type constraint on Quantity setter value 0..99.%/

int get Quantity() ; voi d set Quantity() ;

int get USPrice() ; voi d set USPrice() ;

/** Optional to set Comment property. */

String get Comment() ; voi d set Comment(String);
Cal endar get ShipDate() ; voi d set ShipDate(Cal endar) ;
/** Type constraint on PartNum setter value "\d{3}-[A-Z]{2}". 2%/
String get PartNum() ; voi d set PartNum(Stri ng);

b

/** Local structural constraint 1 or nore instances of ltems.ltemType. */
Li st getltem();
}
public interface PurchaseOrder ext ends PurchaseOrderType, javax.xml.bind.Element {};
public interface Comment extends javax.xml.bind.Element{
String getValue(); void setValue(String)};

class vj ectFactory {

Pur chaseOr der Type cr eat ePurchaseOrderType() ;
USAddr ess cr eat eUSAddress() ;

Itens createltems();

Itenms. | tenType cr eat eltemsltemType() ;

Pur chaseOr der creat ePur chaseOr der () ;
Conment s creat eComrent () ;

Conment s creat eComrent (String val ue);

- Appropriate customization required to bind afixed attribute to a constant value.

2 Type constraint checking only performed if customization enables it and implementation
supports fail-fast checking

9/12/02 JAXB Specification — Public Draft, V0.7

Architecture

The purchase order schema does not describe any global structural constraints.

The coming chapters will identify how these XML Schema concepts were
bound to a Java representation. Just asin [XSD Part 0], additions will be made
to the schema example to illustrate the binding concepts being discussed.

22 JAXB Specification — Public Draft, V0.7 9/12/02

CHAPTER3

THE BINDING FRAMEWORK

The binding framework defines APIs to access unmarshalling, validation and
marshalling operations for manipulating XML data and Java content instances.
The framework is presented here in overview; its full specification is available
in a separate document, the javadoc for the package.

The binding framework residesin two main packages. Thej avax. xm . bi nd
package defines abstract classes and interfaces that are used directly with
content classes. Thej avax. xm . bi nd package defines the

Unmar shal | er, Vali dat or,and Mar shal | er classeswhich are
auxiliary objects for providing their respective operations. The JAXBCont ext
classisthe entry point for a Java application into the JAXB framework. A
JAXBCont ext instance manages the binding relationship between XML
element names to Java content interfaces for a JAXB implementation to be used
by the unmarshal, marshal and validation operations. The

j avax. xm . bi nd. hel per package provides partial default
implementations for some of thej avax. xm . bi nd interfaces.
Implementations of JAXB can extend these classes and implement the abstract
methods. These APIs are not intended to be directly used by applications using
JAXB architecture. A third package, j avax. xm . bi nd. uti |, contains
utility classes that may be used by client applications.

Finally, it defines arich hierarchy of validation event and exception classes for
use when marshalling/unmarshalling errors occur, when constraints are
violated, and when other types of errors are detected.

9/12/02 JAXB Specification — Public Draft, V0.7 23

The Binding Framework

3.1 Binding Runtime Framework
Rationale

A prior revision of this specification provided a standardized binding runtime
framework and it specified that each schema-derived class was capable of
unmarshalling, marshalling and validating itself using generated Java code.
Design decisions in that standardized framework severely restricted
implementation approaches that could be used to implement the JAXB
architecture. Addtionally, requiring the schema-derived classes to visibly
contain the validation, marshal and unmarshal methods meant that this
architecture would not easily be capable of working with unmodifiable, existing
JavaBean classes.

This version of the specification addresses these issues by not attempting to
standardize the binding runtime framework at this time and not exposing at the
JAXB API layer whether the Java content classes are capable of validating,
marshalling and unmarshalling themselves or whether this functionality exists
external to theinstance. Thereis not enough experience at thistimeto identify a
single acceptable framework suitable for all. For example, some would like to
pursue reflective, dynamic solutions that provide marshalling/unmarshalling
capabilities while others would like to generate static, fixed code solutions. For
example, some would like to use non-standard pull parsing for unmarshalling
while others would rather leverage JAXP parsing and its validation capbilities
for unmarshalling. It would prematurely restrict the exploration of possible
alternative solutions to attempt to identify a common runtime framework for all
implementations to conform to at thistime. It is hoped that as XML processing
technologies mature in the future, it will be possible to identify a common
binding runtime framework in a future version of the specification.

One unfortunate result of not standardizing the binding framework runtime
system is that there is atight coupling between the schema-derived
implementation classes and the JAXB implementation’s runtime framework.
Oneisrequired to regenerate the schema-derived implementation classes when
changing JAXB implementations. However, note that it is recognized that an
application might have the need to use multiple implementations of the JAXB
architecture at the same time and it is a requirement that all implementations
support this feature. For example, athird party library jar that an application
uses might use one JAXB implementation and the application wishes to choose
adifferent JAXB implementation to use. Details on how this can be achieved
are discussed in the next section on JAXBCont ext class.

24 JAXB Specification — Public Draft, V0.7 9/12/02

JAXBContext

3.2 JAXBContext

The JAXBCont ext class provides the client’s entry point to the JAXB API. It
provides an abstraction for managing the XML/Java binding information
necessary to implement the JAXB binding framework operations: unmarshal,
marshal and validate. Addtionally, the JAXBCont ext classis designed to
ensure that the correct binding framework implementation is used with Java
content implementation classes.

The following summarizes the JAXBCont ext class defined in package
javax. xnl . bi nd.

public abstract class JAXBContext {
static final String JAXB_CONTEXT_FACTORY;
stati c JAXBCont ext newl nstance(String contextPath)
stati c JAXBCont ext new nstance(String contextPath,
Cl assLoader context Pat hCL)
abstract Unmarshal | er createUnmarshaller();
abstract Marshaller createMarshaller();
abstract Validator createValidator();

}

A client application obtains new instances of this class viathe
newl nstance(String) factory method.

JAXBContext jc =
JAXBCont ext . new nst ance(“com acne. foo: com acne. bar”);

The following ordered lookup procedure for the newl nst ance() method is
used to determine which concrete implementation of JAXBCont ext to load:

« Search the context path for the first occurrence of afile named
j axb. properti es containing the
j avax. xnl . bi nd. context. factory property and useitsvalue.

Thecont ext Pat h parameter to thenewl nst ance method contains alist of
Java package names that contain implementation specific means for mapping
XML document instances for the specified schema vocabul aries to Java content
instances. Typically, the XML/Java binding information is expected to be
generated by the binding compiler. Note that this specification does not specify
how or what format the XML to Java binding information is represented in or
how it is created, it only specifies that the data is expected to be represented in
the list of packages specified to the newl nst ance method. By allowing for

9/12/02 JAXB Specification — Public Draft, V0.7 25

The Binding Framework

multiple Java packages to be specified, the JAXBCont ext instance allows for
the management of multiple schemas at one time. All Java packages specified in
the cont ext Pat h parameter must contain XM L/Java binding information
from only one JAXB implementation or if there exists an ambiguity in the
multiple schemas being joined by the JAXBCont ext instance, that a
JAXBExcept i on isthrown by thenewl nst ance(St ri ng) method.

By enabling aJAXBCont ext to represent more than one schema at atime, an
Unmar shal | er created fromit is capable of processing XML instance
documents from more than one schema by one unmar shal invocation. The
use case exists where an application receives an XML document instance from
an external source and the application does not know the precise schema
vocabulary for the document instance but it does know that the document is an
instance of one of several schemas. This use case is the motivation for
JAXBCont ext to be able to represent multiple schemas at one time.

See the javadoc for JAXBCont ext for more details on this class.

3.3 General Validation Processing

Three identifiable forms of validation exist within the JAXB architecture
include:

« Unmarshal-time validation

This form of validation enables a client application to be notified of
validation errors and warnings detected while unmarshalling XML data
into a Java content tree and is completely orthogonal to the other types
of validation. To enable or disable it, see the javadoc for method
Unmar shal | er. set Val i dati ng(bool ean).

« On-demand validation

An application may wish to validate the correctness of the Java content
tree based on schema validation constraints. This form of validation
enables an application to initiate the validation process on a Java
content tree at a point in time that it feelsit should be valid. The
application is notified about validation errors and warnings detected in
the Java content tree.

« Fail-fast validation

26 JAXB Specification — Public Draft, V0.7 9/12/02

General Validation Processing

This form of validation enables a client application to receive
immediate feedback about a modification to the Java content tree that
violates atype constraint of a Java property. An unchecked exception is
thrown if the value provided to a set method is invalid based on the
constraint facets specified for the basetype of the property. This style of
validation is optional in the initial version of this specification. Of the
JAXB implementations that do support this type of validation, itis
customization time decision to enable or disable fail-fast validation
when setting a property.

Unmarshal-time and on-demand validation use an event driven mechanism to
enable multiple validation errors and warnings to be processed during a single
operation invocation. If the validation or unmarshal operation terminates with
an exception upon encountering the first validation warning or error, subsequent
validation errors and warnings would not be discovered until the first reported
error is corrected and another invocations of the validation or unmarshal
operation to identify all potential valiation warningsgerrors. Thus, the validation
event notification mechanism provides the application a more powerful means
to evaluate validation warnings and errors as they occur and allows the
application the ability to participate in the process of determining when a
validation warning or error should abort the current operation being performed.
Thus, an application could allow locally constrained validation problems such
asavalue outside of thelegal value space to not terminate validation processing.

If the client application does not set an event handler on aVal i dat or or
Unmar shal | er instance prior to invoking theval i dat e or unmar shal
operations, then adefault event handler will receive notification of any errors or
fatal errors encountered and stop processing the XML data. In other words, the
default event handler will fail on the first error that is encountered.

There are three ways to handle validation events encountered during the
unmarshal and validate operations:

« Rely on the default validation event handler
The default handler will fail on thefirst error or fatal error encountered.

« Implement and register a custom validation event handler
Client applications that require sophisticated event processing can
implement the Val i dat i onEvent Handl er interface and register it
with theVal i dat or or Unnar shal | er instance respectively.

« Request an error/warning event list after the operation compl etes.
By registering the Val i dat i onEvent Col | ect or helper, a
specialized event handler, with the set Event Handl er method, the

9/12/02 JAXB Specification — Public Draft, V0.7 27

The Binding Framework

Val i dat i onEvent objects created during the unmar shal and
val i dat e operations are collected. The client application can then
request the list after the operation compl etes.

Validation events are handled differently depending on how the client
application is configured to process them as described previously. However,
there are certain cases where a JAXB implementation needsto indicate that it is
no longer able to reliably detect and report errors. In these cases, the JAXB
implementation will set the severity of the Val i dati onEvent to
FATAL_ERROR to indicate that the unmar shal or val i dat e operation
should be terminated. The default event handler and

Val i dati onEvent Col | ect or helper class must terminate processing after
being notified of afatal error. Client applications that supply their own

Val i dat i onEvent Handl er should also terminate processing after being
notified of a fatal error. If not, unexpected behaviour may occur.

3.4 Validator

TheVal i dat or classisresponsible for controlling the validation of a content
tree of in-memory objects. The following summarizes the available operations
on the class.

public interface Validator {
Val i dat i onEvent Handl er get Event Handl er ()
voi d set Event Handl er (Val i dati onEvent Handl er)

bool ean val i date(java.l ang. Obj ect subroot Obj ect)
bool ean val i dat eRoot (j ava. | ang. Obj ect root Obj ect)

}

The JAXBCont ext class provides afactory to createaVal i dat or
instance. After an application has made a series of modifications to a Java
content tree, the application validates the content tree on-demand. Asfar asthe
application is concerned, this validation takes place against the Java content
instances and validation constraint warnings and errors are reported to the
application relative to the input of the validation, the Java content tree.
Validation isinitiated by invoking the validateRoot(Object) method on the root
of the Java content tree or by invoking validate(Object) method to validate any
arbitrary subtree of the Java content tree. The only difference between these two
methods is global constraint checking (i.e. verifying ID/IDREF constraints.)

28 JAXB Specification — Public Draft, V0.7 9/12/02

Unmarshalling

The validateRoot(Object) method does include global constraint checking as
part of its operation, whereas the validate(Object) method does not.

The validator governs the process of validating the content tree, serves as a
registry for identifier references, and ensures that all local and when appropriate
global structural constraints are checked before the validation processis
complete.

If aviolation of alocal or global structural constraint is detected then the
application is notified of the event with a callback passing an instance of a
Val i dat i onEvent asaparameter.

Design Note — The specification purposely does not state how validation isto be
implemented since there exist several different approaches which have their own
pros and cons. For example, the validation could be completely generated Java
code. It is believed that this approach would yield the fastest validation and easi est
time relating the validation errors and warnings to the Java content instances.
However, this approach will take a large effort to implement for XML Schema,
could result in large generated code size and would take a while to become as
mature as alternative implementation approaches. An alternative implementation
approach is to stream the content tree into SAX 2 events and allow one of the
existing, proven XML Schema validators provide validation.

3.5 Unmarshalling

TheUnnar shal | er class governsthe process of deserializing XML datainto
a Java content tree, capable of validating the XML dataasit is unmarshalled. It
provides the basic unmarshalling methods:

public interface Unmarshaller {
Val i dat i onEvent Handl er get Event Handl er ()
voi d set Event Handl er (Val i dati onEvent Handl er)

bool ean isValidating()
voi d setValidating(bool ean validating)

Unnar shal | er Handl er get Unmar shal | er Handl er ()

java. |l ang. Obj ect unmarshal (java.io.File)

9/12/02 JAXB Specification — Public Draft, V0.7 29

The Binding Framework

java. |l ang. Obj ect unmarshal (j ava. net. URL)

java.l ang. Obj ect unmarshal (java.i o. | nput Streamn
java. |l ang. Obj ect unmarshal (org. xm . sax. | nput Sour ce)
java. |l ang. Obj ect unmarshal (org. w3c. dom Node)

java. |l ang. Obj ect unmarshal (javax. xm . transform Sour ce)

}

The JAXBCont ext class contains afactory to create an Unnar shal | er
instance. The JAXBCont ext instance manages the XML/Java binding data
that is used by unmarshalling. If the JAXBCont ext object that was used to
create an Unmar shal | er does not contain information to know how to
unmarshal the XML content from a specified input source, then the

unmar shal operation will abort immediately by throwing an

Unmar shal Except i on. There are six convenience methods for
unmarshalling from various input sources.

An application can enable or disable unmarshal-time validation using the

set Val i dat i ng() method. The application has the option to customize
validation error handling by overriding the default event handler using the

set Event Handl er (Val i dati onEvent Handl er). The default event
handler aborts the unmarshalling process when the first error validation event is
encountered. Validation processing options are presented in more detail in
Section 3.3, “General Validation Processing.”

When the unmarshalling process detects a structural inconsistency during its
process that it is unable to recover from, it should abort the unmarshal process
by throwing Unmar shal Excepti on.

An application has the ability to specify a SAX 2.0 parser to be used by the
unmar shal operation using the

unmar shal (j avax. xm . transf orm Sour ce) method. Even though
the JAXB Provider’s default parser is not required to be SAX2.0 compliant, all
providers are required to allow an application to specify their own SAX2.0
parser. Some providers may require the application to specify the SAX2.0
parser at binding compile time. See the method javadoc

unmar shal (Sour ce) for more detail on how an application can specify its
own SAX 2.0 parser.

30 JAXB Specification — Public Draft, V0.7 9/12/02

Marshalling

3.6 Marshalling

The Mar shal | er classisresponsible for governing the process of serializing
a Java content tree into XML data. It provides the basic marshalling methods:

interface Marshal ler {
static final string JAXB_ENCODI NG PROPERTY;
static final string JAXB_FORMATTED OUTPUT;
static final string JAXB_SCHEMA LOCATI ON;
static final string JAXB_NO NAMESPACE_SCHEMA LOCATI ON,
<PROTENTI ALLY MORE PROPERTI ES. . . >

java. l ang. Obj ect getProperty(java.lang. String name)
voi d setProperty(java.lang. String nanme, java.lang. Object val ue)

voi d set Event Handl er (Val i dati onEvent Handl er handl er)
Val i dat i onEvent Handl er get Event Handl er ()

voi d nmarshal (java.l ang. Object obj, java.io. Witer witer)

voi d marshal (java. |l ang. Obj ect obj, java.io.QutputStream os)
voi d nmarshal (j ava. | ang. Obj ect obj, org.xm .sax. ContentHandl er)
voi d marshal (j ava. | ang. Obj ect obj, org.w3c.dom Node)

voi d marshal (java. |l ang. Obj ect obj, javax.xm .transform Result)

}

The JAXBCont ext class contains afactory to create aMar shal | er
instance.There are convenience method overloadings of the mar shal ()
method allow for marshalling a content tree to common Java output targets and
to common XML ouptut targets of a stream of SAX2 events or aDOM parse
tree.

Although each of the marshal methods acceptsaj ava. | ang. Obj ect asits
first parameter, JAXB implementations are not required to be able to marshal
any arbitrary j ava. | ang. Obj ect . If the JAXBCont ext object that was
used to create this Mar shal | er does not have enough information to know
how to marshal the object parameter (or any objects reachable from it), then the
marshal operation will throw a Mar shal Except i on. Even though JAXB
implementions are not required to be able to marshal arbitrary

j ava. | ang. Obj ect objects, an implementation is allowed to support this
type of marshalling.

9/12/02 JAXB Specification — Public Draft, V0.7 31

The Binding Framework

The marshalling process does not validate the content tree being marshalled, but
if the marshalling process detects a structural inconsistency during its process
that it isunable to recover from, it should abort the marshal process by throwing
Mar shal Excepti on.

Client applications are not required to validate the Java content tree prior to
calling one of the marshal API’s. Furthermore, there is no requirement that the
Java content tree be valid with respect to its original schemain order to marshal
it back into XML data. Different JAXB Providers will support marshalling
invalid Java content trees at varying levels, however all JAXB Providers must
be able to marshal a valid content tree back to XML data. A JAXB Provider
must throw a Mar shal Except i on when it is unable to complete the marshal
operation due to invalid content. Some JAXB Providers could fully allow
marshalling invalid content, others can fail on the first validation error.

3.6.1 Marshalling Properties

The following subsection highlights properties that can be used to control the
marshal process. These properties must be set prior to a marshal operation being
started, the behavior is undefined if these attributes are altered in the middle of a
marshal operation. The following standard properties have been identified:

« j axb. encodi ng: output character encoding

« jaxb. formatted. out put:
true - human readabl e i ndented xml data
false - unformatted xm data

o jaxb. schemaLocati on
This property allows the client application to specify an
Xsi : schemaLocat i on attribute in the generated XML data.

« j axb. noNamespaceSchenmalLocat i on
This property allows the client application to specify an
xsi : noNanespaceSchemaLocat i on attribute in the generated
XML data.

32 JAXB Specification — Public Draft, V0.7 9/12/02

Validation Handling

3.7 Validation Handling

Methods defined in the binding framework can cause validation events to be
delivered to the client application’s Val i dat i onEvent Handl er and setter
methods generated in schema-derived implementation classes are capable of
throwing TypeConst r ai nt Except i ons, al of which are defined in the
binding framework.

The following list describes the primary event and constraint-exception classes:

« Aninstance of aTypeConst r ai nt Except i on subclassis thrown
when a violation of a dynamically-checked type constraint is detected.
Such exceptions will be thrown by property-set methods, for which it
would be inconvenient to have to handle checked exceptions; type-
constraint exceptions are therefore unchecked, i.e, this class extends
java. |l ang. Runt i meExcepti on. The constraint check is always
performed prior to the property-set method updating the value of the
property, thus if the exception is thrown, the property is guaranteed to
retain the valueit had prior to the invocation of the property-set method
with an invalid value. Thisfunctionality is optional to implement in this
version of the specification. Additionally, a customization mechanismis
provided to control enabling and disabling this feature.

« Aninstanceof aVal i dat i onEvent isdelivered whenever aviolation
is detected during on-demand validation or unmarshal-time validation.
Additionally, ValidationEvents can be discovered during marshalling
such as ID/IDREF violations and print conversion failures. These
violations may indicate local and global structural constraint violations,
type conversion violations, type constraint violations, etc.

« Since the unmarshal operation involves reading an input document,
lexical well-formedness error may be detected or an 1/0O error may occur.
In these cases, an Unmar shal Except i on will be thrown to indicate
that the JAXB Provider is unable to continue the unmarshal operation.

« During the marshal operation, the JAXB Provider may encounter errors
in the Java content tree that prevent it from being able to complete. In
these cases, aMar shal Except i on will bethrown to indicate that the
marshal operation can not be completed.

9/12/02 JAXB Specification — Public Draft, V0.7 33

The Binding Framework

34

JAXB Specification — Public Draft, V0.7

9/12/02

CHAPTERA4

JAVA REPRESENTATION OF
XML CONTENT

This section defines the basic binding representation of package, content and
element interfaces, properties, typesafe enum class within the Java
programming language. Each section briefly states the XML Schema
components that could be bound to the Java representation. A more rigourous
and thourough description of possible bindings and default bindings occursin
Chapter 5, “Binding XML Schemato Java Representations’ and in Chapter 6,
“Customization.”

4.1 Mapping between XML Names and
Java ldentifiers

XML schema languages use XML names, i.e. , strings that match the Name
production defined in XML 1.0 (Second Edition) to label schema components.
This set of strings is much larger than the set of valid Java class, method, and
constant identifiers. “Binding XML Names to Java ldentifiers’ on page 157
specifies an algorithm for mapping XML names to Javaidentifiersin away that
adheres to standard Java API design guidelines, generates identifiers that retain
obvious connections to the corresponding schema, and is unlikely to result in
many collisions. It is necessary to rigorously define a standard way to perform
this mapping so al implementations of this specification perform the mapping
in the same compatible manner.

9/12/02 JAXB Specification — Public Draft, V0.7 35

Java Representation of XML Content

4.2 Java Package

Just as the target XML namespace provides a naming context for the named
type definitions, named model groups, global element declarations and global
attribute declarations for a schema vocabulary, the Java package provides away
to group Javainterfaces and classes within anaming context. It is natural to map
the target namespace of a schema to be the package that contains the Java
content interfaces representing the structural content model of the document.

A package consists of

« A name, which is either derived directly from the XML namespace URI
as specifed in Section C.4, “ Generating a Java package name” or
specified by a binding customization of the XML namespace URI as
described in Section 6.6.1.1, “ package.

« Set of Java content interfaces representing the content models declared
within the schema;

« Set of Java element interfaces representing element declarations
occuring within the schema. Section 5.7.1, “Bind to Java Element
Interface” discusses the binding of an element declaration in more detail.

« Class Obj ect Fact ory containing:
o Aninstance factory method for each Java content interface and Java
element interface within the package.

Given Java content interface named Foo, here is the derived factory
method.

public static Foo createFoo() throws JAXBExcepti on;
o Dynamic instance factory allocator

Create an instance of the specified Java content interface.

public static Object newi nstance(Cl ass javaContentl|nterface)
t hr ows JAXBExcepti on;

« Set of typesafe enum classes,
« Package javadoc.
Example:

Purchase Order Schema fragment with Target Namespace:

36 JAXB Specification — Public Draft, V0.7 9/12/02

Typesafe Enum Class

<xsd: schema xm ns="http://ww.w3. org/ 2001/ XM_Schema"
xm ns: po="http://ww. exanpl e. coml POL"
t ar get Namespace="ht t p: / / ww. exanpl e. com POL" >
<xsd: el ement nanme="purchaseOrder" type="po: PurchaseO der Type"/>
<xsd: el ement nanme="comrent" type="string"/>

</ xsd: schema>
Default derived Java code;

i mport javax.xmnl . bind. El enent;

package com exanpl e. POL;

interface PurchaseOrderType { };

interface PurchaseOrder extends PurchaseOrder Type, El enent;
interface Comment { String getValue(); void setValue(String); }

class ObjectFactory {
Pur chaseOr der Type creat ePur chaseOr der Type();
Pur chaseOrder createPurchaseOrder();
Comment creat eComment (String val ue);

4.3 Typesafe Enum Class

A simple type definition whose value space is constrained by an enumeration is
worth consideration for binding to a Java typesafe enum class. The typesafe
enum design pattern is described in detail in [BLOCH]. To summarize the
concept, if an application wishes to refer to the values of a class by descriptive
constants and manipulate those constants in a type safe manner, one should
consider binding the xml component to a typesafe enum class.

A typesafe enum class consists of:

« A name, which is either computed directly from an XML name or
specified by a binding customization for the schema component;

« A package nhame, which iseither computed from the target namespace of
the schema component or specified within a binding declaration as a
customization of the target namespace or a specified package name for
components that are scoped to no target namespace.

9/12/02 JAXB Specification — Public Draft, V0.7 37

Java Representation of XML Content

Outer Class Namesis*“. " separated list of outer class names;

By default, if the XML component responsible for atypesafe enum
class to be generated is scoped within a complex type as opposed to a
global scope, the typesafe enum class should occur as a hested class
within the Java content interface representing the complex type scope.
Absolute class name is PackageName.[OuterClassNames.]Name.
Note: Outer Class Name is null if interface is atop-level interface.

Set of enum constants
Set of enumvalue constants

Class javadoc is a combination of a documentation annotation from the
schema component and/or javadoc specified by customization.

An enum constant consists of:

« A name, which is either computed from the value or specified by

customization;

« A datatype for the constant;
« A value for the constant;

« Javadoc for the constant field is a combination of a documentation

annotation for an enumeration value facet and/or javadoc specified by
customization.

An enumvalue constant consists of

4.4

« A name, which is either computed from the value or specified by

customization;

« A datatype for the constant;

« A value for the constant.

Java Content Interface

Complex type definitions from an XML Schema is the building blocks of XML
schema for defining user-defined complex content. They are bound to a Java
content interface. The attributes and children element content of these schema
building blocks are represented as properties of the content interface that are
introduced in Section 4.5, “ Properties,” on page 40.

38

JAXB Specification — Public Draft, V0.7 9/12/02

Java Content Interface

A Java content interface is defined by:

« A name, which is either computed directly from an XML name or
specified by a binding customization for the schema component;

« A package hame, which iseither computed from the target namespace of
the schema component or specified by binding customization of the
target namespace or a specified package name for components that are
scoped to no target namespace.

« The outer class name context is dot-separated list of Java class names.

By default, if the XML schema component responsible for a Java
content interface to be generated is scoped within a complex type as
opposed to a global scope, the complex class should occur as a nested
class within the Java content interface representing the complex type
scope.

Absolute class name is PackageName.[OuterClassNames.]Name.
Note: Outer Class Name is null if interface is atop-level interface.

« A baseinterface that this interface extends. See Section 5.3, “ Complex
Type Definition,” on page 62 for further details.

« Set of Java properties which provide access and modification to the
attributes and content model represented by the interface.

« A local structural constraint predicate represents all the structural
constraints for the content of the class. The constraints include atttribute
occurrences and local structural constraints detailed in Section 2.2,
“Varieties of validation,” on page 17.

« Classjavadoc is a combination of a documentation annotation from the
schema component and/or javadoc specified within customization.

« A factory method is generated in the package’s ObjectFactory class
introduced in Section 4.2, “ Java Package”. The factory method returns
the type of the Java content interface. The name of the factory method is
generated by concatenating the following components:

o Thestring constant cr eat e.

o If the Javacontent interface is nested within another interface, then the
concatenation of all outer Java class names.

o The name of the Java content interface.

For example, a Java content interface named Foo that is nested within
Java content interface Bar would have the following factory method
signature generated in the containing Java package's ObjectFactory class:

9/12/02 JAXB Specification — Public Draft, V0.7 39

Java Representation of XML Content

Bar . Foo creat eBar Foo()

4.5 Properties

The binding compiler binds local schema components to properties within a
Java content interface.

A property is defined by:

« A name, which is either computed from the XML name or specified by
a binding customization for the schema component;

« A base type, which may be a Java primitive type (e.g., i nt) or a
reference type.

« Anoptiona predicate, which isamechanism that tests val ues of the base
typefor validity andthrowsaTypeConst r ai nt Excepti onif atype

constraint expressed in the source schemais violated. *

« An optional collection type, which is used for properties whose values
may be composed of more than one value.

« A default value.

A property isrealized by a set of access methods. Several property models are
identified in the following subsections, each adds additional functionaly to the
basic set of access methods.

A property’s access methods are named in the standard JavaBeans style: The
name-mapping algorithm is applied to the property name and then each method
name is constructed by prepending the appropriate prefix verb (get , set , etc.).

A property is said to have a set value if that value was assigned to it during

unmarshalling? or by invoking its mutation method. The value of a property is
its set value, if defined; otherwise, it is the property’s schema specified default
value, if any; otherwise, it isthe default initial value for the property’ s base type

asit would be assigned for an uninitialized field within a Java class®.

L Notethat it is optional for a JAXB implementation to support type constraint checks when
setting a property in this version of the specification.

40 JAXB Specification — Public Draft, V0.7 9/12/02

Properties

45.1 Simple Property

A non-collection property pr op with a base type Type is realized by the two
methods

public Type getld ();
public void setld (Type val ue);

where | d isametavariable that represents the Java method identifier computed
by applying the name mapping algorithm described in Section C.2, “The Name
to Identifier Mapping Algorithm” to prop. Thereis one exception to this general
rule in order to support the boolean property described in [BEANS]. When Type
i s bool ean, theget!d method specified above is replaced by the method
signature, boolean i si d().

« Theget or i s mnethod returnsthe property’ s value as specified in the
previous subsection. If null is returned, the property is considered to be
absent from the XML content that it represents.

« Theset method defines the property’s set value to be the argument
val ue. If theargument valueisnul | , the property’s set valueis
discarded. Prior to setting the property’ s value when TypeConstraint
validation is enabled*, anon-nul | valueis validated by applying the
property’s predicate, which may throw a
TypeConstrai nt Excepti on. If the
TypeConst rai nt Except i on isthrown, the property retains the
value it had prior to the set method invocation.

When the base type for a property is a primitive non-reference type, the
corresponding Java wrapper class can be used as the base type for the property
to enable invoking the set method with anul | parameter to discard a property’s
set value. See Section 4.5.3, “Constant Property,” on page 46 for an alternative

2 An unmarshalling implementation should distinguish between a value from an XML instance
document and a schema specified defaulted value when possible. A property should only be
considered to have a set value when there exists a corresponding value in the XML content
being unmarshalled. Unfortuately, unmarshalling implementation paths do exist that can not
identify schema specified default values, this situation is considered a one-time transformation
for the property and the defaulted value will be treated as a set value.

% Namely, abool ean field type defaultstof al se, i nt eger field type defaults to 0, object
reference field type defaults to nul | , floating point field type defaults to +0. Of .

I

“Notethat it is optional for a JAXB implementation to support type constraint checks when
setting a property in this version of the specification.

9/12/02 JAXB Specification — Public Draft, V0.7 41

Java Representation of XML Content

to using awrapper class to enable the abilility to discard the set value for a
property with a primitive non-reference base type.

Example

In the purchase order schema, the par t Numattribute of thei t emelement
definition is declared:

<xsd: attribute nanme="partNunl' type="SKU"' use="required"/>

This element declaration is bound to a simple property with the base type
java.lang. String:

public String getPartNun();
public void setPartNun(String x);

The set Par t Nummethod could apply a predicate to its argument to ensure
that the new valueislegal, i.e., that it is a string value that complies with the
constraints for the simple type definition, SKU, that derives by restriction from
xsd: string and restricts the string value to match the regular expression
pattern, "\d{ 3} -[A-Z]{2}".

Itislegal to passnul | totheset Part Nummethod even though the

par t Numattribute declaration’s attribute us e is specified as required. The
determination if partNum content actually has avalueisalocal structural
constraint rather than atype constraint, so it is checked during validation rather
than during mutation.

45.2 Collection Property

A collection property may take the form of an indexed property or alist
property. The base type of an indexed property may be either a primitive type or
areference type, while that of alist property must be a reference type.

45.2.1 Indexed Property

This property follows the indexed property design pattern for a multi-valued
property from the JavaBean specification. An indexed property prop with base
type Typeisrealized by the five methods

public Type [] getld();
public void setld (Type [] val ue);

42 JAXB Specification — Public Draft, V0.7 9/12/02

Properties

public Type [] getld();

public void setl d(int index, Type val ue);
public Type getld(int index);

public int getldLength();

regardless of whether Type isa primitive type or areferencetype. | d is
computed from pr op as it was defined in simple property.

« Thearray get t er method returns an array containing the property’s
value. If the property has no set value then nul | isreturned.

« Thearray setter method defines the property’s set value. If the
argument itself isnul | then the property’s set value, if any, is
discarded. If theargumentisnot nul | and TypeConstraint validationis
enabled ° then the sequence of valuesin the array are first validated by
applying the property’s predicate, which may throw a
TypeConstrai nt Excepti on. If the
TypeConst rai nt Except i on isthrown, the property retains the
valueit had prior to the set method invocation. The property’ svalueis
only modified after the TypeConstraint validation step.

« Theindexed set ter method allows one to set a value within the array.
The runtime exception,
java. |l ang. Arrayl ndexQut Of BoundsExcepti on, may be
thrown if theindex is used outside the current array bounds. If the value
argument is non-null and TypeConstraint validation is enabled®, the
value is validated against the property’s predicate, which may throw an
unchecked TypeConst r ai nt Excepti on. If
TypeConst rai nt Except i on isthrown, thearray index remains set
to the same value it had before the invocation of the indexed set t er
method.

« Theindexed get ter method returns asingle element from the array. The
runtime exception,
java. |l ang. Arrayl ndexQut Of BoundsExcept i on, may be
thrown if the index is used outside the current array bounds. In order to
change the size of the array you must use the array set method to set a
new (or updated) array.

5 Note that it is optional for a JAXB implementation to support type constraint checks when
setting a property in this version of the specification.

9/12/02 JAXB Specification — Public Draft, V0.7 43

Java Representation of XML Content

« Theindexed length method returns the length of the array. This method
enablesoneto iterate over all theitemswithin theindexed property using
the indexed mutators exclusively. Exclusive use of indexed mutators and
this method enable one to avoid the allocation overhead associated with
array get t er and set t er methods.

The arrays returned and taken by these methods are not part of the content
object’s state. When an array get t er method isinvoked it creates a new array
to hold the returned values. Similarly, when the corresponding array set
method isinvoked, it copies the values from the argument array.

To test whether an indexed property has aset value, invokeitsar ray getter
method and check that the result is not nul | . To discard an indexed property’s
set value, invoke its array set t er method with an argument of nul | .

See the customization attribute col | ect i onType in Section 6.5,

“<gl obal Bi ndi hgs> Decl arati on” and Section 6.8, “<property>
Declaration” on how to enable the generation of indexed property methods for a
collection property.

Example

In the purchase order schema, we have the following repeating element
occurance of element item within complex type definition for Items.

<xsd: conpl exType nanme="Items">
<xsd: sequence>
<xsd: el ement nane="item" m nCccur s="1"nmaxCccur s="unbounded" >
<xsd: conpl exType>. .. </ xsd: conpl exType>
</ xsd: el ement >
</ xsd: conpl exType>

The content specification of this element type could be bound to an array
property realized by these four methods:

public Itenms.|temlype[] getltenm();

public void setlten(ltens.|tenlype[] val ue);

public void setlten(int index, Items.|tenType val ue);
public Itenms. |tenType getlten(int index);

44 JAXB Specification — Public Draft, V0.7 9/12/02

Properties

4522 List Property

A list property prop with base type Type is realized by the method where Li st
public List getld();

istheinterfacej ava. uti | . Li st, | d isdefined as above.

« Theget method returns an object that implementsthe Li st interface,
is mutable, and contains the values of type Type that constitute the
property’s value. If the property does not have a set value and a schema
default value, an empty List is returned.

The list returned by the get method is a component of the content object’s
state. Modifications made to thislist will, in effect, be modifications to the
content object. If TypeConstraint validation is enabled, the list's mutation
methods apply the property’s predicate to any non-nul | value before adding
that value to the list or replacing an existing element’s value with that value; the
predicate may throw a TypeConst r ai nt Excepti on.

Design Note — A future version of the Java programming language may support
generic types, in which case this specification may be revised so that list-retrieval
methods have the type Li st <Type>.

Example

The content specification of thei t emelement type could alternatively be
bound to alist property realized by one method:

public List getlten();

Thelist returned by the get | t emmethod would be guaranteed only to contain
instances of the | t emclass. As before, its length would only be checked during
validation, since the requirement that there be at least onei t emin an element
instance of complex type definition | t ens isastructural constraint rather than
atype constraint.

9/12/02 JAXB Specification — Public Draft, V0.7 45

Java Representation of XML Content

4.5.3 Constant Property
An attribute use named prop with a schema specified fixed value can be bound
to a Java constant value. I1d is computed from pr op asit was defined in simple

static final public Type ID = <fixedVal ue>;

property. The value of the fixed attribute of the attribute use provides the
<f i xedVal ue> constant value.

The binding customization attribute, fi xedAt t ri but eToConst ant Property,
enables this binding style. Section 6.5, “<gl obal Bi ndi ngs>

Decl arati on” and Section 6.8, “<property> Declaration” describe how to
use this attribute.

45.4 isSet Property Modifier

Thei sSet property modifier generates a method for a property that enables
oneto distinguish if a property’s value is a set value or a defaulted value.

public boolean i sSet | d();

where | d is defined as it was for simple property.

« Thei sSet method returns aboolean value of t r ue if the property has
been set via assignment to it during unmarshalling or by invocation of

the mutation method set | d with anon-nul | value.

To aid the understanding of what i sSet method implies, note that the
marshalling process only marshals set values into XML content.

A simple property with anon-reference base type requires an additional
method to enable one to discard the set value for a property.

public void unset | d();

& A Java application does not need to distinguish between the absence of a element from the
infoset and when the element occured with nil content. Thus, in the interest of simplifying the
generated API, methods were not provided to distinguish between the two. The marshalling
process should always output an element with nil content for a property that is not set and it
represents arequired nillable element declaration.

46 JAXB Specification — Public Draft, V0.7 9/12/02

Properties

« Theunset method marks the property as having no set value. A
subsequent call toget | d method returns the schema specified default if
it existed; otherwise, the Java default initial value for Type.

All other property kinds rely on the invocation of their set method with avalue
of null to discard the set value of its property. Since thisis not possible for
primitive types, the additional method is generated for this case.

Example

In the purchase order schema, the par t Num attribute of the element i t emis
anonymous complex type is declared:

<xsd:attribute name="partNunl' type = "SKU' use="required"/>

Thisattribute could be bound to ai sSet simple property realized by these four
methods:

public int getPartNum();

public void setPart Nunm(String skuVal ue);
public bool ean isSetPartNunm();

public void unsetPartNun();

Itislegal to invoke theunset Par t Nummethod even though the attribute’s
useis“required” inthe XML Schema. That the attribute actually has a
valueisalocal structura constraint rather than atype constraint, so it is checked
during validation rather than during mutation.

The binding customization attribute, gener at el sSet Met hod, enables/disablesthe
automatic generation of these methods when a property has a schema default
value or if asimple property has a non-reference base type.

45,5 Property Summary

The following core properties have been defined:

« Simple property - JavaBean design pattern for single value property

« Indexed property - JavaBean design pattern for multi-valued property
« List property - Leveragesjava.util.Collection

« Constant property

The methods generated for these four core property kinds are sufficient for most
applications. Configuration-level binding schema declarations enable an

9/12/02 JAXB Specification — Public Draft, V0.7 47

Java Representation of XML Content

application to request finer control than provided by the core properties. One
such property modifier that has been identified istheisSet propery modifier that
allows an application to determine if a property’s value was set or defaulted.

4.6

Java Element Interface

Based on criteriato be identified in Section 5.7.1, “Bind to Java Element
Interface,” on page 71, the binding compiler binds an element declaration to a
Java element interface. An element interface is defined as:

48

« Aninterface nameis generated from the element declaration’s name

using the XML Name to Java identifier name mapping algorithm
specified in Section C.2, “The Name to Identifier Mapping Algorithm,”
on page 157.

If the element declaration’ s type definition is a
o Complex Type definition

The element interface extends the Java content interface representing
the complex type definition of the element declaration

o Simpletype definition
The generated element interface has a Java property named “value’.

The factory method within the package’'s ObjectFactory method to
create an instance of the element takes a value parameter of the Java
class binding of the simple type definition.

Scope of element class
o Global element declaration are declared in package scope

o Loca element declaration occur in the scope of the first ancestor
complex type definition that contains the declaration.

Each generated Element interface must extend the Java marker interface
j avax. xm . bi nd. El enent . This enables JAXB implementations

to differentiate between instances representing a XML element directly
and instances representing the type of the XML element.

A factory method is generated in the package’ s ObjectFactory class
introduced in Section 4.2, “ Java Package”. The factory method returns

JAXB Specification — Public Draft, V0.7 9/12/02

Java Element Interface

the type of the Java element interface. The name of the factory methodis
generated by concatenating the following components:

o Thestring constant cr eat e.

o If the Javaelement interfaceis nested within another interface, then the
concatenation of all outer Java class names.

o The name of the Java content interface.

For example, a Java element interface named Foo that is nested within
Java content interface Bar would have the following factory method
generated in the containing Java package’s ObjectFactory Class:

Bar . Foo creat eBar Foo()

o Theoptional methodsset Ni | () andi sNi | () enable Element
instances to be set to the XML concept of ni | and to check if the
Element instancesis ni | . See Section 5.7.1, “Bind to Java Element
Interface,” on page 71 for details on when these methods are generated.

Example 1:

Given global XML Schema element declaration with a complex type definition:

<xsd: conpl exType nane="AConpl exType" >
<xsd: sequence>
<xsd: el enent name="A" type="xsd:int"/>
<xsd: el ement name="B" type="xsd:string"/>
</ xsd: sequence>
<xsd: el ement nane="AnEl enment" type="AConpl exType"/>

Its Java representation:

public interface AConpl exType {
voi d set A(int val ue);
int getA();
voi d setB(String val ue);
String getB();
H
public interface AnEl ement extends
AConpl exType, javax.xmnl .bind. El ement {};
public class ObjectFactory {
AnEl enent creat eAnEl ement () ;
AConpl exType creat eAConpl exType();
other factory nmethods ...

9/12/02 JAXB Specification — Public Draft, V0.7 49

Java Representation of XML Content

Example 2:

Given local XML Schema element declaration with a simple type definition:

<xsd: conpl exType nane="AConpl exType" >’
<xsd: el ement name="ASi npl eEl emrent" type="xsd:integer"/>

Its Java representation:

public interface AConpl exType {
public interface ASinpl eEl ement extends javax.xmnl . El enent {
voi d set Content (int val ue);
int getContent();

b
class bjectFactory {

static AConpl exType. ASi npl eEl enrent
creat eAConpl exTypeASi npl eEl enent (i nt val ue);

™ Assume that this schema fragment meets one of the criteria specified in
Section 5.7.1, “Bind to Java Element Interface,” on page 71 that requires that
<A SimpleElement> element be bound to a Java element interface.

50 JAXB Specification — Public Draft, V0.7 9/12/02

CHAPTERDS

BINDING XML SCHEMA TO
JAVA REPRESENTATIONS

This section describes possible binding of XML schema componentsto a Java
representation. Default binding behavior is defined in this chapter and the
possible customization of the default binding behavior is specified in the
following chapter.

51 Overview

This section identifies possible bindings of a subset of XML Schema
components. Unsupported XML Schema components are specified in
Section E.2, “Not Required XML Schema concepts,” on page 174.

The abstract model described in [XSD Part 1] is used to discuss the default
binding of each schema component types. Each schema component is described
asalist of properties and the semantics of these properties. References to
properties of a schema component as defined in [XSD Part 1] are denoted using
the notation {schema property} throughout this section. Referencesto properties
of information items as defined in [XML-Infoset] are denoted in bold within
square brackets , for example [attribute].

Please note that while default binding behavior is being specified in this section,
default binding can be overridden at a global scope or on a case-by-case basis
using binding schema customization. Users and JAXB implementors can use the
global configuration capabilities of the custom binding mechanism to override
the specified defaults in a portable manner. All JAXB implementations are
required to implement the default bindings that are specified in this chapter.

9/12/02 JAXB Specification — Public Draft, V0.7 51

Binding XML Schema to Java Representations

Note that all example binding from XML Schema fragments to Java code are
non-normative and are intended to assist understanding of the concepts being
specified.

5.2 Simple Type Definition

A schema component using a simple type definition typically bindsto a Java
property. Since there are different kinds of such schema components, the
following Java property attributes (common to the schema components) are
specified here and include:

« basetype
« collection typeif any
« predicate

The rest of the Java property attributes are specified in the schema component
using the simple type definition.

5.2.1 Type Categorizaton

The simple type definitions can be categorized as:

« schemabuilt-in datatypes [XSD PART?Z2]
« user-derived datatypes

Conceptually, there is no difference between the two. A schema built-in
datatype can be a primitive datatype. But it can also, like a user-derived
datatype, be derived from a schema built-in datatype. Hence no distinction is
made between the schema built-in and user-derived datatypes.

The specification of simple type definitions is based on the abstract model
described in Section 4.1, “ Simple Type Definition” [XSD PARTZ2]. The abstract
model defines three varieties of simple type definitions: atomic, list, union. The
Java property attributes for each of these are described next.

52 JAXB Specification — Public Draft, V0.7 9/12/02

Simple Type Definition

5.2.2 Atomic Datatype

If an atomic datatype has been derived by restriction using an “enumeration”
facet, the Java property attributes are defined by Section 5.2.3, “ Type Safe
Enumeration”. Otherwise they are defined as described here.

The base type is derived upon the XML builtin type hiearchy [XSD PART2,
Section 3] reproduced below.

—\

I I I I I I I [

duration dateT'lme— time —\ date~| gyearMonth) gvear) gMonthpay) gbay)| gMonth

I I I I

boolean = | base64Binary F\ hexBinary » « float double = (anyurl QName -, (NOTATION
..... \ ===, —— | | N—rt ——— el — e
! N [TERN -
boolean r 1 byte[] ol ! byte [] -rﬂoat l 1 doubIe L | javax.xml.namespace.QName 1 I
-
string decimal -\

; java math BigDecimal1

normalizedString integer =«

! Java math.BigInteger1

token nonPositiveInteger long = | nonNegativeInteger
=
i '
1 Tong
language | | Name | | NMTOKEN negativeInteger int =« unsignedLong positiveInteger
[
Mt
NCName short +\ | unsignedInt T
r=—-L. - :
| 1 shortl .Ion9|
D IDREF +\ ENTITY =« byte =« unsignedshort T
v lang b ect ! ot el
) Java.lang.object | | NOT_SUPPORTED | byte, yint!

uns‘ignedByte T

| short l-

ur types built-in primitive types

built-in derived types : | Java classes I:l unsupported types

Figure 5.1 XML Built-In Type Hierarchy

9/12/02 JAXB Specification — Public Draft, V0.7 53

Binding XML Schema to Java Representations

The above diagram is the same as the onein [XSD PART2] except for the
following:

« Only schema built-in atomic datatypes derived by restriction have been
shown.

« Theschemahbuilt-in atomic datatypes have been annotated with Java data
types from the “ Java Mapping for XML Schema Builtin Types” table
below.

The following is a mapping for subset of the XML schema built-in data types to
Java datatypes. Thistable is used to specify the base type later.

Table 5-1 Java Mapping for XML Schema Bultin Types

XML Schema Data type Java Data Type

xsd:string java.lang.String
xsd:integer java.math.Bigl nteger
xsd:int int

xsd.long long

xsd:short short

xsd:decimal java.math.BigDecimal
xsd:float float

xsd:double double

xsd:boolean boolean

xsd:byte byte

xsd:QName javax.xml.namespace.QName
xsd:dateTime java.util.Calendar
xsd:base64Binary byte(]

xsd:hexBinary byte[]

xsd:unsignedint long
xsd:unsignedShort int

xsd:unsignedByte short

xsd:time java.util.Calendar
xsd:date java.util.Calendar
xsd:anySimpleType javalang.String

The mapping shown in the table above is aligned with the default mapping of
XML schema builtin atomic datatypesin [JAX-RPC]. These areindicated in bold

54 JAXB Specification — Public Draft, V0.7 9/12/02

Simple Type Definition

in the abovetable. In additon, it also defines mappings for datatypes not specified in
[JAX-RPC].

The base type is determined as follows:

1. If amapping is defined for the simple typein Table 5.1, the base type de-
faults to its defined Java datatype.

2. Othewise, the base type must be the result obtained by repeating the step 1
using the {base type definition}. For schema datatypes derived by
restriction, the { base type definition} represents the simple type definition
from which it is derived. Therefore, repeating step 1 with {base type
definition} essentially walks up the XML Schema built-in type hiearchy
until asimple type definition which is mapped to a Java datatype is found.

The simple type definition xsd: anySi npl eType is aways mapped
toj ava. |l ang. Stri ng. Sinceall XML simple types are derived
fromxsd: anySi npl eType , amapping for asimple type definition
toj ava. | ang. St ri ng isaways guaranteed.

The Java property predicate must be as specified in “ Simple Type Definition
Validation Rules’, Section 4.1.4[XSD PARTZ].

Example:

The following schema fragment (taken from Section 4.3.1, “Length” [XSD
PART2]):

<xsd: si npl eType name="product Code" >
<xsd:restriction base="xsd:string">
<xsd: |l ength val ue="8" fixed="true"/>
</xsd:restriction>
</ xsd: si npl eType>

The facet “length” constrains the length of a product code (represented by
productCode) to 8 characters (see section 4.3.1 [XSD PARTZ2] for details).

The Java property attributes corresponding to the abve schema fragment are:

« Thereisno Java datatype mapping for xsd: pr oduct Code. Sothe
Java datatype is determined by walking up the built-in type hierarchy.

« The{base type definition} of xsd: product Code is
xsd: string. xsd:stringismappedtojava.l ang. String
(asindicated in the table, and assuming no customization). Therefore,

9/12/02 JAXB Specification — Public Draft, V0.7 55

Binding XML Schema to Java Representations

xsd: product Code is mapped to the Java datatype
java.lang. String.

« The predicate enforces the constraints on the length.

5.2.3 Type Safe Enumeration

An atomic type that is derived by restriction with enumeration facet(s) and
whose restriction base type (represented by {base type definition}) is
“xsd:NCName” or derived from it must be mapped to a typesafe enum class.
Atomic types derived from other restriction base types may be bound to
typesafe enumeration class using customization as specified in Section 6.10,
“<typesafeEnum> Declaration”.

The default binding described here is technically aligned with JAX-RPC
specified typesafe enumeration binding but there are afew differences that are
discussed in Section F.3, “Bind XML enum to a typesafe enumeration.”

5.2.4 Enumeration Class

A type safe enum class must be defined as specified here. An exampleis
provided first followed by a more formal specification.

XML Schema fragment:

<xsd: si npl eType nanme="USSt at e"
<xsd:restrictionbase="xsd:string">
<xsd: enuner ation val ue="AK"/ >
<xsd: enuneration val ue="AL"/>
</ xsd:restriction>
</ xsd: si npl eType>

56 JAXB Specification — Public Draft, V0.7 9/12/02

Simple Type Definition

The corresponding typesafe enum classis:

public class USState {

5241

/1 Constructor

protected USSate(String value) { ... }

/1 one enuneration constant for each enuneration val ue
public static final String _AK="AK";

public static final USState AK= new USState(_AK);
public static final String _AL="AL";

public static final USState AL= new USState(_AL);

/1 Gets the value for an enunerated val ue

public String getValue();

/] Gets enunmeration with a specific val ue

/1 Required to throw java.lang. ||| egal Argument Exception if
/1 any invalid value is specified

public static USState fronVal ue(String value) {...}

/] Gets enuneration froma String
/1 Required to throw java.lang. ||| egal Argunent Exception if
/1 any invalid value is specified

public static USState fronBString(String value){ ... }
/1l Returns String representation of the enunerated val ue
public String toString() { ... }
publi ¢ bool ean equal s(Object obj) { ... }
public int hashCode() { ... }
Enumeration Class

The enumeration class is defined as follows:

« name: The default name of the enumeration class, enumClassName, is

computed by applying the XML Name to Javaidentifier mapping

algorithm to the name of the simple type definition or the element name.

« packagename: package nameisdetermined from the target name space

of the simple type definition with the enumeration facet.

Example:
public class USState { ... } // Enuneration class
9/12/02 JAXB Specification — Public Draft, V0.7

57

Binding XML Schema to Java Representations

5.2.4.2 Constant Fields

For each enumeration value (represented by schema property { value}, there are
two public, static and final constant fields in the enumeration class: enumvalue
constant and enum constant.

An enumvalue constant set contains a enum constant for each enumeration
value. Each member of the set is defined as follows:

« name: A nameis computed as specified in Section 5.2.4.3, “XML
Enumvalue To Java ldentifier Mapping” and prefixing it with an
underscore (*).

« type: Thetypeis{base type definition}.
« value: Thevaueis{value}.

An enum constant set contains an enum constant for each enumeration value.
Each member of the set is defined as follows:

« name: aname that is computed as specified in Section 5.2.4.3, “XML
Enumvalue To Java Identifier Mapping”.

« type: ThetypeisenumClassName.

« value: valueis an instance of enumClassName constructed with a
{value}. Theinstance is unique except in the following case.
XSD PART 2 permitsidentical enumeration values to be specified in an
XML eneumertion. In that case, the enum constant name cannot be
uniquely by default. Instead, an error must be reported.

Example:

public static final String _AK="AK";// enunval ue constant
public static final USState AK= new USState(_AK); // enuneration constant

5.2.4.3 XML Enumvalue To Java ldentifier Mapping

Default names for enumval ue constant and enum constant are based on mapping
of the XML enumeration value to a Javaidentifier described here.

An attempt is made to map the XML enumeration value{ val ue} to aJava
Identifier using the XML Name to Java ldentifier algorithm. If one or more
enumerated values in an XML enumeration cannot map to valid Javaidentifier
(examples are “3.14” , “int”), then the result is determined as follows:

58 JAXB Specification — Public Draft, V0.7 9/12/02

Simple Type Definition

« If the customization optiont ypesaf eEnumvenber Name is
specified and set to “gener at eEr r or ”, an error must be reported.
Thisisalso the default behavior if t ypesaf eEnunivenber Nanme has
not been specified.

« If the customization optiont ypesaf eEnumvenber Nane is
specified and set to “gener at eNane”, then the property nameis
val ue<N> whereN is1 for the first enumeration val ue and increments
by 1 for every value in the XML enumeration.

5.24.4 Methods and Constructor

There are three accessor methods: getValue, fromvalue and fromSring.

publi ¢ basetype get Val ue()
publi ¢ enunC assNanme fronval ue({base_type_definition} val ue)
public enunC assName fronString(String val ue)

The fromValue and fromString method must throw a
java.lang. Il 1 egal Argunent Excepti on if val ue isnotone of the
enumeration values specified in the XML enumeration datatype.

The constructor must be declared protected as shown below:

protected USSate(String value) { ... }

An enumeration class must contain the following methods which override the
object methods:

public String toString() { ... }
public final bool ean equal s(Object obj) { ... }
public final int hashCode() { ... }

Theequal s() andhashCode() must befinal and must invoke the Cbj ect
methods. This ensures that no subclass of typesafe enumeration class
accidentally overrides theses methods. This in turn guarantees that two equal
objects of the enumeration class are also identical. [BLOCH]

5.2.5 Union Property

A union property prop is used to bind a union simple type definition schema
component. A union simple type definition schema component consists of union

9/12/02 JAXB Specification — Public Draft, V0.7 59

Binding XML Schema to Java Representations

members which are schema datatypes. A union property, is therefore, realized
by:

public Type getld();
public void setld(Type val ue)

where | d isametavariable that represents the Java method identifier computed
by applying the name mapping algorithm described in Section C.2, “The Name
to Identifier Mapping Algorithm,” on page 157 to prop.

The Type isthefirst common supertype of al the Java representations to which
union member types are bound withj ava. | ang. Cbj ect awaysbeing a
common root for all Java objects. For the purposes of determining the
supertype, if a union member that is bound to a Java primitive type, the
corresponding Java wrapper classis used instead.

« Theget | d method returnsthe set value. If the property hasno set value
then thevaluenul | isreturned. The valuereturned is an instance of one
of the union member types.

o Theset | d method setsthe set value. Theval ue ismapped to the
appropriate union member type by JAXB implementation. A union
schema component does not have a tag to distinguish between union
member types. However, [XSD PARTZ2] does specify the order of
evaluation for a given value. Thus, the following example,

<xsd: uni on>
<xsd: si npl eType>
<xsd: i nteger>
</ xsd: si npl eType>
<xsd: si npl eType>
<xsd: string>
</ xsd: si npl eType>
</ xsd: uni on>

The order of evaluation specified by [XSD PARTZ2] isfirst “i nt eger”
andthen“string”.

The order of evaluation specified by [XSD PART2] must be followed by
aJAXB implementation to map aval ue to the appropriate union
member type.

If valueisnul | , the property’s set value is discarded. Prior to setting

60 JAXB Specification — Public Draft, V0.7 9/12/02

Simple Type Definition

the property’s value when TypeConstraint validation is enabled, a non-
nul | valueisvalidated by applying the property’s predicate, which
may throw a TypeConst r ai nt Excepti on.

Example: Default Binding: Union
The following schema fragment

<el ement nane="state" type="Zi pOr Nane"/>

<xsd: si npl eType name="Zi pOr Nange" >
<xsd: uni on>
<xsd: si npl eType>
<xsd: i nteger>
</ xsd: si npl eType>
<xsd: si npl eType>
<xsd: string>
</ xsd: si npl eType>
</ xsd: uni on>
</ xsd: si npl eType>

will be bound to the following Java representation

public string getZi pOr Name()
public void setZ pOrNane(String val ue)

52.6 Union

A simple type definition derived by a union is bound using the union property
with the following Java property attributes:

« the base type as specified in Section 5.2.5, “Union Property”.

« thereisno collection type.

« The predicate is the schema constraints specified in“ Simple Type
Definition Validation Rules’, Section 4.1.4[XSD PART2].

9/12/02 JAXB Specification — Public Draft, V0.7 61

Binding XML Schema to Java Representations

5.3 Complex Type Definition

5.3.1 Nested Interface Specification

Sometimes a schema component needs to be bound to a Javainner class.
Multiple schema components share this need. Hence the manner by which the
name of the nested interface is determined as specified here and referenced
elsewhere in the specification.

A Java content interface being generated for a schema component must be a
nested interface if the schema component is within another schema component
which itself is bound to another Java content interface.

5.3.2 Aggregation of Java Representation

A Javarepresentation for the entire schemais built based on aggregation. A
schema component aggregates the Java representation of all the schema
components that it references. This processis done until all the Java
representation for the entire schemais built. Hence a general model for
aggregation is specified here once and referred to in different parts of the
specification.

The model assumes that there is a schema component SP which references
another schema component SC. The Java representation of SP needsto
aggregate the Java representation of SC. There are two possibilities;

« SCisbound to a property set.
« SCisbound to a Java datatype or a Java interface.

Each of these is described below.

5.3.2.1 Aggregation of Datatype/Interface

If a schema component SC is bound to a Java datatype or a Java interface, then
SP aggregates SC's Java representation as a simple property defined by:

« name: the name is the interface name or the Java datatype or a name
determined by SP. The name of the property is therefore defined by the
schema component which is performing the aggregation.

62 JAXB Specification — Public Draft, V0.7 9/12/02

Complex Type Definition

« basetype: If SCisbound to a Java datatype, the base type is the Java
datatype. If SCisbound to a Javainterface, then the basetypeisthe
interface name, including a dot separated list of interface names within
which SC is nested.

« collection type: Thereis no collection type.

. predicate: Thereisno predicate.

5.3.2.2 Aggregation of Property Set

If SCisbound to a property set, then SP aggregates by adding SC’s property set
to its own property set.

Aggregation of property sets can result in name collisions. A name collision
can arise if two property names are identical. A binding compiler must generate
an error on name collision. Name collisions can be resolved by using
customization to change a property name.

5.3.3 Java Content Interface

The binding of a complex type definition to a Java content interface is based on
the abstract model propertiesin Section E.1.3, “Complex Type Definition
Schema Component,” on page 170. The Java content interface must be defined
as specified here.

« nName: name is the Javaidentifier obtained by mapping the XML name
{ name} using the name mapping algorithm, specified in Section C.2,
“The Name to Identifier Mapping Algorithm,” on page 157.

« package: If {scope} is

o Global: The derived Java content interface is generated into the Java
package that represents the binding of {target namespace}.

o A Complex Type Definition: The derived Java content interface is
generated within the Java content interface represented by the complex
type definition value of {scope}.

« baseinterface: A complex type definition can derive by restriction or
extension (i.e. { derivation method} is either “extension” or
“restriction”). However, since there is no concept in Java programming
similar to restriction, both are handled the same. If the { base type
definition} isitself mapped to a Java content interface (Ci2), then the

9/12/02 JAXB Specification — Public Draft, V0.7 63

Binding XML Schema to Java Representations

base interface must be Ci2. This must be realized as :

public interface G 1 extends C 2 {

See example of derivation by extension at the end of this section.

« property set: The Javarepresentation of each of the following must be
aggregated into Java content interface’ s property set (Section 5.3.2,
“Aggregation of Java Representation”).

o A subset of { attribute uses} isconstructed. The subset must includethe

schema attributes corresponding to the <attribute> children and the
{attribute uses} of the schema attribute groups resolved by the <ref>
attribute. Every attribute’s Javarepresentation (Section 5.8, “ Attribute
use”) in the set of attributes computed above must be aggregated.

The Java representation for { content type} must be aggegated.

For a“ Complex Type Definition with complex content”, the Java
representation for { content type} is specified in Section 5.9, “ Content
Model - Particle, Model Group, Wildcard”.

For acomplex type definition which isa* Simple Type Definition with
simple content”, the Java representation for { content type} is specified
in Section 5.3.3.1, “Simple Content Binding”.

If acomplex type derives by restriction, there is no requirement that
Javapropertiesrepresenting the attributes or elementsremoved by the
restriction need to be disabled. Thisis because (as noted earlier),
derivation is handled the same as derivation by restriction.

Example: Complex Type: Derivation by Extension

XML Schema Fragment (from XSD PART 0 primer):

64

<xsd: conpl exType nanme="Addr ess" >
<xsd: sequence>

<xsd: el enent nanme="nane" type="string"/>
<xsd: el ement name="street" type="string"/>
<xsd: el enent name="city" type="string"/>

</ xsd: sequence>
</ xsd: conpl exType>

JAXB Specification — Public Draft, V0.7 9/12/02

Complex Type Definition

<xsd: conpl exType nanme="USAddr ess" >
<xsd: conpl exCont ent >
<xsd: ext ensi on base="i po: Addr ess" >
<xsd: sequence>
<xsd: el ement nanme="state" type="string"/>
<xsd: el ement name="zi p" type="i nteger"/>
</ xsd: sequence>
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>

Default Java binding:

public interface Address {
String get Nanme();
voi d set Name(String);
String getStreet()
voi d set Street (String)
voi d getGity();
voi d setGity(String);
}

public interface USAdress extends Address {
String getState();
voi d setState(String);
int getZip(String);
voi d getState(int);

5.3.3.1 Simple Content Binding
Binding to Property

By default, a complex type definition with simple content is bound to a Java
property defined by:

« hame: The property name must be “value’.

» basetype, predicate, collection type: Asspecifiedin [XSD Part 1],
when a complex type has simple content, the content type ({ content
type}) is always a simple type schema component. And a simple type
component always maps to a Java type (Section 5.2, “Simple Type
Definition”). Values of the following three properties are copied from
that Java type:

9/12/02 JAXB Specification — Public Draft, V0.7 65

Binding XML Schema to Java Representations

o basetype
o predicate
o collection type

Example: Simple Content: Binding To Property

XML Schema fragment:

<xsd: conpl exType nanme="international Price">
<xsd: si npl eCont ent >
<xsd: ext ensi on base="xsd: deci mal ">
<xsd: attribute nane="currency" type="xsd:string"/>
</ xsd: ext ensi on>
</ xsd: si npl eCont ent >
</ xsd: conpl exType>

Default Java binding:

interface International Price {
/** Java property for sinple content */
j ava. mat h. Bi gDeci nal get Val ue();
voi d set Val ue(j ava. mat h. Bi gDeci mal val ue);

/** Java property for attribute*/
String getCurrency();
voi d setCurrency(String);

5.4 Attribute Group Definition

There is no default mapping for an attribute group definition. When an attribute
group is referenced, each attribute in the attribute group definition becomes a
part of the [attribute uses] property of a complex type definition. Each attribute
is mapped to a Java property as described in (section, “ Attribute Use”).

5.5 Model Group Definition

There is no default mapping for amodel group definition. When a model group
is referenced, each particle in the model group definition becomes a part of the

66 JAXB Specification — Public Draft, V0.7 9/12/02

Model Group Definition

complex content that references it. The customized binding of a model group
definition to a Java content interface is discussed in Section 5.5.3, “Bind to a
Java content interface.”

5.5.1 Bind to a set of properties

A non-repeating reference to amodel group definition, when the particle
referencing the group has {max occurs} equal to one, resultsin a set of content
properties being generated to represent the content model. Section 5.9, “ Content
Model - Particle, Model Group, Wildcard” describes how a content model is
bound to a set of properties and has examples of the binding.

5.5.2 Bind to alist property

When a model group definition is referenced from a particle with {max occurs}
greater than one, it is useful to map the reference to a List property in the
following manner:

« Thename of the Javaproperty isdervied from the model group definition
{name} property using the XML Name to Javaidentifier name mapping
algorithm specified in Section C.2, “The Name to Identifier Mapping
Algorithm,” on page 157.

« The Javaproperty’s basetypeisj ava. | ang. Qbj ect .

« Thepredicate for the Java property isall the elements/values that can be
placed into the list and the ordering restrictions between elements.

« The Java property collection type is java.util.List.

« The property has no default value.
Example:

Schema fragment contains a particle that references the model group definition
has a{maxQOccurs} value greater than one.

9/12/02 JAXB Specification — Public Draft, V0.7 67

Binding XML Schema to Java Representations

<xsd: group name="AModel G oup" >
<xsd: choi ce>
<xsd: el ement nanme="A" type="xsd:int"/>
<xsd: el ement name="B" type="xsd:float"/>
</ xsd: choi ce>
</ xsd: gr oup>

<xsd: conpl exType nane="foo">
<xsd: sequence>
<xsd: group ref="AModel G- oup" naxOccur s="unbounded"/ >
<xsd: el enent name="C' type="xsd:float"/>
</ xsd: sequence>
</ xsd: conpl exType>

Derived Java representation:

interface Foo {
/** A valid value content property that contains
i nstances of java.lang.lnteger or java.lang. Float.*/
java.util.List get AModel Group();

float getC();
voi d set C(float val ue)

5.5.3 Bind to a Java content interface

With the appropriate customization enabled, a named model group can be bound
to aJavacontent interface. All referencesto amodel group definition bound to a
Java content interface are mapped to a Java property with a base type of the Java
content interface representing the model group definition. If the particle
referencing the group has an occurance greater than one, then the referenceis
mapped to a List property with a base type of the Java content interface
representing the model group definition.

Notethat areferenceto amodel group definition from a complex type definition
content model with a {content type} of mixed can not be bound to asimple
property with a base type of a Java content interface.

68 JAXB Specification — Public Draft, V0.7 9/12/02

Attribute Declaration

Example:

Derived Java code for model group “AModel Group” specified in previous
subsection.

interface AWbdel Group {
voi d set A(int val ue);
int getA();
voi d getB(float val ue);
float getB();

5.6 Attribute Declaration

An attribute declaration is bound to a Java property when it is referenced or
declared, as described in Section 5.8, “Attribute use”, from a complex type
definition.

57 Element Declaration

This section describes the binding of an XML element declaration to a Java
representation. It also introduces why a JAXB user would need to use instances
of a Java Element interface as opposed to instances of Java datatypes or content
interfaces when manipulating XML content.

An XML element declaration is composed of two key components:

« itsqualified name is {target namespace} and { name}
« itsvalueisan instance of the Java class binding of its {type definition}

A JavaElement interface is generated to represent both of these components. An
instance of a Java content interface or a Java class represents only the value of
an element. Commonly in JAXB binding, the Java representation of XML
content enables one to manipulate just the value of an XML element, not an
actual element instance. The binding compiler statically associates the XML
element qualified name to a content property and thisinformation is used at
unmarshal/marshal time. The following schema/derived Java code example
illustrates this point.

9/12/02 JAXB Specification — Public Draft, V0.7 69

Binding XML Schema to Java Representations

Example:

Given the XML Schema fragment:

<xsd: conpl exType nanme="chai r_ki nd">
<xsd: sequence>
<xsd: el ement name="has_armrest" type="xsd: bool ean"/>

</ xsd: sequence>
</ xsd: conpl exType>

Schema-derived Java content interface:

public interface ChairKind {
bool ean get HasArnRest () ;
voi d set HasAr nRest (bool ean val ue);

}

A user of the Java inteface ChairKind hever hasto create a Java instance that both
has the value of local element has_ar m r est and knows that its XML
element nameishas_ar m r est . The user only provides the value of the
element to the content-property hasAr nRest . A JAXB implementation
associates the the content-property hasAr nRest with XML element name
has_ar m r est when marshalling an instance of ChairKind.

The next schema/derived Java code example illustrates when XML element
information can not be inferred by the derived Java representation of the XML
content. Note that this example relies on binding described in Section 5.9.4,
“Bind wildcard schema component”.

Example:

<xsd: conpl exType nane="chai r_ki nd">
<xsd: sequence>
<xsd: any>

</ xsd: sequence>
</ xsd: conpl exType>

public interface ChairKind {

j avax. xni . bi nd. El enent get Any();
voi d set Any(j avax.xn . bi nd. El ement el enent);

70 JAXB Specification — Public Draft, V0.7 9/12/02

Element Declaration

For this example, the user must provide an Element instance to the any content-
property that contains both the value of an XML element and the XML element
name since the XML element name could not be statically associated with the
content-property any when the Java representation was derived from its XML
Schema representation. The XML element information is dynamically provided
by the application for this case and requires the application to manipulate
instances representing the XML Element itself, not just the values of the XML
Element. Section 5.9, “Content Model - Particle, Model Group, Wildcard,” on
page 78 cover additional circumstances when one must use instances of Element
interfaces rather instances of the Java binding of the type of the XML element
declaration.

5.7.1 Bind to Java Element Interface

The characteristics of the generated Java Element interface are derived in terms
of the properties of the “ Element Declaration Schema Component” on page 171
asfollows:

« The name of the generated Java Element interface is derived from the
element declaration {name} using the XML Name to Javaidentifier
mapping algorithm for class names.

« If the element declaration’s {type definition} isa
o Complex Type definition

The derived Java Element interface extends the Java content interface
representing the {type definition}.

o Simpletype definition

The generated element interface has a Java simple content-property
named “ val ue”.

bj ect Fact or y method to create an instance of the Element
interface takes avalue parameter of the Javaclassbinding of thesimple
type definition.
o If {scope} is
o Global: The derived Element interface is generated into the Java
package that represents the binding of {target namespace}.

o A Complex Type Definition: The derived Element interfaceis
generated within the Java content interface represented by the complex
type definition value of {scope}.

9/12/02 JAXB Specification — Public Draft, V0.7 71

Binding XML Schema to Java Representations

« Each generated Element interface must extend the Java marker interface
j avax. xnl . bi nd. El enent . This enables JAXB implementations
to differentiate between instances representing a XML element directly
and instances representing the type of the XML element.

o If {nillable} is“true”,themethodssetNi | () andi sNi | () are
generated.

« Optional {value constraint} property with pair of def aul t orfi xed
and avalue.
If adefault or fixed value is specified, the databinding system must
substitute the default or fixed value if an empty tag for the element
declaration occursin the XML content.

« If an element declaration schema component has an {abstract} property
of “t rue”, an ObjectFactory factory method must not be generated for
it.

Note — Substitution properties are not covered since support is not required in this
version of the specification as stated in Section E.2, “Not Required XML
Schema concepts,” on page 174.

Default binding rules require an element declaration to be bound to derived
Element interface under the following conditions:

« All element declarations with global {scope} are bound to aderived Java
Element interface. The rationale is that any global element declaration
can occur within awildcard context and one must provide element
instances, not types of elements for this case.

« All local element declarations, having a {scope} of acomplex type
definition, occuring within content that is mapped to a general content
property must have derived Java Element interfaces generated. General
content property is specified in Section 5.9.2, “ General content
property” An example of when a content model is mapped to a general
content property, forcing the generation of element declarationsis at
Section 5.9.2.3, “Examples’.

5.7.2 Bind to Java Content Interface

By default, an element declaration containing an anonymous complex type
definition results in a Java content interface being generated for the anonymous
type definition. The name of the Java content interface is derived from the

72 JAXB Specification — Public Draft, V0.7 9/12/02

Element Declaration

element declaration {name} mapped to a Javaidentifier with a“Type” suffix
appended, by default. If there exists a customization for adding a prefix or suffix
to anonymous type definitions that are bound to a Java class or interface, the
default “Type” suffix is not added. Section 6.6, “<schemaBindings>
Declaration” specifiesthe element <j axb: anonynousTypeNane> to
describe the customization.

Example:

<xsd: el enent nanme="foo" >
<xsd: conpl exType>
<xsd: sequence>
<xsd: el enent name="bar" type="xsd:int"/>
</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: el enent >

/** Java content interface generated
from anonynous conplex type definition of element foo. */
interface FooType {
int getBar();
voi d setBar (int val ue);
}
/** Java El ement interface. */
interface Foo extends javax.xmnl .bind. El enent, FooType {};

5.7.3 Bind to Typesafe Enum Class

Element declaration containing an anonymous simple type definition and that
simple type definition matches the criteria specified Section 5.2.3, “Type Safe
Enumeration” for mapping the simple type definition to atypesafe enum class.
Thisisnot adefault binding but this binding can be specified in by abinding
customization. A default binding name for the typesafe enum classis derived
from the element declaration {name} mapped to a Javaidentifier with “ Type”
suffix appended, by default. If there exists a customization for adding aprefix or
suffix to anonymous type definitions that are bound to a Java class or interface,
the default “ Type” suffix is not added. Section 6.6, “<schemaBindings>
Declaration” specifies the element <j axb: anonynoust ypeName> to
describe the customization.

9/12/02 JAXB Specification — Public Draft, V0.7 73

Binding XML Schema to Java Representations

5.7.4

5.8

Bind to a Property

« Local element declaration

Map local element declaration with a fixed {value constraint} to a Java
constant property.

If an element declaration has a {nillable} property thatis“true” and
its {type definition} is mapped by default to a non-referenceable
primitive Javatype, the base type for the Java property is mapped to the
corresponding Javawrapper classfor the Javaprimitive type. Setting the
property tothenul | valueindicatesthat the property has been set to the
XML Schema concept of nil="true'.

Attribute use

A ‘required’ or ‘optional’ attribute use is bound by default to a Java property as
described in Section 4.5, “Properties,” on page 40. The characteristics of the
Java property are derived in terms of the properties of the “ Attribute Use
Schema Component” on page 173 and “ Attribute Declaration Schema
Component” on page 172 as follows:

74

« Thename of the Javaproperty isderived from the{attribute declaration}

property’s {name} property using the XML Name to Java ldentifier
mapping algorithm described in Section C.2, “The Name to Identifier
Mapping Algorithm,” on page 157.

« A base type for the Java property isderived fromthe{at t ri but e

decl arati on} property’s{type definition} property as
described in binding of Simple Type Definition in Section 5.2, “ Simple
Type Definition.”

« Anoptional predicate for the Java property is constructed from the

{attribute declaration} property’'s{type definition}
property as described in the binding of simple type definition to a Java
representation.

« Anoptional collection type for the Java property is derived from the

{attribute decl aration} property’'s{type definition}
property as described in the binding of simple type definition to a Java
representation.

JAXB Specification — Public Draft, V0.7 9/12/02

Attribute use

« The default value for the Java property is the value from the attribute
use's{value constraint} property. If the optional {value constraint} is
absent, the default value for the Java property is the Java default value
for the base type.

This Java property is a member of the Java content interface that represents the
binding of the complex type definition containing the attribute use.

Design Note — Since the target namespace is not being considered when
mapping an attribute to a Java property, two distinct attributes that have the same
{name} property but not the same {target namespace} will result in a Java property
naming collision. As specified generically in Section C.2.1, “Collisions and
conflicts,” on page 160, the binding compiler detect this name collision between
the two distinct properties and report the error. The user can provide a
customization that provides an alternative Java property name to resolve this
situation.

Example:
Given XML Schema fragment:

<xsd: conpl exType nanme="USAddr ess" >

<sequence>. .. </ sequence>

<xsd: attribute name="country" type="xsd:string"/>
</ xsd: conpl exType>

Default derived Java code;

public interface USAddress {
public String getCountry();
public void setCountry(String val ue);

5.8.1 Bind to a Java Constant property

An attribute use with af i xed {value constraint} property can be bound to a
Java Constant property. This mapping is not performed by default sincef i xed
isavalidation constraint. Since validation is not required to unmarshal or
marshal, XML content can have an alternative value for an attribute than the
fixed value. The user must set the binding declaration attribute
fixedAttributeToConstant Property on<j axb: gl obal Bi ndi ng> element

9/12/02 JAXB Specification — Public Draft, V0.7 75

Binding XML Schema to Java Representations

as specified in Section 6.5.1, “Usage,” on page 106 or on
<j axb: propert y> element as specified in Section 6.8.1, “Usage,” on page
117 to enable this mapping.

Example:
Given XML Schema fragment:

<xsd: conpl exType nanme="USAddr ess" >

<sequence>. .. </ sequence>

<xsd:attribute nanme="country" type="xsd: NMTCKEN' fi xed="US"/>
</ xsd: conpl exType>

If the appropriate binding schema customization enables mapping a fixed XML
value to Java constant property, the following Java code fragment is generated.

public interface USAddress {
public static final String COUNTRY="US";

5.8.1.1 Contributions to Local Structural Constraint

If the atttribute use’s {required} property istrue, the local structural constraint
for an instance of the Java content interface requires that the corresponding Java
property to be set when the Java content interface instance is validated.

5.8.2 Binding an IDREF component to a Java
property

An element or attribute with a type of xsd:IDREF refersto the element in the
instance document that has an attribute with a type of xsd:ID or derived from
type xsd:ID with the same value as the xsd:IDREF value. Rather than expose the
Java programmer to this XML Schema concept, the default binding of an
xsd:IDREF component maps it to a Java property with a base type of
javalang.Object. The caller of the property setter method must be sure that its
parameter isidentifiable. An object is considered identifiable if one of its
propertiesis derived from an attribute that is or derives from type xsd:ID. There
is an expectation that all instances provided as values for propertys
representing an xsd:IDREF should have the Java property representing the xsd:ID
of the instances set before the content tree containing both the xsd:ID and
xsd:IDREF is (1) globally validated or (2) marshalled. If a property representing

76 JAXB Specification — Public Draft, V0.7 9/12/02

Attribute use

an xsd:IDREF is set with an object that does not have its xsd:1D set, the
NotldentifiableEvent is reported by (1) validation or (2) marshalling..

« Thename of the Javaproperty is derived from the {name} property of the
attribute or element using the XML Name to Java Identifier mapping
algorithm described in Section C.2, “ The Name to Identifier Mapping
Algorithm,” on page 157.

« A base type for the Java property isjavalang.Object.
« Thereisno predicate for a property representing an xsd:IDREF.
« Anoptional collection type

« Default and fixed values can not be supported for an attribute with type
xsd:IDREF.

Example:
Given XML Schema fragment:

<xsd: conpl exType nanme="Book" >
<xsd: sequence>
<xsd: el enent name=aut hor type=xsd: | DREF/ >

</ xsd: sequence>
</ xsd: conpl exType>
<xsd: conpl exType nane="Aut hor Bi 0" >
<xsd: sequence>. .. </ xsd: sequence>
<xsd:attribute name="name" type="xsd:ID"'/>
</ xsd: conpl exType>

Schema-derived Java content interfaces:

public interface Book {
j ava. |l ang. Qbj ect get Aut hor ();

/** Parameter referencedObj should have an attribute or
* child element with base type of xsd: 1D by validation
* or marshal tine.
*/
voi d set Aut hor (j ava. |l ang. Obj ect referencedObj);
}
public interface AuthorBi o
String getNane();
voi d set Nane(String val ue);

}

9/12/02 JAXB Specification — Public Draft, V0.7 77

Binding XML Schema to Java Representations

Demonstration of a Java content instance referencing another instance:

Book book = ...;

Aut horBi o authorBio = ...;

book. set Aut hor (aut hor Bi 0) ;

aut hor Bi 0. set Name(" <sone aut hor’s name>");

/1 The content instance root used to validate or marshal book nust
/1 also include "authorBio" as a child el enent somewhere.

/1 A Java content instance is not included

Note that ID and IDREF mechanisms does not incorporate the type definitions
that can be refererenced. A binding declaration customization could specify that
the base type for the author property of content interface Book should be Author
instead of javalang.Object to make for a more meaningful binding.

59 Content Model - Particle, Model
Group, Wildcard

This section describes the possible Java bindings for the content model of a
complex type definition schema component with a{content type} property of
m xed orel enent - onl y. The possible element content(s) and the valid
orderings between those contents are constrained by the {particles} describing
the complex type definition’s content model. The Java binding of a content
model is realized by the derivation of one or more content-properties to
represent the element content constrained by the model group.

Theideal Java binding would be to map each uniquely named element
declaration occuring within a content model to a single Java content-property.
The model group schema component constraint, element declarations
consistent, specified in [XSD-Part 1] ensures that that all element declarations/
references having the same { target namespace} and { name} must have the same
top-level type definition. This model allows the JAXB user to specify only the
content and the JAXB implementation infers the valid ordering between the
element content based on the {particles} constraints in the source schema.
However, there do exist numerous scenarios that this ideal binding is not
possible for parts of the content model or potentially the entire content model.
For these cases, default binding has a fallback position of representing the
element content and the ordering between the content using a general content

78 JAXB Specification — Public Draft, V0.7 9/12/02

Content Model - Particle, Model Group, Wildcard

model. The scenarios where one must fallback to the general content model will
be identified later in this subsection.

5.9.1 Bind each element declaration name to a
content property

This approach relies on the fact that amodel group merely provide constraints
on the ordering between children elements and the user merely wishes to
provide the content. It is easiest to introduce this concept without allowing for
repeating occurances of model groups within a content model. Conceptually,
this approach presents all element declarations within a content model as a set
of element declaration {name}’s. Each one of the {name}’s is mapped to a
content-property. Based on the element content that is set by the JAXB
application via setting content-properties, the JAXB implementation can
compute the order between the element content using the following methods.

Computing the ordering between element content within [children] of an
element information item

« Schema constrained fixed ordering or semantically insignificant
ordering

The sequence in the schema represents an ordering between children
elements that is completely fixed by the schema. Schema-constrained
ordering is not exposed to the Java programmer when mapping each
element in the sequence to a Java property. However, it is necessary for
the marshal/unmarshal process to know the ordering. No new ordering
constraints between children elements can be introduced by an XML
document or Java appplication for this case. Additionally, the Java
application does not need to know the ordering between children
elements. When the compositor isal | , the ordering between element
content is not specified semantically and any ordering is okay. So this
additional case can be handled the same way.

« Schema only constrains content and does not significantly constrain
ordering

If the ordering between the children elements is significant and must be
accessible to the Java application, then the ordering is naturally
preserved in Java via a collection. Below are examples where schema
provides very little help in constraining order based on content.

9/12/02 JAXB Specification — Public Draft, V0.7 79

Binding XML Schema to Java Representations

<xsd: choi ce maxQccur s="unbounded"> ... </choi ce>
<xsd: sequence maxQOccurs="unbounded"> ... </sequence>

« Schema constrained partial ordering

The ordering between children elements is constrained by a
combination of constraints between content specified in the schema and
the actual content within the XML content. The schema provides
contraints on ordering for this case that is computed based on the
content assigned from the XML document during unmarshalling or
from the set values by the Java application. There exists a significant
number of cases where the ordering constraints can be computed based
on the set value content and partial ordering between elements specified
in the schema.

Below is an example demonstrating the the ordering of children elements using
schema constrained partially schema constrained ordering. Given that the
following schemais mapped to four Java properties: A, B, Cand D,

<xsd: choi ce>
<xsd: sequence>
<xsd: el enent ref="A"/>
<xsd: el enent ref="C"'/>
<xsd: el enent ref="D"/>
</ xsd: sequence>
<xsd: sequence>
<xsd: el enent ref="B"/>
<xsd: choi ce>
<xsd: el enent ref="C"'/>
<xsd: el enent ref="D"/>
</ xsd: choi ce>
</ xsd: sequence>
</ xsd: choi ce>

one can compute if only the properties for A, C and D are set, that the content
should be marshalled out in the order constrained by the first choice sequence. If
the content is set for either B and C or B and D, then the second choice sequence
ordering constraint between elements should be followed.

Example:
Given XML Schema fragment:

<xsd: conpl exType nanme="Pur chaseO der Type" >
<xsd: sequence>

80 JAXB Specification — Public Draft, V0.7 9/12/02

Content Model - Particle, Model Group, Wildcard

<xsd: choi ce>
<xsd: gr oup ref="shi pAndBi I 1"/ >

<xsd: el enent nanme="si ngl eUSAddr ess" type="USAddress"/>

</ xsd: choi ce>
<xsd: el enent ref="coment" mi nCccurs="0"/>
<xsd: el ement nane="items" type="Itens"/>
</ xsd: sequence>
<xsd: attribute nane="orderDate" type="xsd:date"/>
</ xsd: conpl exType>

<xsd: group nanme="shi pAndBil | ">
<xsd: sequence>
<xsd: el enent nanme="shi pTo" type="USAddress"/>
<xsd: el enent name="bill To" type="USAddress"/>
</ xsd: sequence>
</ xsd: group>

Generate following Java code and assume USAddress is a complex type
definition that is bound to a Java content interface USAddress.

public interface PurchaseOrderType {
voi d set Shi pTo(USAddr ess);
USAddr ess get Shi pt To();
voi d setBill To(USAddress);
USAddress getBill To();
voi d set Si ngl eUSAddr ess(USAddr ess) ;
USAddr ess get Si ngl eUSAddr ess() ;
voi d set Comment (String);
String get Conment () ;
voi d set OrderDate(j ava. util. Cal endar);
java. util.Cal endar getOrderDate();
void setltens(ltens);
Items getltens();

}

User isresponsible for knowing that avalid content model requires either

property singleUSAddress to be set or for properties shipTo and bill To must be

set. Note that the user does not have to concern themselves with the ordering
between properties. A JAXB implementation is responsible for inferring the

order between elements based on what content is set. If the system is unable to

infer the ordering at validation time, a validation event is thrown. The

marshalling of invalid content is not specified so it is non-deterministic what a

system does for that case.

9/12/02 JAXB Specification — Public Draft, V0.7

81

Binding XML Schema to Java Representations

5.9.2 General content property

A general content property is, asits name implies, the most general of all
content properties. Such a property can be used with any content specification,
no matter how complex. A general content property is represented in Java as a
List property as introduced in Section 4.5.2.2, “List Property,” on page 45.
Unlike the prior approach where the JAXB implementation must infer ordering
between the element content, this approach always requires the JAXB user to
specify avalid ordering of element content. This approach has the benefit of
providing the application with more control setting and knowing the order
between element content.

There are two variants of a general content property presented below and
followed up with example bindings for both cases.

5.9.2.1 General content list

Thislist typeis capable of representing both element information items and
character dataitems occuring within [children] of an element information item.
Character datais inserted into the list as java.lang.String values.

Element data is added to the list as instances of Java Element interfaces.

5.9.2.2 Value content list

A vaue general content list isonly capable of representing element content. Itis
alist of the values of XML elements. The list contains types of Java wrapper
classes and instances of Java content interfaces, the types of XML elements. It is
never expected to contain instances of javax.xml.bind.Element interface as a
general content list. In order to bind to an element-val ue content list, the
databinding system must be able to infer the element information for each Java
typeinthelist. If thisis not possible, the binding compiler must generate an
error when a customization specifies this type of binding should be used.

82 JAXB Specification — Public Draft, V0.7 9/12/02

Content Model - Particle, Model Group, Wildcard

5.9.2.3 Examples

Example 1: Complex content model of Elements with primitive types

<xsd: conpl exType name="Base">
<xsd: choi ce maxQccur s="unbounded" >
<xsd: el ement nane="A" type="xsd:string"/>
<xsd: el enent nanme="B" type="xsd:string"/>
<xsd: el enent name="C' type="xsd:int"/>
</ xsd: choi ce>
</ xsd: conpl exType>

interface Base {
interface A extends javax.xnl .bind. El enent {
String getValue(); void setValue(String);}
interface B extends javax.xmn . bind. El enent {
String getValue(); void setValue(String);}
interface C extends javax.xn . bind. El enent {
int getValue(); void setValue(int);}

/**

* A general content list that can contain

* el ement instances of Base. A Base.B and Base.C
*

* <insert appropriate schemn fragnent here>

*/

Li st get AorBor C();

Note — Thisexample could not be mapped to avalue content list since element A and
element B had the same java primitive type, java.lang.String which makes it
impossible for the databinding system to infer the element information based

9/12/02 JAXB Specification — Public Draft, V0.7 83

Binding XML Schema to Java Representations

on element types. In this case, seeing ajavalang.String value isn’t specific
enough to know if it is supposed to be an A element or a B element..

Example 2: XML Schema element declaration with Complex Type Definition
XML Schema fragment:

<xsd: conpl exType nanme="foo" type="AType"/>
<xsd: conpl exType nane="bar" type="BType"/>
<xsd: conpl exType FooBar >
<xsd: choi ce maxQccur s="unbounded" >
<xsd: el enent nanme="foo" type="AType"/>
<xsd: el enent nanme="bar" type="BType"/>
</ xsd: choi ce>
</ xsd: conpl exType>

Default derived Java code;

interface AType { ... }
interface BType { ... }
interface Foo extends AType, javax.xnl.bind.El enment {...}
interface Bar extends BType, javax.xml.bind. Element {...}

interface FooBar ({
/**
* A valid general content list contains instances of
* Foo, Bar
* AND/ OR
* Avalid general content |ist contains values of AType and BType.
* <xsd: choi ce maxCccurs="unbounded" >
* <xsd: el ement nane="foo" type="AType"/>
* <xsd: el ement nane="bar" type="BType"/>
* </ xsd: choi ce>
*/
Li st getContent();

84 JAXB Specification — Public Draft, V0.7 9/12/02

Content Model - Particle, Model Group, Wildcard

Generated Java code with customization to bind to value general content list:

interface AType { ... }
interface BType { ... }
interface Foo extends AType, javax.xnl.bind.El enment {...}
interface Bar extends BType, javax.xml.bind. Element {...}

interface FooBar {
/**
* A valid value general content list contains instances of
* AType or BType
* <choi ce maxCccurs="unbounded" >
* <el ement nane="foo" type="AType"/>
* <el ement nane="bar" type="BType"/>
* </ choi ce>
*/
Li st getContent();

5.9.3 Bind mixed content

When a complex type defintition’s {content type} is“mixed”, its character and
element informortation content is bound to general content list as described in
Section 5.9.2.1, “General content list”. Character information datais inserted as
instancesof j ava. | ang. Stringintoa java. util . Li st instance. The
local structural constraints of the {content type} particlesis propopagated up to
the Java content interface representing the complex type definition.

Example:

Schema fragment loosely derived from mixed content example from
[XSD Part 0].

<xsd: el enent name="1|ett er Body" >
<xsd: conpl exType mi xed="true">
<xsd: sequence>
<xsd: el enent name="nane" type="xsd:string"/>
<xsd: el enent name="quantity" type="xsd:positivelnteger"/>
<xsd: el enent name="product Name" type="xsd:string"/>
<l-- etc. -->
</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: el enent >

9/12/02 JAXB Specification — Public Draft, V0.7 85

Binding XML Schema to Java Representations

Derived Java code:

interface LetterBodyType {
interface Nane extends javax.xm . bind. El enrent {
String getValue(); void setValue(String); }
interface Quantity extends javax.xm . bind. El enent {
int getValue(); void setValue(int); }
interface Product Name extends javax.xml . bind. El emrent {
String getValue(); void setValue(String);}

/** M xed content can contain instances of Elenent interfaces
Nanme, Quantity and Product Name. Text data is represented as
java.util.String for text.

*/

Li st getContent();

}
public interface LetterBody extends
javax. xm . bi nd. El enent, LetterBodyType { };

The following instance document

<l ett er Body>

Dear M. <nanme>Robert Sm th</nanme>

Your order of <quantity>1l</quantity> <product Nane>Baby
Moni t or </ pr oduct Nane> shi pped from our warehouse.

</l etterBody>

could be constructed using JAXB API.

LetterBody I b = ObjectFactory. createlLetterBody();

List gcl = Ib.getContent();

gcl . add("Dear M.");

gcl . add(Obj ect Factory. creat eLett er BodyNane("Robert Smith"));
gcl . add(" Your order of ");

gcl . add(Obj ect Factory. creat eLetterBodyQuantity(1));

gcl . add(Obj ect Factory. creat eLett er BodyPr oduct Narme(" Baby Monitor"));
gcl . add("shi pped from our warehouse");

Note that if any element instance is placed into the general content list, gcl, that
is not an instance of LetterBody.Name, LetterBody.Quantity Or LetterBody.ProductName,
validation would detect the invalid content model. With the fail fast
customization enabled, element instances of the wrong type are detected when
being added to the general content list, gcl.

86

JAXB Specification — Public Draft, V0.7 9/12/02

Content Model - Particle, Model Group, Wildcard

5.9.4 Bind wildcard schema component

A wildcard is mapped to a simple content-property with:;

« Content-property name set to the constant “any”. A binding schema
customization could provide a more semantically meaningful content-
property name.

« Content-property basetype settoj avax. xml . bi nd. El ement by
default. Wildcard content encountering during unmarshalling is
supported if global XML element tags occuring in wildcard context are
known to theinstance of j avax. xm . bi nd. JAXBCont ext,
meaning that the schema(s) describing the element content occuring in
the wildcard context isregistered with the JAXBCont ext instance, see
Section 3.2, “JAXBContext,” on page 25 on how bindings are registered
with aJAXBCont ext instance. A JAXB implementation is only
reguired to be able to marshall and unmarshal global element content to/
from awildcard context that is registered and valid* according to the
schema(s) registered to JAXBContext. The specification does not
specify how aJAXB implementation handles element content that it does
not know how to map to a Java representation.

« See content-property predicate for awildcard.

« |If the maxOccurs is greater than one, the content property is mapped to
a collection property. The default collection property isa List property.

« Theseisno default value.

Note that the default base type being the marker class for an XML element
indicates that awildcard content handled by default as an instance of an XML
Element. Since the schema does not contain any information about the element
content of awildcard content, even the content-property, by default, can not
infer an XML element tag for wildcard element content.

- The wildcard content must conform to the schema(s) registered with JAXBContext,
independent of whether the wildcard has a processing mode of "skip". The JAXB specification
isimposing aconstraint on the"skip wildcard" that is stronger than the XML Schema[XSD Part
1] for "skip wildcards.".

9/12/02 JAXB Specification — Public Draft, V0.7 87

Binding XML Schema to Java Representations

5.9.5 Bind arepeating occurance model group

A choice or sequence model group with arepeating occurance, maxQGccur s
attribute greater than one, is bound to alist content-property in the following
manner:

« Content-property nameis derived in following ways:

o If anamed model group definition is being referenced, the value of its
{name} property is mapped to a Javaidentifier for a method using the
algorithm specified in Section C.2, “The Nameto Identifier Mapping
Algorithm,” on page 157.

o To derive acontent property name for unnamed model group, see
Section C.3, “Deriving an identifier for amodel group,” on page 161.

« Content-property basetype settoj ava. | ang. Obj ect . A binding
schema customization could provide a more specialized java class.

« Content-property predicate validates the order between element
instances in the list and whether the occurance constraints for each
element instance type is valid according to the schema.

« Sincethe maxOccursis always greater than one, the content property is
mapped to a collection property. The default collection property isaList

property.
« Theseisno default value.
Local structural Constraints
The list content property’s value must satisfy the content specification of the

model group. The ordering and element contents must satisfy the constraints
specified by the model group.

5.9.6 Content Model Default Binding

The following rules define default binding for a complex type definition’s
content model.

1. If {content type} is mixed, bind the entire content model to a general con-
tent property with the content-property name "content”. See Section 5.9.3,
“Bind mixed content” for more details.

2. 1If (1) aparticle has{max occurs} >1 and (2) its {term} isamodel group,
then that particle and its descendants are mapped to one general content

88 JAXB Specification — Public Draft, V0.7 9/12/02

Content Model - Particle, Model Group, Wildcard

property that represents them. See Section 5.9.5, “Bind arepeating
occurance model group” for details.

3. Processall the remaining particles (1) whose {term} are wildcard particles
and (2) that did not belong to arepeating occurence model group bound in
step. 2. If there is only one wildcard, bind it as specified in Section 5.9.4,
“Bind wildcard schema component.” If there is more than one, then
fallback to representing the entire content model as a single general
content property.

4. Processall particles (1) whose {term} are el ement declarations and (2) that
do not belong to a repeating occurence model group bound in step.2.

First, we say aparticle hasalabel L if it refersto an element declaration
whose {name} is L. Then, for all the possible pair of particles P and P’
in this set, ensure the following constraints are met:

a. If Pand P’ have the same label, then they must refer to the same
element declaration.

b. If Pand P’ refer to the same element reference, then its closest
common ancestor particle may not have sequence as its{termj}.

If either of the above constraints are violated, then fallback to represent
the entire content model as a single general content property.

Create a content property for each label L asfollows:
o The content property name is dervied from label name L.

0 The base type will be the Java type to which the referenced element
declaration maps.

o The content property predicate reflects the occurance constraint.

o Thecontent property collection type defaultsto’l i st ’ if thereexist a
particle with label L that has {maxOccurs} > 1.

o For the default value, if all particleswith label L has a{term} with the
same {value constraint} default or fixed value, then this value.
Otherwise none.

Note — Note: Binding schema customization can be used to give particles a different
name to avoid the fallback.

Below is an example demonstrating violation of rules 4(a) and 4(b) specified
above.

9/12/02 JAXB Specification — Public Draft, V0.7 89

Binding XML Schema to Java Representations

<xsd: sequence>
<xsd: choi ce>
<xsd: el ement ref="nsl:bar"/> (A
<xsd: el ement ref="ns2:bar"/> (B)
</ xsd: choi ce>
<xsd: el ement ref="nsl:bar"/> (C)
</ xsd: sequence>

The pair (A,B) violatesthefirst clause because they both have the label "bar" but
they refer to different element declarations. The pair (A,C) violates the second
clause because their nearest common ancestor particle is the outermost
<sequence>.

5.9.6.1 Default binding of content model “derived by extension”

If a content-property naming collision occurs between a content-property that
existsin an base complex type definition and a content-property introduced by a
“derive by extension” derived complex type definition, the content-properties
from the colliding property on are represented by a general content property
with the default property namer est .

Example:
derivation by extension content model with a content-property collision.

Given XML Schema fragment:

<xsd: conpl exType nane="Base">
<xsd: sequence>
<xsd: el ement nane="A" type="xsd:int"/>
<xsd: el ement nane="B" type="xsd:int"/>
</ xsd: sequence>
</ xsd: conpl exType>

<xsd: conpl exType nane="Derived">
<xsd: ext ensi on base="Base">
<xsd: sequence>
<xsd: el enent name="A" type="xsd:int"/>
</ xsd: sequence>
</ xsd: ext ensi on>
</ xsd: conpl exType>

Default binding derived Java code:

90 JAXB Specification — Public Draft, V0.7 9/12/02

Content Model - Particle, Model Group, Wildcard

interface Base {
int getA(); void setA(int);
int getB(); void setB(int);
}

interface Derived extends Base {
interface A extends javax.xm .bind. El emrent {
int getValue();
voi d setVal ue(int val ue);

}

/**

* Instances of Derived. A nmust be placed in this general

* content propert that represents the rest of the content
* model . % */

get Rest () ;

5.9.7 Alternative binding approach: model group
binding

An alternative binding approach to treating the content model as just alist of
elements is to more actively map model groups to Java content interfaces. The
benefit of this binding approach is the generated content interfaces and content
properties capture the semantics of model groups, aiding the user in
constructing valid content. Additionally, the additional content interfaces allow
this style of binding to rely alot less on the general content model, only mixed
content models have to be represented as a general content property.
Unfortunately, this approach does result in an increase in the number of
generated Java content interfaces. Additionally, this approach benefits from
binding schema customizations that provide semantically meaningful names to
represent the content interfaces generated to represent nested choice and
sequence model groups. Thus, it was not considered as good a candidate for
default binding but it is considered a valuable alternative binding option.

2 Specifying a customization of the local element declaration A within Derived complex typeto a
different property name than A would avoid the fallback position for this case.

9/12/02 JAXB Specification — Public Draft, V0.7 91

Binding XML Schema to Java Representations

59.8 Bind to Choice Content Interface

A choice group in XML Schema specifies one or more particles and where only
one can occur in content. A choice group could be accessed either asasingle
entity or as a set of Java properties, only one of which is ever set at one time.

A <class> binding declaration customization of a choice group indicates that its
content model should be represented by a generated content interface that
encapsulates al of its properties and also allows for access of the choice asa
single entity. The customization is specified in Section 6.7.3.3, “Model Group”..

A choice class consists of :

« The name of the class, ChoiceClassName, which is either the referenced
model group definition name or a name as computed in Section C.3,
“Deriving an identifier for amodel group,” on page 161

« Package Name

« Outer Class Names representing the complex type definition ancestor of
the choice model group

« Set of Java content properties (one for each particle in choice model
group)

« Content property base t ype isthe common basetype of all choice
properties.

A template for the choice classis provided below. First the terms

introduced above and used within the choice class template need further
definition. A choice model group is composed of N particles, each of which is
mapped to a Java content property. For below, ChoicePropertyX is used to
represent one of the properties. The get Cont ent method returns the current
value. If the property has no current value then thevaluenul | isreturned. Note
that a current value of a primitive Javatype is returned as an instance of the
corresponding Java wrapper class. If any choice property has a basetype of a
primitive builtin Java type, then ChoiceBaseType is java.lang.Object and the
Java wrapper classes are used by all methods in the generated choice class that
use ChoiceBaseType.

The Java class representation consists of the following methods:

« Theget Cont ent method returnsthe current value. If the property has
no current value then the value nul | isreturned. Note that a current

92 JAXB Specification — Public Draft, V0.7 9/12/02

Content Model - Particle, Model Group, Wildcard

value of a primitive Javatypeis returned as an instance of the
corresponding Java wrapper class.

« Thei sSet Cont ent method returnst r ue if choice has a current
value.

« Theunset Cont ent method discards the property’ s given value, if
any.

« ldentify the properties for choice using Section 5.9.9, “Binding
algorithm for model group style binding”.

o getld method returns the current value of the choice property if the
choices content is specified by | d; otherwise, return nul | . The
method returns Java primitive type when appropriate.

o setld method set the given value of the choice property. Thisisa
mutually exclusive set. It logically unsets the previously set value for
the choice and makes this only set property for the choice content
interface.

o i sSet | d method returnstrueif the choice property is specified by the
particle corresponding to | d.
« A ObjectFactory method to create an instance of the choice content
interface.

Example:
XML Schema fragment:

<xsd: conpl exType nane="SoneConpl exType"/>
<xsd: choi ce maxQccur s="unbounded" >
<xsd: el enent name="foo" type="xsd:int"/>
<xsd: el enent name="bar" type="xsd:string"/>
</ xsd: choi ce>
</ xsd: conpl exType>

9/12/02 JAXB Specification — Public Draft, V0.7 93

Binding XML Schema to Java Representations

Derived Java interfaces;

5.9.8.1

/** class generated to represent <insert choice fragment here>*/
public interface FooOrBar {

}

/** Setting Foo inplies all other properties are not set and
* and only isSetFoo() will return true.*/

voi d set Foo(int val ue);

int getFoo();

bool ean i sSet Foo();

/** Setting Bar inplies all other properties are not set.*/
voi d setBar (String val ue);

String getBar();

bool ean i sSetBar();

java. l ang. Obj ect get Content ();
bool ean i sSet Content();
voi d unset Content ();

public interface SomeConpl exType {

}

Li st get FooOrBar();

Bind to a choice content property

This binding provides an optimization that cuts down on the number of classes
generated using the model group binding style. Setting the

choi ceCont ent Property attribute of <jaxb:globalBindings> as specified in
Section 6.5.1, “Usage,” on page 106 or <jaxb:property> element as specified in
Section 6.8.1, “Usage,” on page 117 enables this customized binding option.

A non-repeating choice model group is to bound to a simple property. A
repeating choice model group is bound to a collection property. A choice
content property is derived from a choice model group as follows:

94

« The choice content property nameis either the referenced model group

definition {name} or obtained using the algorighm specified in
Section C.3, “Deriving an identifier for amodel group,” on page 161.

« Thechoice content property base t ype isthefirst common supertype

of all itemswithin the choice model group, withj ava. | ang. Obj ect
always being a common root for all Java objects.®

« The predicate

JAXB Specification — Public Draft, V0.7 9/12/02

Content Model - Particle, Model Group, Wildcard

« The collection type defaultsto List if the choice model group has {max
occurs} greater than one.

« No default value.
A choice property consists of the following methods:

« Theget Choi cel D method returnsthe set value. If the property hasno
set value then the value nul | isreturned. Note that a set value of a
primitive Javatype is returned as an instance of the corresponding Java
wrapper class.

« Theset Choi cel D method has a single parameter that is the type of
the choice content property base type.

The globalBindings and property customization attribute,

choi ceCont ent Property, enabl es this custoni zed

bi ndi ng. The customization is specified in Section 6.5, “<global Bindings>
Declaration” and Section 6.8, “ <property> Declaration.

Example:

XML Schema representation of a choice model group .

<xsd: choi ce>
<xsd: el enent nanme="foo" type="xsd:int"/>
<xsd: el enent name="bar" type="xsd:string"/>
</ xsd: choi ce>

Derived choice content property method signatures:

voi d set FooOr Bar (Obj ect) ;
Obj ect get FooOrBar () ;
bool ean i sSet FooOr Bar () ;

- Note that primitive Javatypes must be represented by their Java wrapper classes when base type
is used in the choice content property method signatures. Also, all segence descendants of the
choice are treated as either a general/value content list or are mapped to their own Java content
interface.

9/12/02 JAXB Specification — Public Draft, V0.7 95

Binding XML Schema to Java Representations

599

Binding algorithm for model group style
binding

The following rules describe a model group binding style that can be enabled
viathe binding customization, model GroupToClass, specified in Section 6.5,
“<globalBindings> Declaration.”

1.

96

When {content type} is

a. ni xed - Bind the entire content model to a genera content property
with the content-property name "content". See Section 5.9.2.1,
“Genera content list” for more details.

b. el enent - only - Apply al binding declaration customizations on
model groups within the content model.

Normalize unnecessary nested, non-repeating model groups remaining
after applying previous step.

Given particle T that contains a particle N, (1) if the {term} for both
particle T and N represent the same compositor, either <sequence> or
<choi ce> and (2) particle N has {max occurs} == 1, then one can
flatten all the particles from particle N's {term} model group into the
particle T's {term} model group.

This process should be repeated until the top level particle only contains
a. choice groups containing nested, non-repreating sequences

b. sequence groups containing nested, non-repeating choices

c. directly or indirectly, repeating occurance model groups

Bind all repeating occurance model groups remaining after applying the
previous steps in the following manner:

a. Bind the sequence or choice group to the appropriate Java content
interface.

b. Represent the multiple occurances of the model group asaList
property with base type of the Javacontent interface derived in step 3a.

Bind all non-repeating choice model groups remaining after applying
previous steps to a choice content property:

a. All sequences nested within the choice model group must be mapped
to a Java content interface.

b. Apply binding specified in Section 5.9.8.1, “Bind to a choice content

JAXB Specification — Public Draft, V0.7 9/12/02

Default Binding Rule Summary

5.

property”.
Bind elements occuring within the remaining sequencesto the appropriate

content-property (as specified in step 4 in Section 5.9.6, “ Content Model
Default Binding.”

5.10 Default Binding Rule Summary

Note that this summary is non-normative and all default binding rules specified
previously in the chapter take precedence over this summary.

9/12/02

Bind the following to Java package:

o XML Namespace URI

Bind the following XML Schema components to Java content interface:
o Named complex type

o Anonymous inlined type definition of an element declaration

Bind to typesafe enum class:

o A named simple type definition with a basetype that derives from
“xsd:NCName” and has enumeration facets.

Bind the following XML Schema components to a Java Element
interface

o A globa element declaration to a Element interface.

o Loca element declaration that can be inserted into a general content
list.

Bind to Java property
o Attribute use

o Particle with aterm that is an element reference or local element
declaration.

Bind model group with a repeating occurance and complex type
definiton’swith mi xed {content type} to:

o A general content property - aList content-property that holds Java
instances representing element information items and character data
items.

JAXB Specification — Public Draft, V0.7 97

Binding XML Schema to Java Representations

98

JAXB Specification — Public Draft, V0.7

9/12/02

CHAPTERG

CUSTOMIZATION

The default binding of source schema components to derived Java
representation by a binding compiler sometimes may not meet the requirements
of a JAXB application. In such cases, the default binding can be customized
using a binding declaration. Binding declarations are specified by a binding
language, the syntax and semantics of which are defined in this chapter.

All JAXB implementations are required to provide customization support
specified here.

6.1 Binding Language

The binding language is an XML based |anguage which defines constructs
referred to as binding declarations. A binding declaration can be used to
customize the default binding between an XML schema component and its Java
representation.

The schema for binding declarations is defined in the namespace http://
java.sun.com/xml/ng/jaxb . This specification uses the namespace prefix “jaxb”
to refer to the namespace of binding declarations. For example,

<j axb: binding declaration >

A binding compiler interprets the binding declaration relative to the source
schema and a set of default bindings for that schema. Therefore a source schema
need not contain a binding declarations for every schema component. This
makes the job of a JAXB developer easier.

There are two ways to use a binding declaration:

« as part of the source schema (inline annotated schema)

9/12/02 JAXB Specification — Public Draft, V0.7 99

Customization

« externa to the source schemain an external binding declaration.

The syntax and semantics of the binding declaration is the same regardless of
which of the above two methods is used for customization. However, the
semantics may depend upon the source schemalanguage. The descriptionin this
chapter attempts to separate the independent and dependent parts as far as
possible.

A binding declaration itself does not identify the schema component to which it
applies. A schema component can be identified in several ways:

« explicitly - e.g. QName, X Path expressions etc.
« implicitly - based on the context in which the declaration occurs.

It is this separation which allows the binding declaration syntax to be shared
between inline annotated schema and the external binding.

6.1.1 Extending the Binding Language

In recognition that there will exist a need for additional binding declarations
than those currently specified in this specification, a formal mechanismis
introduced so all jaxb processors are able to identify extension binding
declarations. An extension binding declaration is not specified in the jaxb:
namespace, is implementation specific and its use will impact portability.
Therefore, binding customization that must be portable between JAXB
implementations should not rely on particular customization extensions being
available.

The namespaces containing extension binding declarations are specified to a
jaxb processor by the occurance of the global attribute

<j axb: ext ensi onBi ndi ngPr ef i xes> within an instance of

<xs: schenma> element. The value of this attribute is a whitespace-separated
list of namespace prefixes. The namespace bound to each of the prefixesis
designated as a customization declaration namespace. Prefixes are resolved on
the <xs: schema> element that carries this attribute. Itisan error if the
prefix failsto resolve. This feature is quite similar to the extension-element-
prefixes attribute in [XSLT 1.0] http://www.w3.0rg/TR/xslt10/#extension,
introduces extension namespaces for extension instructions and functions for
XSLT 1.0.

This specification does not define any mechanism for creating or processing
extension binding declarations and does not require that implementations

100 JAXB Specification — Public Draft, V0.7 9/12/02

Binding Language

support any such mechanism. Such mechanisms, if they exist, are
implementation-defined.

6.1.2 Inline Annotated Schema

Thismethod of customization isbased onthe <appi nf o> element specified by
the XML Schema[XSD PART 1]. A binding declaration is embedded within the
<appi nf o> element. For example,

<xsd: annot at i on><xsd: appi nf 0>
<bi ndi ng decl arati on>
</ xsd: appi nf 0></ xsd: annot at i on>

The inline annotation where the binding declaration is used identifies the
schema component.

6.1.3 External Binding Declaration

The external binding declaration format enables customized binding without
requiring modification of the source schema. Unlike inline annotation, the
remote schema component to which the binding declaration applies must be
identified explicitly. The <j axb: bi ndi ngs> element enables the
specification of aremote schema context to associate its binding declaration(s)
with. Minimally, an external binding declaration follows the following format.

<j axb: bi ndi ngs schermaLocation = "xsd: anyURl ">
<j axb: bi ndi ngs node = "xsd:string">*
<bi ndi ng decl arati on>
<j axb: bi ndi ngs>
</ j axb: bi ndi ngs>

The attributes schemal ocation and node are used to construct areference to a
node in aremote schema. The binding declaration is applied to this node by the
binding compiler as if the binding declaration was embedded in the node’s
<xsd: appi nf o> element. The attribute values are interpreted as follows:

« schemalocation - It is a URI reference to a remote schema.
« node- It isan XPath 1.0 expression that identifies the schema node
within schemal ocation to associate binding declarations with.

An example external binding declaration can be found in Section D.1,
“Example.”

9/12/02 JAXB Specification — Public Draft, V0.7 101

Customization

6.1.3.1 Restrictions

« Theexternal binding element <j axb: bi ndi ngs> isonly recognized
by ajaxb processor within a<xsd: appi nf o> element or when it is
root element of a document. An XML document that has a
<j axb: bi ndi ngs> element asitsroot is referred to as an external
binding declaration file.

« Both attributes of a<j axb: bi ndi ngs> element should not be set at
the same time. Either attribute schemalLocat i on or node should be
set, not both on the same <j axb: bi ndi ngs> element.

« Thetop-most <j axb: bi ndi ng> element within an
<xsd: appi nf o> element is expected to haveitsschemaLocat i on
attribute set.

6.1.4 Invalid Customizations

A non conforming binding declaration is a binding declaration in the jaxb
namespace but does not conform to this specification. A non conforming
binding declaration results in a customization error. The binding compiler must
report the customization error. The exact error is not specified here.

The rest of this chapter assumes that non conforming binding declarations are
processed as indicated above and their semantics are not explicitly specified in
the descriptions of individual binding declarations.

6.2 Notation

The source and binding-schema fragments shown in this chapter are meant to be
illustrative rather than normative. The normative syntax for the binding
language will be described by a XML Schema, in addition to the other
normative text within this chapter. All examples are non-normative.

« Metavariablesareinitalics.
« Optional attributes are enclosed in[squar e="bracket"].

« Optional elementsareenclosedin[<elementA> ... </
element A> .

« Other symbols: ‘, " denotesasequence, ‘| * denotesachoice, ‘+' denotes
one or more, ‘*’ denotes zero or more.

102 JAXB Specification — Public Draft, V0.7 9/12/02

Naming Conventions

« Theprefix xsd: isused to refer to schema componentsin W3C XML
Schema namespace.

« Inexamples, the binding declarations as well as the customized code are
shown in bold like this : <appinfo> <annotation> or getAddress().

6.3 Naming Conventions

The naming convention for XML names in the binding language schema are:

o Thefirst letter of thefirst word in a multi word nameisin lower case.

« Thefirst letter of every word except the first oneisin upper case.

For example, the XML name for the Java property basetype is baseType.

6.4 Customization Overview

A binding declaration customizes the default binding of a schema element to a
Java representation. The binding declaration defines one or more customization
values each of which customizes a part of Java representation.

6.4.1 Scope

When a customization value is defined in a binding declaration, it is associated
with a scope. A scope of a customization value is the set of schema elements to
which it applies. If a customization value applies to a schema element, then the
schema element is said to be covered by the scope of the customization value.
The scopes are:

« global scope: A customization value defined in <gl obal Bi ndi ngs>
has global scope. A global scope covers all the schema elementsin the
source schema and (recursively) any schemas that are included or
imported by the source schema.

» schema scope: A customization value defined in
<schemaBi ndi ngs> has schema scope. A schema scope covers all
the schema elements in the target name space of a schema.

9/12/02 JAXB Specification — Public Draft, V0.7 103

Customization

« definition scope: A customization value in binding declarations of a
type definition and global declaration has definition scope. A definition
scope coversall schema el ementsthat reference the type definition or the
global declaration. Thisis more precisely specified in the context of
binding declarations later on in this chapter.

« component scope: A customization value in a binding declaration has
component scope if the customization value applies only to the schema
element that was annnotated with the binding declaration.

Global Scope
<gl obal Bi ndi ngs>

Schema Scope
<schemaBi ndi ngs>
Definition Scope

Binding Declaration
Component Scope /
Binding Declaration v
v
] v

/V Indicates inheritance and overriding of scope.

Figure 6.1 Scoping Inheritance and Overriding For Binding Declarations

104 JAXB Specification — Public Draft, V0.7 9/12/02

Customization Overview

The different scopes form ataxonomy. The taxonomy defines both the
inheritance and overriding semantics of customization values. A customization
value defined in one scope is inherited for use in a binding declaration covered
by another scope as shown by the following inheritance hierachy:

« aschemaelement in schemascopeinheritsacustomization value defined
in global scope.

« aschema element in definition scope inherits a customzation value
defined in schema or global scope.

« aschema element in component scope inherits a customization value
defined in definition, schema or global scope.

Likewise, a customization value defined in one scope can override a
customization value inherited from another scope as shown below:

« valuein schema scope overrides a value inherited from global scope.

« valuein definition scope overrides a value inherited from schema scope
or global scope.

« value in component scope overrides a value inherited from definition,
schema or global scope.

6.4.2 XML Schema Parsing

Chapter 5 specified the bindings using the abstract schema model.
Customization, on the other hand, is specified in terms of XML syntax not
abstract schemamodel. The XML Schemaspec [XSD PART 1] specifies the
parsing of schema elements into abstract schema components. This parsing is
assumed for parsing of annotation elements specified here. In some cases, [XSD
PART 1] is ambiguous with respect to the specification of annotation elements.
Chapter 6, “Annotation Restrictions” outlines how these are addressed.

9/12/02 JAXB Specification — Public Draft, V0.7 105

Customization

Design Note — The reason for specifying using the XML syntax instead of
abstract schema model is as follows. For most part, there is a one-to-one mapping
between schema elements and the abstract schema components to which they are
bound. However, there are certain exceptions: local attributes and particles. A local
attribute is mapped to two schema components: { attribute declaration} and
{attribute use}. But the XML parsing process associates the annotation with the
{ attribute declaration} not the { attribute use}. This is tricky and not obvious.
Hence for ease of understanding, a choice was made to specify customization at
the surface syntax level instead.

6.5 <gl obal Bi ndi ngs> Decl arati on

The customization valuesin "<gl obal Bi ndi ngs>" binding declaration
have global scope. This binding declaration istherefore useful for customzing at
aglobal level.

6.5.1 Usage
<gl obal Bi ndi ngs>
[collectionType = "collectionType"]
[fixedAttributeToConstantProperty= "true" | "false" | "1" | "0"
]
[generatel sSet Method= "true" | "false" | "1" | "0"]
[enabl eFai | Fast Check = "true" | "false" | "1" | "0"]
[choiceContentProperty = "true" | "false" | "1" | "0"]
[underscoreBinding = "asWordSeparator" | "asCharlnWord"]
[typeSaf eEnunBase = "xsd:string" | "xsd:decimal" | "xsd:float"
| "xsd: double"]
[typeSaf eEnumVenber Nane = "generateNanme" | "generateError"]
[enablevalidation = "true" | "false" | "1" | "0"]
[enabl eJavaNanmi ngConventions = "true" | "false" | "1" | "0"]
[nodel G oupAsCl ass = "true" | "false" | "1" | "0"]
[<javaType> ... </javaType>]*

</ gl obal Bi ndi ngs>

The following customization values are defined in global scope:

106 JAXB Specification — Public Draft, V0.7 9/12/02

<gl obal Bi ndi ngs> Decl arati on

« coll ectionType if specified, must be either “i ndexed" or any
fully qualified class name that implementsj ava. uti |l . Li st.

o fixedAttributeToConst ant Property if specified, defines
the customization value
fixedAttribut eToConst ant Property. Thevalue must beone
of"true", false", "1" or"0".

« gener at el sSet Met hod if specified, defines the customization
value of gener at el sSet Met hod. The value must be one of
"true", false", "1" or"0".

. enabl eFai | Fast Check if specified, defines the customization
valueenabl eFai | Fast Check. Thevaluemust beoneof"true",
fal se", "1" or"O0".

« choi ceCont ent Property if specified,defines the customization
valuechoi ceCont ent Property . The value must be one of
"true", false", "1" or"0".

« under scor eBi ndi ng if specified, defines the customization value
under scor eBi ndi ng. The value must be one of
"asWordSeparator" or "asCharl nWrd".

. enabl eJavaNani ngConventi ons if specified, defines the
customization valueenabl eJavaNani ngConventi ons. Thevaue
must beoneof "t rue", false", "1" or"0".

. enabl eVal i dati on if specified, defines the customization value
enabl eVal i dati on. Thevauemustbeoneof "t rue", fal se",
"1" or"0".

. typesaf eEnunBase if specified, defines the customization value
t ypesaf eEnunBase. Thevaluemustbeoneof " xsd: stri ng" |,
"xsd:decimal", "xsd:float" or "xsd:double".

. typesaf eEnunivenber Nane if specified, definesthe customization
valuet ypesaf eEnunmivenber Nane. The value must be one of
"generateError" or"generateNane".

« nodel GroupAsCl ass if specified, defines the customization value
nodel G oupAsCl ass. This selects the binding style specified in
Section 5.9.7, “ Alternative binding approach: model group binding” for
binding model groups.

« zeroormorej avaType binding declarations. Each binding declaration
must be specified as described in Section 6.9, “javaType Declaration,”
on page 127”.

9/12/02 JAXB Specification — Public Draft, V0.7 107

Customization

The semantics of the above customization values, if not specified above, are
specified when they are actually used in the binding declarations.

For inline annotation, a<gl obal Bi ndi ngs> isavalid only in the annotation
element of the <schenma> element. There must only be a single instance of a
<gl obal Bi ndi ngs> declaration in the annotation element of the
<schema> element.

If one source schema includes or imports a second source schema then the
<gl obal Bi ndi ngs> declaration must be declared in the first source schema.

6.5.2 Customized Name Mapping

A customization value can be used to specify a name for a Java object (e.g.
class name, package name etc.). In this case, a customization value is referrred
to as a customization name.

A customization nameis alwaysalegal Javaidentifier (thisisformally specified
in each binding declaration where the name is specified). Since customization
deals with customization of a Java representation to which an XML schema
element is bound, requiring a customization name to be alegal Javaidentifier
rather than an XML name is considered more meaningful.

A customization name may or may not conform to the recommended Java
naming conventions. [JLS - Java Language Specification, Second Edition,
Section 6.8, “Naming Conventions”]. The customization value
enableJavaNamingConventions determines if a customization name is mapped
to a Javaidentifier that follows Java naming conventions or not.

If enableJavaNamingConventionsisdefined andthevalueis"t rue" or" 1",
then the customization name (specified in the section from where this section is
refrerenced) must be mapped to Javaidentifier which follows the Java naming
conventions as specified in “Conforming Java Identifier Algorithm”; otherwise
the customized name must be used asis.

6.5.3 Underscore Handling
This section applies only when XML names are being mapped to alegal Java

Identifier by default. In this case, the treatment of underscore (* ') isdetermined
by under scor eBi ndi ng.

108 JAXB Specification — Public Draft, V0.7 9/12/02

<schemaBi ndi ngs> Decl arati on

If under scor eBi ndi ng is"asWbr dSepar at or", thenunderscore
(‘") must be treated as a punctuation character; otherwise if

under scor eBi ndi ng is"asChar | nwbr d", then underscore (‘') must
be treated as a character in the word.

6.6 <schemaBi ndi ngs> Decl arati on

The customization valuesin <schemaBi ndi ngs> binding declaration have
schema scope. This binding declaration is therefore useful for customzing at a
schemalevel.

6.6.1 Usage

<schemaBi ndi ngs>

[<package> package </ package>]

[<nameXm Transfornme> ... </ naneXm Transforne]*
</ schemaBi ndi ngs>

<package [name = "packageNanme"]
[<javadoc> ... </javadoc>]
</ package>

<nameXm Tr ansf or m>
[<typeNane [suffix="suffix"]
[prefix="prefix"] />
[<el ement Name [suffix="suffix"]
[prefix="prefix"] />
[<rmodel GroupName [suffix="suffix"]
[prefix="prefix"] />
[<anonymousTypeNane [suffix="suffix"]
[prefix="prefix"] />
</ nameXm Tr ansf or m>

For readability, the <naneXm Tr ansf or m> and <package> elements are
shown separately. However, they are local elements within the
<schemaBi ndi ngs> element.

The semantics of the customization value are specified when they are actually
used in the binding declarations.

9/12/02 JAXB Specification — Public Draft, V0.7 109

Customization

For inline annotation, a<schemaBi ndi ngs> isvalid only in the annotation
element of the <schenma> element. There must only be a single instance of a
<schenaBi ndi hgs> declaration in the annotation element of the
<schema> element.

If one source schema includes (via the include meachnism specified by XSD
PART 1) asecond source schema, then the <schemaBi ndi ngs> declaration
must be declared in the first including source schema. It should be noted that
there is no such restriction on <schemaBi ndi ngs> declarations when one
source schema imports another schema since the scope of

<schenaBi ndi nhgs> binding declaration is schema scope.

6.6.1.1 package
Usage

« nane if specified, defines the customization value packageNare.
packageName must be avalid Java package name.

« <j avadoc> if specified, customizes the package level Javadoc.
<j avadoc> must be specified as described in Section 6.11,
“<j avadoc> Declaration”. The Javadoc must be generated as specified
in Section 6.11.3, “Javadoc Customization”. The Javadoc section
customized isthe package secti on.

Design Note — The word “package” has been prefixed to nanme used in the
binding declaration. This is because the attribute or element tag names “name” is
not unique by itself across all scopes. For e.g., “name” attribute can be specified in
the <property> declaration. The intent is to disambiguate by reference such as
“packageName”.

The semantics of the packageNane is specified in the context whereit is
used. If neither packageNane nor the<j avadoc> element is specified, then
the binding declaration has no effect.

Example: Customizing Package Name

<schemaBi ndi ngs>
<package nane = "org.exanple.po" />
</ schemaBi ndi ngs>

110 JAXB Specification — Public Draft, V0.7 9/12/02

<schemaBi ndi ngs> Decl arati on

specifies“or g. exanpl e. po” asthe package to be associated with the
schema.

6.6.1.2 nameXmlTransform

The use case for this declaration is the UDDI Version 2.0 schema. The UDDI
Version 2.0 schema contains many declarations of the following nature:

<el ement nane="bi ndi ngTenpl at e" type="uddi : bi ndi ngTenpl ate"/ >

The above declaration results in a name collision since both the element and
type names are the same - although in different XML Schema symbol spaces.
Normally, collisions are supposed to be resolved using customization. However,
since there are many collisions for the UDDI V2.0 schema, thisis not a feasible
solution. Hence the binding declaration nameXmlTransform is being provided
to automate name collision resolution.

ThenameXn Transf or m allowsasuffi x andaprefi x tobespecified
on a per symbol space basis. The following symbol spaces are supported:

« <typeNane> for the symbol space “type definitions”
« <el ement Nanme> for the symbol space “element definitions”

« <nmodel Gr oupName> for the symbol space “model group
definitions’.

If suf fi x isspecifed, it must be appended to all the names in the symbol space
with which the to the default XML name. The pr ef i x if specified, must be
prepended to the default XML name. Furthermore, this XML name
transformation must be done before the XML name to Java |dentifier algorithm
is applied to map the XML name to a Javaidentifier. The XML name
transformation must not be performed on customization names.

By using adifferent pr ef i x and/or suf fi x for each symbol symbol space,
identical namesin different symbol spaces can be transformed into non-
colliding XML names.

anonymousTypeName

As specified in Section 5.7.2, “Bind to Java Content Interface”, by default a
“Type” suffix is added to the name of the Java content interface to which an
anonymous type is bound. The <anonynmousTypeNane> declaration can be
used to customize the suffix and prefix for the Javacontent interface. If suf f i x

9/12/02 JAXB Specification — Public Draft, V0.7 111

Customization

isspecified, it must replace the “ Type” suffix in the Java content interface name.
If prefix isspecified, thenit must be prepended to the Java content interface
name for the anonymous type.

6.7 <class> Declaration

This binding declaration can be used to customize the binding of a schema
element to a Java content interface or a Java Element interface. The
customizations can be used to specify:

« aname for the derived Javainterface.
« animplementation class for the derived Java content interface. An
implementation cannot be specified for a Java Element interface.

Specification of an alternate implementation for a Java content interface allows
implementations generated by atool (e.g. based on UML) to be used in place of
the default implementation generated by JAXB provider.

The implementation class may have a dependency upon the runtime of the
binding framework. Since aruntime is not specified in this version of the
specification, the implementation class may not be portable across JAXB
provider implementations. Hence one JAXB provider implementation is not
required to support the implementation class from another JAXB provider.

6.7.1 Usage
<class [nane = "cl assNane"] >
[impl Cass= "inpldass"]
[<javadoc> ... </javadoc>]
</cl ass>

« cl assNane isthe name of the derived Javainterface, if specified. It
must be alegal Java interface name and must not contain a package
prefix. The package prefix is inherited from the current value of
package.

« i npl C ass if specified, isthe name of the implementation class for
cl assName and must include the complete package name.

112 JAXB Specification — Public Draft, V0.7 9/12/02

<cl ass> Decl arati on

« <j avadoc> element, if specified customizes the Javadoc for the
derived Javainterface. <j avadoc> must be specified as described in
Section 6.11, “<j avadoc> Declaration”.

6.7.2 Customization Overrides

When binding aschemaelement’s Java representation to a Java content interface
or a Java Element interface, the following customization values override the
defaults specified in Chapter 5. It is specified in a common section here and
referenced from Section 6.7.3, “ Customizable Schema Elements”.

« name: Thenameiscl assNane if specified.

« package name: The name of the package is packageNane inherited
from a scope that covers this schema el ement.

NOTE: The packageNane isonly setin the <package> declaration.
The scope of packageNamne is schema scope and is thus inherited by
all schema elements within the schema.

« javadoc: The Javadoc must be generated as specified in section
Section 6.11.3, “Javadoc Customization”. The Javadoc section
customizedisthecl ass/i nterface section.

6.7.3 Customizable Schema Elements

6.7.3.1 Complex Type Definition

When <class> customi zation specified in the annotation element of the complex
type definition, the complex type definition must be bound to a Java content
interface as specified in Section 5.3.3, “Java Content Interface” applying the
customization overrides as specified in Section 6.7.2, “Customization
Overrides’.

Example: Class Customization: Complex Type Definition To Java Content
Interface

XML Schema fragment:

<xsd: conpl exType nane="USAddr ess" >
<appi nf o><annot at i on>
<cl ass name="MWAddress" />

9/12/02 JAXB Specification — Public Draft, V0.7 113

Customization

</ annot ati on> </ appi nf o>

<sequence>. .. </ sequence>

<xsd:attribute nane="country" type="xsd:string"/>
</ xsd: conmpl exType>

Customized code:

/1 public interface USAddress { // Default Code
public interface MyAddress { // Custom zed Code
public String getCountry();
public void setCountry(String val ue);

6.7.3.2 Model Group Definition

Whena<cl ass> declaration is specified in the annotation element of amodel
group definition, the model group definition must be bound to a Java content
interface as specified in Section 5.5.3, “Bind to a Java content interface”
applying the customization overrides as specified in Section 6.7.2,
“Customization Overrides”.

Example: Class Customization: Model Group Definition To Class
XML Schema Fragment:

<xs:group nane="AMdel G oup" >
<appi nf o><annot at i on>
<cl ass name="M/Model Group" />
</ annot ati on> </ appi nf o><
<xs: choi ce>
<xs:el enent name="A" type="xsd:int"/>
<xs:el enent nanme="B" type="xsd:float"/>
</ xs: choi ce>
</ xs: group>

Customized code:

interface MyModel G oup { // Customi zed code (custoni zed cl ass nane)
voi d set A(int val ue);
int getA();
voi d getB(fl oat val ue);
float getB();

114 JAXB Specification — Public Draft, V0.7 9/12/02

<cl ass> Decl arati on

6.7.3.3 Model Group

When a<cl ass> customization is specified in the annotation element of the
model group’s compositor, the model group must be bound to a Java content
interface as specified in Section 5.9.7, “ Alternative binding approach: model
group binding” applying the customization overrides as specified in

Section 6.7.2, “ Customization Overrides’.

6.7.3.4 Global Element Declaration

A <cl ass> declaration is allowed in the annotation element of the global
element declaration. The global element declaration must be bound as specified
in Section 5.7.1, “Bind to Java Element Interface” applying the customization
overrides A specified in Section 6.7.2, “Customization Overrides’.

Example: Class Customization: Global Element to Class
XML Schema Fragment:

<conpl exType name="AConpl exType" >
<sequence>
<el ement name="A" type="xsd:int"/>
<el ement nanme="B" type="xsd:string"/>
</ sequence>
<el ement nanme="AnEl ement" type="AConpl exType">
<appi nf o><annot at i on>
<cl ass name="MWEl enent" />
</ annot at i on> </ appi nf o>
</ xs: el ement >

Customized code;

public interface AConpl exType {
voi d set A(int val ue);
int getA();
voi d setB(String val ue);
String getB();
b
/1 following interface is generated by default
/1 public interface AnEl enent extends AConpl exType
javax. xm . j axb. El enent {};
/1 following interface is generated after custom zation
public interface M/El enent extends AConpl exType,
javax. xm . j axb. El ement {};

9/12/02 JAXB Specification — Public Draft, V0.7 115

Customization

public class ObjectFactory {
AnEl enent createAnEl enent(); // Default code
AnEl enent createMyEl ement (); // Custonized code
AConpl exType creat eAConpl exType();
other factory nethods ...

6.7.3.5 Local Element

A local elment is a schema element that occurs within acomplex type definition.
A local element is one of:

« local element reference (using the “ref” attribute) to a global element
declaration.

« local element declaration (“ref” attribute is not used).

A <cl ass> declaration is allowed in the annotation element of alocal
element. Chapter 6, “Annotation Restrictions’ contains more information
regarding the annotation element for alocal element reference.

A <cl ass> customization on local element reference must be ignored since a
local element reference is never bound to a Java Element interface.

A <cl ass> customization on local element declaration applies only when a
local element declaration is bound to a Java Element interface. Otherwise it
must be ignored. If applicable, alocal element must be bound as specified in
Section 5.7.1, “Bind to Java Element Interface” applying the customization
overrides as specified in Section 6.7.2, “Customization Overrides’.

Example : Class Customization: Local Element Declaration To Java Element
Interface

The following example is from Section 5.9.2.3, “Examples’.

XML Schema fragment:

<conpl exType nane="Base" >
<choi ce maxCccur s="unbounded" >
<el ement nanme="A" type="xsd:string"/>
<appi nf o><annot at i on>
<cl ass nane="Bar" />
</ annot ati on> </ appi nf o>
<el ement nane="B" type="xsd:string"/>

116 JAXB Specification — Public Draft, V0.7 9/12/02

<property> Declaration

<el ement nanme="C' type="xsd:int"/>
</ choi ce>

Customized code;

interface Base {

6.8

/1l interface A extends javax.xm .bind.El ement {} // Default code
interface Bar extends javax.xm . bind. El ement {}// Custoni zed code
interface B extends javax.xmnl . bind. El ement {}
interface C extends javax.xmnl . bind. El erent {}

/**

* A general content list that can contain

* el enent instances of Base. A Base.B and Base. C.
*

* <insert appropriate schema fragnent here>

*/

/1 List getAorBorC(); // Default code

Li st getBarorBorC(); // Custom zed code

<property> Declaration

This binding declaration allows the customization of a binding of an XML
schema element to its Java representation as a property. This section identifies
all XML schema elements that can be mapped to a Java property and how to
customize that binding.

The scope of customization value can either be definition scope or component
scope depending upon where the <property> binding declaration is specified.

6.8.1 Usage
<property [nane = "propertyName"]
[baseType = "propertyBaseType"]
[collectionType = "propertyCol | ectionType"]
[fixedAttributeToConstantProperty="true" | "false" | "1" | "0"
]
[generatel sSet Met hod= "true" | "false" | "1" | "0"]
[enabl eFai | Fast Check="true" | "false" | "1" | "0"]
9/12/02 JAXB Specification — Public Draft, V0.7 117

Customization

[choiceContentProperty = "true" | "false" | "1" | "0"]

</ property>

The customization values defined are:

6.8.2

« nane if specified, definesthe customization value pr oper t yNane;

it must be alegal Javaidentifier.

baseType if specified, defines the customization value
propertyBaseType which isthe basetype of a property. The
pr opertyBaseType can either be a Java primitive type or fully
qualified class name.

col I ecti onType if specified, defines the customization value
propertyCol | ecti onType which isthe collection type for the
property. propertyCol | ecti onType if specified, must be either
“i ndexed" or any fully qualified class name that implements
java.util.List.

fixedAttribut eToConst ant Property if specified, defines
the customization value

fi xedAttri buteToConst ant Property. Thevaue must be one
of"true", false", "1" or"0".

gener at el sSet Met hod if specified, defines the customization
value of gener at el sSet Met hod. The value must be one of
"true", false", "1" or"0".

enabl eFai | Fast Check if specified, defines the customization
valueenabl eFai | Fast Check. Thevaluemust beoneof "t rue",
false", "1" or"O0".

choi ceCont ent Property if specified,defines the customization
value choi ceCont ent Property . The value must be one of
"true", false", "1" or"0".

Customization Overrides

When binding a schema element’s Java representation to a property, the
following customization values override the defaults specified in Chapter 5. It is
specified in acommon section here and referenced from Section 6.8.3,
“Customizable Schema Elements’.

118

JAXB Specification — Public Draft, V0.7 9/12/02

<property> Declaration

« name: If propertyName is defined, then it is the name obtained by
mapping the name as specified in Section 6.5.2, “ Customized Name

Mapping”.

« basetype: The basetypeispr opert yBaseType if specified;
otherwise, it isthe pr opert yBaseType inherited from a scope that
covers this schema element.

« collection type: Thecollectiontypeispr opertyCol | ecti onType
if specified; otherwiseitisthe pr opertyCol | ecti onType
inherited from a scope that covers this schema element.

. If propertyBaseType isaJdavaprimitivetype and
propertyCol | ecti onType and the collectiontypeisaclass that
implements java.util.List, then the primitive type must be mapped to its
wrapper class.

The following does not apply if local attribute is being bound to a constant
property as specified in Section 6.8.3.2, “Local Attribute”:

. If generatel sSet Met hod is"true" or"1", then additional
methods as specified in Section 4.5.4, “isSet Property Maodifier” must be
generated.

. If enabl eFai | Fast Check is"true" or"1" thenafail fast
checking must be enforced by the JAXB implementation.

6.8.3 Customizable Schema Elements

6.8.3.1 Global Attribute Declaration

A <pr opert y> declaration is allowed in the annotation element of the global
attribute declaration.

The binding declaration does not bind the global attribute declaration to a
property. Instead it defines customization values that have definition scope. The
definition scope covers all local attributes (Section 6.8.3.2, “Local Attribute”)
that can reference this global attribute declaration. Thisis useful sinceit allows
the customization to be done once when a global attribute is defined instead of
at each local attribute that references the global attribute declaration.

9/12/02 JAXB Specification — Public Draft, V0.7 119

Customization

6.8.3.2 Local Attribute

A local attribute is an attribute that occurs within an attribute group definition,
model group definition or a complex type. A local attribute can either be a

« locd attribute reference (using the “ref” attribute) to a global attribute
declaration.

« local attribute declaration (“ref” attribute is not used).

A <pr opert y> declaration is allowed in the annotation element of alocal
attribute.Chapter 6, “ Annotation Restrictions” contains more information
regarding the annotation element for alocal attribute reference. The
customization values must be defined as specified in Section 6.8.1, “Usage” and
have component scope.

o IffixedAttributeToConstant Property is“true" or“l"
and the local attribute is a fixed, the local attribute must be bound to a
Java Constant property as specified in Section 5.8.1, “Bind to a Java
Constant property” applying customization overrides as specified in
Section 6.8.2, “ Customization Overrides’. The
gener at el sSet Met hod, choi ceCont ent Property and
enabl eFai | Fast Check must beignored, if specified.

« Otherwise, it is bound to a Java property as specified in Chapter 5,
“Attribute use” applying customization overrides as specified in
Section 6.8.2, “ Customization Overrides”.

Example: Customizing Java Constant Property
XML Schema fragment:

<xsd: conpl exType nanme="USAddr ess" >
<sequence>. .. </ sequence>
<xsd: attribute nane="country" type="xsd: NMTCKEN' fi xed="US">
<annot at i on><appi nf o>
<property nanme="MY_COUNTRY"
fixedAttribut eToConst ant Property="true" />
</ appi nf o></ annot at i on>
</ xsd:attribute>
</ sequence>
</ xsd: conpl exType>

Customized derived code:

public interface USAddress {

120 JAXB Specification — Public Draft, V0.7 9/12/02

<property> Declaration

/1 public static final String COUNTRY = "US" // Default Code
public static final String MY_COUNTRY = "US" // Custom zed Code

}

Example 2: Customizing to other Java Property
XML Schema fragment:

<xsd: conpl exType nane="USAddr ess" >
<sequence>. .. </ sequence>
<xsd:attribute name="country" type="xsd:string">
<annot at i on><appi nf o>
<property name="M/Country" />
</ appi nf o></ annot at i on>
</ xsd:attribute>
</ xsd: conpl exType>

Customized derived code:

public interface USAddress {

/1 public getString getCountry(); /] Default Code
/1 public void setCountry(string value);// Default Code
public getString get MyCountry(); /1 Custom zed Code

public void set MyCountry(string value); // Custom zed Code
}

Example 3: Generating IsSet Methods
XML Schema fragment:

<xsd: attribute nane="account" type = "xsd:int" use="required">
<annot at i on><appi nf o>
<j axb: property generat el sSet Met hod="t rue"/ >
</ appi nf o></ annot at i on>
</ xsd:attribute>

Customized code:

public int getAccount();

public void setAccount (int account);

public bool ean isSetAccount(); // Custonized code
public void unset Account(); /] Custom zed code

9/12/02 JAXB Specification — Public Draft, V0.7 121

Customization

6.8.3.3 Global Element Declaration

A <pr operty> declaration is alowed in the annotation element of a global
element declaration.

The binding declaration does not bind the global element declaration to a
property. Instead it defines customization values that have definition scope. The
definition scope covers all local elements (Section 6.8.3.4, “Local Element ")
that can reference this global element declaration. Thisis useful sinceit allows
the customization to be done once when a global element is defined instead of at
each local element that references the global element declaration.

6.8.3.4 Local Element

A local elment isaschema element that occurs within acomplex type definition.
A local element is one of:

« loca element reference (using the “ref” attribute) to a global element
declaration.

« local element declaration (“ref” attribute is not used).

A <property> declaration is allowed in the annotation element of alocal
element. Chapter 6, “Annotation Restrictions’ contains more information
regarding the annotation element for alocal element reference. The
customization values defined have component scope.

The customization values must be defined as specified in Section 6.8.1, “Usage”
and have component scope.

The local element must be bound as specified in Section 5.9.6, “ Content Model
Default Binding” applying customization overrides as specified in
Section 6.8.2, “ Customi zation Overrides’.

See example in “Example 3: Property Customization: Model Group To Content
Property Set” in section Section 6.8.3.6, “Model Group”.

6.8.3.5 Wildcard

A <property> declaration is alowed in the annotation element of the
wildcard schema component. The customization values must be defined as
specified in Section 6.8.1, “Usage” and have component scope.

122 JAXB Specification — Public Draft, V0.7 9/12/02

<property> Declaration

The wildcard schema component must be bound to a property as specified in
Section 5.9.6, “ Content Model Default Binding” applying customization
overrides as specified in Section 6.8.2, “Customization Overrides’.

Example: The following exampleisfrom the XML Schema Part O Primer (with
customization added)

<xsd: el enent name="purchaseReport">
<xsd: conpl exType>
<xsd: sequence>
<xsd: el ement nanme="ht ml Exanpl e" >
<xsd: conpl exType>
<xsd: sequence>
<xsd: any nanespace="http://ww. w3. or g/ 1999/
xhtm "
m nCccurs="1" maxCccur s="unbounded"
processCont ent s="ski p">
<xsd: annot at i on><xsd: appi nf 0>
<j axb: property nane="Xhtm I tens" />
</ xsd: appi nf 0></ xsd: annot at i on>
</ xsd: any>
</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: el enent >
</ xsd: sequence>
<xsd: attribute name="period" type="duration"/>
<xsd: attribute nane="peri odEndi ng" type="date"/>
</ xsd: conpl exType>
</ xsd: el enent >

Customized derived code:

/'l List getHmItens(); // Default Code
List getXhtm Itens(); // Custom zed Code

6.8.3.6 Model Group

A <pr operty> binding declaration is allowed in the annotation element of
the compositor (i.e. <choi ce>, <sequence> or <al | >). The
customization values must be defined as specified in Section 6.8.1, “Usage” and
have component scope. The model group must be bound as follows:

« If choi ceCont ent Propertyis“true", thenthechoice model
group must be bound to a choice content property as specified in

9/12/02 JAXB Specification — Public Draft, V0.7 123

Customization

Section 5.9.8.1, “Bind to a choice content property” applying
customization overrides as specified in Section 6.8.2, “Customization
Overrides'.

« otherwise, the model group’s content model must be bound to a general
content property as specified in Section 5.9.6, “Content Model Default
Binding” applying customization overrides as specified in Section 6.8.2,
“Customization Overrides’.

A model group can also be bound to a content property set. When amodel group
is bound to a content property set, there is no customization that can be applied
to the model group itself. However, a schema element that is part of the model
group’s content model can be customized as specified in that particular schema
element.

Examplel:Property Customization:Model Group To ChoiceContent Property
XML Schema fragment

<xsd: choi ce i d=XXX/ >
<xsd: annot at i on><xsd: appi nf 0>
<j axb: property choi ceCont ent Property="true" />
</ xsd: appi nf o></ xsd: annot at i on>
<xsd: el enent name="foo" type="int"/>
<xsd: el enent name="bar" type="string"/>
</ xsd: choi ce>

Customized derived code:

voi d set FooOr Bar (j ava. | ang. Obj ect 0);
Obj ect get FooOrBar ();
bool ean i sSet FooOrBar () ;

A <pr opert y> declaration is required since the above binding is not the
default binding.

Example 2: Property Customization: Model Group To General Content
Prorperty

XML Schema frament:

<conpl exType nane="Base">
<choi ce maxCccur s="unbounded" >
<xsd: annot at i on><xsd: appi nf 0>
<j axb: property nanme="itens" />
</ xsd: appi nf 0></ xsd: annot ati on>

124 JAXB Specification — Public Draft, V0.7 9/12/02

<property> Declaration

<el ement nane="A" type="xsd:string"/>
<el ement nane="B" type="xsd:string"/>
<el ement name="C' type="xsd:int"/>
</ choi ce>
</ conpl exType>

Customized derived code:

interface Base {
interface A extends javax.xmnl .bind. El erent {}
interface B extends javax.xmnl . bind. El ement {}
interface C extends javax.xmn . bind. El emrent {}

/**
* A general content list that can contain
* el enent instances of Base. A Base.B and Base. C.
*
* <insert appropriate schema fragnent here>
*/
/1 List getAorBorC(); - default
List getltens();// Custonized Code

}
Example 3: Property Customization: Model Group To Content Property Set

XML Schema fragment:

<xsd: conpl exType nanme="Pur chaseO der Type" >
<xsd: sequence>
<xsd: choi ce>
<xsd: group ref="shi pAndBi |l | "/>
<xsd: el enent nane="si ngl eUSAddr ess" type="USAddr ess" >
<xsd: annot at i on></ xsd: appi nf 0>
<j axb: property nane="address" />
</ xsd: appi nf 0></ xsd: annot at i on>
</ xsd: el enent >
</ xsd: gr oup>
</ xsd: choi ce>
<xsd: el ement ref="coment" m nOccurs="0"/>
<xsd: el enent name="itens" type="Itens"/>
</ xsd: sequence>
<xsd: attribute nanme="orderDate" type="xsd: date"/>
</ xsd: conpl exType>

9/12/02 JAXB Specification — Public Draft, V0.7 125

Customization

<xsd: group name="shi pAndBill">
<xsd: sequence>
<xsd: el ement nanme="shi pTo" type="USAddress"/>
<xsd: annot ati on><xsd: appi nf o>
<j axb: property name="shi pAddress" />
</ appi nf o></ annot at i on>
<xsd: el ement nanme="bill To" type="USAddress"/>
<xsd: annot at i on><xsd: appi nf 0>
<j axb: property nane="bi |l | Addr ess"
choi ceCont ent Property="true" />
</ xsd: appi nf 0></ xsd: annot at i on>
</ xsd: el ement >
</ xsd: sequence>
</ xsd: group>

Customized derived code: (assuming that USAddress is a complex type
definition that is bound to a Java content interface USAddress).

public interface PurchaseOrderType {
voi d set Shi pAddr ess(USAddress) // Custoni zed Code
voi d setBill Address(USAddress) // Custoni zed Code
voi d set Addr ess(USAddr ess) /] Custom zed Code
voi d set Corment (String)
voi d set OrderDate(j ava. util. Cal endar)

6.8.3.7 Model Group Reference

A model group referenceis areference to amodel group using the “ref”
attribute. A property customization is allowed on the annotation property of the
model group reference. Section Chapter 6, “Annotation Restrictions’ contains
more information regarding the annotation element for amodel group reference.

The customization values must be defined as specified in Section 6.8.1, “Usage”
and have component scope. A model group reference is bound to a Java
property set or alist property as specified in Chapter 5, “ Content Model Default
Binding” applying customization overrides as specified in Section 6.8.2,
“Customization Overrides’.

126 JAXB Specification — Public Draft, V0.7 9/12/02

javaType Declaration

Design Note — The <property> declaration is not allowed on an annotation
element of attribute group definition. However, attributes within the attribute group
definition can themselves be customized as described in the “Local Attribute”
section above. Section 6.8.3.2, “Local Attribute”.

Design Note — A <property> customization is not allowed on the annotation
element of a simple type or complex type.

If the complex content for a complex type is mixed content, it is by default, bound
to a general content property. One way to customize this binding, would be to
allow a <property> declaration to be specified in the annotation element of the
<complexType> definition. However, this could be confusing since it could be
interpreted by users to apply to the whole complex type definition i.e. its own
content model, its attributes and the content model of a type from which it is
derived. One way get around this is to specify the semantics to apply only to the
complex type definition’s content model. But that is still confusing. So, to
customize the binding of a mixed content to a general content property, the
<property> binding declaration on the model group within the complex content
can be used. (XSD PART 1 guarantees that there is one of the following group |
choice | sequence | all within complex content)

6.9 javaType Declaration

A <j avaType> declaration provides away to customize the the binding of an
XML schema atomic datatype to a Java datatype, referred to as the target Java
datatype. The target Java datatype can be a Java built-in data type or an
application specific Java datatype.

The contract between an application specific datatype and JAXB provider
implementation consists of a pair of methods: parse method and print method.
An application specific datatype used as a target Java datatype must provide an
implementation of both the parse method and print method.

The parse method converts alexical representation of the XML schema datatype
into avalue of thetarget Java datatype. The parse method isinvoked by a JAXB
provider’s implementation during unmarshalling.

9/12/02 JAXB Specification — Public Draft, V0.7 127

Customization

The print method converts a value of the target Java datatype into its lexical
representation of the XML schema datatype. The print method isinvoked by a
JAXB provider’s implementation during marshalling.

6.9.1 Lexical And Value Space

[XSD PART 2] specifies both a value space and alexical space for abuilt-in
schema datatypes. There can be more than one lexical representation for agiven
value.

Examples of multiple lexical representations for asingle value are:

« For boolean, thevaluet r ue hastwo lexical representations”t r ue"
ar]d n 1" i

« Forinteger, thevaluel hastwo lexical representations™ 1. 0" and
R R

XSD PART 2 also specifies a canonical representation for all XML schema
atomic datatypes.

Informally (aformal specification follows later), a parse method is usually be
required to process all lexical representations for avalue as specified by [XSD
PART 2]. This ensures that an instance document containing a value in any
lexical representation specified by [XSD PART 2] can be marshalled. A print
method is usually required to a convert avalue into any lexical representation as
specified by [XSD PART 2].

6.9.2 Usage

<j avaType nane="j avaType"
[xm Type="xm Type"]
[parseMet hod="par seMet hod"]
[printMethod="printMethod"]>

The binding declaration can be used in either a<gl obal Bi ndi ngs>
declaration or in an annotation element of a schema element. When used in a
<gl obal Bi ndi ngs> declaration, <j avaType> defines customization
values with global scope. When used in an annotation element of a schema
element, the customization values have component scope.

128 JAXB Specification — Public Draft, V0.7 9/12/02

javaType Declaration

6.9.2.1 name

Thej avaType, if specified, is the Java datatype to which xm Type isto be
bound. Therefore, j avaType must be alegal Javatype name, which may
include a package prefix. If the package prefix is not present, then the Java type
name must be one of the Java built-in primitive types[JLS - Java Language
Specification, Second Edition, Section 4.2, "Primitive Types and Values']. (For
e.g."int").

If j avaType isadJdavaprimitivetype, then par seMet hod and
print Met hod must be omitted; otherwise both par seMet hod and
print Met hod arerequired.

6.9.2.2 xmlType

Thexm Type, if specified, isthe name of the XML Schema datatype to which
j avaType isto bound. If specified, xm Type must be a XML atomic
datatype derived from restriction. The use of the xm Type isfurther
constrained as follows.

The purpose of thexm Type attributeisto allow the global customization of a
XML schemato Java datatype. Hence xni Type attribute is required when

<j avaType> declaration’s parent is <gl obal Bi ndi ngs>. If absent, it must
result in a customization error. When <j avaType> isusedin aninline
annotation, thexm Type attribute must not be present since the XML datatype
is determined from the XML schema element with which the annotation element
is associated. If present, it must result in a customization error.

Examples can be found in “Example 1: javaType Customization: Java Built-in
Type” and “Example 2 : javaType Customization: User Specified Type”

6.9.2.3 Relationship To XML Built-in Hiearchy

If thej avaType isbound to an XML datatype from which xm Type is
derived, then j avaType can be specified for xm Type. For example, the
XML datatypei nt can always be customized to be bound to the Java datatype
j ava. mat h. Bi gl nt eger sincej ava. mat h. Bi gl nt eger isboundto
the XML datatypei nt eger andi nt isderivedfromi nt eger, Table5-1,
“Java Mapping for XML Schema Bultin Types,” on page 54.

9/12/02 JAXB Specification — Public Draft, V0.7 129

Customization

6.9.2.4 XML Numeric type

If xm Type isa XML numeric type, then the usage of j avaType isfurther
constrained as described here.

By default, xm Type isbound to a Java datatype that is capable of representing
the value space of xnm Type. Any user specified constraints on the value space
of xm Type are not taken into account. If the value space of xm Type is
constrained by facets, then customization can be used to bind xm Type to any
Java datatype that can be used to represent the restricted value space. Thisis
referred to as a narrowing conversion.

For example, the XML datatype posi ti vel nt eger isbound by default to
j ava. mat h. Bi gl nt eger. However, if schema specified facetsrestrict the
value space of posi ti vel nt eger tofor example, 1 thru 100, theniitis
possible to customize posi ti vel nt eger toi nt sincei nt can represent
the value space of 1 thru 100.

6.9.2.5 parseMethod

The parse method if specified, must be applied during unmarshalling in order to
convert astring from the input document into avalue of the target Java datatype.
The parse method must be invoked as follows:

« If the parse method is specified as new, then the binding compiler must
assume that the target type is a class that defines a constructor that takes
asingle St ri ng argument. To apply the conversion to a string it must
generate code that invokes this constructor, passing it the input string.

« If the parse method is specified in the form ClassName.methodName
then the compiler must assume that the class ClassName exists and that
it defines a static method named methodName that takes a single
St ri ng argument and returns a value of the target type. To apply the
conversion to a string it must generate code that invokes this method,
passing it the input string.

« |If the parse method is specified in the form methodName then the binding
compiler must assume that methodName is a method in the class
j avaType. The binding compiler must therefore prefix the
j avaType tothe methodName and processj avaType. methodName
as specified in above.

The string passed to parse method can be any lexical representation for
xm Type asspecifiedin [XSD PARTZ2].

130 JAXB Specification — Public Draft, V0.7 9/12/02

javaType Declaration

6.9.2.6 printMethod

The print method if specified, must be applied during marshalling in order to
convert avalue of the target type into a lexical representation:

« If the print method is specified in the form methodName then the
compiler must assume that the target type is a class or an interface that
defines a zero-argument instance method named methodName that
returnsa St ri ng. To apply the conversion it must generate code to
invoke this method upon an instance of the target Java datatype.

« If theprint method is specified in the form ClassName.methodName then
the compiler must assume that the class ClassName exists and that it
defines a static method named methodName that takes a single argument
of the target type and returnsa St r i ng. To apply the conversion to a
string it must generate code that invokes this method, passing it avalue
of the target Java datatype.

The lexical representation to which the value of the target type is converted can
be any lexical representation for xml Type as specified in [XSD PARTZ].

6.9.3 Java Primitive Types

If j avaType isaJavaprimitive type, then the par seMet hod and
pri nt Met hod must be absent. In this case, the print and parse method are
JAXB implementation dependent.

« the parse method must be able to convert any lexical representation of
xm Type specified by [XSD PART 2] into avalue of target type.

« the print method must convert a value of target type into a lexical
representation of xm Type asspecified by [XSD PART 2].

6.9.4 Events

The parse method par seMet hod may fail, sinceit isonly defined on those
strings that are valid representations of target Java datatype values and it can be
applied to arbitrary strings. A parse method must indicate failure by throwing an
exception of whatever type is appropriate, though it should never throw a
TypeConst rai nt Excepti on. A JAXB implementation must ensure that an
exception thrown by a parse method is caught and a

par seConver si onEvent eventisgenerated .

9/12/02 JAXB Specification — Public Draft, V0.7 131

Customization

The print method pr i nt Met hod usually does not fail. If it does, then the
JAXB implementation must ensure that the exception thrown by a print method
iscaught and apri nt Conver si onEvent isgenerated.

6.9.5 Customization Overrides

The<j avaType> overrides the default binding of xm Type to the Java
datatype specified in Table 5-1, “Java Mapping for XML Schema Bultin
Types,” on page 54.

6.9.6 Customizable Schema Elements

6.9.6.1 Simple Type Definition

A <j avaType> binding declaration is allowed in the annotation element of the
restriction basetype of asimple type definition. Thej avaType overridesthe
default binding of xm Type to the Java datatype specified in Table 5-1, “ Java
Mapping for XML Schema Bultin Types,” on page 54. The customization
values defined have definition scope and thus covers all referencesto this
simple type definition.

6.9.6.2 GlobalBindings

A <j avaType> binding declaration is allowed as part of

<gl obal Bi ndi ngs>. ThejavaType overridesthe default binding of
xm Type tothe Javadatatype specified in Table 5-1, “ Java Mapping for XML
Schema Bultin Types,” on page 54. The customization values defined have
global scope.

Example 1: javaType Customization: Java Built-in Type

Thisexampleillustrates how to bind a XML schematypeto aJavatype different
from the default one.

XML Schema fragment

<el ement nane="part Nunber" type="xsd:int"/>

Customization:

<gl obal Bi ndi ngs>

132 JAXB Specification — Public Draft, V0.7 9/12/02

javaType Declaration

<javaType nanme="|ong"
xm Type="xsd:int"/>
</ gl obal Bi ndi ngs>

Since aJavabuilt-in is specified, aparse or a print method need not be specified.

A JAXB implementation dependent print and parse methods are used for
conversion between value and lexical representations.

9/12/02 JAXB Specification — Public Draft, V0.7 133

Customization

Example 2 : javaType Customization: User Specified Type

This example shows the binding of XML schematype xsd: Date to auser
specified type MyDat e.

First a user type is defined as shown below.

public class MyDate {
private static java.text.Sinpl eDateFormt df
= new j ava. text. Si npl eDat eFor mat ("yyyy- M dd");
public static java.util.Date parseDate(String s)
throws java.text.ParseException
{
return df.parse(s);

}
public static String printDate(java.util.Date d) {

return df.format(d);
}
}

The implementation of the print methods (par seDat e and pri nt Dat e) are
provided by the user. Next, the customization for <xsd: dat e> is specified in
<gl obal Bi ndi ngs> as shown below:

<gl obal Bi ndi ngs>

<j axb:j avaType nane="MPDate"
xm Type="xsd: dat e"
par seMet hod="par seDat e"
print Met hod="print Dat e"/ >

</ gl obal Bi ndi ngs>

The above customization is applied during the processing of XML instance
document. During unmarshalling, JAXB implementationinvokespar seDat e.
If par seDat e method throwsaPar seExcepti on, thenthe JAXB
implementation code catches the exception, and generates a

par seConver si onEvent .

134 JAXB Specification — Public Draft, V0.7 9/12/02

<typesafeEnum> Declaration

6.10 <typesafeEnum> Declaration

This binding declaration allows the customization of a binding of an XML
schema element to its Java representation as a typesafe enumeration class
[BLOCH]. Only simple type definitions with enumeration facets can be
customized using this binding declaration.

6.10.1 Usage
<t ypesaf eEnuntCl ass nane = "enunCl assNane" >
[<typesafeEnum\Venber> ... </typesafeEnumvenber>]*

[<javadoc> enunCl assJavadoc </javadoc>]
</ typesaf eEnunCl ass>

<t ypesaf eEnunVenber name = "enumMenber Nanme" >
[value = "enum\venber Val ue"]
[<javadoc> enumMenberJavadoc </javadoc>]
</t ypesaf eEnunmvenber >

There are two binding declarations <t ypesaf eEnuntCl ass> and
<t ypesaf eEnumMvenber >. The two binding declarations allow the

enumeration members of an enumeration class and enumeration class itself to be

customized independently.

The two binding declarations can only be used if the restriction base type of the
ancestor’s simple type definition is one of the XML schema datatypes listed in

t ypesaf eEnunBase; otherwiseit must result in a customization error.

The<t ypesaf eEnuntCl ass> declaration defines the following
customization values:

« nane defines a customization value enumCl assNane, if specified.
enunCl assNane must be alegal Java ldentifier; it must not have a

package prefix.

« <j avadoc> element, if specified customizes the Javadoc for the
enumeration class. <j avadoc> defines the customization value
enunCl assj avadoc if specified as described in Section 6.11,
“<j avadoc> Declaration”.

9/12/02 JAXB Specification — Public Draft, V0.7

135

Customization

« Zero or more <t ypesaf eEnumvenber > declarations. The
customization values are as defined as specified by the
<t ypesaf eEnunmvenber > declaration.

The <t ypesaf eEnumvenber > declaration defines the following
customization values:

« name defines a customization value enumvenber Nane, if specified.
enumvenmber Nanme must be alegal Javaidentifier.

« val ue defines a customization value enumvenber Val ue, if
specified. enumvenber Val ue must be the enumeration value
specified in the source schema. The usage of val ue isfurther
constrained as specified in Section 6.10.2, “value Attribute”.

« <j avadoc> if specified, customizes the Javadoc for the enumeration
constant. <j avadoc> defines a customization value
enumvenber j avadoc if specified as described in Section 6.11,
“<j avadoc> Declaration”.

For inline annotation, the <t ypesaf eEnuntCl ass> must be specified in the
annotation element of the<r estri cti on> element that specifies the
restriction base type for the enumeration facet. The

<t ypesaf eEnunmvenber > must be specified in the annotation element of the
enumeration member. This allows the enumeration member to be customized
indepdendently from the enumeration class.

6.10.2 value Attribute

The purpose of the val ue attribute is to support customization of an
enumeration value using an external binding syntax. When the

<t ypesaf eEnunmvenber > isused in an inline annotation, the enumeration
value being customized can be identified by the annotation element with which
it is associated. However, when an external binding declaration is used, while
possible, it is not desirable to use X Path to identify an enumeration value.

So when customizing using external binding syntax, theval ue attribute must
be provided. This serves as akey to identify the enumeration value to which the
<t ypesaf eEnunmMvenber > applies. It'suse is therefore further constrained
asfollows:

« When <t ypesaf eEnumMvenber > is specified in the annotation
element of the enumeration member or when X Path referes directly to a

136 JAXB Specification — Public Draft, V0.7 9/12/02

<typesafeEnum> Declaration

single enumeration facet, then the value attribute must be absent. If
present, it must result in a customization error.

« When <t ypesaf eEnumvenber > is scoped to the
t ypesaf eEnuntCl ass declaration, the value attribute must be
present. If absent, it must result in a customization error. The
enumMember Val ue must be used to identify the enumeration member to
which the <t ypesaf eEnunmiventber > applies.

An example of external binding syntax can be found in “Example 2:
typesafeEnum Customization: External Binding Declaration”.

6.10.3 Inline Annotations

There are two ways to customize an enumeration class.

« splitinline annotation

« combined inline annotation

In split inline annotation, the enumeration value and the enumeration class are
customized separately i.e. the <t ypesaf eEnunmvenber > isused
independently not as a child element of <t ypesaf eEnuntCl ass>. An
example of thisis shown in “Example 1: typesafeEnum Customization: Split
Inline Annotation”.

In combined inline annotation, the enumeration value and the enumeration class
are customized together i.e. the <t ypesaf eEnumvenber > isused asachild
element of <t ypesaf eEnuntl ass>. Thisissimilar to the customization
used in external binding declaration. In this case theval ue attribute must be
present in the <t ypesaf eEnuniMenber > for reasons noted in

Section 6.10.2, “value Attribute”. An example of this customization is shownin
“Example 3: typesafeEnum Customization: Combined Inline Annotation”.

6.10.4 Customization Overrides
When binding a schema element’s Java representation to a typesafe enumeration
class, the following customization values override the defaults specified in

Chapter 5. It is specified in a common section here and referenced from
Section 6.8.3, “ Customizable Schema Elements”.

9/12/02 JAXB Specification — Public Draft, V0.7 137

Customization

name: If enumClassNameis defined, then the name obtained by mapping
enumClassName as specified in Section 6.5.2, “Customized Name

Mapping”.

package name: The name obtained by inheriting packgeNane froma
scope that covers this schema element and mapping packageName as
specified in Section 6.5.2, “Customized Name Mapping”.

enumclassjavadoc: enunCl assJavabDoc if defined, customizesthe
class/interface section (Section6.11.1, “Javadoc
Sections”) for the enumeration class, as specified in Section 6.11.3,
“Javadoc Customization”.

enum constant set: Each member of the set is computed as follows:

o name: If enumMemberName is defined, the name obtained by
mapping enumMemberName as specified in Section 6.5.2,
“Customized Name Mapping”.

o javadoc: enumvenber JavaDoc if defined, customizesthef i el d
section (Section6.11.1, “Javadoc Sections”) for the
enumeration class, as specified in Section 6.11.3, “ Javadoc
Customization”.

enumvalue constant set: Each member of the set is computed as
follows:

o name: If enumMemberValueName is defined, the name obtained by
mapping enumMember ValueName as specified in Section 6.11.3,
“Javadoc Customization” and prefixing the obtained name with an
underscore (*_).

6.10.5 Customizable Schema Elements

Any XML Schema simple type which has an enumeration facet can be
customized.

Example 1: typesafeEnum Customization: Split Inline Annotation

XML Schema fragment:

138

<xsd: si npl eType name="USSt at e" >

<xsd:restrictionbase="xsd:string">
<xsd: annot at i on><xsd: appi nf 0>
<j axb: t ypesaf eEnuntl ass nane="USSt at eAbbr"/ >
</ xsd: appi nf o></ xsd: annot at i on>

JAXB Specification — Public Draft, V0.7 9/12/02

<typesafeEnum> Declaration

<xsd: enurer at i on val ue="AK">
<xsd: annot at i on><xsd: appi nf o>
<j axb: t ypesaf eEnunenber nane="State_AK"' />
</ xsd: appi nf 0></ xsd: annot ati on>
</ xsd: enumner at i on>
<xsd: enuner ation val ue="AL">
<annot at i on><appi nf o>
<t ypesaf eEnumvenber nane="State_ AL" />
</ xsd: appi nf o></ xsd: annot at i on>
</ xsd: enuner ati on>
</ xsd:restriction>
</ xsd: si npl eType>

Customized derived code:

public class USSt at eAbbr {
protected USStateAbbr(String value) { ... }
public static final String _State_ AL="AL";
public static final USStateAbbr State_AL=
new USSt at eAbbr (_State_AL);

public static final String _State_ AK="AK";
public static final USStateAbbr State_AK=
new USSt at eAbbr (_State_AK);

public String getValue();

public static USStateAbbr fronVal ue(String value) {...}
public static USStateAbbr fronString(String value){ ... }
public String toString() { ... }

publi c bool ean equal s(Object "obj) { ... }

public int hashCode() { ... }

}

Example 2: typesafeEnum Customization: External Binding Declaration

The following example shows how to customize the above XML schema
fragment using an external binding syntax.

<j axb: t ypesaf eEnunCl ass nane="USSt at eAbbr " >
<j axb: t ypesaf eEnunVenber name="St at e_AK" val ue="AK"/>
<j axb: t ypesaf eEnunienber name="State_AL" val ue="AL"/>
</j axb: typesaf eEnunC ass>

9/12/02 JAXB Specification — Public Draft, V0.7 139

Customization

The attribute val ue must be specified for <t ypesaf eEnumvenber >. This
identifies the enumeration member to which <t ypesaf eEnumvenber >

applies.

Example 3: typesafeEnum Customization: Combined Inline Annotation

The following example shows how to customize the above XML schema
fragment using inline annotation which does not split the external binding
syntax.

<xsd: si npl eType name="USSt at e" >
<xsd:restrictionbase="xsd:string">
<xsd: annot at i on><xsd: appi nf 0>
<j axb: t ypesaf eEnuntCl ass nane="USSt at eAbbr " >
<j axb: t ypesaf eEnuniVenrber name="St at e_AK" val ue="AK"/>
<j axb: t ypesaf eEnuniVenber name="State_ AL" val ue="AL"/>
</ xsd: appi nf o></ xsd: annot at i on>
<xsd: enuneration val ue="AK"/ >
<xsd: enuneration val ue="AL"/>
</xsd:restriction>
</ xsd: si npl eType>

The attribute value must be specified for typesafeEnumMember. This identifies
the enumeration member to which the binding declaration applies.

6.11 <j avadoc> Declaration

The <j avadoc> declaration allows the customization of ajavadoc that is
generated when an XML schema element is bound to its Java representation.

This binding declaration is not a global XML element. Hence it can only be
used as alocal element within the content model of another binding declaration.
The binding declaration in which it is used determines the section of the Javadoc
that is customized.

6.11.1 Javadoc Sections
The terminology used for the javadoc sections is derived from “Requirements

for Writing Java API Specifications’ which can be found online at / /
java. sun. coni j 2se/j avadoc/ wri ti ngapi specs/index. htmnl .

140 JAXB Specification — Public Draft, V0.7 9/12/02

Annotation Restrictions

The following sections are defined for the purposes for customization:

« package section (corresponds to package specification)
« clasg/interface section (corresponds to class/interface specification)
« method section (corresponds to method specification)

« field section (corresponds to field specification)

6.11.2 Usage

<j avadoc>
Contents in Javadoc format.
</j avadoc>

6.11.3 Javadoc Customization

The Javadoc must be generated as follows (the Javadoc section is determined by
the context in which the <j avadoc> is used):

« Thejavadoc isthe contents of the <j avadoc> element if specified.

« otherwiseit isthe contents of the <document ati on> element if
specified for the element.

. otherwiseit isthe Javadoc generated by default by a binding compiler.

6.12 Annotation Restrictions

[XSD PART 1] allows an annotation element to be specified for most elements
but is ambiguous in some cases. The ambiguity and the way they are addressed
are described here.

The source of ambiguity isrelated to the specification of an annotation element
for areference to a schema element using the “ref” attribute. This arisesin three
cases.

« Alocal attribute references aglobal attribute declaration (using the “ref”
attribute).

9/12/02 JAXB Specification — Public Draft, V0.7 141

Customization

« A local element in a particle references a global element declaration
using the “ref” attribute.

« A model groupinaparticlereferencesamodel group definition using the
“ref” attribute.

For example in the following schema fragment (for brevity, the declaration of
the global element “Name” has been omitted).

<xsd: el enent name = "Custoner">
<xsd: conpl exType>
<xsd: el enent ref = "Name"/>
<xsd: el enent ref = "Address" />

</ xsd: conpl exType>
</ xsd: el ement >

XML Schema spec is ambiguous on whether an annotation element can be
specified at the reference to the “Name” element.

The restrictions on annotation elements has been submitted as an issue to the
W3C Schema Working Group along with JAXB requirements (which is that
annotations should be allowed anywhere). Pending a resolution, the semantics
of annotation elements where the XML spec is unclear are assumed as specfied
asfollows.

This specification assumes that an annotation element can be specified in each
of the three cases outlined above. Furthermore, an annotation element is
assumed to be associated with the abstract schema component as follows:

« The annotation element on an element ref is associated with { Attribute
Use}

« The annotation element on amodel group ref or an element referenceis
associated with the { particle} .

142 JAXB Specification — Public Draft, V0.7 9/12/02

CHAPTERY/

REFERENCES

[XSD Part 0] XML Schema Part O: Primer,

W3C Recommendation 2 May 2001

Availableat htt p: / / www. w3. or g/ TR/ xm schema- 0/
(schema fragments borrowed from this widely used source)

[XSD Part 1] XML Schema Part 1: Structures,
W3C Recommendation 2 May 2001
Availableat htt p: / / www. w3. or g/ TR/ xm schema- 1/

[XSD Part 2] XML Schema Part 2; Datatypes,
W3C Recommendation 2 May 2001
Availableat ht t p: / / www. w3. or g/ TR/ xm schema- 2/

[XMI-Infoset] XML Information Set, John Cowan and Richard Tobin, eds.,
W3C, 16 March 2001. Availableat ht t p: / / www. w3. or g/ TR/ 2001/ W\D-
xm -i nfoset-20010316/

[XML 1.0] Extensible Markup Language (XML) 1.0 (Second Edition),
W3C Recommendation 6 October 2000.
Availableat htt p: / / www. w3. or g/ TR/ 2000/ REC- xm - 20001006.

[Namespacesin XML] Namespacesin XML

W3C Recommendation 14 January 1999.

Availableat ht t p: // www. W3. or g/ TR/ 1999/ REC- xml - nanes-
19990114

[XPath], XML Path Language, James Clark and Steve DeRosg, eds., W3C, 16
November 1999. Availableat ht t p: / / www. w3. or g/ TR/ 1999/ REC-
xpat h- 19991116

[XSLT 1.0] XSL Transformations (XSLT), Version 1.0, James Clark, W3C
Recommendation 16 November 1999 http://www.w3.0rg/TR/1999/REC-xslt-
19991116.

9/12/02 JAXB Specification — Public Draft, V0.7 143

References

[BEANS] JavaBeans(TM), Version 1.01, July 24, 1997. Availableat ht t p: / /
j ava. sun. com beans.

[XSD Primer] XML Schema Part O: Primer,
W3C Recommendation 2 May 2001
Availableat htt p: / / www. w3. or g/ TR/ xm schema- 0/

[DOML3ASLS] Document Object Model (DOM) Level 3 Abstract Schemas
and Load and Save Specification, Version 1.0, W3C Working Draft 25
October 2001.

Latest version available at: htt p: / / www. w3. or g/ TR/ DOMt Level - 3-
ASLS

[BLOCH] Joshua Bloch, Effective Java, Chapter 3, Typesafe Enums
htt p://devel oper.java. sun. com devel oper/ Books/
shi ftintoj avapagel. ht ml #r epl aceenum

[BestPractice:NamespaceSchemaDesign], Zero, One or Many Namespaces, The
MITRE Corporation and the xml-dev list group, htt p: //
www. Xfront. com Zer oOneOr ManyNanespaces. pdf.

[Castor] “Castor XML Source Code Generator User Document”, Arnaud
Blandin, Keith Visco, ht t p: / / cast or . exol ab. or g/
Sour ceCGener at or User . pdf.

[RFC2396] Uniform Resource Identifiers (URI): Generic Syntax, ht t p: //
ww. ietf.org/rfc/rfc2396.txt

[JAX-RPC] Java® API for XML-based RPC JAX-RPC 1.0, htt p: //
j ava. sun. coni xnl / downl oads/ j axrpc. htm .

[JLS] The Java Language Specification, Gosling, Joy, Steele.

[NIST] NIST XML Schema Test Suite, http://xw2k.sdct.itl.nist.gov/xml/
paged.html.

144 JAXB Specification — Public Draft, V0.7 9/12/02

APPENDIXA

PACKAGE JAVAX.XML.BIND

<Available as a separate document.>

9/12/02 JAXB Specification — Public Draft, V0.7 145

Packagejavax.xml.bind

146 JAXB Specification — Public Draft, V0.7 9/12/02

APPENDIXDB

NORMATIVE BINDING SCHEMA
SYNTAX

<?xm version = "1.0" encoding = "UTF-8"?>

<scherma xm ns = "http://ww. w3. or g/ 2001/ XM_Schena"
t ar get Namespace = "http://java. sun. com xsd/ j axb"
xmns:jaxb = "http://java. sun.com xsd/j axb"
xm ns:xs = "http://ww. w3. org/ 2001/ XM_Schema"
el enent FormDefault = "qualified"
attributeFornDefault = "unqualified">

<annot at i on><docunent at i on>
Schema for binding schema. JAXB Version 1.0
</ document at i on></ annot at i on>
<group nanme = "declaration">
<annot ati on>
<document at i on>
Model group that represents a binding declaration
Each new bi nding decl aration added to the jaxb
namespace that is not restricted to gl obal Bi ndi ngs
shoul d be added as a child el ement to this nodel group
</ documnent ati on>
<docunent ati on>
Al'l ow for extension binding declarations.
</ docurnent ati on>
</ annot ati on>

<!-- each new binding declaration, not restricted to
gl obal Bi ndi ngs, should be added here -->
<choi ce>

<el enent ref
<el enent ref
<el enent ref
<el ement ref

"j axb: gl obal Bi ndi ngs"/>
"j axb: schemaBi ndi ngs"/ >
"jaxb: cl ass"/>

"j axb: property"/>

9/12/02 JAXB Specification — Public Draft, V0.7 147

Normative Binding Schema Syntax

<el ement ref = "jaxb:typesafeEnund ass"/>
<el ement ref = "jaxb:javaType"/>
<el enent ref = "jaxb:typesafeEnumMenber"/>
<any nanespace = "##other" processContents = "l ax"/>
</ choi ce>
</ group>
<attributeG oup nane = "propertyDefaul ts">

<annot ati on>

<docunent ati on>

Used for property custom zation

</ docunent ati on>
</ annot ati on>
<attribute name = "collectionType" default = "list"

type = "NCNane"/>

<attribute name = "fixedAttributeAsConstant Property"

default = "fal se"
type = "bool ean"/ >
<attribute name = "enabl eFai | Fast Check"
default = "fal se"
type = "QName"/>
<attribute name = "generatel sSet Met hod"
default = "fal se"
type = "bool ean"/ >
<attribute name = "choi ceCont ent Property"
default = "fal se"
type = "bool ean"/ >

</attributeG oup>
<attributeG oup name = "XM.NaneToJaval dMappi ngDef aul t s" >
<annot ati on>
<docurent at i on>
Custom ze XM Nanmes to Java i d mapping
</ docurent ati on>
</ annot ati on>
<attribute name = "underscoreBindi ng"
default = "asWbrdSeparator"
type = "jaxb: Under scor eBi ndi ngType"/ >
<attribute name = "typesaf eEnumvenber Nane"
default = "generateError"
type = "j axb: Typesaf eEnumveneber NaneType" / >
</attributeG oup>

<attributeGoup name = "classDefaul ts">
<attribute name = "typesaf eEnunBase"
type = "jaxb: Typesaf eEnunBaseType"/ >

</attributeG oup>

148 JAXB Specification — Public Draft, V0.7 9/12/02

<el ement nane = "gl obal Bi ndi ngs" >
<annot ati on>
<docunent ati on>
Custom zati on val ues defined in global scope.
</ docunent ati on>
</ annot ati on>
<conpl exType>

<sequence m nCccurs = "0">
<el ement ref = "jaxb:javaType"
m nCccurs = "0" maxCccurs = "unbounded"/>
</ sequence>
<attributeGoup ref = "jaxb: XM_NanmeToJaval dMappi ngDef aul t s"/ >
<attributeGoup ref = "jaxb:classDefaul ts"/>
<attributeGoup ref = "jaxb: propertyDefaults"/>
<attribute name = "enabl evalidation"
default = "true"
type = "bool ean"/ >
<attribute name = "enabl eJavaNam ngConventi ons"
default = "true"
type = "bool ean"/ >
<attribute name = "nodel G oupAsCl ass"
type = "bool ean"/ >
</ conpl exType>
</ el ement >
<el ement nane = "schenaBi ndi ngs" >

<annot ati on>
<docunent ati on>
Custom zation values with schema scope
</ docunent ati on>
</ annot ati on>
<conpl exType>

<sequence>
<el ement nanme = "package" type = "jaxb: packageType"
m nCccurs = "0"/>
<el ement nanme = "nameXnl Tr ansf or ni'
type = "jaxb: naneXm Transfor mrype"
m nCccurs = "0"/>
</ sequence>
</ conpl exType>
</ el emrent >
<el ement nanme = "cl ass">

<annot ati on>
<docunent ati on>Cust om ze interface and inpl enentati on

cl ass. </ docunent ati on>

9/12/02 JAXB Specification — Public Draft, V0.7 149

Normative Binding Schema Syntax

</ annot ati on>
<conpl exType>
<sequence>
<el enent name = "doc" type = "jaxb:javadoc"
m nOccurs = "0"/>
</ sequence>
<attribute name = "name
type = "jaxb:Javal dentifierType">
<annot at i on><docunent ati on>
Java cl ass nanme w t hout package prefix
</ docunent at i on></ annot at i on>
</attribute>
<attribute name = "inpl Cass" type = "jaxb:JavaldentifierType">
<annot at i on><docunent at i on>
I mpl enent ati on cl ass nane i ncl udi ng packagepr efi x.
</ document at i on></ annot at i on>
</attribute>
</ conpl exType>
</ el emrent >

" "

<el ement nane = "property">
<annot at i on><docunent ati on>
Customi ze property
</ document at i on></ annot ati on>
<conpl exType>
<sequence>
<el ement nane = "doc" type = "jaxb:javadoc"
m nCccurs = "0"/>
</ sequence>
<attribute name = "nane
type = "jaxb:Javal dentifierType"/>
<attribute name = "baseType" type = "NCNane"/>
<attributeGoup ref = "jaxb: propertyDefaults"/>
</ conpl exType>
</ el emrent >
<conpl exType nanme = "javadoc">
<annot at i on><docunent at i on>
Contents in javadoc format.
</ docunent at i on></ annot ati on>
<conpl exCont ent >
<ext ensi on base = "anyType"/>
</ conpl exCont ent >
</ conpl exType>
<el ement nane = "javaType">
<annot at i on><docunent at i on>

" "

150 JAXB Specification — Public Draft, V0.7 9/12/02

Data type conversions; overriding builtins

</ document at i on></ annot at i on>
<conpl exType>
use = "required"

<attribute name = "nane"
type = "jaxb:JavaldentifierType">

<annot ati on><docunent ati on>
name of the java type to which xm

bound.
</ docunent ati on></ annot at i on>

type is to be

</attribute>
<attribute name = "xm Type" type = "Q\ane">

<annot at i on><docunent ati on>
xm type to which java datatype has to be bound.

Must be present when javaType is scoped to

gl obal Bi ndi ngs
</ docunent at i on></ annot at i on>

</attribute>

<attribute nane = "parseMet hod"
type = "jaxb:JavaldentifierType"/>
<attribute nane = "printMethod"
type = "jaxb:Javal dentifierType"/>
</ conpl exType>
</ el emrent >
<el ement nane = "typesaf eEnunC ass" >

<annot at i on><docunent at i on>
Bind to a type safe enuneration class.

</ docunent ati on></ annot at i on>
<conpl exType>

<sequence>
<el ement ref = "jaxb:typesaf eEnumvenber"
m nCccurs = "0" maxQccurs = "unbounded"/ >
</ sequence>
<attribute nane = "nane"
type = "jaxb:Javal dentifierType"/>

</ conpl exType>

</ el emrent >
<el ement nane = "typesaf eEnumvenber" >

<annot at i on><documnent at i on>
Enunerati on menber name in a type safe enuneration

cl ass.
</ docunent ati on></ annot at i on>

<conpl exType>
<attribute name = "value" type = "string"/>
<attribute name = "nane"

151

9/12/02 JAXB Specification — Public Draft, V0.7

Normative Binding Schema Syntax

type = "jaxb:Javal dentifierType"/>
</ conpl exType>
</ el emrent >

<!-- TYPE DEFINI TIONS -->

<conpl exType nane = "packageType">

<sequence>

<el ement nane = "doc" type = "jaxb:javadoc"
m nCccurs = "0"/>

</ sequence>

<attribute name = "nane" type = "jaxb:JavaldentifierType"/>
</ conpl exType>
<si npl eType nane = "Under scor eBi ndi ngType" >

<annot at i on><docunent at i on>
Treate underscore in XM. Nane to Java i dentifier mapping.
</ docunent ati on></ annot at i on>

<restriction base = "string">
<enuneration value = "asWordSeparator"/>
<enuner ation value = "asCharl nWrd"/>

</restriction>
</ sinmpl eType>
<si npl eType nanme = "Typesaf eEnunBaseType" >
<annot at i on><docunent ati on>
XML types whi ch can be mapped to type safe enum
</ docunent at i on></ annot ati on>
<restriction base = "QQane">
<enuner ation val ue "xs:string"/>
<enuneration value = "xs:decinmal"/>
<enuner ation val ue "xs:float"/>
<enuner ation val ue "xs: doubl e"/ >
</restriction>
</ si nmpl eType>
<si npl eType nanme = "Typesaf eEnunmveneber NaneType" >
<annot at i on><docunent at i on>
Used to custom ze how to handl e nanme collisions.
i. generate VALUE_ 1, VALUE 2... if generateNane.
ii. generate an error if value is generateError
This is JAXB default behavi or
</ docunent at i on></ annot ati on>

<restriction base = "string">
<enuneration val ue = "generat eNane"/ >
<enuneration value = "generateError"/>

</restriction>

152 JAXB Specification — Public Draft, V0.7 9/12/02

</ si nmpl eType>
<si npl eType nane = "JavaldentifierType">
<annot at i on><docunent ati on>
Type to indicate Legal Java identifier. TBD. Define
constraints on nane.
</ docunent ati on></ annot ati on>

<restriction base = "NCNane"/>
</ si npl eType>
<conpl exType name = "nanmeXm Transf or nRul e" >

<annot at i on><docunent ati on>
Rule to transforman Xm nane into another Xml nane
</ docunent at i on></ annot at i on>
<attribute name = "prefix" type = "string">
<annot at i on><docunent ati on>
prepend the string to QNane.
</ docunent at i on></ annot at i on>
</attribute>
<attribute name = "suffix" type = "string">
<annot at i on><docunent at i on>
Append the string to QNane.
</ docurent at i on></ annot ati on>
</attribute>
</ conpl exType>
<conpl exType name = "nameXm Transf or niType" >
<annot at i on><docunent ati on>

Al lows transform ng an xm nanme into anot her xnml nane.

case UDDI 2.0 schenm.
</ docunent at i on></ annot ati on>
<sequence>
<el ement nane = "typeNane"
type = "jaxb: naneXm Transf or nRul e" >
<annot at i on><docunent at i on>
Mapping rule for type definitions.
</ document at i on></ annot at i on>
</ el emrent >
<el ement nanme = "el erent Nane"
type = "jaxb: nameXni Tr ansf or nRul e" >
<annot at i on><docunent at i on>
Mapping rule for elenments
</ document at i on></ annot ati on>
</ el emrent >
<el ement nane = "nopdel Gr oupNang"
type = "jaxb: naneXm Transfor nRul e" >
<annot at i on><docunent ati on>

9/12/02 JAXB Specification — Public Draft, V0.7

153

Normative Binding Schema Syntax

Mapping rule for nodel group
</ document at i on></ annot ati on>
</ el emrent >
<el enent name = "anonymusTypeName"
type = "jaxb: nameXm Tr ansf or nRul e" >
<annot at i on><docunent at i on>
Mappi ng rul e for class nanmes generated for an
anonynous type
</ docunent at i on></ annot at i on>
</ el emrent >
</ sequence>
</ conpl exType>
<attribute name = "extensionBindi ngPrefixes">
<annot at i on><docunent ati on>
A binding conpiler only processes this attribute when it
occurs on an instance of xs:schenm elenent. The val ue of
this attribute is a whitespace-separated |ist of namespace
prefi xes. The nanespace bound to each of the prefixes is
designated as a custom zation decl arati on nanespace.
</ document at i on></ annot ati on>
<si npl eType>
<list itenlype = "nornalizedString"/>
</ simpl eType>
</attribute>
<el ement nanme = "bi ndi ngs">
<annot at i on><docunent at i on>
Bi ndi ng declaration(s) for a renpte schena.
If attribute node is set, the binding declaraions
are associated with part of the rennte schema
desi gnated by schemalLocation attribute. The node
attribute identifies the node in the rempte schenmm
to associate the binding declaration(s) wth.
</ document at i on></ annot at i on>
<!-- a <bindings> el enent can contain arbitrary nunber of
bi ndi ng decl arati ons or nested <bi ndi ngs> el ements -->
<conpl exType>

<sequence>
<choi ce m nCccurs = "0" maxCccurs = "unbounded">
<group ref = "jaxb:declaration"/>
<el ement ref = "jaxb: bi ndings"/>
</ choi ce>
</ sequence>
<attribute name = "schemaLocation" type = "anyURl ">

<annot at i on><docunent ati on>

154 JAXB Specification — Public Draft, V0.7 9/12/02

Location of the renpte schenma to associ ate binding
decl arations w th.
</ document at i on></ annot ati on>
</attribute>
<attribute name = "node" type = "string">
<annot at i on><docunent at i on>
The value of the string is an XPATH 1.0 conpliant
string that resolves to a node in a rennte schema
to associ ate bindi ng declarations with. The renote
schema is specified by the schemaLocati on
attribute occuring in the current elenment or in a
parent of this el enent.
</ docunent at i on></ annot at i on>
</attribute>
</ conpl exType>
</ el emrent >
</ schema>

9/12/02 JAXB Specification — Public Draft, V0.7 155

Normative Binding Schema Syntax

156 JAXB Specification — Public Draft, V0.7 9/12/02

APPENDIXC

BINDING XML NAMES TO
JAVA |IDENTIFIERS

C.1 Overview

This section provides default mappings from:

« XML Nameto Javaidentifier
« Model group to Javaidentifier
« Namepsace URI to Java package name

C.2 The Name to Identifier Mapping
Algorithm

Javaidentifierstypically follow three simple, well-known conventions:

« Class and interface names always begin with an upper-case letter. The
remaining characters are either digits, lower-case letters, or upper-case
letters. Upper-case letterswithin amulti-word name serve to identify the
start of each non-initial word, or sometimes to stand for acronyms.

« Method names and components of a package name always begin with a
lower-case letter, and otherwise are exactly like class and interface
names.

« Constant names are entirely in upper case, with each pair of words
separated by the underscore character (‘_’, \uOO5F, LOW LINE).

9/12/02 JAXB Specification — Public Draft, V0.7 157

Binding XML Names to Java Identifiers

XML names, however, are much richer than Java identifiers: They may include
not only the standard Javaidentifier characters but also various punctuation and
special characters that are not permitted in Java identifiers. Like most Java
identifiers, most XML names are in practice composed of more than one
natural-language word. Non-initial words within an XML name typically start
with an upper-case letter followed by alower-case letter, asin Java, or are
prefixed by punctuation characters, which is not usual in Java and, for most
punctuation characters, isin fact illegal.

In order to map an arbitrary XML name into a Java class, method, or constant
identifier, the XML nameisfirst broken into aword list. For the purpose of
constructing word lists from XML names we use the following definitions:

« A punctuation character is one of the following:

A hyphen (-, \u002D, HY PHEN-MINUS),

A period (., \UOO2E, FULL STOP),

A colon (':’, \uOO3A, COLON),

An underscore ("', \uOO5F, LOW LINE),

A dot (*.",\u00OB7, MIDDLE DOT),

\u0387, GREEK ANO TELEIA,

\u06DD, ARABIC END OF AYAH, or
\UO6DE, ARABIC START OF RUB EL HIZB.

O 0o o ooo o g

These are all legal charactersin XML names.

« A letter isacharacter for which the Char act er . i sLett er method
returnst r ue, i.e., aletter according to the Unicode standard. Every
letter is alegal Javaidentifier character, both initial and non-initial.

« A digitisacharacter for which the Char act er . i sDi gi t method
returnst r ue, i.e., adigit according to the Unicode Standard. Every digit
isalegal non-initial Javaidentifier character.

« A mark isacharacter that isin none of the previous categories but for
which the Char act er. i sJaval denti fi er Part method returns
t r ue. This category includes numeric letters, combining marks, non-
spacing marks, and ignorable control characters.

Every XML name character falls into one of the above categories. We further
divide letters into three subcategories:

« An upper-case letter is aletter for which the
Char act er. i sUpper Case method returnst r ue,

158 JAXB Specification — Public Draft, V0.7 9/12/02

The Name to Identifier Mapping Algorithm

« A lower-case letter is aletter for which the
Char act er . i sLower Case method returnst r ue, and

« All other letters are uncased.

An XML name s split into aword list by removing any leading and trailing
punctuation characters and then searching for word breaks. A word break is
defined by three regular expressions: A prefix, a separator, and a suffix. The
prefix matches part of the word that precedes the break, the separator is not part
of any word, and the suffix matches part of the word that follows the break. The
word breaks are defined as:

Table 3-1 XML Word Breaks

Prefix Separator Suffix Example
[~punct] punct + [~punct] foo| --| bar
digit [~digit] f 0022| bar
[~digit] digit f ool 22

| ower [~ ower] f oo| Bar
upper upper | ower FOQ Bar
letter [~Metter] Foo|\u2160
[Metter] letter \ u2160| Foo

(The character \ u2160 is ROMAN NUMERAL ONE, a numeric letter.)

After splitting, if a word begins with alower-case character then itsfirst
character is converted to upper case. Thefinal result isaword list in which each
word is either

« A string of upper- and lower-case letters, the first character of whichis
upper case,

« A string of digits, or

« A string of uncased letters and marks.

Given an XML name in word-list form, each of the three types of Java
identifiersis constructed as follows:

« A classor interface identifier is constructed by concatenating the words
inthelist,

« A method identifier is constructed by concatenating the wordsin thelist.
A prefix verb (get , set , etc.) is prepended to the result.

9/12/02 JAXB Specification — Public Draft, V0.7 159

Binding XML Names to Java Identifiers

« A constant identifier is constructed by converting each word in thelist to
upper case; the words are then concatenated, separated by underscores.

This algorithm will not change an XML name that is already alegal and
conventional Java class, method, or constant identifier, except perhapsto add an
initial verb in the case of a property access method.

Example

Table 3-2 XML Names and Java Class, Method, and Constant Names

XML Name Class Name Method Name Constant Name
mixedCaseName MixedCaseName getMixedCaseName MIXED_CASE NAME
Answer42 Answer42 getAnswer42 ANSWER_42

name-with-dashes NameWithDashes getNameWithDashes NAME_WITH_DASHES
other_punct-chars OtherPunctChars getOtherPunctChars OTHER_PUNCT_CHARS

C.2.1 Collisions and conflicts

It is possible that the name-mapping algorithm will map two distinct XML
names to the same word list. Thiswill result in acollision if, and only if, the
same Java identifier is constructed from the word list and is used to hame two
distinct generated classes or two distinct methods or constants in the same
generated class. Collisions are not permitted by the binding compiler and are
reported as errors; they may be repaired by revising XML name within the
source schema or by specifying a customized binding that maps one ot the two
XML names to an alternative Javaidentifer.

Method names are forbidden to conflict with Java keywords or literals, with
methods declared inj ava. | ang. Obj ect, or with methods declared in the
binding-framework classes. Such conflicts are reported as errors and may be
repaired by revising the appropriate schema.

160 JAXB Specification — Public Draft, V0.7 9/12/02

Deriving an identifier for a model group

Design Note — Thelikelihood of collisions, and the difficulty of working around
them when they occur, depends upon the source schema, the schema language in
which it is written, and the binding declarations. In general, however, we expect
that the combination of the identifier-construction rules given above, together with
good schema-design practices, will make collisions relatively uncommon.

The capitalization conventions embodied in the identifier-construction rules will
tend to reduce collisions as long as names with shared mappings are used in
schema constructs that map to distinct sorts of Java constructs. An attribute named
f oo isunlikely to collide with an element type named f oo because the first maps
to a set of property access methods (get Foo, set Foo, etc.) while the second
maps to a class name (Foo).

Good schema-design practices also make collisions less likely. When writing a
schema it is inadvisable to use, in identical roles, names that are distinguished
only by punctuation or case. Suppose a schema declares two attributes of a single
element type, one named Foo and the other named f 00. Their generated access
methods, namely get Foo and set Foo, will collide. This situation would best be
handled by revising the source schema, which would not only eliminate the
collision but also improve the readability of the source schema and documents that
use it.

C.3 Deriving an identifier for a model
group

XML Schema has the concept of a group of element declarations. Occasionally,
itisconvenient to bind the grouping as a Java content property or a Java content
interface. When a semantically meaningful name for the group is not provided
within the source schema or via a binding declaration customization, it is
necessary to generate a Javaidentifier from the grouping. Below isan algorithm
to generate such an identifier.

A nameis computed for an unnamed model group by concatenating together the
first 3 element declarations and/or wildcards that occur within the model group.
Each XML {name} is mapped to a Javaidentifier for a method using the XML
Name to Java I dentifier Mapping algorithm. Since wildcard does not have a
{name} property, it isrepresented as the Javaidentifier “Any”. The Java
identifiers are concatenated together with the separator “And” for sequence

9/12/02 JAXB Specification — Public Draft, V0.7 161

Binding XML Names to Java Identifiers

compoasitor and “Or” for choice compositors. For example, a sequence of
element foo and element bar would map to “ FooAndBar” and a choice of
element foo and element bar maps to “ FooOrBar” . Lastly, a sequence of
wildcard and element bar would map to the Javaidenitifier “ AnyAndBar” .

Example:
Given XML Schema fragment:

<choi ce>
<sequence>
<el ement ref="A"/>
<any/ >
</ sequence>
<el ement ref="C'/>
</ choi ce>

The generated Javaidentifier would be AAndAnyOrC.

C.4 Generating a Java package name

This section describes how to generate a package name to hold the derived Java
representation. The motivation for specifying a default meansto generate a Java
package name is to increase the chances that a schema can be processed by a
binding compiler without requiring the user to specify customizations.

If a schema has atarget namespace, the next subsection describes how to map
the URI into a Java package name. If the schema has no target namespace, there
is a section that describes an algorithm to generate a Java package name from
the schema filename.

C.4.1 Mapping from a Namespace URI

An XML namespace is represented by a URI. Since XML Namespace will be
mapped to a Java package, it is necessary to specify a default mapping from a
URI to a Java package name. The URI format is described in [RFC2396].

The following steps describe how to map a URI to a Java package hame. The
example URI, ht t p: / / ww. acme. com go/ espeak. xsd, isused to
illustrate each step.

162 JAXB Specification — Public Draft, V0.7 9/12/02

Generating a Java package name

1. Removetheschemeand": " part from the beginning of the URI, if present.
/I ww. acne. cont go/ espeak. xsd

2. Removethetrailing file type, one of .?? or .??? or .html.
[/ www. acrme. cont go/ espeak

3. Parsetheremaining string into alist of stringsusing '/ ' as a separator.
Treat'/ /' and’/ / /' asasingle separator.

{"www. acne. coni', "go", "espeak" }

4. Foreachstringinthelist produced by previous step, unescape each escape
sequence octet. (Another alternative isto just drop all escape sequence
octets.)

{"www. acne. coni', "go", "espeak" }

5. Apply agorithm described in Section 7.7 “Unique Package Names” in
[JLS] to derive aunique package name from the potential internet domain
name contained within the first component. The internet domain name is
reversed , component by component. Note that aleading “www.” is not
considered part of an internet domain name and must be dropped.

If the first component does not contain either one of the top-level

domain names, for example, com, gov, net, org, edu, or one of the
English two-letter codes identifying countries as specified in 1SO

Standard 3166, 1981, this step must be skipped.

{“com’, “acnme”, “go”, “espeak”}

6. For each string in the list, apply the algorithm, specified in Chapter C.2,
“The Nameto Identifier Mapping Algorithm,” for "method identifier"
since its naming conventions matches the convention for a component
within a Java package, i.e. first character is lowercase. Since aURI can
contain characterswhich arenot validina XML Name, the name mapping
algorithm needs to be updated to recognize any character in the URI that
returnsfalsefori sJaval denti fi er Part () asapunctuation mark.
Lastly, since package identifier components are typically not upper case,
convert each string to be all lower case.

{"con’, “acme”, "go", "espeak" }

7. Concatenatethe resultant list of stringsusing’. ' asaseparating character
to produce a package name.

9/12/02 JAXB Specification — Public Draft, V0.7 163

Binding XML Names to Java Identifiers

Fi nal package nanme: "com acne. go. espeak".

Section C.2.1, “Collisions and conflicts,” on page 160, specifies what to do
when the above algorithm resultsin an invalid Java package name. If any of the
generated component names of the Java package name is a Java keyword or
literal, the Java package nameisinvalid.

C.5 Conforming Java Identifier
Algorithm

This section describes hows to convert alegal Java identifier which may not
conform to Java naming conventions to a Javaidentifier that conformsto the
standard naming conventions. Since alegal Javaidentifier isalso a XML name,
this algorithm is the same as Section C.2, “The Name to Identifier Mapping
Algorithm” with the following exception: constant names must not be mapped
to a Java constant that conforms to the Java naming convention for a constant.
Thereason is that this algorithm is used to map legal Javaidentifiers specified
in customization referred to as a customization name. As specified in the
Chapter 6, “Customization”, customization names that are hot mapped to
constants that conform to the Java naming conventions.

164 JAXB Specification — Public Draft, V0.7 9/12/02

APPENDIXD

EXTERNAL BINDING
DECLARATATION

D.1 Example

Example: Consider the following schema and external binding file:
Source Schema: A. xsd:

<xs:schema xm ns: xsd="http://ww. w3. or g/ 2001/ XM_Schenea" >
<xsd: conpl exType nanme="aType">
<xsd: sequence>
<xsd: el enent name="foo" type="xsd:int"/>
</ xsd: sequence>
<xsd:attribute nane="bar" type="xsd:int"/>
</ xsd: conpl exType>
<xsd: el enent name="root" type="ens:aType"/>
</ xsd: schema>

External binding declarationsfile:

<j axb: bi ndi ngsxm ns:j axb="http://java. sun. com xm /j axb"
xm ns: xsd="http://ww. w3. or g/ 2001/ XM_Schenma"
xm ns: ens="http://exanpl e. com ns"
j axb: version="1.0">
<j axb: bi ndi ngs schenmaLocati on="A. xsd” >
<j axb: bi ndi ngs node="//xs: conpl exType[@ane="aType']" >
<j axb: cl ass nanme="cust omNaneType"/ >
<j axb: bi ndi ngs node="./xs: el ement [@ane="foo’]">
<j axb: property nane="cust onfoo"/>
</ j axb: bi ndi ng>

9/12/02 JAXB Specification — Public Draft, V0.7 165

External Binding Declaratation

<j axb: bi ndi ng node="./xs:attribute[@ane="bar’]">
<j axb: property nane="custonBar"/>
</ j axb: bi ndi ng>
</j axb: bi ndi ngs>
</j axb: bi ndi ngs>
</j axb: bi ndi ngs>

Conceptually, the combination of the source schema and external binding file
above are the equivalent of the following inline annotated schema.

<xsd: schema xm ns: xsd="htt p: //ww. w3. or g/ 2001/ XM_Schema"
xm ns: ens="http://exanpl e. com ns"
t ar get Namespace="htt p: // exanpl e. conf ns" >
<xsd: conpl exType nane="aType">
<xsd: annot ati on>
<xsd: appi nf 0>
<j axb: cl ass nane="cust omNaneType"/ >
</ xsd: appi nf 0>
</ xsd: annot ati on>
<xsd: sequence>
<xsd: el enent nanme="foo" type="xsd:int">
<xsd: annot ati on>
<xsd: appi nf o>
<j axb: property nanme="custonfFoo"/>
</ xsd: appi nf 0>
</ xsd: annot ati on>
</ xsd: el ement >
</ xsd: sequence>
<xsd:attribute name="bar" type="xsd:int">
<xsd: annot ati on>
<xsd: appi nf 0>
<j axb: property nanme="custonBar"/>
</ xsd: appi nf 0>
</ xsd: annot ati on>
</xsd:attribute>
</ xsd: conpl exType>
<xsd: el enent nanme="root" type="ens:aType"/>
</ xsd: schena>

D.2 Transformation

The intent of this section is to describe the transformation of external binding
declarations and their target schemas into a set of schemas annotated with jaxb
binding declarations. ready for processing by a JAXB compliant binding
compiler.

166 JAXB Specification — Public Draft, V0.7 9/12/02

Transformation

This transformation must be understood to work on XML data model level.
Thus, this transformation is applicable even for those schemas which contain

semanti

c errors.

The transformation is applied as follows:

1

9/12/02

Gather all thetop-most <j axb: bi ndi ngs> elements from all the sche-
madocuments and all the external binding filesthat participate in this pro-
cess. Outer-most <j axb: bi ndi ngs> arethose <j axb: bi ndi ngs>

elements whose parent isnot a<j axb: bi ndi ngs> element. Note that

only <jaxb:bindings> elements that are the top-level of an <annot a-

t i on><appi nf 0> oristheroot node of an XML document are recog-
nized by jaxb processors.

We will refer to these trees as "external binding forest.”

Collect al the namespaces used inthe elementsinside the externa
binding forest, except the jaxb namespace, " ht t p: / /

j ava. sun. comi xm / ns/j axb”, and the no namespace. Allocate an
unique prefix for each of them and declare the namespace binding at all
theroot <xs: schema> eements of each schema documents.

Then add ajaxb:extensionBindingPrefix attributeto each <xs: schena>
element with all those allocated prefixes. If an <xs: schena> element
already carries this attribute, prefixes are just appended to the existing
attributes.

Note: The net effect isthat all "foreign" namespaces used in the external
binding forest will be automatically be considered as extension
customization declaration namespaces.

For each <j axb: bi ndi ngs> element, we determine the "target
element" to which the binding declaration should be associated with. This
process proceeds in a top-down fashion as follows:

a. Letp bethetarget element of the parent <j axb: bi ndi ngs>.Ifitis
the outer most <j axb: bi ndi ngs>, then let p bethe
<j axb: bi ndi ngs> element itself.

b. Identify the “target element” using <j axb: bi ndi ngs> attributes.
(i) If the<j axb: bi ndi ngs>hasa@chermalLocat i on, thevaue
of the attribute should be taken asan URI and be absolutized with the
base URI of the <j axb: bi ndi ngs> element. Then the target
element will betheroot node of the schemadocument identified by the
absolutized URI. If there's no such schema document in the current

JAXB Specification — Public Draft, V0.7 167

External Binding Declaratation

input, itisan error. Note: the root node of the schema document is not
the document element.

(ii) If the<j axb: bi ndi hgs> has @ode, the value of the attribute
should be evaluated as an X Path 1.0 expression. The context node in
thisevaluation should be p aswe computed inthe previous step. Itisan
error if this evaluation results in something other than a node set that
contains exactly one element. Then the target element will be this
element.

(iii) if the<j axb: bi ndi ngs> hasneither @ chermalLocat i on nor
@ ode, then the target element will be p as we computed in the
previous step. Note: <j axb: bi ndi ngs> elements can’t have both
@chemalLocat i on and @ode at the same time.

We define the target element of a binding declaration to be the target
element of its parent <j axb: bi ndi ngs> element. It isan error if a
target element of a binding declaration doesn’t belong to the "http://
wwww.w3.0rg/2001/X M L Schema' namespace.

4. Next, for eachtarget element of binding declarations, if it doesn’t have any
<xs:annot ati on> <xs: appi nf o> initschildren, onewill be
created and added as the first child of the target.

After that, we move each binding declaration under the target node of its
parent <j axb: bi ndi ngs>. Consider the first <xs: appi nf o> child
of the target element. The binding declaration element will be moved
under this<xs: appi nf o> element.

168 JAXB Specification — Public Draft, V0.7 9/12/02

APPENDIXE

XML SCHEMA

E.1 Abstract Schema Model

The following summarization abstract schema component model has been
extracted from [XSD Part 1] as a convenience for those not familar with XML
Schema component model in understanding the binding of XML Schema
components to Java representation. One must refer to [XSD Part 1] for the
complete normative description for these components.

E.1.1 Simple Type Definition Schema Component

Table 5-1 Simple Type Definition Schema Components

Component Description

{ nane} Optional. An NCName as defined by [XML-
Namespaces).

{target namespace} Either -absent- or a namespace name.

{base type definition} A simpletypedefinition

{facet s} A set of constraining facets.

{fundanmental facets} A set of fundamental facets.

{final} A subset of {extension, list, restriction, union}.

9/12/02 JAXB Specification — Public Draft, V0.7 169

XMLSchema

Table 5-1 Simple Type Definition Schema Components (Continued)

Component Description

{variety} One of {atomic, list, union} . Depending on the value of
{variety}, further properties are defined as follows:
atomic A built-in primitive
{primtive type simple type definition.
definition}
list A simple type definition.
{itemtype definition}
union A non-empty sequence of
{menber type simple type definitions.

definitions}

{annot ati on} Optional. An annotation.

E.1.2 Enumeration Facet Schema Component

Table 5-2 Enumeration Facet Schema Components

Component Description

{val ue} The actual value of the value. (Must be in val ue space of
base type definition.)

{annot ati on} Optional annotation.

E.1.3 Complex Type Definition Schema Component

Table 5-3 Complex Type Definition Schema Components

Component Description

{ nane} Optional. An NCName as defined by [XML-
Namespaces]|.

{target nanespace} Either -absent- or a namespace hame.

{base type definition} Either asimpletype definition or acomplex type
definition.

{derivation method} Either extension or restriction.

{final} A subset of {extension, restriction}.

{abstract} A boolean

{attribute uses} A set of attribute uses.

{attribute wildcard} Optional. A wildcard.

170 JAXB Specification — Public Draft, V0.7 9/12/02

Abstract Schema Model

Table 5-3

Complex Type Definition Schema Components (Continued)

Component

Description

{content type}

{prohibited
substitutions}

{annot ati ons}

One of empty, a simple type definition, or apair
consisting of a -content model- and one of mixed,
element-only.

A subset of {extension, restriction} .

A set of annotations.

E.1.4 Element Declaration Schema Component
Table 5-4 Element Declaration Schema Components

Component Description

{ name} An NCName as defined by [XML-Namespaces].

{target nanespace}

{type definition}

{scope}

{val ue constraint}

{nill abl e}
{identity-constraint
definitions}
{substitution group
affiliation}

{substitution group
excl usi ons}

{di sal | owed
substitution}

{abstract}

{annot ati on}

Either -absent- or a namespace name

Either a simple type definition or acomplex type
definition.
Optional. Either global or a complex type definition.

Optional. A pair consisting of avalue and one of default,
fixed.

A boolean.
A set of constraint definitions.

Optional. A top-level element definition.
A subset of {extension, restriction} .
A subset of { substitution,extension,restriction} .

A boolean.
Optional. An annotation.

9/12/02

JAXB Specification — Public Draft, V0.7

171

XMLSchema

E.1.5 Attribute Declaration Schema Component

Table 5-5 Attribute Declaration Schema Components

Component

Description

{ nane}

{target nanespace}
{type definition}
{scope}

{val ue constraint}

{annot ati on}

An NCName as defined by [XML-Namespaces].
Either -absent- or a namespace name

A simple type definition.

Optional. Either global or a complex type definition.

Optional. A pair consisting of avalue and one of default,
fixed.

Optional. An annotation.

E.1.6 Model Group Definition Schema Component

Table 5-6 Model Group Definition Schema Components

Component

Description

{nane}
{target nanespace}
{nodel group}

{annot ati on}

An NCName as defined by [XML-Namespaces|.
Either -absent- or a namespace name.

A model group.

Optional. An annotation.

E.1.7 Identity-constraint Definition Schema
Component

Table 5-7 Identity-constraint Definition Schema Components

Component

Description

{nane}
{target nanespace}

{identity-constraint
cat egory}
{sel ector}

{fiel ds}

An NCName as defined by [XML-Namespaces|.
Either -absent- or a namespace hame.
One of key, keyref or unique.

A restricted XPath ([X Path]) expression.

A non-empty list of restricted XPath ([XPath])
expressions.

172 JAXB Specification — Public Draft, V0.7 9/12/02

Abstract Schema Model

Table 5-7 Identity-constraint Definition Schema Components (Continued)
Component Description
{referenced key} Required if {identity-constraint category} is keyref,

forbidden otherwise.
An identity-constraint definition with {identity-
constraint category} equal to key or unique.

{annot ati on} Optional. An annotation.

E.1.8 Attribute Use Schema Component

Table 5-8 Attribute Use Schema Components

Component Description

{required} A boolean.

{attribute declaration} An attribute declaration.

{val ue constraint} Optional. A pair consisting of avalue and one of default,
fixed.

E.1.9 Particle Schema Component

Table 5-9 Particle Schema Components

Component Description

{m n occurs} A non-negative integer.

{max occurs} Either a non-negative integer or unbounded.

{ternt One of amodel group, awildcard, or an element
declaration.

E.1.10 Wildcard Schema Component

Table 5-10 Wildcard Schema Components

Component Description

{nanmespace constraint} One of any; apair of not and a namespace name or
-absent-; or a set whose members are either namespace

names or -absent-.

{process contents} One of skip, lax or strict.
{annot ati on} Optional. An annotation.

9/12/02 JAXB Specification — Public Draft, V0.7 173

XMLSchema

E.2 Not Required XML Schema
concepts

A JAXB implementation is not required to support the following XML Schema
concepts for this version of the specification. A JAXB implementation may
choose to support these features in an implementation dependent manner.

« Schema component: wildcard

(any)

JAXB implementations are not required to unmarshal or marshal XML
content that does not conform to a schemathat is registered with
JAXBContext. However, wildcard content must be handled as detailed
in Section 5.9.4, “Bind wildcard schema component,” on page 87.

« Schema component: attribute wildcard
(anyAttribute)

« Notation declaration
Nothing is generated for notations.
« Redefinition of declaration

Since redefine is difficult to implement and not frequently used, it may
be ignored by a conforming implementation until afuture time when its
use becomes common.

« Schema component: identity-constraint definition
(key, keyref, unique)

Due to complexities surrounding supporting this feature, specify in a
future version.

« Substitution group support:

Attributes: conpl exType. abstract, el enent . abstract,
el ement . substituti onG oup

a. Typesubstitution
Instance Attribute: xsi : t ype
b. "block" feature

Attributes: conpl exType. bl ock, conpl exType. fi nal ,
el enent . bl ock,el enent . fi nal ,schema. bl ockDef aul t,
schemn. fi nal Def aul t.

174 JAXB Specification — Public Draft, V0.7 9/12/02

APPENDIXF

RELATIONSHIP TO JAX-RPC
BINDING

F.1 Overview

Several minor differencesin binding from XML to Java representation have
been identified between JAXB and JAX-RPC 1.0[JAX-RPC]. JAXB binding
customizations are provided below that enable JAXB to bind from XML to Java
as JAX-RPC does for these cases.

F.2 Mapping XML name to Java
identifier

By default, when mapping an XML Namesto a Javaidentifier, JAXB treats‘_

(underscore) as a punctuation character (i.e. aword separator). However, JAX-
RPC treats underscore as a character within a word as specified Section 20.1in
[JAX-RPC]. See customization option specified in Section 6.5.3, “Underscore

Handling” to enable JAX-RPC mapping of XML name to Java identifier.

Custom zation to enabl e JAX- RPC conform ng bi ndi ng:
under scor eBi nding = “asChar| nWor d”

9/12/02 JAXB Specification — Public Draft, V0.7 175

Relationship to JAX-RPC Binding

F.3 Bind XML enum to atypesafe
enumeration

JAX-RPC specifies the binding of XML datatype to typesafe enumeration class.
JAXB specified default binding is designed to be as similar as possible to JAX-
RPC specified binding. However, there are differences that are described here.
Customization options allow the JAX-RPC style of binding to be generated.

F.3.1 Restriction Base Type

The default restriction base type which can be mapped to a typesafe
enumeration is different. The allowed types are customized using the
customization optiont ypesaf eEnunBase specified in Section 6.5.1,

“Usage”.

Custom zation to enabl e JAX-RPC conform ng binding:
t ypeSaf eEnunBase = “xsd:string xsd:decimal xsd:float xsd:doubl e”
JAXB default is typesafeEnunBase ="xsd: NCNane”

Note that all XML Schema builtin datatypes listed in the above customization
and all datatypes that derived by restriction from these listed basetypes are
mapped to typesafe enum classes. Thus, not all JAX-RPC supported types must
be listed, only the types at the base of the derivation by restriction type
hierarchy.

F.3.2 Enumeration Name Handling

If alegal Javaidentifier cannot be generated from an XML enumeration value,
then by default, an error must be reported. However, JAX-RPC will revert the
identifers to be default enumeration label names as specified in Section 4.2.4
“Enumeration” in [JAX-RPC]. The latter behavior can be obtained enabling the
customizationt ypesaf eEnunivenber Name specified in Section 6.5.1,
“Usage’. Section 5.2.4.3, “XML Enumvalue To Java ldentifier Mapping,” on
page 58 describes the enumeration member names generated when

t ypeSaf eEnunivenrber Nane is set to “ generateName” .

Customi zation to enabl e JAX-RPC conform ng binding:
t ypeSaf eEnunVenber Nane = “gener at eNane”
JAXB default is typeSafeEnumMenber Name = “generat eError”

176 JAXB Specification — Public Draft, V0.7 9/12/02

APPENDIXG

CHANGE LOG

G.1 Changes for Public Draft

« Section 5.9.8.1, “Bind to a choice content property”, replaced
overloading of choice content property setter method with asingle setter
method with avalue parameter with the common type of all members of
the choice. Since the resolution of overloaded method invocation is
performed using compile-time typing, not runtime typing, this
overloading was problematic. Same change was made to binding of
union types.

« Added details on how to construct factory method signature for nested
content and element interfaces.

« Section 3.3, default validation handler does not fail onfirst warning, only
on first error or fatal error.

« Add ID/IDREF handling in section 5.
« Updated name mapping in appendix C.
« section 4.5.2.1 on page 42, added getIDLenth() to indexed property.

« Removed ObjectFactory.setl mplementation method from Section 4.2,
“Java Package,” on page 36. The negative impact on implementation
provided to be greater than the benefit it provided the user.

« Introduced external binding declaration format.
« Introduced a method to introduce extension binding declarations.

« Added an appendix section describing JAXB custom bindings that align
JAXB binding with JAX-RPC biniding from XML to Java
representation.

« Generate islD() accessor for boolean property.

9/12/02 JAXB Specification — Public Draft, V0.7 177

Changelog

« Section 6, Customization has been substantially rewritten.

178 JAXB Specification — Public Draft, V0.7 9/12/02

	Introduction
	1.1 Data binding
	1.2 Goals
	1.3 Non-Goals
	1.4 Requirements
	1.5 Use Cases
	1.6 Conventions
	1.7 Expert Group Members
	1.8 Acknowledgements

	Architecture
	2.1 Overview
	2.1.1 Java Representation
	2.1.2 Binding Framework
	2.1.3 Binding Declarations

	2.2 Varieties of validation
	2.2.1 Handling Validation Failures

	2.3 An example

	The Binding Framework
	3.1 Binding Runtime Framework Rationale
	3.2 JAXBContext
	3.3 General Validation Processing
	3.4 Validator
	3.5 Unmarshalling
	3.6 Marshalling
	3.6.1 Marshalling Properties

	3.7 Validation Handling

	Java Representation of XML Content
	4.1 Mapping between XML Names and Java Identifiers
	4.2 Java Package
	4.3 Typesafe Enum Class
	4.4 Java Content Interface
	4.5 Properties
	4.5.1 Simple Property
	4.5.2 Collection Property
	4.5.2.1 Indexed Property
	4.5.2.2 List Property

	4.5.3 Constant Property
	4.5.4 isSet Property Modifier
	4.5.5 Property Summary

	4.6 Java Element Interface

	Binding XML Schema to Java Representations
	5.1 Overview
	5.2 Simple Type Definition
	5.2.1 Type Categorizaton
	5.2.2 Atomic Datatype
	5.2.3 Type Safe Enumeration
	5.2.4 Enumeration Class
	5.2.4.1 Enumeration Class
	5.2.4.2 Constant Fields
	5.2.4.3 XML Enumvalue To Java Identifier Mapping
	5.2.4.4 Methods and Constructor

	5.2.5 Union Property
	5.2.6 Union

	5.3 Complex Type Definition
	5.3.1 Nested Interface Specification
	5.3.2 Aggregation of Java Representation
	5.3.2.1 Aggregation of Datatype/Interface
	5.3.2.2 Aggregation of Property Set

	5.3.3 Java Content Interface
	5.3.3.1 Simple Content Binding

	5.4 Attribute Group Definition
	5.5 Model Group Definition
	5.5.1 Bind to a set of properties
	5.5.2 Bind to a list property
	5.5.3 Bind to a Java content interface

	5.6 Attribute Declaration
	5.7 Element Declaration
	5.7.1 Bind to Java Element Interface
	5.7.2 Bind to Java Content Interface
	5.7.3 Bind to Typesafe Enum Class
	5.7.4 Bind to a Property

	5.8 Attribute use
	5.8.1 Bind to a Java Constant property
	5.8.1.1 Contributions to Local Structural Constraint

	5.8.2 Binding an IDREF component to a Java property

	5.9 Content Model - Particle, Model Group, Wildcard
	5.9.1 Bind each element declaration name to a content property
	5.9.2 General content property
	5.9.2.1 General content list
	5.9.2.2 Value content list
	5.9.2.3 Examples

	5.9.3 Bind mixed content
	5.9.4 Bind wildcard schema component
	5.9.5 Bind a repeating occurance model group
	5.9.6 Content Model Default Binding
	5.9.6.1 Default binding of content model “derived by extension”

	5.9.7 Alternative binding approach: model group binding
	5.9.8 Bind to Choice Content Interface
	5.9.8.1 Bind to a choice content property

	5.9.9 Binding algorithm for model group style binding

	5.10 Default Binding Rule Summary

	Customization
	6.1 Binding Language
	6.1.1 Extending the Binding Language
	6.1.2 Inline Annotated Schema
	6.1.3 External Binding Declaration
	6.1.3.1 Restrictions

	6.1.4 Invalid Customizations

	6.2 Notation
	6.3 Naming Conventions
	6.4 Customization Overview
	6.4.1 Scope
	6.4.2 XML Schema Parsing

	6.5 <globalBindings> Declaration
	6.5.1 Usage
	6.5.2 Customized Name Mapping
	6.5.3 Underscore Handling

	6.6 <schemaBindings> Declaration
	6.6.1 Usage
	6.6.1.1 package
	6.6.1.2 nameXmlTransform

	6.7 <class> Declaration
	6.7.1 Usage
	6.7.2 Customization Overrides
	6.7.3 Customizable Schema Elements
	6.7.3.1 Complex Type Definition
	6.7.3.2 Model Group Definition
	6.7.3.3 Model Group
	6.7.3.4 Global Element Declaration
	6.7.3.5 Local Element

	6.8 <property> Declaration
	6.8.1 Usage
	6.8.2 Customization Overrides
	6.8.3 Customizable Schema Elements
	6.8.3.1 Global Attribute Declaration
	6.8.3.2 Local Attribute
	6.8.3.3 Global Element Declaration
	6.8.3.4 Local Element
	6.8.3.5 Wildcard
	6.8.3.6 Model Group
	6.8.3.7 Model Group Reference

	6.9 javaType Declaration
	6.9.1 Lexical And Value Space
	6.9.2 Usage
	6.9.2.1 name
	6.9.2.2 xmlType
	6.9.2.3 Relationship To XML Built-in Hiearchy
	6.9.2.4 XML Numeric type
	6.9.2.5 parseMethod
	6.9.2.6 printMethod

	6.9.3 Java Primitive Types
	6.9.4 Events
	6.9.5 Customization Overrides
	6.9.6 Customizable Schema Elements
	6.9.6.1 Simple Type Definition
	6.9.6.2 GlobalBindings

	6.10 <typesafeEnum> Declaration
	6.10.1 Usage
	6.10.2 value Attribute
	6.10.3 Inline Annotations
	6.10.4 Customization Overrides
	6.10.5 Customizable Schema Elements

	6.11 <javadoc> Declaration
	6.11.1 Javadoc Sections
	6.11.2 Usage
	6.11.3 Javadoc Customization

	6.12 Annotation Restrictions

	References
	Package javax.xml.bind
	Normative Binding Schema Syntax
	Binding XML Names to Java Identifiers
	C.1 Overview
	C.2 The Name to Identifier Mapping Algorithm
	C.2.1 Collisions and conflicts

	C.3 Deriving an identifier for a model group
	C.4 Generating a Java package name
	C.4.1 Mapping from a Namespace URI

	C.5 Conforming Java Identifier Algorithm

	External Binding Declaratation
	D.1 Example
	D.2 Transformation

	XML Schema
	E.1 Abstract Schema Model
	E.1.1 Simple Type Definition Schema Component
	E.1.2 Enumeration Facet Schema Component
	E.1.3 Complex Type Definition Schema Component
	E.1.4 Element Declaration Schema Component
	E.1.5 Attribute Declaration Schema Component
	E.1.6 Model Group Definition Schema Component
	E.1.7 Identity-constraint Definition Schema Component
	E.1.8 Attribute Use Schema Component
	E.1.9 Particle Schema Component
	E.1.10 Wildcard Schema Component

	E.2 Not Required XML Schema concepts

	Relationship to JAX-RPC Binding
	F.1 Overview
	F.2 Mapping XML name to Java identifier
	F.3 Bind XML enum to a typesafe enumeration
	F.3.1 Restriction Base Type
	F.3.2 Enumeration Name Handling

	Change Log
	G.1 Changes for Public Draft

