
The Java™ Architecture for
XML Binding (JAXB)

Public Draft, V0.7

Public
Draft

September 12, 2002

Editors:
Joseph Fialli,

Sekhar Vajjhala
Comments to: jaxb-spec-comments@sun.com

Sun Microsystems, Inc.
4150 Network Circle

Santa Clara, CA 95054 USA

JavaTM Architecture for XML Binding (JAXB) Specification ("Specification")
Version:0.7
Status: Pre-FCS
Release: September 12, 2002

Copyright 2002 Sun Microsystems, Inc.
4150 Network Circle, Santa Clara, California 95054, U.S.A
All rights reserved.

NOTICE
The Specification is protected by copyright and the information described therein may be protected by one
or more U.S.patents, foreign patents, or pending applications. Except as provided under the following
license, no part of the Specification may be reproduced in any form by any means without the prior written
authorization of SunMicrosystems, Inc. ("Sun") and its licensors, if any. Any use of the Specification and
the information described therein will be governed by the terms and conditions of this license and the
Export Control and General Terms as set forth in Sun’s website Legal Terms. By viewing, downloading
or otherwise copying the Specification, you agree that you have read, understood, and will comply with all
of the terms and conditions set forth herein.

Subject to the terms and conditions of this license, Sun hereby grants you a fully-paid, non-exclusive, non-
transferable, worldwide, limited license (without the right to sublicense) under Sun’s intellectual property
rights to review the Specification internally for the purposes of evaluation only. Other than this limited
license, you acquire no right, title or interest in or to the Specification or any other Sun intellectual prop-
erty. The Specification contains the proprietary and confidential information of Sun and may only be used
in accordance with the license terms set forth herein. This license will expire ninety (90) days from the
date of Release listed above and will terminate immediately without notice from Sun if you fail to comply
with any provision of this license. Upon termination, you must cease use of or destroy the Specification.

TRADEMARKS
No right, title, or interest in or to any trademarks, service marks, or trade names of Sun or Sun’s licensors
is granted hereunder. Sun, Sun Microsystems, the Sun logo, Java, the Java Coffee Cup logo, and J2EE are
trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

DISCLAIMER OF WARRANTIES
THE SPECIFICATION IS PROVIDED "AS IS" AND IS EXPERIMENTAL AND MAY CONTAIN
DEFECTS OR DEFICIENCIES WHICH CANNOT OR WILL NOT BE CORRECTED BY SUN. SUN
MAKES NO REPRESENTATIONS OR WARRANTIES, EITHER EXPRESS OR IMPLIED, INCLUD-
ING BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTIC-
ULAR PURPOSE, OR NON-INFRINGEMENT THAT THE CONTENTS OF THE SPECIFICATION
ARE SUITABLE FOR ANY PURPOSE OR THAT ANY PRACTICE OR IMPLEMENTATION OF
SUCH CONTENTS WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS,
TRADE SECRETS OR OTHER RIGHTS. This document does not represent any commitment to release
or implement any portion of the Specification in any product.

THE SPECIFICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL
ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION THEREIN; THESE
CHANGES WILL BE INCORPORATED INTO NEW VERSIONS OF THE SPECIFICATION, IF
ANY. SUN MAY MAKE IMPROVEMENTS AND/OR CHANGES TO THE PRODUCT(S) AND/OR
THE PROGRAM(S) DESCRIBED IN THE SPECIFICATION AT ANY TIME. Any use of such changes
in the Specification will be governed by the then-current license for the applicable version of the Specifi-
cation.

LIMITATION OF LIABILITY
TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL SUN OR ITS LICENSORS BE
LIABLE FOR ANY DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUE, PROF-

ITS OR DATA, OR FOR SPECIAL, INDIRECT, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE
DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARIS-
ING OUT OF OR RELATED TO ANY FURNISHING, PRACTICING, MODIFYING OR ANY USE
OF THE SPECIFICATION, EVEN IF SUN AND/OR ITS LICENSORS HAVE BEEN ADVISED OF
THE POSSIBILITY OF SUCH DAMAGES.

You will indemnify, hold harmless, and defend Sun and its licensors from any claims based on your use of
the Specification for any purposes other than those of internal evaluation, and from any claims that later
versions or releases of any Specification furnished to you are incompatible with the Specification pro-
vided to you under this license.

RESTRICTED RIGHTS LEGEND
If this Software is being acquired by or on behalf of the U.S. Government or by a U.S. Government prime
contractor or subcontractor (at any tier), then the Government’s rights in the Software and accompanying
documentation shall be only as set forth in this license; this is in accordance with 48 C.F.R. 227.7201
through 227.7202-4 (for Department of Defense (DoD) acquisitions) and with 48 C.F.R. 2.101 and 12.212
(for non DoD acquisitions).

REPORT
You may wish to report any ambiguities, inconsistencies or inaccuracies you may find in connection with
your evaluation of the Specification ("Feedback"). To the extent that you provide Sun with any Feedback,
you hereby: (i) agree that such Feedback is provided on a non-proprietary and non-confidential basis, and
(ii) grant Sun a perpetual, non-exclusive, worldwide, fully paid-up, irrevocable license, with the right to
sublicense through multiple levels of sublicensees, to incorporate, disclose, and use without limitation the
Feedback for any purpose related to the Specification and future versions, implementations, and test suites
thereof.
(LFI#117901/Form ID#011801)

C O N T E N T S
1 Introduction . 1
1.1 Data binding . 2
1.2 Goals. 3
1.3 Non-Goals . 5
1.4 Requirements . 6
1.5 Use Cases. 8
1.6 Conventions . 9
1.7 Expert Group Members. 10
1.8 Acknowledgements . 10

2 Architecture . 13
2.1 Overview . 13

2.1.1 Java Representation . 14
2.1.2 Binding Framework . 15
2.1.3 Binding Declarations . 16

2.2 Varieties of validation . 17
2.2.1 Handling Validation Failures . 19

2.3 An example . 19

3 The Binding Framework . 23
3.1 Binding Runtime Framework Rationale. 24
3.2 JAXBContext. 25
3.3 General Validation Processing . 26
3.4 Validator . 28
3.5 Unmarshalling . 29
3.6 Marshalling . 31

3.6.1 Marshalling Properties . 32
3.7 Validation Handling . 33

4 Java Representation of XML Content . 35
4.1 Mapping between XML Names and Java Identifiers. 35
4.2 Java Package . 36
4.3 Typesafe Enum Class . 37
4.4 Java Content Interface . 38
4.5 Properties . 40

4.5.1 Simple Property . 41
4.5.2 Collection Property. 42

4.5.2.1 Indexed Property . 42
4.5.2.2 List Property . 45
9/12/02 JAXB Specification – Public Draft, V0.7 v

4.5.3 Constant Property . 46
4.5.4 isSet Property Modifier. 46
4.5.5 Property Summary . 47

4.6 Java Element Interface . 48

5 Binding XML Schema to Java Representations 51
5.1 Overview . 51
5.2 Simple Type Definition . 52

5.2.1 Type Categorizaton . 52
5.2.2 Atomic Datatype. 53
5.2.3 Type Safe Enumeration . 56
5.2.4 Enumeration Class. 56

5.2.4.1 Enumeration Class . 57
5.2.4.2 Constant Fields. 58
5.2.4.3 XML Enumvalue To Java Identifier Mapping 58
5.2.4.4 Methods and Constructor . 59

5.2.5 Union Property . 59
5.2.6 Union . 61

5.3 Complex Type Definition . 62
5.3.1 Nested Interface Specification . 62
5.3.2 Aggregation of Java Representation 62

5.3.2.1 Aggregation of Datatype/Interface 62
5.3.2.2 Aggregation of Property Set 63

5.3.3 Java Content Interface . 63
5.3.3.1 Simple Content Binding . 65

5.4 Attribute Group Definition . 66
5.5 Model Group Definition . 66

5.5.1 Bind to a set of properties . 67
5.5.2 Bind to a list property . 67
5.5.3 Bind to a Java content interface. 68

5.6 Attribute Declaration . 69
5.7 Element Declaration . 69

5.7.1 Bind to Java Element Interface . 71
5.7.2 Bind to Java Content Interface. 72
5.7.3 Bind to Typesafe Enum Class . 73
5.7.4 Bind to a Property . 74

5.8 Attribute use . 74
5.8.1 Bind to a Java Constant property. 75

5.8.1.1 Contributions to Local Structural Constraint 76
5.8.2 Binding an IDREF component to a Java property 76

5.9 Content Model - Particle, Model Group, Wildcard. 78
5.9.1 Bind each element declaration name to a content property. . 79
5.9.2 General content property . 82

5.9.2.1 General content list. 82
5.9.2.2 Value content list . 82
vi JAXB Specification – Public Draft, V0.7 9/12/02

5.9.2.3 Examples . 83
5.9.3 Bind mixed content. 85
5.9.4 Bind wildcard schema component . 87
5.9.5 Bind a repeating occurance model group 88
5.9.6 Content Model Default Binding . 88

5.9.6.1 Default binding of content model “derived by
extension”90

5.9.7 Alternative binding approach: model group binding 91
5.9.8 Bind to Choice Content Interface . 92

5.9.8.1 Bind to a choice content property 94
5.9.9 Binding algorithm for model group style binding 96

5.10 Default Binding Rule Summary . 97

6 Customization . 99
6.1 Binding Language . 99

6.1.1 Extending the Binding Language . 100
6.1.2 Inline Annotated Schema . 101
6.1.3 External Binding Declaration . 101

6.1.3.1 Restrictions. 102
6.1.4 Invalid Customizations . 102

6.2 Notation. 102
6.3 Naming Conventions. 103
6.4 Customization Overview . 103

6.4.1 Scope . 103
6.4.2 XML Schema Parsing . 105

6.5 <globalBindings> Declaration . 106
6.5.1 Usage. 106
6.5.2 Customized Name Mapping. 108
6.5.3 Underscore Handling . 108

6.6 <schemaBindings> Declaration . 109
6.6.1 Usage. 109

6.6.1.1 package . 110
6.6.1.2 nameXmlTransform . 111

6.7 <class> Declaration . 112
6.7.1 Usage. 112
6.7.2 Customization Overrides . 113
6.7.3 Customizable Schema Elements . 113

6.7.3.1 Complex Type Definition 113
6.7.3.2 Model Group Definition. 114
6.7.3.3 Model Group. 115
6.7.3.4 Global Element Declaration 115
6.7.3.5 Local Element . 116

6.8 <property> Declaration . 117
6.8.1 Usage. 117
6.8.2 Customization Overrides . 118
9/12/02 JAXB Specification – Public Draft, V0.7 vii

6.8.3 Customizable Schema Elements . 119
6.8.3.1 Global Attribute Declaration 119
6.8.3.2 Local Attribute. 120
6.8.3.3 Global Element Declaration 122
6.8.3.4 Local Element . 122
6.8.3.5 Wildcard . 122
6.8.3.6 Model Group. 123
6.8.3.7 Model Group Reference . 126

6.9 javaType Declaration . 127
6.9.1 Lexical And Value Space . 128
6.9.2 Usage. 128

6.9.2.1 name. 129
6.9.2.2 xmlType . 129
6.9.2.3 Relationship To XML Built-in Hiearchy 129
6.9.2.4 XML Numeric type . 130
6.9.2.5 parseMethod. 130
6.9.2.6 printMethod. 131

6.9.3 Java Primitive Types . 131
6.9.4 Events . 131
6.9.5 Customization Overrides . 132
6.9.6 Customizable Schema Elements . 132

6.9.6.1 Simple Type Definition . 132
6.9.6.2 GlobalBindings . 132

6.10 <typesafeEnum> Declaration . 135
6.10.1 Usage. 135
6.10.2 value Attribute . 136
6.10.3 Inline Annotations. 137
6.10.4 Customization Overrides . 137
6.10.5 Customizable Schema Elements . 138

6.11 <javadoc> Declaration . 140
6.11.1 Javadoc Sections . 140
6.11.2 Usage. 141
6.11.3 Javadoc Customization . 141

6.12 Annotation Restrictions . 141

7 References . 143

A Package javax.xml.bind . 145

B Normative Binding Schema Syntax . 147

C Binding XML Names to Java Identifiers 157
C.1 Overview . 157
C.2 The Name to Identifier Mapping Algorithm . 157

C.2.1 Collisions and conflicts. 160
C.3 Deriving an identifier for a model group . 161
viii JAXB Specification – Public Draft, V0.7 9/12/02

C.4 Generating a Java package name . 162
C.4.1 Mapping from a Namespace URI. 162

C.5 Conforming Java Identifier Algorithm . 164

D External Binding Declaratation . 165
D.1 Example . 165
D.2 Transformation . 166

E XML Schema . 169
E.1 Abstract Schema Model . 169

E.1.1 Simple Type Definition Schema Component 169
E.1.2 Enumeration Facet Schema Component 170
E.1.3 Complex Type Definition Schema Component 170
E.1.4 Element Declaration Schema Component 171
E.1.5 Attribute Declaration Schema Component. 172
E.1.6 Model Group Definition Schema Component. 172
E.1.7 Identity-constraint Definition Schema Component 172
E.1.8 Attribute Use Schema Component. 173
E.1.9 Particle Schema Component . 173
E.1.10 Wildcard Schema Component . 173

E.2 Not Required XML Schema concepts . 174

F Relationship to JAX-RPC Binding . 175
F.1 Overview . 175
F.2 Mapping XML name to Java identifier. 175
F.3 Bind XML enum to a typesafe enumeration 176

F.3.1 Restriction Base Type . 176
F.3.2 Enumeration Name Handling . 176

G Change Log . 177
G.1 Changes for Public Draft . 177
9/12/02 JAXB Specification – Public Draft, V0.7 ix

x JAXB Specification – Public Draft, V0.7 9/12/02

9/12/02
C H A P T E R 1
IN TR O DU CT I O N

XML is, essentially, a platform-independent means of structuring information.
An XML document is a tree of elements. An element may have a set of
attributes, in the form of key-value pairs, and may contain other elements, text,
or a mixture thereof. An element may refer to other elements via identifier
attributes, thereby allowing arbitrary graph structures to be represented.

An XML document need not follow any rules beyond the well-formedness
criteria laid out in the XML 1.0 specification. To exchange documents in a
meaningful way, however, requires that their structure and content be described
and constrained so that the various parties involved will interpret them correctly
and consistently. This can be accomplished through the use of a schema. A
schema contains a set of rules that constrains the structure and content of a
document’s components, i.e., its elements, attributes, and text. A schema also
describes, at least informally and often implicitly, the intended conceptual
meaning of a document’s components. A schema is, in other words, a
specification of the syntax and semantics of a (potentially infinite) set of XML
documents. A document is said to be valid with respect to a schema if, and only
if, it satisfies the constraints specified in the schema.

In what language are schemas written? The XML specification itself describes a
sublanguage for writing document-type definitions, or DTDs. As schemas go,
however, DTDs are fairly weak. They support the definition of simple
constraints on structure and content, but provide no real facility for expressing
datatypes or complex structural relationships. They have also prompted the
creation of more sophisticated schema languages such as XDR, SOX, RELAX,
TREX, and, most significantly, the XML Schema language recently defined by
the World Wide Web Consortium.

This specification requires support for a subset of the W3C XML Schema
language.
JAXB Specification – Public Draft, V0.7 1

Data binding
1.1 Data binding

Any nontrivial application of XML will, then, be based upon one or more
schemas and will involve one or more programs that create, consume, and
manipulate documents whose syntax and semantics are governed by those
schemas. While it is certainly possible to write such programs using the low-
level SAX parser API or the somewhat higher-level DOM parse-tree API, doing
so is likely to be tedious and error-prone. The resulting code is also likely to
contain many redundancies that will make it difficult to maintain as bugs are
fixed and as the schemas evolve.

It would be much easier to write XML-enabled programs if we could simply
map the components of an XML document to in-memory objects that represent,
in an obvious and useful way, the document’s intended meaning according to its
schema. Of what classes should these objects be instances? In some cases there
will be an obvious mapping from schema components to existing classes,
especially for common types such as String, Date, Vector, and so forth. In
general, however, classes specific to the schema being used will be required.
Rather than burden developers with having to write these classes we can
generate the classes directly from the schema, thereby creating a Java-level
binding of the schema.

An XML data-binding facility therefore contains a binding compiler that binds
components of a source schema to schema-derived Java content classes. Each
class provides access to the content of the corresponding schema component via
a set of JavaBeans-style access (i.e., get and set) methods. Binding
declarations provides a capability to customize the binding from schema
components to Java representation. Such a facility also provides a binding
framework, a runtime API that, in conjunction with the derived classes, supports
three primary operations:

 ● The unmarshalling of an XML document into a tree of interrelated
instances of both existing and schema-derived classes,

 ● The marshalling of such content trees back into XML documents, and

 ● The validation of content trees against the constraints expressed in the
schema.

The unmarshalling process has the capability to check incoming XML
documents for validity with respect to the schema. Similarly, a JAXB
implementation provides a means to enforce the constraints expressed in the
schema; some of these constraints may always be enforced, while others may
9/12/02 JAXB Specification – Public Draft, V0.7 2

Goals
only be checked upon explicit request. Validation of a content tree before the
marshalling process can be used to ensure that only valid documents are
generated.

Figure 1.1 A mapping of XML to Java objects

To sum up: Schemas describe the structure and meaning of an XML document,
in much the same way that a class describes an object in a program. To work
with an XML document in a program we would like to map its components
directly to a set of objects that reflect the document’s meaning according to its
schema. We can achieve this by compiling the schema into a set of derived
content classes that can be marshalled, unmarshalled and validated. Data
binding thus allows XML-enabled programs to be written at the same
conceptual level as the documents they manipulate, rather than at the more
primitive level of parser events or parse trees.

1.2 Goals

This specification aims to describe an XML data-binding facility with the
following general properties:

 ● Be easy to use – Lower the barrier to entry to manipulating XML
documents within Java programs. Programmers should be able to access
and modify XML documents via a Java binding of the data, not via SAX
or DOM. It should be possible for a developer who knows little about
XML to compile a simple schema and immediately start making use of
the classes that are produced.

 ● Be customizable – Provide a standard way to customize the binding of
existing schema’s components to Java representation of the components.
Sophisticated applications sometimes require fine control over the

Schema

Document

Classes

Objects

compile

unmarshal

marshal

instanceoffollows
9/12/02 JAXB Specification – Public Draft, V0.7 3

Introduction
structure and content of schema-derived classes, both for their own
purposes and for that of coping with schema evolution.

 ● Portability – It should be possible to write a JAXB application in such a
way that the JAXB implementation can be replaced without changes to
the source code. Minimally, the schema would need to be submitted to
the replacement JAXB implementations binding compiler and the output
would need to be bundled with the application.

 ● Deliver Sooner rather than Later – Given the needs of the Java
Community for a standardized XML data-binding solution to be
delivered in a timely fashion, it was a important goal to identify a core
set of functionality for this initial version of the specification that can be
built upon in future versions. This document will identify the core
requirements for the initial version and list the requirements and features
for future consideration.

The derived classes produced by the binding compiler should, more specifically,

 ● Be natural – Insofar as possible, derived classes should observe standard
Java API design guidelines and naming conventions. If new conventions
are required then they should mesh well with existing conventions. A
developer should not be astonished when trying to use a derived class.

 ● Match the conceptual level of the source schema – It should be
straightforward to examine any content-bearing component of the source
schema and identify the corresponding Java language construct in the
derived classes.

 ● Hide all the plumbing – All the details of unmarshalling, marshalling,
and validation should be completely encapsulated by schema-derived
implementation classes and the runtime APIs upon which they depend.
A developer should not have to think about SAX or DOM or any other
XML-related API in order to perform unmarshal, marshal or validation
on the schema-derived classes.

 ● Support validation on demand – While working with a content tree
corresponding to an XML document it is often necessary to validate the
tree against the constraints in the source schema. It should be possible to
do this at any time, without the user having to first marshal the tree into
XML.

 ● Preserve equivalence (round tripping) – Tranforming a Java content
tree to XML content and back to Java content again should result in an
equivalent Java content tree before and after the transformation.
4 JAXB Specification – Public Draft, V0.7 9/12/02

Non-Goals
1.3 Non-Goals

 ● Defining a standardized binding framework runtime system.

The schema-derived Java implementation classes generated by one
JAXB implementation are not required to work with the runtime system
of another JAXB implementation. To switch to an alternative JAXB
implementations, one is required to regenerate the schema-derived
implementation using the alternative JAXB implementation’s binding
compiler. It was not possible to identify a common framework solution
that was a clear cut, acceptable solution. As XML processing
technologies mature, we hope to identify a common framework solution
in a future version of this specification. See Section 3.1, “Binding
Runtime Framework Rationale,” on page 24 for further details.

 ● Preserving equivalence of XML document when round tripping
from XML document to Java and back to XML document again.

 ● Formally describing support for binding an existing JavaBean class
to schema.

The feature will be considered for a future release but it was considered
out of scope for this release.

 ● Schema evolution support.

It is beyond the scope of the first version of the specification to address
this important but difficult problem.

 ● Providing support for accessing/adding of elements or attributes not
initially declared in the schema.

The usage of <anyAttribute> in a schema allow for an XML document
to dynamically introduce data of a structure and content that was not
described in the schema submitted to the binding compiler. It is not
possible to generate type safe accessors and classes for dataypes
introduced by an XML document.

A future version of the specification may provide access to dynamically
introduced XML content via the fallback position of returning the XML
content in a generic XML representation, DOM being one such
commonly accepted format.

 ● Provide partial binding of an XML content root to a Java
representation, skipping descendants of the XML content root that
are not relevant to the task at hand.
9/12/02 JAXB Specification – Public Draft, V0.7 5

Introduction
If there is only a partial binding of all non-optional XML elements
reachable from an XML element, it would no longer be possible to
roundtrip the data back to its original XML content form. Partial
mapping results in a one-way trip from the XML to Java. There would
be no marshal method from Java back to XML since in general it would
not be possible to produce a valid XML content from a partial Java
representation of the XML content root and its descendants.

 ● It is not necessary for the facility described by this specification to
implement every last feature of the schema languages that it
supports.

More precisely, a given schema-language feature need not be
implemented if it is not commonly used in data-oriented applications of
XML and if supporting it would unduly complicate either this
specification or its implementations. This does not imply that
supporting document-oriented applications is something to be avoided;
it merely points out that some schema-language features that are used
primarily in such applications do not always fit well into the context of
an XML data-binding facility. This specification and its
implementations will support document-oriented applications insofar as
doing so does not interfere with achieving the above goals.

 ● Explicit support for specifying the binding of DTD to a Java
representation.

While it was desired to explicitly support binding DTD to a Java
representation, it became impratical to describe both XML Schema
binding and DTD binding. The existence of several conversion tools
that automate the conversion of a DTD to XML Schema allows DTD
users to be able to take advantage of JAXB technology by converting
their existing DTDs to XML Schema.

1.4 Requirements

1. Standardized schema input to binding compiler

Supported schema language:

❍ Subset of W3C XML Schema.

All implementations are required to support the minimal required
subset of W3C XML Schema. Non-required constructs are specified in
6 JAXB Specification – Public Draft, V0.7 9/12/02

Requirements
Section E.2, “Not Required XML Schema concepts,” on page 174. It is
acceptable that an implementation support more than the minimal
required subset in an implementation-dependent manner. Future
versions of the specification will consider adding more complete
support for W3C XML Schema.

 ● Describe default bindings from schema to Java representation

There must be a detailed, unambiguous description of the default
mapping of schema components to Java representations in order to
satisfy the portability goal. The default binding will be described from
abstraction definitions of XML Schema components[XML Schema Part
1]. Each JAXB implementation must generate the same group of
schema-derived interfaces and property accessors.

❍ Default binding from XML Schema built-in data types to Java built-in
classes

❍ Default binding of XML Schema component, as described by abstract
data model, to a Java representation.

2. Standardized Customized Binding Schema

A binding schema language and its formats must be specified. There
must be a means to describe the binding without requiring modification
to the original schema. Additionally, the same XML Schema language
must be used for the two different mechanisms for expressing a binding
declaration.

3. Capability to specify an override for default binding behavior

Given the diverse styles that can be used to design a schema, it is quite a
daunting task to identify a single ideal default binding solution. For
situations where several equally good binding alternatives exist, the
specification will describe the alternatives and select one to be the
default binding (see 3).

The binding schema must provide a means to specify an alternative
default binding option for the scope of an entire schema. This
mechanism ensures that if the default binding is not sufficient, that it
can easily be overridden in a portable manner.

4. Provide ability to disable schema validation for unmarshal and
marshal operations

There exist a significant number of scenarios that do not require
validation and/or can not afford the overhead of schema validation. An
application must be provided a means to disable schema validation
9/12/02 JAXB Specification – Public Draft, V0.7 7

Introduction
checking during unmarshal and marshal operations. The goal of this
requirement is to provide the same flexibility and functionality that a
SAX or DOM parser allows for. Please note that this specification can
not define deterministic behavior of Unmarshalling an invalid document
or marshalling an invalid content tree when validation has been
disabled.

1.5 Use Cases

Since the JAXB architecture provides a Java application the ability to
manipulate XML content via generated Java interfaces, all of these uses cases
assume the operation is occuring from within a Java application context.

 ● Access configuration values from a properties file stored in a XML
format.

 ● Tool allowing for the creation or modification to a configuration
properties file represented in XML format.

 ● Receive data in the format of an XML document and would like to
access/update the data without having to write SAX event handlers or
traverse a DOM parse tree.

 ● Validate user-inputted data, for example, from a form presented in a web
browser. Form data could be mapped to an XML document. JAXB
provides capability to validate the accuracy of the data using the
validation constraints of a schema that describes the data collected from
the form.

 ● Bind an XML document into a Java representation, update the content
via Java interfaces, validate this changes against the constraints within
the schema and then write the updated Java representation back to an
XML document format.

 ● Unmarshal an XML document that it is known to already be valid, thus
the application disables validation checking while unmarshalling the
document to improve performance.
8 JAXB Specification – Public Draft, V0.7 9/12/02

Conventions
1.6 Conventions

Within normative prose in this specification, the words should and must are
defined as follows:

 ● should
Conforming implementations are permitted to but need not behave as
described.

 ● must
Conforming implementations are required to behave as described;
otherwise they are in error.

The prefix xsd: is used to refer to schema components in W3C XML Schema
namespace as specified in [XSD Part 1] and [XSD Part 2].

All examples in the specification are for illustrative purposes to assist in
understanding concepts and are non-normative. If an example conflicts with the
normative prose, the normative prose always takes precedence over the
example.
9/12/02 JAXB Specification – Public Draft, V0.7 9

Introduction
1.7 Expert Group Members

The following people have contributed to this specification effort.

Arnaud Blandin, Intalio
Steve Brodsky, IBM
Christian Campo, Software AG
Kohsuke Kawaguchi, Sun
Chris Fry, BEA
Eric Johnson, TIBCO
Anjana Manian, Oracle
Ed Merks, IBM
Greg Messner, The Breeze Factor
Masaya Naito, Fujitsu
David Stephenson, HP
Keith Visco, Intalio
Scott Ziegler, BEA

1.8 Acknowledgements

This document is a derivative work of concepts and an initial draft initially led
by Mark Reinhold of Sun Microsystems. Our thanks to all who were involved in
pioneering that initial effort. The feedback from the Java User community on
the initial JAXB prototype greatly assisted in identifying requirements and
directions..

The data binding experiences of the expert group members have been
instrumental in identifying the proper blend of the countless data binding
techniques that we have considered over the past year. We thank them for their
contributions and their review feedback.

Kohsuke Kawaguchi and Ryan Shoemaker have directly contributed content to
the specification and wrote the companion javadoc. The following JAXB team
members have been invaluable in keeping the specification effort on the right
track: Tom Amiro, Leonid Arbouzov, Evgueni Astigueevitch, Jennifer Ball,
Carla Carlson, Patrick Curran, Scott Fordin, Omar Fung, Peter Kacandes,
Dmitry Khukhro, Tom Kincaid, K. Ari Krupnikov, Ramesh Mandava, Bhakti
Mehta, Ed Mooney, Ilya Neverov, Oleg Oleinik, Brian Ogata, Vivek Pandey,
Cecilia Peltier, Evgueni Rouban and Leslie Schwenk. The following people, all
10 JAXB Specification – Public Draft, V0.7 9/12/02

Acknowledgements
from Sun Microsystems, have provided valuable input to this effort: Roberto
Chinnici, Chris Ferris, Mark Hapner, Eve Maler, Farrukh Najmi, Eduardo
Pelegri-llopart, Bill Shannon and Rahul Sharma.

The JAXB TCK team would like to acknowledge that the NIST XML Schema
test suite[NIST] has greatly assisted the conformance testing of this
specification.
9/12/02 JAXB Specification – Public Draft, V0.7 11

Introduction
12 JAXB Specification – Public Draft, V0.7 9/12/02

9/12/02
C H A P T E R 2
AR C H I T E C TU RE

2.1 Overview

The primary components of the XML data-binding facility described in this
specification are the binding compiler, the binding framework, and the binding
language.

 ● The binding compiler transforms, or binds, a source schema to a set of
content classes in the Java programming language. As used in this
specification, the term schema includes the W3C XML Schema as
defined in the XML Schema 1.0 Recommendation[XSD Part 1][XSD
Part 2].

 ● The binding runtime framework provides the interfaces for the
functionality of unmarshalling, marshalling, and validation for content
classes.

 ● The binding language is an XML-based language that describes the
binding of a source schema to a Java representation. The binding
declarations written in this language specify the details of the package,
interfaces and classes derived from a particular source schema.
JAXB Specification – Public Draft, V0.7 13

Architecture
The intent of Figure 2.1 is to aid understanding the relationship between the
logical concepts to be presented in this chapter.

Figure 2.1 Non-Normative JAXB Architecture diagram

Note that the binding declarations object in the above diagram is logical.
Binding declarations can either be inlined within the schema or they can appear
in an external binding file that is associated with the source schema. Also, note
that the application accesses only the derived content interfaces, factory
methods and javax.xml.bind APIs directly, this convention is necessary to enable
switching between JAXB implementations.

2.1.1 Java Representation

A coarse-grained content bearing schema component, such as a complex type
definition, is generally bound to a content interface. An XML Schema’s
“derived by extension” type definition hierarcy is preserved in a corresponding
Java class hierarchy relationship between content interfaces.

A fine-grained schema component, such as an attribute declaration or an
element declaration with a simple type, is bound directly to a property within a
content interface. A property is realized in a content interface by a set of

Application Code

Source Schema Derived
Interfaces,
Factory Methods

Implementation
classes, helper
classes, ...

Package
javax.xml.bind

XML/Java
Customization
Binding
Declarations

Binding

Binding
Framework
Implementation

Application

Compiler

Schema
14 JAXB Specification –
 Public Draft, V0.7
 9/12/02

Overview
JavaBeans-style access methods. These methods include the usual get and set
methods for retrieving and modifying a property’s value; they also provide for
the deletion and, if appropriate, the re-initialization of a property’s value.

Properties are also used for references from one content instance to another. If
an instance of a schema component X can occur within, or be referenced from,
an instance of some other component Y then the content class derived from Y
will define a property that can contain instances of X.

To add flexibility within the JAXB architecture, a content class is represented as
both a content interface and an implementation of that interface rather than just
a class. This separation enables a sophisticated users of the JAXB architecture
to be able to specify their own implementation of the content interface to be
used withing the binding framework. Typical users will rely on the binding
compiler to generate both schema-derived content interfaces and their
implementations.

2.1.2 Binding Framework

The primary operations that can be performed on the set of schema-derived
content interfaces and implemention classes are those of unmarshalling,
marshalling, and validation.

 ● Unmarshalling is the process of reading an XML document and
constructing a tree of content objects. Each content object corresponds
directly to an instance in the input document of the corresponding
schema component, hence this content tree reflects the document’s
content.

 ● Marshalling is the inverse of unmarshalling, i.e., it is the process of
traversing a content tree and writing an XML document that reflects the
tree’s content.

 ● Validation is the process of verifying that all constraints expressed in the
source schema hold for a given content tree. A content tree is valid if, and
only if, marshalling the tree would generate a document that is valid with
respect to the source schema.

When the unmarshalling process incorporates validation and it successfully
completes without any validation errors , both the input document and the
resulting content tree are guaranteed to be valid. The marshalling process, on
the other hand, does not actually perform validation. If only validated content
9/12/02 JAXB Specification – Public Draft, V0.7 15

Architecture
trees are marshalled, this guarantees that generated XML documents are always
valid with respect to the source schema.

However, always requiring validation during unmarshalling and only allowing
the marshalling of validated content trees proved to be too rigid and restrictive a
requirement. Since existing XML parsers allow schema validation to be
disabled, there exist a significant number of XML processing uses that disable
schema validation to improve processing speed and/or to be able to process
documents containing invalid or incomplete content. To enable the JAXB
architecture to be able to be used in these XML processing scenarios, the
flexibility to enable or disable the validation step within unmarshalling or the
precondition of validating a content tree before marshalling had to be
introduced into the binding framework. It is an implementation specific
behavior on how a JAXB implementation handles unmarshalling of an invalid
document when validation is disabled. The same holds true for marshalling an
invalid content tree. It is expected that once an implementation is aware that it
can not unambiguously complete unmarshalling or marshalling, it will terminate
processing with an exception.

Unmarshalling is not the only means by which a content tree may be created.
Schema-derived content classes also support the programmatic construction of
content trees by direct invocation of the appropriate factory methods. Once
created a content tree may be re-validated, either in whole or in part, at any
time.

2.1.3 Binding Declarations

A particular binding of a given source schema is defined by a set of binding
declarations. Binding declarations are written in a binding language, which is
itself an application of XML. A binding declaration can occur within the
annotation appinfo of each XML Schema component. Alternatively, binding
declarations can occur in an auxilary file, each binding declaration within the
auxilary file is associated to a schema component in the source schema. It was
necessary to support binding declarations external to the source schema in order
to allow for customization of an XML Schemas that one prefers not to modify.
The binding compiler hence actually requires two inputs, a source schema and a
set of binding declarations.

Binding declarations enable one to override default binding rules, thereby
allowing for user customization of the schema-derived content interfaces.
Additionally, binding declarations allows for further refinements to be
16 JAXB Specification – Public Draft, V0.7 9/12/02

Varieties of validation
introduced into the binding to Java representation that could not be derived from
the schema alone.

The binding declarations need not define every last detail of a binding. The
binding compiler assumes default binding declarations for those components of
the source schema that are not mentioned explicitly by binding declarations.
Default declarations both reduce the verbosity of the customization and make it
more robust to the evolution of the source schema. The defaulting rules are
sufficiently powerful that in many cases a usable binding can be produced with
no binding declarations at all. By defining a standardized format for the binding
declarations, it is envisioned that tools would be built to greatly aid the process
of customizing the binding from schema components to a Java representation.

2.2 Varieties of validation

The constraints expressed in a schema fall into three general categories:

 ● A type constraint imposes requirements upon the values that may be
provided by constraint facets in simple type definitions.

 ● A local structural constraint imposes requirements upon every instance
of a given element type, e.g., that required attributes are given values and
that a complex element’s content matches its content specification.

 ● A global structural constraint imposes requirements upon an entire
document, e.g., that ID values are unique and that for every IDREF
attribute value there exists an element with the corresponding ID
attribute value.

A document is valid if, and only if, all of the constraints expressed in its schema
are satisfied. Similarly, a content tree is valid if, and only if, marshalling the
tree would produce a valid document. It would be both inconvenient and
inefficient to have to marshal a content tree just to check its validity.

The manner in which constraints are enforced in a set of derived classes has a
significant impact upon the usability of those classes. All constraints could, in
principle, be checked only during unmarshalling and validation. This approach
would, however, yield classes that violate the fail-fast principle of API design:
Errors should, if feasible, be reported as soon as they are detected. In the context
of schema-derived implementation classes, this principle ensures that violations
9/12/02 JAXB Specification – Public Draft, V0.7 17

Architecture
of schema constraints are signalled when they occur rather than later on when
they may be more difficult to diagnose.

With this principle in mind we see that schema constraints can, in general, be
enforced in three ways:

 ● Static enforcement leverages the type system of the Java programming
language to ensure that a schema constraint is checked at application-
compile time. Type constraints are often good candidates for static
enforcement. If an attribute is constrained by a schema to have a boolean
value, \, e.g., then the access methods for that attribute’s property can
simply accept and return values of type boolean.

 ● Simple dynamic enforcement performs a trivial run-time check and
throws an appropriate exception upon failure. Type constraints that do
not easily map directly to Java classes or primitive types are best
enforced in this way. If an attribute is constrained to have an integer
value between zero and 100, e.g., then the corresponding property’s
access methods can accept and return int values and its mutation method
can throw a run-time exception if its argument is out of range.

 ● Complex dynamic enforcement performs a potentially costly run-time
check, usually involving more than one content object, and throws an
appropriate exception upon failure. Local structural constraints are
usually enforced in this way; the structure of a complex element’s
content, e.g., can in general only be checked by examining the types of
its children and ensuring that they match the schema’s content model for
that element. Global structural constraints must be enforced in this way:
the uniqueness of ID values, e.g., can only be checked by examining the
entire content tree.

It is straightforward to implement both static and simple dynamic checks so as
to satisfy the fail-fast principle. Constraints that require complex dynamic
checks could, in theory, also be implemented so as to fail as soon as possible.
The resulting classes would be rather clumsy to use, however, because it is often
convenient to violate structural constraints on a temporary basis while
constructing or manipulating a content tree.

Consider, e.g., an complex type definition whose content specification is very
complex. Suppose that an instance of the corresponding content interface is to
be modified, and that the only way to achieve the desired result involves a
sequence of changes during which the content specification would be violated.
If the content instance were to check continuously that its content is valid then
the only way to modify the content would be to copy it, modify the copy, and
18 JAXB Specification – Public Draft, V0.7 9/12/02

An example
then install the new copy in place of the old content. It would be much more
convenient to be able to modify the content in place.

A similar analysis applies to most other sorts of structural constraints, and
especially to global structural constraints. Schema-derived classes will therefore
be able to enable or disable a mode that verifies type constraints and will be able
to check structural constraints upon demand.

2.2.1 Handling Validation Failures

While it would be possible to notify a JAXB application that a validation error
has occurred by throwing a JAXBException when the error is detected, this
means of communicating a validation error results in only one failure at a time
being handled. Potentially, the validation operation would have to be called as
many times as there are validation errors. Both in terms of validation processing
and for the applications benefit, it is better to detect as many errors and
warnings as possible during a single validation pass. To allow for multiple
validation errors to be processed in one pass, each validation error is mapped to
a validation error event. A validation error event relates the validation error or
warning encountered to the location of the text or object(s) involved with the
error. The stream of potential validation error events can be communicated to
the application either through a registered validation event handler at the time
the validation error is encountered or via a collection of validation failure events
that the application can request after the operation has completed.

Unmarshalling and on-demand validation of in-memory objects are the two
operations that can result in multiple validation failures. The same mechanism is
used to handle both failure scenarios. See Section 3.3, “General Validation
Processing,” on page 26 for further details.

2.3 An example

Throughout this specification we will refer and build upon the familiar schema
from [XSD Part 0] which describes a purchase order, as a running example to
illustrate various binding concepts as they are defined. Note that all schema
name attributes with values in this font “componentName” are bound by JAXB
technology to either a Java interface or JavaBean like property. Please note that
the derived Java code in the example is close but not exactly what one would get
from the default binding of the schema to Java representation.
9/12/02 JAXB Specification – Public Draft, V0.7 19

Architecture
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="purchaseOrder" type="PurchaseOrderType"/>
<xsd:element name="comment" type="xsd:string"/>

<xsd:complexType name="PurchaseOrderType">
<xsd:sequence>

<xsd:element name="shipTo" type="USAddress"/>

<xsd:element name="billTo" type="USAddress"/>

<xsd:element ref="comment" minOccurs="0"/>

<xsd:element name="items" type="Items"/>

</xsd:sequence>

<xsd:attribute name="orderDate" type="xsd:date"/>

</xsd:complexType>

<xsd:complexType name="USAddress">
<xsd:sequence>

<xsd:element name="name" type="xsd:string"/>

<xsd:element name="street" type="xsd:string"/>

<xsd:element name="city" type="xsd:string"/>

<xsd:element name="state" type="xsd:string"/>

<xsd:element name="zip" type="xsd:decimal"/>

</xsd:sequence>

<xsd:attribute name="country" type="xsd:NMTOKEN" fixed="US"/>

</xsd:complexType>

<xsd:complexType name="Items">
<xsd:sequence>

<xsd:element name="item" minOccurs="1" maxOccurs="unbounded">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="productName" type="xsd:string"/>

<xsd:element name="quantity">
<xsd:simpleType>

<xsd:restriction base="xsd:positiveInteger">

<xsd:maxExclusive value="100"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:element>

<xsd:element name="USPrice" type="xsd:decimal"/>

<xsd:element ref="comment" minOccurs="0">

<xsd:element name="shipDate" type="xsd:date" minOccurs="0"/>

</xsd:sequence>

<xsd:attribute name="partNum" type="SKU" use="required"/>

</xsd:complexType>

</xsd:element>

</xsd:sequence>

</xsd:complexType>

<!-- Stock Keeping Unit, a code for identifying products -->

<xsd:simpleType name="SKU">

<xsd:restriction base="xsd:string">

<xsd:pattern value="\d{3}-[A-Z]{2}"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:schema>
20 JAXB Specification – Public Draft, V0.7 9/12/02

An example
Binding of purchase order schema to a Java representation:

import java.util.Calendar; import java.util.List;

public interface PurchaseOrderType {
USAddress getShipTo(); void setShiptTo(USAddress);<
USAddress getBillTo(); void setBillTo(USAddress);

/** Optional to set Comment property. */

String getComment(); void setComment(String);
ItemsType getItems(); void setItems(ItemsType);

Calendar getOrderDate(); void setOrderDate(Calendar);
};

public interface USAddress {
String getName(); void setName(String);
String getStreet(); void setStreet(String);

String getCity(); void setCity(String);
String getState(); void setState(String);
int getZip(); void setZip(int);

static final String COUNTRY=”USA”;1

};

public interface Items {

static public interface ItemType {

String getProductName(); void setProductName(String);
/** Type constraint on Quantity setter value 0..99.2*/

int getQuantity(); void setQuantity();
int getUSPrice(); void setUSPrice();
/** Optional to set Comment property. */

String getComment(); void setComment(String);
Calendar getShipDate(); void setShipDate(Calemdar);
/** Type constraint on PartNum setter value "\d{3}-[A-Z]{2}".2*/

String getPartNum(); void setPartNum(String);

};

/** Local structural constraint 1 or more instances of Items.ItemType.*/
List getItem();

}

public interface PurchaseOrder extends PurchaseOrderType, javax.xml.bind.Element {};
public interface Comment extends javax.xml.bind.Element{

String getValue(); void setValue(String)};

class ObjectFactory {
PurchaseOrderType createPurchaseOrderType();
USAddress createUSAddress();
Items createItems();
Items.ItemType createItemsItemType();

PurchaseOrder createPurchaseOrder();

Comments createComment();

Comments createComment(String value);

}

1. Appropriate customization required to bind a fixed attribute to a constant value.

2. Type constraint checking only performed if customization enables it and implementation
supports fail-fast checking
9/12/02 JAXB Specification – Public Draft, V0.7 21

Architecture
The purchase order schema does not describe any global structural constraints.

The coming chapters will identify how these XML Schema concepts were
bound to a Java representation. Just as in [XSD Part 0], additions will be made
to the schema example to illustrate the binding concepts being discussed.
22 JAXB Specification – Public Draft, V0.7 9/12/02

9/12/02
C H A P T E R 3
THE BI N D I N G FRA ME WO R K

The binding framework defines APIs to access unmarshalling, validation and
marshalling operations for manipulating XML data and Java content instances.
The framework is presented here in overview; its full specification is available
in a separate document, the javadoc for the package.

The binding framework resides in two main packages. The javax.xml.bind
package defines abstract classes and interfaces that are used directly with
content classes. The javax.xml.bind package defines the
Unmarshaller, Validator, and Marshaller classes which are
auxiliary objects for providing their respective operations. The JAXBContext
class is the entry point for a Java application into the JAXB framework. A
JAXBContext instance manages the binding relationship between XML
element names to Java content interfaces for a JAXB implementation to be used
by the unmarshal, marshal and validation operations. The
javax.xml.bind.helper package provides partial default
implementations for some of the javax.xml.bind interfaces.
Implementations of JAXB can extend these classes and implement the abstract
methods. These APIs are not intended to be directly used by applications using
JAXB architecture. A third package, javax.xml.bind.util, contains
utility classes that may be used by client applications.

Finally, it defines a rich hierarchy of validation event and exception classes for
use when marshalling/unmarshalling errors occur, when constraints are
violated, and when other types of errors are detected.
JAXB Specification – Public Draft, V0.7 23

TheBinding Framework
3.1 Binding Runtime Framework
Rationale

A prior revision of this specification provided a standardized binding runtime
framework and it specified that each schema-derived class was capable of
unmarshalling, marshalling and validating itself using generated Java code.
Design decisions in that standardized framework severely restricted
implementation approaches that could be used to implement the JAXB
architecture. Addtionally, requiring the schema-derived classes to visibly
contain the validation, marshal and unmarshal methods meant that this
architecture would not easily be capable of working with unmodifiable, existing
JavaBean classes.

This version of the specification addresses these issues by not attempting to
standardize the binding runtime framework at this time and not exposing at the
JAXB API layer whether the Java content classes are capable of validating,
marshalling and unmarshalling themselves or whether this functionality exists
external to the instance. There is not enough experience at this time to identify a
single acceptable framework suitable for all. For example, some would like to
pursue reflective, dynamic solutions that provide marshalling/unmarshalling
capabilities while others would like to generate static, fixed code solutions. For
example, some would like to use non-standard pull parsing for unmarshalling
while others would rather leverage JAXP parsing and its validation capbilities
for unmarshalling. It would prematurely restrict the exploration of possible
alternative solutions to attempt to identify a common runtime framework for all
implementations to conform to at this time. It is hoped that as XML processing
technologies mature in the future, it will be possible to identify a common
binding runtime framework in a future version of the specification.

One unfortunate result of not standardizing the binding framework runtime
system is that there is a tight coupling between the schema-derived
implementation classes and the JAXB implementation’s runtime framework.
One is required to regenerate the schema-derived implementation classes when
changing JAXB implementations. However, note that it is recognized that an
application might have the need to use multiple implementations of the JAXB
architecture at the same time and it is a requirement that all implementations
support this feature. For example, a third party library jar that an application
uses might use one JAXB implementation and the application wishes to choose
a different JAXB implementation to use. Details on how this can be achieved
are discussed in the next section on JAXBContext class.
24 JAXB Specification – Public Draft, V0.7 9/12/02

JAXBContext
3.2 JAXBContext

The JAXBContext class provides the client’s entry point to the JAXB API. It
provides an abstraction for managing the XML/Java binding information
necessary to implement the JAXB binding framework operations: unmarshal,
marshal and validate. Addtionally, the JAXBContext class is designed to
ensure that the correct binding framework implementation is used with Java
content implementation classes.

The following summarizes the JAXBContext class defined in package
javax.xml.bind.

public abstract class JAXBContext {

static final String JAXB_CONTEXT_FACTORY;

static JAXBContext newInstance(String contextPath)

static JAXBContext newInstance(String contextPath,

ClassLoader contextPathCL)

abstract Unmarshaller createUnmarshaller();

abstract Marshaller createMarshaller();

abstract Validator createValidator();

}

A client application obtains new instances of this class via the
newInstance(String) factory method.

JAXBContext jc =

JAXBContext.newInstance(“com.acme.foo:com.acme.bar”);

The following ordered lookup procedure for the newInstance()method is
used to determine which concrete implementation of JAXBContext to load:

 ● Search the context path for the first occurrence of a file named
jaxb.properties containing the
javax.xml.bind.context.factory property and use its value.

The contextPath parameter to the newInstance method contains a list of
Java package names that contain implementation specific means for mapping
XML document instances for the specified schema vocabularies to Java content
instances. Typically, the XML/Java binding information is expected to be
generated by the binding compiler. Note that this specification does not specify
how or what format the XML to Java binding information is represented in or
how it is created, it only specifies that the data is expected to be represented in
the list of packages specified to the newInstance method. By allowing for
9/12/02 JAXB Specification – Public Draft, V0.7 25

TheBinding Framework
multiple Java packages to be specified, the JAXBContext instance allows for
the management of multiple schemas at one time. All Java packages specified in
the contextPath parameter must contain XML/Java binding information
from only one JAXB implementation or if there exists an ambiguity in the
multiple schemas being joined by the JAXBContext instance, that a
JAXBException is thrown by the newInstance(String) method.

By enabling a JAXBContext to represent more than one schema at a time, an
Unmarshaller created from it is capable of processing XML instance
documents from more than one schema by one unmarshal invocation. The
use case exists where an application receives an XML document instance from
an external source and the application does not know the precise schema
vocabulary for the document instance but it does know that the document is an
instance of one of several schemas. This use case is the motivation for
JAXBContext to be able to represent multiple schemas at one time.

See the javadoc for JAXBContext for more details on this class.

3.3 General Validation Processing

Three identifiable forms of validation exist within the JAXB architecture
include:

 ● Unmarshal-time validation

This form of validation enables a client application to be notified of
validation errors and warnings detected while unmarshalling XML data
into a Java content tree and is completely orthogonal to the other types
of validation. To enable or disable it, see the javadoc for method
Unmarshaller.setValidating(boolean).

 ● On-demand validation

An application may wish to validate the correctness of the Java content
tree based on schema validation constraints. This form of validation
enables an application to initiate the validation process on a Java
content tree at a point in time that it feels it should be valid. The
application is notified about validation errors and warnings detected in
the Java content tree.

 ● Fail-fast validation
26 JAXB Specification – Public Draft, V0.7 9/12/02

General Validation Processing
This form of validation enables a client application to receive
immediate feedback about a modification to the Java content tree that
violates a type constraint of a Java property. An unchecked exception is
thrown if the value provided to a set method is invalid based on the
constraint facets specified for the basetype of the property. This style of
validation is optional in the initial version of this specification. Of the
JAXB implementations that do support this type of validation, it is
customization time decision to enable or disable fail-fast validation
when setting a property.

Unmarshal-time and on-demand validation use an event driven mechanism to
enable multiple validation errors and warnings to be processed during a single
operation invocation. If the validation or unmarshal operation terminates with
an exception upon encountering the first validation warning or error, subsequent
validation errors and warnings would not be discovered until the first reported
error is corrected and another invocations of the validation or unmarshal
operation to identify all potential valiation warnings/errors. Thus, the validation
event notification mechanism provides the application a more powerful means
to evaluate validation warnings and errors as they occur and allows the
application the ability to participate in the process of determining when a
validation warning or error should abort the current operation being performed.
Thus, an application could allow locally constrained validation problems such
as a value outside of the legal value space to not terminate validation processing.

If the client application does not set an event handler on a Validator or
Unmarshaller instance prior to invoking the validate or unmarshal
operations, then a default event handler will receive notification of any errors or
fatal errors encountered and stop processing the XML data. In other words, the
default event handler will fail on the first error that is encountered.

There are three ways to handle validation events encountered during the
unmarshal and validate operations:

 ● Rely on the default validation event handler
The default handler will fail on the first error or fatal error encountered.

 ● Implement and register a custom validation event handler
Client applications that require sophisticated event processing can
implement the ValidationEventHandler interface and register it
with the Validator or Unmarshaller instance respectively.

 ● Request an error/warning event list after the operation completes.
By registering the ValidationEventCollector helper, a
specialized event handler, with the setEventHandler method, the
9/12/02 JAXB Specification – Public Draft, V0.7 27

TheBinding Framework
ValidationEvent objects created during the unmarshal and
validate operations are collected. The client application can then
request the list after the operation completes.

Validation events are handled differently depending on how the client
application is configured to process them as described previously. However,
there are certain cases where a JAXB implementation needs to indicate that it is
no longer able to reliably detect and report errors. In these cases, the JAXB
implementation will set the severity of the ValidationEvent to
FATAL_ERROR to indicate that the unmarshal or validate operation
should be terminated. The default event handler and
ValidationEventCollector helper class must terminate processing after
being notified of a fatal error. Client applications that supply their own
ValidationEventHandler should also terminate processing after being
notified of a fatal error. If not, unexpected behaviour may occur.

3.4 Validator

The Validator class is responsible for controlling the validation of a content
tree of in-memory objects. The following summarizes the available operations
on the class.

public interface Validator {

ValidationEventHandler getEventHandler()

void setEventHandler(ValidationEventHandler)

boolean validate(java.lang.Object subrootObject)

boolean validateRoot(java.lang.Object rootObject)

}

The JAXBContext class provides a factory to create a Validator
instance. After an application has made a series of modifications to a Java
content tree, the application validates the content tree on-demand. As far as the
application is concerned, this validation takes place against the Java content
instances and validation constraint warnings and errors are reported to the
application relative to the input of the validation, the Java content tree.
Validation is initiated by invoking the validateRoot(Object) method on the root
of the Java content tree or by invoking validate(Object) method to validate any
arbitrary subtree of the Java content tree. The only difference between these two
methods is global constraint checking (i.e. verifying ID/IDREF constraints.)
28 JAXB Specification – Public Draft, V0.7 9/12/02

Unmarshalling
The validateRoot(Object) method does include global constraint checking as
part of its operation, whereas the validate(Object) method does not.

The validator governs the process of validating the content tree, serves as a
registry for identifier references, and ensures that all local and when appropriate
global structural constraints are checked before the validation process is
complete.

If a violation of a local or global structural constraint is detected then the
application is notified of the event with a callback passing an instance of a
ValidationEvent as a parameter.

Design Note – The specification purposely does not state how validation is to be
implemented since there exist several different approaches which have their own
pros and cons. For example, the validation could be completely generated Java
code. It is believed that this approach would yield the fastest validation and easiest
time relating the validation errors and warnings to the Java content instances.
However, this approach will take a large effort to implement for XML Schema,
could result in large generated code size and would take a while to become as
mature as alternative implementation approaches. An alternative implementation
approach is to stream the content tree into SAX 2 events and allow one of the
existing, proven XML Schema validators provide validation.

3.5 Unmarshalling

The Unmarshaller class governs the process of deserializing XML data into
a Java content tree, capable of validating the XML data as it is unmarshalled. It
provides the basic unmarshalling methods:

public interface Unmarshaller {

ValidationEventHandler getEventHandler()

void setEventHandler(ValidationEventHandler)

boolean isValidating()

void setValidating(boolean validating)

UnmarshallerHandler getUnmarshallerHandler()

java.lang.Object unmarshal(java.io.File)
9/12/02 JAXB Specification – Public Draft, V0.7 29

TheBinding Framework
java.lang.Object unmarshal(java.net.URL)

java.lang.Object unmarshal(java.io.InputStream)

java.lang.Object unmarshal(org.xml.sax.InputSource)

java.lang.Object unmarshal(org.w3c.dom.Node)

java.lang.Object unmarshal(javax.xml.transform.Source)

}

The JAXBContext class contains a factory to create an Unmarshaller
instance. The JAXBContext instance manages the XML/Java binding data
that is used by unmarshalling. If the JAXBContext object that was used to
create an Unmarshaller does not contain information to know how to
unmarshal the XML content from a specified input source, then the
unmarshal operation will abort immediately by throwing an
UnmarshalException. There are six convenience methods for
unmarshalling from various input sources.

An application can enable or disable unmarshal-time validation using the
setValidating() method. The application has the option to customize
validation error handling by overriding the default event handler using the
setEventHandler(ValidationEventHandler). The default event
handler aborts the unmarshalling process when the first error validation event is
encountered. Validation processing options are presented in more detail in
Section 3.3, “General Validation Processing.”

When the unmarshalling process detects a structural inconsistency during its
process that it is unable to recover from, it should abort the unmarshal process
by throwing UnmarshalException.

An application has the ability to specify a SAX 2.0 parser to be used by the
unmarshal operation using the
unmarshal(javax.xml.transform.Source) method. Even though
the JAXB Provider’s default parser is not required to be SAX2.0 compliant, all
providers are required to allow an application to specify their own SAX2.0
parser. Some providers may require the application to specify the SAX2.0
parser at binding compile time. See the method javadoc
unmarshal(Source) for more detail on how an application can specify its
own SAX 2.0 parser.
30 JAXB Specification – Public Draft, V0.7 9/12/02

Marshalling
3.6 Marshalling

The Marshaller class is responsible for governing the process of serializing
a Java content tree into XML data. It provides the basic marshalling methods:

interface Marshaller {

static final string JAXB_ENCODING_PROPERTY;

static final string JAXB_FORMATTED_OUTPUT;

static final string JAXB_SCHEMA_LOCATION;

static final string JAXB_NO_NAMESPACE_SCHEMA_LOCATION;

<PROTENTIALLY MORE PROPERTIES...>

java.lang.Object getProperty(java.lang.String name)

void setProperty(java.lang.String name, java.lang.Object value)

void setEventHandler(ValidationEventHandler handler)

ValidationEventHandler getEventHandler()

void marshal(java.lang.Object obj, java.io.Writer writer)

void marshal(java.lang.Object obj, java.io.OutputStream os)

void marshal(java.lang.Object obj, org.xml.sax.ContentHandler)

void marshal(java.lang.Object obj, org.w3c.dom.Node)

void marshal(java.lang.Object obj, javax.xml.transform.Result)

}

The JAXBContext class contains a factory to create a Marshaller
instance.There are convenience method overloadings of the marshal()
method allow for marshalling a content tree to common Java output targets and
to common XML ouptut targets of a stream of SAX2 events or a DOM parse
tree.

Although each of the marshal methods accepts a java.lang.Object as its
first parameter, JAXB implementations are not required to be able to marshal
any arbitrary java.lang.Object. If the JAXBContext object that was
used to create this Marshaller does not have enough information to know
how to marshal the object parameter (or any objects reachable from it), then the
marshal operation will throw a MarshalException. Even though JAXB
implementions are not required to be able to marshal arbitrary
java.lang.Object objects, an implementation is allowed to support this
type of marshalling.
9/12/02 JAXB Specification – Public Draft, V0.7 31

TheBinding Framework
The marshalling process does not validate the content tree being marshalled, but
if the marshalling process detects a structural inconsistency during its process
that it is unable to recover from, it should abort the marshal process by throwing
MarshalException.

Client applications are not required to validate the Java content tree prior to
calling one of the marshal API’s. Furthermore, there is no requirement that the
Java content tree be valid with respect to its original schema in order to marshal
it back into XML data. Different JAXB Providers will support marshalling
invalid Java content trees at varying levels, however all JAXB Providers must
be able to marshal a valid content tree back to XML data. A JAXB Provider
must throw a MarshalException when it is unable to complete the marshal
operation due to invalid content. Some JAXB Providers could fully allow
marshalling invalid content, others can fail on the first validation error.

3.6.1 Marshalling Properties

The following subsection highlights properties that can be used to control the
marshal process. These properties must be set prior to a marshal operation being
started, the behavior is undefined if these attributes are altered in the middle of a
marshal operation. The following standard properties have been identified:

 ● jaxb.encoding: output character encoding

 ● jaxb.formatted.output:
true - human readable indented xml data
false - unformatted xml data

 ● jaxb.schemaLocation
This property allows the client application to specify an
xsi:schemaLocation attribute in the generated XML data.

 ● jaxb.noNamespaceSchemaLocation
This property allows the client application to specify an
xsi:noNamespaceSchemaLocation attribute in the generated
XML data.
32 JAXB Specification – Public Draft, V0.7 9/12/02

Validation Handling
3.7 Validation Handling

Methods defined in the binding framework can cause validation events to be
delivered to the client application’s ValidationEventHandler and setter
methods generated in schema-derived implementation classes are capable of
throwing TypeConstraintExceptions, all of which are defined in the
binding framework.

The following list describes the primary event and constraint-exception classes:

 ● An instance of a TypeConstraintException subclass is thrown
when a violation of a dynamically-checked type constraint is detected.
Such exceptions will be thrown by property-set methods, for which it
would be inconvenient to have to handle checked exceptions; type-
constraint exceptions are therefore unchecked, i.e, this class extends
java.lang.RuntimeException. The constraint check is always
performed prior to the property-set method updating the value of the
property, thus if the exception is thrown, the property is guaranteed to
retain the value it had prior to the invocation of the property-set method
with an invalid value. This functionality is optional to implement in this
version of the specification. Additionally, a customization mechanism is
provided to control enabling and disabling this feature.

 ● An instance of a ValidationEvent is delivered whenever a violation
is detected during on-demand validation or unmarshal-time validation.
Additionally, ValidationEvents can be discovered during marshalling
such as ID/IDREF violations and print conversion failures. These
violations may indicate local and global structural constraint violations,
type conversion violations, type constraint violations, etc.

 ● Since the unmarshal operation involves reading an input document,
lexical well-formedness error may be detected or an I/O error may occur.
In these cases, an UnmarshalException will be thrown to indicate
that the JAXB Provider is unable to continue the unmarshal operation.

 ● During the marshal operation, the JAXB Provider may encounter errors
in the Java content tree that prevent it from being able to complete. In
these cases, a MarshalException will be thrown to indicate that the
marshal operation can not be completed.
9/12/02 JAXB Specification – Public Draft, V0.7 33

TheBinding Framework
34 JAXB Specification – Public Draft, V0.7 9/12/02

9/12/02
C H A P T E R 4
JAV A REP R E S EN TA T I ON OF

XML CONTENT

This section defines the basic binding representation of package, content and
element interfaces, properties, typesafe enum class within the Java
programming language. Each section briefly states the XML Schema
components that could be bound to the Java representation. A more rigourous
and thourough description of possible bindings and default bindings occurs in
Chapter 5, “Binding XML Schema to Java Representations” and in Chapter 6,
“Customization.”

4.1 Mapping between XML Names and
Java Identifiers

XML schema languages use XML names, i.e. , strings that match the Name
production defined in XML 1.0 (Second Edition) to label schema components.
This set of strings is much larger than the set of valid Java class, method, and
constant identifiers. “Binding XML Names to Java Identifiers” on page 157
specifies an algorithm for mapping XML names to Java identifiers in a way that
adheres to standard Java API design guidelines, generates identifiers that retain
obvious connections to the corresponding schema, and is unlikely to result in
many collisions. It is necessary to rigorously define a standard way to perform
this mapping so all implementations of this specification perform the mapping
in the same compatible manner.
JAXB Specification – Public Draft, V0.7 35

Java Representation of XML Content
4.2 Java Package

Just as the target XML namespace provides a naming context for the named
type definitions, named model groups, global element declarations and global
attribute declarations for a schema vocabulary, the Java package provides a way
to group Java interfaces and classes within a naming context. It is natural to map
the target namespace of a schema to be the package that contains the Java
content interfaces representing the structural content model of the document.

A package consists of:

 ● A name, which is either derived directly from the XML namespace URI
as specifed in Section C.4, “Generating a Java package name” or
specified by a binding customization of the XML namespace URI as
described in Section 6.6.1.1, “package.

 ● Set of Java content interfaces representing the content models declared
within the schema;

 ● Set of Java element interfaces representing element declarations
occuring within the schema. Section 5.7.1, “Bind to Java Element
Interface” discusses the binding of an element declaration in more detail.

 ● Class ObjectFactory containing:

❍ An instance factory method for each Java content interface and Java
element interface within the package.

Given Java content interface named Foo, here is the derived factory
method.

public static Foo createFoo() throws JAXBException;

❍ Dynamic instance factory allocator

Create an instance of the specified Java content interface.

public static Object newInstance(Class javaContentInterface)

throws JAXBException;

 ● Set of typesafe enum classes;

 ● Package javadoc.

Example:

Purchase Order Schema fragment with Target Namespace:
36 JAXB Specification – Public Draft, V0.7 9/12/02

Typesafe Enum Class
<xsd:schema xmlns="http://www.w3.org/2001/XMLSchema"

xmlns:po="http://www.example.com/PO1"

targetNamespace="http://www.example.com/PO1">

<xsd:element name="purchaseOrder" type="po:PurchaseOrderType"/>

<xsd:element name="comment" type="string"/>

...

</xsd:schema>

Default derived Java code:

import javax.xml.bind.Element;

package com.example.PO1;

interface PurchaseOrderType { };

interface PurchaseOrder extends PurchaseOrderType, Element;

interface Comment { String getValue(); void setValue(String); }

...

class ObjectFactory {

PurchaseOrderType createPurchaseOrderType();

PurchaseOrder createPurchaseOrder();

Comment createComment(String value);

...

}

4.3 Typesafe Enum Class

A simple type definition whose value space is constrained by an enumeration is
worth consideration for binding to a Java typesafe enum class. The typesafe
enum design pattern is described in detail in [BLOCH]. To summarize the
concept, if an application wishes to refer to the values of a class by descriptive
constants and manipulate those constants in a type safe manner, one should
consider binding the xml component to a typesafe enum class.

A typesafe enum class consists of:

 ● A name, which is either computed directly from an XML name or
specified by a binding customization for the schema component;

 ● A package name, which is either computed from the target namespace of
the schema component or specified within a binding declaration as a
customization of the target namespace or a specified package name for
components that are scoped to no target namespace.
9/12/02 JAXB Specification – Public Draft, V0.7 37

Java Representation of XML Content
 ● Outer Class Names is “.” separated list of outer class names;

By default, if the XML component responsible for a typesafe enum
class to be generated is scoped within a complex type as opposed to a
global scope, the typesafe enum class should occur as a nested class
within the Java content interface representing the complex type scope.
Absolute class name is PackageName.[OuterClassNames.]Name.
Note: Outer Class Name is null if interface is a top-level interface.

 ● Set of enum constants

 ● Set of enumvalue constants

 ● Class javadoc is a combination of a documentation annotation from the
schema component and/or javadoc specified by customization.

An enum constant consists of:

 ● A name, which is either computed from the value or specified by
customization;

 ● A datatype for the constant;

 ● A value for the constant;

 ● Javadoc for the constant field is a combination of a documentation
annotation for an enumeration value facet and/or javadoc specified by
customization.

An enumvalue constant consists of:

 ● A name, which is either computed from the value or specified by
customization;

 ● A datatype for the constant;

 ● A value for the constant.

4.4 Java Content Interface

Complex type definitions from an XML Schema is the building blocks of XML
schema for defining user-defined complex content. They are bound to a Java
content interface. The attributes and children element content of these schema
building blocks are represented as properties of the content interface that are
introduced in Section 4.5, “Properties,” on page 40.
38 JAXB Specification – Public Draft, V0.7 9/12/02

Java Content Interface
A Java content interface is defined by:

 ● A name, which is either computed directly from an XML name or
specified by a binding customization for the schema component;

 ● A package name, which is either computed from the target namespace of
the schema component or specified by binding customization of the
target namespace or a specified package name for components that are
scoped to no target namespace.

 ● The outer class name context is dot-separated list of Java class names.

By default, if the XML schema component responsible for a Java
content interface to be generated is scoped within a complex type as
opposed to a global scope, the complex class should occur as a nested
class within the Java content interface representing the complex type
scope.

Absolute class name is PackageName.[OuterClassNames.]Name.
Note: Outer Class Name is null if interface is a top-level interface.

 ● A base interface that this interface extends. See Section 5.3, “Complex
Type Definition,” on page 62 for further details.

 ● Set of Java properties which provide access and modification to the
attributes and content model represented by the interface.

 ● A local structural constraint predicate represents all the structural
constraints for the content of the class. The constraints include atttribute
occurrences and local structural constraints detailed in Section 2.2,
“Varieties of validation,” on page 17.

 ● Class javadoc is a combination of a documentation annotation from the
schema component and/or javadoc specified within customization.

 ● A factory method is generated in the package’s ObjectFactory class
introduced in Section 4.2, “Java Package”. The factory method returns
the type of the Java content interface. The name of the factory method is
generated by concatenating the following components:

❍ The string constant create.
❍ If the Java content interface is nested within another interface, then the

concatenation of all outer Java class names.
❍ The name of the Java content interface.

For example, a Java content interface named Foo that is nested within
Java content interface Bar would have the following factory method
signature generated in the containing Java package’s ObjectFactory class:
9/12/02 JAXB Specification – Public Draft, V0.7 39

Java Representation of XML Content
Bar.Foo createBarFoo()

4.5 Properties

The binding compiler binds local schema components to properties within a
Java content interface.

A property is defined by:

 ● A name, which is either computed from the XML name or specified by
a binding customization for the schema component;

 ● A base type, which may be a Java primitive type (e.g., int) or a
reference type.

 ● An optional predicate, which is a mechanism that tests values of the base
type for validity and throws a TypeConstraintException if a type
constraint expressed in the source schema is violated. 1

 ● An optional collection type, which is used for properties whose values
may be composed of more than one value.

 ● A default value.

A property is realized by a set of access methods. Several property models are
identified in the following subsections, each adds additional functionally to the
basic set of access methods.

A property’s access methods are named in the standard JavaBeans style: The
name-mapping algorithm is applied to the property name and then each method
name is constructed by prepending the appropriate prefix verb (get, set, etc.).

A property is said to have a set value if that value was assigned to it during
unmarshalling2 or by invoking its mutation method. The value of a property is
its set value, if defined; otherwise, it is the property’s schema specified default
value, if any; otherwise, it is the default initial value for the property’s base type
as it would be assigned for an uninitialized field within a Java class3.

1. Note that it is optional for a JAXB implementation to support type constraint checks when
setting a property in this version of the specification.
40 JAXB Specification – Public Draft, V0.7 9/12/02

Properties
4.5.1 Simple Property

A non-collection property prop with a base type Type is realized by the two
methods

where Id is a metavariable that represents the Java method identifier computed
by applying the name mapping algorithm described in Section C.2, “The Name
to Identifier Mapping Algorithm” to prop. There is one exception to this general
rule in order to support the boolean property described in [BEANS]. When Type

is boolean, the getId method specified above is replaced by the method
signature, boolean isId().

 ● The get or is method returns the property’s value as specified in the
previous subsection. If null is returned, the property is considered to be
absent from the XML content that it represents.

 ● The set method defines the property’s set value to be the argument
value. If the argument value is null, the property’s set value is
discarded. Prior to setting the property’s value when TypeConstraint
validation is enabled4, a non-null value is validated by applying the
property’s predicate, which may throw a
TypeConstraintException. If the
TypeConstraintException is thrown, the property retains the
value it had prior to the set method invocation.

When the base type for a property is a primitive non-reference type, the
corresponding Java wrapper class can be used as the base type for the property
to enable invoking the set method with a null parameter to discard a property’s
set value. See Section 4.5.3, “Constant Property,” on page 46 for an alternative

2. An unmarshalling implementation should distinguish between a value from an XML instance
document and a schema specified defaulted value when possible. A property should only be
considered to have a set value when there exists a corresponding value in the XML content
being unmarshalled. Unfortuately, unmarshalling implementation paths do exist that can not
identify schema specified default values, this situation is considered a one-time transformation
for the property and the defaulted value will be treated as a set value.

3. Namely, a boolean field type defaults to false, integer field type defaults to 0, object
reference field type defaults to null, floating point field type defaults to +0.0f.

public Type getId ();

public void setId (Type value);

4. Note that it is optional for a JAXB implementation to support type constraint checks when
setting a property in this version of the specification.
9/12/02 JAXB Specification – Public Draft, V0.7 41

Java Representation of XML Content
to using a wrapper class to enable the abilility to discard the set value for a
property with a primitive non-reference base type.

Example

In the purchase order schema, the partNum attribute of the item element
definition is declared:

<xsd:attribute name="partNum" type="SKU" use="required"/>

This element declaration is bound to a simple property with the base type
java.lang.String:

public String getPartNum();

public void setPartNum(String x);

The setPartNum method could apply a predicate to its argument to ensure
that the new value is legal, i.e., that it is a string value that complies with the
constraints for the simple type definition, SKU, that derives by restriction from
xsd:string and restricts the string value to match the regular expression
pattern, "\d{3}-[A-Z]{2}".

It is legal to pass null to the setPartNum method even though the
partNum attribute declaration’s attribute use is specified as required. The
determination if partNum content actually has a value is a local structural
constraint rather than a type constraint, so it is checked during validation rather
than during mutation.

4.5.2 Collection Property

A collection property may take the form of an indexed property or a list
property. The base type of an indexed property may be either a primitive type or
a reference type, while that of a list property must be a reference type.

4.5.2.1 Indexed Property

This property follows the indexed property design pattern for a multi-valued
property from the JavaBean specification. An indexed property prop with base
type Type is realized by the five methods

public Type [] getId();

public void setId (Type [] value);
42 JAXB Specification – Public Draft, V0.7 9/12/02

Properties
regardless of whether Type is a primitive type or a reference type. Id is
computed from prop as it was defined in simple property.

 ● The array getter method returns an array containing the property’s
value. If the property has no set value then null is returned.

 ● The array setter method defines the property’s set value. If the
argument itself is null then the property’s set value, if any, is
discarded. If the argument is not null and TypeConstraint validation is
enabled 5 then the sequence of values in the array are first validated by
applying the property’s predicate, which may throw a
TypeConstraintException. If the
TypeConstraintException is thrown, the property retains the
value it had prior to the set method invocation. The property’s value is
only modified after the TypeConstraint validation step.

 ● The indexed setter method allows one to set a value within the array.
The runtime exception,
java.lang.ArrayIndexOutOfBoundsException, may be
thrown if the index is used outside the current array bounds. If the value
argument is non-null and TypeConstraint validation is enabled5, the
value is validated against the property’s predicate, which may throw an
unchecked TypeConstraintException. If
TypeConstraintException is thrown, the array index remains set
to the same value it had before the invocation of the indexed setter
method.

 ● The indexed getter method returns a single element from the array. The
runtime exception,
java.lang.ArrayIndexOutOfBoundsException, may be
thrown if the index is used outside the current array bounds. In order to
change the size of the array you must use the array set method to set a
new (or updated) array.

public void setId(int index, Type value);

public Type getId(int index);

public int getIdLength();

5. Note that it is optional for a JAXB implementation to support type constraint checks when
setting a property in this version of the specification.

public Type [] getId();
9/12/02 JAXB Specification – Public Draft, V0.7 43

Java Representation of XML Content
 ● The indexed length method returns the length of the array. This method
enables one to iterate over all the items within the indexed property using
the indexed mutators exclusively. Exclusive use of indexed mutators and
this method enable one to avoid the allocation overhead associated with
array getter and setter methods.

The arrays returned and taken by these methods are not part of the content
object’s state. When an array getter method is invoked it creates a new array
to hold the returned values. Similarly, when the corresponding array set
method is invoked, it copies the values from the argument array.

To test whether an indexed property has a set value, invoke its array getter
method and check that the result is not null. To discard an indexed property’s
set value, invoke its array setter method with an argument of null.

See the customization attribute collectionType in Section 6.5,
“<globalBindings> Declaration” and Section 6.8, “<property>
Declaration” on how to enable the generation of indexed property methods for a
collection property.

Example

In the purchase order schema, we have the following repeating element
occurance of element item within complex type definition for Items.

<xsd:complexType name="Items">
<xsd:sequence>

<xsd:element name="item" minOccurs="1"maxOccurs="unbounded">

<xsd:complexType>...</xsd:complexType>

</xsd:element>

</xsd:complexType>

The content specification of this element type could be bound to an array
property realized by these four methods:

public Items.ItemType[] getItem();

public void setItem(Items.ItemType[] value);

public void setItem(int index, Items.ItemType value);

public Items.ItemType getItem(int index);
44 JAXB Specification – Public Draft, V0.7 9/12/02

Properties
4.5.2.2 List Property

A list property prop with base type Type is realized by the method where List

is the interface java.util.List, Id is defined as above.

 ● The get method returns an object that implements the List interface,
is mutable, and contains the values of type Type that constitute the
property’s value. If the property does not have a set value and a schema
default value, an empty List is returned.

The list returned by the get method is a component of the content object’s
state. Modifications made to this list will, in effect, be modifications to the
content object. If TypeConstraint validation is enabled, the list’s mutation
methods apply the property’s predicate to any non-null value before adding
that value to the list or replacing an existing element’s value with that value; the
predicate may throw a TypeConstraintException.

Design Note – A future version of the Java programming language may support
generic types, in which case this specification may be revised so that list-retrieval
methods have the type List<Type>.

Example

The content specification of the item element type could alternatively be
bound to a list property realized by one method:

public List getItem();

The list returned by the getItem method would be guaranteed only to contain
instances of the Item class. As before, its length would only be checked during
validation, since the requirement that there be at least one item in an element
instance of complex type definition Items is a structural constraint rather than
a type constraint.

public List getId();
9/12/02 JAXB Specification – Public Draft, V0.7 45

Java Representation of XML Content
4.5.3 Constant Property

An attribute use named prop with a schema specified fixed value can be bound
to a Java constant value. Id is computed from prop as it was defined in simple

property. The value of the fixed attribute of the attribute use provides the
<fixedValue> constant value.

The binding customization attribute, fixedAttributeToConstantProperty,
enables this binding style. Section 6.5, “<globalBindings>
Declaration” and Section 6.8, “<property> Declaration” describe how to
use this attribute.

4.5.4 isSet Property Modifier

The isSet property modifier generates a method for a property that enables
one to distinguish if a property’s value is a set value or a defaulted value.

where Id is defined as it was for simple property.

 ● The isSet method returns a boolean value of true if the property has
been set via assignment to it during unmarshalling or by invocation of
the mutation method setId with a non-null value. 6

To aid the understanding of what isSet method implies, note that the
marshalling process only marshals set values into XML content.

A simple property with a non-reference base type requires an additional
method to enable one to discard the set value for a property.

static final public Type ID = <fixedValue>;

public boolean isSetId();

6. A Java application does not need to distinguish between the absence of a element from the
infoset and when the element occured with nil content. Thus, in the interest of simplifying the
generated API, methods were not provided to distinguish between the two. The marshalling
process should always output an element with nil content for a property that is not set and it
represents a required nillable element declaration.

public void unsetId();
46 JAXB Specification – Public Draft, V0.7 9/12/02

Properties
 ● The unset method marks the property as having no set value. A
subsequent call to getId method returns the schema specified default if
it existed; otherwise, the Java default initial value for Type.

All other property kinds rely on the invocation of their set method with a value
of null to discard the set value of its property. Since this is not possible for
primitive types, the additional method is generated for this case.

Example

In the purchase order schema, the partNum attribute of the element item’s
anonymous complex type is declared:

<xsd:attribute name="partNum" type = "SKU" use="required"/>

This attribute could be bound to a isSet simple property realized by these four
methods:

public int getPartNum();

public void setPartNum(String skuValue);

public boolean isSetPartNum();

public void unsetPartNum();

It is legal to invoke the unsetPartNum method even though the attribute’s
use is “required” in the XML Schema. That the attribute actually has a
value is a local structural constraint rather than a type constraint, so it is checked
during validation rather than during mutation.

The binding customization attribute, generateIsSetMethod, enables/disables the
automatic generation of these methods when a property has a schema default
value or if a simple property has a non-reference base type.

4.5.5 Property Summary

The following core properties have been defined:

 ● Simple property - JavaBean design pattern for single value property
 ● Indexed property - JavaBean design pattern for multi-valued property
 ● List property - Leverages java.util.Collection
 ● Constant property

The methods generated for these four core property kinds are sufficient for most
applications. Configuration-level binding schema declarations enable an
9/12/02 JAXB Specification – Public Draft, V0.7 47

Java Representation of XML Content
application to request finer control than provided by the core properties. One
such property modifier that has been identified is the isSet propery modifier that
allows an application to determine if a property’s value was set or defaulted.

4.6 Java Element Interface

Based on criteria to be identified in Section 5.7.1, “Bind to Java Element
Interface,” on page 71, the binding compiler binds an element declaration to a
Java element interface. An element interface is defined as:

 ● An interface name is generated from the element declaration’s name
using the XML Name to Java identifier name mapping algorithm
specified in Section C.2, “The Name to Identifier Mapping Algorithm,”
on page 157.

 ● If the element declaration’s type definition is a:

❍ Complex Type definition

The element interface extends the Java content interface representing
the complex type definition of the element declaration

❍ Simple type definition

The generated element interface has a Java property named “value”.

The factory method within the package’s ObjectFactory method to
create an instance of the element takes a value parameter of the Java
class binding of the simple type definition.

 ● Scope of element class

❍ Global element declaration are declared in package scope

❍ Local element declaration occur in the scope of the first ancestor
complex type definition that contains the declaration.

 ● Each generated Element interface must extend the Java marker interface
javax.xml.bind.Element. This enables JAXB implementations
to differentiate between instances representing a XML element directly
and instances representing the type of the XML element.

 ● A factory method is generated in the package’s ObjectFactory class
introduced in Section 4.2, “Java Package”. The factory method returns
48 JAXB Specification – Public Draft, V0.7 9/12/02

Java Element Interface
the type of the Java element interface. The name of the factory method is
generated by concatenating the following components:

❍ The string constant create.
❍ If the Java element interface is nested within another interface, then the

concatenation of all outer Java class names.
❍ The name of the Java content interface.

For example, a Java element interface named Foo that is nested within
Java content interface Bar would have the following factory method
generated in the containing Java package’s ObjectFactory class:

Bar.Foo createBarFoo()

 ● The optional methods setNil() and isNil() enable Element
instances to be set to the XML concept of nil and to check if the
Element instances is nil. See Section 5.7.1, “Bind to Java Element
Interface,” on page 71 for details on when these methods are generated.

Example 1:

Given global XML Schema element declaration with a complex type definition:

<xsd:complexType name="AComplexType">

<xsd:sequence>

<xsd:element name="A" type="xsd:int"/>

<xsd:element name="B" type="xsd:string"/>

</xsd:sequence>

<xsd:element name="AnElement" type="AComplexType"/>

Its Java representation:

public interface AComplexType {

void setA(int value);

int getA();

void setB(String value);

String getB();

};

public interface AnElement extends

AComplexType, javax.xml.bind.Element {};

public class ObjectFactory {

AnElement createAnElement();

AComplexType createAComplexType();

... other factory methods ...

}

9/12/02 JAXB Specification – Public Draft, V0.7 49

Java Representation of XML Content
Example 2:

Given local XML Schema element declaration with a simple type definition:

<xsd:complexType name="AComplexType">7

...

<xsd:element name="ASimpleElement" type="xsd:integer"/>

Its Java representation:

public interface AComplexType {

public interface ASimpleElement extends javax.xml.Element {

void setContent(int value);

int getContent();

}

...

};

class ObjectFactory {

...

static AComplexType.ASimpleElement

createAComplexTypeASimpleElement(int value);

...

}

7. Assume that this schema fragment meets one of the criteria specified in
Section 5.7.1, “Bind to Java Element Interface,” on page 71 that requires that
<ASimpleElement> element be bound to a Java element interface.
50 JAXB Specification – Public Draft, V0.7 9/12/02

9/12/02
C H A P T E R 5
BI N D I N G XML SC H EMA T O

JA VA REPRESENTATIO NS

This section describes possible binding of XML schema components to a Java
representation. Default binding behavior is defined in this chapter and the
possible customization of the default binding behavior is specified in the
following chapter.

5.1 Overview

This section identifies possible bindings of a subset of XML Schema
components. Unsupported XML Schema components are specified in
Section E.2, “Not Required XML Schema concepts,” on page 174.

The abstract model described in [XSD Part 1] is used to discuss the default
binding of each schema component types. Each schema component is described
as a list of properties and the semantics of these properties. References to
properties of a schema component as defined in [XSD Part 1] are denoted using
the notation {schema property} throughout this section. References to properties
of information items as defined in [XML-Infoset] are denoted in bold within
square brackets , for example [attribute].

Please note that while default binding behavior is being specified in this section,
default binding can be overridden at a global scope or on a case-by-case basis
using binding schema customization. Users and JAXB implementors can use the
global configuration capabilities of the custom binding mechanism to override
the specified defaults in a portable manner. All JAXB implementations are
required to implement the default bindings that are specified in this chapter.
JAXB Specification – Public Draft, V0.7 51

Binding XML Schema to Java Representations
Note that all example binding from XML Schema fragments to Java code are
non-normative and are intended to assist understanding of the concepts being
specified.

5.2 Simple Type Definition

A schema component using a simple type definition typically binds to a Java
property. Since there are different kinds of such schema components, the
following Java property attributes (common to the schema components) are
specified here and include:

 ● base type
 ● collection type if any
 ● predicate

The rest of the Java property attributes are specified in the schema component
using the simple type definition.

5.2.1 Type Categorizaton

The simple type definitions can be categorized as:

 ● schema built-in datatypes [XSD PART2]
 ● user-derived datatypes

Conceptually, there is no difference between the two. A schema built-in
datatype can be a primitive datatype. But it can also, like a user-derived
datatype, be derived from a schema built-in datatype. Hence no distinction is
made between the schema built-in and user-derived datatypes.

The specification of simple type definitions is based on the abstract model
described in Section 4.1, “Simple Type Definition” [XSD PART2]. The abstract
model defines three varieties of simple type definitions: atomic, list, union. The
Java property attributes for each of these are described next.
52 JAXB Specification – Public Draft, V0.7 9/12/02

Simple Type Definition
5.2.2 Atomic Datatype

If an atomic datatype has been derived by restriction using an “enumeration”
facet, the Java property attributes are defined by Section 5.2.3, “Type Safe
Enumeration”. Otherwise they are defined as described here.

The base type is derived upon the XML builtin type hiearchy [XSD PART2,
Section 3] reproduced below.

Figure 5.1 XML Built-In Type Hierarchy

anySimpleType

stringstringstring decimaldecimaldecimal

normalizedStringnormalizedStringnormalizedString integerintegerinteger

NCNameNCNameNCName shortshortshort unsignedIntunsignedIntunsignedInt

IDREFIDREFIDREFIDIDID ENTITYENTITYENTITY bytebytebyte unsignedShortunsignedShortunsignedShort

unsignedByteunsignedByteunsignedByte

languagelanguagelanguage NameNameName NMTOKENNMTOKENNMTOKEN negativeIntegernegativeIntegernegativeInteger intintint unsignedLongunsignedLongunsignedLong positiveIntegerpositiveIntegerpositiveInteger

tokentokentoken nonPositiveIntegernonPositiveIntegernonPositiveInteger longlonglong nonNegativeIntegernonNegativeIntegernonNegativeInteger

durationdurationduration dateTimedateTimedateTime timetimetime datedatedate gYearMonthgYearMonthgYearMonth gYeargYeargYear gMonthDaygMonthDaygMonthDay gDaygDaygDay gMonthgMonthgMonth

booleanbooleanboolean base64Binarybase64Binarybase64Binary hexBinaryhexBinaryhexBinary floatfloatfloat doubledoubledouble anyURIanyURIanyURI QNameQNameQName NOTATIONNOTATIONNOTATION

java.util.Calendarjava.util.Calendar

java.lang.String

boolean byte[] float doublebyte[] javax.xml.namespace.QName

NOT_SUPPORTED

NOT_SUPPORTED

java.math.BigDecimal

java.math.BigInteger

long

long

int

short

byte int

short

java.lang.Object

java.util.Calendar

built-in derived types unsupported types Java classes

ur types built-in primitive types
9/12/02 JAXB Specification – Public Draft, V0.7 53

Binding XML Schema to Java Representations
The above diagram is the same as the one in [XSD PART2] except for the
following:

 ● Only schema built-in atomic datatypes derived by restriction have been
shown.

 ● The schema built-in atomic datatypes have been annotated with Java data
types from the “Java Mapping for XML Schema Builtin Types” table
below.

The following is a mapping for subset of the XML schema built-in data types to
Java data types. This table is used to specify the base type later.

The mapping shown in the table above is aligned with the default mapping of
XML schema builtin atomic datatypes in [JAX-RPC]. These are indicated in bold

Table 5-1 Java Mapping for XML Schema Bultin Types

XML Schema Data type Java Data Type

xsd:string java.lang.String

xsd:integer java.math.BigInteger

xsd:int int

xsd.long long

xsd:short short

xsd:decimal java.math.BigDecimal

xsd:float float

xsd:double double

xsd:boolean boolean

xsd:byte byte

xsd:QName javax.xml.namespace.QName

xsd:dateTime java.util.Calendar

xsd:base64Binary byte[]

xsd:hexBinary byte[]

xsd:unsignedInt long

xsd:unsignedShort int

xsd:unsignedByte short

xsd:time java.util.Calendar

xsd:date java.util.Calendar

xsd:anySimpleType java.lang.String
54 JAXB Specification – Public Draft, V0.7 9/12/02

Simple Type Definition
in the above table. In additon, it also defines mappings for datatypes not specified in
[JAX-RPC].

The base type is determined as follows:

1. If a mapping is defined for the simple type in Table 5.1, the base type de-
faults to its defined Java datatype.

2. Othewise, the base type must be the result obtained by repeating the step 1
using the {base type definition}. For schema datatypes derived by
restriction, the {base type definition} represents the simple type definition
from which it is derived. Therefore, repeating step 1 with {base type
definition} essentially walks up the XML Schema built-in type hiearchy
until a simple type definition which is mapped to a Java datatype is found.

The simple type definition xsd:anySimpleType is always mapped
to java.lang.String. Since all XML simple types are derived
from xsd:anySimpleType , a mapping for a simple type definition
to java.lang.String is always guaranteed.

The Java property predicate must be as specified in “Simple Type Definition
Validation Rules”, Section 4.1.4[XSD PART2].

Example:

The following schema fragment (taken from Section 4.3.1, “Length” [XSD
PART2]):

<xsd:simpleType name="productCode">

<xsd:restriction base="xsd:string">

<xsd:length value="8" fixed="true"/>

</xsd:restriction>

</xsd:simpleType>

The facet “length” constrains the length of a product code (represented by
productCode) to 8 characters (see section 4.3.1 [XSD PART2] for details).

The Java property attributes corresponding to the abve schema fragment are:

 ● There is no Java datatype mapping for xsd:productCode. So the
Java datatype is determined by walking up the built-in type hierarchy.

 ● The {base type definition} of xsd:productCode is
xsd:string. xsd:string is mapped to java.lang.String
(as indicated in the table, and assuming no customization). Therefore,
9/12/02 JAXB Specification – Public Draft, V0.7 55

Binding XML Schema to Java Representations
xsd:productCode is mapped to the Java datatype
java.lang.String.

 ● The predicate enforces the constraints on the length.

5.2.3 Type Safe Enumeration

An atomic type that is derived by restriction with enumeration facet(s) and
whose restriction base type (represented by {base type definition}) is
“xsd:NCName” or derived from it must be mapped to a typesafe enum class.
Atomic types derived from other restriction base types may be bound to
typesafe enumeration class using customization as specified in Section 6.10,
“<typesafeEnum> Declaration”.

The default binding described here is technically aligned with JAX-RPC
specified typesafe enumeration binding but there are a few differences that are
discussed in Section F.3, “Bind XML enum to a typesafe enumeration.”

5.2.4 Enumeration Class

A type safe enum class must be defined as specified here. An example is
provided first followed by a more formal specification.

XML Schema fragment:

<xsd:simpleType name="USState"

<xsd:restrictionbase="xsd:string">

<xsd:enumeration value="AK"/>

<xsd:enumeration value="AL"/>

</xsd:restriction>

</xsd:simpleType>
56 JAXB Specification – Public Draft, V0.7 9/12/02

Simple Type Definition
The corresponding typesafe enum class is:

public class USState {

// Constructor

protected USSate(String value) { ... }

// one enumeration constant for each enumeration value

public static final String _AK="AK";

public static final USState AK= new USState(_AK);

public static final String _AL="AL";

public static final USState AL= new USState(_AL);

// Gets the value for an enumerated value

public String getValue();

// Gets enumeration with a specific value

// Required to throw java.lang.IllegalArgumentException if

// any invalid value is specified

public static USState fromValue(String value) {...}

// Gets enumeration from a String

// Required to throw java.lang.IllegalArgumentException if

// any invalid value is specified

public static USState fromString(String value){ ... }

// Returns String representation of the enumerated value

public String toString() { ... }

public boolean equals(Object obj) { ... }

public int hashCode() { ... }

}

5.2.4.1 Enumeration Class

The enumeration class is defined as follows:

 ● name: The default name of the enumeration class, enumClassName, is
computed by applying the XML Name to Java identifier mapping
algorithm to the name of the simple type definition or the element name.

 ● package name: package name is determined from the target name space
of the simple type definition with the enumeration facet.

Example:

public class USState { ... } // Enumeration class
9/12/02 JAXB Specification – Public Draft, V0.7 57

Binding XML Schema to Java Representations
5.2.4.2 Constant Fields

For each enumeration value (represented by schema property {value}, there are
two public, static and final constant fields in the enumeration class: enumvalue
constant and enum constant.

An enumvalue constant set contains a enum constant for each enumeration
value. Each member of the set is defined as follows:

 ● name: A name is computed as specified in Section 5.2.4.3, “XML
Enumvalue To Java Identifier Mapping” and prefixing it with an
underscore (‘_’).

 ● type: The type is {base_type_definition}.

 ● value: The value is {value}.

An enum constant set contains an enum constant for each enumeration value.
Each member of the set is defined as follows:

 ● name: a name that is computed as specified in Section 5.2.4.3, “XML
Enumvalue To Java Identifier Mapping”.

 ● type: The type is enumClassName.

 ● value: value is an instance of enumClassName constructed with a
{value}. The instance is unique except in the following case.
XSD PART 2 permits identical enumeration values to be specified in an
XML eneumertion. In that case, the enum constant name cannot be
uniquely by default. Instead, an error must be reported.

Example:

public static final String _AK="AK";// enumvalue constant

public static final USState AK= new USState(_AK); // enumeration constant

5.2.4.3 XML Enumvalue To Java Identifier Mapping

Default names for enumvalue constant and enum constant are based on mapping
of the XML enumeration value to a Java identifier described here.

An attempt is made to map the XML enumeration value {value} to a Java
Identifier using the XML Name to Java Identifier algorithm. If one or more
enumerated values in an XML enumeration cannot map to valid Java identifier
(examples are “3.14” , “int”), then the result is determined as follows:
58 JAXB Specification – Public Draft, V0.7 9/12/02

Simple Type Definition
 ● If the customization option typesafeEnumMemberName is
specified and set to “generateError”, an error must be reported.
This is also the default behavior if typesafeEnumMemberName has
not been specified.

 ● If the customization option typesafeEnumMemberName is
specified and set to “generateName”, then the property name is
value<N> where N is 1 for the first enumeration value and increments
by 1 for every value in the XML enumeration.

5.2.4.4 Methods and Constructor

There are three accessor methods: getValue, fromValue and fromString.

public basetype getValue()

public enumClassName fromValue({base_type_definition} value)

public enumClassName fromString(String value)

The fromValue and fromString method must throw a
java.lang.IllegalArgumentException if value is not one of the
enumeration values specified in the XML enumeration datatype.

The constructor must be declared protected as shown below:

protected USSate(String value) { ... }

An enumeration class must contain the following methods which override the
object methods:

public String toString() { ... }

public final boolean equals(Object obj) { ... }

public final int hashCode() { ... }

The equals() and hashCode() must be final and must invoke the Object
methods. This ensures that no subclass of typesafe enumeration class
accidentally overrides theses methods. This in turn guarantees that two equal
objects of the enumeration class are also identical. [BLOCH]

5.2.5 Union Property

A union property prop is used to bind a union simple type definition schema
component. A union simple type definition schema component consists of union
9/12/02 JAXB Specification – Public Draft, V0.7 59

Binding XML Schema to Java Representations
members which are schema datatypes. A union property, is therefore, realized
by:

where Id is a metavariable that represents the Java method identifier computed
by applying the name mapping algorithm described in Section C.2, “The Name
to Identifier Mapping Algorithm,” on page 157 to prop.

The Type is the first common supertype of all the Java representations to which
union member types are bound with java.lang.Object always being a
common root for all Java objects. For the purposes of determining the
supertype, if a union member that is bound to a Java primitive type, the
corresponding Java wrapper class is used instead.

 ● The getId method returns the set value. If the property has no set value
then the value null is returned. The value returned is an instance of one
of the union member types.

 ● The setId method sets the set value. The value is mapped to the
appropriate union member type by JAXB implementation. A union
schema component does not have a tag to distinguish between union
member types. However, [XSD PART2] does specify the order of
evaluation for a given value. Thus, the following example,

<xsd:union>

<xsd:simpleType>

<xsd:integer>

</xsd:simpleType>

<xsd:simpleType>

<xsd:string>

</xsd:simpleType>

</xsd:union>

The order of evaluation specified by [XSD PART2] is first “integer”
and then “string”.

The order of evaluation specified by [XSD PART2] must be followed by
a JAXB implementation to map a value to the appropriate union
member type.

If value is null, the property’s set value is discarded. Prior to setting

public Type getId();

public void setId(Type value);
60 JAXB Specification – Public Draft, V0.7 9/12/02

Simple Type Definition
the property’s value when TypeConstraint validation is enabled, a non-
null value is validated by applying the property’s predicate, which
may throw a TypeConstraintException.

Example: Default Binding: Union

The following schema fragment

<element name="state" type="ZipOrName"/>

<xsd:simpleType name="ZipOrName">

<xsd:union>

<xsd:simpleType>

<xsd:integer>

</xsd:simpleType>

<xsd:simpleType>

<xsd:string>

</xsd:simpleType>

</xsd:union>

</xsd:simpleType>

will be bound to the following Java representation

public string getZipOrName();

public void setZipOrName(String value);

5.2.6 Union

A simple type definition derived by a union is bound using the union property
with the following Java property attributes:

 ● the base type as specified in Section 5.2.5, “Union Property”.
 ● there is no collection type.
 ● The predicate is the schema constraints specified in“Simple Type

Definition Validation Rules”, Section 4.1.4[XSD PART2].
9/12/02 JAXB Specification – Public Draft, V0.7 61

Binding XML Schema to Java Representations
5.3 Complex Type Definition

5.3.1 Nested Interface Specification

Sometimes a schema component needs to be bound to a Java inner class.
Multiple schema components share this need. Hence the manner by which the
name of the nested interface is determined as specified here and referenced
elsewhere in the specification.

A Java content interface being generated for a schema component must be a
nested interface if the schema component is within another schema component
which itself is bound to another Java content interface.

5.3.2 Aggregation of Java Representation

A Java representation for the entire schema is built based on aggregation. A
schema component aggregates the Java representation of all the schema
components that it references. This process is done until all the Java
representation for the entire schema is built. Hence a general model for
aggregation is specified here once and referred to in different parts of the
specification.

The model assumes that there is a schema component SP which references
another schema component SC. The Java representation of SP needs to
aggregate the Java representation of SC. There are two possibilities:

 ● SC is bound to a property set.
 ● SC is bound to a Java datatype or a Java interface.

Each of these is described below.

5.3.2.1 Aggregation of Datatype/Interface

If a schema component SC is bound to a Java datatype or a Java interface, then
SP aggregates SC’s Java representation as a simple property defined by:

 ● name: the name is the interface name or the Java datatype or a name
determined by SP. The name of the property is therefore defined by the
schema component which is performing the aggregation.
62 JAXB Specification – Public Draft, V0.7 9/12/02

Complex Type Definition
 ● base type: If SC is bound to a Java datatype, the base type is the Java
datatype. If SC is bound to a Java interface, then the basetype is the
interface name, including a dot separated list of interface names within
which SC is nested.

 ● collection type: There is no collection type.

 ● predicate: There is no predicate.

5.3.2.2 Aggregation of Property Set

If SC is bound to a property set, then SP aggregates by adding SC’s property set
to its own property set.

Aggregation of property sets can result in name collisions . A name collision
can arise if two property names are identical. A binding compiler must generate
an error on name collision. Name collisions can be resolved by using
customization to change a property name.

5.3.3 Java Content Interface

The binding of a complex type definition to a Java content interface is based on
the abstract model properties in Section E.1.3, “Complex Type Definition
Schema Component,” on page 170. The Java content interface must be defined
as specified here.

 ● name: name is the Java identifier obtained by mapping the XML name
{name} using the name mapping algorithm, specified in Section C.2,
“The Name to Identifier Mapping Algorithm,” on page 157.

 ● package: If {scope} is

❍ Global: The derived Java content interface is generated into the Java
package that represents the binding of {target namespace}.

❍ A Complex Type Definition: The derived Java content interface is
generated within the Java content interface represented by the complex
type definition value of {scope}.

 ● base interface: A complex type definition can derive by restriction or
extension (i.e. {derivation method} is either “extension” or
“restriction”). However, since there is no concept in Java programming
similar to restriction, both are handled the same. If the {base type
definition} is itself mapped to a Java content interface (Ci2), then the
9/12/02 JAXB Specification – Public Draft, V0.7 63

Binding XML Schema to Java Representations
base interface must be Ci2. This must be realized as :

public interface Ci1 extends Ci2 {

.....

}

See example of derivation by extension at the end of this section.

 ● property set: The Java representation of each of the following must be
aggregated into Java content interface’s property set (Section 5.3.2,
“Aggregation of Java Representation”).

❍ A subset of {attribute uses} is constructed. The subset must include the
schema attributes corresponding to the <attribute> children and the
{attribute uses} of the schema attribute groups resolved by the <ref>
attribute. Every attribute’s Java representation (Section 5.8, “Attribute
use”) in the set of attributes computed above must be aggregated.

❍ The Java representation for {content type} must be aggegated.

For a “Complex Type Definition with complex content”, the Java
representation for {content type} is specified in Section 5.9, “Content
Model - Particle, Model Group, Wildcard”.
For a complex type definition which is a “Simple Type Definition with
simple content”, the Java representation for {content type} is specified
in Section 5.3.3.1, “Simple Content Binding”.

❍ If a complex type derives by restriction, there is no requirement that
Java properties representing the attributes or elements removed by the
restriction need to be disabled. This is because (as noted earlier),
derivation is handled the same as derivation by restriction.

Example: Complex Type: Derivation by Extension

XML Schema Fragment (from XSD PART 0 primer):

<xsd:complexType name="Address">

<xsd:sequence>

<xsd:element name="name" type="string"/>

<xsd:element name="street" type="string"/>

<xsd:element name="city" type="string"/>

</xsd:sequence>

</xsd:complexType>
64 JAXB Specification – Public Draft, V0.7 9/12/02

Complex Type Definition
<xsd:complexType name="USAddress">

<xsd:complexContent>

<xsd:extension base="ipo:Address">

<xsd:sequence>

<xsd:element name="state" type="string"/>

<xsd:element name="zip" type="integer"/>

</xsd:sequence>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

Default Java binding:

public interface Address {

String getName();

void setName(String);

String getStreet();

void setStreet(String);

void getCity();

void setCity(String);

}

public interface USAdress extends Address {

String getState();

void setState(String);

int getZip(String);

void getState(int);

}

5.3.3.1 Simple Content Binding

Binding to Property

By default, a complex type definition with simple content is bound to a Java
property defined by:

 ● name: The property name must be “value”.

 ● base type, predicate, collection type: As specified in [XSD Part 1],
when a complex type has simple content, the content type ({content
type}) is always a simple type schema component. And a simple type
component always maps to a Java type (Section 5.2, “Simple Type
Definition”). Values of the following three properties are copied from
that Java type:
9/12/02 JAXB Specification – Public Draft, V0.7 65

Binding XML Schema to Java Representations
❍ base type
❍ predicate
❍ collection type

Example: Simple Content: Binding To Property

XML Schema fragment:

<xsd:complexType name="internationalPrice">

<xsd:simpleContent>

<xsd:extension base="xsd:decimal">

<xsd:attribute name="currency" type="xsd:string"/>

</xsd:extension>

</xsd:simpleContent>

</xsd:complexType>

Default Java binding:

interface InternationalPrice {

/** Java property for simple content */

java.math.BigDecimal getValue();

void setValue(java.math.BigDecimal value);

/** Java property for attribute*/

String getCurrency();

void setCurrency(String);

}

5.4 Attribute Group Definition

There is no default mapping for an attribute group definition. When an attribute
group is referenced, each attribute in the attribute group definition becomes a
part of the [attribute uses] property of a complex type definition. Each attribute
is mapped to a Java property as described in (section, “Attribute Use”).

5.5 Model Group Definition

There is no default mapping for a model group definition. When a model group
is referenced, each particle in the model group definition becomes a part of the
66 JAXB Specification – Public Draft, V0.7 9/12/02

Model Group Definition
complex content that references it. The customized binding of a model group
definition to a Java content interface is discussed in Section 5.5.3, “Bind to a
Java content interface.”

5.5.1 Bind to a set of properties

A non-repeating reference to a model group definition, when the particle
referencing the group has {max occurs} equal to one, results in a set of content
properties being generated to represent the content model. Section 5.9, “Content
Model - Particle, Model Group, Wildcard” describes how a content model is
bound to a set of properties and has examples of the binding.

5.5.2 Bind to a list property

When a model group definition is referenced from a particle with {max occurs}
greater than one, it is useful to map the reference to a List property in the
following manner:

 ● The name of the Java property is dervied from the model group definition
{name} property using the XML Name to Java identifier name mapping
algorithm specified in Section C.2, “The Name to Identifier Mapping
Algorithm,” on page 157.

 ● The Java property’s base type is java.lang.Object.

 ● The predicate for the Java property is all the elements/values that can be
placed into the list and the ordering restrictions between elements.

 ● The Java property collection type is java.util.List.

 ● The property has no default value.

Example:

Schema fragment contains a particle that references the model group definition
has a {maxOccurs} value greater than one.
9/12/02 JAXB Specification – Public Draft, V0.7 67

Binding XML Schema to Java Representations
<xsd:group name="AModelGroup">

<xsd:choice>

<xsd:element name="A" type="xsd:int"/>

<xsd:element name="B" type="xsd:float"/>

</xsd:choice>

</xsd:group>

<xsd:complexType name="foo">

<xsd:sequence>

<xsd:group ref="AModelGroup" maxOccurs="unbounded"/>

<xsd:element name="C" type="xsd:float"/>

</xsd:sequence>

</xsd:complexType>

Derived Java representation:

interface Foo {

/** A valid value content property that contains

instances of java.lang.Integer or java.lang.Float.*/

java.util.List getAModelGroup();

float getC();

void setC(float value);

};

5.5.3 Bind to a Java content interface

With the appropriate customization enabled, a named model group can be bound
to a Java content interface. All references to a model group definition bound to a
Java content interface are mapped to a Java property with a base type of the Java
content interface representing the model group definition. If the particle
referencing the group has an occurance greater than one, then the reference is
mapped to a List property with a base type of the Java content interface
representing the model group definition.

Note that a reference to a model group definition from a complex type definition
content model with a {content type} of mixed can not be bound to a simple
property with a base type of a Java content interface.
68 JAXB Specification – Public Draft, V0.7 9/12/02

Attribute Declaration
Example:

Derived Java code for model group “AModelGroup” specified in previous
subsection.

interface AModelGroup {

void setA(int value);

int getA();

void getB(float value);

float getB();

}

5.6 Attribute Declaration

An attribute declaration is bound to a Java property when it is referenced or
declared, as described in Section 5.8, “Attribute use”, from a complex type
definition.

5.7 Element Declaration

This section describes the binding of an XML element declaration to a Java
representation. It also introduces why a JAXB user would need to use instances
of a Java Element interface as opposed to instances of Java datatypes or content
interfaces when manipulating XML content.

An XML element declaration is composed of two key components:

 ● its qualified name is {target namespace} and {name}
 ● its value is an instance of the Java class binding of its {type definition}

A Java Element interface is generated to represent both of these components. An
instance of a Java content interface or a Java class represents only the value of
an element. Commonly in JAXB binding, the Java representation of XML
content enables one to manipulate just the value of an XML element, not an
actual element instance. The binding compiler statically associates the XML
element qualified name to a content property and this information is used at
unmarshal/marshal time. The following schema/derived Java code example
illustrates this point.
9/12/02 JAXB Specification – Public Draft, V0.7 69

Binding XML Schema to Java Representations
Example:

Given the XML Schema fragment:

<xsd:complexType name="chair_kind">

<xsd:sequence>

<xsd:element name="has_arm_rest" type="xsd:boolean"/>

....

</xsd:sequence>

</xsd:complexType>

Schema-derived Java content interface:

public interface ChairKind {

boolean getHasArmRest();

void setHasArmRest(boolean value);

}

A user of the Java inteface ChairKind never has to create a Java instance that both
has the value of local element has_arm_rest and knows that its XML
element name is has_arm_rest. The user only provides the value of the
element to the content-property hasArmRest. A JAXB implementation
associates the the content-property hasArmRest with XML element name
has_arm_rest when marshalling an instance of ChairKind.

The next schema/derived Java code example illustrates when XML element
information can not be inferred by the derived Java representation of the XML
content. Note that this example relies on binding described in Section 5.9.4,
“Bind wildcard schema component”.

Example:

<xsd:complexType name="chair_kind">

<xsd:sequence>

<xsd:any>

....

</xsd:sequence>

</xsd:complexType>

public interface ChairKind {

javax.xml.bind.Element getAny();

void setAny(javax.xml.bind.Element element);

...

}

70 JAXB Specification – Public Draft, V0.7 9/12/02

Element Declaration
For this example, the user must provide an Element instance to the any content-
property that contains both the value of an XML element and the XML element
name since the XML element name could not be statically associated with the
content-property any when the Java representation was derived from its XML
Schema representation. The XML element information is dynamically provided
by the application for this case and requires the application to manipulate
instances representing the XML Element itself, not just the values of the XML
Element. Section 5.9, “Content Model - Particle, Model Group, Wildcard,” on
page 78 cover additional circumstances when one must use instances of Element
interfaces rather instances of the Java binding of the type of the XML element
declaration.

5.7.1 Bind to Java Element Interface

The characteristics of the generated Java Element interface are derived in terms
of the properties of the “Element Declaration Schema Component” on page 171
as follows:

 ● The name of the generated Java Element interface is derived from the
element declaration {name} using the XML Name to Java identifier
mapping algorithm for class names.

 ● If the element declaration’s {type definition} is a

❍ Complex Type definition

The derived Java Element interface extends the Java content interface
representing the {type definition}.

❍ Simple type definition

The generated element interface has a Java simple content-property
named “value”.

ObjectFactory method to create an instance of the Element
interface takes a value parameter of the Java class binding of the simple
type definition.

 ● If {scope} is

❍ Global: The derived Element interface is generated into the Java
package that represents the binding of {target namespace}.

❍ A Complex Type Definition: The derived Element interface is
generated within the Java content interface represented by the complex
type definition value of {scope}.
9/12/02 JAXB Specification – Public Draft, V0.7 71

Binding XML Schema to Java Representations
 ● Each generated Element interface must extend the Java marker interface
javax.xml.bind.Element. This enables JAXB implementations
to differentiate between instances representing a XML element directly
and instances representing the type of the XML element.

 ● If {nillable} is “true”, the methods setNil() and isNil() are
generated.

 ● Optional {value constraint} property with pair of default or fixed
and a value.
If a default or fixed value is specified, the databinding system must
substitute the default or fixed value if an empty tag for the element
declaration occurs in the XML content.

 ● If an element declaration schema component has an {abstract} property
of “true”, an ObjectFactory factory method must not be generated for
it.

Note – Substitution properties are not covered since support is not required in this
version of the specification as stated in Section E.2, “Not Required XML
Schema concepts,” on page 174.

Default binding rules require an element declaration to be bound to derived
Element interface under the following conditions:

 ● All element declarations with global {scope} are bound to a derived Java
Element interface. The rationale is that any global element declaration
can occur within a wildcard context and one must provide element
instances, not types of elements for this case.

 ● All local element declarations, having a {scope} of a complex type
definition, occuring within content that is mapped to a general content
property must have derived Java Element interfaces generated. General
content property is specified in Section 5.9.2, “General content
property” An example of when a content model is mapped to a general
content property, forcing the generation of element declarations is at
Section 5.9.2.3, “Examples”.

5.7.2 Bind to Java Content Interface

By default, an element declaration containing an anonymous complex type
definition results in a Java content interface being generated for the anonymous
type definition. The name of the Java content interface is derived from the
72 JAXB Specification – Public Draft, V0.7 9/12/02

Element Declaration
element declaration {name} mapped to a Java identifier with a “Type” suffix
appended, by default. If there exists a customization for adding a prefix or suffix
to anonymous type definitions that are bound to a Java class or interface, the
default “Type” suffix is not added. Section 6.6, “<schemaBindings>
Declaration” specifies the element <jaxb:anonymousTypeName> to
describe the customization.

Example:

<xsd:element name="foo">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="bar" type="xsd:int"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

/** Java content interface generated

from anonymous complex type definition of element foo. */

interface FooType {

int getBar();

void setBar(int value);

}

/** Java Element interface. */

interface Foo extends javax.xml.bind.Element, FooType {};

5.7.3 Bind to Typesafe Enum Class

Element declaration containing an anonymous simple type definition and that
simple type definition matches the criteria specified Section 5.2.3, “Type Safe
Enumeration” for mapping the simple type definition to a typesafe enum class.
This is not a default binding but this binding can be specified in by a binding
customization. A default binding name for the typesafe enum class is derived
from the element declaration {name} mapped to a Java identifier with “Type”
suffix appended, by default. If there exists a customization for adding a prefix or
suffix to anonymous type definitions that are bound to a Java class or interface,
the default “Type” suffix is not added. Section 6.6, “<schemaBindings>
Declaration” specifies the element <jaxb:anonymoustypeName> to
describe the customization.
9/12/02 JAXB Specification – Public Draft, V0.7 73

Binding XML Schema to Java Representations
5.7.4 Bind to a Property

 ● Local element declaration

Map local element declaration with a fixed {value constraint} to a Java
constant property.

 ● If an element declaration has a {nillable} property that is “true” and
its {type definition} is mapped by default to a non-referenceable
primitive Java type, the base type for the Java property is mapped to the
corresponding Java wrapper class for the Java primitive type. Setting the
property to the null value indicates that the property has been set to the
XML Schema concept of nil=’true’.

5.8 Attribute use

A ‘required’ or ‘optional’ attribute use is bound by default to a Java property as
described in Section 4.5, “Properties,” on page 40. The characteristics of the
Java property are derived in terms of the properties of the “Attribute Use
Schema Component” on page 173 and “Attribute Declaration Schema
Component” on page 172 as follows:

 ● The name of the Java property is derived from the {attribute declaration}
property’s {name} property using the XML Name to Java Identifier
mapping algorithm described in Section C.2, “The Name to Identifier
Mapping Algorithm,” on page 157.

 ● A base type for the Java property is derived from the {attribute
declaration} property’s {type definition} property as
described in binding of Simple Type Definition in Section 5.2, “Simple
Type Definition.”

 ● An optional predicate for the Java property is constructed from the
{attribute declaration} property’s {type definition}
property as described in the binding of simple type definition to a Java
representation.

 ● An optional collection type for the Java property is derived from the
{attribute declaration} property’s {type definition}
property as described in the binding of simple type definition to a Java
representation.
74 JAXB Specification – Public Draft, V0.7 9/12/02

Attribute use
 ● The default value for the Java property is the value from the attribute
use’s {value constraint} property. If the optional {value constraint} is
absent, the default value for the Java property is the Java default value
for the base type.

This Java property is a member of the Java content interface that represents the
binding of the complex type definition containing the attribute use.

Design Note – Since the target namespace is not being considered when
mapping an attribute to a Java property, two distinct attributes that have the same
{name} property but not the same {target namespace} will result in a Java property
naming collision. As specified generically in Section C.2.1, “Collisions and
conflicts,” on page 160, the binding compiler detect this name collision between
the two distinct properties and report the error. The user can provide a
customization that provides an alternative Java property name to resolve this
situation.

Example:

Given XML Schema fragment:

<xsd:complexType name="USAddress">

<sequence>...</sequence>

<xsd:attribute name="country" type="xsd:string"/>

</xsd:complexType>

Default derived Java code:

public interface USAddress {

public String getCountry();

public void setCountry(String value);

}

5.8.1 Bind to a Java Constant property

An attribute use with a fixed {value constraint} property can be bound to a
Java Constant property. This mapping is not performed by default since fixed
is a validation constraint. Since validation is not required to unmarshal or
marshal, XML content can have an alternative value for an attribute than the
fixed value. The user must set the binding declaration attribute
fixedAttributeToConstantProperty on <jaxb:globalBinding> element
9/12/02 JAXB Specification – Public Draft, V0.7 75

Binding XML Schema to Java Representations
as specified in Section 6.5.1, “Usage,” on page 106 or on
<jaxb:property> element as specified in Section 6.8.1, “Usage,” on page
117 to enable this mapping.

Example:

Given XML Schema fragment:

<xsd:complexType name="USAddress">

<sequence>...</sequence>

<xsd:attribute name="country" type="xsd:NMTOKEN" fixed="US"/>

</xsd:complexType>

If the appropriate binding schema customization enables mapping a fixed XML
value to Java constant property, the following Java code fragment is generated.

public interface USAddress {

public static final String COUNTRY="US";

...

}

5.8.1.1 Contributions to Local Structural Constraint

If the atttribute use’s {required} property is true, the local structural constraint
for an instance of the Java content interface requires that the corresponding Java
property to be set when the Java content interface instance is validated.

5.8.2 Binding an IDREF component to a Java
property

An element or attribute with a type of xsd:IDREF refers to the element in the
instance document that has an attribute with a type of xsd:ID or derived from
type xsd:ID with the same value as the xsd:IDREF value. Rather than expose the
Java programmer to this XML Schema concept, the default binding of an
xsd:IDREF component maps it to a Java property with a base type of
java.lang.Object. The caller of the property setter method must be sure that its
parameter is identifiable. An object is considered identifiable if one of its
properties is derived from an attribute that is or derives from type xsd:ID. There
is an expectation that all instances provided as values for propertys’
representing an xsd:IDREF should have the Java property representing the xsd:ID
of the instances set before the content tree containing both the xsd:ID and
xsd:IDREF is (1) globally validated or (2) marshalled. If a property representing
76 JAXB Specification – Public Draft, V0.7 9/12/02

Attribute use
an xsd:IDREF is set with an object that does not have its xsd:ID set, the
NotIdentifiableEvent is reported by (1) validation or (2) marshalling..

 ● The name of the Java property is derived from the {name} property of the
attribute or element using the XML Name to Java Identifier mapping
algorithm described in Section C.2, “The Name to Identifier Mapping
Algorithm,” on page 157.

 ● A base type for the Java property is java.lang.Object.

 ● There is no predicate for a property representing an xsd:IDREF.

 ● An optional collection type

 ● Default and fixed values can not be supported for an attribute with type
xsd:IDREF.

Example:

Given XML Schema fragment:

<xsd:complexType name="Book">

<xsd:sequence>

<xsd:element name=author type=xsd:IDREF/>

...

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="AuthorBio">

<xsd:sequence>...</xsd:sequence>

<xsd:attribute name="name" type="xsd:ID"/>

</xsd:complexType>

Schema-derived Java content interfaces:

public interface Book {

java.lang.Object getAuthor();

/** Parameter referencedObj should have an attribute or

* child element with base type of xsd:ID by validation

* or marshal time.

*/

void setAuthor(java.lang.Object referencedObj);

}

public interface AuthorBio{

String getName();

void setName(String value);

}

9/12/02 JAXB Specification – Public Draft, V0.7 77

Binding XML Schema to Java Representations
Demonstration of a Java content instance referencing another instance:

Book book = ...;

AuthorBio authorBio = ...;

book.setAuthor(authorBio);

authorBio.setName("<some author’s name>");

// The content instance root used to validate or marshal book must

// also include "authorBio" as a child element somewhere.

// A Java content instance is not included

Note that ID and IDREF mechanisms does not incorporate the type definitions
that can be refererenced. A binding declaration customization could specify that
the base type for the author property of content interface Book should be Author
instead of java.lang.Object to make for a more meaningful binding.

5.9 Content Model - Particle, Model
Group, Wildcard

This section describes the possible Java bindings for the content model of a
complex type definition schema component with a {content type} property of
mixed or element-only. The possible element content(s) and the valid
orderings between those contents are constrained by the {particles} describing
the complex type definition’s content model. The Java binding of a content
model is realized by the derivation of one or more content-properties to
represent the element content constrained by the model group.

The ideal Java binding would be to map each uniquely named element
declaration occuring within a content model to a single Java content-property.
The model group schema component constraint, element declarations
consistent, specified in [XSD-Part 1] ensures that that all element declarations/
references having the same {target namespace} and {name} must have the same
top-level type definition. This model allows the JAXB user to specify only the
content and the JAXB implementation infers the valid ordering between the
element content based on the {particles} constraints in the source schema.
However, there do exist numerous scenarios that this ideal binding is not
possible for parts of the content model or potentially the entire content model.
For these cases, default binding has a fallback position of representing the
element content and the ordering between the content using a general content
78 JAXB Specification – Public Draft, V0.7 9/12/02

Content Model - Particle, Model Group, Wildcard
model. The scenarios where one must fallback to the general content model will
be identified later in this subsection.

5.9.1 Bind each element declaration name to a
content property

This approach relies on the fact that a model group merely provide constraints
on the ordering between children elements and the user merely wishes to
provide the content. It is easiest to introduce this concept without allowing for
repeating occurances of model groups within a content model. Conceptually,
this approach presents all element declarations within a content model as a set
of element declaration {name}’s. Each one of the {name}’s is mapped to a
content-property. Based on the element content that is set by the JAXB
application via setting content-properties, the JAXB implementation can
compute the order between the element content using the following methods.

Computing the ordering between element content within [children] of an
element information item

 ● Schema constrained fixed ordering or semantically insignificant
ordering

The sequence in the schema represents an ordering between children
elements that is completely fixed by the schema. Schema-constrained
ordering is not exposed to the Java programmer when mapping each
element in the sequence to a Java property. However, it is necessary for
the marshal/unmarshal process to know the ordering. No new ordering
constraints between children elements can be introduced by an XML
document or Java appplication for this case. Additionally, the Java
application does not need to know the ordering between children
elements. When the compositor is all, the ordering between element
content is not specified semantically and any ordering is okay. So this
additional case can be handled the same way.

 ● Schema only constrains content and does not significantly constrain
ordering

If the ordering between the children elements is significant and must be
accessible to the Java application, then the ordering is naturally
preserved in Java via a collection. Below are examples where schema
provides very little help in constraining order based on content.
9/12/02 JAXB Specification – Public Draft, V0.7 79

Binding XML Schema to Java Representations
<xsd:choice maxOccurs="unbounded"> ... </choice>

<xsd:sequence maxOccurs="unbounded"> ... </sequence>

 ● Schema constrained partial ordering

The ordering between children elements is constrained by a
combination of constraints between content specified in the schema and
the actual content within the XML content. The schema provides
contraints on ordering for this case that is computed based on the
content assigned from the XML document during unmarshalling or
from the set values by the Java application. There exists a significant
number of cases where the ordering constraints can be computed based
on the set value content and partial ordering between elements specified
in the schema.

Below is an example demonstrating the the ordering of children elements using
schema constrained partially schema constrained ordering. Given that the
following schema is mapped to four Java properties: A, B, C and D,

<xsd:choice>

<xsd:sequence>

<xsd:element ref="A"/>

<xsd:element ref="C"/>

<xsd:element ref="D"/>

</xsd:sequence>

<xsd:sequence>

<xsd:element ref="B"/>

<xsd:choice>

<xsd:element ref="C"/>

<xsd:element ref="D"/>

</xsd:choice>

</xsd:sequence>

</xsd:choice>

one can compute if only the properties for A, C and D are set, that the content
should be marshalled out in the order constrained by the first choice sequence. If
the content is set for either B and C or B and D, then the second choice sequence
ordering constraint between elements should be followed.

Example:

Given XML Schema fragment:

<xsd:complexType name="PurchaseOrderType">

<xsd:sequence>
80 JAXB Specification – Public Draft, V0.7 9/12/02

Content Model - Particle, Model Group, Wildcard
<xsd:choice>

<xsd:group ref="shipAndBill"/>

<xsd:element name="singleUSAddress" type="USAddress"/>

</xsd:choice>

<xsd:element ref="comment" minOccurs="0"/>

<xsd:element name="items" type="Items"/>

</xsd:sequence>

<xsd:attribute name="orderDate" type="xsd:date"/>

</xsd:complexType>

<xsd:group name="shipAndBill">

<xsd:sequence>

<xsd:element name="shipTo" type="USAddress"/>

<xsd:element name="billTo" type="USAddress"/>

</xsd:sequence>

</xsd:group>

Generate following Java code and assume USAddress is a complex type
definition that is bound to a Java content interface USAddress.

public interface PurchaseOrderType {

void setShipTo(USAddress);

USAddress getShiptTo();

void setBillTo(USAddress);

USAddress getBillTo();

void setSingleUSAddress(USAddress);

USAddress getSingleUSAddress();

void setComment(String);

String getComment();

void setOrderDate(java.util.Calendar);

java.util.Calendar getOrderDate();

void setItems(Items);

Items getItems();

}

User is responsible for knowing that a valid content model requires either
property singleUSAddress to be set or for properties shipTo and billTo must be
set. Note that the user does not have to concern themselves with the ordering
between properties. A JAXB implementation is responsible for inferring the
order between elements based on what content is set. If the system is unable to
infer the ordering at validation time, a validation event is thrown. The
marshalling of invalid content is not specified so it is non-deterministic what a
system does for that case.
9/12/02 JAXB Specification – Public Draft, V0.7 81

Binding XML Schema to Java Representations
5.9.2 General content property

A general content property is, as its name implies, the most general of all
content properties. Such a property can be used with any content specification,
no matter how complex. A general content property is represented in Java as a
List property as introduced in Section 4.5.2.2, “List Property,” on page 45.
Unlike the prior approach where the JAXB implementation must infer ordering
between the element content, this approach always requires the JAXB user to
specify a valid ordering of element content. This approach has the benefit of
providing the application with more control setting and knowing the order
between element content.

There are two variants of a general content property presented below and
followed up with example bindings for both cases.

5.9.2.1 General content list

This list type is capable of representing both element information items and
character data items occuring within [children] of an element information item.
Character data is inserted into the list as java.lang.String values.
Element data is added to the list as instances of Java Element interfaces.

5.9.2.2 Value content list

A value general content list is only capable of representing element content. It is
a list of the values of XML elements. The list contains types of Java wrapper
classes and instances of Java content interfaces, the types of XML elements. It is
never expected to contain instances of javax.xml.bind.Element interface as a
general content list. In order to bind to an element-value content list, the
databinding system must be able to infer the element information for each Java
type in the list. If this is not possible, the binding compiler must generate an
error when a customization specifies this type of binding should be used.
82 JAXB Specification – Public Draft, V0.7 9/12/02

Content Model - Particle, Model Group, Wildcard
5.9.2.3 Examples

Example 1: Complex content model of Elements with primitive types

<xsd:complexType name="Base">

<xsd:choice maxOccurs="unbounded">

<xsd:element name="A" type="xsd:string"/>

<xsd:element name="B" type="xsd:string"/>

<xsd:element name="C" type="xsd:int"/>

</xsd:choice>

</xsd:complexType>

interface Base {

interface A extends javax.xml.bind.Element {

String getValue(); void setValue(String);}

interface B extends javax.xml.bind.Element {

String getValue(); void setValue(String);}

interface C extends javax.xml.bind.Element {

int getValue(); void setValue(int);}

/**

* A general content list that can contain

* element instances of Base.A,Base.B and Base.C.

*

* <insert appropriate schema fragment here>

*/

List getAorBorC();

}

Note – This example could not be mapped to a value content list since element A and
element B had the same java primitive type, java.lang.String which makes it
impossible for the databinding system to infer the element information based
9/12/02 JAXB Specification – Public Draft, V0.7 83

Binding XML Schema to Java Representations
on element types. In this case, seeing a java.lang.String value isn’t specific
enough to know if it is supposed to be an A element or a B element..

Example 2: XML Schema element declaration with Complex Type Definition

XML Schema fragment:

<xsd:complexType name="foo" type="AType"/>

<xsd:complexType name="bar" type="BType"/>

<xsd:complexType FooBar>

<xsd:choice maxOccurs="unbounded">

<xsd:element name="foo" type="AType"/>

<xsd:element name="bar" type="BType"/>

</xsd:choice>

</xsd:complexType>

Default derived Java code:

interface AType { ... }

interface BType { ... }

interface Foo extends AType, javax.xml.bind.Element {...}

interface Bar extends BType, javax.xml.bind.Element {...}

interface FooBar {

/**

* A valid general content list contains instances of

* Foo, Bar.

* AND/OR

* A valid general content list contains values of AType and BType.

* <xsd:choice maxOccurs="unbounded">

* <xsd:element name="foo" type="AType"/>

* <xsd:element name="bar" type="BType"/>

* </xsd:choice>

*/

List getContent();

};
84 JAXB Specification – Public Draft, V0.7 9/12/02

Content Model - Particle, Model Group, Wildcard
Generated Java code with customization to bind to value general content list:

interface AType { ... }

interface BType { ... }

interface Foo extends AType, javax.xml.bind.Element {...}

interface Bar extends BType, javax.xml.bind.Element {...}

interface FooBar {

/**

* A valid value general content list contains instances of

* AType or BType

* <choice maxOccurs="unbounded">

* <element name="foo" type="AType"/>

* <element name="bar" type="BType"/>

* </choice>

*/

List getContent();

};

5.9.3 Bind mixed content

When a complex type defintition’s {content type} is “mixed”, its character and
element informortation content is bound to general content list as described in
Section 5.9.2.1, “General content list”. Character information data is inserted as
instances of java.lang.String into a java.util.List instance. The
local structural constraints of the {content type} particles is propopagated up to
the Java content interface representing the complex type definition.

Example:

Schema fragment loosely derived from mixed content example from
[XSD Part 0].

<xsd:element name="letterBody">

<xsd:complexType mixed="true">

<xsd:sequence>

<xsd:element name="name" type="xsd:string"/>

<xsd:element name="quantity" type="xsd:positiveInteger"/>

<xsd:element name="productName" type="xsd:string"/>

<!-- etc. -->

</xsd:sequence>

</xsd:complexType>

</xsd:element>
9/12/02 JAXB Specification – Public Draft, V0.7 85

Binding XML Schema to Java Representations
Derived Java code:

interface LetterBodyType {

interface Name extends javax.xml.bind.Element {

String getValue(); void setValue(String); }

interface Quantity extends javax.xml.bind.Element {

int getValue(); void setValue(int); }

interface ProductName extends javax.xml.bind.Element {

String getValue(); void setValue(String);}

/** Mixed content can contain instances of Element interfaces

Name, Quantity and ProductName. Text data is represented as

java.util.String for text.

*/

List getContent();

}

public interface LetterBody extends

javax.xml.bind.Element, LetterBodyType { };

The following instance document

<letterBody>

Dear Mr.<name>Robert Smith</name>

Your order of <quantity>1</quantity> <productName>Baby

Monitor</productName> shipped from our warehouse.

</letterBody>

could be constructed using JAXB API.

LetterBody lb = ObjectFactory.createLetterBody();

List gcl = lb.getContent();

gcl.add("Dear Mr.");

gcl.add(ObjectFactory.createLetterBodyName("Robert Smith"));

gcl.add("Your order of ");

gcl.add(ObjectFactory.createLetterBodyQuantity(1));

gcl.add(ObjectFactory.createLetterBodyProductName("Baby Monitor"));

gcl.add("shipped from our warehouse");

Note that if any element instance is placed into the general content list, gcl, that
is not an instance of LetterBody.Name, LetterBody.Quantity or LetterBody.ProductName,
validation would detect the invalid content model. With the fail fast
customization enabled, element instances of the wrong type are detected when
being added to the general content list, gcl.
86 JAXB Specification – Public Draft, V0.7 9/12/02

Content Model - Particle, Model Group, Wildcard
5.9.4 Bind wildcard schema component

A wildcard is mapped to a simple content-property with:

 ● Content-property name set to the constant “any”. A binding schema
customization could provide a more semantically meaningful content-
property name.

 ● Content-property base type set to javax.xml.bind.Element by
default. Wildcard content encountering during unmarshalling is
supported if global XML element tags occuring in wildcard context are
known to the instance of javax.xml.bind.JAXBContext,
meaning that the schema(s) describing the element content occuring in
the wildcard context is registered with the JAXBContext instance, see
Section 3.2, “JAXBContext,” on page 25 on how bindings are registered
with a JAXBContext instance. A JAXB implementation is only
required to be able to marshall and unmarshal global element content to/
from a wildcard context that is registered and valid1 according to the
schema(s) registered to JAXBContext. The specification does not
specify how a JAXB implementation handles element content that it does
not know how to map to a Java representation.

 ● See content-property predicate for a wildcard.

 ● If the maxOccurs is greater than one, the content property is mapped to
a collection property. The default collection property is a List property.

 ● These is no default value.

Note that the default base type being the marker class for an XML element
indicates that a wildcard content handled by default as an instance of an XML
Element. Since the schema does not contain any information about the element
content of a wildcard content, even the content-property, by default, can not
infer an XML element tag for wildcard element content.

1. The wildcard content must conform to the schema(s) registered with JAXBContext,
independent of whether the wildcard has a processing mode of "skip". The JAXB specification
is imposing a constraint on the "skip wildcard" that is stronger than the XML Schema [XSD Part
1] for "skip wildcards.".
9/12/02 JAXB Specification – Public Draft, V0.7 87

Binding XML Schema to Java Representations
5.9.5 Bind a repeating occurance model group

A choice or sequence model group with a repeating occurance, maxOccurs
attribute greater than one, is bound to a list content-property in the following
manner:

 ● Content-property name is derived in following ways:

❍ If a named model group definition is being referenced, the value of its
{name} property is mapped to a Java identifier for a method using the
algorithm specified in Section C.2, “The Name to Identifier Mapping
Algorithm,” on page 157.

❍ To derive a content property name for unnamed model group, see
Section C.3, “Deriving an identifier for a model group,” on page 161.

 ● Content-property base type set to java.lang.Object. A binding
schema customization could provide a more specialized java class.

 ● Content-property predicate validates the order between element
instances in the list and whether the occurance constraints for each
element instance type is valid according to the schema.

 ● Since the maxOccurs is always greater than one, the content property is
mapped to a collection property. The default collection property is a List
property.

 ● These is no default value.

Local structural Constraints

The list content property’s value must satisfy the content specification of the
model group. The ordering and element contents must satisfy the constraints
specified by the model group.

5.9.6 Content Model Default Binding

The following rules define default binding for a complex type definition’s
content model.

1. If {content type} is mixed, bind the entire content model to a general con-
tent property with the content-property name "content". See Section 5.9.3,
“Bind mixed content” for more details.

2. If (1) a particle has {max occurs} >1 and (2) its {term} is a model group,
then that particle and its descendants are mapped to one general content
88 JAXB Specification – Public Draft, V0.7 9/12/02

Content Model - Particle, Model Group, Wildcard
property that represents them. See Section 5.9.5, “Bind a repeating
occurance model group” for details.

3. Process all the remaining particles (1) whose {term} are wildcard particles
and (2) that did not belong to a repeating occurence model group bound in
step. 2. If there is only one wildcard, bind it as specified in Section 5.9.4,
“Bind wildcard schema component.” If there is more than one, then
fallback to representing the entire content model as a single general
content property.

4. Process all particles (1) whose {term} are element declarations and (2) that
do not belong to a repeating occurence model group bound in step.2.

First, we say a particle has a label L if it refers to an element declaration
whose {name} is L. Then, for all the possible pair of particles P and P’
in this set, ensure the following constraints are met:

a. If P and P’ have the same label, then they must refer to the same
element declaration.

b. If P and P’ refer to the same element reference, then its closest
common ancestor particle may not have sequence as its {term}.

If either of the above constraints are violated, then fallback to represent
the entire content model as a single general content property.

Create a content property for each label L as follows:

❍ The content property name is dervied from label name L.

❍ The base type will be the Java type to which the referenced element
declaration maps.

❍ The content property predicate reflects the occurance constraint.

❍ The content property collection type defaults to ’list’ if there exist a
particle with label L that has {maxOccurs} > 1.

❍ For the default value, if all particles with label L has a {term} with the
same {value constraint} default or fixed value, then this value.
Otherwise none.

Note – Note: Binding schema customization can be used to give particles a different
name to avoid the fallback.

Below is an example demonstrating violation of rules 4(a) and 4(b) specified
above.
9/12/02 JAXB Specification – Public Draft, V0.7 89

Binding XML Schema to Java Representations
<xsd:sequence>

<xsd:choice>

<xsd:element ref="ns1:bar"/> (A)

<xsd:element ref="ns2:bar"/> (B)

</xsd:choice>

<xsd:element ref="ns1:bar"/> (C)

</xsd:sequence>

The pair (A,B) violates the first clause because they both have the label "bar" but
they refer to different element declarations. The pair (A,C) violates the second
clause because their nearest common ancestor particle is the outermost
<sequence>.

5.9.6.1 Default binding of content model “derived by extension”

If a content-property naming collision occurs between a content-property that
exists in an base complex type definition and a content-property introduced by a
“derive by extension” derived complex type definition, the content-properties
from the colliding property on are represented by a general content property
with the default property name rest.

Example:
derivation by extension content model with a content-property collision.

Given XML Schema fragment:

<xsd:complexType name="Base">

<xsd:sequence>

<xsd:element name="A" type="xsd:int"/>

<xsd:element name="B" type="xsd:int"/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="Derived">

<xsd:extension base="Base">

<xsd:sequence>

<xsd:element name="A" type="xsd:int"/>

</xsd:sequence>

</xsd:extension>

</xsd:complexType>

Default binding derived Java code:
90 JAXB Specification – Public Draft, V0.7 9/12/02

Content Model - Particle, Model Group, Wildcard
interface Base {

int getA(); void setA(int);

int getB(); void setB(int);

}

interface Derived extends Base {

interface A extends javax.xml.bind.Element {

int getValue();

void setValue(int value);

}

/**

* Instances of Derived.A must be placed in this general

* content propert that represents the rest of the content

* model. 2 */

getRest();

}

5.9.7 Alternative binding approach: model group
binding

An alternative binding approach to treating the content model as just a list of
elements is to more actively map model groups to Java content interfaces. The
benefit of this binding approach is the generated content interfaces and content
properties capture the semantics of model groups, aiding the user in
constructing valid content. Additionally, the additional content interfaces allow
this style of binding to rely a lot less on the general content model, only mixed
content models have to be represented as a general content property.
Unfortunately, this approach does result in an increase in the number of
generated Java content interfaces. Additionally, this approach benefits from
binding schema customizations that provide semantically meaningful names to
represent the content interfaces generated to represent nested choice and
sequence model groups. Thus, it was not considered as good a candidate for
default binding but it is considered a valuable alternative binding option.

2. Specifying a customization of the local element declaration A within Derived complex type to a
different property name than A would avoid the fallback position for this case.
9/12/02 JAXB Specification – Public Draft, V0.7 91

Binding XML Schema to Java Representations
5.9.8 Bind to Choice Content Interface

A choice group in XML Schema specifies one or more particles and where only
one can occur in content. A choice group could be accessed either as a single
entity or as a set of Java properties, only one of which is ever set at one time.

A <class> binding declaration customization of a choice group indicates that its
content model should be represented by a generated content interface that
encapsulates all of its properties and also allows for access of the choice as a
single entity. The customization is specified in Section 6.7.3.3, “Model Group”..

A choice class consists of :

 ● The name of the class, ChoiceClassName, which is either the referenced
model group definition name or a name as computed in Section C.3,
“Deriving an identifier for a model group,” on page 161

 ● Package Name

 ● Outer Class Names representing the complex type definition ancestor of
the choice model group

 ● Set of Java content properties (one for each particle in choice model
group)

 ● Content property base type is the common basetype of all choice
properties.

A template for the choice class is provided below. First the terms
introduced above and used within the choice class template need further
definition. A choice model group is composed of N particles, each of which is
mapped to a Java content property. For below, ChoicePropertyX is used to
represent one of the properties. The getContent method returns the current
value. If the property has no current value then the value null is returned. Note
that a current value of a primitive Java type is returned as an instance of the
corresponding Java wrapper class. If any choice property has a basetype of a
primitive builtin Java type, then ChoiceBaseType is java.lang.Object and the
Java wrapper classes are used by all methods in the generated choice class that
use ChoiceBaseType.

The Java class representation consists of the following methods:

 ● The getContent method returns the current value. If the property has
no current value then the value null is returned. Note that a current
92 JAXB Specification – Public Draft, V0.7 9/12/02

Content Model - Particle, Model Group, Wildcard
value of a primitive Java type is returned as an instance of the
corresponding Java wrapper class.

 ● The isSetContent method returns true if choice has a current
value.

 ● The unsetContent method discards the property’s given value, if
any.

 ● Identify the properties for choice using Section 5.9.9, “Binding
algorithm for model group style binding”.

❍ getId method returns the current value of the choice property if the
choices content is specified by Id; otherwise, return null. The
method returns Java primitive type when appropriate.

❍ setId method set the given value of the choice property. This is a
mutually exclusive set. It logically unsets the previously set value for
the choice and makes this only set property for the choice content
interface.

❍ isSetIdmethod returns true if the choice property is specified by the
particle corresponding to Id.

 ● A ObjectFactory method to create an instance of the choice content
interface.

Example:

XML Schema fragment:

<xsd:complexType name="SomeComplexType"/>

<xsd:choice maxOccurs="unbounded">

<xsd:element name="foo" type="xsd:int"/>

<xsd:element name="bar" type="xsd:string"/>

</xsd:choice>

</xsd:complexType>
9/12/02 JAXB Specification – Public Draft, V0.7 93

Binding XML Schema to Java Representations
Derived Java interfaces:

/** class generated to represent <insert choice fragment here>*/

public interface FooOrBar {

/** Setting Foo implies all other properties are not set and

* and only isSetFoo() will return true.*/

void setFoo(int value);

int getFoo();

boolean isSetFoo();

/** Setting Bar implies all other properties are not set.*/

void setBar(String value);

String getBar();

boolean isSetBar();

java.lang.Object getContent();

boolean isSetContent();

void unsetContent();

}

public interface SomeComplexType {

List getFooOrBar();

}

5.9.8.1 Bind to a choice content property

This binding provides an optimization that cuts down on the number of classes
generated using the model group binding style. Setting the
choiceContentProperty attribute of <jaxb:globalBindings> as specified in
Section 6.5.1, “Usage,” on page 106 or <jaxb:property> element as specified in
Section 6.8.1, “Usage,” on page 117 enables this customized binding option.

A non-repeating choice model group is to bound to a simple property. A
repeating choice model group is bound to a collection property. A choice
content property is derived from a choice model group as follows:

 ● The choice content property name is either the referenced model group
definition {name} or obtained using the algorighm specified in
Section C.3, “Deriving an identifier for a model group,” on page 161.

 ● The choice content property base type is the first common supertype
of all items within the choice model group, with java.lang.Object
always being a common root for all Java objects.3

 ● The predicate
94 JAXB Specification – Public Draft, V0.7 9/12/02

Content Model - Particle, Model Group, Wildcard
 ● The collection type defaults to List if the choice model group has {max
occurs} greater than one.

 ● No default value.

A choice property consists of the following methods:

 ● The getChoiceID method returns the set value. If the property has no
set value then the value null is returned. Note that a set value of a
primitive Java type is returned as an instance of the corresponding Java
wrapper class.

 ● The setChoiceID method has a single parameter that is the type of
the choice content property base type.

The globalBindings and property customization attribute,
choiceContentProperty,enables this customized
binding.The customization is specified in Section 6.5, “<globalBindings>
Declaration” and Section 6.8, “<property> Declaration.

Example:

XML Schema representation of a choice model group .

<xsd:choice>

<xsd:element name="foo" type="xsd:int"/>

<xsd:element name="bar" type="xsd:string"/>

</xsd:choice>

Derived choice content property method signatures:

void setFooOrBar(Object);

Object getFooOrBar();

boolean isSetFooOrBar();

3. Note that primitive Java types must be represented by their Java wrapper classes when base type
is used in the choice content property method signatures. Also, all seqence descendants of the
choice are treated as either a general/value content list or are mapped to their own Java content
interface.
9/12/02 JAXB Specification – Public Draft, V0.7 95

Binding XML Schema to Java Representations
5.9.9 Binding algorithm for model group style
binding

The following rules describe a model group binding style that can be enabled
via the binding customization, modelGroupToClass, specified in Section 6.5,
“<globalBindings> Declaration.”

1. When {content type} is

a. mixed - Bind the entire content model to a general content property
with the content-property name "content". See Section 5.9.2.1,
“General content list” for more details.

b. element-only - Apply all binding declaration customizations on
model groups within the content model.

2. Normalize unnecessary nested, non-repeating model groups remaining
after applying previous step.

Given particle T that contains a particle N, (1) if the {term} for both
particle T and N represent the same compositor, either <sequence> or
<choice> and (2) particle N has {max occurs} == 1, then one can
flatten all the particles from particle N’s {term} model group into the
particle T’s {term} model group.

This process should be repeated until the top level particle only contains

a. choice groups containing nested, non-repreating sequences

b. sequence groups containing nested, non-repeating choices

c. directly or indirectly, repeating occurance model groups

3. Bind all repeating occurance model groups remaining after applying the
previous steps in the following manner:

a. Bind the sequence or choice group to the appropriate Java content
interface.

b. Represent the multiple occurances of the model group as a List
property with base type of the Java content interface derived in step 3a.

4. Bind all non-repeating choice model groups remaining after applying
previous steps to a choice content property:

a. All sequences nested within the choice model group must be mapped
to a Java content interface.

b. Apply binding specified in Section 5.9.8.1, “Bind to a choice content
96 JAXB Specification – Public Draft, V0.7 9/12/02

Default Binding Rule Summary
property”.

5. Bind elements occuring within the remaining sequences to the appropriate
content-property (as specified in step 4 in Section 5.9.6, “Content Model
Default Binding.”

5.10 Default Binding Rule Summary

Note that this summary is non-normative and all default binding rules specified
previously in the chapter take precedence over this summary.

 ● Bind the following to Java package:

❍ XML Namespace URI

 ● Bind the following XML Schema components to Java content interface:

❍ Named complex type

❍ Anonymous inlined type definition of an element declaration

 ● Bind to typesafe enum class:

❍ A named simple type definition with a basetype that derives from
“xsd:NCName” and has enumeration facets.

 ● Bind the following XML Schema components to a Java Element
interface

❍ A global element declaration to a Element interface.

❍ Local element declaration that can be inserted into a general content
list.

 ● Bind to Java property

❍ Attribute use

❍ Particle with a term that is an element reference or local element
declaration.

 ● Bind model group with a repeating occurance and complex type
definiton’s with mixed {content type} to:

❍ A general content property - a List content-property that holds Java
instances representing element information items and character data
items.
9/12/02 JAXB Specification – Public Draft, V0.7 97

Binding XML Schema to Java Representations
98 JAXB Specification – Public Draft, V0.7 9/12/02

9/12/02
C H A P T E R 6
CU ST O M I Z A T I O N

The default binding of source schema components to derived Java
representation by a binding compiler sometimes may not meet the requirements
of a JAXB application. In such cases, the default binding can be customized
using a binding declaration. Binding declarations are specified by a binding
language, the syntax and semantics of which are defined in this chapter.

All JAXB implementations are required to provide customization support
specified here.

6.1 Binding Language

The binding language is an XML based language which defines constructs
referred to as binding declarations. A binding declaration can be used to
customize the default binding between an XML schema component and its Java
representation.

The schema for binding declarations is defined in the namespace http://
java.sun.com/xml/ns/jaxb . This specification uses the namespace prefix “jaxb”
to refer to the namespace of binding declarations. For example,

<jaxb: binding declaration >

A binding compiler interprets the binding declaration relative to the source
schema and a set of default bindings for that schema. Therefore a source schema
need not contain a binding declarations for every schema component. This
makes the job of a JAXB developer easier.

There are two ways to use a binding declaration:

 ● as part of the source schema (inline annotated schema)
JAXB Specification – Public Draft, V0.7 99

Customization
 ● external to the source schema in an external binding declaration.

The syntax and semantics of the binding declaration is the same regardless of
which of the above two methods is used for customization. However, the
semantics may depend upon the source schema language. The description in this
chapter attempts to separate the independent and dependent parts as far as
possible.

A binding declaration itself does not identify the schema component to which it
applies. A schema component can be identified in several ways:

 ● explicitly - e.g. QName, XPath expressions etc.
 ● implicitly - based on the context in which the declaration occurs.

It is this separation which allows the binding declaration syntax to be shared
between inline annotated schema and the external binding.

6.1.1 Extending the Binding Language

In recognition that there will exist a need for additional binding declarations
than those currently specified in this specification, a formal mechanism is
introduced so all jaxb processors are able to identify extension binding
declarations. An extension binding declaration is not specified in the jaxb:
namespace, is implementation specific and its use will impact portability.
Therefore, binding customization that must be portable between JAXB
implementations should not rely on particular customization extensions being
available.

The namespaces containing extension binding declarations are specified to a
jaxb processor by the occurance of the global attribute
<jaxb:extensionBindingPrefixes> within an instance of
<xs:schema> element. The value of this attribute is a whitespace-separated
list of namespace prefixes. The namespace bound to each of the prefixes is
designated as a customization declaration namespace. Prefixes are resolved on
the <xs:schema> element that carries this attribute. It is an error if the
prefix fails to resolve. This feature is quite similar to the extension-element-
prefixes attribute in [XSLT 1.0] http://www.w3.org/TR/xslt10/#extension,
introduces extension namespaces for extension instructions and functions for
XSLT 1.0.

This specification does not define any mechanism for creating or processing
extension binding declarations and does not require that implementations
100 JAXB Specification – Public Draft, V0.7 9/12/02

Binding Language
support any such mechanism. Such mechanisms, if they exist, are
implementation-defined.

6.1.2 Inline Annotated Schema

This method of customization is based on the <appinfo> element specified by
the XML Schema [XSD PART 1]. A binding declaration is embedded within the
<appinfo> element. For example,

<xsd:annotation><xsd:appinfo>

<binding declaration>

</xsd:appinfo></xsd:annotation>

The inline annotation where the binding declaration is used identifies the
schema component.

6.1.3 External Binding Declaration

The external binding declaration format enables customized binding without
requiring modification of the source schema. Unlike inline annotation, the
remote schema component to which the binding declaration applies must be
identified explicitly. The <jaxb:bindings> element enables the
specification of a remote schema context to associate its binding declaration(s)
with. Minimally, an external binding declaration follows the following format.

<jaxb:bindings schemaLocation = "xsd:anyURI">

<jaxb:bindings node = "xsd:string">*

<binding declaration>

<jaxb:bindings>

</jaxb:bindings>

The attributes schemaLocation and node are used to construct a reference to a
node in a remote schema. The binding declaration is applied to this node by the
binding compiler as if the binding declaration was embedded in the node’s
<xsd:appinfo> element. The attribute values are interpreted as follows:

 ● schemaLocation - It is a URI reference to a remote schema.
 ● node - It is an XPath 1.0 expression that identifies the schema node

within schemaLocation to associate binding declarations with.

An example external binding declaration can be found in Section D.1,
“Example.”
9/12/02 JAXB Specification – Public Draft, V0.7 101

Customization
6.1.3.1 Restrictions

 ● The external binding element <jaxb:bindings> is only recognized
by a jaxb processor within a <xsd:appinfo> element or when it is
root element of a document. An XML document that has a
<jaxb:bindings> element as its root is referred to as an external
binding declaration file.

 ● Both attributes of a <jaxb:bindings> element should not be set at
the same time. Either attribute schemaLocation or node should be
set, not both on the same <jaxb:bindings> element.

 ● The top-most <jaxb:binding> element within an
<xsd:appinfo> element is expected to have its schemaLocation
attribute set.

6.1.4 Invalid Customizations

A non conforming binding declaration is a binding declaration in the jaxb
namespace but does not conform to this specification. A non conforming
binding declaration results in a customization error. The binding compiler must
report the customization error. The exact error is not specified here.

The rest of this chapter assumes that non conforming binding declarations are
processed as indicated above and their semantics are not explicitly specified in
the descriptions of individual binding declarations.

6.2 Notation

The source and binding-schema fragments shown in this chapter are meant to be
illustrative rather than normative. The normative syntax for the binding
language will be described by a XML Schema, in addition to the other
normative text within this chapter. All examples are non-normative.

 ● Metavariables are in italics .

 ● Optional attributes are enclosed in [square="bracket"].

 ● Optional elements are enclosed in [<elementA> ... </
elementA>].

 ● Other symbols: ‘,” denotes a sequence, ‘|’ denotes a choice, ‘+’ denotes
one or more, ‘*’ denotes zero or more.
102 JAXB Specification – Public Draft, V0.7 9/12/02

Naming Conventions
 ● The prefix xsd: is used to refer to schema components in W3C XML
Schema namespace.

 ● In examples, the binding declarations as well as the customized code are
shown in bold like this : <appinfo> <annotation> or getAddress().

6.3 Naming Conventions

The naming convention for XML names in the binding language schema are:

 ● The first letter of the first word in a multi word name is in lower case.

 ● The first letter of every word except the first one is in upper case.

For example, the XML name for the Java property basetype is baseType.

6.4 Customization Overview

A binding declaration customizes the default binding of a schema element to a
Java representation. The binding declaration defines one or more customization
values each of which customizes a part of Java representation.

6.4.1 Scope

When a customization value is defined in a binding declaration, it is associated
with a scope. A scope of a customization value is the set of schema elements to
which it applies. If a customization value applies to a schema element, then the
schema element is said to be covered by the scope of the customization value.
The scopes are:

 ● global scope: A customization value defined in <globalBindings>
has global scope. A global scope covers all the schema elements in the
source schema and (recursively) any schemas that are included or
imported by the source schema.

 ● schema scope: A customization value defined in
<schemaBindings> has schema scope. A schema scope covers all
the schema elements in the target name space of a schema.
9/12/02 JAXB Specification – Public Draft, V0.7 103

Customization
 ● definition scope: A customization value in binding declarations of a
type definition and global declaration has definition scope. A definition
scope covers all schema elements that reference the type definition or the
global declaration. This is more precisely specified in the context of
binding declarations later on in this chapter.

 ● component scope: A customization value in a binding declaration has
component scope if the customization value applies only to the schema
element that was annnotated with the binding declaration.

Figure 6.1 Scoping Inheritance and Overriding For Binding Declarations

Global Scope

Schema Scope

Definition Scope

Component Scope

Binding Declaration

Binding Declaration

<schemaBindings>

<globalBindings>

Indicates inheritance and overriding of scope.
104 JAXB Specification – Public Draft, V0.7 9/12/02

Customization Overview
The different scopes form a taxonomy. The taxonomy defines both the
inheritance and overriding semantics of customization values. A customization
value defined in one scope is inherited for use in a binding declaration covered
by another scope as shown by the following inheritance hierachy:

 ● a schema element in schema scope inherits a customization value defined
in global scope.

 ● a schema element in definition scope inherits a customzation value
defined in schema or global scope.

 ● a schema element in component scope inherits a customization value
defined in definition, schema or global scope.

Likewise, a customization value defined in one scope can override a
customization value inherited from another scope as shown below:

 ● value in schema scope overrides a value inherited from global scope.

 ● value in definition scope overrides a value inherited from schema scope
or global scope.

 ● value in component scope overrides a value inherited from definition,
schema or global scope.

6.4.2 XML Schema Parsing

Chapter 5 specified the bindings using the abstract schema model.
Customization, on the other hand, is specified in terms of XML syntax not
abstract schema model. The XML Schema spec [XSD PART 1] specifies the
parsing of schema elements into abstract schema components. This parsing is
assumed for parsing of annotation elements specified here. In some cases, [XSD
PART 1] is ambiguous with respect to the specification of annotation elements.
Chapter 6, “Annotation Restrictions” outlines how these are addressed.
9/12/02 JAXB Specification – Public Draft, V0.7 105

Customization
Design Note – The reason for specifying using the XML syntax instead of
abstract schema model is as follows. For most part, there is a one-to-one mapping
between schema elements and the abstract schema components to which they are
bound. However, there are certain exceptions: local attributes and particles. A local
attribute is mapped to two schema components: {attribute declaration} and
{attribute use}. But the XML parsing process associates the annotation with the
{attribute declaration} not the {attribute use}. This is tricky and not obvious.
Hence for ease of understanding, a choice was made to specify customization at
the surface syntax level instead.

6.5 <globalBindings> Declaration

The customization values in "<globalBindings>" binding declaration
have global scope. This binding declaration is therefore useful for customzing at
a global level.

6.5.1 Usage

<globalBindings>

[collectionType = "collectionType"]

[fixedAttributeToConstantProperty= "true" | "false" | "1" | "0"

]

[generateIsSetMethod= "true" | "false" | "1" | "0"]

[enableFailFastCheck = "true" | "false" | "1" | "0"]

[choiceContentProperty = "true" | "false" | "1" | "0"]

[underscoreBinding = "asWordSeparator" | "asCharInWord"]

[typeSafeEnumBase = "xsd:string" | "xsd:decimal" | "xsd:float"

| "xsd:double"]

[typeSafeEnumMemberName = "generateName" | "generateError"]

[enableValidation = "true" | "false" | "1" | "0"]

[enableJavaNamingConventions = "true" | "false" | "1" | "0"]

[modelGroupAsClass = "true" | "false" | "1" | "0"]

[<javaType> ... </javaType>]*

</globalBindings>

The following customization values are defined in global scope:
106 JAXB Specification – Public Draft, V0.7 9/12/02

<globalBindings> Declaration
 ● collectionType if specified, must be either “indexed" or any
fully qualified class name that implements java.util.List.

 ● fixedAttributeToConstantProperty if specified , defines
the customization value
fixedAttributeToConstantProperty. The value must be one
of "true", false", "1" or"0".

 ● generateIsSetMethod if specified, defines the customization
value of generateIsSetMethod.The value must be one of
"true", false", "1" or"0".

 ● enableFailFastCheck if specified, defines the customization
value enableFailFastCheck.The value must be one of "true",
false", "1" or"0".

 ● choiceContentProperty if specified,defines the customization
value choiceContentProperty . The value must be one of
"true", false", "1" or"0".

 ● underscoreBinding if specified, defines the customization value
underscoreBinding. The value must be one of
"asWordSeparator" or "asCharInWord".

 ● enableJavaNamingConventions if specified, defines the
customization value enableJavaNamingConventions. The value
must be one of "true", false", "1" or"0".

 ● enableValidation if specified, defines the customization value
enableValidation. The value must be one of"true", false",
"1" or"0".

 ● typesafeEnumBase if specified, defines the customization value
typesafeEnumBase. The value must be one of "xsd:string" ,
"xsd:decimal", "xsd:float" or "xsd:double".

 ● typesafeEnumMemberName if specified, defines the customization
value typesafeEnumMemberName. The value must be one of
"generateError" or "generateName".

 ● modelGroupAsClass if specified, defines the customization value
modelGroupAsClass. This selects the binding style specified in
Section 5.9.7, “Alternative binding approach: model group binding” for
binding model groups.

 ● zero or more javaType binding declarations. Each binding declaration
must be specified as described in Section 6.9, “javaType Declaration,”
on page 127”.
9/12/02 JAXB Specification – Public Draft, V0.7 107

Customization
The semantics of the above customization values, if not specified above, are
specified when they are actually used in the binding declarations.

For inline annotation, a <globalBindings> is a valid only in the annotation
element of the <schema> element. There must only be a single instance of a
<globalBindings> declaration in the annotation element of the
<schema> element.

If one source schema includes or imports a second source schema then the
<globalBindings> declaration must be declared in the first source schema.

6.5.2 Customized Name Mapping

A customization value can be used to specify a name for a Java object (e.g.
class name, package name etc.). In this case, a customization value is referrred
to as a customization name.

A customization name is always a legal Java identifier (this is formally specified
in each binding declaration where the name is specified). Since customization
deals with customization of a Java representation to which an XML schema
element is bound, requiring a customization name to be a legal Java identifier
rather than an XML name is considered more meaningful.

A customization name may or may not conform to the recommended Java
naming conventions. [JLS - Java Language Specification, Second Edition,
Section 6.8, “Naming Conventions”]. The customization value
enableJavaNamingConventions determines if a customization name is mapped
to a Java identifier that follows Java naming conventions or not.

If enableJavaNamingConventions is defined and the value is "true" or "1",
then the customization name (specified in the section from where this section is
refrerenced) must be mapped to Java identifier which follows the Java naming
conventions as specified in “Conforming Java Identifier Algorithm”; otherwise
the customized name must be used as is.

6.5.3 Underscore Handling

This section applies only when XML names are being mapped to a legal Java
Identifier by default. In this case, the treatment of underscore (‘_’) is determined
by underscoreBinding.
108 JAXB Specification – Public Draft, V0.7 9/12/02

<schemaBindings> Declaration
If underscoreBinding is "asWordSeparator", then underscore
(‘_’) must be treated as a punctuation character; otherwise if
underscoreBinding is "asCharInWord", then underscore (‘_’) must
be treated as a character in the word.

6.6 <schemaBindings> Declaration

The customization values in <schemaBindings> binding declaration have
schema scope. This binding declaration is therefore useful for customzing at a
schema level.

6.6.1 Usage

<schemaBindings>

[<package> package </package>]

[<nameXmlTransform> ... </nameXmlTransform>]*

</schemaBindings>

<package [name = "packageName"]

[<javadoc> ... </javadoc>]

</package>

<nameXmlTransform>

[<typeName [suffix="suffix"]

[prefix="prefix"] />

[<elementName [suffix="suffix"]

[prefix="prefix"] />

[<modelGroupName [suffix="suffix"]

[prefix="prefix"] />

[<anonymousTypeName [suffix="suffix"]

[prefix="prefix"] />

</nameXmlTransform>

For readability, the <nameXmlTransform> and <package> elements are
shown separately. However, they are local elements within the
<schemaBindings> element.

The semantics of the customization value are specified when they are actually
used in the binding declarations.
9/12/02 JAXB Specification – Public Draft, V0.7 109

Customization
For inline annotation, a <schemaBindings> is valid only in the annotation
element of the <schema> element. There must only be a single instance of a
<schemaBindings> declaration in the annotation element of the
<schema> element.

If one source schema includes (via the include meachnism specified by XSD
PART 1) a second source schema, then the <schemaBindings> declaration
must be declared in the first including source schema. It should be noted that
there is no such restriction on <schemaBindings> declarations when one
source schema imports another schema since the scope of
<schemaBindings> binding declaration is schema scope.

6.6.1.1 package

Usage

 ● name if specified, defines the customization value packageName.
packageName must be a valid Java package name.

 ● <javadoc> if specified, customizes the package level Javadoc.
<javadoc> must be specified as described in Section 6.11,
“<javadoc>Declaration”. The Javadoc must be generated as specified
in Section 6.11.3, “Javadoc Customization”. The Javadoc section
customized is the package section.

Design Note – The word “package” has been prefixed to name used in the
binding declaration. This is because the attribute or element tag names “name” is
not unique by itself across all scopes. For e.g., “name” attribute can be specified in
the <property> declaration. The intent is to disambiguate by reference such as
“packageName”.

The semantics of the packageName is specified in the context where it is
used. If neither packageName nor the <javadoc> element is specified, then
the binding declaration has no effect.

Example: Customizing Package Name

<schemaBindings>

<package name = "org.example.po" />

</schemaBindings>
110 JAXB Specification – Public Draft, V0.7 9/12/02

<schemaBindings> Declaration
specifies “org.example.po” as the package to be associated with the
schema.

6.6.1.2 nameXmlTransform

The use case for this declaration is the UDDI Version 2.0 schema. The UDDI
Version 2.0 schema contains many declarations of the following nature:

<element name="bindingTemplate" type="uddi:bindingTemplate"/>

The above declaration results in a name collision since both the element and
type names are the same - although in different XML Schema symbol spaces.
Normally, collisions are supposed to be resolved using customization. However,
since there are many collisions for the UDDI V2.0 schema, this is not a feasible
solution. Hence the binding declaration nameXmlTransform is being provided
to automate name collision resolution.

The nameXmlTransform allows a suffix and a prefix to be specified
on a per symbol space basis. The following symbol spaces are supported:

 ● <typeName> for the symbol space “type definitions”

 ● <elementName> for the symbol space “element definitions”

 ● <modelGroupName> for the symbol space “model group
definitions”.

If suffix is specifed, it must be appended to all the names in the symbol space
with which the to the default XML name. The prefix if specified, must be
prepended to the default XML name. Furthermore, this XML name
transformation must be done before the XML name to Java Identifier algorithm
is applied to map the XML name to a Java identifier. The XML name
transformation must not be performed on customization names.

By using a different prefix and/or suffix for each symbol symbol space,
identical names in different symbol spaces can be transformed into non-
colliding XML names.

anonymousTypeName

As specified in Section 5.7.2, “Bind to Java Content Interface”, by default a
“Type” suffix is added to the name of the Java content interface to which an
anonymous type is bound. The <anonymousTypeName> declaration can be
used to customize the suffix and prefix for the Java content interface. If suffix
9/12/02 JAXB Specification – Public Draft, V0.7 111

Customization
is specified, it must replace the “Type” suffix in the Java content interface name.
If prefix is specified, then it must be prepended to the Java content interface
name for the anonymous type.

6.7 <class> Declaration

This binding declaration can be used to customize the binding of a schema
element to a Java content interface or a Java Element interface. The
customizations can be used to specify:

 ● a name for the derived Java interface.
 ● an implementation class for the derived Java content interface. An

implementation cannot be specified for a Java Element interface.

Specification of an alternate implementation for a Java content interface allows
implementations generated by a tool (e.g. based on UML) to be used in place of
the default implementation generated by JAXB provider.

The implementation class may have a dependency upon the runtime of the
binding framework. Since a runtime is not specified in this version of the
specification, the implementation class may not be portable across JAXB
provider implementations. Hence one JAXB provider implementation is not
required to support the implementation class from another JAXB provider.

6.7.1 Usage

<class [name = "className"]>

[implClass= "implClass"]

[<javadoc> ... </javadoc>]

</class>

 ● className is the name of the derived Java interface, if specified. It
must be a legal Java interface name and must not contain a package
prefix. The package prefix is inherited from the current value of
package.

 ● implClass if specified, is the name of the implementation class for
className and must include the complete package name.
112 JAXB Specification – Public Draft, V0.7 9/12/02

<class> Declaration
 ● <javadoc> element, if specified customizes the Javadoc for the
derived Java interface. <javadoc> must be specified as described in
Section 6.11, “<javadoc> Declaration”.

6.7.2 Customization Overrides

When binding a schema element’s Java representation to a Java content interface
or a Java Element interface, the following customization values override the
defaults specified in Chapter 5. It is specified in a common section here and
referenced from Section 6.7.3, “Customizable Schema Elements”.

 ● name: The name is className if specified.

 ● package name: The name of the package is packageName inherited
from a scope that covers this schema element.

NOTE: The packageName is only set in the <package> declaration.
The scope of packageName is schema scope and is thus inherited by
all schema elements within the schema.

 ● javadoc: The Javadoc must be generated as specified in section
Section 6.11.3, “Javadoc Customization”. The Javadoc section
customized is the class/interface section.

6.7.3 Customizable Schema Elements

6.7.3.1 Complex Type Definition

When <class> customization specified in the annotation element of the complex
type definition, the complex type definition must be bound to a Java content
interface as specified in Section 5.3.3, “Java Content Interface” applying the
customization overrides as specified in Section 6.7.2, “Customization
Overrides”.

Example: Class Customization: Complex Type Definition To Java Content
Interface

XML Schema fragment:

<xsd:complexType name="USAddress">

<appinfo><annotation>

<class name="MyAddress" />
9/12/02 JAXB Specification – Public Draft, V0.7 113

Customization
</annotation> </appinfo>

<sequence>...</sequence>

<xsd:attribute name="country" type="xsd:string"/>

</xsd:complexType>

Customized code:

// public interface USAddress { // Default Code

public interface MyAddress { // Customized Code

public String getCountry();

public void setCountry(String value);

...

}

6.7.3.2 Model Group Definition

When a <class> declaration is specified in the annotation element of a model
group definition, the model group definition must be bound to a Java content
interface as specified in Section 5.5.3, “Bind to a Java content interface”
applying the customization overrides as specified in Section 6.7.2,
“Customization Overrides”.

Example: Class Customization: Model Group Definition To Class

XML Schema Fragment:

<xs:group name="AModelGroup">

<appinfo><annotation>

<class name="MyModelGroup" />

</annotation> </appinfo><

<xs:choice>

<xs:element name="A" type="xsd:int"/>

<xs:element name="B" type="xsd:float"/>

</xs:choice>

</xs:group>

Customized code:

interface MyModelGroup { // Customized code (customized class name)

void setA(int value);

int getA();

void getB(float value);

float getB();

}

114 JAXB Specification – Public Draft, V0.7 9/12/02

<class> Declaration
6.7.3.3 Model Group

When a <class> customization is specified in the annotation element of the
model group’s compositor, the model group must be bound to a Java content
interface as specified in Section 5.9.7, “Alternative binding approach: model
group binding” applying the customization overrides as specified in
Section 6.7.2, “Customization Overrides”.

6.7.3.4 Global Element Declaration

A <class> declaration is allowed in the annotation element of the global
element declaration. The global element declaration must be bound as specified
in Section 5.7.1, “Bind to Java Element Interface” applying the customization
overrides A specified in Section 6.7.2, “Customization Overrides”.

Example: Class Customization: Global Element to Class

XML Schema Fragment:

<complexType name="AComplexType">

<sequence>

<element name="A" type="xsd:int"/>

<element name="B" type="xsd:string"/>

</sequence>

<element name="AnElement" type="AComplexType">

<appinfo><annotation>

<class name="MyElement" />

</annotation> </appinfo>

</xs:element>

Customized code:

public interface AComplexType {

void setA(int value);

int getA();

void setB(String value);

String getB();

};

// following interface is generated by default

// public interface AnElement extends AComplexType,

javax.xml.jaxb.Element {};

// following interface is generated after customization

public interface MyElement extends AComplexType,

javax.xml.jaxb.Element {};
9/12/02 JAXB Specification – Public Draft, V0.7 115

Customization
public class ObjectFactory {

AnElement createAnElement(); // Default code

AnElement createMyElement(); // Customized code

AComplexType createAComplexType();

... other factory methods ...

}

6.7.3.5 Local Element

A local elment is a schema element that occurs within a complex type definition.
A local element is one of:

 ● local element reference (using the “ref” attribute) to a global element
declaration.

 ● local element declaration (“ref” attribute is not used).

A <class> declaration is allowed in the annotation element of a local
element. Chapter 6, “Annotation Restrictions” contains more information
regarding the annotation element for a local element reference.

A <class> customization on local element reference must be ignored since a
local element reference is never bound to a Java Element interface.

A <class> customization on local element declaration applies only when a
local element declaration is bound to a Java Element interface. Otherwise it
must be ignored. If applicable, a local element must be bound as specified in
Section 5.7.1, “Bind to Java Element Interface” applying the customization
overrides as specified in Section 6.7.2, “Customization Overrides”.

Example : Class Customization: Local Element Declaration To Java Element
Interface

The following example is from Section 5.9.2.3, “Examples”.

XML Schema fragment:

<complexType name="Base">

<choice maxOccurs="unbounded">

<element name="A" type="xsd:string"/>

<appinfo><annotation>

<class name="Bar" />

</annotation> </appinfo>

<element name="B" type="xsd:string"/>
116 JAXB Specification – Public Draft, V0.7 9/12/02

<property> Declaration
<element name="C" type="xsd:int"/>

</choice>

Customized code:

interface Base {

// interface A extends javax.xml.bind.Element {} // Default code

interface Bar extends javax.xml.bind.Element {}// Customized code

interface B extends javax.xml.bind.Element {}

interface C extends javax.xml.bind.Element {}

/**

* A general content list that can contain

* element instances of Base.A,Base.B and Base.C.

*

* <insert appropriate schema fragment here>

*/

// List getAorBorC(); // Default code

List getBarorBorC(); // Customized code

}

6.8 <property> Declaration

This binding declaration allows the customization of a binding of an XML
schema element to its Java representation as a property. This section identifies
all XML schema elements that can be mapped to a Java property and how to
customize that binding.

The scope of customization value can either be definition scope or component
scope depending upon where the <property> binding declaration is specified.

6.8.1 Usage

<property [name = "propertyName"]

[baseType = "propertyBaseType"]

[collectionType = "propertyCollectionType"]

[fixedAttributeToConstantProperty= "true" | "false" | "1" | "0"

]

[generateIsSetMethod= "true" | "false" | "1" | "0"]

[enableFailFastCheck="true" | "false" | "1" | "0"]
9/12/02 JAXB Specification – Public Draft, V0.7 117

Customization
[choiceContentProperty = "true" | "false" | "1" | "0"]

</property>

The customization values defined are:

 ● name if specified , defines the customization value propertyName;
it must be a legal Java identifier.

 ● baseType if specified, defines the customization value
propertyBaseType which is the base type of a property. The
propertyBaseType can either be a Java primitive type or fully
qualified class name.

 ● collectionType if specified, defines the customization value
propertyCollectionType which is the collection type for the
property. propertyCollectionType if specified, must be either
“indexed" or any fully qualified class name that implements
java.util.List.

 ● fixedAttributeToConstantProperty if specified , defines
the customization value
fixedAttributeToConstantProperty. The value must be one
of "true", false", "1" or"0".

 ● generateIsSetMethod if specified, defines the customization
value of generateIsSetMethod.The value must be one of
"true", false", "1" or"0".

 ● enableFailFastCheck if specified, defines the customization
value enableFailFastCheck.The value must be one of "true",
false", "1" or"0".

 ● choiceContentProperty if specified,defines the customization
value choiceContentProperty . The value must be one of
"true", false", "1" or"0".

6.8.2 Customization Overrides

When binding a schema element’s Java representation to a property, the
following customization values override the defaults specified in Chapter 5. It is
specified in a common section here and referenced from Section 6.8.3,
“Customizable Schema Elements”.
118 JAXB Specification – Public Draft, V0.7 9/12/02

<property> Declaration
 ● name: If propertyName is defined, then it is the name obtained by
mapping the name as specified in Section 6.5.2, “Customized Name
Mapping”.

 ● base type: The basetype is propertyBaseType if specified;
otherwise, it is the propertyBaseType inherited from a scope that
covers this schema element.

 ● collection type: The collection type is propertyCollectionType
if specified; otherwise it is the propertyCollectionType
inherited from a scope that covers this schema element.

 ● If propertyBaseType is a Java primitive type and
propertyCollectionType and the collection type is a class that
implements java.util.List, then the primitive type must be mapped to its
wrapper class.

The following does not apply if local attribute is being bound to a constant
property as specified in Section 6.8.3.2, “Local Attribute”:

 ● If generateIsSetMethod is "true" or "1", then additional
methods as specified in Section 4.5.4, “isSet Property Modifier” must be
generated.

 ● If enableFailFastCheck is "true" or "1" then a fail fast
checking must be enforced by the JAXB implementation.

6.8.3 Customizable Schema Elements

6.8.3.1 Global Attribute Declaration

A <property> declaration is allowed in the annotation element of the global
attribute declaration.

The binding declaration does not bind the global attribute declaration to a
property. Instead it defines customization values that have definition scope. The
definition scope covers all local attributes (Section 6.8.3.2, “Local Attribute”)
that can reference this global attribute declaration. This is useful since it allows
the customization to be done once when a global attribute is defined instead of
at each local attribute that references the global attribute declaration.
9/12/02 JAXB Specification – Public Draft, V0.7 119

Customization
6.8.3.2 Local Attribute

A local attribute is an attribute that occurs within an attribute group definition,
model group definition or a complex type. A local attribute can either be a

 ● local attribute reference (using the “ref” attribute) to a global attribute
declaration.

 ● local attribute declaration (“ref” attribute is not used).

A <property> declaration is allowed in the annotation element of a local
attribute.Chapter 6, “Annotation Restrictions” contains more information
regarding the annotation element for a local attribute reference. The
customization values must be defined as specified in Section 6.8.1, “Usage” and
have component scope.

 ● If fixedAttributeToConstantProperty is “true" or “1"
and the local attribute is a fixed, the local attribute must be bound to a
Java Constant property as specified in Section 5.8.1, “Bind to a Java
Constant property” applying customization overrides as specified in
Section 6.8.2, “Customization Overrides”. The
generateIsSetMethod, choiceContentProperty and
enableFailFastCheck must be ignored, if specified.

 ● Otherwise, it is bound to a Java property as specified in Chapter 5,
“Attribute use” applying customization overrides as specified in
Section 6.8.2, “Customization Overrides”.

Example: Customizing Java Constant Property

XML Schema fragment:

<xsd:complexType name="USAddress">

<sequence>...</sequence>

<xsd:attribute name="country" type="xsd:NMTOKEN" fixed="US">

<annotation><appinfo>

<property name="MY_COUNTRY"

fixedAttributeToConstantProperty="true" />

</appinfo></annotation>

</xsd:attribute>

</sequence>

</xsd:complexType>

Customized derived code:

public interface USAddress {
120 JAXB Specification – Public Draft, V0.7 9/12/02

<property> Declaration
// public static final String COUNTRY = "US" // Default Code

public static final String MY_COUNTRY = "US" // Customized Code

}

Example 2: Customizing to other Java Property

XML Schema fragment:

<xsd:complexType name="USAddress">

<sequence>...</sequence>

<xsd:attribute name="country" type="xsd:string">

<annotation><appinfo>

<property name="MyCountry" />

</appinfo></annotation>

</xsd:attribute>

</xsd:complexType>

Customized derived code:

public interface USAddress {

// public getString getCountry(); // Default Code

// public void setCountry(string value);// Default Code

public getString getMyCountry(); // Customized Code

public void setMyCountry(string value); // Customized Code

}

Example 3: Generating IsSet Methods

XML Schema fragment:

<xsd:attribute name="account" type = "xsd:int" use="required">

<annotation><appinfo>

<jaxb:property generateIsSetMethod="true"/>

</appinfo></annotation>

</xsd:attribute>

Customized code:

public int getAccount();

public void setAccount(int account);

public boolean isSetAccount(); // Customized code

public void unsetAccount(); // Customized code
9/12/02 JAXB Specification – Public Draft, V0.7 121

Customization
6.8.3.3 Global Element Declaration

A <property> declaration is allowed in the annotation element of a global
element declaration.

The binding declaration does not bind the global element declaration to a
property. Instead it defines customization values that have definition scope. The
definition scope covers all local elements (Section 6.8.3.4, “Local Element ”)
that can reference this global element declaration. This is useful since it allows
the customization to be done once when a global element is defined instead of at
each local element that references the global element declaration.

6.8.3.4 Local Element

A local elment is a schema element that occurs within a complex type definition.
A local element is one of:

 ● local element reference (using the “ref” attribute) to a global element
declaration.

 ● local element declaration (“ref” attribute is not used).

A <property> declaration is allowed in the annotation element of a local
element. Chapter 6, “Annotation Restrictions” contains more information
regarding the annotation element for a local element reference. The
customization values defined have component scope.

The customization values must be defined as specified in Section 6.8.1, “Usage”
and have component scope.

The local element must be bound as specified in Section 5.9.6, “Content Model
Default Binding” applying customization overrides as specified in
Section 6.8.2, “Customization Overrides”.

See example in “Example 3: Property Customization: Model Group To Content
Property Set” in section Section 6.8.3.6, “Model Group”.

6.8.3.5 Wildcard

A <property> declaration is allowed in the annotation element of the
wildcard schema component. The customization values must be defined as
specified in Section 6.8.1, “Usage” and have component scope.
122 JAXB Specification – Public Draft, V0.7 9/12/02

<property> Declaration
The wildcard schema component must be bound to a property as specified in
Section 5.9.6, “Content Model Default Binding” applying customization
overrides as specified in Section 6.8.2, “Customization Overrides”.

Example: The following example is from the XML Schema Part 0 Primer (with
customization added)

<xsd:element name="purchaseReport">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="htmlExample">

<xsd:complexType>

<xsd:sequence>

<xsd:any namespace="http://www.w3.org/1999/

xhtml"

minOccurs="1" maxOccurs="unbounded"

processContents="skip">

<xsd:annotation><xsd:appinfo>

<jaxb:property name="XhtmlItems" />

</xsd:appinfo></xsd:annotation>

</xsd:any>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

</xsd:sequence>

<xsd:attribute name="period" type="duration"/>

<xsd:attribute name="periodEnding" type="date"/>

</xsd:complexType>

</xsd:element>

Customized derived code:

// List getHtmlItems(); // Default Code

List getXhtmlItems(); // Customized Code

6.8.3.6 Model Group

A <property> binding declaration is allowed in the annotation element of
the compositor (i.e. <choice>, <sequence> or <all>). The
customization values must be defined as specified in Section 6.8.1, “Usage” and
have component scope. The model group must be bound as follows:

 ● If choiceContentProperty is “true", then the choice model
group must be bound to a choice content property as specified in
9/12/02 JAXB Specification – Public Draft, V0.7 123

Customization
Section 5.9.8.1, “Bind to a choice content property” applying
customization overrides as specified in Section 6.8.2, “Customization
Overrides”.

 ● otherwise, the model group’s content model must be bound to a general
content property as specified in Section 5.9.6, “Content Model Default
Binding” applying customization overrides as specified in Section 6.8.2,
“Customization Overrides”.

A model group can also be bound to a content property set. When a model group
is bound to a content property set, there is no customization that can be applied
to the model group itself. However, a schema element that is part of the model
group’s content model can be customized as specified in that particular schema
element.

Example1:Property Customization:Model Group To ChoiceContent Property

XML Schema fragment

<xsd:choice id=XXX/>

<xsd:annotation><xsd:appinfo>

<jaxb:property choiceContentProperty="true" />

</xsd:appinfo></xsd:annotation>

<xsd:element name="foo" type="int"/>

<xsd:element name="bar" type="string"/>

</xsd:choice>

Customized derived code:

void setFooOrBar(java.lang.Object o);

Object getFooOrBar();

boolean isSetFooOrBar();

A <property> declaration is required since the above binding is not the
default binding.

Example 2: Property Customization: Model Group To General Content
Prorperty

XML Schema frament:

<complexType name="Base">

<choice maxOccurs="unbounded">

<xsd:annotation><xsd:appinfo>

<jaxb:property name="items" />

</xsd:appinfo></xsd:annotation>
124 JAXB Specification – Public Draft, V0.7 9/12/02

<property> Declaration
<element name="A" type="xsd:string"/>

<element name="B" type="xsd:string"/>

<element name="C" type="xsd:int"/>

</choice>

</complexType>

Customized derived code:

interface Base {

interface A extends javax.xml.bind.Element {}

interface B extends javax.xml.bind.Element {}

interface C extends javax.xml.bind.Element {}

/**

* A general content list that can contain

* element instances of Base.A,Base.B and Base.C.

*

* <insert appropriate schema fragment here>

*/

// List getAorBorC(); - default

List getItems();// Customized Code

}

Example 3: Property Customization: Model Group To Content Property Set

XML Schema fragment:

<xsd:complexType name="PurchaseOrderType">

<xsd:sequence>

<xsd:choice>

<xsd:group ref="shipAndBill"/>

<xsd:element name="singleUSAddress" type="USAddress">

<xsd:annotation></xsd:appinfo>

<jaxb:property name="address" />

</xsd:appinfo></xsd:annotation>

</xsd:element>

</xsd:group>

</xsd:choice>

<xsd:element ref="comment" minOccurs="0"/>

<xsd:element name="items" type="Items"/>

</xsd:sequence>

<xsd:attribute name="orderDate" type="xsd:date"/>

</xsd:complexType>
9/12/02 JAXB Specification – Public Draft, V0.7 125

Customization
<xsd:group name="shipAndBill">

<xsd:sequence>

<xsd:element name="shipTo" type="USAddress"/>

<xsd:annotation><xsd:appinfo>

<jaxb:property name="shipAddress" />

</appinfo></annotation>

<xsd:element name="billTo" type="USAddress"/>

<xsd:annotation><xsd:appinfo>

<jaxb:property name="billAddress"

choiceContentProperty="true" />

</xsd:appinfo></xsd:annotation>

</xsd:element>

</xsd:sequence>

</xsd:group>

Customized derived code: (assuming that USAddress is a complex type
definition that is bound to a Java content interface USAddress).

public interface PurchaseOrderType {

void setShipAddress(USAddress) // Customized Code

void setBillAddress(USAddress) // Customized Code

void setAddress(USAddress) // Customized Code

void setComment(String)

void setOrderDate(java.util.Calendar)

}

6.8.3.7 Model Group Reference

A model group reference is a reference to a model group using the “ref”
attribute. A property customization is allowed on the annotation property of the
model group reference. Section Chapter 6, “Annotation Restrictions” contains
more information regarding the annotation element for a model group reference.

The customization values must be defined as specified in Section 6.8.1, “Usage”
and have component scope. A model group reference is bound to a Java
property set or a list property as specified in Chapter 5, “Content Model Default
Binding” applying customization overrides as specified in Section 6.8.2,
“Customization Overrides”.
126 JAXB Specification – Public Draft, V0.7 9/12/02

javaType Declaration
Design Note – The <property> declaration is not allowed on an annotation
element of attribute group definition. However, attributes within the attribute group
definition can themselves be customized as described in the “Local Attribute”
section above. Section 6.8.3.2, “Local Attribute”.

Design Note – A <property> customization is not allowed on the annotation
element of a simple type or complex type.

If the complex content for a complex type is mixed content, it is by default, bound
to a general content property. One way to customize this binding, would be to
allow a <property> declaration to be specified in the annotation element of the
<complexType> definition. However, this could be confusing since it could be
interpreted by users to apply to the whole complex type definition i.e. its own
content model, its attributes and the content model of a type from which it is
derived. One way get around this is to specify the semantics to apply only to the
complex type definition’s content model. But that is still confusing. So, to
customize the binding of a mixed content to a general content property, the
<property> binding declaration on the model group within the complex content
can be used. (XSD PART 1 guarantees that there is one of the following group |
choice | sequence | all within complex content)

6.9 javaType Declaration

A <javaType> declaration provides a way to customize the the binding of an
XML schema atomic datatype to a Java datatype, referred to as the target Java
datatype. The target Java datatype can be a Java built-in data type or an
application specific Java datatype.

The contract between an application specific datatype and JAXB provider
implementation consists of a pair of methods: parse method and print method.
An application specific datatype used as a target Java datatype must provide an
implementation of both the parse method and print method.

The parse method converts a lexical representation of the XML schema datatype
into a value of the target Java datatype. The parse method is invoked by a JAXB
provider’s implementation during unmarshalling.
9/12/02 JAXB Specification – Public Draft, V0.7 127

Customization
The print method converts a value of the target Java datatype into its lexical
representation of the XML schema datatype. The print method is invoked by a
JAXB provider’s implementation during marshalling.

6.9.1 Lexical And Value Space

[XSD PART 2] specifies both a value space and a lexical space for a built-in
schema datatypes. There can be more than one lexical representation for a given
value.

Examples of multiple lexical representations for a single value are:

 ● For boolean, the value true has two lexical representations "true"
and "1".

 ● For integer, the value 1 has two lexical representations "1.0" and
"1".

XSD PART 2 also specifies a canonical representation for all XML schema
atomic datatypes.

Informally (a formal specification follows later), a parse method is usually be
required to process all lexical representations for a value as specified by [XSD
PART 2]. This ensures that an instance document containing a value in any
lexical representation specified by [XSD PART 2] can be marshalled. A print
method is usually required to a convert a value into any lexical representation as
specified by [XSD PART 2].

6.9.2 Usage

<javaType name="javaType"

[xmlType="xmlType"]

[parseMethod="parseMethod"]

[printMethod="printMethod"]>

The binding declaration can be used in either a <globalBindings>
declaration or in an annotation element of a schema element. When used in a
<globalBindings> declaration, <javaType> defines customization
values with global scope. When used in an annotation element of a schema
element, the customization values have component scope.
128 JAXB Specification – Public Draft, V0.7 9/12/02

javaType Declaration
6.9.2.1 name

The javaType, if specified, is the Java datatype to which xmlType is to be
bound. Therefore, javaType must be a legal Java type name, which may
include a package prefix. If the package prefix is not present, then the Java type
name must be one of the Java built-in primitive types [JLS - Java Language
Specification, Second Edition, Section 4.2, "Primitive Types and Values"]. (For
e.g."int").

If javaType is a Java primitive type, then parseMethod and
printMethod must be omitted; otherwise both parseMethod and
printMethod are required.

6.9.2.2 xmlType

The xmlType, if specified, is the name of the XML Schema datatype to which
javaType is to bound. If specified, xmlType must be a XML atomic
datatype derived from restriction. The use of the xmlType is further
constrained as follows.

The purpose of the xmlType attribute is to allow the global customization of a
XML schema to Java datatype. Hence xmlType attribute is required when
<javaType> declaration’s parent is <globalBindings>. If absent, it must
result in a customization error. When <javaType> is used in an inline
annotation, the xmlType attribute must not be present since the XML datatype
is determined from the XML schema element with which the annotation element
is associated. If present, it must result in a customization error.

Examples can be found in “Example 1: javaType Customization: Java Built-in
Type” and “Example 2 : javaType Customization: User Specified Type”

6.9.2.3 Relationship To XML Built-in Hiearchy

If the javaType is bound to an XML datatype from which xmlType is
derived, then javaType can be specified for xmlType. For example, the
XML datatype int can always be customized to be bound to the Java datatype
java.math.BigInteger since java.math.BigInteger is bound to
the XML datatype integer and int is derived from integer, Table 5-1,
“Java Mapping for XML Schema Bultin Types,” on page 54.
9/12/02 JAXB Specification – Public Draft, V0.7 129

Customization
6.9.2.4 XML Numeric type

If xmlType is a XML numeric type, then the usage of javaType is further
constrained as described here.

By default, xmlType is bound to a Java datatype that is capable of representing
the value space of xmlType. Any user specified constraints on the value space
of xmlType are not taken into account. If the value space of xmlType is
constrained by facets, then customization can be used to bind xmlType to any
Java datatype that can be used to represent the restricted value space. This is
referred to as a narrowing conversion.

For example, the XML datatype positiveInteger is bound by default to
java.math.BigInteger. However, if schema specified facets restrict the
value space of positiveInteger to for example, 1 thru 100, then it is
possible to customize positiveInteger to int since int can represent
the value space of 1 thru 100.

6.9.2.5 parseMethod

The parse method if specified, must be applied during unmarshalling in order to
convert a string from the input document into a value of the target Java datatype.
The parse method must be invoked as follows:

 ● If the parse method is specified as new, then the binding compiler must
assume that the target type is a class that defines a constructor that takes
a single String argument. To apply the conversion to a string it must
generate code that invokes this constructor, passing it the input string.

 ● If the parse method is specified in the form ClassName.methodName
then the compiler must assume that the class ClassName exists and that
it defines a static method named methodName that takes a single
String argument and returns a value of the target type. To apply the
conversion to a string it must generate code that invokes this method,
passing it the input string.

 ● If the parse method is specified in the form methodName then the binding
compiler must assume that methodName is a method in the class
javaType. The binding compiler must therefore prefix the
javaType to the methodName and process javaType.methodName
as specified in above.

The string passed to parse method can be any lexical representation for
xmlType as specified in [XSD PART2].
130 JAXB Specification – Public Draft, V0.7 9/12/02

javaType Declaration
6.9.2.6 printMethod

The print method if specified, must be applied during marshalling in order to
convert a value of the target type into a lexical representation:

 ● If the print method is specified in the form methodName then the
compiler must assume that the target type is a class or an interface that
defines a zero-argument instance method named methodName that
returns a String. To apply the conversion it must generate code to
invoke this method upon an instance of the target Java datatype.

 ● If the print method is specified in the form ClassName.methodName then
the compiler must assume that the class ClassName exists and that it
defines a static method named methodName that takes a single argument
of the target type and returns a String. To apply the conversion to a
string it must generate code that invokes this method, passing it a value
of the target Java datatype.

The lexical representation to which the value of the target type is converted can
be any lexical representation for xmlType as specified in [XSD PART2].

6.9.3 Java Primitive Types

If javaType is a Java primitive type, then the parseMethod and
printMethod must be absent. In this case, the print and parse method are
JAXB implementation dependent.

 ● the parse method must be able to convert any lexical representation of
xmlType specified by [XSD PART 2] into a value of target type.

 ● the print method must convert a value of target type into a lexical
representation of xmlType as specified by [XSD PART 2].

6.9.4 Events

The parse method parseMethod may fail, since it is only defined on those
strings that are valid representations of target Java datatype values and it can be
applied to arbitrary strings. A parse method must indicate failure by throwing an
exception of whatever type is appropriate, though it should never throw a
TypeConstraintException. A JAXB implementation must ensure that an
exception thrown by a parse method is caught and a
parseConversionEvent event is generated .
9/12/02 JAXB Specification – Public Draft, V0.7 131

Customization
The print method printMethod usually does not fail. If it does, then the
JAXB implementation must ensure that the exception thrown by a print method
is caught and a printConversionEvent is generated.

6.9.5 Customization Overrides

The <javaType> overrides the default binding of xmlType to the Java
datatype specified in Table 5-1, “Java Mapping for XML Schema Bultin
Types,” on page 54.

6.9.6 Customizable Schema Elements

6.9.6.1 Simple Type Definition

A <javaType> binding declaration is allowed in the annotation element of the
restriction basetype of a simple type definition. The javaType overrides the
default binding of xmlType to the Java datatype specified in Table 5-1, “Java
Mapping for XML Schema Bultin Types,” on page 54. The customization
values defined have definition scope and thus covers all references to this
simple type definition.

6.9.6.2 GlobalBindings

A <javaType> binding declaration is allowed as part of
<globalBindings>. The javaType overrides the default binding of
xmlType to the Java datatype specified in Table 5-1, “Java Mapping for XML
Schema Bultin Types,” on page 54. The customization values defined have
global scope.

Example 1: javaType Customization: Java Built-in Type

This example illustrates how to bind a XML schema type to a Java type different
from the default one.

XML Schema fragment

<element name="partNumber" type="xsd:int"/>

Customization:

<globalBindings>
132 JAXB Specification – Public Draft, V0.7 9/12/02

javaType Declaration
....

<javaType name="long"

xmlType="xsd:int"/>

</globalBindings>

Since a Java built-in is specified, a parse or a print method need not be specified.
A JAXB implementation dependent print and parse methods are used for
conversion between value and lexical representations.
9/12/02 JAXB Specification – Public Draft, V0.7 133

Customization
Example 2 : javaType Customization: User Specified Type

This example shows the binding of XML schema type xsd:Date to a user
specified type MyDate.

First a user type is defined as shown below.

public class MyDate {

private static java.text.SimpleDateFormat df

= new java.text.SimpleDateFormat("yyyy-MM-dd");

public static java.util.Date parseDate(String s)

throws java.text.ParseException

{

return df.parse(s);

}

public static String printDate(java.util.Date d) {

return df.format(d);

}

}

The implementation of the print methods (parseDate and printDate) are
provided by the user. Next, the customization for <xsd:date> is specified in
<globalBindings> as shown below:

<globalBindings>

...

<jaxb:javaType name="MyDate"

xmlType="xsd:date"

parseMethod="parseDate"

printMethod="printDate"/>

...

</globalBindings>

The above customization is applied during the processing of XML instance
document. During unmarshalling, JAXB implementation invokes parseDate.
If parseDate method throws a ParseException, then the JAXB
implementation code catches the exception, and generates a
parseConversionEvent.
134 JAXB Specification – Public Draft, V0.7 9/12/02

<typesafeEnum> Declaration
6.10 <typesafeEnum> Declaration

This binding declaration allows the customization of a binding of an XML
schema element to its Java representation as a typesafe enumeration class
[BLOCH]. Only simple type definitions with enumeration facets can be
customized using this binding declaration.

6.10.1 Usage

<typesafeEnumClass name = "enumClassName">

[<typesafeEnumMember> ... </typesafeEnumMember>]*

[<javadoc> enumClassJavadoc </javadoc>]

</typesafeEnumClass>

<typesafeEnumMember name = "enumMemberName">

[value = "enumMemberValue"]

[<javadoc> enumMemberJavadoc </javadoc>]

</typesafeEnumMember>

There are two binding declarations <typesafeEnumClass> and
<typesafeEnumMember>. The two binding declarations allow the
enumeration members of an enumeration class and enumeration class itself to be
customized independently.

The two binding declarations can only be used if the restriction base type of the
ancestor’s simple type definition is one of the XML schema datatypes listed in
typesafeEnumBase; otherwise it must result in a customization error.

The <typesafeEnumClass> declaration defines the following
customization values:

 ● name defines a customization value enumClassName, if specified.
enumClassName must be a legal Java Identifier; it must not have a
package prefix.

 ● <javadoc> element, if specified customizes the Javadoc for the
enumeration class. <javadoc> defines the customization value
enumClassjavadoc if specified as described in Section 6.11,
“<javadoc> Declaration”.
9/12/02 JAXB Specification – Public Draft, V0.7 135

Customization
 ● Zero or more <typesafeEnumMember> declarations. The
customization values are as defined as specified by the
<typesafeEnumMember> declaration.

The <typesafeEnumMember> declaration defines the following
customization values:

 ● name defines a customization value enumMemberName, if specified.
enumMemberName must be a legal Java identifier.

 ● value defines a customization value enumMemberValue, if
specified. enumMemberValue must be the enumeration value
specified in the source schema. The usage of value is further
constrained as specified in Section 6.10.2, “value Attribute”.

 ● <javadoc> if specified, customizes the Javadoc for the enumeration
constant. <javadoc> defines a customization value
enumMemberjavadoc if specified as described in Section 6.11,
“<javadoc> Declaration”.

For inline annotation, the <typesafeEnumClass> must be specified in the
annotation element of the <restriction> element that specifies the
restriction base type for the enumeration facet. The
<typesafeEnumMember> must be specified in the annotation element of the
enumeration member. This allows the enumeration member to be customized
indepdendently from the enumeration class.

6.10.2 value Attribute

The purpose of the value attribute is to support customization of an
enumeration value using an external binding syntax. When the
<typesafeEnumMember> is used in an inline annotation, the enumeration
value being customized can be identified by the annotation element with which
it is associated. However, when an external binding declaration is used, while
possible, it is not desirable to use XPath to identify an enumeration value.

So when customizing using external binding syntax, the value attribute must
be provided. This serves as a key to identify the enumeration value to which the
<typesafeEnumMember> applies. It’s use is therefore further constrained
as follows:

 ● When <typesafeEnumMember> is specified in the annotation
element of the enumeration member or when XPath referes directly to a
136 JAXB Specification – Public Draft, V0.7 9/12/02

<typesafeEnum> Declaration
single enumeration facet, then the value attribute must be absent. If
present, it must result in a customization error.

 ● When <typesafeEnumMember> is scoped to the
typesafeEnumClass declaration, the value attribute must be
present. If absent, it must result in a customization error. The
enumMemberValue must be used to identify the enumeration member to
which the <typesafeEnumMember> applies.

An example of external binding syntax can be found in “Example 2:
typesafeEnum Customization: External Binding Declaration”.

6.10.3 Inline Annotations

There are two ways to customize an enumeration class:

 ● split inline annotation

 ● combined inline annotation

In split inline annotation, the enumeration value and the enumeration class are
customized separately i.e. the <typesafeEnumMember> is used
independently not as a child element of <typesafeEnumClass>. An
example of this is shown in “Example 1: typesafeEnum Customization: Split
Inline Annotation”.

In combined inline annotation, the enumeration value and the enumeration class
are customized together i.e. the <typesafeEnumMember> is used as a child
element of <typesafeEnumClass>.This is similar to the customization
used in external binding declaration. In this case the value attribute must be
present in the <typesafeEnumMember> for reasons noted in
Section 6.10.2, “value Attribute”. An example of this customization is shown in
“Example 3: typesafeEnum Customization: Combined Inline Annotation”.

6.10.4 Customization Overrides

When binding a schema element’s Java representation to a typesafe enumeration
class, the following customization values override the defaults specified in
Chapter 5. It is specified in a common section here and referenced from
Section 6.8.3, “Customizable Schema Elements”.
9/12/02 JAXB Specification – Public Draft, V0.7 137

Customization
 ● name: If enumClassName is defined, then the name obtained by mapping
enumClassName as specified in Section 6.5.2, “Customized Name
Mapping”.

 ● package name: The name obtained by inheriting packgeName from a
scope that covers this schema element and mapping packageName as
specified in Section 6.5.2, “Customized Name Mapping”.

 ● enumclass javadoc: enumClassJavaDoc if defined, customizes the
class/interface section (Section 6.11.1, “Javadoc
Sections”) for the enumeration class, as specified in Section 6.11.3,
“Javadoc Customization”.

 ● enum constant set: Each member of the set is computed as follows:

❍ name: If enumMemberName is defined, the name obtained by
mapping enumMemberName as specified in Section 6.5.2,
“Customized Name Mapping”.

❍ javadoc:enumMemberJavaDoc if defined, customizes thefield
section (Section 6.11.1, “Javadoc Sections”) for the
enumeration class, as specified in Section 6.11.3, “Javadoc
Customization”.

 ● enumvalue constant set: Each member of the set is computed as
follows:

❍ name: If enumMemberValueName is defined, the name obtained by
mapping enumMemberValueName as specified in Section 6.11.3,
“Javadoc Customization” and prefixing the obtained name with an
underscore (‘_’).

6.10.5 Customizable Schema Elements

Any XML Schema simple type which has an enumeration facet can be
customized.

Example 1: typesafeEnum Customization: Split Inline Annotation

XML Schema fragment:

<xsd:simpleType name="USState">

<xsd:restrictionbase="xsd:string">

<xsd:annotation><xsd:appinfo>

<jaxb:typesafeEnumClass name="USStateAbbr"/>

</xsd:appinfo></xsd:annotation>
138 JAXB Specification – Public Draft, V0.7 9/12/02

<typesafeEnum> Declaration
<xsd:enumeration value="AK">

<xsd:annotation><xsd:appinfo>

<jaxb:typesafeEnumMember name="State_AK" />

</xsd:appinfo></xsd:annotation>

</xsd:enumeration>

<xsd:enumeration value="AL">

<annotation><appinfo>

<typesafeEnumMember name="State_AL" />

</xsd:appinfo></xsd:annotation>

</xsd:enumeration>

</xsd:restriction>

</xsd:simpleType>

Customized derived code:

public class USStateAbbr {

protected USStateAbbr(String value) { ... }

public static final String _State_AL="AL";

public static final USStateAbbr State_AL=

new USStateAbbr(_State_AL);

public static final String _State_AK="AK";

public static final USStateAbbr State_AK=

new USStateAbbr(_State_AK);

public String getValue();

public static USStateAbbr fromValue(String value) {...}

public static USStateAbbr fromString(String value){ ... }

public String toString() { ... }

public boolean equals(Object "obj) { ... }

public int hashCode() { ... }

}

Example 2: typesafeEnum Customization: External Binding Declaration

The following example shows how to customize the above XML schema
fragment using an external binding syntax.

<jaxb:typesafeEnumClass name="USStateAbbr">

<jaxb:typesafeEnumMember name="State_AK" value="AK"/>

<jaxb:typesafeEnumMember name="State_AL" value="AL"/>

</jaxb:typesafeEnumClass>
9/12/02 JAXB Specification – Public Draft, V0.7 139

Customization
The attribute value must be specified for <typesafeEnumMember>. This
identifies the enumeration member to which <typesafeEnumMember>
applies.

Example 3: typesafeEnum Customization: Combined Inline Annotation

The following example shows how to customize the above XML schema
fragment using inline annotation which does not split the external binding
syntax.

<xsd:simpleType name="USState">

<xsd:restrictionbase="xsd:string">

<xsd:annotation><xsd:appinfo>

<jaxb:typesafeEnumClass name="USStateAbbr">

<jaxb:typesafeEnumMember name="State_AK" value="AK"/>

<jaxb:typesafeEnumMember name="State_AL" value="AL"/>

</xsd:appinfo></xsd:annotation>

<xsd:enumeration value="AK"/>

<xsd:enumeration value="AL"/>

</xsd:restriction>

</xsd:simpleType>

The attribute value must be specified for typesafeEnumMember. This identifies
the enumeration member to which the binding declaration applies.

6.11 <javadoc> Declaration

The <javadoc> declaration allows the customization of a javadoc that is
generated when an XML schema element is bound to its Java representation.

This binding declaration is not a global XML element. Hence it can only be
used as a local element within the content model of another binding declaration.
The binding declaration in which it is used determines the section of the Javadoc
that is customized.

6.11.1 Javadoc Sections

The terminology used for the javadoc sections is derived from “Requirements
for Writing Java API Specifications” which can be found online at //
java.sun.com/j2se/javadoc/writingapispecs/index.html.
140 JAXB Specification – Public Draft, V0.7 9/12/02

Annotation Restrictions
The following sections are defined for the purposes for customization:

 ● package section (corresponds to package specification)

 ● class/interface section (corresponds to class/interface specification)

 ● method section (corresponds to method specification)

 ● field section (corresponds to field specification)

6.11.2 Usage

<javadoc>

Contents in Javadoc format.

</javadoc>

6.11.3 Javadoc Customization

The Javadoc must be generated as follows (the Javadoc section is determined by
the context in which the <javadoc> is used):

 ● The javadoc is the contents of the <javadoc> element if specified.

 ● otherwise it is the contents of the <documentation> element if
specified for the element.

 ● otherwise it is the Javadoc generated by default by a binding compiler.

6.12 Annotation Restrictions

[XSD PART 1] allows an annotation element to be specified for most elements
but is ambiguous in some cases. The ambiguity and the way they are addressed
are described here.

The source of ambiguity is related to the specification of an annotation element
for a reference to a schema element using the “ref” attribute. This arises in three
cases:

 ● A local attribute references a global attribute declaration (using the “ref”
attribute).
9/12/02 JAXB Specification – Public Draft, V0.7 141

Customization
 ● A local element in a particle references a global element declaration
using the “ref” attribute.

 ● A model group in a particle references a model group definition using the
“ref” attribute.

For example in the following schema fragment (for brevity, the declaration of
the global element “Name” has been omitted).

<xsd:element name = "Customer">

<xsd:complexType>

<xsd:element ref = "Name"/>

<xsd:element ref = "Address" />

</xsd:complexType>

</xsd:element>

XML Schema spec is ambiguous on whether an annotation element can be
specified at the reference to the “Name” element.

The restrictions on annotation elements has been submitted as an issue to the
W3C Schema Working Group along with JAXB requirements (which is that
annotations should be allowed anywhere). Pending a resolution, the semantics
of annotation elements where the XML spec is unclear are assumed as specfied
as follows.

This specification assumes that an annotation element can be specified in each
of the three cases outlined above. Furthermore, an annotation element is
assumed to be associated with the abstract schema component as follows:

 ● The annotation element on an element ref is associated with {Attribute
Use}

 ● The annotation element on a model group ref or an element reference is
associated with the {particle}.
142 JAXB Specification – Public Draft, V0.7 9/12/02

9/12/02
C H A P T E R 7
REF E R EN CE S

[XSD Part 0] XML Schema Part 0: Primer,
W3C Recommendation 2 May 2001
Available at http://www.w3.org/TR/xmlschema-0/
(schema fragments borrowed from this widely used source)

[XSD Part 1] XML Schema Part 1: Structures,
W3C Recommendation 2 May 2001
Available at http://www.w3.org/TR/xmlschema-1/

[XSD Part 2] XML Schema Part 2: Datatypes,
W3C Recommendation 2 May 2001
Available at http://www.w3.org/TR/xmlschema-2/

[XMl-Infoset] XML Information Set, John Cowan and Richard Tobin, eds.,
W3C, 16 March 2001. Available at http://www.w3.org/TR/2001/WD-
xml-infoset-20010316/

[XML 1.0] Extensible Markup Language (XML) 1.0 (Second Edition),
W3C Recommendation 6 October 2000.
Available at http://www.w3.org/TR/2000/REC-xml-20001006.

[Namespaces in XML] Namespaces in XML
W3C Recommendation 14 January 1999.
Available at http://www.w3.org/TR/1999/REC-xml-names-
19990114

[XPath], XML Path Language, James Clark and Steve DeRose, eds., W3C, 16
November 1999. Available at http://www.w3.org/TR/1999/REC-
xpath-19991116

[XSLT 1.0] XSL Transformations (XSLT), Version 1.0, James Clark, W3C
Recommendation 16 November 1999 http://www.w3.org/TR/1999/REC-xslt-
19991116.
JAXB Specification – Public Draft, V0.7 143

References
[BEANS] JavaBeans(TM), Version 1.01, July 24, 1997. Available at http://
java.sun.com/beans.

[XSD Primer] XML Schema Part 0: Primer,
W3C Recommendation 2 May 2001
Available at http://www.w3.org/TR/xmlschema-0/

[DOML3ASLS] Document Object Model (DOM) Level 3 Abstract Schemas
and Load and Save Specification, Version 1.0, W3C Working Draft 25
October 2001.
Latest version available at: http://www.w3.org/TR/DOM-Level-3-
ASLS

[BLOCH] Joshua Bloch, Effective Java, Chapter 3, Typesafe Enums
http://developer.java.sun.com/developer/Books/
shiftintojavapage1.html#replaceenum

[BestPractice:NamespaceSchemaDesign], Zero, One or Many Namespaces, The
MITRE Corporation and the xml-dev list group, http://
www.xfront.com/ZeroOneOrManyNamespaces.pdf.

[Castor] “Castor XML Source Code Generator User Document”, Arnaud
Blandin, Keith Visco, http://castor.exolab.org/
SourceGeneratorUser.pdf.

[RFC2396] Uniform Resource Identifiers (URI): Generic Syntax, http://
www.ietf.org/rfc/rfc2396.txt

[JAX-RPC] Javaª API for XML-based RPC JAX-RPC 1.0, http://
java.sun.com/xml/downloads/jaxrpc.html.

[JLS] The Java Language Specification, Gosling, Joy, Steele.

[NIST] NIST XML Schema Test Suite, http://xw2k.sdct.itl.nist.gov/xml/
page4.html.
144 JAXB Specification – Public Draft, V0.7 9/12/02

9/12/02
A P P E N D I X A
PAC KA GE JA VAX.XM L.B I N D

<Available as a separate document.>
JAXB Specification – Public Draft, V0.7 145

Packagejavax.xml.bind
146 JAXB Specification – Public Draft, V0.7 9/12/02

9/12/02
A P P E N D I X B
NORMA TI VE BINDI NG SCH EM A

SYNTA X

<?xml version = "1.0" encoding = "UTF-8"?>

<schema xmlns = "http://www.w3.org/2001/XMLSchema"

targetNamespace = "http://java.sun.com/xsd/jaxb"

xmlns:jaxb = "http://java.sun.com/xsd/jaxb"

xmlns:xs = "http://www.w3.org/2001/XMLSchema"

elementFormDefault = "qualified"

attributeFormDefault = "unqualified">

<annotation><documentation>

Schema for binding schema. JAXB Version 1.0

</documentation></annotation>

<group name = "declaration">

<annotation>

<documentation>

Model group that represents a binding declaration.

Each new binding declaration added to the jaxb

namespace that is not restricted to globalBindings

should be added as a child element to this model group.

</documentation>

<documentation>

Allow for extension binding declarations.

</documentation>

</annotation>

<!-- each new binding declaration, not restricted to

globalBindings, should be added here -->

<choice>

<element ref = "jaxb:globalBindings"/>

<element ref = "jaxb:schemaBindings"/>

<element ref = "jaxb:class"/>

<element ref = "jaxb:property"/>
JAXB Specification – Public Draft, V0.7 147

Normative Binding Schema Syntax
<element ref = "jaxb:typesafeEnumClass"/>

<element ref = "jaxb:javaType"/>

<element ref = "jaxb:typesafeEnumMember"/>

<any namespace = "##other" processContents = "lax"/>

</choice>

</group>

<attributeGroup name = "propertyDefaults">

<annotation>

<documentation>

Used for property customization

</documentation>

</annotation>

<attribute name = "collectionType" default = "list"

type = "NCName"/>

<attribute name = "fixedAttributeAsConstantProperty"

default = "false"

type = "boolean"/>

<attribute name = "enableFailFastCheck"

default = "false"

type = "QName"/>

<attribute name = "generateIsSetMethod"

default = "false"

type = "boolean"/>

<attribute name = "choiceContentProperty"

default = "false"

type = "boolean"/>

</attributeGroup>

<attributeGroup name = "XMLNameToJavaIdMappingDefaults">

<annotation>

<documentation>

Customize XMlNames to Java id mapping

</documentation>

</annotation>

<attribute name = "underscoreBinding"

default = "asWordSeparator"

type = "jaxb:UnderscoreBindingType"/>

<attribute name = "typesafeEnumMemberName"

default = "generateError"

type = "jaxb:TypesafeEnumMemeberNameType"/>

</attributeGroup>

<attributeGroup name = "classDefaults">

<attribute name = "typesafeEnumBase"

type = "jaxb:TypesafeEnumBaseType"/>

</attributeGroup>
148 JAXB Specification – Public Draft, V0.7 9/12/02

<element name = "globalBindings">

<annotation>

<documentation>

Customization values defined in global scope.

</documentation>

</annotation>

<complexType>

<sequence minOccurs = "0">

<element ref = "jaxb:javaType"

minOccurs = "0" maxOccurs = "unbounded"/>

</sequence>

<attributeGroup ref = "jaxb:XMLNameToJavaIdMappingDefaults"/>

<attributeGroup ref = "jaxb:classDefaults"/>

<attributeGroup ref = "jaxb:propertyDefaults"/>

<attribute name = "enableValidation"

default = "true"

type = "boolean"/>

<attribute name = "enableJavaNamingConventions"

default = "true"

type = "boolean"/>

<attribute name = "modelGroupAsClass"

type = "boolean"/>

</complexType>

</element>

<element name = "schemaBindings">

<annotation>

<documentation>

Customization values with schema scope

</documentation>

</annotation>

<complexType>

<sequence>

<element name = "package" type = "jaxb:packageType"

minOccurs = "0"/>

<element name = "nameXmlTransform"

type = "jaxb:nameXmlTransformType"

minOccurs = "0"/>

</sequence>

</complexType>

</element>

<element name = "class">

<annotation>

<documentation>Customize interface and implementation

class.</documentation>
9/12/02 JAXB Specification – Public Draft, V0.7 149

Normative Binding Schema Syntax
</annotation>

<complexType>

<sequence>

<element name = "doc" type = "jaxb:javadoc"

minOccurs = "0"/>

</sequence>

<attribute name = "name"

type = "jaxb:JavaIdentifierType">

<annotation><documentation>

Java class name without package prefix.

</documentation></annotation>

</attribute>

<attribute name = "implClass" type = "jaxb:JavaIdentifierType">

<annotation><documentation>

Implementation class name including packageprefix.

</documentation></annotation>

</attribute>

</complexType>

</element>

<element name = "property">

<annotation><documentation>

Customize property.

</documentation></annotation>

<complexType>

<sequence>

<element name = "doc" type = "jaxb:javadoc"

minOccurs = "0"/>

</sequence>

<attribute name = "name"

type = "jaxb:JavaIdentifierType"/>

<attribute name = "baseType" type = "NCName"/>

<attributeGroup ref = "jaxb:propertyDefaults"/>

</complexType>

</element>

<complexType name = "javadoc">

<annotation><documentation>

Contents in javadoc format.

</documentation></annotation>

<complexContent>

<extension base = "anyType"/>

</complexContent>

</complexType>

<element name = "javaType">

<annotation><documentation>
150 JAXB Specification – Public Draft, V0.7 9/12/02

Data type conversions; overriding builtins

</documentation></annotation>

<complexType>

<attribute name = "name" use = "required"

type = "jaxb:JavaIdentifierType">

<annotation><documentation>

name of the java type to which xml type is to be

bound.

</documentation></annotation>

</attribute>

<attribute name = "xmlType" type = "QName">

<annotation><documentation>

xml type to which java datatype has to be bound.

Must be present when javaType is scoped to

globalBindings.

</documentation></annotation>

</attribute>

<attribute name = "parseMethod"

type = "jaxb:JavaIdentifierType"/>

<attribute name = "printMethod"

type = "jaxb:JavaIdentifierType"/>

</complexType>

</element>

<element name = "typesafeEnumClass">

<annotation><documentation>

Bind to a type safe enumeration class.

</documentation></annotation>

<complexType>

<sequence>

<element ref = "jaxb:typesafeEnumMember"

minOccurs = "0" maxOccurs = "unbounded"/>

</sequence>

<attribute name = "name"

type = "jaxb:JavaIdentifierType"/>

</complexType>

</element>

<element name = "typesafeEnumMember">

<annotation><documentation>

Enumeration member name in a type safe enumeration

class.

</documentation></annotation>

<complexType>

<attribute name = "value" type = "string"/>

<attribute name = "name"
9/12/02 JAXB Specification – Public Draft, V0.7 151

Normative Binding Schema Syntax
type = "jaxb:JavaIdentifierType"/>

</complexType>

</element>

<!-- TYPE DEFINITIONS -->

<complexType name = "packageType">

<sequence>

<element name = "doc" type = "jaxb:javadoc"

minOccurs = "0"/>

</sequence>

<attribute name = "name" type = "jaxb:JavaIdentifierType"/>

</complexType>

<simpleType name = "UnderscoreBindingType">

<annotation><documentation>

Treate underscore in XML Name to Java identifier mapping.

</documentation></annotation>

<restriction base = "string">

<enumeration value = "asWordSeparator"/>

<enumeration value = "asCharInWord"/>

</restriction>

</simpleType>

<simpleType name = "TypesafeEnumBaseType">

<annotation><documentation>

XML types which can be mapped to type safe enum

</documentation></annotation>

<restriction base = "QName">

<enumeration value = "xs:string"/>

<enumeration value = "xs:decimal"/>

<enumeration value = "xs:float"/>

<enumeration value = "xs:double"/>

</restriction>

</simpleType>

<simpleType name = "TypesafeEnumMemeberNameType">

<annotation><documentation>

Used to customize how to handle name collisions.

i. generate VALUE_1, VALUE_2... if generateName.

ii. generate an error if value is generateError.

This is JAXB default behavior.

</documentation></annotation>

<restriction base = "string">

<enumeration value = "generateName"/>

<enumeration value = "generateError"/>

</restriction>
152 JAXB Specification – Public Draft, V0.7 9/12/02

</simpleType>

<simpleType name = "JavaIdentifierType">

<annotation><documentation>

Type to indicate Legal Java identifier. TBD. Define

constraints on name.

</documentation></annotation>

<restriction base = "NCName"/>

</simpleType>

<complexType name = "nameXmlTransformRule">

<annotation><documentation>

Rule to transform an Xml name into another Xml name

</documentation></annotation>

<attribute name = "prefix" type = "string">

<annotation><documentation>

prepend the string to QName.

</documentation></annotation>

</attribute>

<attribute name = "suffix" type = "string">

<annotation><documentation>

Append the string to QName.

</documentation></annotation>

</attribute>

</complexType>

<complexType name = "nameXmlTransformType">

<annotation><documentation>

Allows transforming an xml name into another xml name. Use

case UDDI 2.0 schema.

</documentation></annotation>

<sequence>

<element name = "typeName"

type = "jaxb:nameXmlTransformRule">

<annotation><documentation>

Mapping rule for type definitions.

</documentation></annotation>

</element>

<element name = "elementName"

type = "jaxb:nameXmlTransformRule">

<annotation><documentation>

Mapping rule for elements

</documentation></annotation>

</element>

<element name = "modelGroupName"

type = "jaxb:nameXmlTransformRule">

<annotation><documentation>
9/12/02 JAXB Specification – Public Draft, V0.7 153

Normative Binding Schema Syntax
Mapping rule for model group

</documentation></annotation>

</element>

<element name = "anonymousTypeName"

type = "jaxb:nameXmlTransformRule">

<annotation><documentation>

Mapping rule for class names generated for an

anonymous type.

</documentation></annotation>

</element>

</sequence>

</complexType>

<attribute name = "extensionBindingPrefixes">

<annotation><documentation>

A binding compiler only processes this attribute when it

occurs on an instance of xs:schema element. The value of

this attribute is a whitespace-separated list of namespace

prefixes. The namespace bound to each of the prefixes is

designated as a customization declaration namespace.

</documentation></annotation>

<simpleType>

<list itemType = "normalizedString"/>

</simpleType>

</attribute>

<element name = "bindings">

<annotation><documentation>

Binding declaration(s) for a remote schema.

If attribute node is set, the binding declaraions

are associated with part of the remote schema

designated by schemaLocation attribute. The node

attribute identifies the node in the remote schema

to associate the binding declaration(s) with.

</documentation></annotation>

<!-- a <bindings> element can contain arbitrary number of

binding declarations or nested <bindings> elements -->

<complexType>

<sequence>

<choice minOccurs = "0" maxOccurs = "unbounded">

<group ref = "jaxb:declaration"/>

<element ref = "jaxb:bindings"/>

</choice>

</sequence>

<attribute name = "schemaLocation" type = "anyURI">

<annotation><documentation>
154 JAXB Specification – Public Draft, V0.7 9/12/02

Location of the remote schema to associate binding

declarations with.

</documentation></annotation>

</attribute>

<attribute name = "node" type = "string">

<annotation><documentation>

The value of the string is an XPATH 1.0 compliant

string that resolves to a node in a remote schema

to associate binding declarations with. The remote

schema is specified by the schemaLocation

attribute occuring in the current element or in a

parent of this element.

</documentation></annotation>

</attribute>

</complexType>

</element>

</schema>
9/12/02 JAXB Specification – Public Draft, V0.7 155

Normative Binding Schema Syntax
156 JAXB Specification – Public Draft, V0.7 9/12/02

9/12/02
A P P E N D I X C
BI N D I N G XML NA M E S T O

JA VA IDEN TI F IERS

C.1 Overview

This section provides default mappings from:

 ● XML Name to Java identifier
 ● Model group to Java identifier
 ● Namepsace URI to Java package name

C.2 The Name to Identifier Mapping
Algorithm

Java identifiers typically follow three simple, well-known conventions:

 ● Class and interface names always begin with an upper-case letter. The
remaining characters are either digits, lower-case letters, or upper-case
letters. Upper-case letters within a multi-word name serve to identify the
start of each non-initial word, or sometimes to stand for acronyms.

 ● Method names and components of a package name always begin with a
lower-case letter, and otherwise are exactly like class and interface
names.

 ● Constant names are entirely in upper case, with each pair of words
separated by the underscore character (‘_’, \u005F, LOW LINE).
JAXB Specification – Public Draft, V0.7 157

Binding XML Names to Java Identifiers
XML names, however, are much richer than Java identifiers: They may include
not only the standard Java identifier characters but also various punctuation and
special characters that are not permitted in Java identifiers. Like most Java
identifiers, most XML names are in practice composed of more than one
natural-language word. Non-initial words within an XML name typically start
with an upper-case letter followed by a lower-case letter, as in Java, or are
prefixed by punctuation characters, which is not usual in Java and, for most
punctuation characters, is in fact illegal.

In order to map an arbitrary XML name into a Java class, method, or constant
identifier, the XML name is first broken into a word list. For the purpose of
constructing word lists from XML names we use the following definitions:

 ● A punctuation character is one of the following:

❍ A hyphen (’-’, \u002D, HYPHEN-MINUS),
❍ A period (‘.’, \u002E, FULL STOP),
❍ A colon (’:’, \u003A, COLON),
❍ An underscore (’_’, \u005F, LOW LINE),
❍ A dot (‘.’, \u00B7, MIDDLE DOT),
❍ \u0387, GREEK ANO TELEIA,
❍ \u06DD, ARABIC END OF AYAH, or
❍ \u06DE, ARABIC START OF RUB EL HIZB.

These are all legal characters in XML names.

 ● A letter is a character for which the Character.isLetter method
returns true, i.e., a letter according to the Unicode standard. Every
letter is a legal Java identifier character, both initial and non-initial.

 ● A digit is a character for which the Character.isDigit method
returns true, i.e., a digit according to the Unicode Standard. Every digit
is a legal non-initial Java identifier character.

 ● A mark is a character that is in none of the previous categories but for
which the Character.isJavaIdentifierPart method returns
true. This category includes numeric letters, combining marks, non-
spacing marks, and ignorable control characters.

Every XML name character falls into one of the above categories. We further
divide letters into three subcategories:

 ● An upper-case letter is a letter for which the
Character.isUpperCase method returns true,
158 JAXB Specification – Public Draft, V0.7 9/12/02

The Name to Identifier Mapping Algorithm
 ● A lower-case letter is a letter for which the
Character.isLowerCase method returns true, and

 ● All other letters are uncased.

An XML name is split into a word list by removing any leading and trailing
punctuation characters and then searching for word breaks. A word break is
defined by three regular expressions: A prefix, a separator, and a suffix. The
prefix matches part of the word that precedes the break, the separator is not part
of any word, and the suffix matches part of the word that follows the break. The
word breaks are defined as:

(The character \u2160 is ROMAN NUMERAL ONE, a numeric letter.)

After splitting, if a word begins with a lower-case character then its first
character is converted to upper case. The final result is a word list in which each
word is either

 ● A string of upper- and lower-case letters, the first character of which is
upper case,

 ● A string of digits, or

 ● A string of uncased letters and marks.

Given an XML name in word-list form, each of the three types of Java
identifiers is constructed as follows:

 ● A class or interface identifier is constructed by concatenating the words
in the list,

 ● A method identifier is constructed by concatenating the words in the list.
A prefix verb (get, set, etc.) is prepended to the result.

Table 3-1 XML Word Breaks

Prefix Separator Suffix Example

[^punct] punct+ [^punct] foo|--|bar

digit [^digit] foo22|bar

[^digit] digit foo|22

lower [^lower] foo|Bar

upper upper lower FOO|Bar

letter [^letter] Foo|\u2160

[^letter] letter \u2160|Foo
9/12/02 JAXB Specification – Public Draft, V0.7 159

Binding XML Names to Java Identifiers
 ● A constant identifier is constructed by converting each word in the list to
upper case; the words are then concatenated, separated by underscores.

This algorithm will not change an XML name that is already a legal and
conventional Java class, method, or constant identifier, except perhaps to add an
initial verb in the case of a property access method.

Example

C.2.1 Collisions and conflicts

It is possible that the name-mapping algorithm will map two distinct XML
names to the same word list. This will result in a collision if, and only if, the
same Java identifier is constructed from the word list and is used to name two
distinct generated classes or two distinct methods or constants in the same
generated class. Collisions are not permitted by the binding compiler and are
reported as errors; they may be repaired by revising XML name within the
source schema or by specifying a customized binding that maps one ot the two
XML names to an alternative Java identifer.

Method names are forbidden to conflict with Java keywords or literals, with
methods declared in java.lang.Object, or with methods declared in the
binding-framework classes. Such conflicts are reported as errors and may be
repaired by revising the appropriate schema.

Table 3-2 XML Names and Java Class, Method, and Constant Names

XML Name Class Name Method Name Constant Name

mixedCaseName MixedCaseName getMixedCaseName MIXED_CASE_NAME

Answer42 Answer42 getAnswer42 ANSWER_42

name-with-dashes NameWithDashes getNameWithDashes NAME_WITH_DASHES

other_punct-chars OtherPunctChars getOtherPunctChars OTHER_PUNCT_CHARS
160 JAXB Specification – Public Draft, V0.7 9/12/02

Deriving an identifier for a model group
Design Note – The likelihood of collisions, and the difficulty of working around
them when they occur, depends upon the source schema, the schema language in
which it is written, and the binding declarations. In general, however, we expect
that the combination of the identifier-construction rules given above, together with
good schema-design practices, will make collisions relatively uncommon.

The capitalization conventions embodied in the identifier-construction rules will
tend to reduce collisions as long as names with shared mappings are used in
schema constructs that map to distinct sorts of Java constructs. An attribute named
foo is unlikely to collide with an element type named foo because the first maps
to a set of property access methods (getFoo, setFoo, etc.) while the second
maps to a class name (Foo).

Good schema-design practices also make collisions less likely. When writing a
schema it is inadvisable to use, in identical roles, names that are distinguished
only by punctuation or case. Suppose a schema declares two attributes of a single
element type, one named Foo and the other named foo. Their generated access
methods, namely getFoo and setFoo, will collide. This situation would best be
handled by revising the source schema, which would not only eliminate the
collision but also improve the readability of the source schema and documents that
use it.

C.3 Deriving an identifier for a model
group

XML Schema has the concept of a group of element declarations. Occasionally,
it is convenient to bind the grouping as a Java content property or a Java content
interface. When a semantically meaningful name for the group is not provided
within the source schema or via a binding declaration customization, it is
necessary to generate a Java identifier from the grouping. Below is an algorithm
to generate such an identifier.

A name is computed for an unnamed model group by concatenating together the
first 3 element declarations and/or wildcards that occur within the model group.
Each XML {name} is mapped to a Java identifier for a method using the XML
Name to Java Identifier Mapping algorithm. Since wildcard does not have a
{name} property, it is represented as the Java identifier “Any”. The Java
identifiers are concatenated together with the separator “And” for sequence
9/12/02 JAXB Specification – Public Draft, V0.7 161

Binding XML Names to Java Identifiers
compositor and “Or” for choice compositors. For example, a sequence of
element foo and element bar would map to “FooAndBar” and a choice of
element foo and element bar maps to “FooOrBar”.‘ Lastly, a sequence of
wildcard and element bar would map to the Java idenitifier “AnyAndBar”.

Example:

Given XML Schema fragment:

<choice>

<sequence>

<element ref="A"/>

<any/>

</sequence>

<element ref="C"/>

</choice>

The generated Java identifier would be AAndAnyOrC.

C.4 Generating a Java package name

This section describes how to generate a package name to hold the derived Java
representation. The motivation for specifying a default means to generate a Java
package name is to increase the chances that a schema can be processed by a
binding compiler without requiring the user to specify customizations.

If a schema has a target namespace, the next subsection describes how to map
the URI into a Java package name. If the schema has no target namespace, there
is a section that describes an algorithm to generate a Java package name from
the schema filename.

C.4.1 Mapping from a Namespace URI

An XML namespace is represented by a URI. Since XML Namespace will be
mapped to a Java package, it is necessary to specify a default mapping from a
URI to a Java package name. The URI format is described in [RFC2396].

The following steps describe how to map a URI to a Java package name. The
example URI, http://www.acme.com/go/espeak.xsd, is used to
illustrate each step.
162 JAXB Specification – Public Draft, V0.7 9/12/02

Generating a Java package name
1. Remove the scheme and ":" part from the beginning of the URI, if present.

//www.acme.com/go/espeak.xsd

2. Remove the trailing file type, one of .?? or .??? or .html.

//www.acme.com/go/espeak

3. Parse the remaining string into a list of strings using ’/’ as a separator.
Treat ’//’ and ’///’ as a single separator.

{"www.acme.com", "go", "espeak" }

4. For each string in the list produced by previous step, unescape each escape
sequence octet. (Another alternative is to just drop all escape sequence
octets.)

{"www.acme.com", "go", "espeak" }

5. Apply algorithm described in Section 7.7 “Unique Package Names” in
[JLS] to derive a unique package name from the potential internet domain
name contained within the first component. The internet domain name is
reversed , component by component. Note that a leading “www.” is not
considered part of an internet domain name and must be dropped.

If the first component does not contain either one of the top-level
domain names, for example, com, gov, net, org, edu, or one of the
English two-letter codes identifying countries as specified in ISO
Standard 3166, 1981, this step must be skipped.

{“com”, “acme”, “go”, “espeak”}

6. For each string in the list, apply the algorithm, specified in Chapter C.2,
“The Name to Identifier Mapping Algorithm,” for "method identifier"
since its naming conventions matches the convention for a component
within a Java package, i.e. first character is lowercase. Since a URI can
contain characters which are not valid in a XML Name, the name mapping
algorithm needs to be updated to recognize any character in the URI that
returns false for isJavaIdentifierPart() as a punctuation mark.
Lastly, since package identifier components are typically not upper case,
convert each string to be all lower case.

{"com”, “acme”, "go", "espeak" }

7. Concatenate the resultant list of strings using ’.’ as a separating character
to produce a package name.
9/12/02 JAXB Specification – Public Draft, V0.7 163

Binding XML Names to Java Identifiers
Final package name: "com.acme.go.espeak".

Section C.2.1, “Collisions and conflicts,” on page 160, specifies what to do
when the above algorithm results in an invalid Java package name. If any of the
generated component names of the Java package name is a Java keyword or
literal, the Java package name is invalid.

C.5 Conforming Java Identifier
Algorithm

This section describes hows to convert a legal Java identifier which may not
conform to Java naming conventions to a Java identifier that conforms to the
standard naming conventions. Since a legal Java identifier is also a XML name,
this algorithm is the same as Section C.2, “The Name to Identifier Mapping
Algorithm” with the following exception: constant names must not be mapped
to a Java constant that conforms to the Java naming convention for a constant.
The reason is that this algorithm is used to map legal Java identifiers specified
in customization referred to as a customization name. As specified in the
Chapter 6, “Customization”, customization names that are not mapped to
constants that conform to the Java naming conventions.
164 JAXB Specification – Public Draft, V0.7 9/12/02

9/12/02
A P P E N D I X D
EX TE R NA L BI ND I N G

DE C LA R A T A T I O N

D.1 Example

Example: Consider the following schema and external binding file:

Source Schema: A.xsd:

<xs:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:complexType name="aType">

<xsd:sequence>

<xsd:element name="foo" type="xsd:int"/>

</xsd:sequence>

<xsd:attribute name="bar" type="xsd:int"/>

</xsd:complexType>

<xsd:element name="root" type="ens:aType"/>

</xsd:schema>

External binding declarations file:

<jaxb:bindingsxmlns:jaxb="http://java.sun.com/xml/jaxb"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:ens="http://example.com/ns"

jaxb:version="1.0">

<jaxb:bindings schemaLocation=”A.xsd”>

<jaxb:bindings node="//xs:complexType[@name=’aType’]”>

<jaxb:class name="customNameType"/>

<jaxb:bindings node=”./xs:element[@name=’foo’]”>

<jaxb:property name="customFoo"/>

</jaxb:binding>
JAXB Specification – Public Draft, V0.7 165

External Binding Declaratation
<jaxb:binding node=”./xs:attribute[@name=’bar’]”>

<jaxb:property name="customBar"/>

</jaxb:binding>

</jaxb:bindings>

</jaxb:bindings>

</jaxb:bindings>

Conceptually, the combination of the source schema and external binding file
above are the equivalent of the following inline annotated schema.

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:ens="http://example.com/ns"

targetNamespace="http://example.com/ns">

<xsd:complexType name="aType">

<xsd:annotation>

<xsd:appinfo>

<jaxb:class name="customNameType"/>

</xsd:appinfo>

</xsd:annotation>

<xsd:sequence>

<xsd:element name="foo" type="xsd:int">

<xsd:annotation>

<xsd:appinfo>

<jaxb:property name="customFoo"/>

</xsd:appinfo>

</xsd:annotation>

</xsd:element>

</xsd:sequence>

<xsd:attribute name="bar" type="xsd:int">

<xsd:annotation>

<xsd:appinfo>

<jaxb:property name="customBar"/>

</xsd:appinfo>

</xsd:annotation>

</xsd:attribute>

</xsd:complexType>

<xsd:element name="root" type="ens:aType"/>

</xsd:schema>

D.2 Transformation

The intent of this section is to describe the transformation of external binding
declarations and their target schemas into a set of schemas annotated with jaxb
binding declarations. ready for processing by a JAXB compliant binding
compiler.
166 JAXB Specification – Public Draft, V0.7 9/12/02

Transformation
This transformation must be understood to work on XML data model level.
Thus, this transformation is applicable even for those schemas which contain
semantic errors.

The transformation is applied as follows:

1. Gather all the top-most <jaxb:bindings> elements from all the sche-
ma documents and all the external binding files that participate in this pro-
cess. Outer-most <jaxb:bindings> are those <jaxb:bindings>
elements whose parent is not a <jaxb:bindings> element. Note that
only <jaxb:bindings> elements that are the top-level of an <annota-
tion><appinfo> or is the root node of an XML document are recog-
nized by jaxb processors.
We will refer to these trees as "external binding forest."

2. Collect all the namespaces used in the elements inside the external
binding forest, except the jaxb namespace, "http://
java.sun.com/xml/ns/jaxb”,and the no namespace. Allocate an
unique prefix for each of them and declare the namespace binding at all
the root <xs:schema> elements of each schema documents.
Then add a jaxb:extensionBindingPrefix attribute to each <xs:schema>
element with all those allocated prefixes. If an <xs:schema> element
already carries this attribute, prefixes are just appended to the existing
attributes.

Note: The net effect is that all "foreign" namespaces used in the external
binding forest will be automatically be considered as extension
customization declaration namespaces.

3. For each <jaxb:bindings> element, we determine the "target
element" to which the binding declaration should be associated with. This
process proceeds in a top-down fashion as follows:

a. Let p be the target element of the parent <jaxb:bindings>. If it is
the outer most <jaxb:bindings>, then let p be the
<jaxb:bindings> element itself.

b. Identify the “target element” using <jaxb:bindings> attributes.
(i) If the<jaxb:bindings> has a @schemaLocation, the value
of the attribute should be taken as an URI and be absolutized with the
base URI of the <jaxb:bindings> element. Then the target
element will be the root node of the schema document identified by the
absolutized URI. If there’s no such schema document in the current
9/12/02 JAXB Specification – Public Draft, V0.7 167

External Binding Declaratation
input, it is an error. Note: the root node of the schema document is not
the document element.

(ii) If the <jaxb:bindings> has @node, the value of the attribute
should be evaluated as an XPath 1.0 expression. The context node in
this evaluation should be p as we computed in the previous step. It is an
error if this evaluation results in something other than a node set that
contains exactly one element. Then the target element will be this
element.

(iii) if the<jaxb:bindings> has neither @schemaLocation nor
@node, then the target element will be p as we computed in the
previous step. Note: <jaxb:bindings> elements can’t have both
@schemaLocation and @node at the same time.

We define the target element of a binding declaration to be the target
element of its parent <jaxb:bindings> element. It is an error if a
target element of a binding declaration doesn’t belong to the "http://
wwww.w3.org/2001/XMLSchema" namespace.

4. Next, for each target element of binding declarations, if it doesn’t have any
<xs:annotation> <xs:appinfo> in its children, one will be
created and added as the first child of the target.

After that, we move each binding declaration under the target node of its
parent <jaxb:bindings>. Consider the first <xs:appinfo> child
of the target element. The binding declaration element will be moved
under this <xs:appinfo> element.
168 JAXB Specification – Public Draft, V0.7 9/12/02

9/12/02
A P P E N D I X E
XML SCH EM A

E.1 Abstract Schema Model

The following summarization abstract schema component model has been
extracted from [XSD Part 1] as a convenience for those not familar with XML
Schema component model in understanding the binding of XML Schema
components to Java representation. One must refer to [XSD Part 1] for the
complete normative description for these components.

E.1.1 Simple Type Definition Schema Component
Table 5-1 Simple Type Definition Schema Components

Component Description

{name} Optional. An NCName as defined by [XML-
Namespaces].

{target namespace} Either ·absent· or a namespace name.

{base type definition} A simple type definition

{facets} A set of constraining facets.

{fundamental facets} A set of fundamental facets.

{final} A subset of {extension, list, restriction, union}.
JAXB Specification – Public Draft, V0.7 169

XMLSchema
E.1.2 Enumeration Facet Schema Component

E.1.3 Complex Type Definition Schema Component

{variety} One of {atomic, list, union}. Depending on the value of
{variety}, further properties are defined as follows:

atomic
{primitive type
definition}

A built-in primitive
simple type definition.

list
{item type definition}

A simple type definition.

union
{member type
definitions}

A non-empty sequence of
simple type definitions.

{annotation} Optional. An annotation.

Table 5-2 Enumeration Facet Schema Components

Component Description

{value} The actual value of the value. (Must be in value space of
base type definition.)

{annotation} Optional annotation.

Table 5-3 Complex Type Definition Schema Components

Component Description

{name} Optional. An NCName as defined by [XML-
Namespaces].

{target namespace} Either ·absent· or a namespace name.

{base type definition} Either a simple type definition or a complex type
definition.

{derivation method} Either extension or restriction.

{final} A subset of {extension, restriction}.

{abstract} A boolean

{attribute uses} A set of attribute uses.

{attribute wildcard} Optional. A wildcard.

Table 5-1 Simple Type Definition Schema Components (Continued)

Component Description
170 JAXB Specification – Public Draft, V0.7 9/12/02

Abstract Schema Model
E.1.4 Element Declaration Schema Component

{content type} One of empty, a simple type definition, or a pair
consisting of a ·content model· and one of mixed,
element-only.

{prohibited

substitutions}

A subset of {extension, restriction}.

{annotations} A set of annotations.

Table 5-4 Element Declaration Schema Components

Component Description

{name} An NCName as defined by [XML-Namespaces].

{target namespace} Either ·absent· or a namespace name

{type definition} Either a simple type definition or a complex type
definition.

{scope} Optional. Either global or a complex type definition.

{value constraint} Optional. A pair consisting of a value and one of default,
fixed.

{nillable} A boolean.

{identity-constraint

definitions}

A set of constraint definitions.

{substitution group

affiliation}

Optional. A top-level element definition.

{substitution group

exclusions}

A subset of {extension, restriction}.

{disallowed

substitution}

A subset of {substitution,extension,restriction}.

{abstract} A boolean.

{annotation} Optional. An annotation.

Table 5-3 Complex Type Definition Schema Components (Continued)

Component Description
9/12/02 JAXB Specification – Public Draft, V0.7 171

XMLSchema
E.1.5 Attribute Declaration Schema Component

E.1.6 Model Group Definition Schema Component

E.1.7 Identity-constraint Definition Schema
Component

Table 5-5 Attribute Declaration Schema Components

Component Description

{name} An NCName as defined by [XML-Namespaces].

{target namespace} Either ·absent· or a namespace name

{type definition} A simple type definition.

{scope} Optional. Either global or a complex type definition.

{value constraint} Optional. A pair consisting of a value and one of default,
fixed.

{annotation} Optional. An annotation.

Table 5-6 Model Group Definition Schema Components

Component Description

{name} An NCName as defined by [XML-Namespaces].

{target namespace} Either ·absent· or a namespace name.

{model group} A model group.

{annotation} Optional. An annotation.

Table 5-7 Identity-constraint Definition Schema Components

Component Description

{name} An NCName as defined by [XML-Namespaces].

{target namespace} Either ·absent· or a namespace name.

{identity-constraint

category}

One of key, keyref or unique.

{selector} A restricted XPath ([XPath]) expression.

{fields} A non-empty list of restricted XPath ([XPath])
expressions.
172 JAXB Specification – Public Draft, V0.7 9/12/02

Abstract Schema Model
E.1.8 Attribute Use Schema Component

E.1.9 Particle Schema Component

E.1.10 Wildcard Schema Component

{referenced key} Required if {identity-constraint category} is keyref,
forbidden otherwise.
An identity-constraint definition with {identity-
constraint category} equal to key or unique.

{annotation} Optional. An annotation.

Table 5-8 Attribute Use Schema Components

Component Description

{required} A boolean.

{attribute declaration} An attribute declaration.

{value constraint} Optional. A pair consisting of a value and one of default,
fixed.

Table 5-9 Particle Schema Components

Component Description

{min occurs} A non-negative integer.

{max occurs} Either a non-negative integer or unbounded.

{term} One of a model group, a wildcard, or an element
declaration.

Table 5-10 Wildcard Schema Components

Component Description

{namespace constraint} One of any; a pair of not and a namespace name or
·absent·; or a set whose members are either namespace
names or ·absent·.

{process contents} One of skip, lax or strict.

{annotation} Optional. An annotation.

Table 5-7 Identity-constraint Definition Schema Components (Continued)

Component Description
9/12/02 JAXB Specification – Public Draft, V0.7 173

XMLSchema
E.2 Not Required XML Schema
concepts

A JAXB implementation is not required to support the following XML Schema
concepts for this version of the specification. A JAXB implementation may
choose to support these features in an implementation dependent manner.

 ● Schema component: wildcard
(any)

JAXB implementations are not required to unmarshal or marshal XML
content that does not conform to a schema that is registered with
JAXBContext. However, wildcard content must be handled as detailed
in Section 5.9.4, “Bind wildcard schema component,” on page 87.

 ● Schema component: attribute wildcard
(anyAttribute)

 ● Notation declaration

Nothing is generated for notations.

 ● Redefinition of declaration

Since redefine is difficult to implement and not frequently used, it may
be ignored by a conforming implementation until a future time when its
use becomes common.

 ● Schema component: identity-constraint definition
(key, keyref, unique)

Due to complexities surrounding supporting this feature, specify in a
future version.

 ● Substitution group support:

Attributes: complexType.abstract, element.abstract,
element.substitutionGroup

a. Type substitution

Instance Attribute: xsi:type

b. "block" feature

Attributes: complexType.block, complexType.final,
element.block,element.final,schema.blockDefault,
schema.finalDefault.
174 JAXB Specification – Public Draft, V0.7 9/12/02

9/12/02
A P P E N D I X F
RE LA TI ON S HIP T O JAX-RPC
BI ND I N G

F.1 Overview

Several minor differences in binding from XML to Java representation have
been identified between JAXB and JAX-RPC 1.0[JAX-RPC]. JAXB binding
customizations are provided below that enable JAXB to bind from XML to Java
as JAX-RPC does for these cases.

F.2 Mapping XML name to Java
identifier

By default, when mapping an XML Names to a Java identifier, JAXB treats ‘_”
(underscore) as a punctuation character (i.e. a word separator). However, JAX-
RPC treats underscore as a character within a word as specified Section 20.1 in
[JAX-RPC]. See customization option specified in Section 6.5.3, “Underscore
Handling” to enable JAX-RPC mapping of XML name to Java identifier.

Customization to enable JAX-RPC conforming binding:

underscoreBinding = “asCharInWord”
JAXB Specification – Public Draft, V0.7 175

Relationship to JAX-RPC Binding
F.3 Bind XML enum to a typesafe
enumeration

JAX-RPC specifies the binding of XML datatype to typesafe enumeration class.
JAXB specified default binding is designed to be as similar as possible to JAX-
RPC specified binding. However, there are differences that are described here.
Customization options allow the JAX-RPC style of binding to be generated.

F.3.1 Restriction Base Type

The default restriction base type which can be mapped to a typesafe
enumeration is different. The allowed types are customized using the
customization option typesafeEnumBase specified in Section 6.5.1,
“Usage”.

Customization to enable JAX-RPC conforming binding:

typeSafeEnumBase = “xsd:string xsd:decimal xsd:float xsd:double”

JAXB default is typesafeEnumBase =”xsd:NCName”

Note that all XML Schema builtin datatypes listed in the above customization
and all datatypes that derived by restriction from these listed basetypes are
mapped to typesafe enum classes. Thus, not all JAX-RPC supported types must
be listed, only the types at the base of the derivation by restriction type
hierarchy.

F.3.2 Enumeration Name Handling

If a legal Java identifier cannot be generated from an XML enumeration value,
then by default, an error must be reported. However, JAX-RPC will revert the
identifers to be default enumeration label names as specified in Section 4.2.4
“Enumeration” in [JAX-RPC]. The latter behavior can be obtained enabling the
customization typesafeEnumMemberName specified in Section 6.5.1,
“Usage”. Section 5.2.4.3, “XML Enumvalue To Java Identifier Mapping,” on
page 58 describes the enumeration member names generated when
typeSafeEnumMemberName is set to “generateName”.

Customization to enable JAX-RPC conforming binding:

typeSafeEnumMemberName = “generateName”

JAXB default is typeSafeEnumMemberName = “generateError”
176 JAXB Specification – Public Draft, V0.7 9/12/02

9/12/02
A P P E N D I X G
CH AN GE LO G

G.1 Changes for Public Draft

 ● Section 5.9.8.1, “Bind to a choice content property”, replaced
overloading of choice content property setter method with a single setter
method with a value parameter with the common type of all members of
the choice. Since the resolution of overloaded method invocation is
performed using compile-time typing, not runtime typing, this
overloading was problematic. Same change was made to binding of
union types.

 ● Added details on how to construct factory method signature for nested
content and element interfaces.

 ● Section 3.3, default validation handler does not fail on first warning, only
on first error or fatal error.

 ● Add ID/IDREF handling in section 5.

 ● Updated name mapping in appendix C.

 ● section 4.5.2.1 on page 42, added getIDLenth() to indexed property.

 ● Removed ObjectFactory.setImplementation method from Section 4.2,
“Java Package,” on page 36. The negative impact on implementation
provided to be greater than the benefit it provided the user.

 ● Introduced external binding declaration format.

 ● Introduced a method to introduce extension binding declarations.

 ● Added an appendix section describing JAXB custom bindings that align
JAXB binding with JAX-RPC biniding from XML to Java
representation.

 ● Generate isID() accessor for boolean property.
JAXB Specification – Public Draft, V0.7 177

ChangeLog
 ● Section 6, Customization has been substantially rewritten.
178 JAXB Specification – Public Draft, V0.7 9/12/02

	Introduction
	1.1 Data binding
	1.2 Goals
	1.3 Non-Goals
	1.4 Requirements
	1.5 Use Cases
	1.6 Conventions
	1.7 Expert Group Members
	1.8 Acknowledgements

	Architecture
	2.1 Overview
	2.1.1 Java Representation
	2.1.2 Binding Framework
	2.1.3 Binding Declarations

	2.2 Varieties of validation
	2.2.1 Handling Validation Failures

	2.3 An example

	The Binding Framework
	3.1 Binding Runtime Framework Rationale
	3.2 JAXBContext
	3.3 General Validation Processing
	3.4 Validator
	3.5 Unmarshalling
	3.6 Marshalling
	3.6.1 Marshalling Properties

	3.7 Validation Handling

	Java Representation of XML Content
	4.1 Mapping between XML Names and Java Identifiers
	4.2 Java Package
	4.3 Typesafe Enum Class
	4.4 Java Content Interface
	4.5 Properties
	4.5.1 Simple Property
	4.5.2 Collection Property
	4.5.2.1 Indexed Property
	4.5.2.2 List Property

	4.5.3 Constant Property
	4.5.4 isSet Property Modifier
	4.5.5 Property Summary

	4.6 Java Element Interface

	Binding XML Schema to Java Representations
	5.1 Overview
	5.2 Simple Type Definition
	5.2.1 Type Categorizaton
	5.2.2 Atomic Datatype
	5.2.3 Type Safe Enumeration
	5.2.4 Enumeration Class
	5.2.4.1 Enumeration Class
	5.2.4.2 Constant Fields
	5.2.4.3 XML Enumvalue To Java Identifier Mapping
	5.2.4.4 Methods and Constructor

	5.2.5 Union Property
	5.2.6 Union

	5.3 Complex Type Definition
	5.3.1 Nested Interface Specification
	5.3.2 Aggregation of Java Representation
	5.3.2.1 Aggregation of Datatype/Interface
	5.3.2.2 Aggregation of Property Set

	5.3.3 Java Content Interface
	5.3.3.1 Simple Content Binding

	5.4 Attribute Group Definition
	5.5 Model Group Definition
	5.5.1 Bind to a set of properties
	5.5.2 Bind to a list property
	5.5.3 Bind to a Java content interface

	5.6 Attribute Declaration
	5.7 Element Declaration
	5.7.1 Bind to Java Element Interface
	5.7.2 Bind to Java Content Interface
	5.7.3 Bind to Typesafe Enum Class
	5.7.4 Bind to a Property

	5.8 Attribute use
	5.8.1 Bind to a Java Constant property
	5.8.1.1 Contributions to Local Structural Constraint

	5.8.2 Binding an IDREF component to a Java property

	5.9 Content Model - Particle, Model Group, Wildcard
	5.9.1 Bind each element declaration name to a content property
	5.9.2 General content property
	5.9.2.1 General content list
	5.9.2.2 Value content list
	5.9.2.3 Examples

	5.9.3 Bind mixed content
	5.9.4 Bind wildcard schema component
	5.9.5 Bind a repeating occurance model group
	5.9.6 Content Model Default Binding
	5.9.6.1 Default binding of content model “derived by extension”

	5.9.7 Alternative binding approach: model group binding
	5.9.8 Bind to Choice Content Interface
	5.9.8.1 Bind to a choice content property

	5.9.9 Binding algorithm for model group style binding

	5.10 Default Binding Rule Summary

	Customization
	6.1 Binding Language
	6.1.1 Extending the Binding Language
	6.1.2 Inline Annotated Schema
	6.1.3 External Binding Declaration
	6.1.3.1 Restrictions

	6.1.4 Invalid Customizations

	6.2 Notation
	6.3 Naming Conventions
	6.4 Customization Overview
	6.4.1 Scope
	6.4.2 XML Schema Parsing

	6.5 <globalBindings> Declaration
	6.5.1 Usage
	6.5.2 Customized Name Mapping
	6.5.3 Underscore Handling

	6.6 <schemaBindings> Declaration
	6.6.1 Usage
	6.6.1.1 package
	6.6.1.2 nameXmlTransform

	6.7 <class> Declaration
	6.7.1 Usage
	6.7.2 Customization Overrides
	6.7.3 Customizable Schema Elements
	6.7.3.1 Complex Type Definition
	6.7.3.2 Model Group Definition
	6.7.3.3 Model Group
	6.7.3.4 Global Element Declaration
	6.7.3.5 Local Element

	6.8 <property> Declaration
	6.8.1 Usage
	6.8.2 Customization Overrides
	6.8.3 Customizable Schema Elements
	6.8.3.1 Global Attribute Declaration
	6.8.3.2 Local Attribute
	6.8.3.3 Global Element Declaration
	6.8.3.4 Local Element
	6.8.3.5 Wildcard
	6.8.3.6 Model Group
	6.8.3.7 Model Group Reference

	6.9 javaType Declaration
	6.9.1 Lexical And Value Space
	6.9.2 Usage
	6.9.2.1 name
	6.9.2.2 xmlType
	6.9.2.3 Relationship To XML Built-in Hiearchy
	6.9.2.4 XML Numeric type
	6.9.2.5 parseMethod
	6.9.2.6 printMethod

	6.9.3 Java Primitive Types
	6.9.4 Events
	6.9.5 Customization Overrides
	6.9.6 Customizable Schema Elements
	6.9.6.1 Simple Type Definition
	6.9.6.2 GlobalBindings

	6.10 <typesafeEnum> Declaration
	6.10.1 Usage
	6.10.2 value Attribute
	6.10.3 Inline Annotations
	6.10.4 Customization Overrides
	6.10.5 Customizable Schema Elements

	6.11 <javadoc> Declaration
	6.11.1 Javadoc Sections
	6.11.2 Usage
	6.11.3 Javadoc Customization

	6.12 Annotation Restrictions

	References
	Package javax.xml.bind
	Normative Binding Schema Syntax
	Binding XML Names to Java Identifiers
	C.1 Overview
	C.2 The Name to Identifier Mapping Algorithm
	C.2.1 Collisions and conflicts

	C.3 Deriving an identifier for a model group
	C.4 Generating a Java package name
	C.4.1 Mapping from a Namespace URI

	C.5 Conforming Java Identifier Algorithm

	External Binding Declaratation
	D.1 Example
	D.2 Transformation

	XML Schema
	E.1 Abstract Schema Model
	E.1.1 Simple Type Definition Schema Component
	E.1.2 Enumeration Facet Schema Component
	E.1.3 Complex Type Definition Schema Component
	E.1.4 Element Declaration Schema Component
	E.1.5 Attribute Declaration Schema Component
	E.1.6 Model Group Definition Schema Component
	E.1.7 Identity-constraint Definition Schema Component
	E.1.8 Attribute Use Schema Component
	E.1.9 Particle Schema Component
	E.1.10 Wildcard Schema Component

	E.2 Not Required XML Schema concepts

	Relationship to JAX-RPC Binding
	F.1 Overview
	F.2 Mapping XML name to Java identifier
	F.3 Bind XML enum to a typesafe enumeration
	F.3.1 Restriction Base Type
	F.3.2 Enumeration Name Handling

	Change Log
	G.1 Changes for Public Draft

