
Jabber Technical White Paper

Page 2 05/11/00

Copyright © 2000 Jabber.com, Inc.

Permission is granted to copy, distribute, and/or modify this document under the terms of the
GNU Free documentation License, Version 1.1 or any later version published by the Free
Software Foundation; with the Modified Versions being:

• Jabber Identifiers, The Jabber.org Project (info@jabber.org)

• <message></message> ,The Jabber.org Project (info@jabber.org)

• <presence></presence>, The Jabber.org Project (info@jabber.org)

• <iq></iq> (Info/Query), The Jabber.org Project (info@jabber.org)

• Client/Server Details, The Jabber.org Project (info@jabber.org)

• Jabber Namespaces, The Jabber.org Project (info@jabber.org)

• Frequently Asked Questions, Eliot Landrum

• Basic Transport Operation , Jeremie Miller, Edited by Eliot Landrum

• The Jabber Architecture, Jeremie Miller (jeremie@jabber.org)

• Group Chat Overview, The Jabber.org Project (info@jabber.org)

• Message-level routing and timestamp information, The Jabber.org Project
(info@jabber.org)

A copy of the GNU Free Documentation license is available at
http://www.gnu.org/copyleft/fdl.html. A transparent copy of this paper is available by contacting
info@jabber.com.

History

Title Date Author Publisher
Jabber Technical White Paper April 25, 2000 Catherine Dodson Jabber.com, Inc.

mailto:team@jabber.org
mailto:team@jabber.org)
mailto:team@jabber.org
mailto:team@jabber.org
mailto:team@jabber.org
mailto:team@jabber.org
mailto:jeremie@jabber.org)
mailto:team@jabber.org

Page 3 05/11/00

Table of Contents

Executive Summary .. 6
Jabber Architecture... 8

Protocol... 9
Jabber Clients... 10
Jabber Servers ... 10

The Message Protocol .. 12
Attributes of <message/> .. 12
Elements within <message/> .. 13

Content ... 13
Metadata ... 14

Examples of the Message Protocol... 14

The Presence Protocol.. 16
Subscriptions... 17
Probes... 18
Elements within <presence/> .. 18

State.. 18
Display .. 18
Extensions .. 19

Examples of the Presence Protocol .. 19

Info/Query Protocol ... 21
Attributes of <iq/> .. 21
The Query Element ... 22
The Search attribute.. 26
The Error Element... 28
The Key Element... 28
Fetching Information (type="get").. 28

Empty Elements.. 28
Complete Response (type="result") ... 29

Setting Information (type="set")... 29
Elements/Data .. 29
Response (type="result") .. 29

Examples of Information/Query Interactions ... 29
Simple Query .. 29
Setting Values... 29

Jabber Identifiers... 32
Jabber IDs (JIDs) .. 32
Identifier Syntax .. 33

URI-based... 33
Syntax ... 33
Friendly Identifier .. 33

Implementation.. 33
FQDN.. 33
DNS and MX Records .. 33

Page 4 05/11/00

Client/Server Interactions ... 35
Connecting.. 35
Authentication / Logging In.. 35
Sending and Receiving Messages .. 37
Rosters.. 38
Presence... 39

Subscriptions .. 39
Server Distribution .. 39
Primary Resource ... 39

Basic Transport Operations ... 41
Connections .. 41
Registration ... 41
Contact Management.. 42
Presence... 42

Group Chat... 44
Conclusion... 45
Glossary... 46

Page 5 05/11/00

Page 6 05/11/00

Executive Summary
Jabber instant messaging software enables users to communicate in

text-based conversations in real time. Instant messaging (IM) is expected

to exceed the demand of email, and Jabber is positioned to offer the

fastest, smartest, and most convenient tool for instant communications.

Jabber's unique position in the market is a result of its XML-based

architecture. Benefits of the XML architecture include:

• It integrates easily into other programs and systems.

• It provides more structure and intelligence than binary protocols.

• It functions across platforms and operating systems.

Jabber is a server-based program that runs on a system of distributed

servers. Each user's roster and preferences are stored on the server. A

user can log on from any client and access user preferences,

subscription lists, and messages.

In the current version of Jabber, users can communicate with AIM, ICQ,

and Jabber servers. They can search for users on ICQ and Jabber

servers. In the future, support for other instant messaging systems will

be added. Jabber's server-based architecture enables major upgrades to

take place without necessitating a redistribution of the client software.

Jabber comes from the open source programming movement

(http://www.opensource.com). In this movement, programmers from all

over the world participate in the development, coding, and testing of

software. In Jabber's case, over 400 programmers are registered

developers for the software, and dozens participate on a daily basis. This

level of participation enhances the overall quality of the software. The

time between new bug fixes, security patches, and releases is greatly

accelerated. The vast array of systems in use by the developers ensures

that clients are developed for and tested in a wide spectrum of user

environments. Jabber.com looks forward to collaboration between the

open source developers and its own programmers.

Page 7 05/11/00

The result of Jabber's flexibility is that you can communicate friends and

colleagues in multiple IM's and organize all contacts in one piece of

software. ∗

∗ COMPATIBILITY DISCLAIMER Unlike the proprietary Instant Messaging services in existence today, Jabber represents
a platform for instant communications applications; it can be used to create consumer IM services, but has far broader
uses. Jabber.org is an open-source development project designed and founded on the principles of open-source, open-
standards and XML architecture. Jabber.com is a commercial entity created to provide value added products and services
to prospective users of this open-source platform. Our mission is to provide the extended products and services that
empower and enable the development of services that can propel the IM industry far beyond today's world of instant chat.

We believe that interoperability standards for IM are highly important, and ultimately inevitable. Jabber.org is actively
involved with and closely engineering the Jabber system to follow the IM standardization directions of the Internet
Engineering Task Force (IETF). Jabber.org is also actively engineering interfaces to every IM service of significance.
However, during this transition period where proprietary IM services engage in blocking and tackling, we cannot
guarantee interoperability with any proprietary IM network.

Page 8 05/11/00

Jabber Architecture
Jabber architecture is almost identical to that of email. Each user has a

local server which receives information for them. The various local

servers transfer the messages among themselves for delivery to users.

Any number of servers can be supported, with each server representing

a unique and separate "community" or domain. Jabber Identifiers are

typically expressed identically to email: user@server.com.

Jabber clients and servers connect through XML streams.

Communications occur between clients and servers and between

multiple servers. In client/server communications, the XML stream is

always initiated by the client to the server. The architecture can support

simple clients (e.g., a direct telnet connection). XML is an integral part of

the architecture making it fundamentally extensible and able to express

almost any structured data.

Server-to-server communication consists of simply routing the elements

of the protocol over an XML stream from one server to another. There is

no special server-to-server protocol or features.

Page 9 05/11/00

Jabber specifically requires no direct client-to-client connections. All

Jabber messages and data from one client to another must go through

the server. Any client is free to negotiate direct connections to another

client, but those connections are for application specific usage only.

There are specific instances where this is encouraged, such as file

transfers. Jabber will deliver the file transfer information in the form of a

URL, but how a client either serves or retrieves the file is completely at

the will of the user/client.

Protocol
The Jabber protocol consists of XML fragments passed over XML

streams between clients and servers. There are three primary protocols

that define the basic types of XML fragments used in Jabber:

• Messages

• Presence

• Info/Query

Page 10 05/11/00

Each of these protocols is defined in detail later in this document.

Jabber Clients
Jabber clients are currently being developed for multiple platforms,

including Windows, Macintosh, Linux, Java, and the World Wide Web. All

clients will be able to:

• Communicate to the server through TCP sockets

• Parse well-formed XML

• Understand the Message data type

In addition to the required features, clients can optionally perform the

following actions:

• Express presence (online/offline/unavailable) information to the

server and understand incoming presence data.

• Understand the Info/Query data type and have some preset queries

such as logging in, rosters, searching, and setting user information.

• Display preferences for messages and presence data, such as icons

or interface styles (chat, group chat, etc.).

• Contain MIME fields in messages.

• Transfer files out-of-band to other clients either via the server or

directly.

Whether or not the client supports these features depends on the client

developer. A complete list of the features in the JabberIM 1.0 client is

available on page 45.

Jabber Servers
The Jabber server is the component that accepts incoming XML streams

from clients, manages their online presence, and delivers messages to

and for those clients.

A Module API enables the server to use external modules to handle user

functionality, such as filtering messages, storage facilities (offline

messages, rosters, user info), and user authentication.

Page 11 05/11/00

A Service API extends the functionality of the server to enable the

integration of security, special connections for alternate clients, and

message logging.

Transport servers are used to bridge the Jabber protocol to other

services (IRC, ICQ, AIM, etc.). Etherx, an XML middleware component,

enables the server to communicate quickly between other transports on

the same machine and transparently to other servers over the Internet.

Etherx is an implementation-specific, middleware utility, and is not

required by the overall Jabber protocol or for server-to-server

communication.

Page 12 05/11/00

The Message Protocol
Jabber uses the message protocol to send instant messages as an XML

stream. Messages may be sent between two clients, a client and a

server, or between two servers. Only entities which have a Jabber

Identifier can send and receive Jabber instant messages.

The basic message protocol adheres to the following format:

<message> </message>

It may be modified by a number of attributes, as described in the next

section.

Attributes of <message/>
The message protocol may be modified by the following attributes:

Attribute Function Example
to="*" from="*" Identifies the sender and

recipient. Their addressing is
based on the Jabber Identifiers
specification. This attribute is
required in all instant messages.

<message to="jsmith@example.com">

<body>Do you have the new
report?</body>

</message>

id="*" Applies a unique identifier to the
message. The client can use the
id to identify the message in case
the message generates error
messages. It is optional and is
not used elsewhere in the
system.

<message to="jsmith@example.com"
id="1001">

<body>Do you have the new
report?</body>

</message>

[default} Indicates that the message is a
normal message. By default, the
client assigns this type if no other
type attribute is given.

<message to="jsmith@example.com">

<body>Do you have the new
report?</body>

</message>

type="error" Indicates that the message is a
special error message. The
actual error is described in an
<error></error> element within
the message.

<message to="jsmith@example.com"
type="error">

<error type="404">Not found</error>

</message>

type="chat" Indicates that the message
should be displayed in a line-by-
line chat interface (1-to-1 chat).

<message to="jsmith@example.com"
type="chat">

<body>Do you have the new
report?</body>

</message>

Page 13 05/11/00

Attribute Function Example
type="groupchat" Indicates that the message

should be displayed in a chat
room interface.

<message to="jsmith@example.com"
type="groupchat">

<body>Do you have the new
report?</body>

</message>

Elements within <message/>
The following tags are used to define elements within a Jabber message.

The first set of tags define what the content of the message is. The

second set embeds metadata within the message.

Content
<body></body>

This element surrounds the main text of the message. The <body/>

element only may exist once within every message and may contain only

plain text.

<x xmlns="jabber:x:*"></x>

This element is used to send commands between clients or as an

extension mechanism. Each time the element is used, the namespace

(xmlns) must be defined. A single message may have multiple instances

of the <x/> element.

For example, the Out Of Band (oob) namespace extension can be used

to transfer files between applications:
<x xmlns="jabber:x:oob"></x>.

<error type="nnn"></error>

This element is included when the message type attribute is set to

"error". The actual error is defined by a type="nnn" attribute that contains

a number indicating what the error is.

• 302 - Redirect • 407 - Registration Required
• 400 - Bad Request • 408 - Request Timeout
• 401 – Unauthorized • 409 – Conflict
• 402 - Payment Required • 500 - Internal Server Error

Page 14 05/11/00

• 403 – Forbidden • 501 - Not Implemented
• 404 - Not Found • 502 - Remote Server Error
• 405 - Not Allowed • 503 - Service Unavailable
• 406 - Not Acceptable • 504 – Remote Server Timeout

The content of the error element is a textual description of the specific

error. For example, a bad request would have the following format:

<error type="400">Bad Request</error>

Metadata
<subject></subject>

This element contains the subject of the message.

<thread></thread>

The recipient client always returns the identical contents for this element

when it replies directly to a message. This enables the sender and

recipient to identify replies and create a conversation thread. The thread

is usually a unique, random, ID string.

Examples of the Message Protocol

The following Jabber instant messages provide examples of the

Message Protocol attributes and elements in use.

In the first example, the <message/> protocol is used in a simple

message. Notice that only the recipient attribute is used.

<message to="jsmith@example.com">

<body>Hi</body>

</message>

In the second example, the instant message contains subject and thread

metadata. The thread element is maintained between messages

received and their replies so that a conversation thread is created.

<message from="michelle@example.com/work">

<subject>project 241</subject>

Page 15 05/11/00

<body>Did you make any progress on it

today?</body>

<thread>A54E33</thread>

</message>

Page 16 05/11/00

The Presence Protocol

The Presence protocol provides availability information about a Jabber

entity. Any entity identified by a Jabber Identifier can communicate a

message to any other entity, including:

• Client to client

• Client to server

• Server to server, or

• Any arrangement of any two entities.

All entities expressing presence are either available or unavailable. The

Available state implies that the sender can immediately receive

information. The Unavailable state indicates that the sender cannot

receive any data at the current time.

The following attribute is used to make a client unavailable:

type="unavailable"

By default, all presence expresses availability unless it contains the

type="unavailable" attribute.

Page 17 05/11/00

Subscriptions
A Jabber client can subscribe to the presence of any entity (anything with

a Jabber ID). A subscription is an agreement to forward presence

changes to the subscriber. For example, you can subscribe to a friend's

online presence so that whenever that friend comes online, you are

notified. Likewise, whenever the friend disconnects, updated presence

information is sent out.

In addition, a user can subscribe to an IM service. In this case, whenever

the user logs into Jabber, presence information is sent to the IM service,

effectively logging the user into the service as well.

The following table shows how subscription statements are used within

Jabber.

Attribute Function Example
type="subscribe" Jane requests that

George send her his
presence information
when it changes.

<presence
to="George@aim.jabber.com"
from="Jane@jabber.org"
type="subscribe"/>

type="subscribed" George accepts Jane's
request. His client will
send Jane his presence
information when it
changes.

<presence to="Jane@jabber.org"
from="George@aim.jabber.com"
type="subscribed"/>

type="unsubscribe" Jane requests that
George stop sending her
his presence information
when it changes.

<presence to="George@
aim.jabber.com"
from="Jane@jabber.org"
type="unsubscribe"/>

type="unsubscribed" George's client removes
Jane's subscription. It will
no longer send Jane any
presence information.

<presence to="Jane@jabber.org"
from="George@aim.jabber.com"
type="unsubscribed"/>

Subscriptions fall into the following categories:

• To – sends your presence info to another entity.

• From – receives presence info from another entity.

• Both – both sends and receives presence info.

Page 18 05/11/00

Probes
A server uses the Probe presence packet to request the presence

information for a specific entity. In this way, it determines if a specific

entity is available or unavailable. The probed entity must grant

permission for the presence information to be sent.

The Probe Presence request is sent using the following element:

<presence type="probe"/>

Elements within <presence/>
The following elements are used within the <presence/> protocol.

State
<status></status>

The Status element displays a textual status description that is suitable

for users to view directly. For example, the client might display a text

description saying "I'm at lunch" or "Be back in 5 minutes".

<priority></priority>

The Priority element prioritizes the numerous presences associated with

a single entity. For example, a single entity (jsmith@example.com) may

be logged into multiple resources (e.g., home computer and work

computer). This element assigns a numerical priority to each resource.

The resource with the highest number is the default or primary resource.

All messages and communications go to the resource with the highest

priority number.

When the highest priority resource becomes unavailable, messages and

communications are sent to the resource with the next highest priority.

Negative priority indicates that the resource should not be used for direct

or immediate contact.

Display
<show></show>

Page 19 05/11/00

The Show element indicates how to display an available user's online

status to other clients. The following four options are available:

Tag Meaning
<show>chat</show> The client is available for immediate contact.
<show>away</show> The client is online, but momentarily away (e.g., at lunch

or a meeting).
<show>xa</show> The client is online, but has been inactive for a long time.
<show>dnd</show> The client is in Do Not Disturb mode.

The <show> tag is typically accompanied by a <status> tag which

contains a more descriptive reason. The <show> tag is optional. If it is

not present, clients will indicate that the user is in a "normal" state.

Extensions
<x xmlns="jabber:x:*"></x>

This element is used to send commands between applications or as an

extension mechanism. Each time the element is used, the namespace

(xmlns) must be defined. A single message may have multiple instances

of the <x/> element.

Examples of the Presence Protocol

The following example shows a generic use of the presence protocol:

<presence type="unavailable">

<show>xa</show>

</presence>

The next example shows the presence protocol when a client receives

status information from another resource:

<presence from="joe@server.com/work">

<status>At work...</status>

</presence>

Presence can also involve more complex interactions, as demonstrated

in the following illustrations. In the first illustration, the client pushes its

presence to the Jabber server. The server responds by sending the

Page 20 05/11/00

client's presence to everyone on its subscription list, and retrieving

presence from them. If the client is not yet logged onto a transport, the

transaction cannot be completed. A temporary buffer stores the request

for presence information from individuals on the transport's service.

Once the client sends its presence to the transport, thereby logging on,

the temporary buffer passes the request for presence information back to

the transport. The transport can check for the contacts on the

subscription list, and send their presence information back to the client

by way of the Jabber server.

Page 21 05/11/00

Info/Query Protocol
Info/Query (IQ) is a simple client/server framework within Jabber. It

structures a rudimentary conversation between any two entities in Jabber

and allows them to pass XML-formatted queries and responses back and

forth. The primary use is for fetching or setting common user information

such as name, email, and address. However, its flexible design permits

any kind of structured conversation to occur. Any entity identified by a

Jabber Identifier can participate in an IQ conversation with any other

entity.

Attributes of <iq/>
The following attributes are used to modify the IQ conversation.

Attribute Function Example
to="*" from="*" Identifies the sender and

recipient. Their addressing is
based on the Jabber Identifiers
specification. This attribute is
required in all instant
messages.

<iq to="jsmith@example.com"/>

id="*" Applies a unique identifier to
the message. The client can
use the id to identify the
message in case the message
generates error messages. It is
optional and is not used
elsewhere in the system.

<iq to="jsmith@example.com"
id="1001"/>

type="get" Retrieves information
associated with a query
namespace.
When communicating with
other services (e.g., AIM or
IRC), a blank Get query may
be sent to retrieve information.
A list of fields for which the
client needs to provide
information will be returned to
the Jabber server.
This attribute is included in the
query by default if no type
attribute is set.

<iq type="get"
to="jsmith@example.com"/>

Page 22 05/11/00

Attribute Function Example
type="set" Indicates that the message is a

query containing data intended
to set values or replace
existing values.

<iq type="set"
to="jsmith@example.com"/>

type="result" Indicates that the message is a
successful response to a Get
or Set query.

<iq type="result"
from="jsmith@example.com"/>

type="error" Indicates that the query failed.
The actual error is described in
an Error element within the IQ.

<iq type="error"
to="jsmith@example.com">

<error type="404">Not
found</error>

</iq>

The Query Element
Within each IQ, a namespace further defines the type of query to

perform. The namespace is defined in the Query element, as shown

below. Only one Query element may exist in an IQ.

<query xmlns="*"/>

For example, a client sends a Set query with the Client Authentication

namespace to the server to log on:

<iq type="set" to="jsmith@example.com">

<query xmlns="jabber:iq:auth">

</query>

</iq>

The Query element requires the namespace be defined in the

xmlns="*" attribute. The jabber:iq:* namespace is reserved for the

core Jabber protocols. However, developers can expand IQ functions by

adding to the jabber:x:* namespace. The use of "query" in the

namespace is not required. For example, the vCard query does not

contain the term "query".

<iq type="get" id="1001" to="jsmith@jabber.org">
<query xmlns="vcard-temp">
</query>
</iq>

Page 23 05/11/00

The following table lists the standard namespaces available for Jabber.

Namespace Explanation Example
jabber:iq:auth The Simple Client Authentication

namespace is a simple mechanism
for the clients to authenticate and
create a resource representing their
connection to the server.
Successful authentication results in
an IQ type="result" response. Errors
are returned in the IQ error element.
If no username or password is sent,
the server will create an anonymous
resource if it is supported.

<iq type="set" id="uniquevalue">

<query xmlns="jabber:iq:auth">

<username>jsmith</username>

<password>secret</password>

<resource>HomePC</resource>

</query>

</iq>

jabber:iq:roster The Contact List Management
namespace is used by clients to
manage their roster on the server.
The roster is the authoritative list of
subscription information for this
account, shared between the client
and server.
The roster consists of a list of items.
Each item element may have
attributes describing it. Each item
element may contain group elements
for each group of which it is a part.
The attribute descriptions are:
• jid="jabberuser@server" is the

Jabber ID of the item.
• subscription="none" is the

current status of the subscription
related to this item. It can be
none (no subscription), to (we
have a subscription to this item),
from (they have a subscription to
us), or both (to and from).

• ask="subscribe": The current
status of a request to this item. It
can be Subscribe or Unsubscribe
indicating that a request is being
sent to this item for a
subscription or a subscription
cancellation.

• name="JackS": A nickname.
Clients can control only the JID and
name attributes, the group elements,
and create/remove items. All other
attributes are managed by the server
depending on how a client responds
to presence subscription requests.

<iq type="set" id="uniquevalue">

<query xmlns="jabber:iq:auth">

<item jid="jsmith@example.com"
name="John Smith"
subscription="to"
ask="subscribe">

<group>friends</group>

<group>school</group>

</item>

Page 24 05/11/00

Namespace Explanation Example
jabber:iq:agents The Available Agents namespace

obtains a list of entities that have
special properties and can perform
functions for another entity. Most
commonly, this is used to show the
list of transports available on a
server.

<iq id="wjAgents" type="result"
from="Jabber.org"><query
xmlns="jabber:iq:agents">

<agent jid="users.jabber.org">

<name>User Directory</name>

<description>You may register
and create a public searchable
profile, and search for other
registered Jabber
users.</description>

<service>jud</service>

<register/>

<search/>

</agent>

<agent jid="aim.jabber.org">

<name>AIM Transport</name>

<description>This is the AIM
Transport</description>

<transport>AIM/AOL
ScreenName</transport>

<service>aim</service>

<register/>

</agent>

</query>

</iq>

jabber:iq:agent The Agent Properties namespace
obtains the properties of one agent.
This is usually done after a
jabber:iq:agents query (see above),
to register with a specific service,
agent or transport.
It might also be used to examine the
detailed properties of a specific
agent. For example, the client can
determine if open registration is
allowed.

<iq id="wjAgent" type="result"
from="Jabber.org"><query
xmlns="jabber:iq:agent">

<agent jid="aim.jabber.org">

<name>AIM Transport</name>

<description>This is the AIM
Transport</description>

<transport>AIM/AOL
ScreenName</transport>

<service>aim</service>

<register/>

</agent>

</query>

</iq>

jabber:iq:register The Registration Requests
namespace registers with a server or
service. The Registration namespace
is also used to update or remove a
registration.

<query
xmlns="jabber:iq:register">

<instructions>Some
instructions to be displayed
when the user is filling out the
form.</instructions>

Page 25 05/11/00

Namespace Explanation Example
<username/>

<password/>

<email/>

<date/>

<key/>

</query>

jabber:iq:oob The Out Of Band Data namespace
gives clients a standard way to do
client-to-client file transfers. A distinct
namespace will be implemented for
server passthrough/proxy transfer.

<iq type="set"
to="jsmith@jabber.org"
id="file_1">

<query xmlns="jabber:iq:oob">

<url>http://192.168.1.1:5890/
building1a.gif</url>

<desc>Here's the
blueprint.</desc>

</query>

</iq>

jabber:iq:time The Client Time namespace gives
clients a standard way to exchange
local time.

<iq type="result"
from="jsmith@jabber.org">

<query xmlns="jabber:iq:time">

<utc>20000424T14:55:06</utc>

<display>4/24/00 7:55:06
PM</display>

</query>

</iq>

jabber:iq:version The Client Version namespace gives
clients a standard way to find out
version information for another user's
client.

<iq type="result"
from="jsmith@jabber.org/JabberIM
">

<query
xmlns="jabber:iq:version">

<name>JabberIM</name>

<version>Version 1.0</version>

<os>95 4.10</os>

</query>

</iq>

jabber:iq:search The Search namespace is used to
initiate a search. Any agent can be a
search agent. For example, you can
have JUD, which searches for Jabber
users, or you can have the ICQ
transport search for ICQ users.
See below for a complete description
of this namespace.

<iq type="get"

id="1001"to="users.jabber.org"

from="jsmith@jabber.org/winjab">

<query

xmlns="jabber:iq:search"/>

</iq>

Page 26 05/11/00

The Search namespace

Any agent can be a search agent. For example, JUD searches for

Jabber users, and the ICQ transport searches for ICQ users.

To initiate a search, the client sends a Get query to obtain the

searchable fields:

<iq type="get" id="1001" to="users.jabber.org"
from="jsmith@jabber.org/winjab">
<query xmlns="jabber:iq:search"/>
</iq>

The search agent returns the fields that can be searched:

<iq type="result" id="1001" from="users.jabber.org">
<query xmlns="jabber:iq:search">
<instructions>Fill in a field to search for any
matching Jabber User</instructions>
<name/>
<first/>
<last/>
<nick/>
<email/>
<key>067941fd96a6a2752a21abcb6d737130dd51dd50</key>
</query>
</iq>

Notice that the fields are returned in a form with instructions. A key is

included to provided security to the transaction (see below). The user

can now enter search criteria into the form based on the available fields.

The client sends a Set query back to the agent to have it actually perform

the search:

<iq type="set" id="1002" to="users.jabber.org"
from="jsmith@jabber.org/winjab">
<query xmlns="jabber:iq:search">
<last>Smith</last>
<key>11b830e604215c3a2a24652c69fd4efa2a7a5746</key>
</query>
</iq>

The server returns the results from the query:

<iq type="result" id="1002" from="users.jabber.org">
<query xmlns="jabber:iq:search">
<item jid="jsmith@jabber.org">
<name>Jane Smith</name>
<first>Jane</first>

Page 27 05/11/00

<last>Smith</last>
<nick>SamplePerson</nick>
<email></email>
</item>
<item jid="janes@jabber.org">
<name>Jane Smith</name>
<first>Jane</first>
<last>Smith</last>
<nick>Janey</nick>
<email>janesmith@example-corp.com</email>
</item>
</query>
</iq>

Notice that there are two sets of items tags containing identical

information. This is due to the fact that there are two ways for agents to

send results:

• A single result tag

• Multiple results "pushed" to the client, similar to roster pushes, i.e.,

one record at a time.

The manner in which the results are sent is a property of the search

agent. For example:

<iq type="set" from="icq.jabber.org" id="1003">
<query xmlns="jabber:iq:search">
<item jid="11117280@icq.jabber.org">
<email>jsmith@example.net</email>
<nick>Janey</nick>
<given>Jane</given>
<family>Smith</family>
</item>
</query>
</iq>

Multiple results can be pushed by the server. When all data has been

sent, the server sends the following result:

<iq type="result" from="icq.jabber.org" id="1003">
<query xmlns="jabber:iq:search"/>
</iq>

The client receives multiple "sets", one per record, and then a final

"result" indicating the "end of data". In each <item> tag, the JID attribute

is mandatory.

Page 28 05/11/00

The Error Element
This element is included when the message type attribute is set to

"error":

<error type="nnn"></error>

The actual error is defined by a type="nnn" attribute that contains a

number indicating what the error is. The content of the error element is a

textual description of the specific error. (See page 13 for a complete list

of error codes and messages.)

The Key Element
The <key/> element provides a layer of security to client-server

interactions. It is used with the jabber:iq:register and jabber:iq:search

namespaces.

When a client initiates an interaction with the server, the server sends

the client a <key> tag containing a unique value. When the client returns

information for the <iq type="set">, it echoes back the unique value in the

<key> field. In this way, the server can verify that the client is the same

entity that received the original key.

Fetching Information (type="get")
Information is retrieved from a client or server by sending an IQ with a

type attribute of "get". This query attribute retrieves information

associated with a query namespace.

Empty Elements
To retrieve a list of empty elements, use the Get attribute with no

namespace defined. For example, to retrieve a client's contact list (or

roster), the following IQ with a type="get" could be sent:

<iq type="get">

<query xmlns="jabber:iq:roster"/>

</iq>

Page 29 05/11/00

Complete Response (type="result")
When the results for a "get" are returned, the empty element tags contain

a value. Any errors resulting from the "get" are specific to the namespace

of the query and should be expressed in an appropriate syntax.

Setting Information (type="set")
The Set attribute indicates that the message is a query containing data

intended to set values or replace existing values.

Elements/Data
The Set query is used to record information or make changes in

information. The data contained within the elements of a Set query

should be stored as a future result to a Get query in that namespace.

Response (type="result")
The result of a successful Set query is an empty response. The result

should be matched by the sender using the id="" attribute on the original

Set query.

Examples of Information/Query Interactions
Simple Query

The following is a simple query for user information.

Query

<iq type="get" to="user@server.com">

<query

xmlns="jabber:iq:roster"><name/><email/></query>

</iq>

Response

<iq type="result" from="user@server.com">

<query xmlns="jabber:iq:roster"><name>John Smith

</name><email>jsmith@example.com</email></query>

</iq>

Setting Values
The following is a query for vCard values.

Sent by the client:

Page 30 05/11/00

<iq type="get" id="1001" to="jsmith@jabber.org">
<query xmlns="vcard-temp">
</query>
</iq>

Received from the server:

<iq type="result" id="1001" from="jsmith@jabber.org">
<vCard version="3.0" prodid="-//HandGen//NONSGML vGen
v1.0//EN" xmlns="vcard-temp">
<FN/>
<N>
<given>John</given>
<family>Smith</family>
</N>
<nickname>JBird</nickname>
<url>www.jbirdontheweb.com</url>
<bday/>
<org><orgname/>
<orgunit/>
</org>
<title/>
<role/>
<tel><voice/>
<home>201-555-1212</home>
</tel>
<tel><fax/>
<home/>
</tel>
<tel><msg/>
<home/>
</tel>
<adr><home/>
<extadd/>
<street>12315 St. Laurent Ave.</street>
<locality>Summerville</locality>
<region>CO</region>
<pcode>80020</pcode>
<country>USA</country>
</adr>
<tel><voice/>
<work/>
</tel>
<tel><fax/>
<work/>
</tel>
<tel><msg/>
<work/>
</tel>
<adr><work/>
<extadd/>
<street/>
<locality/>
<region/>
<pcode/>
<country/>

Page 31 05/11/00

</adr>
<email><internet/>
<pref/>
Jsmith@aol.com</email>
</vCard>
</iq>

Page 32 05/11/00

Jabber Identifiers
Within Jabber there are many different entities that need to communicate

with each other. These entities can represent clients of alternate

messaging systems, group chat rooms, or a single Jabber user. Jabber

Identifiers are used both externally and internally to express ownership

or routing information.

Characteristics of Jabber Identifiers include:

• They uniquely identify individual objects or entities for

communicating instant messages and presence information.

• They are easy for users to remember and express in the real world.

• They are flexible enough to enable the inclusion of other IM and

presence schemes.

Jabber IDs (JIDs)
Each Jabber ID (or JID) contains a set of ordered elements. The IDs are

formed of a domain, node, and resource in the following format:

user@host/resource

or

[node@]domain[/resource]

John Smith might have the following JID on his home system:

Jsmith@example.com/home. He can have multiple IDs representing

multiple resources, for example Home, Work, and Notebook:

Jsmith@example.com/mobile. Resources are temporary

descriptions that exist only while the user is logged on.

The ID elements are defined as follows:

• The Domain Name is the primary identifier. It represents the Jabber

server to which the entity connects.

• The Node is the secondary identifier. It represents the "user". All

Nodes live within a specific Domain.

Page 33 05/11/00

• The Resource is the optional third identifier. All Resources belong to

a Node. Within Jabber the Resource is used to identify specific

objects that belong to a user, such as online sessions or paths of

communication.

Identifier Syntax
URI-based

The Jabber Identifier has the same general form as an email address.

Each user has their local server which receives information for them. The

various local servers transfer the messages between each other. Any

number of servers can be supported with each server representing a

unique and separate "community" or domain. Jabber Identifiers are

typically expressed as: user@server.host.

Syntax
The syntax of the URI-based identifier is as follows:

[node@]domain[/resource]

Friendly Identifier
For usage outside of Jabber and human-to-human identity exchanges,

the address breaks down into a simple email-like address.

node@domain

Implementation
The Jabber Identifier conforms to the following standards.

FQDN
Every usable Jabber Domain should resolve to a Fully Qualified Domain

Name (FQDN).

DNS and MX Records
Since Jabber Identifiers use the same structure as email, they need to

have a mechanism of redirecting to another server (besides the FQDN)

for the actual service. Email uses the Mail Exchange (MX) record in

DNS, and because Jabber is closely affiliated with email and uses a

similar addressing scheme, it will also use the MX record. To prevent

Jabber from interfering with normal SMTP routing and to enable an

administrator to have separate servers for SMTP and Jabber, the Jabber

Page 34 05/11/00

server does a reverse-sort (highest priority first) on the MX records

available.

Page 35 05/11/00

Client/Server Interactions
The following sections provide a detailed description of communication

between clients and servers in Jabber.

Connecting
To connect to a Jabber server, a client opens a standard XML stream to

the server on port 5222. The default namespace for Jabber clients is

"jabber:client".

For example, a client could send the following XML stream to connect to

jabber.org:

<stream:stream to="jabber.org" xmlns="jabber:client"

xmlns:stream="http://etherx.jabber.org/streams/">

The server responds over the open socket. For example, the server

could send the following response to the client:

<stream:stream from="jabber.org"

xmlns="jabber:client" id="0123ABCD"

xmlns:stream="http://etherx.jabber.org/streams/">

This XML stream is kept open during the lifetime of the session, and all

communications between the client and server are sent and received

over this socket.

Authentication / Logging In
The client uses an IQ conversation to authenticate the user to the server.

The IQ conversation also creates a session resource representing their

connection to the server. Successful authentication results in a normal IQ

type="result" response. Errors are returned in the normal IQ error

element.

If the client does not send a username/password, the server assumes

that it is requesting the creation of an anonymous resource

Page 36 05/11/00

(server.com/resource). If it supports anonymous resources, it will

respond appropriately.

Jabber uses a one-way secure hash function (or, SHA1) to authenticate

the user. This function creates a value by hashing the session ID and the

user password. The server verifies that the correct hash value was

returned by the client.

While the use of SHA1 authentication is optional, clients should always

attempt a digest authentication before going with plain-text.

Sample Authentication Query

<iq type="set" id="1">

<query xmlns="jabber:iq:auth">

<username>jsmith</username>

<digest>2E4E532CED2E4E532CED154212BA452145B2A154</dig
est>

<resource>HomePC</resource>

</query>

</iq>

Sample Authentication Response

If authenticated, the server would respond with:

<iq type="result" id="1"/>

Page 37 05/11/00

Sending and Receiving Messages

The following illustration shows the interaction between the client and

server when a message is sent or received.

Sending messages to other users:

<message to="jsmith@jabber.org">

<subject>Testing</subject>

<body>This is a test message</body>

</message>

Receiving messages from other users:

<message from="kpeterson@aim.jabber.com/HomePC">

<body>This is a test message as well.</body>

</message>

Page 38 05/11/00

More information about the interaction between the client and server is

included in "Basic Transport Operations" on page 41.

Rosters
Rosters (or contact lists) are stored on the server so that any client can

access them. They are accessed through the jabber:iq:roster

namespace.

Clients use the Roster "Push" IQ to manage the roster on the server. The

roster is the authoritative list of subscription information for the client's

account, including the user's nickname and contact list. It is shared

between the client and server.

The roster contains a list of items. Each item element has attributes

describing it, and contains group elements for each group it is part of.

For example, name="*" is an attribute that contains the client's

nickname. Clients can control only the Jabber ID (JID), the name

attributes, the group elements, and create/remove items. All other

attributes are managed by the server depending on how a client

responds to presence subscription requests.

Whenever a roster item changes in any way on the server, it is pushed to

a client. This push is a normal IQ to the client of the type "set":

<iq type="set">

<query xmlns="jabber:iq:roster">

<item jid="sjohnson@jabber.com" subscription="to"/>

</query>

</iq>

In the above example, the server sends a roster push to a client to

express that the client has a subscription to the presence of

sjohnson@jabber.com. A roster push can happen at any time during the

connection as a result of another connection modifying the resource or

the server modifying the subscription attribute. The client only uses

roster pushes to modify the display of the roster. It does not react or

prompt the user for every roster push.

Page 39 05/11/00

Presence
A client sends presence information to the server, which then sends it to

all of the people on the roster who are subscribed to the client's

presence.

Subscriptions
Presence subscriptions are managed by the server and are stored in the

roster. When a user logs onto the Jabber server, it sends an update on

that user's presence to all of the people on the user's subscription list.

Server Distribution
• Singular Model - The client expresses one presence to the server,

which the server then delivers to the subscriptions as listed in the

roster.

• Group/Individual Model - The client expresses presence

individually to each item or group in a roster, and can express

different presence statuses to different entities. The client is then

responsible for notifying each subscription/item appropriately of their

presence and broadcasting it when it changes.

• Disconnect Handling - Any time a client sends any type of available

presence (presence without a type attribute) the server remembers

that the client has notified that recipient of its availability. Upon a

server/network disconnect, all those that were notified of an available

presence are sent an unavailable presence.

Primary Resource
The server has a knowledge of a "primary" resource for any user

account. This is determined using the priority element in presence. When

the your client expresses presence to you@your.server, it is broadcast

out to all of your own resources and used to determine whether the

current client is the primary resource (this is built in when using a

singular presence model). The highest priority will be the primary

resource. A client with no priority defaults to 0, and can still be the

primary resource if no other resources are available. You can only be

primary resource when available.

Page 40 05/11/00

For example, you can leave a Jabber client logged on at home

(jsmith@jabber.org/homepc) with a priority of 2. If you log on at work

(jsmith@jabber.org/workpc), and set the work client to have a priority of

3, all instant messages are sent to the work client.

Page 41 05/11/00

Basic Transport Operations
A transport is a special server with the sole purpose of bridging from

Jabber to other services (IRC, ICQ, AIM, etc.∗). When a user logs onto

Jabber, a thread is created in the transport to handle all communications

to and from that user. In addition, a separate thread is created in the

transport for each service that the user is subscribed to. For example,

the user would have a separate ICQ thread and a separate AIM thread.

Each of these threads is in the appropriate native protocol. For example,

the ICQ thread is in the ICQ native protocol.

Each service is handled by one transport process. Within each process,

there is a thread for Jabber communications and a thread for the

service's native protocol.

Connections
Each connection, using its native protocol library, lives within its own

thread. For example, the ICQ connection uses the ICQ protocol library,

and all ICQ messages are sent and received in this thread. The thread

blocks on the I/O for that connection, and blocks on a message port for

the Jabber side.

All incoming Jabber data arrives via Etherx. Every incoming Jabber

packet is checked for the from="jid" to ascertain the owner of the

data. A global table contains all the existing connection threads. The

owner of the incoming packet is checked against that list. If there is an

existing connection from that owner, the packet is sent via a message

port to that connection thread. If the global table contains an owner with

an ID of "user@host", any "From" IDs of the type "user@host/resource"

will also match and be forwarded.

Registration
Each IQ registration submission starts a special thread to handle the

submission. If the native protocol supports new account creation, a

∗ See "Compatibility Disclaimer" on page 7.

Page 42 05/11/00

thread can be started to create new accounts. If the registration is for an

existing account, a thread is started to authenticate and check the

credentials submitted. If the registration is successful, the thread

confirms the IQ registration (type="result"). If it fails, it returns an error

(type="error").

Contact Management
When a user logs on to the server, a notice is sent to each client that has

subscribed to the user's presence information. The user may also be

subscribed to various IM services so that the presence information is

also sent to them. This effectively logs the user onto these services as

well. As soon as the user is logged onto a separate IM service, Jabber

creates a Contact List that will store the names of the people that the

user is subscribed to on the service. For example, when the user sends

subscription information to AIM, Jabber creates a contact list to store the

names of the people on the user's buddy list for AIM. This list of ID's is

used as the approved contact list for the native protocol.

If a packet cannot be delivered to a connection using the Connection

protocol, the server stores it in a temporary file called the "buffer". For

example, if the user sends notice of its presence to AIM users before

sending its presence to the AIM server (i.e. logging on), Jabber stores

the subscription in the buffer. The buffer stores all incoming presence

availability packets for a short period of time (a minute or two). If the user

cannot communicate with the appropriate server, the buffer times out.

When connections are established with the appropriate server, the list

passes from the buffer into a Contact List.

Presence
With a successful registration, the transport needs to know whenever the

owner comes online, so it sends a presence subscription request to the

submitter. The special presence subscription is sent with a "from"

attribute generated by the transport, with embedded data needed to login

to the native protocol. The "from" of the presence subscription might look

like:

"transport.example.net/registered?from=user@host&user

name=Jane&password=secret"

Page 43 05/11/00

New presence announcements to the special registered resource will

send a new connection thread and create an entry in the global table

with the registered owner ID. This connection thread, upon logging in,

should send presence back to the owner. The connection thread can

then use the buffer to extract the approved roster for the native protocol,

and should accept new incoming presence announcements from the

owner and modify this list appropriately. Any received presence from the

native protocol regarding any of the ID's on the approved roster should

be sent to the owner with the correct "from" ID.

Messages are bridged from the owner to the appropriate mapped ID in

the connection thread. Incoming native protocol messages are sent to

the owner with the correct "from" information.

All incoming presence sent to the special registered address should be

stored in a presence proxy until it is determined if the owner is available

based on the availability of all their resources.

Page 44 05/11/00

Group Chat
Group chat allows more than two people to participate in a single

conversation. The GUI often resembles IRC: a list of participants on one

side, the main window for the messages, and a small entry box at the

bottom. Within Jabber, a group chat participant is identified via the format

groupname@groupchatserver/nickname. The single room is

identified as groupname@groupchatserver, and each participant is

identified with a unique resource representing their nickname.

Page 45 05/11/00

Conclusion
The technology described in this white paper can be implemented in a

number of ways. Because Jabber is open-source, a variety of clients

have been developed by programmers in the open-source movement.

Development of new clients continues on an on-going basis.

Jabber.com, Inc. is also writing client software for Jabber. It is currently

releasing JabberIM 1.0 for Windows with the following feature set:

• Communicate with other instant messaging services, including AIM,

ICQ, and Yahoo! Messenger∗ .

• Manage messages, including sending, receiving, filtering, and

threading them.

• Queue messages when your client is offline.

• Manage contacts, including finding, viewing, adding, editing, and

removing them.

• Send invitations to contacts to participate in conversations.

• Manage groups, including creating and removing them.

• Participate in one-to-one chats, or in group chats.

• Manage your client settings, including changing nicknames, creating

accounts, changing server connections, and logging on or off.

• Learn to use JabberIM using online Help.

• Manage your profile to include either minimal or more extensive

vCard information.

More information on this technology is available by contacting

Jabber.com, Inc. at 303-296-9200 or at http://www.jabber.com.

∗ See "Compatibility Disclaimer" on page 7.

Page 46 05/11/00

Glossary
Attribute – An attribute provides further information about an XML
element.

Authenticate – Verify that the client is a valid user on the system.

Buffer – A temporary file that holds presence information until the user is
logged onto the relevant service.

Client – Software installed on the end user's system that can
communicate with Jabber servers and participate in Jabber chat
sessions.

Distributed Servers – A system of interlinked, but independent servers.
Each server can perform the full functions of the software without
reliance on another server. For example, email runs on a system of
distributed servers.

DNS - Domain Name Server

Elements – elements describe a document's content and structure. Most
elements come in pairs.

Entity – Any separate and distinct presence on Jabber (i.e. a client or a
server).

FQDN - Fully Qualified Domain Name

Group Chat – A chat session with three or more participants.

GUI - Graphical User Interface.

Instant Messaging (IM) - text-based conversations in real time.

IQ (Info/Query) – a command for getting information from an entity or
setting information for an entity.

IETF (Internet Engineering Task Force) – the group that records
recommended protocols for internet development.

IRC – Internet Relay Channel, a service for instant messaging.

Jabber – An XML based system for instant messaging.

Jabber Client Libraries – A client access library currently under
development to assist programmers with developing new clients for
Jabber®. It will provide the transport information necessary to
communicate with Jabber servers, and enable programmers to focus on
coding the GUI of their client.

JID (Jabber ID) - Jabber Identifiers are used both externally and
internally to express ownership or routing information. The IDs are
formed of a domain, node, and resource in the following format:
user@host/resource or[node@]domain[/resource].

MX – Mail Exchange Server

Page 47 05/11/00

Native Protocol – The protocol native to a specific service. For example,
The AIM transport communicates with AIM using AIM's native protocol.

Open Source – a programming movement characterized by creating
"open" code that can be modified or distributed without paying a licensing
fee. Members of the movement participate voluntarily in the development
of the code and typically publish new code on the Internet for common
use. More information about this movement can be found at
http://www.opensource.org/osd.html.

Presence – Information indicating whether or not a user is online and
available. For example, a user may be online, and have a status of
"away".

Primary Resource – The resource to which Jabber directs all
communications for a user. For example, a user may be logged onto a
home PC and a work PC. The Jabber server directs all communications
to the resource with the highest priority (the primary resource).

Probe – A probe searches for presence information.

Protocol – A formalized set of instructions that developers follow when
creating Jabber applications.

Resource – The hardware used to access Jabber. For example, a home
PC, a work PC, and a palm pilot are separate resources.

Roster – The client's preferences, including the subscription list, stored
in the client's account on the Jabber server.

Server – The Jabber server is the software that connects and
communicates with other servers. All communications for a client are
directed to the server and then passed to the client. All client preferences
and data are stored on the server.

Subscription – A subscription is a request to send and/or receive
presence information from contacts each time you log onto Jabber.

Syntax – Rules that must be followed when using a protocol to ensure
that the attributes, elements and other information is arranged in the
correct order to be interpreted by entities on the system.

Transport – A special server with the sole purpose of bridging to other
IM services (IRC, ICQ, AIM, etc.).

URI - Uniform Resource Identifier.

XML – eXtensible Markup Language. A specification for designing web
documents that allows developers to transmit data between applications
or organizations.

http://www.opensource.org/osd.html

Page 48 05/11/00

Inquiries:
303.296.9200
Fax 303.295.3584
www.webb.net

This document is provided for informational purposes only,
and the information herein is subject to change without notice.
Webb Interactive Services does not provide any warranties
covering and specifically disclaims any liability in connection
with this document.

All other company and product names mentioned are used
for identification purposes only and may be trademarks of their
respective owners.

http://www.webb.net/

	Table of Contents
	Executive Summary
	Jabber Architecture
	
	Protocol
	Jabber Clients
	Jabber Servers

	The Message Protocol
	Attributes of <message/>
	Elements within <message/>
	Content
	Metadata

	Examples of the Message Protocol

	The Presence Protocol
	Subscriptions
	Probes
	Elements within <presence/>
	State
	Display
	Extensions

	Examples of the Presence Protocol

	Info/Query Protocol
	Attributes of <iq/>
	The Query Element
	The Search namespace
	The Error Element
	The Key Element
	Fetching Information (type="get")
	Empty Elements
	Complete Response (type="result")

	Setting Information (type="set")
	Elements/Data
	Response (type="result")

	Examples of Information/Query Interactions
	Simple Query
	Setting Values

	Jabber Identifiers
	Jabber IDs (JIDs)
	Identifier Syntax
	URI-based
	Syntax
	Friendly Identifier

	Implementation
	FQDN
	DNS and MX Records

	Client/Server Interactions
	Connecting
	Authentication / Logging In
	Sending and Receiving Messages
	Rosters
	Presence
	Subscriptions
	Server Distribution
	Primary Resource

	Basic Transport Operations
	Connections
	Registration
	Contact Management
	Presence

	Group Chat
	Conclusion
	Glossary

