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1 Introduction

In recent years the problem of integrating information from heterogeneous information sources has become
an active area of research in the database community. These efforts have primarily concentrated on
information sources such as web documents, relational databases and text files. In the domain of spatial
information systems, researchers have explored system integration architectures, issues and problems in
semantic interoperability of spatial information and information integration concepts for spatial data [11,16,
17]. In particular, some recent researchers [14, 15, 19] use information integration methodology from the
database community toward spatial information systems. In this paper we investigate a mediation-based
approach (referred to as lazy evaluation in [14]) to integrating information from a spatial information
system such as GIS, and a database of geo-referenced imagery that possibly lives in a digital library. As in
[14,19], our purpose is to provide a user the ability to issue a single query that involves both information
sources, and receive a result that combines information from these sources in a seamless manner. In the
same spirit we would like to provide an authorized user the ability to make permissible updates to a source
by using conditions involving both sources. The goal of this paper is to demonstrate how a mediated system
is designed and to step through the query evaluation procedure in an such a system. We must emphasize
that our notion of integration does not rest on the development of spatial algorithms that operate on images
or vector data and achieve “physical integration” (e.g., see [11]) through techniques like image conflation.
We aim to attain “logical integration” by creating correspondences between related spatial information
much in the same spirit as mediation systems [10] do for databases. In this endeavor we do show existing
physical integration techniques fits into the fold of our information association methodology, but
development of such methods is secondary to the focus of this paper.

1.1 Background and related work
Various interoperability approaches and architectures have been discussed in the context of distributed
geographic processing and spatial data integration in the last several years. From ad-hoc project based
spatial data integration via numerous and never quite sufficient data conversion procedures, with an
assembly of a centralized data store, the research focus has shifted to standardization of data exchange, and
to the development of specialized software systems to support data interoperability. Useful reviews of GIS
interoperability and integration efforts are given in [16, 19, 28, 29]

The standardization efforts in a number of countries resulted in the development of presumably universal
standards for data exchange, including SDTS (U.S.), FEIV (France), ALK (Germany), SAIF (Canada),
further described in[30]), etc. Coexisting with de-facto commercial spatial data interchange standards (such
as ESRI’s .E00 files and shapefiles, MapInfo’s MIF/MID, AutoCAD’s .dxf, etc.), these standards have not
yet significantly affected the wealth of legacy spatial information. At the same time, they were not
connected with the emerging standards for Web-based data interchange such as SGML and XML.

Among approaches focused on software development to support spatial data interoperability, we can
distinguish the following (focusing on those relevant to the architecture adopted in this paper):
- Cataloguing geographic sources, or any sources/datasets with locational identifiers. The Alexandria

DL, supporting spatial range queries to a variety of resources, is an example of this approach;
- Developing gateways between databases, by defining universal schemes and persistent views over a

variety of data sources .
- Federated spatial databases (also called multi-databases). Based on the client-server model, with

simple CORBA or COM middleware connecting the two layers, this architecture supports homogenous
views (a common data model) over heterogeneous data sources. Sometimes also referred to as Data
Warehousing, or “eager approach” to data integration [14], this approach proved efficient for relatively
small number of sources with known structure. The OpenGIS Consortium efforts and related research



resulted in the development of GIS interoperability standards based on this model, and in a series of
national-level initiatives in the U.S. (via FGDC) and European countries. With several prototypes and
testbeds developed (such as the OpenMap testbed [27]), research has focused on semantic and physical
interoperability between selected sources. However, experiments of mapping selected GIS data models
– Arc/Info, MGE and SPRING - to OpenGIS standard have demonstrated lack of formal standard
definition which results in ambiguity and competing alternatives [26]

- Mediator-based systems. The three-layer architecture of such systems includes foundation layer
(databases with wrappers), mediation layer (supporting exchange of queries and results between
wrapped legacy data sources and applications), and application layer (user interface) [10]. The main
advantage of this architecture is its modularity and scalability, and the ability to use sources with no
structure or implicit structure. Derived from such mediator database systems as TSIMMIS [1,8],
DISCO [23], and Information Manifold [22], these systems support combinations of query results from
individual sources rather than combining the data. Among the recent examples of this approach are the
extensions of INRIA’s Aquarelle project, and research described in [24] and [25]. In the first prototype
(http://cosmos.inria.fr:8080/poql.html), a set of a priori unknown web servers, with varying structure
can be queried using a language called POQL. It supports Web-based querying of multiple servers
where both structure and data are queried at the same time. Accessing geo-referenced SGML-
structured information via the Web within the framework of this system is being explored at the time
of writing of this paper [31]. Semantic heterogeneity between different representations of
transportation networks and the ways to overcome it within a mediator-based system are addressed in
[25]. The proposed semantic mapper maintains a library of well-known legacy interfaces and a domain
ontology, and serves as a middleware dealing with wrapped legacy data sources. The prototype
wrapper architecture developed in [24] uses the VisiBroker as the middleware supporting IDL to Java
mapping, and is implemented on CORBA 2.0.

Hybrid approaches combining features of the above architectures, have also been proposed. For example, a
mediation/warehousing architecture described by [13] is built on four layers: the application layer (handles
end-user requests), the abstract services layer (maintains a uniform view of overall system, i.e. a virtual
database), the concrete services layer (maintains views of precise operations for each system and manages
distribution of tasks between systems), and the system services layer (invokes services to specialized
systems).

1.2 Integration – an information systems scenario
 From a database researcher’s viewpoint the task of information integration translates to establishing logical
equivalence relationships between different pieces of data. Suppose A and B are two information sources
and we would like to is to logically create a composite information source C, by piecing together
information elements from A and B. Once we have constructed this logically integrated source C, we may
now pose the following query Q: construct a virtual document having the title “TITLE” and in the body put
a 2×2 table T, as formulated in Table 1. Note that each entry specifies how it will be filled up from the
integrated information source C.

Table 1. The result T on the integrated source C.

Column 1 Column 2
Row 1 child of c5 > 9 element after c9
Row 2 avg (all leaf nodes) subtree rooted at c4

The problem is, however that the raw sources A and B store, organize and retrieve information in
completely different ways. As shown in Figure 1, source A may be a web document and organizes its
information elements as a tree and source B may be a proprietary system that organizes its information
elements like a graph. The question in information integration how can we logically construct C from the
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Figure 1. A is a tree-structured information source and B is a graph-structured information source.



raw sources such that the query can be answered. We call C logical, because C may not be physically
created as a separate repository. The information mediation approach is to define rules on the raw sources
such that the elements of C may be defined as a logical association between elements of A and B.  For
example, the rules may be:
• equate the element a3 with the element b1
• b5 or any of its descendants will not be included in C
• a child of a5 whose value is greater than 9 should also be the child of b4.
The resulting “integrated” information (after renaming) may look like Figure 2.

This example shows three important aspects of an information integration scenario:
• not all elements of the raw information sources (such as b5) may be “exported” to the integrated

information source. Thus the integrated source only sees a view of the raw source.
• information association is executed using a set of rules.
• a query may restructure the original data to a form (a table in the example) not present in the original

or integrated sources (tree or graph)

1.3 Integration – the spatial information scenario
This paper proposes an XML-based solution to the problem of spatial information integration. In this
section we introduce our notion of spatial information integration through a fictitious motivating example.
Unlike the database example in the previous section, spatial information will necessarily have typed
information and methods defined on them. This implies that the user queries can contain these exported
methods, which will also play a role in decomposing the query because not all operations can be done on
all types and hence on all sources. Consider two independent, autonomous sources S1 and S2. S1 is a GIS
containing themes such as the soil map, parcel map, digital elevation map and transportation network map
of Southern California, and S2 is an image library that has satellite images, aerial images and property
photographs of different regions of Southern California. For our example, let us assume the image library is
managed through a DBMS, which, in addition to metadata (which include timestamps and have been
georeferenced for our discussion), can serve a complete or a cropped version of any image. The goal of
creating the integrated spatial information source S3 is not to pull layers of S1 and images from S2 into a
third monolithic system, but to maintain in S3 a logical representation of the information in S1 and S2, tied
together by equivalence relations. Regardless of how themes are structured within S1, we initially assume
that logically S1 can be represented in S3 as a tree-structured source (like an R-tree, for example), where a
node of the tree represents the extent of a theme, with additional metadata describing the properties and
content of the theme. For the source S2 let us initially assume that the images are associated with metadata
and may additionally have been post-processed by a classification process, a segmentation process, or an

Figure 2. In the integrated source C, elements and relationships from sources A and B have been
put together, subject to some association rules
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Figure 3. The structure of the integrated information source. Note the dashed associations between the R-
tree-structured representation of the GIS source and the set of image sources.
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annotation process. Under this assumption, the view of S2 exported to S3 is a set of trees, where each
image corresponds to a tree. Each node of this tree represents a segment of the image, and if node n1 is a
child of node n2 it implies that segment represented by n1 is contained within the segment represented by
n2.
The structure of S3 then is that of a graph, where the nodes of tree-structured views of S1 and S2 are
connected through a number of equivalence relations. These relations may be established by rules that may
specify inter-object associations by methods like:
• containment conditions, such as the extent of image object node n3 in S2 is covered by theme node n5

in S1

• explicit spatial or temporal join conditions
• loose logical associations, such as both items refer to the city of San Diego

When the integrated source S3 is thus defined queries and update requests can be posed against it.

1.3.1 An example query
In this paper we take the viewpoint that the result of such a query is always a document that may contain
text, tables, figures, images, vector graphics and maps. We will use the following example query based on
the sources S1 and S2 from the previous section. “Using the Assessed Total Value (land price +
improvement estimate) of the parcel maps of San Diego, specified as Carmel Valley in the 1998 Police
Service Regions of San Diego, a set of aerial imagery of the regions and photographs of house properties in
the region, produce a document with the following table (Table 2)”. The task here is:
• first find the region corresponding to “Carmel Valley” from the Police Service Regions of 1998
• for each specified year classify this region into the five land price brackets (as shown), and generate

one map for each bracket
• for each single-bracket map from the previous step overlay it on the appropriate aerial image of Carmel

Valley
• for each subregion, also find house properties in the region, rank them by price and choose the top five

photos
• arrange the information as shown

Table 2. The output of a complex query (TAV stands for Total Assessed Value)

Year TAV > $500K $300K < TAV
< $500K

$200K <Land
price < $300K

$100K <TAV
< $200K

TAV <
$100K

1975 Join TAV
map of
qualified
parcels
with aerial
photo of
the same
regions

Property
pictures of
5 most
expensive
properties
in the
same
regions

1980
1985
1990
1995

The query produces a table of 25 maps and 25 sets of house photographs -- a representation to show urban
change in San Diego. We intentionally chose a tabular presentation of the information to illustrate that the
integrated system may not always produce a single map as its output. It also demonstrates the need for the
mediator, which decomposes a single query into multiple simpler queries to be executed by the GIS. We
use both physical integration (the images from the library are fetched to and overlaid onto the TAV map)
and logical integration exercised through the join conditions on the aerial images and maps, and on the join
conditions of the property picture addresses and the qualified regions in the GIS.

Same conditions as in Column 1

Same conditions as for Year 1975



In the rest of the paper we describe an architecture that achieves the spatial integration task outlined above.
Our primary contribution is to propose a logical methodology to reduce the impedance mismatch between
existing spatial systems through XML, the emerging information interchange standard.

2 Information Mediation using XML

2.1 Background
The approach we described in the previous section achieves information integration by using a two-part
middleware between the information sources and the end-users’ application. In this approach the user
application interacts with a large number of disparate information sources through a single interface called
the mediator (the first of the two-part middleware). The mediator accepts a user request, breaks up the
request into small fragments according to the capabilities of the sources and delegates the request-
fragments to the appropriate sources. As an example of capabilities, a GIS can perform spatial operations
on theme objects, while an image database can perform similarity-based operations on images or image
segments. When the sources process the request and return the results, the mediator integrates the results
and sends the combined information back to the user.

The mediator typically communicates with a large variety of heterogeneous information sources. To
manage the diversity of protocols for each source, rather than directly communicating with the raw sources,
it communicates with a proxy of an information source called a wrapper (the second part of the
middleware). The wrapper acts as a two-way model translation device: it communicates with an
information source in its native language/API, and communicates with the mediator in a commonly agreed
language. The task of the wrapper, therefore, is to translate a request from the mediator’s language to that
of the information source and transform the results provided by the information source back to the
mediator’s language. As noted in [1], a wrapper can process direct, logically equivalent and indirect
queries. A direct query is a request that can be satisfied by a primitive operation provided by the underlying
information source. The query  “Find all houses in census tract 06073001 having median income greater
than $50,000 by census block group” can be directly mapped to a single request, and is an example of a
direct query. A logically equivalent query is a query for which the underlying system does not provide a
single operation. A query like “For each census tract in San Diego that has over 30% minority population,
find the zip code boundaries that intersect with it” may not be directly translated to a single GIS request.
However, a script can be generated to produce a result that is logically equivalent to the query. In this case,
the wrapper’s task is complicated by the fact that it has to compose a program from smaller modules to
produce the result. An indirect query is a query that is not supported by the underlying information source,
but the wrapper has the computational capability to answer it. For example, a wrapper may compute the
correlation coefficient of a sequence of number pairs retrieved from a database, which the database itself is
unable to perform the computation. In the present work we focus mainly on processing direct and logically
equivalent queries, and provide a simple example of an indirect query.

In this paper we present the functional architecture of the spatial information mediation system, the
representation of the GIS and image database sources at the wrapper and at the mediator, and the mediation
logic to illustrate how the integration between digital imagery and GIS can be achieved.

2.2 The MIX framework
Our information integration framework is called MIX (Mediation of Information using XML), where:
• Each source exports information as XML. For both GIS and image sources, the wrapper has to

undertake the task of transforming the underlying information into XML. We use XML DTDs as a
structural description (in effect, a schema) of the data exchanged by the components of the mediator
architecture. The wrappers are obligated to produce documents that conform to an associated DTD. As
we will show in the following sections, the GIS wrapper constructs the DTD by using the “catalog”
information in the GIS. The schema provided by a DTD is more versatile than relational schemas, and
at the same time provides more structure than the plain semistructured model of existing approaches
like TSIMMIS [1,8].



• Each source is queried with an XML-based query language. We have developed a query language
called XMAS [2], which builds upon ideas of languages like XML-QL [11], Yat [4], MSL [8], and
UnQL [3]. XMAS allows object fusion (e.g., combining an image reference from one source and a
map reference from another source into a new composite object) and pattern matching on the input
XML data. Additionally, XMAS features powerful grouping and order constructs for generating new
integrated XML “objects” from existing ones. An effect of the grouping operation is that depending on
the query we may arrange the same information in different ways. In our running example, the time
line is produced by grouping the spatial data and images under their timestamps. We also illustrate in
this paper how we have modified the original XMAS language proposed in [2] has been “specialized”
by using a reserved namespace (i.e., set of tag names) for spatial objects.

• The query evaluation and integration process will be viewed as generation of a virtual XML document.
As mentioned before, the output of a query in the MIX framework is an XML document. While it may
be possible to materialize this document in one-shot, we provide the flexibility to produce this
document in a browsing or navigational mode. In this mode, the user issues an XMAS query, and gets
back only a “virtual” unmaterialized result. As the user navigates through the result, the system
progressively expands the unvisited parts of the document. In our example, assume that the response of
the query contains 50 pictures of property information for homes in Carmel Valley in the 1940s. The
user may decide to look at the textual metadata of the first 20 and then retrieve the images of only three
properties in the resultant document.

Figure 4 shows the architecture of the MIX system modified specifically to handle spatial information. In
this architecture, the XMAS query from the user application is developed on top of a main mediator. The

XMAS version of the example query is given in Figure 5. Instead of explaining each step of the query let us
point out a few key elements.
• The query is directed to the mediator without specifying the location of any source. The only use of the

reserved namespace tag mix:source is to indicate which definition of “Carmel Valley” should be used.
• Wherever we use the notation mix:tagname we refer to the fact that the mix mediator is aware of the

type of data and has specific ways of handling it. For example, mix:region will not be expected to have
a “length” attribute.

• We use the function category(price,totalValueCategory) as a separate function that examines the total
assessed value of a parcel in the parcel map and assigns the parcel to the correct bracket.

• The query defines a table by first grouping the results by year (notation {$y}) and then by total
assessed value category (notation {$c} within the {$y} group).

Us er  
A pplic ati on  

M ain  
M edi ator  

othe r  
M ediator  

S patial  
M edi ator  

W ra pp er  W ra pp er  W ra pp er  

GIS  Im ag e  
Data bas e  

other 

Figure 4. All the links shown in this figure communicate through XML for data and XMS for
queries. The inter-wrapper links communicate by exchanging binary information if needed.



• Wherever the same variable (e.g., $r) is used multiple times, it has to bind to the same constant. Thus
the aerial image and the map object must be of the same region, and the address of the property must
belong to the parcels satisfying the category condition.

• The spatial predicate within(region1,region2) is used without any software dependent syntax. We
assume here that the user can enquire from the mediator what the supported functions are and how they
can be invoked. For example, if one of sources underneath the mediator may support another function
centroid_within(region1, region2), the mediator will export the function and the user has to know
which is suited for a query.

• The predicate display_order(mapData1, mapData2) is procedural and specifies that
mapData1(corresponding to a theme) should be overlaid on mapData2. In case multiple mapData were
involved, the mapData elements would be presented as a nested list in the form—
display_order(mapData1, (mapData2,mapData3)).

In general, the application mediator will receive a query containing both non-spatial and components. It
will detect the spatial portion of the larger query and assign it to the spatial mediator for evaluation. In this
paper we do not give the details of how this may be achieved in general. We assume that the application
mediator employs a set of rules to determine that the query needs to be handled by the spatial mediator. The
rules can be very simple. In our example, the fact that the formulation of the query requests maps and
images is sufficient to direct it to the spatial mediator. We do not consider the issue of multiple GIS sources
in this paper. However, we take the position that the basic methodology described here will not be different
even for multiple GIS sources.

In the next two sections we discuss the functions of the mediator and the wrapper in the light of the
example.

answer = construct $A
where
$A:<table>

<row>
<year>$y</>

<totalValueCategory>$c
<totalValue>$tv</>
<mapColumn>

<mix:map>
<mix:region mix:source=$s1>$r

<mix:regionName>$n</>
</>
<mix:mapData>$md1

<mix:dataName>$d1</>
<mix:dataValue>$tv</>
<mix:region>$r2</>
<mix:date>$y</>

</>
<mix:mapData>$md2

<mix:datatype>$dt
<mix:resolution>$res</>

</>
<mix:region>$r</>
<mix:date>$y</>

</>
</>

</>
<pictureColumn orderby=$p orderType=asc topN=5>

<mix:image>
<mix:dataName>$d3</>
<price>$p</>
<address>$a</>
<mix:date>$y</>

</>



</>
</totalValueCategory> {$c}

</year>{$y}
</row>

</table>
in http://some.mediator.url
and
belongsTo($y, (1975,1980,1985,1990,1995)) and category($tv,$c) and ($s1= “San_Diego.Police_Service_Region”)
and ($n= “Carmel Valley”) and ($md1= “Parcel Map”) and ($d1= “total assessed value”) and within ($r2,$r) and
($md2= “imagery”) and ($dt= “aerial”) and ($res <= 16m) and ($d3 = “property photo”) and mapsTo($a,$r2) and
display_order($md1,$md2).

3 Query evaluation at the spatial mediator
The task of the spatial mediator is to parse the spatial part of the query and generate an evaluation plan.
There are three parts in this process. The first part entails fragmenting the query between information
sources and determining the order of execution of each fragment. The second part is to use the knowledge
about each source to rewrite the query in a way that the source can evaluate the rewritten query. The
essence of information integration is carried out by these two parts. The third part is to send out the
rewritten query fragments to the sources, collect the result fragments from each source and pass them on to
the application mediator. We next inspect how these steps are executed.

3.1 Query planning at the mediator
In this section we walk through the states executed by the mediator – note that the process of integration
manifests itself by an interdependent sequence of subqueries between the two sources. Naturally, the steps
indicated here will be different for another query. However it is representative of the query planning in
many typical queries.
1) Determine Map Request: The tag mix:map dictates that the mediator needs to create a map. It then

expects to know which geographical area needs to be mapped, and which variables should be used to
produce the map.

2) Identify Map Region: The next tag mix:region specifies the region to be mapped and informs that this
region can be found in the source having a theme “Police Service Region” within the provenance of
“San Diego”.  This information is assumed to be in the GIS them in this paper.  If this is not available,
the system will look for alternatives like finding the information from a geographic name server. The
mediator searches the DTD exported by the GIS wrapper and locates that the “San Diego City” theme
has an associated table called “Police Service Region” and that the table has a polygon as a field.

3) Produce Wrapper Query Condition for Map Region: Next it determines the condition that the
mix:regionName tag needs to have the value “Carmel Valley”. It also consults the DTD and maps the
tag regionName to the field name srvRgn in the “Police Service Region” table. Hence the mediator
places query condition srvRgn= “Carmel Valley” as part of the query fragment to be passed on to the
GIS wrapper.

4) Identify Map Attribute 1: The next tag mix:mapData specifies the element to be mapped. As before,
this data element is identified with a query condition on the “total assessed value” field of the table in
the “Parcel Map” theme. But in this case, several “Parcel Map” themes are found, each associated with
a different year. The mediator picks the years corresponding to the query by inspecting the DTD for
the Parcel Map themes. We will show in the next section how the year gets associated with the theme
in the DTD provided by the wrapper. Since 5 years (and hence themes) are requested in the query,
produces 5 (almost identical) copies of all query conditions gathered so far, and treats them as
independent subqueries to be sent to the GIS wrapper.

5) Produce Wrapper Query Condition for Map Attribute 1: The mediator inspects the conditions
associated with “total assessed value” and finds that it has to satisfy the function
category(price,totalValueCategory) and also observes that the results are grouped into columns based

Figure 5. XMAS version of the example query



on its category value. It expands the function to determine that there are 5 possible categories each
parcel map data may belong to. It infers that since for each category a map needs to be produced, it
creates 5 correlated queries to the wrapper for each independent subquery. It generates the
corresponding query conditions for the GIS wrapper.

6) Identify Map Attribute 2: The next mix:mapData tag specifies the next element to be mapped. The
mediator determines that this item is an aerial map and belongs to the image library. It also determines
that it needs to satisfy query conditions on the year, the resolution and the georeference to identify
images for the query. But although the mediator has the DTD produced by the image wrapper, whether
the query can be safely answered is unspecified at this point because the region specifying the
georeference is not computed yet. Hence the mediator forms a partial query for the image wrapper.

7) Formulate Query Fragments for Wrapper: The mediator observes the end of the mix:map tag and
produces one independent and several dependent query fragments for the wrappers.

8) Determine Image Request: Similar to the map request, the mediator verifies that the necessary tables
and field names exist in the DTD specified by the image library. It uses a rule to determine that the
predicate mapsTo(address, parcel region) has to be performed in two steps: first getting the address
block from the Parcel Map table in the GIS source, and then formulating a range query on the street
number in the image library.

9) Determine Query Execution Plan: The query planner formulates and executes in the following order:
a) First determine the extents of boundary of the region Carmel Valley.
b) Use the extents of to find the aerial image of the region in the image library.
c) Validate the query that images of the region exist at the requisite resolution.
d) If there are images at multiple resolutions for the region, it uses a rule to chose the finest

resolution image covering the entire map region.
e) Initiate transfer of the image from the image library to the GIS1.
f) Execute the map retrieval query (which really produces 25 sets of results), and determine the

parcels. Since the address block of the parcel will be required in a later part of the query, it is also
fetched.

g) Formulate the image query including the sorting and “top 5” instructions.

3.2 Examples of a rewritten query fragment
As a result of the query planning process, query fragments are sent to the wrapper in the form of XMAS.
However, this rewritten query uses the table and field structure as well as the functions supported by the
source. We illustrate this in the following paragraphs.
• Determine the boundary of the region Carmel Valley
ans1 = construct $R
where
<ArcView_Projects>

<theme name = $n1>
</theme>
<tables>

<table name=$n2>
<col name=$n3>$v1</>
<col name=$n4>$v2

$R: <extents>
<top>$t</>
<bottom>$b</>
<left>$l</>
<right>$r</>

</extents>
</col>

</table>
</tables>

</ArcView_Projects>

                                                
1 We assume for this work that the image and the GIS layer can be aligned.



in http://wrap.gis.url
and ($n1= “sdcity.shp”) and ($n2 = “Attributes of  sdcity.shp”) and ($n3 = “Police Service Region”) and
($v1 = “Carmel Valley”) and ($n4= “Shape”) and getExtentTop($v2,$t) and getExtentBottom($v2,$b) and
getExtentRight($v2,$l) and getExtentLeft($v2,$r).

Note that after rewriting the tags are now specific to the source, and  this makes the query easily
convertible to a script in the native language of the source. We would also point out that the output of the
XMAS query is only the extents (bounding rectangle) of the desired region.
• Produce a map overlaying the Parcel Map and Aerial image
Let us assume we have already obtained the aerial image from the image library and that by virtue of the
fact that it is georeferenced, it is aligned with the other GIS layers. We assume that this image is stored in
the GIS as the file "carmelimage". We will show one of the five independent queries sent to the wrapper. In
this query the year of the parcel map is fixed.

ans1 = construct $M
where
$M: <mix:map>

<ArcView_Projects>
<theme name = $n1>$t1

<extents>
<top>$t</>
<bottom>$b</>
<left>$l</>
<right>$r</>

</extents>
</theme>
<theme name = $n2 >$t2</>
<theme name =$n3 >$t3</>
<tables>

<table name=$n4>
<col name=$n5>$v1</>
<col name=$n6>$v2</>

</table>
</tables>

</ArcView_Projects>
</mix:map>
in http://wrap.gis.url
and ($n1= “sdcity.shp”) and ($t = 3.62482e+006) and ($b = 3.6225e+006) and ($l = 481477) and ($r =
481477) and ($n2 = “sdparcels95.shp”) and ($n3 = “carmelimage”) and ($n4 = “Attributes of
sdparcels95.shp”) and ($n5 = “total  assessed value”) and ($v1 > 500000) and ($n6= “address block”) and
display_order($t3,($t2,$t1)).

Here the extents from the first theme are used to limit the map produced to the area extracted from the
previous query. Also, the response to the query is a map, which is returned by reference as a URL where
the image will be available.

3.3 Spatial Equivalence at the Spatial Mediator
The query planning process described in the previous section did not consider any mismatches between the
two information sources. In real life we are more likely to witness several mismatch problems – the
projection on the image and the GIS layer may not match, the coordinate systems may be somewhat
different, and the features may not align. Unlike the application mediator, which has no domain knowledge,
the spatial mediator is designed to incorporate special rules to handle such mismatches and establish spatial
equivalence between corresponding entities. It is not our intent to create an exhaustive set of rules for all
equivalence conditions that may need to be included for any arbitrary combination of spatial sources. We
believe the mediator needs to be extensible and the designer of a specific system will have the



responsibility of putting in any new rules. Once a rule is defined and registered, the mediator will have an
engine to check the preconditions of the rule and execute the rule. In this section we briefly discuss the
architectural extension to accommodate such rules, the structure of an equivalence rule and how it impacts
the query evaluation plan.

We keep the feature alignment problem out of the scope of this paper. In Figure 6 we show two
computation agents that cooperate with the mediator and wrapper to execute spatial and numeric data
conversion. The spatial data conversion agent performs operations such as converting a spatial data from
one projection system to another, while the numeric data conversion agent performs information
conversion that are much smaller in scale. More importantly, the spatial data converter is controlled by the
mediator, but transfer information between the wrappers, while the numeric data converter helps the
negotiation process between the wrappers and the mediator.

Consider that the GIS layer of the “Police Service Region” and “Parcel Map” layers are in UTM projection,
while the image data of the San Diego region is from the USGS 7.5′ quad is unprojected in geographic
coordinates (we call this projection = “geographic” here). This will produce the following changes in the
query evaluation steps outlined in Step 9 of Section 3.1.
Determine Query Execution Plan: The query planner formulates and executes in the following order:

a) First determine the extents of boundary of the region Carmel Valley from the GIS.
b) Check <projection> and <units> tags of the returned result and determine the projection used by

the GIS source.
c) Look up rules to find that what image tag or attribute the tag  <projection> of GIS source maps to.

At this step the mediator discovers that the <projection> tag in the GIS source corresponds to the
“projection” attribute of the <mix:image> tag.

d) Look up at the schema of the image sources and finds the values of the attribute “projection”. At
this point the mediator finds that all georeferenced images have the “projection” attribute set to
“geographic”.

e) Convert coordinates if necessary. For our example, it fires a rule of the form:
projection(georaphic, coordX, coordY) :- projection(UTM, coordX1, coordX2),
UTM2geo(coordX1, coordX2, coordX, coordY).

 The predicate geo2UTM invokes the Numeric Data Converter to execute the requisite conversion.
As a side effect the mediator uses an image transfer rule and determines that “geo2UTMImage” is
the conversion routine for the spatial data.

f) Use the new extents to find the aerial image of the region in the image library.
g) Validate the query that images of the region exist at the requisite resolution.
h) If there are images at multiple resolutions for the region, it uses a rule to chose the finest resolution

image covering the entire map region.
i) Initiate transfer of the image from the image library to the GIS.  At this point is already known that

the image must be transformed before sending it to the GIS system using the “geo2UTMImage”
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Figure 6. A revised architecture of the system to account for impedance mismatch between
information sources



routine. The spatial data converter is the invoked and the converted image is routed to the GIS
wrapper. This process was chosen to illustrate the use of the Spatial data converter. In reality, we
need to select a cost optimal solution for the conversion.

j) Execute the map retrieval query (which really produces 25 sets of results), and determine the
parcels. Since the address block of the parcel will be required in a later part of the query, it is also
fetched.

k) Formulate the image query including the sorting and “top 5” instructions.

Although the example here treats a simple case of equivalence management at the spatial mediator, we
believe the same architecture will allow us to perform more involved reconciliation between different
information sources.

Table 3. Portion of the sample result for the example query (TAV is total assessed value).

Year TAV > $500K $300K <TAV <
$500K

1975

1980

4 Wrapping spatial information sources
In a previous section we described a wrapper as a two-way model translator: specifically in our case, it
converts an XMAS query into a native query, and translates a native response to an XML response. In
Section 3 we also showed the vital role played by the wrapper in presenting the capabilities of the source to
the mediator in the form of its schema and functionality. In this section we present how the wrappers export
source capabilities and perform query translation. In the design presented here, the wrapper acts as a
“value-added” translator, because it not only exports the raw schema of the information source, but adds its
own organization and “knowledge” in it. This additional information greatly aids the process of integration,
because it allows the spatial mediator to know which information elements from two spatial sources should
be associated with each other to produce a correct response to a query. In the next two sections we present
our wrapper model for a GIS source and an image library respectively.

4.1 Wrapping a GIS source
A critical distinction of a GIS from many other information sources reported in mediation literature centers
around the fact that a typical GIS of today is essentially designed for stand-alone interactive use, or at best,
for enterprise-wide use within the same software family, and not for heterogeneous information federation.
Hence, it serves the roles of a database system for spatial information, a computation source (e.g., for



network flow optimization), and a presentation source (e.g., surface generation and mosaic creation) all in
one, but is not equipped with a generic query language for declarative access. Our GIS wrapper overcomes
this problem by maintaining an internal model of the GIS source, including both the schema information
and the instance information. The instance information is populated only when a query is posed. The
wrapper performs model translation by first transforming the result returned by the GIS into this internal
model, and then exporting it as an XML document.

4.1.1 The internal schema of the GIS wrapper
The motivation behind having a lightweight internal data model for a GIS wrapper is as follows. Although
we need to redesign a wrapper for each different GIS product, certain parts of the wrapper are going to be
common across all products. For example, most GIS sources will recognize map layers (coverages, themes,
etc.) and a large body of common operations such as overlay and spatial intersections. These ubiquitous
objects and functions can be considered as a very simple typed algebra (as has been done more than once
since 1983 D. Tomlin’s Map Algebra []). For a specific GIS source the wrapper has to know how the types
and functions in its algebra maps to the types and functions in the source.  The wrapper assumes that there
are at least 2 kinds of functions:  boolean returning functions and object returning functions.

For example, in ArcView’s Avenue the object returning function within(region1, region2), where region1 is
a theme object and region2 is region object, is called #FTAB_RELTYPE_ISCOMPLETELYWITHIN, and
needs to be invoked as:    
  region1.SelectByTheme( region2, #FTAB_RELTYPE_ISCOMPLETELYWITHIN, 0, #VTAB_SELTYPE_NEW).

To MapInfo’s MapBasic syntax, the same function could be mapped as
SELECT * FROM Region1 WHERE OBJ ENTIRELYWITHIN Region2.OBJ

As a consequence, when the GIS source returns the results of a query, the results are mapped back to
internal types and hence are easily translated into XML. All additional types and operations supported by a
GIS system will have to be layered on top of the simple algebra.

The GIS wrapper models every GIS source in terms of a simple type system, in order to encapsulate what a
mediator needs to know about the source in order to effectively evaluate queries directed to it. With a
collectionObject at the top level, it further distinguishes between a themeObject and a dataObject. A
collectionObject represents a group of co-registered themeObjects. A themeObject has the subtypes:
• themeMap: a binary blob that represents a map produced by the underlying GIS as the result of an

operation. Each themeMap object has an identifier, a resolution and an extent. It may contain
additional metadata, such as the time when the theme was created. A themeObject can be instantiated
as a map.

• table: a representation of attribute information associated with a GIS theme in the form of a possibly
nested table. Each table object has an identifier and a list of column names. A nested table is
represented by treating a column name as a named list instead of a singleton name.

• themeProperties: a set of properties that describe an aggrgegate of the data contained in the theme.
For example, for each type of dataObject in a theme, it will contain information like the number of
information items in the theme, the spatial granularity of a cell, indexes implemented if any, existing
topology if any, and so forth.

A dataObject represents the type of information associated with any theme. Each data object maintains its
spatial extent, and has a reference to the table in the themeObject related to it. It may additionally have
information on the valid time of the underlying data and accuracy of the data items. For many common GIS
applications, the set of dataObject subtypes includes:
• regionObject: representing a 2D polygonal object in a theme
• curveObject: representing open or closed polylines in a theme
• networkObject: representing a graph possibly consisting of intersecting polylines
• pointObject: representing a feature that is represented in a theme as a point object
• matrixObject: representing a feature where every element in an array is associated with a value

Note that these types are not defined with the usual rigor found in spatial information systems, because they
are not created for performing geometric operations in the wrapper — execution of such operations is the



responsibility of the GIS underneath. The purpose of these types is to translate an XMAS query into
syntactically well-formed queries in the language of the underlying GIS, and to convert the results returned
from the GIS into a well-formed XML structure. During the creation of a wrapper for a specific GIS
system, these types can be specialized by single inheritance. Hence the designer developing the wrapper for
a specific GIS, can define a transportation network as a networkObject. For every built-in or user-extended
type a list of function signatures is also defined. For example, for curveObject spatial intersection is defined
as: intersect(curveObject, regionObject) and so on. Note that we did not care about issues like a region
intersecting a curve will generate a set of point objects, although a set is not included in the type system.
We contend that regardless of the semantics of the geometry, a wrapped GIS source will eventually
produce a themeMap object and an associated table, or return an empty result. The only reason we need the
function signature is that the predicates specified therein will be made visible to the mediator2 and will be
used to formulate valid XMAS queries. In addition, this allows the wrapper system to be extensible so that
if a specific GIS system permits some special function (e.g., water drainage computation for a digital
elevation model) or object type, it can be simply exported to the mediator, without worrying about the
precise semantics of the operation.

In the rest of the paper we assume that ArcView from ESRI is the underlying GIS and illustrate both
catalog service and query translation.

4.1.2 Catalog Extraction
The catalog is the schema information of the GIS source, which the wrapper exports to the spatial mediator
as an XML DTD. It also maintains an internal version of the catalog to translate XMAS queries into GIS
queries.

<!ELEMENT arcview_project (views|tables|scripts)* >
<!ELEMENT views (view)* >
<!ELEMENT view (projection|units|themes)* >
 <!ATTLIST view name CDATA #IMPLIED>
<!ELEMENT projection (#PCDATA)* >
<!ELEMENT units (#PCDATA)* >
<!ELEMENT themes (theme)* >
<!ELEMENT theme (assoc_table|threshold|extents)* >
 <!ATTLIST theme name CDATA #IMPLIED>
<!ELEMENT assoc_table (#PCDATA)* >
<!ELEMENT threshold EMPTY >
 <!ATTLIST threshold val CDATA #IMPLIED>
<!ELEMENT extents (bottom|left|top|right)* >
<!ELEMENT bottom (#PCDATA)* >
<!ELEMENT left (#PCDATA)* >
<!ELEMENT top (#PCDATA)* >
<!ELEMENT right (#PCDATA)* >
<!ELEMENT tables (table)* >
<!ELEMENT table (col)* >
<!ATTLIST table name CDATA #IMPLIED>
<!ELEMENT col EMPTY >
 <!ATTLIST col alias CDATA #IMPLIED>
 <!ATTLIST col type CDATA #IMPLIED>
 <!ATTLIST col width CDATA #IMPLIED>
 <!ATTLIST col decimal CDATA #IMPLIED>
<!ELEMENT scripts (script)* >
<!ELEMENT script EMPTY >
  <!ATTLIST script name CDATA #IMPLIED>

Based upon our experience with ArcView, we distinguish between a base theme set B and view theme set
V in any GIS instance.  A specific theme b is a base theme if it has only one of the subtypes of dataObject
(e.g., if it only contains regionObjects) or if the wrapper engineer designates it to be a base theme. A theme
v is a view theme if it has been created based upon a set of base themes {b i}, such that the information in v
                                                
2 This actually happens during a registration procedure, but such operational details are omitted in this paper



is strictly a subset of the information in i{b i}. The intuition behind making this distinction is that it is
more optimal if query can be answered from a view theme rather than a base theme, since a view theme is
equivalent to materialization, and reuses precomputed expensive spatial predicates on the same base data
set. Recognizing a theme as a view theme can be a non-trivial task. We have taken a simplified approach to
the problem. We assume that the projects in the system comprise universe of themes3. We traverse the
project structure of ArcView and identify all themes referenced by it. For themes that have creation scripts,
we identify the names of other themes, and arrange them to form a dependency graph of themes. The
dependency graph is maintained by the wrapper for later use. All themes with no incoming edges in the
graph are placed in B and the others are placed in V.  If a theme does not have a creation script it is placed
in B.  Hence in the worst case, every theme is treated as basic. In addition to this labeling, the wrapper
engineer has the ability to specify for each view theme how the view was derived. The derivation needs to
state which attributes (spatial or otherwise) were used to derive the view and what restriction condition was
applied on the respective attributes. While it is difficult to extract this derivation information automatically,
such a specification can enhance the efficiency of query processing. To see why this is so, consider a user
query that looks for the ethnic distribution of all census tracts that overlap “Carmel Valley”.  Let us
suppose the wrapper has identified two themes whose tables have the attributes “census tract number” and
population. If it is known a priori that one of those two themes has already been restricted (subset) based on
another attribute (e.g., median income greater than $25,000), then this information can be used to discard
that theme, because the theme will not produce a complete answer (since it does not have the records
corresponding to the population having median income  less than $25,000). In the absence of such view
information, the wrapper has to use other heuristics, such as selecting the theme with a higher record count.
We will revisit this issue in a later section.

For each theme object we create a catalog record having the XML DTD structure shown before. Note how
the internal schema of the wrapper has been used in constructing and that the themes are labeled as base
and view. This basic structure can be augmented by any additional information that can be extracted by
traversing the project structure. For example, for ArcView, if a satellite image stored as a layer will have
the additional attributes such as “bandstatistics”. Instead of simply exporting a set of theme DTDs to the
mediator, we organize them into a container document by first creating an R-tree corresponding the spatial
extents of the themes and then generating the XML document from the R-tree, as shown in Figure 2. Note
that an internal node of the R-tree only induces a nesting in the XML document, without producing
material data. The reason for having the R-tree representation at the spatial mediator is to gain efficiency
during query processing. It is very likely that in order to choose the candidate sources for a query the
mediator will need to ask, “which are the themes that provide some information in the user specified
rectangle of interest?” Having the R-tree index within the mediator saves the trouble of going back to the
information sources.

In addition to the containment relation and the derivation dependency graph, the wrapper may maintain
other indices to connect the themes. One important thread is to place all themes in a temporal order, based
on the valid time (i.e., the time when the data items were valid) of the theme. In case of themes valid over
an interval of time the temporal order may be implemented through a data structure like the interval tree.

4.1.3 Execution of an XMAS query fragment on a GIS
As discussed earlier,  portions of the query execution plan which get passed down to the spatial wrapper
need to be converted into a query language native to the underlying GIS system.  This subsection builds on
the running example and sketches a possible solution for a  GIS system like ArcView.  The underlying
principle is that primitive GIS spatial operations can be invoked and composed into larger programs.

A logically equivalent Avenue script is generated whereby primitive spatial operations can be composed to
form more complex programs.  Let us illustrate this process with the formulation of two consecutive spatial
queries:  (1) restrict the parcel map to the Carmel Valley neighborhood,  (2) using this more focused parcel
map, locate all homes whose total assessed value is greater than $500,000.

                                                
3 It is very easy to include themes not referenced by any project in the universe.



Essentially here we are querying the underlying GIS system to extract the parcel data that will be overlaid
onto an aerial photography.  This corresponds to partially filling in one of the cells of the result document
for the example query.

• Query (1) can be accomplished by invoking a primitive request called QueryThemeByTheme, which
takes as input parameters (ThemeObject, SearchTheme, spatialRelationship).  In our example query the
ThemeObject would be the parcel map, the SearchTheme would be a boundary theme for Carmel
Valley, and the spatialRelationship would constrain the selection using the "Within" operator.

• Query (2) can be accomplished by invoking a simple primitive request called
QueryThemeByExpression, which takes as input parameters (ThemeObject, QueryExpression).  The
query expression would be "[total assessed value] > 500000", assuming an attribute field named "total
assessed value" in the ThemeObject’s associated attribute table.

• The overall GIS query would combine (1) and (2) in the following manner:

av.Run(“SetEnvironment”,
{parcelTheme=”Parcel Map”, selectionTheme=”Carmel Valley Police Service Region”,
  relation=”Within”, expression=“[total assessed value] > 500000”)

av.Run(“QueryThemeByTheme”, { parcelTheme, selectionTheme, relation } )
av.Run(“QueryThemeByExpression”, { parcelTheme, expression } )

Av.Run is the standard Avenue call to run an Avenue script with arguments from within an Avenue
script.  The “SetEnvironment” Avenue script takes as arguments a list of attribute/value pairs where
the attribute is the name of a variable that will be initialized to the associated value.

• Let us detail the first of these two primitive requests in Avenue.  QueryThemeByTheme would be
written as:

Region1 = self.Get(0)
Region2 = self.Get(1)
Relationship = self.Get(2)
Rel = av.Run( “Lookup”, Relationship )
Distance = self.Get(3)

If ( Distance = null ) then
Distance = 0

End

Region1.SelectByTheme( Region2, Rel, Distance, #VTAB_SELTYPE_NEW )

Region1 = av.Run( “SaveSelection” )

The “SaveSelection” Avenue script transforms a selection bitmap into a Theme object.

4.2 Wrapping an image Library
Our intent in wrapping image libraries is to provide a uniform interface to access complete or partial digital
images, and image features computed from images in by an image processing or pattern recognition
method. The uniform access also includes any metadata associated with a singleton image or image
collection. In our experience most database management systems (such as Oracle, Informix and DB2) that
support access to imagery export only limited query capability on image features and permits little
manipulation (such as cropping) or analysis (such as feature extraction or classification) operations on
images. Our internal model for an image source is based on the vision of information sources with both
metadata retrieval and content-based retrieval abilities – we have created such sources [21] using
customizable image analysis engines (e.g., QBIC from IBM, Virage Engine from Virage, Inc.) in
conjunction with database management systems.



4.2.1 The internal model for image sources
We model the image wrapper as a middleware that recognizes the following data types:
• image: an image is associated with a set of standard metadata like its dimensions, format and pixel

depth (bits per pixel). An image is also modeled to be multiband, and can be retrieved a band at a time
or up to three bands together. The user can also perform standard operations like cropping, rotations,
change in brightness and contrast on images. A spatial image is a specialization of image that must
additionally have a georeference and resolution.

• image mask: a mask is a pixel chain within a bounding box, with specified coordinates. The purpose
of a mask is to represent a segment produced by an image processing operation. The purpose of
treating an image mask as a distinct data type is to separate the segment and its properties from the
image. This allows an image to be associated with multiple segments produced by different operations
that can be transferred across different components of the integrated system such as from the image
library to a GIS wrapper.

• image feature: an image feature is a representation of an image property such as texture in a
photograph or concrete region in a satellite image, that is computed by some analysis operation. Each
instance of a feature is associated with an image mask that localizes the area over which it was
computed. For convenience, a feature instance is associated with additional metadata such as the name
of the feature and the parameter values used to compute it. Since our image model is general, we allow
an image library to provide similarity functions based on features (e.g., it can request all images having
some segment with texture similar to this [20]).

• scene graph: scene graph, a term used in the VRML and MPEG-4 literature, represents a tree-like
decomposition of a real or virtual scene, using a well-defined system of node types. We do not use all
the features of a scene graph like the image transformation specifications. In our usage, a leaf node in
the scene graph stands for a “unit region” in the image whose property can be described by a set of
simple image features. We also keep the provision that the region defining a leaf node can be described
by a shape property (e.g., “a circular area”), where the property belongs to an allowed type in VRML
and MPEG-4 scene graphs. An internal node is constructed using the containment relation, as shown in
Figure 2.

4.2.2 Examples of wrapped image content

Figure 7 shows an aerial image, the segments produced by the NETRA [20] segmentation procedure on the
image, and an enlarged portion of the segment boundaries respectively. This can be exported to the
mediator using a format presented by the following XML fragment.



<mix:image location= “url1” source= “USGS 7.5 minute quad” projection= “geographic”
georeference_units = “degrees”>
<date>1995</>
<mix:image:group>

<mix:image:children>
<mix:image:shape upperLeftX= “..” upperLeftY= “..” lowerRightX = “..” lowerRightY = “..”>

<mix:image:geometry> Pointset
<url>url2</>

</>
<mix:image:features>

<mix:image:texture>
<url>url3</>

</>
</>
<mix:image:shape> … </>

</mix:image:group>
</mix:image>

In our adaptation of the MPEG4/VRML node types into the mix:image tag family we have made some
changes to incorporate feature vectors, which are treated here like the appearance node type in standards
and adopted the modification that data can be placed inline as well as can be referenced through a URL.

5 Discussion

This paper presented an architecture and a logical schema for Web-based spatial information mediation
using XML. We have traced a sample query integrating imagery and GIS sources, through its evaluation at
the spatial mediator and dispatching to XML-wrapped geodata sources, where query fragments are
translated to the language of the source and executed.  We believe that, while a first step in the
development of scalable and extensible spatial data mediation systems, this exercise helped us elucidate
areas of complications which create the context for future research . These proposed research areas include:

• Development of rules and a cost model for selecting spatial data sources in the spatial mediator.
Metadata for each source will describe the source’s capabilities, such as size of data, data quality,
indexing, available format and projection conversion and alignment routines, the monetary price of
retrieving particular data, etc. This information will allow the mediator to estimate which sources need
to be queried, in what order, where the retrieved data fragments need to be assembled (i.e. which
source should be designated as a “collector” source), etc.

• Development of a general cost model for parsing, evaluating, and distributing queries, and for
assembling the results.

• Incorporation of physical integration (alignment) management capabilities in the architecture of the
mediator system, and in query planning at the mediator. An “intelligent” alignment mediator will
maintain a semantic graph of “alignable layers”. This graph will demonstrate, for example, that
linework from a soil map and a vegetation map, a vegetation map and a land use map, a coastline map
and a political boundaries map should closely align. By contrast, any alignment between a vegetation
boundaries and a road network, for example, will have lower alignment priorities, if any. Development
of such a semantic graph requires research into persistent landscape features that “show through’
multiple geographic layers, and may form the strongest links in the graph.

• Incorporation of data quality issues in the context of information mediation, in particular, inferring the
desired accuracy level of geodata sources based on the target query accuracy. The inferred expected
accuracy of sources will be used by the spatial mediator in query planning, and become a component
of the query cost model.

• Balancing the automated and manual procedures in the process of human interaction with the spatial
mediator system. This will be important when we need to put a human in the loop for performing
computations in mediated GIS systems.



• Supporting geographic analysis “workflow” as a sequence of spatial queries to the mediator system.
This will require preserving intermediate query results, in XML form, at some URLs, so that they can
be used as a source for subsequent queries.

• Scalability analysis of  the mediation of multiple GIS and imagery sources.
• Supporting alternative mechanisms to associate names with geographic objects. This will address the

problem that in general, there may be a many-to-many mapping between the names and geographic
objects
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