
FpML V1.0 b2

Financial Products Markup Language

Overview

FpML Working Draft 1.0 b2

Abstract
The Financial Product Markup Language (FpML) is a business information exchange standard for
electronic dealing and processing of Financial Derivative instruments. FpML is based on the
Extensible Markup Language (XML) and initially focuses on Interest Rate Derivatives, FX Spot
and FX Derivative Products. FpML has been designed to be modular, easy to use and in particular,
intelligible to practitioners in the financial industry. This working draft is presented in three parts:
(1) Overview, (2) DTDs and associated information components, and (3) Corresponding reference
FpML for a representative set of Financial instruments in Interest Rate and FX markets. The
overview includes business and design goals, the scope and architectural framework of FpML.

AUTHORS
J.P.Morgan:
Tayo Ibikunle, Keri Jackson, Axel Kramer, Colin McDonald, Ramesh Parmar, Bob Sieber

PricewaterhouseCoopers:
Waqar Ali, Philip J. Lee, Mahesh Panjwani

FpML V1.0 b2

Copyright © 1999 J.P. Morgan & Co. Incorporated and PricewaterhouseCoopers.
PricewaterhouseCoopers refers to the individual member firms of the world wide
PricewaterhouseCoopers organization. All rights reserved.

Financial Products Markup Language is subject to the Mozilla Public License
Version 1.0. The text of that license is reprinted in the Appendix.

FpML V1.0 b2

8/12/99 Page 3

Status of this document:

This is the FpML Working Draft for review by the FpML Technical and Standard Committees. It is a
draft document and may be updated, replaced, or made obsolete by other documents at any time. The
FpML Standards committee will not allow early implementation to constrain its ability to make changes
to this specification prior to final release. It is inappropriate to use the FpML working draft as reference
material or to cite it as other than "work in progress".

Acknowledgements:

J.P.Morgan:
Michael Ashworth, Lev Berlin, Sunil Biswas, Guy Gurden, Mahmood Hanif, Ross Hamilton, Oliver
Herzefeld, Mary Hurd, John O’Hara, Thorkild Juncker, Nigel Khakoo, Philippe Khuong-Huu, Kerry
LeClue, Mike Liberman, Stuart Marker, Benjamin McGill, Andrew Mead, Andy Miller, Gordon
Middleton, Chris Molanphy, Eun Ju Park, Nicola Pearce, Neil Penny, Heather Rice, Jeff Saltz, Keith
Salway, Ian Shectman, Oliver Stevens, Vlad Torgovnik, Ed Volkwein, Phil Weisberg

PricewaterhouseCoopers:
Aleksandr Barg, Chris Curt, Fred Fuchs, Norbert Gehrke, Adam Greissman, Ed Hoofnagle, Stacey Joyce,
Kwong Li, Tom Little, Sanjeev Midha, Andrew Price, Juan Pujadas, Lon McQuillin, Vijay Pant, Sam
Salameh, Doug Summa, Shyam Venkat

FpML V1.0 b2

8/12/99 Page 4

TABLE OF CONTENTS

1 INTRODUCTION.. 5

2 GOALS.. 6

2.1 BUSINESS GOALS ... 6
2.2 ARCHITECTURAL GOALS .. 6

3 CONTEXT.. 7

3.1 SCOPE .. 7
3.1.1 Interest Rate Market Derivatives .. 7
3.1.2 Foreign Exchange Products.. 8

3.2 BUSINESS SCENARIOS .. 8
3.2.1 Scenarios... 9
3.2.2 Tools and Services .. 12

3.3 FUTURE DIRECTIONS... ... 13
3.3.1 What is missing in v1.0b2 ... 13
3.3.2 Future Work .. 14

4 ARCHITECTURE ... 16

4.1 DRIVING FACTORS ... 16
4.1.1 High level Design Goals ... 16
4.1.2 Design Tradeoffs ... 17

4.2 CONCEPTUAL FRAMEWORK ... 18
4.3 APPROACH ... 19

4.3.1 Overview of Approach .. 19
4.3.2 Structure.. 21
4.3.3 Extensibility... 26

1 APPENDIX: FREQUENTLY ASKED QUESTIONS .. 27

2 APPENDIX: CONVENTIONS ... 35

3 APPENDIX: MODULARIZATION... 42

4 APPENDIX: MOZILLA PUBLIC LICENSE VERSION 1.0 ... 49

FpML V1.0 b2

8/12/99 Page 5

1 INTRODUCTION

Financial Product Markup Language, abbreviated FpML, is a new information exchange standard for
Internet-based electronic dealing and processing of financial instruments, initially focusing on interest
rate and foreign exchange derivative products. Based on XML (eXtensible Markup Language), the
emerging Internet standard for data sharing between applications, FpML enables Internet-based
integration of a range of services, from electronic trading and trade confirmations to risk and sensitivity
analysis of trade portfolios.

The highly conditional and time-dependent characteristics of derivative products have often required
complex processes and/or systems to support their pricing, trading, risk management, settlement and
confirmation. Over time people have become more adept at mastering the complexity of derivative
products in single proprietary, single business processing systems. However, there continues to be
considerable difficulty in determining the structure and content of what can be exchanged between
systems in order to support various forms of end-to-end processing of these products. FpML has been
defined to help manage such complexities.

By specifying the exact standard descriptions of financial derivative products, FpML will not only
facilitate the proper processing of these products within financial services firms, but will also open up
new business-to-business e-commerce opportunities for derivatives between such firms and their clients
and partners.

FpML provides the following advantages:

- Specifies derivatives information in a format that is readable to both computers and humans, and can

therefore be readily understood and interpreted by those familiar with the business and products.
- Enables the exchange of financial information between diverse sets of applications. This will also

help to streamline the information exchange within financial services firms, especially as they seek to
implement straight through processing of complex financial instruments.

- Leverages the innovation and standardization work from the Internet community, as XML is
continually advanced by the W3C and increasingly embraced by the technology vendors.

- Supports the globalization of financial markets and the cross-border flow of capital, as the internet
becomes an increasingly cost-effective and secure network for linking global business and financial
centers.

This overview document describes the business and architectural goals of FpML and sets a context for its
use including the scope, high-level business scenarios and the future direction. It also presents the
architecture of FpML. In total, there are three documents that comprise the FpML specification:
(1) Overview
(2) Document Type Definitions (DTD) and components
(3) Sample FpML

FpML V1.0 b2

8/12/99 Page 6

2 GOALS

2.1 Business Goals
On the business side, the goals of FpML are to enable changes related to many aspects of the derivatives
trading lifecycle including Pricing, Confirm Generation, Risk Management and Settlement. The confirm
process for Interest Rate Market products, which records the details of the transactions that dealers engage
in with their counterparties, is a key process which can benefit from electronic information exchange.
The current process is manually intensive and involves considerable fax and paper-based information
exchange between dealers and their counterparties. As volumes of derivatives such as Vanilla Swaps rise,
the inefficiencies of the Confirm process can become intractable for the dealers who have to maintain a
large headcount to support the process. An FpML-based version of the trade permits an efficient structure
for confirm processing, enabling electronic validation of the details of the trade.

The increasing pressure on profit margins for the vanilla products also require better efficiencies of client
service. FpML can make it easier for clients to check on the status of their transactions with dealers in a
standard manner, through intelligent query facilities provided by dealers. This client self service model
can reduce the number of low value calls that have to be handled by personnel, enabling them to perform
other, more value-added operations.

2.2 Architectural goals
A key goal of the FpML architecture is to ensure that the standard is independent of any underlying
transport, session or message protocol. Although FpML specifies the instrument, counterparty and trade
XML components, it does not require a specific message transmission. FpML should be able to be
integrated with other session level protocols (e.g. FIX) that may already have the necessary facilities for
guaranteed and/or reliable financial message delivery.

Another important goal of the architecture is that FpML be an extensible standard. It will allow the
addition of new financial products over time as well as support additional business services such as those
outlined in the previous section. FpML enables this extensibility via its use of building blocks of
financial information, from which complex financial instruments can be constructed.

The standard must specify the financial data in an intelligible manner so that people familiar with the
business can recognize the FpML for the various products. While such users may not be familiar with the
XML syntax, the elements and the structure of those elements should be evident. The semantics are not
contained within the FpML per se; however, the language and the structure should conform to the
semantics implied by the name of the product. This also allows a given financial product to be readily
distinguishable from another product.

FpML is positioned to take advantage of emerging advances in XML and avoid lock-in to the current
state of the art. An example of this is the use of namespaces to support modularity and reuse. This will
also facilitate the anticipated future move to schemas, which are expected to provide more capabilities
than DTDs in terms of expressing complex structures and validation rules. Details of the FpML
conventions, some of which were adopted to provide this flexibility, are given in an appendix.

FpML V1.0 b2

8/12/99 Page 7

3 CONTEXT

3.1 Scope
This draft of the FpML standard focuses on the instrument definitions for a subset of Interest Rate Market
Derivatives and Foreign Exchange spot and Derivative products along with the associated information
that is necessary in a Trade. This additional data includes Counterparty information, and Trade
Identification, as well as very limited market data for the FX products. This draft does not specify the set
of business events or transactions to which the Trade will be applied. The products included in this
working draft are detailed below.

3.1.1 Interest Rate Market Derivatives

Products
• Swap Product: This is a generic swap trade, which allows one or more swap streams in the trade.

Each swap stream can represent a fixed, a floating leg, or a more complex kind of stream.
• Vanilla Fixed Float: This is the Vanilla Swap Trade with exactly one fixed leg and exactly one

floating leg.
• Cancelable Swap Product: This represents an option on a swap that is already in existence. The

option allows one or both parties to cancel the swap once it has started. It models the exercise and
notification periods flexibly.

• Swaption Product: This also represents an option on a swap, but here the swap does not come into
existence until the user decides to exercise the option. Again, the exercise and notification dates are
modeled in a flexible manner.

• Cap/Floor Product: This represents a cap/floor stream versus a fixed stream.

Streams
• Vanilla Fixed Stream: This must have a fixed rate. It is vanilla and therefore does not include an

amortizing notional, or step up coupons for instance.
• Vanilla Floating Stream: This is identical to the Vanilla Fixed Stream except that it has a floating

rate.
• Swap Stream: This is a flexible stream, which allows many more features than either vanilla stream.

Both vanilla streams are restrictive versions of this stream. The swap stream models the following:
• Amortizing (accreting) notional
• Step up coupon
• Payment lag
• Stream can set in arrears or not
• Reset maturity can be different than the payment/accrual frequency
• Calculation period dates can be different than the payment dates which can be different than the

reset dates (even if frequency of all of these is the same)
• Floating strike
• Stubs; both implied and explicit

• Cap/Floor Stream: This stream allows us to flexibly model optionality. Each cap/floor stream
represents an option based on the reset rate set against an upper/lower limit for each caplet.

• Option Stream: This represents an option on an underlier, possibly with multiple notification and
exercise dates. This stream is used in the cancelable and swaption Products.

FpML V1.0 b2

8/12/99 Page 8

3.1.2 Foreign Exchange Products
• FX Spot: The exchange of two currency amounts at an agreed rate and date between two parties.

The settlement date is normally two business days after the trade date.
• FX Outright: The exchange of two currency amounts at an agreed rate and date between two parties.

The settlement date can be any date other than the market ‘FX Spot’ date.
• FX Swap: The exchange of two currency amounts at an agreed rate on two different dates between

two parties. The direction of payments changes on the second date.
• American FX Option: American option gives the option holder the right to buy or sell a given

notional during the life span of the option at a pre-determined exchange rate.
• European FX Option: European option gives the option holder the right to buy or sell a given

notional at maturity at a pre-determined exchange rate.
• Knock-out FX Option: These options have two strike rates: a conventional strike against which the

intrinsic value of the option is measured, and a Barrier strike. A knock-out option is automatically
cancelled if the underlying spot market moves through a pre-determined level or barrier.

• Knock-in FX Option: The buyer of a knock-in option, holds a dormant option with an agreed strike
and maturity that is only activated by the movement of spot through a fixed barrier strike. On
activation, the option becomes a conventional European option with the agreed strike and maturity.

• Double Knock-out FX Option: There are two barriers associated with this type of option. The option
becomes a European option provided that the spot rate has stayed between two barriers during the life
of the option.

• Binary FX Option: An American style binary (or one touch) option is an option that pays out when a
pre-defined level is touched or not during the option's life. Unlike standard options whose ultimate
payout varies depending upon final spot, the payout of a binary is stated at the outset. The initial
premium is paid at entry, like a standard option, and the payout is paid at expiry.

• Digital FX Option: A European style binary (or one touch) option is an option that pays out when a
pre-defined level is touched or not at option maturity. Unlike standard options whose ultimate payout
varies depending upon final spot, the payout of a binary is stated at the outset. The initial premium is
paid at entry, like a standard option, and the payout is paid at expiry.

• Binary Knock-out Option: Binary knock-out options combine the features of a binary option along
with those of a barrier option. A standard binary option payout depends on touching a pre-defined
spot level prior to expiration (American), or being at or beyond a pre-defined level at expiration
(Digital), regardless of the path taken. In contrast, a binary knock-out depends upon touching a
certain level without having touched a different level.

• Average Spot Rate Option (ASRO): An average spot rate option cash settles at expiry the difference
between a strike and an average spot rate. The averaging can take place over any defined window
and with any frequency desired.

• Time Trigger FX Option (TT): It is basically a sum of Digital Options that are only different in their
expiry date.

3.2 Business Scenarios

This section describes at a high level several possible business scenarios in which FpML could be
utilized. Note that these are only possible scenarios; they are not exhaustive by any means, nor are they
real in the sense that no implementation exists today that corresponds to any of these scenarios. They are
simply intended to give an idea of how the FpML standard might be used.

FpML V1.0 b2

8/12/99 Page 9

3.2.1 Scenarios
Since v1.0 beta of the standard described in this document covers the Client View of the trade, the
possible business scenarios are also described relative to the Client View, in particular focussing on the
confirmation process. A possible set of services could evolve around this confirmation process,
performing functionality described below, within the context of the particular scenarios.

The general scenario for confirmations is that a trade has been “done”; that is, the trade has been verbally
agreed to by two parties, over the phone. The next step is to produce a tangible confirmation that is
signed by both parties. Today, in the area of interest rate derivatives, this happens by describing the trade
with an ISDA confirm form, possibly referencing an ISDA master agreement, and faxing documents back
and forth until both parties are satisfied and sign the document. This is not a simple process due to the
complexity of the transactions in addition to the complexity of the agreement itself, even for relatively
simple vanilla swaps. Much human interaction in terms of checking the document (or documents),
following up with the other party to ensure that the necessary changes are put in place, and faxing back
and forth is necessary to carry out this confirmation process.

Following are three descriptions of possible scenarios for the confirmation process using FpML.

Scenario 1
The first scenario describes what might happen when each party produces an FpML document. In this
scenario, there is a central confirmation service to which both parties submit their FpML documents and
the service is responsible for matching the two and notifying each party of success or failure.

• Party XYZ and Party ABC independently produce FpML documents describing a Trade that has been

agreed to over the phone.
⇒ Both documents, according to the FpML specification, describe the Trade in the same way; that

is, they describe it from a neutral perspective. There is no need therefore, to do any translation
between the documents to describe it for XYZ versus ABC.

⇒ Both parties will have made use of a tool (see below) that takes the language in which their
system is written (e.g. Java, C, C++) and produces FpML.

• Both XYZ and ABC send their FpML document to a ‘Confirmation Service’.

⇒ There could be several scenarios, which dictate the technical details of how an FpML document
gets sent to another institution. FpML has been designed to be used independently of whatever
process is chosen. For example, a web server could sit in a central location and each party could
send the document to the web server, using http. Alternatively, CORBA could be utilized to do
the actual sending. In either case, issues such as security, guaranteeing the message gets to its
intended recipient, etc. need to be worked out. Those details will not be described here as there
are many issues that need to be addressed

⇒ Each party electronically signs the document they send.
⇒ The Confirmation Service will acknowledge that it received the documents.

• The Confirmation Service will attempt to match the two documents.
⇒ There are various rules that are implied right now and that would need to be made explicit by

such a service in order to carry out the matching. For instance, when there are two possible ways

FpML V1.0 b2

8/12/99 Page 10

of expressing the same concept within FpML, when is a match valid? This is up to the service.
Some services might perform exact element matching, others might employ semantic matching.
Therefore, even when two descriptions are semantically equivalent, they might not match. The
following are possible areas in which this is applicable:
v Vanilla fixed float swap expressed using the FpML for the generic Swap.
v Notional schedule that makes use of explicit dates on the one hand versus parametrically

describing them on the other.
⇒ How reference data is looked up needs to be resolved.
⇒ How the expression of parties is done needs to be resolved. Currently, the name describes the

party. It is possible to have slightly different names when the same party is actually meant by
both sides.

• A match occurs and the Confirmation Service notifies each party that the submitted trades match.

⇒ Details of the guarantee by the Service need to be defined. One possibility is that the Service
attaches its signature to the document in addition to the counterparties signatures’ and sends it
back to each party.

⇒ What the Service sends back represents a legal document describing the trade.

• If a match does not occur, the service needs to inform each party of the place where the mismatch
occurred. This ideally would be an exhaustive list, and so not stop at the first problem, but continue
through the rest of the documents.
⇒ Several possible scenarios could happen here in terms of only one party making changes, both

parties making convergent changes, or possibly one party making changes that cause another
mismatch to occur.
v One party makes changes which now match with the original version of the other party.

Since the version is part of the document that gets sent back by the Confirmation Service
indicating a match, this is not a problem (again, the caveat of versioning still needs to be
worked out holds).

v Both parties make convergent changes, a match occurs, and again the Service notifies both
parties of the match and indicates which versions match.

v One possibility is that after a match occurs, one party submits a later document which does
not match (e.g. the match and the additional version criss-cross in the ether). Protocol would
need to be worked out with users of the service, but one possibility is that this is rejected and
if the party wants to initiate another change, an edit must be submitted.

Scenario 2
The second scenario describes what might happen when both parties produce an FpML document, but
there is no central confirmation service. Both parties are responsible for confirming the others’ FpML
and the trade is confirmed when both parties sign the others’ document. Many details are the same as in
the above scenario and are not repeated for scenario 2.

• Again, Party XYZ and Party ABC independently produce FpML documents describing a Trade that

has been agreed to over the phone. The details are the same as scenario 1.

• Both XYZ and ABC send their FpML document to the opposite party.

⇒ Again, the technical details of how an FpML document gets sent to another institution need to be
decided but in practice could be different here than in the above scenario.

⇒ Each party electronically signs the document they send.

FpML V1.0 b2

8/12/99 Page 11

• Independently, each party will make use of some service to verify that the FpML document received

from their counterparty describes the same Trade as the one described by their own FpML document.

• A match occurs if both parties notify the other that this particular version of the FpML document
matches.
⇒ This particular scenario may have slightly different implications for versioning; in any case, this

is an area that needs to be addressed.
⇒ Each party sends back a signed version of the FpML document; there should now be two copies

signed by both parties. Presumably, either or both would represent a legal document describing
the trade.

• If a match does not occur, again a list is produced by each of the mismatches.

⇒ Again, several possible scenarios could happen here in terms of only one party making changes,
both parties making convergent changes, or possibly one party making changes that cause another
mismatch to occur. Since this is a two way process with no “middleman service” these will
possibly converge earlier. In any case, eventually a match is reached and as in the previous step,
both parties sign the others’ document.

Scenario 3
The third scenario describes the case when only one party produces an FpML document, and the other
party signs the document when they are satisfied that it describes the trade according to their
understanding. Again, details that are the same as in the above scenarios are not repeated.

• Party XYZ and Party ABC agree to a Trade over the phone. Only Party XYZ produces an FpML

document.

• XYZ sends the FpML document to ABC.

⇒ XYZ electronically signs the document they send.
⇒ This could be sent either in the form of an FpML document or, using an XSL style sheet, in a

form more closely resembling the confirms used today.

• ABC either makes use of some service to verify that the FpML document received from XYZ

describes the trade to their satisfaction or alternatively, they could look at an English (or other natural
language) version and manually make that decision.

• A match occurs and ABC signs the document which has already been signed by XYZ.
⇒ Versioning in this scenario is simpler because it is a one way process.
⇒ ABC sends back a signed version of the FpML document to XYZ.

• If a match does not occur, the document is rejected, with a list of what doesn’t match.

⇒ Only XYZ makes changes to the document and sends a new signed version to ABC.
⇒ The above is repeated until ABC signs the document.

FpML V1.0 b2

8/12/99 Page 12

3.2.2 Tools and Services
As FpML develops to support a wide range of business activities, it is anticipated that there will be a
corresponding growth in the development of tools and services around FpML, both by vendors and
financial institutions. Having one standard will hopefully encourage competitive tools and services to be
implemented, allowing market participants to choose the best one. For instance, some kind of validation
tool that incorporates some of the simpler syntactic rules would be very useful and would centralize some
of the work that would otherwise need to be done by individual applications. This could be invoked by
an application prior to doing anything else, or alternatively, prior to sending an FpML document to an
application, the document could be run through this validator tool, thereby preventing sending the
document in the first place if it is not valid. In sum, this kind of tool would not try to encode any complex
semantic rules. It would focus on the kinds of validation that currently occur in sophisticated user
interfaces.

In part, as mentioned elsewhere in this document, the need for such a tool arises due to the limitations on
the amount and kinds of validation that can be done purely by a parser in conjunction with the DTDs.
Even with Schemas however, this tool could conceivably be quite useful by offering validation beyond
the level enabled by schemas. It would embody rules such as “effectiveDate must be before
terminationDate”. It could also ensure that references were valid, and that in the places where FpML
assumes that the values of two tags are equal (for instance several occurrences of date), that is indeed the
case. For example, in the simple vanilla fixed float swap, the effective and termination dates in the two
streams are assumed to be the same, even though they are described twice, in the context of each stream.

The above description of a validation tool implies that the rules that this tool (or competing tools
developed by multiple organizations) encompasses are described somewhere in the FpML specification,
or possibly in an ancillary, but still central place that everyone can access. In other words, it must be
possible to determine exactly what being ‘FpML compliant’ means with regard to such rules. Currently,
these rules have not been made explicit; they need to be prior to v1.0. It will no doubt be the case though
that these rules, as well as the core standard itself, do not get fleshed out completely until the development
of various tools and applications transpires.

On the next level, services can be developed either by vendors or within financial institutions. If
developed by vendors these would require some input from the dealers that will make use of them.

FpML V1.0 b2

8/12/99 Page 13

3.3 Future Directions

This section describes what still needs to be done within FpML, broken down into two major sub-
sections. The first presents what needs to be done before version 1.0 is complete (i.e. non-beta); that is,
what is necessary to complete before FpML gets used in a real implementation. These are either issues
that were not completely solved for v1.0b2 or subjects that we felt were better addressed by working
groups, which could draw on expertise from other market participants as well as vendors and service
providers. The second describes future work, which is basically the direction in which we see FpML
heading. The latter will be addressed in a manner which is consistent with the priorities as defined by the
steering committee.

3.3.1 What is missing in v1.0b2

1. Business Event Transactions

A working group from the technical committee will be assigned to look at this. These would include
events such as a new trade, an exercise event, or an unwind. Because of events such as edits, this will
encompass related issues such as history (what is necessary to keep around from one version of a
trade to the next), identifying changes, trade versioning, etc.

2. Validation

Ideally as much validation as possible should be done upfront, that is, within the DTDs (for the first
release, schemas when we switch to them). However, DTDs can only handle a limited amount of
validation and there will therefore need to be some at the application level. This could either happen
within each application or possibly within a tool, which is invoked by applications. The rules that the
applications or tools must follow to be "FpML compliant" need to be defined somewhere.

3. Matching
In various places within FpML, there are different representations for equivalent structures, both at a
high level (e.g. vanilla fixed float vs. general swap) as well as the lower level (e.g. different date
structures). Where these occur, rules need to be defined which dictate how translation between them
should be done. Alternatively, in certain cases, it may be that the rule states that two structures only
match if they are identical, not equivalent.

4. References within the FpML

Exactly how references will be represented and used needs to be decided. Questions such as, should
xptr be used? Should the use of forward references be restricted? Currently we represent references
by name, but a more formalized approach needs to be defined.

5. Reference Data
Exactly how reference data will be utilized needs to be made explicit. For instance, referring to ISO
codes that are accessible to everyone by name should be acceptable. However, other cases, for
instance counterparty names, are not so straightforward.

6. Framework for interacting with other standards

FpML will concentrate on defining the instrument and product definitions for Derivatives. Other
standards exist that address other products, such as FIX for equities. A framework needs to be
defined that will allow interaction with other standards, utilizing namespaces and other concepts
within FpML.

FpML V1.0 b2

8/12/99 Page 14

7. Fees

These are currently missing from v1.0b and need to be added.

8. Compounding

Again, this needs to be added.

9. Versioning of DTDs
As FpML is extended, and later versions are produced, some mechanism for doing source control for
the DTDs and a process whereby various parties can ensure that they are using compatible versions
needs to be established.

3.3.2 Future Work

1. Product Coverage

The products that are covered by FpML will be expanded to include other derivative products. The
scope will include additional Interest Rate and FX Derivatives, as well as other areas such as Credit
Derivatives and possibly Equity Derivatives. Our focus is strongly on Derivatives, and does not
include plans for other markets such as equities.

2. Views

The first release of FpML is a description of the ‘Client View’. Other Views will be added in the
future, such as the ‘Risk Management’ view. Also, work to define Views explicitly within FpML
needs to be done. The related idea of being able to add proprietary data needs to be addressed as
well.

3. Market Data

Market Data is only touched on for the first release, specifically in the area of implied volatility for
some of the FX products. The FX instruments also require data in an area that sits between an
instrument definition and market data proper. That subset is defined in FpML to be outside the
product but within the trade. However, the area of market data in general is a very large issue that is
not fully represented in v1.0b2 by any means and will be addressed in the future.

4. Technical work

The W3C efforts on XML Schemas are expected to have a considerable influence on the evolution of
FpML. A standard schema-based approach for capturing the structure and allowed values will be of
considerable benefit to FpML. With schema support, it will become easier for technology vendors to
provide off-the-shelf tools for validating FpML.

Digital signatures will be important for authenticating XML documents as part of e-commerce and
business-to-business commerce dealing. FpML will take advantage of this capability once the
signature work has become standard.

The FpML Standards group will work closely with other standards groups to develop full session-
level capabilities on which FpML can be exchanged.

FpML V1.0 b2

8/12/99 Page 15

While the first version of this standard focuses on Interest Rate Market and FX Derivatives, going
forward, FpML will support other classes of derivative products such as Credit Derivatives and
Equity Derivatives.

FpML V1.0 b2

8/12/99 Page 16

4 ARCHITECTURE
This chapter describes the architecture behind FpML and it is divided into three sections. The first
section describes the key factors driving the design of FpML and the resulting design principles. The
second section gives a brief overview of the conceptual framework. The third section describes in detail
the concrete approach that was taken.

4.1 Driving Factors
From an architectural point of view, the determining factors driving the design of FpML are three-fold:
the quest for standardization in the financial derivatives domain, the need to de-couple systems in order to
leverage a common service infrastructure, and the desire to exploit business opportunities enabled through
Internet based new technologies.

Up to now most communication between financial parties in the derivatives domain has been done via
phone and fax. This has made the further processing of trades and trade related information into the
information systems of each party a manual process of data entry and data comparison. FpML must
facilitate that process in electronic form.

If financial institutions have straight-through processing systems in place they typically consist of a
number of different applications that exchange data in various ways, including flat files, shared databases,
publish/subscribe mechanisms, RPC, and CORBA. FpML should provide a language and system
independent way to express the relevant financial data de-coupled from the particular processing required.

The Internet has already had a big impact on the financial retail market, reducing the transactional friction
between consumers and financial institutions and enabling new kinds of services that were either non-
existent beforehand or very expensive. It is clear that the Internet will have a similar impact on the
wholesale financial market, and FpML is the vehicle in the derivatives domain to open those
opportunities. This requires that FpML fits well in the realm of existing and new internet technologies.

4.1.1 High level Design Goals
The design goals behind FpML can be categorized into four areas: financial, structural, processing, and
evolution. The following lists the goals within each section.

Financial
♦ Capture the interest rate and foreign exchange derivatives domain
♦ Support front, mid, and back office activities
♦ Be useful between parties and within one institution
♦ Use business terminology

Structural
♦ Reuse common components
♦ Create coarse, orthogonal, components
♦ Embed and be Embedded
♦ Divide trade element into orthogonal components
♦ Allow proprietary data for internal usage
♦ Dynamic trade related data

FpML V1.0 b2

8/12/99 Page 17

Processing
♦ Be transport independent
♦ Be programming language independent
♦ Enable web and internal processing
♦ Enable data validation
♦ Minimize leap of faith for adopting existing systems
♦ De-couple data from API’s

Evolution
♦ Plan for evolution of Internet standards
♦ Use consistent conventions
♦ Plan for evolution of financial domain
♦ Push standard out early and revise with others

4.1.2 Design Tradeoffs
In order to focus the development process surrounding FpML and in order to resolve some conflicting
design goals design tradeoffs were made. The main ones are listed and explained in this section.
Additional background information on such tradeoffs can be found in section 1.

Validation
There are various ways to validate XML documents. FpML uses validation facilities of DTDs as much as
possible, with a view that more sophisticated features will be available once schemata languages are
standardized. There will always be degrees of validation that can only be done on an application level.
For FpML that currently is true for referential integrity and combinations of dependent element values
(e.g. start date less than end date).

One possibility could have been not to use DTDs at all and jump directly on one of the current schemata
proposals, but since these are not stable enough yet, this was rejected. Instead, a tool, which can later
convert to a schema language easily was utilized. Total proprietary application level validation was
rejected because it is too far from the main-stream of technology right now and would present acceptance,
evolution and deployment problems.

Signatures could be combined with validation, so that coarse elements get signed after they have been
semantically validated. Future users of those elements only need to check the signature. This is an
interesting option and might still be utilized.

Element composition
FpML elements are decomposed into two kinds: small components that are reused everywhere and
coarser components that describe more complex financial concepts. Processing services are written in
terms of those coarse components.

The approach of using one big component per product or trade was rejected. Such a component would
capture all relevant information in one unit. This was decided against because it does not allow for
thinning down the data for processing services that do not need all the information.
The idea that coarse components can be enriched over time was also rejected because the idea of signing
components was appealing (and that is not sensible if they change over time). In addition, making the
processing as “type-safe” as possible was seen as advantageous.

FpML V1.0 b2

8/12/99 Page 18

Element structure
A component-based element structure instead of a flat parameter structure is used in FpML. Experience
with existing systems has shown that flat parameter structures can yield to incomprehensible data for
complex instruments. Although some of the conciseness of a flat approach for simple instruments was
sacrificed, the extensibility the component based approach offers for complex instruments outweighs this.

Instrument representation
FpML uses strongly typed components that have well defined plug-and-play behavior.

4.2 Conceptual Framework
FpML is based on a framework that enables the goals mentioned above. In generic terms, the main idea
is the use of coarse data components and data envelopes to represent descriptions of relevant data.

As described above, in the domains of derivatives and foreign exchange, this includes data associated
with the ownership / exchange of a product. For instance the counterparties, settlement instructions, fees,
and terms, as well as other data that is required for particular kinds of processing (e.g. market data and
pricing parameters). Data elements defined in the standard are generally applicable and not specific to the
usage and requirements of particular organizations.

Separating the data into coarse data components means that instead of creating a flat data representation
of all the data available in the derivatives domain, the data is factored into different components. Each of
those components serves a particular semantic aspect. These components are meant to be as orthogonal
as possible. Some of the components might be immutable once they exist, and they can be signed
separately. Examples for such components are counterparty information, trade identification, product,
fees, and settlement information.

Data envelopes are a means of embedding the coarse data components into a structure that denotes a
whole. The data components inside an envelope might have to refer to the content of other data
components within the same envelope. For example, the product description for a trade refers to elements
within the party information for that trade.

Data envelopes can be seen as configured for a particular processing service. Such configuration is called
a view. A view identifies the minimal set of coarse data elements that need to be present in a data
envelope. An example of this is the trade element. Not all kind of processing requires all the data
possible in a trade element. For instance, a confirm service might only require tradeID, product and party
information. Yet, the standard ideally describes all coarse data elements that could be inside a trade. The
processing service will work in conjunction with a particular configuration. That is, it will require a given
set of data elements in order for the processing to be performed (it might also describe which new
elements are produced, if any).

FpML V1.0 b2

8/12/99

The figure exemplifies this
components. Two services

FpML explicitly does NOT
processing like pricing, mat

The initial version of FpML
the data required in the clie
to. A future version of FpM
risk management, settlemen

Any standard evolving in th
services available to the pub
order to preserve competitiv
framework of FpML, helps
exchanged among organiza
diverse set of requirements.
information, there is enough
additional proprietary inform

The same flexibility holds f
their proprietary software, p
services with FpML while k
elements will be rich enoug

4.3 Approach
This section describes in mo

4.3.1 Overview of App

FpML has taken the approa
concern at a time. This has
objects and the cohesive gro

Data Envelope (Some Trade)

A B C D
Data
concept. The
process the sa

 state how the
ching, or conf

 will cover on
nt view which
L might descr
t, portfolio ma

e financial ind
lic or selected
e advantage.
manage this te
tions or used w
 At the same t
 flexibility pr
ation with tra

or the processi
otentially enri
eeping their p
h to create a m

re detail the a

roach

ch of breaking
been done alon
uping of thos

Service
Data

data envelope
me trade, but m

processing of
irm generation

ly a small slice
represents the
ibe data relate
nagement, ma

ustry has to m
 clients or ma
The extensibil
nsion. The da
ithin systems
ime, using the
ovided in FpM
de informatio

ng. Organizat
ching it by add
rocessing prop
arket for softw

pproach we ha

 various piece
g two dimens

e objects. Thi

 X
Data
describing som
ake use of di

those data elem
.

 of the possib
 commercial te
d to other kind
rket data.

anage the tens
king other data
ity permitted t
ta elements de
of one organiz
 concept of th
L to allow org
n.

ions can use s
itional proprie
rietary. At th
are componen

ve taken in de

s down in orde
ions: the redu
s idea of what

Service Y
Data
Page 19

e trade contains four data
fference data components.

ents is to be done. This applies to

le data elements one could define:
rms of the trade both parties agree
s of processing of derivatives, e.g.

ion between making data and
 and services remain proprietary in
hrough the data and processing
fined in the standard can be
ation and are rich enough to serve a
e trade as an envelope of
anizations to use and associate

tandard FpML data elements within
tary data elements. They can offer

e same time the standard data
t developers.

fining the FpML standard.

r to concentrate on one area of
ction of the whole into various
concrete structure is optimal,

FpML V1.0 b2

8/12/99 Page 20

including the issue of granularity, is an important one within FpML. Central to the approach is the idea of
a ’View’. This encompasses two primary thoughts: firstly, that explicitly describing an entity with respect
to a particular business purpose is important, and secondly that it is not simply the entities themselves that
need to be considered, but also the relationships that they share. Finally, as is evident from the language
used, concepts from the Object Oriented (OO) world have influenced the approach taken in FpML.

For the first release, FpML focuses on the instrument definitions for a subset of Interest Rate Derivatives
and Foreign Exchange products and Derivatives. This encompasses a wide range of information.
Structuring that information in a way that facilitates the FpML standard being used by applications to
perform the processing that they need on those instruments was an integral part of the approach. It should
therefore be clear what business process, or set of processes, are enabled from a given FpML document.
Just as importantly, it should be apparent that the FpML definitions are correct and complete (or
conversely, highlight any gaps), in order to ensure that the FpML standard is accepted by the community.
The information that is represented is complex, and it is necessary to associate some amount of structure
with the data in order to accomplish this.

Therefore, incorporated into FpML is a significant level of inherent structure that is not necessarily what
one might expect from a ’data’ representation. It is useful to consider concepts from the object world, in
order to represent the data in a way that conveys more information than the sum of its parts. The OO
community has successfully illustrated that objects play a useful role in this arena, and various concepts
in FpML, from the naming conventions, to the structural representations reflect this. The level of
composition shapes the way one thinks about these entities and will facilitate not only the acceptance of
the FpML standard but also its use going forward. In the next section, descriptions of the integral
structures that are incorporated into FpML, as well as more detail about Views, are given.

FpML V1.0 b2

8/12/99 Page 21

4.3.2 Structure

Trade
Trade is the top level object just under FpML, and is the entity that holds the various pieces of
information, as this seemed an intuitive level to talk about information being exchanged between financial
institutions. In sum, a Trade is an agreement between two or more parties to exchange some financial
instrument(s) and to convey whatever information is necessary in order to carry out that exchange.
Focussing on particular aspects of a Trade at one time is beneficial, as it is a broad category and could
include many different kinds of things. Furthermore, explicitly differentiating between the various
characterizations that a Trade has, depending on the business purpose for which it is being used, is
advantageous. Finally, capturing all the different parts of a Trade is not sufficient; it is also necessary to
convey something about the relationship that the constituent parts have. These lead to two important
features of the FpML Trade definitions: the association of a Trade with a View, and the specific structure
of a Trade.

View
In order to incorporate the ideas above, a Trade is associated with the concept of a View, which
encompasses the idea of a Trade existing for a specific business purpose or activity (or set of activities).
The view imparts a particular context and therefore also implies something about the relationship between
the Trade’s constituent parts. Note that View is a conceptual entity; it is not explicitly modeled within
FpML. For release 1.0, the Trade definitions for one view only are included, namely, the Client View.
However, it may make sense as additional Views are incorporated, to explicitly include this concept as
part of the FpML definition.

Trade

Party

Product

Trade ID

Rate Adjustable
Period

Notional

Party

Rate

Product

Trade ID

Adjustab
le Notional

Date
Schedule

Pool of Components

FpML V1.0 b2

8/12/99 Page 22

Trades can have multiple Views altogether, each of which captures a specific intention and context for the
Trade. Within a given FpML document however, each Trade is associated with one and only one View.
In the first release of FpML, the Client View of a Trade is represented. The Client View represents the
information about a Trade exchanged between two financial institutions for a specific business purpose.
One particular business process that this View could be used for is Confirmation, although it is not
limited to that activity. While version 1.0 of FpML does not include other views, such as a Risk
Management View or a Pricing View, the approach is extensible by allowing additional information to be
added (through enrichment) as well as possible transformations of the information to take place. This will
be explained in more detail below after the other primary structural components are described.

An area that still needs work is that of business transactions. It was consciously decided not to represent
the business transaction as part of the first working draft release. This is a complex subject in its own
right and seems a probable subject for a working group of the technical committee. It is relevant to
mention here though because of the View concept, which specifically links a Trade with a business
activity or set of activities. For example, the initial View of a Trade is the Client View. One business
activity that the Client View enables is the Confirmation of a Trade. This involves exchanging FpML
between parties, and it is therefore necessary to include some transactional information in order to fully
define the confirm.1 This information is missing from the initial FpML definition. It is possible that this
area of the business transaction is where it makes sense to make explicit the concept of View within
FpML.

Core Trade Component
The constituent parts of a Trade are the next level of structure in terms of level of granularity; these are
referred to as Core Trade Components. Although the specifics of exactly what core Trade Components
will be included in a given Trade depend on the Trade View, the Core Trade Components are entities that
make sense in their own right, and are therefore rather coarse grained. It is important to note though, that

1 Note that what is meant here is different than the message protocol level information, which we are not defining,
nor do we intend to define as part of the FpML standard. We expect that various protocols will be used to transport
FpML and there is nothing within FpML that commits us to a specific one.

C
lien

t

R
isk m

an
ag

em
en

t

S
ettlem

en
t

Trade

FpML V1.0 b2

8/12/99 Page 23

an FpML document must contain a Trade which in turn will contain the core components; FpML
documents for Core Trade Components do not exist on their own. This does not mean that these
components will not be able to be reused across different contexts; this is in fact precisely what is
intended.

Because it implies a given business process or activities, the concept of a View is integral to determining
what core components belong to a trade and what their relationship is to one another. For the Client
View, the following Core Trade Components exist:
• Trade Identification: This component associates a transaction reference number for the trade for each

party. It is not necessary for each party to have the same reference number.
• Product: This component is the heart of the instrument definition and is explained in more detail

below.
• Party Organization: This component models the Counterparty information plus all the associated

information that conveys the hierarchical organization that financial and other institutions might have.

These core components can reference each other as a whole or they can reference internal components
within another core component. For example, both the Trade identification and the Product components
reference the Party component.

Product
This is the area where the differences between the Interest Rate Derivatives and Foreign Exchange
instruments appear, and is the area that represents the individual instruments within each domain. It is
therefore here that many of the complexities of the different instruments arise. This component captures
the economic details of the trade. Because of the complexity of the domain of instruments that FpML
addresses, composing these products from various building blocks is a key aspect of the approach.

Interest Rate Derivatives
There are several layers of building blocks within Product, the highest of which is the Stream for Interest
Rate Derivatives. This component represents the details that are required to calculate a set of cashflows.
Underneath the stream level are various other components, which will be described more in the
Components section. It is important to note though, that while a Stream can be taken wholesale and
reused somewhere else, the other components cannot be randomly combined.

The product represents the combination of Streams that exist for a given Trade. For some products there
is a specific combination of streams that must exist, and for others, any collection of streams is valid. This
difference in products has been incorporated in order to provide flexibility for the places where
complexity is required, yet to attempt to restrict the possibilities where the extra complexity is not
required. Therefore, FpML has a Vanilla Fixed Float Swap and a more generic Swap. The Vanilla Fixed
Float has exactly one Fixed stream and exactly one Floating stream. The generic Swap allows any
combination of Streams. This difference is important because the swap can get extremely complicated,
allowing various combinations of amortization schedules for the notional, payment lags, stubs with their
own way of calculating the rate, and many other features. The Vanilla Fixed Float on the other hand is
very restrictive. Partly because DTDs are limited in the amount of validation they allow, and partly
because of some of the design decisions, there is only a certain amount of validation that will be
performed at the DTD level. So, it is quite possible to have a valid FpML document that satisfies the
DTDs, but yet does not make sense from a financial point of view. It may be that the application cannot
in fact handle it, and will have to reject it. A fairly large amount of validation and checking will need to
be done in the applications that are using FpML (and perhaps in an FpML parser). The idea of a more

FpML V1.0 b2

8/12/99 Page 24

restrictive Vanilla Swap facilitates more upfront checking, where many more requirements in terms of the
specific structures and their relationships can be specified. It also has the benefit that not everyone will
be required to have an application which can handle the more complex swaps, but will still be able to
derive benefit from FpML. Clearly though, the Vanilla swap is not sufficient to handle all the
complexities that are possible to specify as part of the definition of the swap. Therefore, FpML has a
more generic one as well.

The generic swap can support many features, such as an amortizing or accreting notional, payment lags,
and initial and final stubs that have their own rate associated with them. There is a distinction between
functionality that can be handled by an additional ’feature’ within the swap and things that require an
additional kind of Stream or Product. Moreover, it is not always clear exactly on which side of the line
something falls. For instance, compounding could introduce a new stream, or it could be incorporated
into the generic swap. The latter seems to make the most sense. Averaging, on the other hand, makes
more sense to represent with a new Stream. The important point here is that depending on exactly what it
is, one could choose to handle it either way.2

There are some Products, such as the Cancelable and the Swaption that reuse existing Products. Each of
these is an option on an underlying swap. The swap in both cases is the generic Swap Product, which
therefore can contain any combination of streams. It is possible therefore to have an option on any kind
of Swap.

Foreign Exchange Products
In this first release, the Foreign Exchange (FX) product category covers Foreign Exchange trades (FX
Spot, FX Outright and FX Swap) and Options on Foreign Exchange (FXO) trades (European Option,
American Option, Binary Option, Barrier Options, Time Trigger Option, ASRO (Asian) Option.). As
many of the product types contain similar field groupings, component groupings were defined and are
used across different products.

For Foreign Exchange trades the first component below Product is the product type itself (such as
FXSwap), each of which implies certain components necessary to define the product. Although
components are shared across many of the products it is not possible to combine them ad-hoc to create a
new product because although the data may be valid within each component, it may not be valid across
components or the component grouping itself may not make sense.

The next level of component is FXLegTemplate. This component is common to all FX
Products; one template is used for FX Spot and FX Outrights, two are required for FXSwaps. This
component contains low level elements and other common components such as Amount and Rate. DTD
validation will check the data within each component; however, application logic will be needed to check
data across the components used by the FXSwap product.

Within FXO products, high level product groupings were defined (such as FXVanillaOption,
FXBarrierOption, and FXFixingOption) to group different products that shared the same basic parameter
definition and hence components. FXVanillaOption uses the FXOptionCore component to group the
parameters needed to define a basic American or European option. FXBarrierOption is used to define any
type of barrier option that has a standard option (American or European) as its pay out (such as Knock-In,
Knock-Out, Double Knock–Out, etc.). It contains the FXOptionCore and a container class containing any
number FXOptionBarrierCore components. FXFixingOption contains FXOptionCore and

2 We have not yet done either averaging or compounding and expect this to be an area of discussion going forward.

FpML V1.0 b2

8/12/99 Page 25

FXOptionFixings as main components. FXOptionFixings contains fixing reference information together
with either FXOptionFixingAARef for ASRO (Asian) style options or FXOptionFixingTTRef for Time
Trigger (TT) style options. Although ASROs and TT options are completely different products the
parameters used to define them are similar and hence can be grouped together in one component. The
OptionPremium component is common to all options, defining the parameters used to price the trade.

Forward Rate Agreements (FRA) Products

Since the parameters needed to define FRA products are based on a set of elements common to all FRA
trade types, the ForwardRateAgreementTemplate component is used for all FRA products. This template
component contains the FRACore component and optionally the AverageFRA component, which is only
used in defining Average FRAs. Within the FRACore component, the floating rate is defined within the
floatingRates collection. Normally only one floating rate is needed; however, two floating rates are
defined for interpolated FRAs.

Component
At the next level in the structural hierarchy are general Components. These in fact can be arbitrarily
nested, down to the point of primitive types. Components cannot randomly be combined and cannot be
thought of as existing in their own right; they only make sense in a given context and in relationship to
other components.

One set of components that figures prominently in FpML is the set in the Date namespace (see
Modularization section for details on namespaces). Several core ways of expressing Dates and Periods
are defined. These are divided into expressing the concept of a single Date or Period, and multiples of
each. The latter are indicated by attaching the suffix ’Schedule’. Moreover, absolute dates and dates that
are adjusted according to some business convention and set of business days are distinguished. Finally,
dates can be related to Periods by extracting a set of dates in a specified manner.

Other components that are defined include Rates, which encompass Fixed, Floating, and OptionReset (i.e.
a reset on which another component is contingent) rates.

Market Data

Market environment is an important high-level component in dealing with financial derivative products.
It is on the same level of granularity as Trade, and can be broadly classified into the following:

• Observable market indications for actively-traded financial instruments (i.e. treasury yields)
• Data derived from observable market indications (i.e. implied volatility)
• Financial instrument’s reference data (i.e. payment frequency)
• Pricing parameters

One cannot model pricing parameters without modeling other pieces of market data. However, it is more
interesting to model data derived from observable market indication than other data (say reference data)
as the data formats for them are relatively less standardized.

The first version of FpML defines only implied volatility for FX options. Future versions of FpML
would be expanded to other market data relevant to FX and IRM products.

FpML V1.0 b2

8/12/99 Page 26

Implied Volatility

It is envisioned that market data interaction would be based on request (query) / reply (result) paradigm.
User of the data would initiate a market data query and a market data processing engine would then
satisfy the query and send only the relevant piece of market data.

Currently, only the result set for implied volatility is modeled, and is organized per currency pair. With in
each currency pair, data is grouped based on term (or tenor). For each term, the volatility smile is shown
for various delta and put/call combination. The delta neutral (also known as ‘at-the-money volatility’) is
also shown.

4.3.3 Extensibility
This approach extends nicely. Various levels of structures (e.g. different levels of granularity) have been
defined in order to achieve reuse at these different levels. Together, they outline a way in which FpML
can be extended to handle additional products and business functions. In order to extend an existing
Trade (which implies that one is extending an existing View of that Trade), one could add more
components if it is discovered that something is missing or a new feature is required. An example of this
is when core business components are added to support business transactions.

To add a new view of a Trade, one would enrich an existing view. This can be done by adding new Core
Components. Alternatively, existing information could be transposed to a new representation in some
predefined way through the use for example of XSL. This handles the case for instance of the risk
management view needing essentially the same information, but organized in a different structure.

FpML has been defined in such a way that the extensions and translations that might be necessary in order
to achieve other views have been considered upfront. The representations of existing products and views
have been structured so they lend themselves to translation or enrichment.

FpML V1.0 b2

8/12/99 Page 27

1 APPENDIX: FREQUENTLY ASKED QUESTIONS

1.1 Introduction
This chapter presents some frequently asked questions (FAQ) on FpML and current answers. Some of
the questions point to issues that are still outstanding, others provide an explanation for design decisions
taken.

1.2 Focus

1.2.1 Why are there no messages defined?
The focus of FpML is on the basic data objects that particular kinds of processing require. FpML does
not specify how the processing is done, nor does it talk about how the data gets to the processing services.

In some areas message protocols for describing transport and transactions between systems/users exist
already and it is the hope that FpML descriptions will eventually be embedded in those. In other areas,
especially for Internet based applications and XML based application services, such standards are much
less developed. By not insisting on a particular protocol the standard enables and encourages more
experimentation and a larger potential usage of FpML.

Future versions of FpML might standardize aspects of processing once a shared view in the user
community develops on which ones those are.

1.2.2 Why Client View?
It is easier to define a standard for areas that many users agree on already. The Client View is something
that is not proprietary to a particular financial institution, it is exchanged in confirms and codified through
the ISDA agreement. Thus one hopes that there is less reason for conflict and a faster agreement on a
standard, than on other areas, e.g. the financial event structure, pricing results.

1.2.3 Is there a difference between Business Transactions and Protocol?
In the context of this document, protocol means how bits are moved from one system to another (HTTP,
CORBA, TCP/IP), and business transaction means the semantics and procedure related to the business
related interchange between parties (sell, unwind, buy). FpML does not standardize on a protocol.
Currently FpML does not include any standardization for business transactions, but it might in the future.

1.2.4 What is the relationship to other standards?
FpML is a standard driven by the financial industries with support from vendors. Although it does
compete conceptually with some vendor driven standards there is a strong desire to come to consensus on
a standard that is most beneficial to the financial industry. Some other standards, finance industry and
vendor driven ones, are more complementary, in that they focus on other kind of financial instruments, or
in that they focus on the business transactions between parties.

1.3 Conventions

1.3.1 Why are some element names in lower case and some in upper case?
An object oriented perspective benefits from a clear differentiation between classes and the state captured
by a class. XML, coming originally from the world of document markup, does not facilitate such a view

FpML V1.0 b2

8/12/99 Page 28

natively. FpML therefore uses naming conventions to make those distinctions clear. An upper case
element name always represents the name of a class. Lower case names always represent an instance
variable/fields.

1.3.2 Why CamelCase?
The camel case is a naming convention that originated with Smalltalk and was later used within Java,
JavaScript and VisualBasic. It has therefore quite some market share in the realm of naming conventions.

1.3.3 Why are collection elements wrapped in their own element?
The aim is to be as clear as possible about repeating elements, and the easiest way to accomplish this is to
wrap them in their own structure and not mix them up with elements that only have a single occurrence.
The same mechanism is used in many programming languages that allow the definition of data
records/types. Most will use an extra instance variable to point to a collection of objects (one of the
exceptions to this is LISP where the basic underlying structure is a list)

1.3.4 How are ID and IDREF used?
FpML currently does not use ID and IDREF. The main reason is that this would require names that are
unique for one document, and since there might be multiple trades in one document, those unique names
are not easy to come by. FpML favors a trade relative naming approach and is aiming to use Xpath once
it becomes stable. There is also a proposal on the table on how to redo naming and references, which is a
little more restrictive but more structured and would also eliminate the redundant data in documents right
now.

1.3.5 How are attributes used?
Currently attributes are only used for two purposes: (1) to represent typing meta-information, and (2) to
express naming. Even though initial versions of FpML made use of attributes for enumerated values that
was dropped in favor of a consistent element approach.

1.3.6 Why are there so many files for defining the DTD’s?
One of the goals is to provide a clear structure that allows definitions to be mostly independent of each
other. This is important for development, evolution, and maintenance reasons. DTDs’ might be sorted
into subdirectories later.

1.3.7 Where are the allowed combinations and values of elements documented?
This still needs to be done; it should be part of the element description for the first public release.

1.4 Structure

1.4.1 Why are the trade related data components so coarse?
One goal in the structuring of FpML has been to be able to factor the data components in suitable ways
for processing. In particular, it is a goal that a particular processing service can pick and choose the
minimal set of trade data components it requires for a task.

1.4.2 Why not have flat data structures?
Within FpML data is grouped together in a fashion that can be thought of as a class / instantiation of a
class. It also makes the relationship between data explicit where appropriate. Arbitrary nesting allows
capturing different levels of granularity regarding grouping entities together.

FpML V1.0 b2

8/12/99 Page 29

This approach generally results from an object background. XML is typically not used to serialize object
structures, but the benefits of doing that surpass the disadvantages of an unusual XML style.

1.4.3 Why isn’t there a notion of a deal?
In contrast to a portfolio, a deal expresses a number of trades that are entered into in one business
transaction. For now FpML avoids this issue, because it is close to the subject of business events. It
should be revisited for the first public release.

1.4.4 Why isn’t there a notion that products can be stand-alone?
It is clear that such a feature is desirable, but it raises the problem that one does want to have particular
values of such a product filled in. E.g. if one has an auction like service or an electronic offering of
products one probably wants to express that one can offer 5 year USD LIBOR swaps but leave particular
other values up to the buyer to define. FpML is currently missing a mechanism to express incomplete
products. A new reference proposal might help here. The issue needs to be revisited before the first
public release.

1.4.5 What is a view, and can one define an arbitrary one?
A view is a particular, required, collection of the information components contained in a trade. Typically
a view is processing service specific in that it is the subset of elements that must be in the Trade element
for a service to function properly. For example, one might have a matching service that needs the trade
ids, product, parties and fee elements in order to do a match, whereas a pricing service where clients can
store their portfolios might only need the trade ids. Currently there is no mechanism to express a view.
This issue should be revisited in the context of business events and processing before the first public
release.

1.4.6 How are multiple products in one trade modeled?
Such a facility does not exist right now, but a simple mechanism would be to create a CompositeProduct
that can include a list of products. This issue should be revisited before the first public release.

1.4.7 What is the difference between portfolio and generic transaction grouping?
The grouping and nesting of trades in portfolios, and the grouping and nesting of portfolios themselves is
done to structure one’s world of trades in appropriate ways for the purpose of communication and
processing. A trade might actually be in multiple such portfolios. When trades are grouped within a
business transaction it typically means the business transaction will fail if it fails for one of contained
trades. FpML currently does not model business events and a transactional grouping of trades should be
considered when business events are revisited.

1.4.8 Is there one and only one document for a trade?
No. There can be many documents that contain a particular trade. Furthermore, there might be
documents that do not contain all the available information for a trade. (Note, in FpML a trade is seen as
all available information associated with the ownership of a product). Sometimes the information that
makes up a trade is generated on the fly and sometimes the different information components might come
from multiple databases. This question relates to the view question above.

1.4.9 How can I add my proprietary data?
If the data you want to add is related to the ownership of a product, invent a new information component
and make it a sub-element of the Trade element. If it is independent of a product, invent a new

FpML V1.0 b2

8/12/99 Page 30

information component and make it a sub-element of the FpML element. Use namespaces to avoid name
clashes. Do not add new elements or attributes to other standard components.

1.4.10 How can I use my proprietary data?
For the particular processing service, define which data components are required (standard ones and
proprietary ones). As mentioned above, this subset of components is called a view (and currently FpML
does not have a formal mechanism to express this concept). When receiving FpML in the processing
service, validate that it conforms to that view. However, in order to converse with others in standard
FpML, you must construct views only from components that are defined in the standard.

1.4.11 Why are namespaces used?
Without namespaces all sub-elements end up in one global namespace. Coming from the object oriented
world the analogy is that all instance variable names are in one global namespace instead of being local to
the class hierarchy of the class they are defined in. Any time somebody in a development team makes a
local change, there is a potential with conflict with existing elements or concurrent local changes in
another area by another user. That is a current flaw with XML and DTDs and namespaces are used to
avoid this problem.

1.4.12 Aren’t elements declared many times?
Shared components are declared in their own namespaces, and the object-oriented approach allows
defining them only once, but making use of them in different contexts. For instance variables that have
the same name and are defined in multiple objects it might feel like a redefinition. Some of that is due to
the fact that they really are different, some of that is due to the fact that current DTDs’ cannot express
inheritance, and thus require the redefinition of elements, which would have been factored into common
super classes in an object-oriented data model.

1.4.13 Why Prefixing?
Prefixing achieves the advantage of namespaces with DTDs even though the existing DTD validation
mechanisms do not support namespaces. Once FpML moves to schemata the need for prefixing every
element goes away and one can use scoped namespace declarations instead. Documents that have been
created under the first, DTD based version continue to be valid documents when FpML moves to
schemata.

1.4.14 How are references from one data element to another done?
Currently this is done by name. Specifically, the element that is being referenced will have a name as an
attribute (e.g. name="bar"). This will then be the value the referencing element uses. In general, if the
value of an element foo can be expressed by a reference, there is an alternative element called
fooReference, which contains the reference name. This issue needs to be revisited for the first public
release. XPath, a shared proposal by the XSL and XPointer group of W3C is getting more stable and
could be used instead.

1.4.15 Why is Money an object in itself?
It is an object because it is an interesting semantic unit in the financial domain. In that sense it is similar
to Floating Rate and Fixed Rate. FpML opts for the structured approach and reifies those kind of objects
instead of folding them flattened into the object that contains them.

FpML V1.0 b2

8/12/99 Page 31

1.5 Processing

1.5.1 Where is validation done and how much is necessary?
There is a scale of choices with respect to the validation of XML documents. On the rigid spectrum one
uses all possible features of a DTD to do validation, on the other side, one gives up on DTDs because they
are so weak anyway, and does all validation in the application. FpML takes a middle ground. As much
validation with DTD’s is done as possible without having that force unnecessary burden on the
expressibility or consistency. Schemata languages will pick up some of the remaining validation issues,
(e.g. to check types and enumerations, which FpML does not represent as attributes), but there is a
requirement for doing validation in the application or a validation services (which could then sign the
information component, so no repeat validation would be necessary). The main areas of validation that
fall in that category are referential integrity of named and referred elements and the instrument specific
appropriate values of elements. The latter needs to be described with the element description before the
first public release.

1.5.2 How are signatures done?
This topic is a candidate for a working group in the technical committee. Currently FpML assumes
signing and the storage of signatures in an information component is independent of the components that
need to be signed.

1.5.3 Where are the business events?
This release does not define any business events. It does make some suggestions in the business scenario
section as to what business events might be interesting ones for a particular domain, but the standard itself
does not define them. It is assumed that their definition would make use of elements currently defined in
this standard as part of their data and that processing related working groups in the technical committee
will pick up this topic.

1.5.4 Should there be versions of a trade?
This issue is interesting and important for certain kind of processing but has been deferred to working
groups in the technical committee.

1.5.5 How does FpML provide access to the history of the data?
This issue is interesting and important for certain kind of processing but has been deferred to working
groups in the technical committee.

1.5.6 How does matching work if there are different ways of expressing the same
concept?

This question is applicable for the high level matching (e.g. vanilla fixed float vs. general swap) as well as
the lower level (e.g. different date structures). One possibility is to explicitly state which choice is being
used and if there is not agreement at that level, then there is no match. Another possibility is to have a
transformation from one to another. When translating from the simpler version to the more complex (e.g.
vanilla to more general), the transformation should be able to be completely specified. If the
transformation goes the other way, obviously it might not work (that is a non-vanilla swap might be the
input which would not in fact be able to be transformed). Matching also presents a problem when some
kind of algorithm is involved (e.g. dates and frequency). All parties must agree on the algorithm. If there
are discrepancies, this would be problematic.
The standard must define the rules to generate a normalized form that can be compared.

FpML V1.0 b2

8/12/99 Page 32

1.5.7 Can an FpML document serve as the prime record?
There are different opinions about this right now. In the end, this issue will be driven by business
needs/opportunities and the consensus of the technical committee.

1.5.8 Why isn’t the document expressed from one party’s point of view?
FpML uses a symmetrical document because that implies that the same document can be signed from
either party’s point of view. This means there is no ’owner’ concept for the document, although there may
be from a trade perspective.

1.5.9 How does FpML handle reference data?
There is a difference to how internal and external reference data should be handled: for external data it is
reasonable to provide some kind of reference. For internal data that not all parties will see, it is not,
except in proprietary data components.
Reference data that can be expressed with an international standard will be expressed in a notation, e.g.
currencies, ISDA-rate option names, business centers. Dates are expressed in the ISO standard.

1.5.10 How are defaults handled?
“Defaults are usually wrong”. FpML does not have any defaults in the standard. Applications can
provide user interface defaults when constructing FpML.

1.6 Interest Rate Derivatives

1.6.1 Why are there rigid instruments and flexible ones?
The Vanilla fixed float will cover a significant number of trades while still providing a simpler structure.
People will be able to understand the simpler structure more easily (e.g. only 10 things to look at instead
of 100). Systems will be able to be simpler if some clients only want to deal with the vanilla case.

1.6.2 Why aren’t there low-level components that can be plugged together for
arbitrarily complex products?

This is a complex enough topic that it probably warrants a white paper. From a business point of view it
scales better and makes processing for simple products easier, while still allowing the definition of more
complex products.

1.6.3 Is there an alternative to parametric information for date schedules?
There are provisions in the standard for replacing some parametric information by explicit information.
This has not been emphasized and used in the version of the document but it is facilitated by the object-
oriented approach taken.

1.7 Foreign Exchange Instruments

1.7.1 What market data is supported in this release of FpML?
This release of FpML supports the definition of exchange rates, and implied volatilities for FX Options.
• The exchange rate definition includes an optional direction specifying bid, ask, or mid.
• The implied volatility data is organized per currency pair with multiple tenors per currency pair.

The support for market data will be extended in the next release to include other data such as zero curves,
correlations, interest rates etc.

FpML V1.0 b2

8/12/99 Page 33

1.7.2 What is an FXLeg?
The FXLeg component is common to FX Spot, FX Outright and FX Swap products. It represents the
exchange of two currency amounts at a specified rate and date. Two FX Leg components are combined
to form an FX Swap trade where the same currencies are exchanged on two different dates. Application
logic will be used to determine whether the data contained within the two FX Leg components is
consistent.

1.7.3 Can templates be arbitrarily combined to create new products?
The FpML definition is hierarchical in nature. Products are built from pluggable components called
Templates. Various templates such as FXOptionTemplate, FXLegTemplate, FXBarrierTemplate,
FXBinaryTemplate are combined as required to define products. These templates cannot be arbitrarily
combined because products could be created which are not valid instruments.

1.7.4 How are the exchange rates expressed?
FX exchange rates can be expressed by specifying currency1, currency2, quote basis and the rate. The
quote basis provides context to the rate and can either be number of currency1 per unit of currency2 or
number of currency2 per unit of currency1.

1.7.5 What are FXCore and FXOptionCore and FRACore components?
Although these components are not meaningful in business terms, they represent a collection of fields that
are common amongst a set of related products. The ‘core’ components were created to collect a set of
common fields into one component that is reused as needed.

1.7.6 Why is ‘base currency’ omitted from the FXSpot, FXOutright and FXSwap and
included in FXOptions?

The ‘baseCurency’ element is used in FX Option instruments to indicate which of the two currencies is
regarded as the base currency for this FX trade. In conjunction with the FXRate and its term field, the
baseCcy indicates the market convention being used: American ('base per term' or 'base per risk') or
European ('term per base' or 'risk per base'). The 'baseCcy' must correspond to one of the two currencies
involved in the trade.

1.7.7 Why are multiple settlement dates allowed?
It is possible for the currencies of a foreign exchange transaction to be exchanged on different days,
however because this is a very rare occurrence normally one settlement date will be needed.

1.7.8 Why are fixings supplied together with fixing reference information?
The fixing reference information is recorded when the deal is executed before any fixings have occurred.
During the life of the trade, fixings are applied to the trade and can be sent along with the reference
information in order to determine risk or mark-to-market information, as the fixing rates must be
supplied.

1.7.9 From whose perspective is FpML defined (buyer or seller)?
The FpML definition is party neutral in the sense that element tags define trade components generically.
For instance, notional related information is defined using ccy1Amount or ccy2Amount and not
buyAmount or sellAmount.

FpML V1.0 b2

8/12/99 Page 34

It is possible that a trade information could be transferred multiple times between two parties before it
gets confirmed. The above concept eliminates any need to change the FpML to reflect a party’s
perspective.

1.7.10 Can multiple barriers be defined?
The FXBarrierCore component can be used to define single barrier products: Knock-in, Knock-out or
multiple barrier products, such as a Double Knock-out.

1.8 Party Component

1.8.1 Is this a complete set of Party information?
No. The approach has been to provide the information necessary to cover the current scope of FpML.
Release 1.0 contains only the information necessary to exchange data for trade confirmation and
settlement.

1.8.2 Does Party provide information for Risk and Exposure management?
Only to the extent that the information currently provided is used for this purpose. Supplemental
information will be added in subsequent releases to the current Party framework to support detailed risk
and exposure reporting, e.g. industry codes and country of assets.

1.8.3 Can payment instructions be provided by swap stream?
Not yet. While multiple payment instructions per currency can be provided into the Settlement
Instructions, the links between streams and payment instructions have not yet been provided.

1.8.4 Why does the Contact element have the Phone Number as a required
component?

In most contexts, the contact is an optional element. However, if it is defined, some information should be
provided so the person can be reached. The phone number is considered mandatory since the address is an
optional element and just providing the name was considered inadequate information to reach him/her.

FpML V1.0 b2

8/12/99 Page 35

2 APPENDIX: CONVENTIONS

2.1 Goals
This portion of the document describes the various syntactic conventions used in FpML that are common
to the family of FpML languages. Various aspects of element naming, element and metadata
representation, and structure are also covered. Each convention is described verbally and is illustrated
with an example, followed by a rationale. The appendix contains a more comprehensive example of the
conventions.

The following goals were established before standards and conventions were defined:

• Similar “look and feel” across FpML sub-domains
• Ease of maintenance FpML family of languages
• Ease of development in separate groups
• Plug-n-play of objects to drive functionality
• Extensibility of standard in subsequent releases
• Development path towards schemata/namespaces
• Facilitate application level validation and, in subsequent releases, schema validation

2.2 Conventions

2.2.1 Prefix element names
Elements with same name could carry different meaning based on the context. To avoid name collisions,
all element names in FpML are prefixed with the “module” it is defined under. For instance, an element
position in FXOption context would be named as FXOption:position. For a detailed discussion, refer to
the section titled “FpML Modularization Proposal” (Appendix 3 on page 42).

Rationale:
• Avoid element name collision
• Prepare for namespace support
• Prepare for schemata
• Enable distributed development

2.2.2 Use Camel Case naming notation
Element names that contain multiple words, should have the each word capitalized. This is known as
“camel case” notation. An exception to this convention is made for element names that contain an
abbreviated word(s) in which case the abbreviated letters are in upper case.

The above notation is used to name all FpML element names. Other special delimiting characters (like
‘_’, ‘-‘, ‘.’) are not used.

FpML V1.0 b2

8/12/99 Page 36

Do
<FXOptionData>
<position>buy</position>
<callAmount>
<Money>
<currency>USD</currency>
<amount>5000000</amount>
</Money>
</callAmount>
<!-- … -->
</FXOptionData>

Avoid
<FX-Option-Data>
<position>buy</position>
<call_Amount>
<Money>
<currency>USD</currency>
<amount>5000000</amount>
</Money>
</call_Amount>
<!-- … -->
</FX-Option-Data>

Rationale:
• Provide concise naming conventions in line with other naming conventions used on the internet and

programming languages (e.g. JavaScript, Java, BizTalk).

2.2.3 Use capitalized class names and lowercase instance variable names
If an element reflects a thing (an object, a class or a table name) the UpperCamelCase convention is used.
For a property, a reference etc, lowerCamelCase is used

In order to serialize an object in XML the class name of the object is used for the top-level element name
representing the object. The following describes the naming conventions.

Class names are in UpperCamelCase
Instance variables of a class are in lowerCamelCase

This leads to a very regular structure, in which upper case element names and lowercase element names
alternate. The only exception to this rule is reified collections, see section 3.6.

Do
<FXOptionData>
<position>buy</position>
<callAmount>
<Money>
<currency>USD</currency>
<amount>5000000</amount>
</Money>
</callAmount>

FpML V1.0 b2

8/12/99 Page 37

Do
<!-- … -->
</FXOptionData>

Avoid
<FXOptionData>
<Position>buy</Position>
<callAmount>
<money>
<Currency>USD</Currency>
<Amount>5000000</Amount>
</money>
</callAmount>
<!-- … -->
</FXOptionData>

Rationale:
• Provides clear identification of data as there is no positional dependency
• Provides a clear indication of compositional elements as it is always clear if an object or the state of

an object is described.

2.2.4 Use elements to represent data content
FpML uses clear distinction between the use of elements and attributes. Elements are used to always
represent data fields and attributes are used to represent element metadata.

Do
<FXOptionData>
<position>buy</position>
<callAmount>
<Money>
<currency>USD</currency>
<amount>5000000</amount>
</Money>
</callAmount>
<!-- … -->
</FXOptionData>

Avoid
<FXOptionData>
<position value=”buy”/>
<callAmount>
<Money currency=”USD”>5000000</Money>
</callAmount>
<!-- … -->
</FXOptionData>

Rationale:
• Using elements provide easier extensibility than attributes
• Complex structures cannot be modeled using attributes

FpML V1.0 b2

8/12/99 Page 38

2.2.5 Make non-primitive objects explicit
If the object pointed to by an instance variable is non-primitive, complex, or can take objects of different
types inheriting from the same super type, the nested object is made explicit.

Do
<ConditionalRate>
<condition>…</condition>
<rate><FixedRate>5.769</FixedRate></rate>
</ConditionalRate>

<ConditionalRate>
<condition>…</condition>
<rate>
<FloatingRate>
<isda-rate-option>USD-LIBOR-BBA</isda-rate-option>
<maturity><multiple>3</multiple><unit>M</unit></maturity>
</FloatingRate>
</rate>
</ConditionalRate>

Avoid
<ConditionalRate>
<condition>…</condition>
<rate>5.769</rate>
</ConditionalRate>

Rationale:
• Provides flexibility for modeling reusable structures
• Provides easier maintainability when a new specialization of a base class needs to be introduced.

Only the grammar specification need to be changed without impacting the XML data file
• Enables use of plug-n-play to plug in different components

2.2.6 Use nested form for collections of objects
Explicit nesting of sequences of similar objects. If different kind of collections could be provided, the
collection itself is made explicit. Note, the latter case leads to the only exception of the alternating upper
case, lower case element structure.

Do
<ObservationRate>
<rate>…</rate>
<strikes>
<Strike><date>1996-11-13</date><rate>7</rate></Strike>
<Strike><date>1997-05-13</date><rate>7</rate></Strike>
<Strike><date>1997-11-14</date><rate>7</rate></Strike>
</strikes>
</ObservationRate>

<ObservationRate>
<rate>…</rate>
<strikes>

FpML V1.0 b2

8/12/99 Page 39

Do
<SimpleStrikes>
<Strike><date>1996-11-13</date><rate>7</rate></Strike>
<Strike><date>1997-05-13</date><rate>7</rate></Strike>
<Strike><date>1997-11-14</date><rate>7</rate></Strike>
</SimpleStrikes>
</strikes>
</ObservationRate>

Avoid
<ObservationRate>
<rate>…</rate>
<Strike><date>1996-11-13</date><rate>7</rate></Strike>
<Strike><date>1997-05-13</date><rate>7</rate></Strike>
<Strike><date>1997-11-14</date><rate>7</rate></Strike>
</ObservationRate>

Rationale:
• Allows clear identification of repeatable elements.

2.2.7 Add data type information to elements
Each element may have multiple attributes to describe its metadata, which an application can then use to
perform validation.

The following conventions are used for defining attribute metadata. Note all attributes are optional
except e-dtype.

e-dtype
This attribute defines the element’s data type. It could either be a NOTATION or a datatype. FpML
currently uses following datatypes.

string content is a text string.
integer content is an integer number.
float content is a floating-point number.
number content is a number
boolean content is a boolean (true or false).
date content is a date.
datetime.tz content is a date and time with time zone

information.
time.tz content is a time with time zone information.
uuid content is an object id.

e-dsize
This captures element’s storage size. The following meaning is assigned to values of e-dsize:

e-dtype e-dsize Example
string Maximum number of characters 23
float Bytes (4 or 8) 4
number x.y 14.4

FpML V1.0 b2

8/12/99 Page 40

where
x = digits allowed to left of decimal
y = digits allowed to right of decimal

int Bytes (1, 2, 4 or 8) 8
e-dvalue
Attribute enumerates value(s) for an element. This could either be a list of space-separated values or a
NOTATION. The attribute type is a NOTATION when the content of the element being modeled is
provided by a well-known source (i.e. list of currencies is published by ISO).

e-dmin
attribute defines element’s minimum value

e-dmax
attribute defines element’s maximum value

Examples
For instance an element that represents a currency can be modeled using NOTATION as

<!NOTATION isoccy-4217 SYSTEM
“http://www.iso.ch/cate/d23132.html”>

<!ELEMENT currency (#PCDATA)>
<!ATTRLIST currency
e-dtype NMTOKEN #FIXED “string”
e-dsize NMTOKEN #FIXED “3”
e-dvalue NOTATION (isoccy-4217) #IMPLIED>

Further, an element that represents a put or call option indicator can be modelled as

<!ELEMENT putCall (#PCDATA)>
<!ATTRLIST putCall
e-dtype NMTOKEN #FIXED “string”
e-dsize NMTOKEN #FIXED “4”
e-dvalue NMTOKENS #FIXED “put call”>

2.2.8 Use known ISO standards for data formats

FpML uses ISO standards for element contents, where applicable. ISO currency and ISO date standards
are used to describe the contents of currency and date related fields.

2.2.9 Limit use of abbreviations

Do
<FXOptionData>
<position>buy</position>
<callAmount>
<currency>USD</currency>

FpML V1.0 b2

8/12/99 Page 41

Do
<amount>5000000</amount>
</callAmount>
…
</FXOptionData>

Avoid
<FXOD>
<pos>buy</pos>
<ca>
<ccy>USD</currency>
<amt>5000000</amount>
</ca>
…
</FXOD>

2.2.10 Use business centered names
Use of element names that make business sense.

Do Avoid
<CancellableSwap>
<optionOwner>Morgan</optionOwner>
<optionDate>1998-08-03</optionDate>
…
</CancellableSwap>

<CancellableSwap>
<by>Morgan</by>
<on>1998-08-03</on>
…
</CancellableSwap>

FpML V1.0 b2

8/12/99 Page 42

3 APPENDIX: MODULARIZATION
This section summarizes the modularization approach used in the design of FpML. The underlying goal is
to develop FpML using off-the-shelf validating parsers and DTDs for the initial release. It is anticipated
that DTDs are in the process of being phased out as being the standard means of XML structure definition
and validation. This is expected to change to XML schema after a schema standard has been accepted by
the W3C committee. The intent of this proposal is to minimize modifications to the XML (and hence the
applications) when this happened.

3.1 Objectives
The objectives of this modularization proposal are two fold:
(i) To provide a solution that will support structural validations with DTDs during the evolution of

the FpML standard and through its initial release.
(ii) To provide a smooth transition to schema and true namespace support once the standard have

been determined by the W3C committee and appropriate tools are available in the open market.

3.2 The approach
It is proposed that the colon (:) be used to prefix each element name with an abbreviated namespace-like
notation.

 The options available were to use the colon character ‘:’, or using the dot-notation. In both cases
validation using DTDs is possible. The colon notation was selected because it is anticipated that FpML
files will be upward compatible with namespaces & schemata approaches which will provide a smoother
transition from DTDs to schema at a later point in time.

3.2.1 Examples
The following three files illustrate this idea. Note, the content of these files is just for illustrating
purposes, and does not use FpML proper.

File fpml.dtd
<!ENTITY % urn-fpml-Trade PUBLIC "" "Trade.dtd">
%urn-fpml-Trade;

<!-- FpML -->
<!ELEMENT fpml:FpML (trade:Trade)*>
<!ATTLIST fpml:FpML
 xmlns:fpml CDATA #FIXED "urn:fpml"
 xmlns:trade CDATA #FIXED "urn:trade"
 >
File: trade.dtd
<!ELEMENT trade:Trade (trade:start, trade:end) >
<!ATTLIST trade:Trade
 xmlns:trade CDATA #FIXED "urn:trade">

<!ELEMENT trade:start (#PCDATA)>
<!ELEMENT trade:end (#PCDATA)>

FpML V1.0 b2

8/12/99 Page 43

File test.xml
<?xml version="1.0"?>
<!DOCTYPE fpml:FpML SYSTEM "fpml.dtd" >

<fpml:FpML xmlns:fpml="urn:fpml"
 xmlns:trade="urn:trade">

 <trade:Trade>
 <trade:start/>
 <trade:end/>
 </trade:Trade>

</fpml:FpML>

3.3 Proposed Namespaces
Namespace support is not provided by the validating parsers for DTDs currently available in the market.
However, the conventions proposed below would provide a mechanism to redefine elements relevant to
their context and also set the stage for a relatively smooth transition to using namespaces later.

Each element should be prefixed by an abbreviated namespace as described in the previous section.

Each DTD will include, as ENTITY references, the definitions of shared elements it depends on. (The
actual syntax for external reference will be slightly different as discussed on page 45).

3.3.1 Example
File: shared-fx.dtd
<!ELEMENT shared-fx:direction (buyer , seller)>

<!ELEMENT shared-fx:buyer (#PCDATA)>
<!ATTLIST shared-fx:buyer ccy CDATA #IMPLIED>

<!ELEMENT shared-fx:seller (#PCDATA)>
<!ATTLIST shared-fx:seller ccy CDATA #IMPLIED>

<!ELEMENT shared-fx:instrumentID (#PCDATA)>
…

File: FXLeg.dtd
<!ENTITY % shared-fx.dtd SYSTEM "shared-fx.dtd">
%shared-fx.dtd;

<!ELEMENT FXLeg (shared-fx:instrumentID , shared-fx:direction ,
 shared-fx:fxCore , fxleg:instrumentRates)>
<!ELEMENT fxleg:instrumentRates (fxRate+)>

File: Trade.dtd

FpML V1.0 b2

8/12/99 Page 44

<!ENTITY % TradeIDs.dtd PUBLIC "" "TradeIDs.dtd">
<!ENTITY % AccountDetails.dtd PUBLIC "" "AccountDetails.dtd">
<!ENTITY % FXLeg.dtd PUBLIC "" "FXLeg.dtd">
<!ENTITY % VanillaFixedFloat.dtd PUBLIC "" "VanillaFixedFloat.dtd">
<!ENTITY % CallableSwap.dtd PUBLIC "" "CallableSwap.dtd">
…

%TradeIDs.dtd;
%AccountDetails.dtd;
%FXLeg.dtd;
%VanillaFixeFloat.dtd;
…

<!ELEMENT Trade (trade:TradeID , accountDetails:AccountDetails ,
 (fxleg:FXLeg |
 vanillaFixedFloat:VanillaFixedFloat |
 callableSwap:CallableSwap |
…))>

3.4 Transition to Schemata
One of the objectives is to ensure a smooth transition to schemata as the technology evolves. DTDs are in
the process of being phased out but are the available and the supported standard at this time. This was a
major factor in the choice of the schema development tool by Extensibility Inc.

Extensibility Inc. has indicated its keenness to stay on top of the evolving schema standards and provide
support for the one(s) that rise above the crowd. In this regard, they have also indicated an intention to
provide support for the following:
v Expand their Export DTD to Schema functionality to support evolving standards
v Provide customized functionality to strip away prefixes from element names during the conversion

process if required.
v Define all DTDs as a namespace
v Allow a customizable prefix name

This may still require some hand or custom conversion effort, but this is expected to be minimal.

3.4.1 Upside
The advantages with this approach are:
v The standard can be defined with full structural validation using currently available technology and

have a charted plan for transitioning to the evolving standards.
v Have the potential of releasing DTDs as part of the standard and FpML files generated accordingly be

upwardly compatible with the schema approach.
v Have the ability to outsource the conversion process to a third party.
v Use inheritance typing mechanisms as soon as schemata provide them.

3.4.2 Downside
The disadvantages of using this approach are:
v Element names may become really long.
v Namespace prefixes would need to be abbreviated which would cause loss of readability
v The namespace names are fixed for any DTD validation.

FpML V1.0 b2

8/12/99 Page 45

3.4.3 Issues with the approach
Known issues with this approach are:
v Currently, the XML-Data reduced implementation mixes up namespaces and schema designation.

The namespace name is identical with the schema file name. This should not be a major issue
because the XML-Data reduced implementation is not a currently accepted standard. However, it has
been implemented in Internet Explorer 5.0’s XML parser and is one of few schema versions available
for parallel development and testing.

v Not all referenced DTDs will be included in a DTD because elements would be defined more than
once at the top levels, so it would be hard to write out a schema which has the correct namespaces in
it. The proposed solution is to set up a flagging mechanism which says that in stand-alone mode
certain DTDs have to be included. The downside of this approach is that DTDs appear more cryptic
and contain positional inclusion dependencies. (A more detailed explanation of the flagging approach
is provided below)

v XML-Authority currently defaults a namespace name when a DTD is exported into XML-Data
format. (minor issue)

v The FpML files parse in validating mode with IBM’s and Sun’s parsers, they do not open in IE5.0.
This issue can be investigated in parallel with defining the FpML language.

3.5 Modularization and duplicate ENTITY declarations

XML DTDs allow including and referencing external ENTITY declarations. However, multiple
inclusions are not permitted and flagged as errors. This will be an issue for FpML as represented by
figure I. As illustrated, Trade.dtd and FpML.dtd will contain duplicate declarations of the elements in
shared.dtd.

FpML V1.0 b2

8/12/99 Page 46

Figure 1

To resolve this issue, the FpML standard proposes to use the Conditional Sections as described in Section
3.4 of the XML Specification 1.0. This will be implemented as per the following mechanism:

If a file bar.dtd is included by foo.dtd. Another super dtd called foobar.dtd includes foo.dtd. In foo.dtd,
one would define a reference parameter entity (called BAR) to include bar.dtd. In foobar.dtd, one would
first include bar.dtd (the leaf level) and then define BAR to IGNORE and then include foo.dtd.

The trick is that the parser ignores/warns about duplication entity definition whereas it gives an error on
duplicate element definition. The following example illustrates the above:

<!-- bar.dtd -->
<!ELEMENT bar (#PCDATA)>

<!-- foo.dtd -->
<!ENTITY % BAR ’INCLUDE’>

<![%BAR;[
<!ENTITY % bar.dtd PUBLIC "" "bar.dtd">
%bar.dtd;
]]>

<!ELEMENT foo (bar)>

FpML.

Trade.dtd

IRSwap.dtFXSwap.dt

shared.

…

… …

…

refere

refere
refere

refere

FpML V1.0 b2

8/12/99 Page 47

<!-- foobar.dtd -->
<!ENTITY % bar.dtd PUBLIC "" "bar.dtd">
%bar.dtd;

<!ENTITY % BAR ’IGNORE’>
<!ENTITY % foo.dtd PUBLIC "" "foo.dtd">
%foo.dtd;

<!ELEMENT foobar (foo)>

<!-- foo.xml -->
<?xml version="1.0" standalone="no"?>

<!DOCTYPE foo SYSTEM "foo.dtd">
<foo>
 <bar>hello</bar>
</foo>

<!-- foobar.xml -->
<?xml version="1.0" standalone="no"?>

<!DOCTYPE foobar SYSTEM "foobar.dtd">
<foobar>
 <foo><bar>hello</bar></foo>
</foobar>

The advantage of this approach is that it provides a bridge over the issue until the FpML Standard is
converted from DTDs to schema (the issue will be moot under schema).

The downside is that this approach includes order dependency and the inclusion sections of the FpML
DTDs will seem less readable.

FpML V1.0 b2

8/12/99 Page 48

FpML V1.0 b2

8/12/99 Page 49

4 APPENDIX: MOZILLA PUBLIC LICENSE
VERSION 1.0

1. Definitions.

1.1. "Contributor" means each entity that creates or contributes to the creation of Modifications.

1.2. "Contributor Version" means the combination of the Original Code, prior
Modifications used by a Contributor, and the Modifications made by that particular
Contributor.

1.3. "Covered Code" means the Original Code or Modifications or the combination of
the Original Code and Modifications, in each case including portions thereof.

1.4. "Electronic Distribution Mechanism" means a mechanism generally accepted in
the software development community for the electronic transfer of data.

1.5. "Executable" means Covered Code in any form other than Source Code.

1.6. "Initial Developer" means the individual or entity identified as the Initial Developer
in the Source Code notice required by Exhibit A.

1.7. "Larger Work" means a work which combines Covered Code or portions thereof
with code not governed by the terms of this License.

1.8. "License" means this document.

1.9. "Modifications" means any addition to or deletion from the substance or structure
of either the Original Code or any previous Modifications. When Covered Code is
released as a series of files, a Modification is:

A. Any addition to or deletion from the contents of a file containing Original
Code or previous Modifications.

B. Any new file that contains any part of the Original Code or previous
Modifications.

1.10. "Original Code" means Source Code of computer software code which is
described in the Source Code notice required by Exhibit A as Original Code, and which,
at the time of its release under this License is not already Covered Code governed by this
License.

1.11. "Source Code" means the preferred form of the Covered Code for making
modifications to it, including all modules it contains, plus any associated interface
definition files, scripts used to control compilation and installation of an Executable, or a
list of source code differential comparisons against either the Original Code or another
well known, available Covered Code of the Contributor’s choice. The Source Code can be

FpML V1.0 b2

8/12/99 Page 50

in a compressed or archival form, provided the appropriate decompression or de-
archiving software is widely available for no charge.

1.12. "You" means an individual or a legal entity exercising rights under, and complying
with all of the terms of, this License or a future version of this License issued under
Section 6.1. For legal entities, "You" includes any entity which controls, is controlled by,
or is under common control with You. For purposes of this definition, "control" means
(a) the power, direct or indirect, to cause the direction or management of such entity,
whether by contract or otherwise, or (b) ownership of fifty percent (50%) or more of the
outstanding shares or beneficial ownership of such entity.

2. Source Code License.
2.1. The Initial Developer Grant.
The Initial Developer hereby grants You a world-wide, royalty-free, non-exclusive license,
subject to third party intellectual property claims:

(a) to use, reproduce, modify, display, perform, sublicense and distribute the
Original Code (or portions thereof) with or without Modifications, or as part of a
Larger Work; and

(b) under patents now or hereafter owned or controlled by Initial Developer, to
make, have made, use and sell ("Utilize") the Original Code (or portions thereof),
but solely to the extent that any such patent is reasonably necessary to enable You
to Utilize the Original Code (or portions thereof) and not to any greater extent that
may be necessary to Utilize further Modifications or combinations.

2.2. Contributor Grant.
Each Contributor hereby grants You a world-wide, royalty-free, non-exclusive license,
subject to third party intellectual property claims:

(a) to use, reproduce, modify, display, perform, sublicense and distribute the
Modifications created by such Contributor (or portions thereof) either on an
unmodified basis, with other Modifications, as Covered Code or as part of a
Larger Work; and

(b) under patents now or hereafter owned or controlled by Contributor, to Utilize
the Contributor Version (or portions thereof), but solely to the extent that any
such patent is reasonably necessary to enable You to Utilize the Contributor
Version (or portions thereof), and not to any greater extent that may be necessary
to Utilize further Modifications or combinations.

3. Distribution Obligations.
3.1. Application of License.
The Modifications which You create or to which You contribute are governed by the terms of this
License, including without limitation Section 2.2. The Source Code version of Covered Code may
be distributed only under the terms of this License or a future version of this License released
under Section 6.1, and You must include a copy of this License with every copy of the Source
Code You distribute. You may not offer or impose any terms on any Source Code version that
alters or restricts the applicable version of this License or the recipients’ rights hereunder.

FpML V1.0 b2

8/12/99 Page 51

However, You may include an additional document offering the additional rights described in
Section 3.5.

3.2. Availability of Source Code.
Any Modification which You create or to which You contribute must be made available
in Source Code form under the terms of this License either on the same media as an
Executable version or via an accepted Electronic Distribution Mechanism to anyone to
whom you made an Executable version available; and if made available via Electronic
Distribution Mechanism, must remain available for at least twelve (12) months after the
date it initially became available, or at least six (6) months after a subsequent version of
that particular Modification has been made available to such recipients. You are
responsible for ensuring that the Source Code version remains available even if the
Electronic Distribution Mechanism is maintained by a third party.

3.3. Description of Modifications.
You must cause all Covered Code to which you contribute to contain a file documenting
the changes You made to create that Covered Code and the date of any change. You must
include a prominent statement that the Modification is derived, directly or indirectly,
from Original Code provided by the Initial Developer and including the name of the
Initial Developer in (a) the Source Code, and (b) in any notice in an Executable version
or related documentation in which You describe the origin or ownership of the Covered
Code.

3.4. Intellectual Property Matters

(a) Third Party Claims.
If You have knowledge that a party claims an intellectual property right in
particular functionality or code (or its utilization under this License), you must
include a text file with the source code distribution titled "LEGAL" which
describes the claim and the party making the claim in sufficient detail that a
recipient will know whom to contact. If you obtain such knowledge after You
make Your Modification available as described in Section 3.2, You shall
promptly modify the LEGAL file in all copies You make available thereafter and
shall take other steps (such as notifying appropriate mailing lists or newsgroups)
reasonably calculated to inform those who received the Covered Code that new
knowledge has been obtained.

(b) Contributor APIs.
If Your Modification is an application programming interface and You own or
control patents which are reasonably necessary to implement that API, you must
also include this information in the LEGAL file.

3.5. Required Notices.
You must duplicate the notice in Exhibit A in each file of the Source Code, and this
License in any documentation for the Source Code, where You describe recipients’ rights
relating to Covered Code. If You created one or more Modification(s), You may add your
name as a Contributor to the notice described in Exhibit A. If it is not possible to put
such notice in a particular Source Code file due to its structure, then you must include

FpML V1.0 b2

8/12/99 Page 52

such notice in a location (such as a relevant directory file) where a user would be likely to
look for such a notice. You may choose to offer, and to charge a fee for, warranty,
support, indemnity or liability obligations to one or more recipients of Covered Code.
However, You may do so only on Your own behalf, and not on behalf of the Initial
Developer or any Contributor. You must make it absolutely clear than any such warranty,
support, indemnity or liability obligation is offered by You alone, and You hereby agree
to indemnify the Initial Developer and every Contributor for any liability incurred by the
Initial Developer or such Contributor as a result of warranty, support, indemnity or
liability terms You offer.

3.6. Distribution of Executable Versions.
You may distribute Covered Code in Executable form only if the requirements of Section
3.1-3.5 have been met for that Covered Code, and if You include a notice stating that the
Source Code version of the Covered Code is available under the terms of this License,
including a description of how and where You have fulfilled the obligations of Section
3.2. The notice must be conspicuously included in any notice in an Executable version,
related documentation or collateral in which You describe recipients’ rights relating to the
Covered Code. You may distribute the Executable version of Covered Code under a
license of Your choice, which may contain terms different from this License, provided
that You are in compliance with the terms of this License and that the license for the
Executable version does not attempt to limit or alter the recipient’s rights in the Source
Code version from the rights set forth in this License. If You distribute the Executable
version under a different license You must make it absolutely clear that any terms which
differ from this License are offered by You alone, not by the Initial Developer or any
Contributor. You hereby agree to indemnify the Initial Developer and every Contributor
for any liability incurred by the Initial Developer or such Contributor as a result of any
such terms You offer.

3.7. Larger Works.
You may create a Larger Work by combining Covered Code with other code not
governed by the terms of this License and distribute the Larger Work as a single product.
In such a case, You must make sure the requirements of this License are fulfilled for the
Covered Code.

4. Inability to Comply Due to Statute or Regulation.

If it is impossible for You to comply with any of the terms of this License with respect to
some or all of the Covered Code due to statute or regulation then You must: (a) comply
with the terms of this License to the maximum extent possible; and (b) describe the
limitations and the code they affect. Such description must be included in the LEGAL file
described in Section 3.4 and must be included with all distributions of the Source Code.
Except to the extent prohibited by statute or regulation, such description must be
sufficiently detailed for a recipient of ordinary skill to be able to understand it.

5. Application of this License.
This License applies to code to which the Initial Developer has attached the notice in Exhibit A,
and to related Covered Code.

6. Versions of the License.

FpML V1.0 b2

8/12/99 Page 53

6.1. New Versions.
Netscape Communications Corporation ("Netscape") may publish revised and/or new versions of
the License from time to time. Each version will be given a distinguishing version number.

6.2. Effect of New Versions.
Once Covered Code has been published under a particular version of the License, You
may always continue to use it under the terms of that version. You may also choose to
use such Covered Code under the terms of any subsequent version of the License
published by Netscape. No one other than Netscape has the right to modify the terms
applicable to Covered Code created under this License.

6.3. Derivative Works.
If you create or use a modified version of this License (which you may only do in order
to apply it to code which is not already Covered Code governed by this License), you
must (a) rename Your license so that the phrases "Mozilla", "MOZILLAPL", "MOZPL",
"Netscape", "NPL" or any confusingly similar phrase do not appear anywhere in your
license and (b) otherwise make it clear that your version of the license contains terms
which differ from the Mozilla Public License and Netscape Public License. (Filling in the
name of the Initial Developer, Original Code or Contributor in the notice described in
Exhibit A shall not of themselves be deemed to be modifications of this License.)

7. DISCLAIMER OF WARRANTY.
COVERED CODE IS PROVIDED UNDER THIS LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING, WITHOUT LIMITATION, WARRANTIES THAT THE COVERED CODE IS
FREE OF DEFECTS, MERCHANTABLE, FIT FOR A PARTICULAR PURPOSE OR NON-
INFRINGING. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE
COVERED CODE IS WITH YOU. SHOULD ANY COVERED CODE PROVE DEFECTIVE
IN ANY RESPECT, YOU (NOT THE INITIAL DEVELOPER OR ANY OTHER
CONTRIBUTOR) ASSUME THE COST OF ANY NECESSARY SERVICING, REPAIR OR
CORRECTION. THIS DISCLAIMER OF WARRANTY CONSTITUTES AN ESSENTIAL
PART OF THIS LICENSE. NO USE OF ANY COVERED CODE IS AUTHORIZED
HEREUNDER EXCEPT UNDER THIS DISCLAIMER.

8. TERMINATION.
This License and the rights granted hereunder will terminate automatically if You fail to comply
with terms herein and fail to cure such breach within 30 days of becoming aware of the breach.
All sublicenses to the Covered Code which are properly granted shall survive any termination of
this License. Provisions which, by their nature, must remain in effect beyond the termination of
this License shall survive.

9. LIMITATION OF LIABILITY.
UNDER NO CIRCUMSTANCES AND UNDER NO LEGAL THEORY, WHETHER TORT
(INCLUDING NEGLIGENCE), CONTRACT, OR OTHERWISE, SHALL THE INITIAL
DEVELOPER, ANY OTHER CONTRIBUTOR, OR ANY DISTRIBUTOR OF COVERED
CODE, OR ANY SUPPLIER OF ANY OF SUCH PARTIES, BE LIABLE TO YOU OR ANY
OTHER PERSON FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL
DAMAGES OF ANY CHARACTER INCLUDING, WITHOUT LIMITATION, DAMAGES
FOR LOSS OF GOODWILL, WORK STOPPAGE, COMPUTER FAILURE OR
MALFUNCTION, OR ANY AND ALL OTHER COMMERCIAL DAMAGES OR LOSSES,
EVEN IF SUCH PARTY SHALL HAVE BEEN INFORMED OF THE POSSIBILITY OF
SUCH DAMAGES. THIS LIMITATION OF LIABILITY SHALL NOT APPLY TO
LIABILITY FOR DEATH OR PERSONAL INJURY RESULTING FROM SUCH PARTY’S

FpML V1.0 b2

8/12/99 Page 54

NEGLIGENCE TO THE EXTENT APPLICABLE LAW PROHIBITS SUCH LIMITATION.
SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OR LIMITATION OF
INCIDENTAL OR CONSEQUENTIAL DAMAGES, SO THAT EXCLUSION AND
LIMITATION MAY NOT APPLY TO YOU.

10. U.S. GOVERNMENT END USERS.
The Covered Code is a "commercial item," as that term is defined in 48 C.F.R. 2.101 (Oct. 1995),
consisting of "commercial computer software" and "commercial computer software
documentation," as such terms are used in 48 C.F.R. 12.212 (Sept. 1995). Consistent with 48
C.F.R. 12.212 and 48 C.F.R. 227.7202-1 through 227.7202-4 (June 1995), all U.S. Government
End Users acquire Covered Code with only those rights set forth herein.

11. MISCELLANEOUS.
This License represents the complete agreement concerning subject matter hereof. If any
provision of this License is held to be unenforceable, such provision shall be reformed only to the
extent necessary to make it enforceable. This License shall be governed by California law
provisions (except to the extent applicable law, if any, provides otherwise), excluding its conflict-
of-law provisions. With respect to disputes in which at least one party is a citizen of, or an entity
chartered or registered to do business in, the United States of America: (a) unless otherwise
agreed in writing, all disputes relating to this License (excepting any dispute relating to
intellectual property rights) shall be subject to final and binding arbitration, with the losing party
paying all costs of arbitration; (b) any arbitration relating to this Agreement shall be held in Santa
Clara County, California, under the auspices of JAMS/EndDispute; and (c) any litigation relating
to this Agreement shall be subject to the jurisdiction of the Federal Courts of the Northern District
of California, with venue lying in Santa Clara County, California, with the losing party
responsible for costs, including without limitation, court costs and reasonable attorneys fees and
expenses. The application of the United Nations Convention on Contracts for the International
Sale of Goods is expressly excluded. Any law or regulation which provides that the language of a
contract shall be construed against the drafter shall not apply to this License.

12. RESPONSIBILITY FOR CLAIMS.
Except in cases where another Contributor has failed to comply with Section 3.4, You are
responsible for damages arising, directly or indirectly, out of Your utilization of rights under this
License, based on the number of copies of Covered Code you made available, the revenues you
received from utilizing such rights, and other relevant factors. You agree to work with affected
parties to distribute responsibility on an equitable basis.

EXHIBIT A.
"The contents of this file are subject to the Mozilla Public License Version 1.0 (the "License");
you may not use this file except in compliance with the License. You may obtain a copy of the
License at http://www.mozilla.org/MPL/

Software distributed under the License is distributed on an "AS IS" basis, WITHOUT
WARRANTY OF ANY KIND, either express or implied. See the License for the specific
language governing rights and limitations under the License.

The Initial Developer of the Original Code is PricewaterhouseCoopers in partnership
with JP Morgan. All Rights Reserved."

	INTRODUCTION
	GOALS
	Business Goals
	Architectural goals

	CONTEXT
	Scope
	Interest Rate Market Derivatives
	Products
	Streams

	Foreign Exchange Products

	Business Scenarios
	Scenarios
	Scenario 1
	Scenario 2
	Scenario 3

	Tools and Services

	Future Directions
	What is missing in v1.0b2
	Future Work

	ARCHITECTURE
	Driving Factors
	High level Design Goals
	Financial
	Structural
	Processing
	Evolution

	Design Tradeoffs
	Validation
	Element composition
	Element structure
	Instrument representation

	Conceptual Framework
	Approach
	Overview of Approach
	Structure
	Trade
	View
	Core Trade Component
	Product
	Interest Rate Derivatives
	Foreign Exchange Products

	Component
	Market Data

	Extensibility

	APPENDIX: FREQUENTLY ASKED QUESTIONS
	Introduction
	Focus
	Why are there no messages defined?
	Why Client View?
	Is there a difference between Business Transactions and Protocol?
	What is the relationship to other standards?

	Conventions
	Why are some element names in lower case and some in upper case?
	Why CamelCase?
	Why are collection elements wrapped in their own element?
	How are ID and IDREF used?
	How are attributes used?

	Structure
	Processing
	Interest Rate Derivatives
	Foreign Exchange Instruments
	Party Component

	APPENDIX: CONVENTIONS
	Goals
	Conventions

	APPENDIX: MODULARIZATION
	Objectives
	The approach
	Proposed Namespaces
	Transition to Schemata
	Modularization and duplicate ENTITY declarations

	APPENDIX: MOZILLA PUBLIC LICENSE�VERSION 1.0

