HKUST Theoretical Computer Science Center Research Report HKUST-TCSC-99-01

SGML and XML Document Grammars and

Exceptions™

Pekka Kilpeldinen® Derick Wood?*
January 25, 1999

Abstract

The Standard Generalized Markup Language (SGML) and the Ex-
tensible Markup Language (XML) allow users to define document type
definitions (DTDs), which are essentially extended context-free gram-
mars expressed in a notation that is similar to extended Backus—Naur
form. The right-hand side of a production, called a content model, is
both an extended and a restricted regular expression. The semantics of
content models for SGML DTDs can be modified by exceptions (XML
DTDs do not allow exceptions). Inclusion exceptions allow named ele-
ments to appear anywhere within the content of a content model, and
exclusion exceptions preclude named elements from appearing in the
content of a content model.

We give precise definitions of the semantics of exceptions, and
prove that they do not increase the expressive power of SGML DTDs
when we restrict D'TDs according to accepted practice. We prove the
following results:

*The research of the first author was supported by the Academy of Finland and the
research of the second author was supported by grants from the Natural Sciences and En-
gineering Research Council of Canada, from the Information Technology Research Centre
of Ontario and from the Research Grants Council of Hong Kong. A preliminary version
of this paper was presented at the Third Workshop on Principles of Document Processing
(PODP ’96) [15].

tDepartment of Computer Science, University of Helsinki, Helsinki, Finland. E-mail:
kilpelai@cs.helsinki.fi.

{Department of Computer Science, Hong Kong University of Science & Technology,
Clear Water Bay, Kowloon, Hong Kong. E-mail: dwood@cs.ust.hk.

e Exceptions do not increase the expressive power of extended
context-free grammars

e For each DTD with exceptions, we can obtain a structurally
equivalent extended context-free grammar

e For each DTD with exceptions, we can construct a structurally
equivalent DTD when we restrict the D'TD to adhere to accepted
practice

e Exceptions are a powerful shorthand notation—eliminating them
may cause expounential growth in the size of an extended context-
free grammar or DTD

1 Introduction

The Standard Generalized Markup Language (SGML) [12, 13] promotes
the interchangeability and application-independent management of electronic
documents by providing a syntactic metalanguage for the definition of textual
markup systems. The Extensible Markup Language (XML) [2] is, essentially,
a simplified and more restrictive version of SGML. The goal of XML is to
allow SGML documents to be served, received and processed on the Web.
It is the proposed syntactic metalanguage for the specification of document
grammars for W3 documents.

Both SGML and XML allow users to define document type definitions
(DTDs), which are essentially extended context-free grammars expressed in
a notation that is similar to extended Backus—Naur form. The right-hand
side of a production, called a content model, is both an extended and a
restricted regular expression. The semantics of content models for SGML
document grammars can be modified by exceptions (XML document gram-
mars do not allow exceptions). Inclusion exceptions allow named elements
to appear anywhere within the content of a content model, and exclusion ex-
ceptions preclude named elements from appearing in the content of a content
model. In terms of (extended) context-free grammars, inclusion exceptions
for a nonterminal A allow some specified nonterminals to appear anywhere
in strings derivable from A whereas exclusion exceptions for A preclude some
specified nonterminals from appearing in strings derivable from A. For exam-
ple, comments can appear almost anywhere in most programming languages
so they are usually not defined by a programming language’s grammar. The
reason is that the syntactic structure of the language would be obscured by

the many appearances of a nonterminal for comments. Using an inclusion ex-
ception for comments is a simple solution that does not obscure the syntactic
structure of the language.

The intent of this paper is to rigorously define the effect of exceptions on
SGML DTDs and also to demonstrate that, for all practical purposes, they
can be removed to produce structurally equivalent DTDs. We model SGML
DTDs with extended context-free grammars with exceptions and prove that,
in this case, we can always construct a structurally equivalent extended
context-free grammar without exceptions.

The paper is organized as follows. In Section 2, we give a brief introduc-
tion to SGML (and XML) and exceptions. In Section 3, we introduce ex-
tended context-free grammars as a formal model of SGML DTDs and present
the basic method of eliminating exceptions from extended context-free gram-
mars by propagating them to the production schemas affected by them. In
Section 4, we define content models and their languages. In Section 5, we
show how we can modify content models to capture the local effect of in-
clusion exceptions. The modifications preserve the unambiguity of content
models. In Section 6, we give a similar modification for the local effect of
exclusion exceptions; we also propose a simple test for the applicability of ex-
clusions. In Section 7, we explain how we can remove exceptions from SGML
DTDs and show that the transformed DTDs are structurally equivalent to
the original DTDs. On the other hand, the new DTDs contain new nonter-
minals; therefore, they are not directly applicable as SGML DTDs for the
original document instances. We discuss in what circumstances our results
can be applied to the design of DTDs and to the manipulation of SGML
documents.

Lastly, in Section 8, we mention two unsolved problems, both of which
are subjects of our current research.

2 A brief SGML primer

To simplify the presentation we explain and define notions only for SGML;
most of the time the notions are identical in XML.

An SGML document consists of an SGML prolog and a marked-up docu-
ment instance. The prolog contains a document type definition (DTD)
that is an extended context-free grammar in which the right-hand sides of
productions are both extended and restricted regular expressions. In this

regard, DTDs are similar to grammars in extended Backus—Naur form. An
example of a simple SGML DTD is given in Fig. 1; HI'ML is an example of
a more complex SGML DTD.

<!ELEMENT message - - (head, body)>
<!ELEMENT head - - (from & to & subject)>
<!ELEMENT from - - (person)>
<!ELEMENT to - - (person)+>
<!ELEMENT person - - (alias | (forename?, surname))>
<!ELEMENT body - - (paragraph)*>
<!ELEMENT (subject, alias, forename, surname, paragraph)
- - (#PCDATA)>

Figure 1: An example SGML DTD that defines simple messages.

The productions of a DTD are called element type definitions. The
right-hand sides of element type definitions are extended and restricted reg-
ular expressions called content models. The DTD in Fig. 1 defines a doc-
ument type for messages, which consist of a head followed by a body. The
element head consists of subelements from, to, and subject that can ap-
pear in any order. The element from is defined to be a person that can
be denoted either by an alias or by an optional forename followed by a
surname. The element to consists of a nonempty list of persons. The body
of a message consists of a (possibly empty) sequence of paragraphs. Fi-
nally, the last element definition specifies that elements subject, alias,
forename, surname, and paragraph are unstructured strings, denoted by
the keyword #PCDATA.

The structural elements of a document instance are made visible by en-
closing them in matching pairs of start tags and end tags. A possible
instance of the message DTD in Fig. 1 is shown in Fig. 2. The DTD of Fig. 1
does not allow any begin or end tags to be omitted. The SGML Standard
does allow, however, for DTDs to specify tag omissions. Since XML does not
have this feature, we treat SGML DTDs in the same way. Another reason
to make this assumption is that the complex rules of SGML that govern tag
omission are there to ensure that an SGML parser can infer the omitted tags
in valid documents. Therefore an additional reason for ignoring omitted tags
is that we are not considering the parsing problem; that is, we assume that
we have an SGML parser.

<!doctype message system "message.dtd">
<message>
<head>
<from><person><alias>Boss</alias></person></from>
<subject>Tomorrow’s meeting...</subject>
<to><person><surname>Franklin</surname></person>
<person><alias>Betty</alias></person></to>
</head>
<body><paragraph> ..has been cancelled.</paragraph></body>
</message>

Figure 2: A document instance of the SGML DTD of Fig. 1.

The semantics of content models can be modified by what the Standard
calls exceptions. Inclusion exceptions allow named elements to appear
anywhere within the content of a content model, and exclusion exceptions
preclude named elements from the content of a content model. For example,
with the DTD of Fig. 1, we could modify the definition of body to allow a
new element note, defined as follows,

<!ELEMENT note - - (#PCDATA) >

to appear anywhere in the bodies of messages. We accomplish this task by
redefining body to be

<!'ELEMENT body - - (paragraph)* +(note)>.

The added inclusion exception +(note) allows notes to appear within notes.
To prevent such recursive appearances of note we modify the definition of
element type note by adding an exclusion exception to it:

<!'ELEMENT note - - (#PCDATA) -(note)>.

Exclusion exceptions seem to be a useful concept, but their exact meaning
is unclear from the Standard [13] and from Goldfarb’s annotation of the Stan-
dard [12]. We first give, in Section 3, algorithms for transforming extended
context-free grammars with exceptions into extended context-free grammars
without exceptions. In Sections 5 and 6, we give rigorous definitions for
the meaning of exceptions. The correctness proofs of these methods imply
that exceptions are not necessary for the expressiveness of SGML DTDs that
satisty some technical restrictions.

3 Extended context-free grammars with ex-
ceptions

We first introduce extended context-free grammars as a model of SGML
DTDs and discuss exceptions in this simplified setting. Then, in Sections 4
through 7, we consider the SGML-specific problems of unambiguity preser-
vation and exclusion applicability.

Extended context-free grammars are context-free grammars in which the
right-hand sides of productions are regular expressions. Let V' be an alpha-
bet. Then, we define a regular expression over V' inductively as follows:

0 is a regular expression,
A is a regular expression,
a €V is aregular expression,
F UG, where F and G are regular expressions over V', is a regular expression,

FaG, where F' and G are regular expressions over V| is a regular expression,
F~, where F'is a regular expression over V', is a regular expression,
(F), where F'is a regular expression over V/, is a regular expression.

The language L(E) described by a regular expression E over V is defined
inductively as follows:

) = 0,
) = {AL
) = {a}, fora eV,
L(IFUG) = L(F)UL(G),
) = {vw|veL(F),we LG)},
) = L(F),
) = L(F).

The symbol A denotes the null string and L*, where L is a language, consists
of all strings that are obtained as the catenation of zero or more strings from
L. We denote by sym(E) the set of symbols of V' that appear in a regular
expression E.

An extended context-free grammar G is specified by a tuple (N, 3, P, S),
where N and ¥ are disjoint finite alphabets of nonterminal symbols and
terminal symbols, respectively, P is a finite set of production schemas,

and the nonterminal S is the sentence symbol. Each production schema
has the form A — E, where A is a nonterminal and £ is a regular expression
over V.= NUZX. When 8 = 3140, € V¥, A - F € P, and a € L(FE),
the string B1a/; can be derived from the string 3 and we denote this fact by
writing § = [1af,. The language L(G) of an extended context-free
grammar G is the set of terminal strings derivable from the sentence sym-
bol of G. Formally, L(G) = {w € ¥* | S =% w}, where =" denotes the
transitive closure of the derivability relation.

Even though a production schema may correspond to an infinite number
of ordinary context-free productions, it is known that extended and ordinary
context-free grammars allow us to describe exactly the same languages; for
example, see the text of Wood [19].

An extended context free grammar G with exceptions is specified
by a tuple (N, X, P,S) and is similar to an extended context-free grammar
except that the production schemas in P have the foom A — F+ 1 — X,
where A isin N, E is a regular expression over V= N U, and I and X are
subsets of N. The intuitive idea is that a derivation of any string w from the
nonterminal A using the production schema A — E+ I — X must not involve
any nonterminal in X, yet w may contain, in any position, strings that are
derivable from nonterminals in /. When a nonterminal is both included and
excluded, its exclusion overrides its inclusion.

Existing SGML parsers have to deal with exceptions. For example, the
Amsterdam SGML parser [18] handles them in an interpretive manner. The
names of excluded elements are kept in a stack, which is consulted whenever
the parser encounters a new element. Inclusions are handled through an error
routine. Whenever an input element is encountered that does not match the
current content model, the parser enters its error mode. If the element is an
allowed inclusion exception, the parser calls itself recursively with the generic
identifier of the included element as the root symbol of the parse.

We develop methods to compile exceptions; that is, we provide methods
to produce a grammar that is structurally equivalent to the original one yet
does not use any exceptions. In the worst case, this transformation may
increase the number of productions by a factor which is exponential in the
number of the exceptions.

We formally describe the effect of inclusions and exclusions on languages.
Let L be a language over the alphabet V and let 7, X C V. We define a

language L with inclusions I as the language

Ly = {woalwl"'anwn | ai---a, € L, forn >0,
and w; € I'*, fori=0,...,n}.

Thus, L, consists of the strings in L with arbitrary strings from /™ inserted
into them. The language L with exclusions X is defined as the language
L_x that consists of the strings in L that do not contain any symbol in X.
Notice that (L;;) x € (L_x)+s, but the converse does not hold in general.
In the sequel we will write L,; x for (Ly7)_x.

We formally describe the global effect of exceptions by attaching excep-
tions to nonterminals and by defining derivations from nonterminals with
exceptions. We denote a nonterminal A with inclusions I and exclusions X
by A.; x. When w is a string of a regular expression over V', we denote by
w(r,x) the string obtained from w by replacing every appearance of a non-
terminal A in w with Ay, x. Let 8 = $1A,;_x[be a string over terminal
symbols and nonterminal symbols with exceptions. We say that the string
1! Bo can be derived from [, denoted by § = (10’33, when the following
two conditions hold:

1. A— E+ 14— X, is a production schema in P.

2. o = ay(ur,,xux,) for some string o in L(E) 4 (1ur,)—(xuxa)-

Observe that the second condition reflects the idea that exceptions are prop-
agated and cumulated by derivations. Finally, the language L(G) of an
extended context-free grammar G with exceptions consists of the ter-
minal strings derivable from the sentence symbol with empty inclusions and
exclusions. Formally,

L(G) = {w ex* | Sio_p =+ w}.

Exceptions seem to be a context-dependent feature: Legal expansions of
a nonterminal depend on the context in which the nonterminal appears. We
show, however, that exceptions do not extend the descriptive power of ex-
tended context-free grammars by giving a transformation that produces an
extended context-free grammar that is structurally equivalent to an extended
context-free grammar with exceptions. The transformation propagates ex-
ceptions to production schemas and modifies their associated regular expres-
sions to capture the effect of exceptions.

We now demonstrate how to modify regular expressions to capture the
effect of exceptions. Let E be a regular expression over V= ¥ U N and
let I = {i1,...,ic} be a set of inclusion exceptions. First, observe that
we can remove the () symbol from the regular expression E and maintain
equivalence, if the language of the expression is not). We do so by replacing
the occurrences of () using the following replacement rules until either it is
identical to () or there are no occurrences of §: F() — 0, 0F — (0, FUD — F,
UF — F, and 0* — X. We now assume that either E = () or E does
not contain (). We modify F to obtain a regular expression E,; such that
L(E,;) = L(E)+;. We obtain E,; from E by replacing each occurrence of a
symbol a € V' in E with

(1 UigU---Uig) aliy Uig U---Uig)"
and each occurrence of A\ with
(4 UigU---Uig)".

For a set X of excluded elements, we obtain a regular expression F_x such
that L(E_x) = L(F)_x by replacing each occurrence of a symbol a € X in
E with 0.

After this preparatory work, we give an algorithm for eliminating excep-
tions from an extended context-free grammar G = (N, X, P, S) with excep-
tions. The algorithm, given in Fig. 3, propagates the exceptions in a pro-
duction schema to the nonterminals in the schema. The algorithm produces
an extended context-free grammar G' = (N', X', P, S") that is structurally
equivalent to G as we establish in the following. The nonterminals of G’
have the form A, ; x, where A € N and I, X C N. A derivation step using
a new production schema A,; y — FE in P’ corresponds to a derivation
step using an old production schema for nonterminal A under inclusions 1
and exclusions X. The algorithm terminates since it generates, from each
nonterminal A, at most 22" new nonterminals of the form A, ,_y.

In the worst case the algorithm can exhibit this potentially exponential
behavior. As an example consider the following extended context-free gram-
mar with exceptions:

A - (A U- An)+0—
A = (U A) + {AQ} 0,
A2 — (CLQ U A) + {Ag} (Z)

0,

Y

9

Algorithm I:

N':={Ayo| A€ N}
S"= Sip-9;
=%
Q={Ayp 9> FE+I-X|A—>E+I1-Xe€P}
for all A+1A*XA —-F+T1-X€ Q
do for all (B € (sym(E)UI)— X) and B x ¢ N’
do N':= N’U{B+[_X};
Q:Z QU{B+[_X — Ep + (IUIB) — (XUXB)
| Byg o — Ep+ Ip — X € Q};
od;
od;
P= {A+1A—XA — B4 | A+IA—XA —FEF+1-X € Q and
Ey=((Eir)-x)xa.x));

Figure 3: Exception elimination from an extended context-free grammar
(N, 3, P, S) with exceptions.

A —> (am UA) +{A} 0.

Given this grammar the algorithm produces production schemas of the form
Air9g— E

for every subset I C {A;,...,A,}. We conjecture that this exponential
behavior cannot be avoided.

We eliminate exceptions from an extended context-free grammar using
the algorithm of Fig. 3 to produce a grammar that is structurally equivalent
to the original grammar. By structural equivalence we mean that not only
do the two grammars have the same language, but also they impose an iso-
morphic derivation or parse on each of their terminal strings. This property
is important in the case of SGML, where applications define the semantics
of the elements using their structural relationships.

10

We first define structural derivations with respect to (extended) context-
free grammars as follows: Let G = (N, X, P, S) be an extended context-free
grammar and G' = (N', X', P', S') be an extended context-free grammar with
exceptions. Let ‘[" and ‘]” be new symbols that are not in N UN' U X U X'
When = 31 Afy isin (NUXU{[,]})*; A — Eisin P, and « is in L(E), we
say that the string 3;[a]B; can be structurally derived from the string 3
using grammar G. We denote structural derivation by writing

154 G:ﬁ B[] Bo.

Let ' = B} A1 x (3 be a string that consists of symbols from ¥’ U {[, |} and
of nonterminals from N’ with exceptions. We say that the string 5][a/]3,
can be structurally derived from (', denoted by [G?[] B1l] 35, when the

following two conditions hold:

1. A— E + 14— X4 is a production schema in P’.

2. o = ai(ur,,xUx,4), fOr some string o in L(E)y(jur,)—(xuxa)-

Finally, the structural languages described by G and G’, denoted by
L(G,[,]) and L(G',[,]), respectively, are the languages

(we Ul 11812)

and

{we UL [[Sa-0l 2w}

When L(G,[,]) = L(G',[,]) we say that G and G’ are structurally
equivalent.

We are now able to prove the following result as a byproduct of Lemma 3.2
and Theorem 3.3.

Theorem 3.1 Given an extended context-free grammar G = (N, %, P,S)
with exceptions there is a structurally equivalent extended context-free gram-
mar G' = (N', X, P', S y_y). Moreover, G' can be constructed effectively.

Let Gy = (N, %, P1, S1) be an extended context-free grammar with ex-
ceptions and let Gy = (No, X3, P, S) be the extended context-free grammar
obtained when we eliminate exceptions from G using the algorithm in Fig. 3.

11

Lemma 3.2 Let S; ?’L aBy_xf for some o, € (N UX)*, B € Ny and
1
some I, X C Nj.
Then, there is a nonterminal By; x € Ny and a production schema
By, x — Ep in P, if and only if there is a production schema B —
E + IB - XB m P1 SUCh, that EB = (E—I—IUIB—XUXB)i(IUIB,XUXB)'

Proof. By inspection of the algorithm in Fig. 3. O
Theorem 3.3 G and Gy are structurally equivalent.

Proof. We show by induction on the length n of derivations that [S;_g_g] G:>[”}
1s)

« if and only if [Sy] G:[”} «. The claim then follows immediately.
When n = 0, a = [S149_g] = S2. When n > 0, [S1,9_g] ?E’} « only if
[S140-0] :G>”[*}1 a1 A, _xas and there is a production schema (A — E + 1, —

XA) c P1 such that a = al[ﬁ:}:(IUIA,XUXA)]OZQ for some ﬁ c L(E)—I—IUIA—XUXA-
By induction this property holds only if [Ss] :G>”[*]1 a1 Ay_xas. Lemma 3.2

implies that there is a production schema (A, ;_y — E4) € P, where E, =

((E+IUIA)—XUXA):I:(IUIA,XUXA)- Now ﬂ:l:(IUIA,XUXA) € L(E4) and, therefore,
[Sa] G?F] «. The converse direction can be shown in a similar manner. O
250

Cameron and Wood [9] have proved that structural equivalence is decid-
able for extended context-free grammars.

4 Content models and their languages

Document type definitions (DTDs) are, essentially, extended context-
free grammars that have restricted and generalized regular expressions on the
right-hand sides of their productions. The right-hand sides of the productions
are called content models in the ISO Standard [12, 13]. Content models are
similar to regular expressions over an alphabet V. In a DTD the alphabet V'
consists of generic identifiers that are names of elements (nonterminal
symbols) and #PCDATA. We refer to the members of V' simply as symbols.
Note that #PCDATA is the only “terminal symbol” in the usual grammatical
sense, but it denotes all strings over some separate alphabet ¥. The set of
all strings over the alphabet X is denoted by X* in the usual way.

12

The inductive definition of content models' for an alphabet V is:

acV is a content model,

F @G, where F' and G are content models, is a content model,
FG, where ' and G are content models, is a content model?,
Fi & ---&F,, where Fy,..., F, are content models, is a content model,
F, where F' is a content model, is a content model,

Ft, where F' is a content model, is a content model,

7, where F' is a content model, is a content model.

The language L(E) defined by a content model E is defined inductively
as follows:

L(a) = {a},for a € V — #PCDATA,
L(#PCDATA) = ¥,
L(F|G) = L(F)UL(G),
L(FG) = {vw|v € L(F)and we L(G)},

L(F\&---&F,) = {vi---v, |vi € L(Fg) fori =1,...,n, where
® is a permutation of {1,...,n}},
L(F*) = {vy+ v, |v1,...,0, € L(F),n >0},
L(FY) = {v v, |vi,...,v, € L(F),n > 1},
L(F?) = L(F)u{A}.

The SGML Standard requires content models to be unambiguous in
the sense that each nonempty prefix of a string uniquely determines which
symbols of the content model match the symbols of the prefix. We follow
the approach of Briiggemann-Klein and Wood [4, 5, 6, 7, 8] in the technical
treatment of unambiguity.

Let E be an expression or content model over an alphabet V. We often
need to refer to different occurrences of symbols in E, which we call the
positions of the expression £. We do so by marking expressions as follows:
An expression E' over the alphabet II = {a; | a € V,i € {1,2,...}} is a

!Actually an SGML content model consists of a model group, which is similar to
a regular expression, and optional exceptions. We deviate from this parlance by calling
model groups content models, and by considering exceptions as a separate addition to a
content model.

2Note that we use the traditional syntax of regular expressions to denote catenation
instead of the comma used in the SGML Standard.

13

marking of an expression F if £’ is obtained from £ by attaching a different
subscript ¢ to each appearance of symbols in £. The subscripted symbols are
the positions of E'. We use the letters E, F' and G to refer to expressions,
the early lower-case letters a, b, ..., for symbols of V', and the late lower-case
letters x, v, ..., for the subscripted symbols of II. Finally, we use u, v and
w for strings over V' or over II. For a subscripted symbol a;, we denote its
underlying letter a by x(a;), and for a set of subscripted symbols A C IT we
define x(A) = {x(z) | + € A}. For a marking E' of an expression E we
denote its underlying unmarked expression by x(E'). In the sequel, when we
refer to the positions pos(E) of an expression E, we assume that we have
some fixed marking for the expression E.

Let E be a content model and let £’ be any marking of . A content
model F is ambiguous if there are strings u, v, and w over II and symbols
x and y of II such that both uzv and uyw are in L(E'), x(z) = x(y) and
x # y. We call such symbols x and y of II, for which both uzv and uyw are
strings of L(E') and = # y, competing positions of E. A content model E
is unambiguous if it is not ambiguous.

The subexpressions of a content model E are defined inductively as
follows:

1. E is a subexpression of E.

2. If E=FG or E = F | G, then the subexpressions of F' and of G are
subexpressions of E.

3. If E = Fi&---&F,, then the subexpressions of F; are subexpressions
of £/, foreach i =1,...,n.

4. If E = F?, E = F*, or E = F*, then the subexpressions of F' are
subexpressions of E.

We relate the unambiguity of a content model to the unambiguity of its
subexpressions in the following expected way.

Lemma 4.1 A content model is unambiguous if and only if it has no am-
biguous subexpressions.

Proof. Straightforward induction on the structure of a content model. O

14

5 Inclusion exceptions and content models

We begin the discussion of exceptions in SGML DTDs by considering how to
eliminate inclusion exceptions from SGML content models. We demonstrate,
in Section 5.1, how inclusion exceptions can be compiled into content models,
giving content models that (locally) realize the effect of inclusions.

The ability to remove exceptions from SGML DTDs is a much more subtle
issue than we first thought [15]. The reasons are two-fold. First, any trans-
formation of a DTD to remove exceptions must preserve the set of document
instances in a way we make precise. Second, the resulting DTD without ex-
ceptions must also be unambiguous in the SGML sense [13] as characterized
by Briiggemann-Klein and Wood [8]. Third, the transformation must take
into account instances of #PCDATA appearing in content models [14]. In
the preliminary version of this paper [15] we ignored this issue completely.

In the case of SGML the elimination of exceptions may also lengthen
content models by an exponential factor. Since such pathological cases are
almost certainly rare, we believe that the methods we have developed are of
practical value. One application that requires the elimination of exceptions
from content models is the translation of SGML DTDs into static database
schemas. This method of integrating textual documents into an object-
oriented database has been suggested by Christofides et al. [10]. A second
application is the conversion of legacy SGML DTDs into XML DTDs [14]
since XML does not allow exceptions.

The SGML Standard requires that content models must be unambigu-
ous, meaning that each nonempty prefix of a string uniquely determines
which symbols of the content model match the symbols of the prefix. Our
methods of eliminating exceptions preserve the unambiguity of the original

content models. In this respect our work extends the work of Briiggemann-
Klein and Wood [4, 5, 6, 7, 8|.

5.1 Compilation of inclusion exceptions

We consider the elimination of inclusion exceptions from SGML content
models. We begin by formalizing the meaning of inclusions according to
the SGML Standard. We then show how inclusion exceptions can be elimi-
nated from content models to get inclusion-free content models that describe
the same language. The methods are based on the insertion of repetitions
of included symbols as new subexpressions in the content model as we did

15

when eliminating inclusion exceptions from extended context-free grammars
in Section 3. The & operator complicates inclusion elimination in an essen-
tial way. Also content models with #PCDATA cause problems. Indeed some
content models with #PCDATA do not allow the elimination of inclusions.
Therefore, we first present inclusion elimination for content models without
#PCDATA and without the & operator. Second, we discuss inclusion elimi-
nation from content models that contain #PCDATA. Third, we present the
more involved methods needed to eliminate inclusion exceptions from content
models with the & operator but without #PCDATA. Lastly, we show the
correctness of the elimination methods; that is, that they produce content
models which describe the same language as the original content model with
inclusions without introducing ambiguity.

5.2 Local semantics of inclusion exceptions

The SGML Standard describes the basic meaning of inclusions as follows:
“Elements named in an inclusion can occur anywhere within the content of
the element being defined, including anywhere in the content of its subele-
ments.” The description is refined by the rule specifying that “...an element
that can satisfy an element token in the content model is considered to do so,
even if the element is also an inclusion.” This refinement means, for exam-
ple, that a content model (a | b) with inclusion a describes ba but does not
describe ab, whose first symbol “satisfies the content model” and is there-
fore not treated as an inclusion. The Standard recommends that inclusions
“...should be used only for elements that are not logically part of the con-
tent”; for example, neither for a nor for b in the preceding example. Since
the difficulty of understanding inclusions is caused, however, by the inclu-
sion of elements that appear in the content model, we have to consider them
specifically.

Let L be a language over an alphabet V. We need to refer to symbols
that can start some string in the language L and to strings that are suffixes
of some string in L whose prefix has been given. We define the sets

first(L) = {a €V |au€ L for some u € V*}
and

tail(L,w) = {uwe V" |wue L},

16

for every w € V*. Observe that tail(L, \) = L.
Let I = {iy,...,ix}, a subset of V', be a set of inclusion symbols. We
define the SGML effect of inclusions / on language L as the language

LEBI = {woa'l T Whp—10p Wy | ai---ap € L,n >0,
w; € (I — first(tail(L,a;---a;)))", i =0,...,n}.

Intuitively, to obtain Lg;, we may add, for any prefix v of any string w in
L, a string u of included symbols from I such that vu is not a prefix of any
string in L. Notice that Lg; € Lys. For example, {a,b} 1y = {a* | k >
0} U {afbd' | k,I > 0} and the language {a, b}eqay consists of all strings of
the forms aa® and ba*, where k > 0.

5.3 Element content models without & groups

The basic idea of compiling the inclusion of a set I = {iy, ..., i} of symbols
in a content model F is to insert new subexpressions of the form (i | - -- | ix)*
in E. Preserving the unambiguity of the content model requires extra care,
since inserting new symbols in content models easily introduces ambiguity.
As a simple example, consider capturing the effect of inclusions I = {b, ¢}
on the content model £ = ab. The straightforward insertion of inclusion
symbols would yield content model

F=]c)ab]e)bb|c),

which is ambiguous since the symbol b of the string ab can be matched by
either the second or the third occurrence of b in F'. On the other hand, the
method that we present later gives the content model

(b] ¢) ac™b(b),

which is unambiguous.

We need to consider the relationships of positions in a content model
to define an appropriate transformation. These relationships are captured
for content models E and their positions = by the sets first(£), last(£) and
follow™(E, z). The set first(E) contains the positions that can begin a string
described by a marked content model E. It is defined inductively as follows:

first(x) = a when z € II;

17

first(F | G) = first(F) U first(G);

| first(F), it A& L(F),
first(FG) = { first(F)Uﬁrst(), if A€ L(F);
first(Fi& - - &F,) = U first(F;
first(F'?7) = ﬁrst(F*) = first(F')
= first(F).

The inductive definition of the set last(FE) that consists of the positions
of a content model E that can end a string described by a marking of F, is
similar to the definition of first(F), except for the case of catenation, which
is defined as follows:

last(G), if A\ L(G),
last(FG) = { lastEF; Ulast(G), if A € LEG;.

Third, for a marked content model E and its positions x € pos(E), we
need to consider the set of positions that can follow x in strings described
by E. Moreover, for content models with & groups we have to consider
a slightly restricted subset of following positions denoted by follow™(E, x),
which was first suggested by Clark [11]. The inductive definition, adapted
from Briiggemann-Klein’s exposition [5], is:

follow™ (z,z) = 0;

_ | follow™ (F,z), ifx € pos(F),
follow™(F'| G,z) = { follow™ (G, z), if z € pos(G);
follow™ (F, x), if € pos(F),x & last(F),
follow™ (FG,z) = follow™ (F, z) U first(G), if x € last(F),
follow™ (G, x), if z € pos(G);
follow™ (F}, x), if x € pos(F;),x & last(F;),
follow—(Fi& - - - &Fp,z) = { follow™(F) U

U first(F)), if 2 € last(F);
JFNEL(F))
follow™ (F'?,x) = follow™(F, z);
follow™ (F*,z) = follow™ (FT,)
| follow™(F,x), if x € pos(F),x & last(F),
| follow™ (F,z) Ufirst(F), if x € last(F).

18

The next result gives the relationship of the unambiguity of £ and the
follow ™ (F, x) sets for subexpressions F' of E. It forms the basis of linear-time
unambiguity testing of content models [5, 6].

Lemma 5.1 [5] A marked content model E is unambiguous if and only if it
satisfies the following three conditions:

1. If x,y € first(L(E)) and x # y, then x(x) # x(v).

2. If x,y € follow™ (E, z) for some z € pos(E) and x # y, then x(x) #
X(y)-

3. If E\&---&E, is a subexpression of E and there is some z € last(E;),
for some 1 < i <n, such that x € follow™(E;, 2) and y € first(E}), for
some j # i, then x(x) # x(y)-

We modify a context model £ with inclusion exceptions [in two steps to
obtain a new content model Eg; that captures the effect of I on E. We first
insert the appropriate repetitive component after each position in a content
model E to give a new content model E,;. We use A* as a shorthand notation
for the expression (a; | --- | ax)* when A = {a,...,ax} is a set of symbols.
We define F,; inductively as follows:

(£ G)ey = For |G,
(FG).[- FaIGola
(Fl& v &Fn).l — Fl.[& v &Fn.[,
)oI = (F.[)*,
)OI = (F'I)+7
(£7), = (Fo)?.
The base case which inserts new symbols into the content model for a position
x with x(z) =a € V is
ze; = a(l — x(follow™(E, z)))*.
Notice that the definition of xz,; avoids the introduction of new positions,
which would compete with existing ones having the same underlying char-
acter, by insertion of, immediately after position x, only such new symbols

that do not collide with the underlying characters of the set follow™ (E, z).
Second, we construct a new content model Fg,; that is defined as

(I — first(L(E)))* Ea;.

19

Example 5.2 Consider the content model E = (a* | b")c and a set I =
{b, ¢} of inclusions. Now, follow™ (E,a) = {a,c}, follow (E,b) = {b,c} and
follow™(E, ¢) = (); therefore,

Eor = ((ab®)" | 0)e(b | ¢)*.
Since first(L(E)) = {a, b},
Eor = c*((ab")" [07)e(b])",
|

We will present a complete method for eliminating inclusion exceptions, in
Section 5.5, from element content models that possibly contain & operators.
The correctness of the method is shown in Section 5.6.

5.4 Mixed content models

The SGML Standard defines an element to have mixed content if it can
contain data characters intermixed with subelements. Otherwise, it defines
an element to have element content.

Notice that since L(#PCDATA) = X*, for any a € V,

L(#PCDATA) 1y = {woviws -+ - vpun | w; € {a}*, fori=0,...,n, and
v e X for j=1,...,n}.

This semantics is difficult or even impossible to capture for unrestricted con-
tent models with #PCDATA. For example, consider content model £ = a |
#PCDATA. We could try to capture the language L(E)@{b} with a content
model of the form F' | G, where F' describes the language L(b*ab*) and G
describes any sequence of strings vy,...,v, € X* intermixed with sequences
of b. Such a content model is ambiguous, since an initial symbol b of a string
could be matched by the occurrence of b either in F' or in GG. Alternatively,
we could try to express the effect of the inclusion by a content model of
the form F(G | H)J, where J is either a model group or it is omitted, and
L(F) = L(b*), L(GJ) = L(ab*) and L(H.J) consists of strings beginning
with a string of data characters followed by sequences of b intermixed with
strings of data characters. The only construct available in SGML to define
strings over X in a content model is #PCDATA, which also describes the null

20

string. Therefore, the second candidate content model is also unambiguous,
since any initial occurrence of symbol b in a string could be matched by either
a position of F' or by a position in pos(H) U pos(.J).

Clause 11.2.4 of the SGML standard recommends that #PCDATA should
be used only when strings of ¥* are permitted to appear anywhere in the con-
tent of the element; that is, either when the content model is only #PCDATA
or “when or is the only connector used in any model group”. The reason
for this recommendation is to avoid problems caused by interpreting sepa-
rator characters in a mixed element instance as data characters. Goldfarb’s
annotations of the standard [12, p. 411], as well as those of some other au-
thors [17, 16], interpret these recommendations to mean that a mixed content
model should always be “a repeatable OR group”.

We say that a content model E is a mixed content model if both data
characters and element symbols can occur in the strings of L(E); otherwise,
we say that £ is an element content model. We can trivially recognize a
mixed content model: A content model is a mized content model if and only
if it contains an occurrence of the keyword #PCDATA. We say that a mixed
content model £ is simple if it has the form

(#PCDATA | A, | --- | Ay)op,

where Ay,...,A,, n > 0, are symbols and op is either * or *. Notice that
when n = 0, a simple mixed content model is equivalent to (#PCDATA).
XML restricts mixed content models to be simple [2].

It is easy to capture the effect of inclusion exceptions I on a simple mixed
content model £ with the content model

F = (#PCDATA | A, |-+ | A, | By | - | By)op,

where {By,...,By} = I — {Ay,...,A,}. It is not difficult to show that
L(F) = L(E)g,. Also, F'is unambiguous if and only if £ is unambiguous.
To see this, observe that F' contains two competing positions with the same
underlying symbol if and only if £ does.

5.5 Element content models with & groups

We demonstrate the difficulties that are caused by the & operator with the
following example. Consider the content model £ = a?&b?, which is un-
ambiguous. A content model that captures the inclusion of symbol a in E

21

should describe strings of the form ba - - - a. A straightforward transformation
would produce a content model of the form E; = F&((ba*)?) or of the form
Ey = (F&b?)a*, where a € L(F) and A € L(F). It is easy to see that these
content models are ambiguous. In the case of E;, the second symbol of the
string ba could be matched by either F' or by a*. In the case of F,, any string
that begins with an a can be matched by both F' and a*. Our strategy to
handle such problematic subexpressions F'&G is first to replace them by the
equivalent subexpression (F'G | GF'). Notice that this substitution may not
suffice, since the replacement can be ambiguous even if F&G is unambigu-
ous. For example, the content model (a?b? | b7a?) is ambiguous, whereas the
content model a?&b? is unambiguous. Also, substituting other expressions
for & groups that occur as a subexpression of an iterative expression F* or
F7 has to be done with care to avoid introducing ambiguity. As a matter
of fact, we know that the language of some unambiguous content models
with & groups cannot be expressed by unambiguous content models without
& groups [3, 7).

We introduce three mutually recursive transformations £, F and G to
first eliminate problematic & groups as a preliminary step of inclusion elim-
ination. Under certain conditions, transformations £, F and G preserve the
unambiguity of the original content models. To specify these conditions we
introduce the notions of sublanguage expressions and iterative & groups. Let
E be a model group and F' be a subexpression of £. We say that F'is a
sublanguage expression of E, if L(F) C L(E). We say that F' is a sub-
language expression of an iteration, or simply iterative, (in F) if it is a
sublanguage expression of a subexpression G* or G* of E. If subexpression
F is not iterative (in E), we say that it is noniterative (in E). As an exam-
ple, consider the content model E = ((a | b*)(c?&d)e)™. Its subexpression
F = (¢?&d) is not a sublanguage expression of F, since each string in L(E)
ends with symbol e, which does not occur in F'. On the other hand, F'is a
sublanguage expression of G = ((a | b*)(c?&d)e*)™, and it is also iterative in
G.

The purpose of transformation G is to modify a given content model £ to
describe the same language as E except possibly for the null string A\. The
value of G(F), for a content model E over V or II, is defined as follows:

G(r) = xwhenzeVorazell
GG = G(F)[16(G);

22

G(F)|6(G)), if A € L(FG) and FG is iterative,

FG, if \ ¢ L(FG),
(G(F)
{ (G(F)G) | G(@)), if A € L(FG) and FG is noniterative;

&---&E,, if \ ¢ L(E\&---&E,),
Bk &E,), ifAe L(E& - &B,);

G(F?) = G(F);
G(F") = G(F")=(G(F)".

Notice that transformation G does not work for #PCDATA since neither
SGML nor XML provides any means of expressing the language X1 of nonempty
unstructured strings.

Transformation F is applied to & groups. The value of F(FE) for an &
group E is a corresponding | group that describes the same language as F
apart from the null string. It is defined for an & group £ = F1& - - &FE), as
follows:

F(BE) = G(B), ifn=1;
F(B) = (G(B)E(BkBske - &E,))
| (G(EL)E (B & Es& Bole -+ & By))

| (G(E,)E(E\& By -+ - &E, 1)), if n > 1.

That is, F(FE & - - - &E,,) consists of an | group of n subexpressions, each of
which begins with a copy of a different E; modified by transformation G.
When n = 1, the & group consists of a single subexpression; therefore, we
apply G directly to it.

Finally, transformation £ is just a “wrapper” for transformation F. Its
purpose is to eliminate the & operators from a given & group and to preserve
its language including the null string.

(F(E))?, if A € L(E):;
E(E) = { F(E), if\¢L(E).

For example,

E(akeb?&ec™) = (a((b((c))?) | (()7(0)7))?)
| (b((a((c)")?) | () a)))
| ((©)"((a(0)?) | (ba)))

Kilpeldinen [14] proved the following result, which states that the preceding
transformations achieve their goal in terms of the languages described by the
expressions.

Lemma 5.3 Let E be a model group over V and let F' be an & group. Then,
1. L(G(E)) = L(E) —{\}.
2. L(E(F)) = L(F).
O

An expression F' is nullable if A € L(F). To compute G(F) we need
to determine the nullable subexpressions of E. They can be computed in
linear time using a postorder traversal of the corresponding expression tree
for E' [1, 14]. Given this information, we can compute £(F) in one pass;
however, the expansion of subexpressions of the form E,& - - - &FE,, causes a
superexponential increase in the size of the resulting expressions. Specifically,
when ay, ..., a, are distinct symbols, expression & (a1& - - - &a,,) contains at
most en! occurrences of symbols, where e = 2.71828... is the base of the
natural logarithm and this bound is tight [14].

The following results about the preservation of unambiguity by transfor-
mations £ and G were derived by Kilpeldinen [14].

Lemma 5.4 Let E be an unambiguous model group which contains no nul-
lable and iterative & groups. Then, G(E) is unambiguous. O

Lemma 5.5 Let E = E\&---&E, be an unambiguous & group such that
none of E;, i = 1,...,n, contains either #ZPCDATA or a nullable and iter-
ative & group as its sublanguage expression. Then, E(E) is unambiguous.

td

The third result concerns the unambiguity of content models whose &
subexpressions are replaced by the £ transformation. To discuss these, we
consider markings of content models. Note that each subexpression F' of a
marked expression £ is unique. Therefore, we use the notation E[F/E(F)] to
unambiguously denote the expression that results by replacing subexpression
F of a marked content model E by E(F).

24

Lemma 5.6 Let E' be a marking of an unambiguous element content model
and let F' = Fi& - - &F) be a noniterative subexpression of E' which con-
tains no iterative & group as a subexpression. Then, x(E'[F'/E(F")]) is
unambiguous. O

Briiggemann-Klein [3, 7] has demonstrated that some iterative & groups
cannot be eliminated from content models while simultaneously preserving
unambiguity. For the purpose of eliminating inclusion exceptions this does
not matter, however. The following property is sufficient for the correctness
of our method: For any unambiguous content model £ without noniterative
& groups, the sets follow™ (E', x) of positions x in E’s marking E’ capture
the information of the tail set for strings accepted by a path leading to .
This property is formulated as follows.

Lemma 5.7 Let E be an unambiguous content model that has no nonitera-
tive & groups as a subexpression. Let E' be a marking of E with x € sym(E'),
w € V* and w' € II* such that, for some v € V* and v' € IT*, we have

wx(z)v € L(E), w'av" € L(E") and w = x(w').

Then,
first(tail(L(F), wx(x))) = x(follow™ (E', x)).

Sketch of the proof. The unambiguity of £ implies that position x is
determined by the string wy(z) unambiguously. By structural inspection
of E' it is easy to see that x(follow™ (E’,x)) C first(tail(L(E), wx(z))). On
the other hand, let F' be a subexpression of E’ such that x € sym(F")
and let «',t" be in IT* such that uw'zt’ € L(F'). The only case in which
y € first(tail(L(F"), u'z)) but y & follow™ (F',) is when z € last(F;) and y €
first(£7;) for some subexpression Fi& - - - &F,, of F'. Now, by the assumptions
of the lemma, Fi& - - - &F), is a sublanguage expression of some subexpression
G* or G of E', which implies that y € first(G), = € last(G), and y €
follow™(E',). O

Now we are ready to provide a method of computing, for a given content
model £ with element content and a set I of inclusions, a new content model
Eg; such that L(Eg;) = L(E),,. The algorithm is given in Figure 4.

Example 5.8 Let E = (a?&b?)c and I = {a,c}. We first obtain the content
model

F=E&(a?&b?)c = (ab? | ba?)?c

25

Algorithm II
1. Replace any noniterative subexpressions F' = Fi& - - - &F,, of E by E(F).
2. Egpi= (I —first(L(E)))*E,r.

Figure 4: Computation of the content model Fg; from a content model E.

and then the content model
Fyy = (aa™(ba™)? | b(aa™)?)?c(a | ¢)*.

Since I C first(L(E)), we have Egxr = Fy. O

5.6 Correctness of inclusion elimination

We sketch the proof of correctness of Algorithm II that is given in Fig. 4. Let
E be an unambiguous element content model. Let G' denote expression E as
modified by Step 1 of Algorithm II. By Lemma 5.6, G is also unambiguous
and Lemma 5.3 implies that L(G) = L(E).

Lemma 5.9 If G is an unambiguous content model, then

L(G.[) = {alwl ce QW | a,---a, € L(G),TL >0,
w; € (I —first(tail(L(G), a1+ a;)))" i =1,...,n}.

Proof. Let G' be a marking of G. The claim follows from Lemma 5.7, which
implies that

INfirst(tail(L(G), a1 - - ay)) = I N x(follow™ (G', x,,)),

for any a; ---a,v € L(G) and z; - - -z, w € L(G"), such that x(zy---z,w) =
aq - - Apv. O

We can apply Lemma 5.1 to show that the (),, transformation does not
introduce ambiguity in G.

Lemma 5.10 If G is unambiguous, then (G),,; is unambiguous.

Proof. Assume that G is unambiguous. Let G’ be a marking of G and let
H' be a marking of H = (G),; such that L(G') C L(H'). Such markings
clearly exist. Then, the first condition of Lemma 5.1 for the unambiguity
of H' is satisfied since first(L(H')) = first(L(G’)) and G is unambiguous.

26

For the second condition, consider a symbol z in G’ and the corresponding
subexpression z(y; | - -+ | yx)* in H'. Now,

follow (H',z) = follow (H',y;),i =1,...,k,
= follow (G',2) U{y1,. .., yk},

which by the construction of (G),, and the unambiguity of G cannot contain
two positions with the same underlying symbol. Finally, consider the case
z € last(H;) for a subexpression H,& - -+ &H, of H', x € follow (H;, z), and
y € first(H;) for some j # i. Then z is either some symbol z' € sym(G")
or some symbol z; € sym(H') — sym(G') in a subexpression z'(x; | --- |
x)*. Let G1& - - &G, be the subexpression of G’ for which H & ---&H,, =
(G1& - - &Gy),,- Now

follow™ (H;, z) = follow™ (G, 2") U {xy, ..., xx}

and y € first(H;) implies that y € follow™ (G’, '), since first(H;) = first(G})
and G1 & - - - &G, isiterative in G'. Therefore, x(x) # x(y), forx € {z1,..., 2%},
by the construction of (G),;, and x(x) # x(y), for x € follow™ (G, z'), by
the unambiguity of G and Lemma 5.1. O

The preceding properties of (G),, imply the correctness of the construc-
tion of Eg;, which we summarize as follows.

Theorem 5.11 Let E be an unambiguous element content model. Then, the
content model Eg; satisfies the following two conditions:

1. L(Es;) = L(E)

oI
2. Egr 1s unambiguous.

In addition, Eg; has size O(|E|') and it can be computed from E in O(|E|!)
time, in the worst case.

Corollary 5.12 For each unambiguous element content model with inclu-
stons there is an equivalent unambiguous content model without inclusions.
6 Exclusion exceptions and content models

Exclusion exceptions modify the meaning of content models by precluding
optional elements from their content. The precise meaning of exclusion ex-
ceptions is not quite clear from the SGML standard. The standard gives

27

rather vague restrictions on the applicability of exclusion exceptions. We
propose a simple and rigorous definition of the meaning and of the appli-
cability of exclusion exceptions. We also present an optimal algorithm that
modifies a given content model to capture the (local) effect of exclusions, and
simultaneously checks their applicability to the content model.

Clause 11.2.5.2 of the SGML Standard states that “...exclusions modify
the effect of model groups to which they apply by precluding options that
would otherwise have been available”. The exact meaning of the phrase “pre-
cluding options” is not clear from the Standard. Our first task is, therefore,
to formalize the intuitive notion of exclusion. As a motivating example con-
sider excluding the symbol b from the content model E = a(b | ¢)¢, which
defines the language L(E) = {abc, acc}. The element b is clearly an alterna-
tive to the first occurrence of ¢, and we can realize its exclusion by modifying
E to give E' = acc. Now, consider excluding b from the content model
F = a(bc | ce). This case is not as clear since b appears in a seq subexpres-
sion. On the other hand, both £ and F' define the same language; therefore,
we define the effect of exclusions on languages of content models rather than
on the content models themselves.

Let L C V* be a language and let X C V. Motivated by the preceding
examples, we define the effect of excluding X from L, which we denote by
L_x, to be the set of all strings in L that do not contain any symbol of X.
As an example, the effect of excluding {b} from the language of the preceding
content models £ and F'is

L(E) -y = L(F) gy = {acc}.

Notice that an exclusion always specifies a subset of the original language.

We next show how we can compute a content model Egx such that
L(Ecx) = L(E)_x from a given content model E and a given set X of
excluded symbols. The modified content model Egy is unambiguous if the
original content model E is unambiguous. The computation of Eox takes
time linear in the size of E.

For the transformation, we extend content models to allow the empty-set
symbol () and the null-string symbol)\, which are constituents of standard
regular expressions. Their addition extends the definition of the language
L(E) represented by a content model E with the following two cases:

L) = 0,
L) = {Ah

28

Let E be a content model with exclusions X. We define the corresponding
extended content model E5x inductively as follows:

B {@, ifae X,

dox a, otherwise;
(0, if Fox =0 or Gox =0,
o F@X, lf G@X ==)\,
(FG)eX o Gex, if F@X =)\,
| FoxGox, otherwise;
(Fox, if Gox =10,
G@XJ if F@X = Q)J
(F|G) _)\, ifF@X:)\and G@X:)\,
oX Fox?, if Fox # X and Goxy = A,
Gox?, if Fox = A and Gy # A,
| Fox | Gox, otherwise;
(0, if Fiox =0 for some i =1,...,n,
A, ifFox=Aforalli=1,...,n,
B Fi ox&- - &F oy, otherwise, where
(Fl&'”&F”)GX o 1 <4 <+ <1 <n are such that
Fi o x # A\, foreach j =1,...,k, and
{ Fjox = Aforeach j e {1,....n}\ {ir,...,ir};

)\, ifF@X:®Or F@X:)\,
Fox?, otherwise;

#ex = |

(F*) o)\, ifF@X:@OI' F@X:)\,
ox (Fsx)*, otherwise;
Q)J if F@X = ma
(FH)oy = 4 A if Floy = A\,

(Fsx)™, otherwise.
The following properties justify the definition of Eox.

Lemma 6.1 (Basic properties of Esx.)
If E is a content model over V and X C 'V, then the following five properties
hold for the content model Fsx:

1. Esx is a content model (Eqx contains neither O nor \) if and only if

Eox & {0,\}.

29

2. L(Esx) =0 if and only if Ecx = .
3. L(Eox) = {\} if and only if Esx = A.
4. L(Egx) = L(E)_x.

5. Egx can be computed from E in O(| E |) time, in the worst case.

Proof. Properties 1 through 4 can be shown to hold by structural induction
on E. (Note that Property 1 implies Properties 2 and 3.) Property 5 can
be seen to hold by considering a recursive algorithm based directly on the
definition of Esx.

To give a flavor of the proofs, we show how to handle the case E = F | G
in the proof that L(Esyx) = L(E)_x. In this case,

LE)_x = L(F|G)_x
= (L(F)UL(G))-x
= L(F)_x UL(G)_x.

If Fiox =0, then L(Esx) = L(Gox). The inductive assumptions L(Fox) =
L(F)_x = 0 and L(Goyx) = L(G)_x imply that L(Eox) = L(E)_x. The
case Gox = 0 is symmetric. If Fox = Gox = A, then L(E5yx) = {A} and
L(F)_x U L(G)_x = {A} by the induction hypothesis. If Fgy = A and
G@X ¢ {@,)\}, then

L(Eex) = L((Gex)?)
= L(Gox)U{A}

and, by induction, L(Esx) = L(E)_x. The case Fox & {0, \} and Gox = A
is symmetric. Finally, if Eox = Fox | Gox, then we have L(Foy | Gox) =
L(F5x)UL(Ggx), which gives, by induction, L(F) xUL(G) x = L(E) _x.

td
As a restriction of the applicability of exclusions the Standard states
that “...an exclusion cannot affect a specification in a model group that

indicates that an element is required.” The Standard does not specify how a
model group (a subexpression of a content model) indicates that an element
is required. A reasonable requirement for the applicability of excluding X
from a content model E is that L(E) x ¢ {A}. Note that an ordinary
content model cannot describe a language that is either () or {\}. Intuitively,

30

Eox = 0 or Eox = X means that excluding X from E precludes all elements
from the content of E. On the other hand, E5x ¢ {0, \} means that X
precludes only elements that are optional in L(E). Thus, we propose that
this requirement be the formalization of how a model group indicates that an
element is required. Notice that computing Fx is a reasonable and efficient
test for the applicability of exclusions X on a content model E.

Finally, we show that capturing the effect of exclusions X on a content
model F by transforming F into E5x does not sacrifice the unambiguity of
E. Let E be a content model and £’ be a marking of E. We define E'x in
a similar way to the definition of E5x except that the base case becomes

I@X:{ 0, if x(z) € X,

x, otherwise.
Lemma 6.2 If E is unambiguous, then Esx is unambiguous.

Proof. Let £’ be a marking of F. Assume that Ex is ambiguous, which
means that there are strings u, v and w over Il and symbols x and y in II
such that both uzv and uyw are in L(E'sx), x(z) = x(y), and = # y. (Note
that E'cx is a marking of Esx.) Now, L(E'sx) C L(E’), which implies that
both uzv and uyw are in L(E") and E is also ambiguous. O

7 SGML DTDs and exceptions

We are now in a position to consider the removal of exceptions from a DTD.
Although extended context-free grammars are a reasonable model for SGML
DTDs, they are not a perfect one as we have pointed out in Section 5. One
important point is that content models contain only one terminal symbol,
#PCDATA, that is equivalent to X*; all other symbols are essentially non-
terminals. #PCDATA captures textual data that has no further structure
from the viewpoint of the given DTD. (It may, of course, be highly structured
for some other application, or for some other DTD which uses the special fea-
tures of SGML that allow some content to be interpreted as markup.)

One subtle issue is that #PCDATA always includes the null string; there
is no positive #PPCDATA, say, that corresponds to ¥ and excludes the
null string. This issue is crucial when removing inclusion exceptions as we
have seen in Section 5.

31

The elimination of exceptions from an extended context-free grammar
introduces new nonterminals. If we apply the exception removal transforma-
tion of Fig. 3 to an SGML DTD with exceptions, then we do indeed obtain
a new DTD without exceptions that is structurally equivalent to the original
DTD. Unfortunately, the document instances of the original DTD do not
conform to the new DTD, since the new DTD has new elements and new
tags corresponding to these elements that do not appear in the old DTD
instances.

Therefore, a natural question is: How useful are our results? First, the
results are interesting in their own right as a contribution to the theory of
extended context-free grammars and SGML DTDs. We can eliminate excep-
tions to give structurally equivalent grammars and D'TDs while preserving
their SGML unambiguity.

Second, during the DTD design phase, it is perhaps convenient to use
exceptions. Our results imply we can eliminate the exceptions algorithmically
and produce a final D'TD design before any document instances are created.

Third, the creation of a new DTD without exceptions is useful for pro-
ducing a DTD database schema as suggested by Christofides and his co-
workers [10].

Fourth, and perhaps most important, we can use the exception-freeness
transformation to produce XML DTDs from SGML DTDs since XML does
not allow exceptions.

Fifth, rather than producing a new DTD, we can emulate it with an
extended context-free grammar and its parser. We first apply the exception-
removal transformation to the extended context-free grammar with excep-
tions given by the original DTD with exceptions. We then modify the pro-
ductions of the resulting exception-free extended context-free grammar to
explicitly include old tags. For example, we transform a production of the
form:

Airx — Ey

into a production of the form:
A x = < ASEpN< JA>,

where ‘< A >’ and ‘< /A >’ € ¥ are the start and end tags that the new
grammar has to use as delimiters for the element A. Thus, the new produc-
tions can be applied to the old DTD instances.

32

Lastly, we can attack the document-instance problem head on by trans-
lating old instances into new instances. We are planning to investigate a
class of DTD-based transductions which would be applicable to the DTD
database schema issue raised by Christofides et al. [10] and to the conversion
of instances of SGML DTDs into instances of corresponding XML DTDs.

8 Closing remarks

A major open problem is whether we can avoid the exponential worst-case
blow-up in the size of a D'TD. Is there an exception-removal transformation
that does not have exponential blow up in the worst case? As we conjecture
that there is no such transformation, a follow-up question is: What do we
expect the increase in size to be? In addition, we may be able to avoid the
worst-case complexity by constructing a modified DTD on the fly while pars-
ing a document instance. The argument in favor of the on-the-fly approach is
that SGML parsers already interpret a D'TD on the fly; therefore, it appears
that we can avoid the blow up in the size of a DTD, at least in the expected
case, by implementing our algorithms locally and on the fly.

Acknowledgements

We would like to thank Anne Briiggemann-Klein and Gaston Gonnet for the
discussions that encouraged us to continue our investigation of the exception
problem in SGML.

References

[1] J. Albert, D. Giammarresi, and D. Wood. Extended context-free gram-
mars and normal form transformations. In Automata Implementation:
Third International Workshop on Implementing Automata, WIA 98,
Heidelberg, Germany, 1998. Springer-Verlag.

[2] T. Bray, J. Paoli, and C.M. Sperberg-McQueen, editors. Ez-
tensible Markup Language (XML) 1.0. 1998. W3C Recom-
mendation 10-February-1998. The latest version is available at
http://www.w3.org/TR/REC-xml.

33

3]

A. Briiggemann-Klein. Formal models in document processing. Ha-
bilitationsscrift, Faculty of Mathematics at the University of Freiburg,
1993.

A. Briiggemann-Klein. Regular expressions into finite automata. Theo-
retical Computer Science, 120:197-213, 1993.

A. Briiggemann-Klein. Unambiguity of extended regular expressions in
SGML document grammars. In Th. Lengauer, editor, Algorithms —
ESA 93, pages 73-84. Springer-Verlag, 1993.

A. Briiggemann-Klein. Compiler-construction tools and techniques for
SGML parsers: Difficulties and solutions. Universitat Freiburg, Institut
fiir Informatik, May 1994.

A. Briiggemann-Klein and D. Wood. The validation of SGML content
models. Mathematical and Computer Modelling, 25(4):73-84, February
1997.

A. Briiggemann-Klein and D. Wood. One-unambiguous regular lan-
guages. Information and Computation, 142:182-206, 1998.

H.A. Cameron and D. Wood. Structural equivalence of extended

context-free and extended EOL grammars. Submitted for publication,
1999.

V. Christofides, S. Christofides, S. Cluet, and M. Scholl. From struc-
tured documents to novel query facilities. SIGMOD Record, 23(2):313~
324, June 1994. (Proceedings of the 1994 ACM SIGMOD International
Conference on Management of Data).

J. Clark. Source code for the SGMLS parser. Available from
ftp://ftp.jclark.com/pub/sgmls/, 1992.

C. F. Goldfarb. The SGML Handbook. Clarendon Press, Oxford, 1990.

International Organization for Standardization. ISO 8879: Information
Processing—Text and Office Systems—Standard Generalized Markup
Language (SGML), October 1986.

34

[14]

[15]

[16]

[17]

[18]

[19]

P. Kilpeldinen. SGML & XML content models. Markup Languages:
Theory & Practise, 1999, to appear. Preliminary version available as De-
partment of Computer Science Report C-1998-12, University of Helsinki.

P. Kilpeldinen and D. Wood. SGML and exceptions. In C. Nicholas and
D. Wood, editors, Principles of Document Processing, Proceedings of the
Third International Workshop, PODP’96, pages 39-49. Springer-Verlag,
1997. Preliminary version available as technical report HKUST-CS96-30
of The Hong Kong University of Science & Technology, Department of
Computer Science, June 1996.

E. Maler and J. El Andaloussi. Developing SGML DTDs: From Text to
Model to Markup. Prentice Hall PTR, New Jersey, 1996.

B. Travis and D. Waldt. The SGML Implementation Guide: A Blueprint
for SGML Magration. Springer Verlag, 1995.

J. Warmer and S. van Egmond. The implementation of the Amsterdam
SGML parser. Electronic Publishing, 2(2):65-90, July 1989.

D. Wood. Theory of Computation. John Wiley & Sons, Inc., 1987.

35

