
How to Structure and Access XML Documents With
Ontologies

Michael Erdmann and Rudi Studer

Institut für Angewandte Informatik und Formale Beschreibungsverfahren (AIFB)
Universät Karlsruhe (TH)

D-76128 Karlsruhe (Germany)
http://www.aifb.uni-karlsruhe.de/WBS

e-mail: ferdmann|studerg@aifb.uni-karlsruhe.de

Abstract

Currently dozens of XML-based applications exist or are under development. Many of them
offer DTDs that define the structure of actual XML documents. Access to these documents
relies on special purpose applications or on query languages that are closely tied to the
document structures. Our approach uses ontologies to derive a canonical structure, i.e. a
DTD, to access sets of distributed XML documents on a conceptual level.We will show
how the combination of conceptual modeling, inheritance, and inference mechanisms on
the one hand with the popularity, simplicity, and flexibility of XML on the other hand leads
to applications providing a broad range of high quality information.

Key words: Ontologies, XML, Semantic Queries

1 Introduction

The Extensible Markup Language (XML) [3] is currently on the way to conquer the
web and especially the electronic business (cf. e.g. [23]). Dozens, maybe hundreds
of applications of this flexible language have been developed and more will surely
follow. XML is designed to describe document types for all thinkable domains and
purposes. The success of XML is primarily based on its flexibility: everybody can
write a document type definition (DTD) to define the structure of XML documents
that represent information in the form he or she desires. If partners (e.g. in the elec-
tronic business) agree on a common DTD, documents can be created, transported,
imported, and interpreted in a consistent way, preserving the semantics the sender
intended. In the more general case, where XML sources are presented (in the web)
without an explicit agreement on (not to mention a formal definition of) the se-
mantics of certain tags and document structures, the task of correctly interpreting

Preprint submitted to Elsevier Preprint 11 April 2000

the data is more difficult. If information of several different sources should be in-
tegrated, correct assumptions about the meaning of certain elements are crucial for
successful information retrieval.

In a survey of XML vocabularies for the electronic business [16] several indus-
trial standards for electronic commerce based on XML are listed such as standards
for electronic catalogs or representing business transactions. The survey shows that
these standards have some amount of overlap. Applications and enterprises that
need to work with several of these standards are forced to translate between differ-
ent information sources by providing customized routines implementing the inte-
gration task.

Thus one can say, the biggest advantage of XML (its extensibility) is at the same
time its biggest handicap. XML is so flexible that XML documents cannot be au-
tomatically provided with an underlying semantics, except the hierarchical infor-
mation that is encoded in the mark-up tags. Different tag sets, different names for
elements or attributes, or different document structures in general aggravate the
task of accessing the represented information in a useful manner. Applications not
only have to be aware of the DTD defining a class of documents, they must also be
informed about the underlying semantics of tags and the meaning of the document
structure. But this semantics is outside the scope of XML and related standards,
possibly with the exception of RDF and RDFS (cf. [17] and [4]). In this paper we
will present an approach to enable integrated access to different XML document
types via the use of ontologies. An ontology [12] provides a formal, shared spec-
ification of concepts, their relationships, and other realities of some domain. This
knowledge is independent of any representation, i.e. ontologies define semantics
on a conceptual level, albeit each ontology has to be formulated in some represen-
tation language. Our approach fulfills the task of information integration exactly
on this conceptual level in that it lifts information from the syntactic or representa-
tional level to the more abstract level of concepts and relationships. We will provide
information integration capabilities to XML processing by defining a semantic un-
derpinning for XML documents based on ontologies. Thus, the content of these
documents can be uniformly accessed and integrated.

The paper is structured as follows: Section 2 shows how access to XML docu-
ments is currently realized by XML query languages and how adding semantics to
XML can solve some of the problems arising here. The framework for doing this
is set up by ONTOBROKER, an information integration and retrieval system which
is briefly presented in section 3. Section 4 presents the tool DTDMAKER that de-
rives an XML document type definition (DTD) from a given ontology, so that XML
instances can be linked to an ontology and thus, can be accessed through ONTO-
BROKER. Finally, we conclude with a review of some related work and future plans
concerning XML and ONTOBROKER.

2

2 Query Answering

Although the focus of this paper does not lie in answering queries to single XML
documents but in offering integrated access to these document sets via an ontology,
this comparison of queries with and without ontology support is quite illustrative
of the power of ontologies for integration tasks. This section will describe current
ways of accessing semi-structured data in general and XML documents in partic-
ular, discuss deficits of these approaches, and will show how adding semantics to
XML can overcome these deficits.

Access to semi-structured data is currently realized by a number of query lan-
guages, e.g. Lorel [1], Lorel for XML [11], XML-QL [8], or XQL [20,21]. These
query languages access the structure of documents to locate the relevant informa-
tion (using kinds of path expressions or templates for navigating in the document
tree), i.e. they are closely tied to the document structure (i.e. its syntax).

An example in XML-QL syntax illustrates this. We are looking for people with
knowledge of the SGML language:

WHERE
<people>
<person>
<name>$P</name>
<know-how>SGML</know-how>

</person>
</people> IN "some URL"

CONSTRUCT $P

The query delivers the content of the name subelement of person, iff the per-

son has another subelement know-how containing “SGML”. When applied to the
following XML document we (only) get Peter and Hans as answers.

<skills>
<people>
<person>
<name>Peter</name>
<know-how>SGML</know-how>

</person>
<person>
<name>Hans</name>
<know-how>SGML</know-how>
<know-how>Perl</know-how>

</person>
</people>
<seminars>
<seminar>

3

<topic>SGML</topic>
<participant>
<name>Dieter</name>
<name>Gisela</name>

</participant>
</seminar>

</seminars>
</skills>

The given XML document also contains facts about seminars and let us assume
that participants of these seminars acquire some knowledge of the seminars’ topics.
When we make this assumption the knowledge that person X has know-how of topic
Y is implicitly encoded in the document. To retrieve (in XML-QL) all persons with
the required knowledge, a second query has to reflect this assumption explicitly by
specifying an alternative pattern to retrieve the participants of seminars with SGML
as topic.

WHERE
<seminar>
<topic>SGML</topic>
<participant>
<name>$P</name>

</participant>
</seminar> IN "some URL"

CONSTRUCT $P

A combined query achieving the expected results can be formulated in another
XML query language, namely XQL [20]. It looks like this:

//person/name[../know-how="SGML"]
$union$

//seminar[topic="SGML"]/participant/name

Again, all possible encodings of the relevant knowledge has to be guessed by the
information seeker to formulate such a query. Furthermore, XQL has the disad-
vantage (at least in the official ’98 version) that joins are not possible, since no
variables can be bound and only information from the direct context is accessible
during evaluation of the path expressions.

It is easy to see that an information seeker cannot be expected to formulate (mul-
tiple) queries in this way, at least not if the domain contains several (semantic)
dependencies between different parts of documents. If the domain is complex and
the document structures are varied such a hand crafted way of retrieving knowledge
does not seem promising. To retrieve the desired information an information seeker
ideally should be able to specify his wishes declaratively using conceptual terms
only, e.g. “Which persons P have knowledge about SGML?” or in a more formal
way:

4

FORALL P <- P:person[know-how="SGML"].

This, actually, is a declarative query in Frame Logic [15] to a knowledge base
(cf. section 3.1). The facts in this central knowledge base are collected from the
same XML documents that were addressed by the XML-QL and XQL queries. The
knowledge base mediates between the information seeker on the one hand and the
different information sources on the other hand. The concrete realization of the
XML documents is unimportant for the information seeker since he is interested
in semantically meaningful answers irrespective of the documents’ (possibly com-
plex and varying) structures. The conceptual terms used in the query (person and
know-how) are defined in the ontology and may be used in XML documents.

To fully deploy the power of ontologies in this context, a relationship between the
ontology and the structure of XML documents has to be established. In section 4,
we will show how a document type definition (DTD) can be derived from an onto-
logy. Thus direct links between XML tags and ontological terms can be manifested.

The ontology has two purposes in supporting queries to the knowledge base: (i)
it defines a common vocabulary to enable structure independent queries and (ii)
it provides additional background knowledge to improve the quality of answers.
In our example the assumption made above, namely that participants of seminars
acquire some knowledge, is part of the ontology’s background knowledge. It is
expressed in the ontology as an inference rule, such that the query retrieves partic-
ipants of SGML seminars, as well.

Another area in which ontologies provide direct benefit for query answering comes
from the modeled concept taxonomy. Assume Tom is a programmer and this fact
is represented by the following addition to the above XML document:

<programmer>
<name>Tom</name>
<know-how>SGML</know-how>
<know-how>Java</know-how>
<know-how>C++</know-how>

</programmer>

Given this situation the “traditional” languages for querying XML become even
more impractible, i.e. Tom would not be retrieved by any of the given queries
(although everybody knows that programmers are persons, too ;-). This kind of
knowledge is modeled in the concept taxonomy of the ontology and so can help the
information seeker to find the conceptually correct answers, i.e. the given Frame
Logic query retrieves Tom even from the altered document while the other queries
would not.

To sum up the state of the art in accessing the contents of XML documents we can
say: current query languages are strong when the location of wanted data is known

5

in advance or at least if the information seeker is aware of the document structure.
To locate relevant data he cannot specify his information needs conceptually (even
if elaborated path expressions and pattern languages using disjunctions, wildcards,
conditions etc. are available) but has to stick to the document syntax. Further, im-
plicit knowledge cannot be exploited when the documents are processed directly
and thus, this additional knowledge cannot directly be made available to informa-
tion seekers.

In [9] an approach is presented that enhances the XML query language XQL [21]
with ontological knowledge by preprocessing queries. XQL queries are rewritten
and only the translated queries are answered by an XQL query processor. The re-
sults basically consider the concept hierarchy, thus, query rewriting is a partial solu-
tion to the mentioned deficits of XML query languages. Our approach enables true
semantic queries to the contents of collections of XML documents and relieves the
information seeker from the burden of knowing the structure of documents more
extensively than realized in [9]. The ontology provides a conceptual view to XML
documents. The information contained therein is integrated, enhanced (via axioms
in the ontology, e.g. inheritance), and made accessible in a uniform manner for the
user.

3 Defining the Context

3.1 ONTOBROKER

The last section presented current ways to access information stored in XML docu-
ments and some drawbacks of these approaches, resulting from the lack of a schema
level or an ontology. In this section we will describe our system ONTOBROKER 1

that is built around the notion of ontology as its central pillar. System develop-
ment started 1997. Since then ONTOBROKER has been constantly enhanced and
extended. The work presented in this paper is one contribution to the further de-
velopment of ONTOBROKER. This approach to intelligent information integration
and retrieval is briefly presented in this section to provide the framework in which
we will use ontologies to access information contained in XML documents. For a
more comprehensive description of ONTOBROKER confer [7].

The ONTOBROKER project uses techniques such as ontologies and deductive in-
ference systems to provide access to heterogeneous and distributed semi-structured
documents. The approach taken in this project (in the beginning) was to annotate
HTML documents with semantic metadata (in a proprietary format), to collect this
data, store it centrally in a knowledge base, and to make the populated knowledge

1 http://ontobroker.aifb.uni-karlsruhe.de

6

Info

Agent

HTML-A

RDF

XML

Wrapper

Query

Interface

Inference

Engine

Ontology

Knowledge Base

Fig. 1. A Sketch of ONTOBROKER’s architecture.

base accessible through query facilities. In the knowledge base facts are stored in
Frame Logic [15], an object oriented and logic-based language from the deductive
database community. Underlying all parts of ONTOBROKER is an ontology that
defines the vocabulary for annotating documents, for formulating queries, and for
structuring the knowledge base. The ontology is a conceptualization of a domain
and is formalized in Frame Logic as well. The ontology definition contains an is-
a hierarchy of relevant domain concepts, possible relationships between concepts,
further properties of concepts (attributes with value ranges), and derivation rules to
infer new knowledge.

The principle architecture of ONTOBROKER (figure 1) consists of four independent
parts. The query interface allows information seekers to pose queries to the knowl-
edge provided by ONTOBROKER. The knowledge base contains all basic facts and
can be realized by powerful data-base management systems, thus large amounts of
information can be dealt with. An inference engine provides services that derive
additional knowledge through inference rules on demand or in advance. The info
agent is responsible for collecting the raw facts from distributed sources. It is com-
posed of modules that realize the gathering of different kinds of documents. The
info agent can access (i) HTML documents annotated with ONTOBROKER’s meta-
data language HTML-A (a slight extension of HTML), (ii) it realizes wrappers to
multiple instance documents, to databases, or other wrappable documents, (iii) it
may access RDF metadata [6], or (iv) it can import the information contained in
XML documents. This last appearance of the info agent (i.e. its XML module) will
be described in more detail in the remaining sections.

All four parts of ONTOBROKER are conceptually linked by the ontology, the overall
structuring principle of the whole system. The ontology is used by the inference
engine to infer new knowledge based on inference rules. The knowledge base is
organized with respect to the ontology, and the query interface uses it to provide
guidance when formulating queries. Lastly, the info agent uses ontologies to extract
facts, i.e. to translate from the original sources into the conceptual model of the
system. This is true regardless of the document type of input, i.e. HTML-A, RDF,
or XML. In a similar way the Observer system [19] uses ontologies to access and

7

integrate information stored in distributed and independent databases.

The architecture illustrates that the info agent abstracts from the concrete realiza-
tion of the information resources. The kind of resource is irrelevant for all other
components of the ONTOBROKER architecture. Users can access information stem-
ming from resources represented by any of the supported document types in a uni-
form way. Likewise the info agent will abstract from different document structures
of XML documents.

How ONTOBROKER’s info agent maps the structure of XML documents to an onto-
logy follows in the next subsection and in section 4.

3.2 The Role of DTDMAKER in ONTOBROKER

ONTOBROKER can retrieve and integrate information stored in XML documents
because its info agent provides mappings between the structure and contents of
these documents and conceptual entities of an ontology. The information stored in
XML must be associated with the correct parts from the ontolgy. This association
must be hand coded if there does not exist a canonical relationship between XML
structure and ontology.

A prerequisite for making information retrieval from XML documents possible in
ONTOBROKER is the definition of a domain ontology. In our example and in the
ONTOBROKER project in general this ontology is formalized in Frame Logic. This
Frame Logic representation of an ontology serves as input to a translator that au-
tomatically derives canonical document type definitions (DTDs) for XML docu-
ments (cf. section 4). This component is called DTDMAKER. It produces DTDs
that define a rather unrestricted class of documents, i.e. DTDMAKER defines rela-
tively little constraints on the structure of the documents. But these restrictions are
sufficient to enable a translation of knowledge encoded in XML documents (that
conform to such a DTD) to facts in the knowledge base that adheres to an ontology.

The info agent gathers XML documents and imports their contents into the knowl-
edge base. This import process needs the ontology to retranslate the representation
of instances of ontological concepts and relationships from XML to the knowl-
edge base. If the documents conform to the DTD that is produced by DTDMAKER

the direct relationship to the ontology makes this task a straightforward one. An
overview of the relationship between the ontology, the DTD, and XML instances is
given in figure 2.

Even if XML documents do not conform to the derived DTD and, thus, do not em-
body this direct relationship to the ontology, they can be accessed by ONTOBRO-
KER. But since queries are formulated in terms of the ontology, mappings from
these document structures to the ontology have to be formulated. In this case the

8

Info

Agent

HTML-A

RDF

XML

Wrapper

Ontology

XML documents

DTDDTDMaker

to
O

n
to

b
ro

k
e
r

use

defines

Fig. 2. Relationship between ontology, DTD and XML.

DTD generated by DTDMAKER can be viewed as a canonical XML document
structure that can serve as a reference. Other XML structures and vocabularies can
be mapped into this canonical form, e.g. via XSLT stylesheets that contain the nec-
essary templates, before the info agent of ONTOBROKER can import them into the
knowldedge base.

4 Deriving DTDs from Ontologies

This section will present the tool DTDMAKER that produces an XML Document
Type Definition (DTD) based on a given ontology. The provision of a DTD has the
advantage that any validating XML application can access the DTD, can check the
XML document for structural validity, and, hence, to some extent also for seman-
tical validity. The DTD is produced by mapping ontology concepts and attributes
to XML elements, thus that these documents are compatible with the ontology. We
do not claim that a DTD can be a substitution for a complete formal definition of
an ontology but we claim that both are needed, ontologies and DTDs. DTDs are
important since most XML applications do not care about the existence of an onto-
logy. These applications can still read, write, and process documents as usual, and
the documents can still be checked for structural validity (due to the DTD). The
ontology is important as a semantic basis for applications that are ontology-aware
and can benefit from the knowledge encoded in the ontology (e.g. for semantic
queries). See figure 3 for an overview of these different levels of applications for
XML documents. Generating a DTD from an ontology means that to some extent
valid XML documents (complying to the generated DTD) are also valid with re-
spect to the ontology.

We will now illustrate the mechanisms behind DTDMAKER by giving examples
for all relevant cases.

9

Applications

Ontology

DTD

XML

semantically

valid

well

formed

structurally

valid

Fig. 3. Application scenario for (ontology based) XML documents.

4.1 General Functionality of DTDMAKER

The tool DTDMAKER takes an ontology in FLogic 2 as input and translates certain
parts of the ontology into structural descriptions in a DTD. The general idea of
DTDMAKER is as follows:

� Each concept from the ontology is mapped to an element type in the DTD.
� For each attribute of these concepts DTDMAKER defines a subelement and an

XML attribute for the concept element.
� If the attribute represents a relation to another concept the attribute element has

as content the respective concept element, otherwise its content model is simply
PCDATA.

All further knowledge that might be encoded in an ontology does not get transferred
into the resulting DTD.

This is only one possible translation scheme from ontologies to DTDs. Others are
imaginable, e.g. instead of “each concept becomes an element type” only some
concepts could be translated into element types, all other concepts might be iden-
tified by a type attribute attached to an element derived from a super concept.
E.g., instead of <Researcher> ... </Researcher> the DTD could prescribe
<Person type="Researcher"> ... </Person>. The chosen approach has
the advantage, that the DTD models all concepts following a consistent strategy
that does not need additional information about which concepts become elements
and which are modeled via the type attribute. These kinds of variations must be
handled when mapping arbitrary XML documents to ontological terms.

2 Conceptually, the representation language of the ontology is unimportant, as long as
concepts in a hierarchy and relationships between concept can be defined.

10

Object[].
Person :: Object.
Employee :: Person.
AcademicStaff :: Employee.
Researcher :: AcademicStaff.
PhDStudent :: Researcher.

Student :: Person.
PhDStudent :: Student.

Publication :: Object.
Book :: Publication.
Article :: Publication.
JournalArticle :: Article.

Journal :: Publication.

Person[name =>> STRING; email =>> STRING; editor =>> Book;
publication =>> Publication; address =>> STRING].

Employee[employeeNo =>> STRING].
AcademicStaff[supervises =>> PhDStudent].
Researcher[cooperatesWith =>> Researcher].
Student[studentID =>> NUM].
PhDStudent[supervisor =>> AcademicStaff].
Publication[author =>> Person; title =>> STRING;

year =>> NUM; abstract =>> STRING].
Book[editor =>> Person].
JournalArticle[journal =>> Journal; firstPage =>> NUM;

lastPage =>> NUM].
Journal[editor =>> Person; volume =>> NUM; number =>> NUM;

containsArticle =>> JournalArticle].

FORALL Pers1, Pers2
Pers1:Researcher[cooperatesWith ->> Pers2] <->
Pers2:Researcher[cooperatesWith ->> Pers1].

FORALL Pers1, Publ1
Publ1:Publication[author ->> Pers1] <->
Pers1:Person[publication ->> Publ1].

FORALL Pers1, Publ1
Publ1:Book[editor ->> Pers1] <->
Pers1:Person[editor ->> Publ1].

FORALL Pers1, Pers2
Pers1:PhDStudent[supervisor ->> Pers2] <->
Pers2:AcademicStaff[supervises ->> Pers1].

FORALL Publ1, Publ2
Publ2:Journal[containsArticle ->> Publ1] <->
Publ1:JournalArticle[journal ->> Publ2].

Table 1
Example Ontology of persons and puclications based on [2].

11

The example ontology given in table 1 is a subset of an ontology that specifies
among other things the domain of researchers and publications [2] . It comprises
a concept hierarchy of persons and of publications and defines several associa-
tions between these concepts. The ontology is represented in Frame Logic. The
term X::Y means “X is a subconcept of Y”. Thus, the ontology states that Person
is a subconcept of Object; Employee and Student are subconcepts of Per-
son etc. The concept PhDStudent inherits properties from both Student and
Researcher. The inherited properties are defined in the second part of the onto-
logy, namely the associations between concepts. Here, associations are realized by
attributes of the appropriate types. Besides pure attributes with the atomic value
ranges STRING and NUM, relations to other concepts are specified, e.g. the con-
cept PhDStudent has an attribute supervisor of type AcademicStaff and vice
versa AcademicStaff may supervise PhDStudents. The third part of the onto-
logy contains axioms. These axioms will be used to derive new knowledge based
on the given facts, e.g. if we know that some Researcher A cooperatesWith

B, we can infer that this B must be a Researcher as well and cooperatesWith

A. Thus, the ontology enables applications to round out incomplete knowledge.

The presented tool DTDMAKER takes the described ontology as input and derives
a DTD for structuring XML documents. The DTD is too large to present it in its
entirety, so only small fragments will be shown to illustrate how the ontology is
mapped to a structure for XML documents (see table 2 for a larger portion of the
DTD). Since inheritance is a central feature of ontologies that is not supported in
XML 3 this feature has to be brought in by other means. We use parameter entities
of XML for this purpose. Parameter entities define substitution strings that can be
used throughout the DTD. Each time a parameter entity is referenced, this reference
is replaced with the substitution string. In DTDMAKER for each concept C that
has sub-concepts (and subsub-concepts etc.) C1, C2, C3, C4 a parameter entity is
defined:

<!ENTITY % C "C | C1 | C2 | C3 | C4" >

This definition states that whenever the parameter entity %C; is referenced in the
DTD it is substituted by the disjunction C | C1 | C2 | C3 | C4, i.e. wherever
in the XML document the concept C can be inserted its subconcepts are equally
allowed. The ontology states that Persons may have Publications. Through
inheritance it is perfectly legal to define an Article as the value of a Person’s
publication-attribute. This fact must be expressible in a valid XML document
as well, and thus, specified in the DTD:

<!ENTITY % Publication "Publication|Book|Article|...">

3 XML schemas provide a partial solution to this problem, cf. [18,24], and section 5 for a
discussion

12

DTDMAKER maps concepts from the ontology to element types in the DTD, i.e.
for each concept an element type is defined. The content models of these element
types consist of elements that represent the concept’s attributes. The order in which
these attribute elements must occur is not defined by DTDMAKER since the onto-
logy is a syntax independent specification. For example, the concept Book has five
attributes including inherited attributes like author or title.

<!ELEMENT Book (#PCDATA|author|title|year|abstract|editor)*>

In an XML document this element may be instantiated like this:

<Book>
<title>The SGML Handbook.</title>
<author>Charles F. Goldfarb</author>
<year>1990</year>

</Book>

As the example illustrates, the DTD does not dictate the order of elements nor does
it require all of them to be present. The DTD even allows pure character data as
contents of elements (cf. section 4.3 for a discussion of the strictness of the DTD).

Additionally, attributes from the ontology are expressible as XML attributes as
well, i.e. ontological attributes are mapped to corresponding XML attributes, e.g.

<!ATTLIST Book
year CDATA #IMPLIED
abstract CDATA #IMPLIED
title CDATA #IMPLIED
author CDATA #IMPLIED
editor CDATA #IMPLIED>

For some attributes this attribute notation seems more natural while for others the
subelement notation is appropriate or even mandatory (e.g. for a Publication

that can have multiple authors), e.g.

<Book title="The XML Handbook" year="1998">
<author>Charles F. Goldfarb</author>
<author>Paul Prescod</author>

</Book>

The last step for mapping an ontology to a DTD is the specification of the con-
tent model of the attribute elements. This content specification is governed by the
attribute value ranges as defined in the ontology. The attribute title of Publica-
tion has the atomic value range STRING and thus does not specify a relationship
to another concept. Consequently this title element may have only character data
as content.

13

<!ELEMENT title (#PCDATA) >

The author attribute defines an association between a Publication and a Per-
son and the cooperation between Researchers is expressed with the cooperates-
With attribute. The element type definitions produced by DTDMAKER match
these intentions:

<!ELEMENT author (#PCDATA | %Person;)* >
<!ELEMENT cooperatesWith (#PCDATA | %Researcher;)* >

An author element may have one or more Person subelements that represent the
authors of the embracing Publication. Note, that the element type definition
does not refer to the element type Person directly, rather it uses the earlier defined
parameter entity %Person;. By doing so, not only Person is allowed as subele-
ment of author but also Researcher, PhDStudent etc. Replacing the parameter
entity with the appropriate substitution string would lead to the following element
type definition.

<!ELEMENT author (#PCDATA | Person | Employee | Student |
AcademicStaff | PhDStudent | Researcher)* >

By mapping ontology concepts and attributes to XML elements via the definition
of a DTD, XML documents can be authored that represent facts that are imme-
diately compatible with the designed ontology. A part of the DTD derived from
the ontology (see above) is presented in table 2. The presented DTD contains four
sections: (i) at the beginning entities are defined that imitate the is-a hierarchy of
ontology concepts (using the substitution string-trick). (ii) The second section de-
clares the content model (i.e. the subelements) of XML elements representing onto-
logy concepts. These subelements represent attributes of concepts, e.g. email and
publication are attributes of Person. (iii) In the next section optional XML at-
tributes are defined that represent ontological attributes of the respective concept.
The interpretation of e.g. the title subelement of Book and the title attribute
of a Book element are identical. (iv) In the last section the content model of ele-
ments generated from ontology attributes are defined. The content is either PCDATA
for atomic attribute value types (e.g. the title element) or elements representing
the concepts defined as the attribute’s value type in the ontology (e.g. the author
attribute has a value type of Person).

4.2 DTDs are broad

The DTD leaves open which element will become the root element of a concrete
document instance. Thus, different XML documents can have different root ele-
ments while still conforming to the same DTD and with that to the underlying
ontology. For example, a document providing information about a researcher would

14

<!-- entities for realizing the is-a hierarchy -->
<!ENTITY % Person "Person | Employee | Student |

AcademicStaff | PhDStudent | Researcher" >
<!ENTITY % Researcher "Researcher | PhDStudent" >
<!ENTITY % Publication "Publication | Book | Article |

JournalArticle | Journal" >
<!ENTITY % Article "Article | JournalArticle" >
<!ENTITY % Book "Book" >

<!-- element declarations for ontology concepts -->
<!ELEMENT Person (#PCDATA | name | email | adress |

publication | editor)*>
<!ELEMENT Researcher (#PCDATA | name | email | address |

publication | editor | employeeNo | supervises |
cooperatesWith)*>

<!ELEMENT Publication (#PCDATA | author | title | year |
abstract)*>

<!ELEMENT Article (#PCDATA | author | title | year |
abstract)*>

<!ELEMENT Book (#PCDATA | author | title | year |
abstract | editor)*>

<!-- ATTLIST declarations for ontology attributes -->
<!ATTLIST Person
address CDATA #IMPLIED
phone CDATA #IMPLIED
email CDATA #IMPLIED
publication CDATA #IMPLIED
name CDATA #IMPLIED
editor CDATA #IMPLIED>

<!-- element declarations for ontology attributes -->
<!ELEMENT author (#PCDATA | %Person;)* >
<!ELEMENT title (#PCDATA) >
<!ELEMENT year (#PCDATA) >
<!ELEMENT editor (#PCDATA | %Book; | %Person;)* >
<!ELEMENT cooperatesWith (#PCDATA | %Researcher;)* >

Table 2
Part of the generated DTD based on the ontology of table 1.

state:

<!DOCTYPE Researcher SYSTEM "ka2-onto.dtd">

Its root element would become Researcher, and its contents would be the re-
searcher’s properties expressed by elements, e.g.:

15

<Researcher employeeNo="247">
<name>Joe Doe</name>
<address>Foostreet 1, Foocity</address>
<email>doe@foo-bar.com</email>
<cooperatesWith>Winnie Poo</cooperatesWith>
<publication>
<Book>
<title> ... </title>
<year> ... </year>
<editor> ... </editor>

</Book>
<Article>
<title> ...</title>
<abstract> ... </abstract>

</Article>
</publication>

</Researcher>

Another document might describe a single publication, e.g. a book. Here, the doc-
ument type declaration would consist of

<!DOCTYPE Book SYSTEM "ka2-onto.dtd">

followed by the document element Book and its contents. As can be seen by these
examples, each document represents the specification of an instance of an ontologi-
cal concept, i.e. a Person or a Publication, and possibly related concepts. To be
able to represent an arbitrary set of concepts within a single document in addition
to what has been stated up to now, the DTD contains another single element type
called Container that might embrace any concept elements without restrictions
concerning order or number.

A set of manifold documents can be created and accessed using just one DTD and
just one ontology. This is beneficial because all documents follow one common
domain model and thus are all processible by the same (kind of) applications, that
“understand” their common DTD. As a consequence the set of these documents
establishes a coherent and consistent knowledge base that is connected syntactically
via the DTD and semantically via the ontology. Exactly this connectedness enables
the integration of information.

4.3 DTD 6= Ontology

The expressiveness of XML to define the structure of documents in a DTD is of
course not sufficient to reflect all aspects of a formal ontology. The consequences
from this divergence are listed in this section extended by proposals for overcoming
the drawbacks.

16

� Attributes are no longer local to a concept, they are global in a document, at least
for the representation of ontology attributes as XML elements. So, any possi-
ble subelement (depending on the attributes’ value ranges) must be added to the
attributes’ content model. This leads to a DTD regarding to which more doc-
uments are classified as valid as intended. In the example ontology editor is
an attribute of Person as well as of Book. Following good ontology modelling
practice these two attributes would have been named differently, e.g. editorOf
and editedBy, respectively. Nevertheless, the element declaration for editor
contains the appropriate value types %Book; and %Person;. This implies that
a valid document may contain a Book element with an editor subelement that
has again a Book subelement, what is not intended.

A partial solution to this problem are XML Schemas [24] that provide a higher
expressiveness than DTDs. But currently, the XML Schema specifications are
still in a working draft state. Moreover, following good ontology modelling prac-
tice one would not use the same name for semantically different relationships.
Hence, this conflict can be easily avoided in most cases.

� The DTD is not as strict as it could be. This is due to usability reasons of the
DTD, esp. when manually producing XML documents. The DTD allows PC-
DATA everywhere where subelements may be inserted. As a consequence every
element has a mixed content model which restricts the constraints that can be
expressed.

This is less a consequence of the expressiveness of DTDs but more a design
decision made when implementing DTDMAKER. In the area of information in-
tegration assumptions should be as few as possible. Making DTDMAKER more
strict would allow PCDATA only for attributes with atomic value ranges, but such
an approach would increase the number of assumptions.

� Frame Logic and most other conceptual modeling languages allow the formula-
tion of cardinality constraints for attributes and relationships. These cardinality
constraints can be expressed in several ways and in different granularities (e.g.
n:m-notation vs. min-max-notation). Frame Logic distinguishes single valued
and set valued attributes. The example ontology only uses set valued attributes
because of its origin in the open web context, in which as few restrictions as
possible were coded into the ontology. Although the XML specification defines
three cardinalities: (i) exactly once, (ii) optional, and (iii) zero or many times
DTDMAKER does not exploit this feature. This is due to the fact that all defined
content models are mixed contents and thus all subelements have to be of cardi-
nality version (iii). Here again, XML schemas could model the cardinalities in
closer conformance to the ontology, but again would add further assumptions on
the structure of documents (see above).

� DTDs are much weaker for representing ontological knowledge than any logic
oriented or OO modelling language. Thus, XML only serves the purpose of se-
rializing instances of concepts and relations, modelled in such richer languages.
The DTD defines the admissible structure of these instance documents. There-
fore, the lack of expressibility of DTDs, that prohibits the formulation of e.g.
axioms of any kind or of Description Logic-like class expressions is not relevant

17

for this application. DTDMAKER is not meant to translate the whole ontology
into a DTD but only those parts necessary for representing instances, i.e. names
of concepts and attributes, the concept hierarchy and the relationships between
concepts. The true semantic processing has still to be carried out outside of XML,
e.g. within ONTOBROKER.

5 Discussion

In this paper we showed that ontologies provide a compact, formal, and concep-
tually adequate way of describing the semantics of XML documents. By deriving
DTDs from an ontology the document structure is grounded on a true semantic ba-
sis and thus, XML documents become adequate input for semantics-based process-
ing. By providing a conceptual foundation for XML we achieve at the same time a
way to access sets of differently structured XML documents rather independently
of their actual linear representation. The ontology provides a shared vocabulary
that integrates the different XML sources, that makes the information uniformly
accessible, and thus mediates between the conceptual terms used by an information
seeker and the actual mark-up used in XML documents.

Our approach relates to work from the areas of semi-structured data models, query
languages, and metadata. We do not claim that semi-structured data models or
query languages are not relevant for XML, instead we claim that they need to
be complemented by ontology-based approaches like ours (or, under certain cir-
cumstances, that pursued by [9]). They are powerful tools to retrieve the contents
of documents based on the document structure. The data models of all these ap-
proaches (among others XML-QL [8], Lorel for XML [11], XSL [5], and XQL
[20]) directly reflect the document structure, i.e. its syntax. ONTOBROKER+XML
abstracts from this structure and refers to the contents as concepts and relationships,
instead.

The relationship between our approach and RDF/RDFS [17,4] is manifold. Both
define an ontology (or schema) that is used to structure the contents of XML doc-
uments. We use Frame Logic and automatically derive a DTD that constrains the
possible document structures. In the RDF/RDFS context the schema is encoded in
XML itself using the primitives provided by RDFS. In both cases the ontology is
seen as a semantic complement to the DTD describing syntactic properties, only.
Both approaches encode the factual knowledge in XML. Differences lie in the ex-
pressible ontological primitives. Frame Logic comes from an object oriented and
logic-based tradition where each class has its own local set of attributes, whereas
in RDF attributes are global and not uniquely associated with a class. The express-
ibility of Frame Logic is richer than of RDF/RDFS, since in Frame Logic arbitrary
axioms can be formulated to derive new information. This is currently not possible
in RDF/RDFS.

18

A similar approach for combining ontologies and distributed information sources
can be found in the Untangle project. In [13] and [22] it is described how an SGML
DTD can be translated into the core of an ontology represented in CLASSIC, a
Description Logics system. In another project, Infosleuth [14], an ontology is built
based on the database schemas of the sources that should be accessed. [14] de-
scribes a stepwise process of achieving the common vocabulary. Both approaches
integrate information based on an ontology but neither access XML documents nor
care about the impact an ontology could have on the structure of the sources, e.g.
when designing a DTD.

Another approach for integrating information from various data sources is the Strudel
system [10]. Strudel’s mediator component is based on a semistructured data model
and provides an integrated view of the sources by evaluating STRUQL-queries.
Thus the Strudel system lacks the semantic level that is provided in our approach
by the domain ontology.

XML schemas will go in a similar direction of raising the level of abstraction when
designing the structure of documents. [18] define a list of requirements for a future
standard for XML schemas that are the designated successor of DTDs. The current
working drafts produced by the W3C Schema Working Group can be found in [24].
In XML Schema elements can inherit attributes and content models from other ele-
ments, such that a schema will become more compact than the corresponding DTD.
If the defined requirements for XML schemas are met some aspects of our work,
esp. the handling of inheritance, will be realized. That implies that (in the future)
transforming ontologies into XML Schemas seems to be more appropriate than to
DTDs. But still, XML Schemas primarily cope with document structure and not
with semantics. XML Schemas do not provide any inference capabilities and nar-
rowly focus on XML alone. As far as we know no tools exist that associate schema
descriptions, XML documents, and processing capabilities that fully exploit the
conceptual description of a schema. With ONTOBROKER+XML we currently have
a tool that can make use of schematic knowledge provided by the ontology. Never-
theless, XML Schemas will become more widely known and used in the future, so
that we have to consider schemas as an additional source of information as soon as
the standardization process will be a little more advanced.

Since, it cannot be expected that application development always starts with mod-
eling an ontology we must take care of existing XML document structures or XML
Schemas, how they can be related to an ontology, or how they can be used to de-
rive an ontology (cf. [22,14]). This reverse direction allows (i) to keep and use the
existing XML documents and structures, (ii) to use all existing applications that
create, access, manipulate, filter, render, and query these documents, and (iii) at
the same time to benefit from the domain knowledge modeled in the ontology by
utilizing smarter applications that can complement (or even replace) the existing
applications in some areas esp. query answering.

19

References

[1] S. Abiteboul, D. Quass, J. McHugh, J. Widom, and J. Wiener, The Lorel query
language for semi-structured data, Journal of Digital Libraries. Volume 1, No. 1,
1997

[2] R. Benjamins, D. Fensel, S. Decker, A. Gomez Perez, KA2. Building ontologies for
the internet: A midterm report, International Journal of Human Computer Studies,
51(3), 1999. pp. 687-712.

[3] T. Bray, J. Paoli, and C.M.Sperberg-McQueen, eds., Extensible Markup Language
(XML) 1.0. W3C Recommendation, February 10, 1998.
http://www.w3.org/TR/1998/REC-xml-19980210

[4] D. Brickley and R.V. Guha, Resource Description Framework (RDF) schema
specification, W3C Proposed Recommendation, March 3, 1999.
http://www.w3.org/TR/PR-rdf-schema

[5] S. Deach ed., Extensible Stylesheet Language (XSL) specification, W3C Working
Draft, March 27, 2000.
http://www.w3.org/TR/xsl

[6] S. Decker, D. Brickley, J. Saarela, and J. Angele, A query and inference service for
RDF, Proceedings of the W3C Query Language Workshop (QL-98), Boston, MA,
December 3-4, 1998.

[7] S. Decker, M. Erdmann, D. Fensel, and R. Studer, Ontobroker: Ontology-based
access to distributed and semi-structured information, R. Meersman et al. eds.,
Semantic Issues in Multimedia Systems, Kluwer Academic Publisher, Boston 1999.

[8] A. Deutsch, M. Fernandez, D. Florescu, A. Levy, and D. Suciu, A query language
for XML. Proceedings of Eigth International World Wide Web Conference (WWW8),
1999.

[9] M. Erdmann, and S. Decker, Ontology-aware XML queries, submitted, 2000.

[10] M. Fernandez, D. Florescu, J. Kang, and A. Levy, Catching the boat with Strudel:
Experiences with a web-site management system, Proceedings of the 1998 ACM
International Conference on Management of Data (SIGMOD’98), Seattle, WA, 1998.

[11] R. Goldman, J. McHugh, and J. Widom, From semistructured data to XML:
Migrating the Lore data model and query language Proceedings of the 2nd
International Workshop on the Web and Databases (WebDB ’99), Philadelphia,
Pennsylvania, June 1999.
ftp://db.stanford.edu/pub/papers/xml.ps

[12] T.R. Gruber, A translation approach to portable ontology specifications, Knowledge
Acquisition. vol. 6, no. 2, 1993. pp199-221

[13] N. Ide, T. McGraw, and C. Welty, Representing TEI documents in the CLASSIC
knowledge representation system, Proceedings of the Tenth workshop of the Text-
Encoding Initiative. November, 1997.

20

[14] V. Kashyap, Design and creation of ontologies for environmental information
retrieval, Proceedings of the 12th Workshop on Knowledge Acquisition, Modeling
and Management (KAW’99), Banff, Canada, October 1999

[15] M. Kifer, G. Lausen, and J. Wu, Logical foundations of object-oriented and frame-
based languages, Journal of the ACM, 42, 1995.

[16] A. Kotok, A survey of XML business data exchange vocabularies, XML.com,
Februrary 23. 2000.
http://www.xml.com/pub/2000/02/23/ebiz/index.html

[17] O. Lassila and R.R. Swick, Resource Description Framework (RDF) model and
syntax specification, W3C Recommendation, February 22, 1999.
http://www.w3.org/TR/REC-rdf-syntax

[18] A. Malhotra and M. Maloney, eds., XML Schema requirements, W3C Note. February
15, 1999.
http://www.w3.org/TR/NOTE-xml-schema-req

[19] E. Mena, V. Kashyap, A. Illarramendi, and A. Sheth, Domain specific ontologies for
semantic information brokering on the global information infrastructure, N. Guarino,
ed. Formal Ontology in Information Systems. IOS Press, 1998.

[20] J. Robie, J. Lapp, and D. Schach: XML Query Language (XQL), Proceedings of the
W3C Query Language Workshop (QL-98), Boston, MA, December 3-4, 1998.
http://www.w3.org/TandS/QL/QL98/pp/xql.html

[21] J. Robie, ed., XQL (XML Query Language), Working draft. August 1999.
http://metalab.unc.edu/xql/xql-proposal.html

[22] C. Welty and N. Ide, Using the right tools: enhancing retrieval from marked-up
documents, Journal Computers and the Humanities. 33(10):59-84. April, 1999.

[23] XML/EDI-Group, XML/EDI, the E-Business Framework.
http://www.geocities.com/WallStreet/Floor/5815/

[24] XML Schema Working Group, XML Schema part 1: Structures. and XML Schema
part 2: Datatypes. W3C Working Draft.
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-2/

21

