
Copyright © ebXML 2000 & 2001. All Rights Reserved.

 1

 2

 3

 4

ebXML Registry Information Model 5

ebXML Registry Project Team 6

Working Draft 1/19/2001 7

This version: Version 0.55 8
 9

1 Status of this Document 10

 11
This document specifies an ebXML DRAFT STANDARD for the eBusiness 12
community. 13
 14
Distribution of this document is unlimited. 15
 16
The document formatting is based on the Internet Society’s Standard RFC 17
format. 18
 19
This version: 20
 http://www.ebxml.org/project_teams/registry/private/registryInfoModelv0.55.pdf 21
 22
Latest version: 23
 http://www.ebxml.org/project_teams/registry/private/registryInfoModelv0.55.pdf 24
 25
Previous version: 26
 http://www.ebxml.org/project_teams/registry/private/registryInfoModelv0.54.pdf 27
 28
 29

30

ebXML Registry January 2000

ebXML Registry Information Model Page 2 of 39

Copyright © ebXML 2000 & 2001. All Rights Reserved.

2 ebXML participants 30

The authors wish to acknowledge the support of the members of the Registry 31
Project Team who contributed ideas to this specification by the group’s 32
discussion e-mail list, on conference calls and during face-to-face meetings. 33
 34
Joseph Baran - Extol 35
Lisa Carnahan – NIST 36
Joe Dalman - Tie 37
Philippe DeSmedt - Viquity 38
Sally Fuger - AIAG 39
Steve Hanna - Sun Microsystems 40
Scott Hinkelman - IBM 41
Michael Kass, NIST 42
Jong.L Kim – Innodigital 43
Bob Miller - GXS 44
Kunio Mizoguchi - Electronic Commerce Promotion Council of Japan 45
Dale Moberg – Sterling Commerce 46
Ron Monzillo – Sun Microsystems 47
JP Morgenthal – XML Solutions 48
Joel Munter - Intel 49
Farrukh Najmi - Sun Microsystems 50
Scott Nieman - Norstan Consulting 51
Frank Olken – Lawrence Berkeley National Laboratory 52
Michael Park - eSum Technologies 53
Bruce Peat - eProcess Solutions 54
Mike Rowley – Excelon Corporation 55
Waqar Sadiq - Vitria 56
Krishna Sankar - CISCO 57
Kim Tae Soo - Government of Korea 58
Nikola Stojanovic - Columbine JDS Systems 59
David Webber - XML Global 60
Yutaka Yoshida - Sun Microsystems 61
Prasad Yendluri - webmethods 62
Peter Z. Zhoo - Knowledge For the new Millennium 63
 64

65

ebXML Registry January 2000

ebXML Registry Information Model Page 3 of 39

Copyright © ebXML 2000 & 2001. All Rights Reserved.

Table of Contents 65

 66

1 STATUS OF THIS DOCUMENT..1 67

2 EBXML PARTICIPANTS..2 68

3 INTRODUCTION ...6 69

3.1 SUMMARY OF CONTENTS OF DOCUMENT..6 70
3.2 GENERAL CONVENTIONS ..6 71
3.3 AUDIENCE...6 72
3.4 RELATED DOCUMENTS ...7 73

4 DESIGN OBJECTIVES..7 74

4.1 GOALS ..7 75
4.2 CAVEATS AND ASSUMPTIONS ...7 76

5 SYSTEM OVERVIEW ...7 77

5.1 ROLE OF EBXML REGISTRY...7 78
5.2 REGISTRY SERVICES ...8 79
5.3 WHAT THE REGISTRY INFORMATION MODEL DOES ..8 80
5.4 HOW THE REGISTRY INFORMATION MODEL WORKS ..8 81
5.5 WHERE THE REGISTRY INFORMATION MODEL MAY BE IMPLEMENTED8 82

6 REGISTRY INFORMATION MODEL: PUBLIC VIEW....................................8 83

6.1 MANAGEDOBJECT ..9 84
6.2 ASSOCIATION..9 85
6.3 EXTERNALLINK ..9 86
6.4 CLASSIFICATIONNODE..10 87
6.5 CLASSIFICATION ...10 88
6.6 PACKAGE ..10 89
6.7 AUDITABLEEVENT..10 90
6.8 POSTALADDRESS ..10 91
6.9 CONTACT..10 92
6.10 ORGANIZATION...10 93

7 REGISTRY INFORMATION MODEL: DETAIL VIEW..................................11 94

7.1 INTERFACE OBJECT...12 95
7.2 INTERFACE VERSIONABLE..14 96
7.3 INTERFACE MANAGEDOBJECT...14 97

7.3.1 Pre-defined ManagedObject Status Types...15 98
7.4 INTERFACE EXTRINSICOBJECT...16 99

7.4.1 Pre-Defined Extrinsic Object Types ..17 100
7.5 INTERFACE INTRINSICOBJECT..18 101

ebXML Registry January 2000

ebXML Registry Information Model Page 4 of 39

Copyright © ebXML 2000 & 2001. All Rights Reserved.

7.6 INTERFACE PACKAGE..18 102
7.7 INTERFACE EXTERNALLINK..18 103

8 REGISTRY AUDIT TRAIL...19 104

8.1 INTERFACE AUDITABLEEVENT ...19 105
8.2 INTERFACE AUDITABLEIDENTITY ...20 106
8.3 INTERFACE ORGANIZATION..21 107
8.4 CLASS CONTACT..21 108
8.5 CLASS POSTALADDRESS ..22 109
8.6 CLASS TELEPHONENUMBER ..22 110
8.7 CLASS PERSONNAME...23 111

9 MANAGED OBJECT NAMING...23 112

10 ASSOCIATION OF MANAGED OBJECTS ...24 113

10.1 INTERFACE ASSOCIATION...24 114

11 CLASSIFICATION OF MANAGED OBJECTS ...26 115

11.1 INTERFACE CLASSIFICATIONNODE...28 116
11.2 INTERFACE CLASSIFICATION ..29 117

11.2.1 Context Sensitive Classification ..30 118
11.3 EXAMPLE OF CLASSIFICATION SCHEMES ..31 119

12 QUERYING OF MANAGED OBJECTS ...31 120

12.1 OBJECT QUERY USE CASES ..31 121
12.1.1 Browse and Drill Down Query ..31 122
12.1.2 Ad Hoc Queries Based on Object Metadata And Content.........................32 123
12.1.3 Keyword Search Query ..32 124

13 INFORMATION MODEL: SECURITY VIEW ..32 125

13.1 INTERFACE ACCESSCONTROLPOLICY...33 126
13.2 INTERFACE PERMISSION ..34 127
13.3 INTERFACE PRIVILEGE...34 128
13.4 INTERFACE PRIVILEGEATTRIBUTE..35 129
13.5 INTERFACE ROLE ..35 130
13.6 INTERFACE GROUP..35 131
13.7 INTERFACE IDENTITY ...35 132
13.8 INTERFACE PRINCIPAL...36 133

14 REFERENCES ..37 134

15 DISCLAIMER ...37 135

16 CONTACT INFORMATION...38 136

COPYRIGHT STATEMENT...39 137

ebXML Registry January 2000

ebXML Registry Information Model Page 5 of 39

Copyright © ebXML 2000 & 2001. All Rights Reserved.

 Table of Figures 138

Figure 1: Information Model Public View.. 9 139
Figure 3: Information Model Inheritance View...12 140
Figure 4: Example of Managed Object Association ...24 141
Figure 5: Example showing a Classification Tree...27 142
Figure 6: Information Model Classification View...28 143
Figure 7: Classification Instance Diagram ...28 144
Figure 8: Context Sensitive Classification..30 145
Figure 9: Information Model: Security View...33 146

Table of Tables 147

Table 1: Sample Classification Schemes...31 148

 149

150

ebXML Registry January 2000

ebXML Registry Information Model Page 6 of 39

Copyright © ebXML 2000 & 2001. All Rights Reserved.

3 Introduction 150

3.1 Summary of Contents of Document 151

This document specifies the information model for the ebXML Registry. 152
 153
A separate document, ebXML Registry Services Specification [RS], describes 154
how to build Registry Services that provide access to the information content in 155
the ebXML Registry. 156

3.2 General Conventions 157

o UML diagrams are used as a way to concisely describe concepts. They are 158
not intended to convey any specific implementation or methodology 159
requirements. 160

o Interfaces are often used in UML diagrams. They are used instead of classes 161
with attributes to provide an abstract definition without implying any specific 162
implementation. Specifically, they do not imply that objects in the Registry will 163
be accessed directly via these interfaces. Objects in the Registry are 164
accessed via interfaces described in the ebXML Registry Services 165
Specification. 166

o The term “managed object content” is used to refer to actual Registry content 167
(e.g. a DTD, as opposed to metadata about the DTD). 168

o The term “ManagedObject” is used to refer to an object that provides 169
metadata about content instance (managed object content). 170

 171
The information model does not contain any elements that are the actual content 172
of the Registry (managed object content). All elements of the information model 173
represent metadata about the content and not the content itself. 174
 175
Software practitioners MAY use this document in combination with other ebXML 176
specification documents when creating ebXML compliant software. 177
 178
The keywords MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD, 179
SHOULD NOT, RECOMMENDED, MAY, and OPTIONAL, when they appear in 180
this document, are to be interpreted as described in RFC 2119 [Bra97]. 181

3.3 Audience 182

The target audience for this specification is the community of software 183
developers who are: 184
o Implementers of ebXML Registry Services 185
o Implementers of ebXML Registry Clients 186

ebXML Registry January 2000

ebXML Registry Information Model Page 7 of 39

Copyright © ebXML 2000 & 2001. All Rights Reserved.

3.4 Related Documents 187

The following specifications provide some background and related information to 188
the reader: 189

a) ebXML Registry Business Domain Model [BDM] - defines requirements 190
for ebXML Registry Services 191

b) ebXML Registry Services Specification [RS] - defines the actual Registry 192
services based on this information model 193

c) Collaboration Protocol Agreement Specification [CPA] (under 194
development) - defines how profiles can be defined for a party and how 195
two parties’ profiles may be used to define a party agreement 196

d) ebXML Business Process Specification Schema [BPM] 197
 198

4 Design Objectives 199

4.1 Goals 200

The goals of this version of the specification are to: 201

o Communicate what information is in the Registry and how that information is 202
organized 203

o Leverage as much as possible the work done in the OASIS [OAS] and the 204
ISO 11179 [ISO] Registry models 205

o Align with relevant works in progress within other ebXML working groups 206

o Be able to evolve to support future ebXML Registry requirements 207

o Be compatible with other ebXML specifications 208

4.2 Caveats and Assumptions 209

The Registry Information Model specification is first in a series of phased 210
deliverables. Later versions of the document will include additional functionality 211
planned for current and future development. 212

5 System Overview 213

5.1 Role of ebXML Registry 214

The Registry provides a stable store where content submitted by a Submitting 215
Organization is persisted. Such content is used to facilitate ebXML-based 216
business to business (B2B) partnerships and transactions. Submitted content 217
may be XML schema and documents, process descriptions, UML models, 218
information about parties and even software components. 219

ebXML Registry January 2000

ebXML Registry Information Model Page 8 of 39

Copyright © ebXML 2000 & 2001. All Rights Reserved.

5.2 Registry Services 220

A set of Registry Services that provide access to Registry content to clients of the 221
Registry is defined in the ebXML Registry Services Specification [RS]. This 222
document does not provide details on these services but may occasionally refer 223
to them. 224

5.3 What the Registry Information Model Does 225

The Registry Information Model provides a blueprint or high-level schema for the 226
ebXML Registry. Its primary value is for implementers of ebXML Registries. It 227
provides these implementers with information on the type of metadata that is 228
stored in the Registry as well as the relationships among metadata classes. 229

The Registry information model: 230

o Defines what types of objects are stored in the Registry 231

o Defines how stored objects are organized in the Registry 232

o Is based on ebXML metamodels from various working groups 233
 234

5.4 How the Registry Information Model Works 235

Implementers of the ebXML Registry may use the information model to 236
determine which classes to include in their Registry implementation and what 237
attributes and methods these classes may have. They may also use it to 238
determine what sort of database schema their Registry implementation may 239
need. 240

[Note]Note that the information model is meant to be 241
illustrative and does not prescribe any 242
specific implementation choices. 243

 244

5.5 Where the Registry Information Model May Be Implemented 245

The Registry Information Model may be implemented within an ebXML Registry 246
in form of a relational database schema, object database schema or some other 247
physical schema. It may also be implemented as interfaces and classes within a 248
Registry implementation. 249

6 Registry Information Model: Public View 250

This chapter provides a high level public view of the most visible objects in the 251
Registry. 252
 253
Figure 1 shows the public view of the objects in the Registry and their 254
relationships as a UML class diagram. It does not show inheritance, class 255
attributes or class methods. 256

ebXML Registry January 2000

ebXML Registry Information Model Page 9 of 39

Copyright © ebXML 2000 & 2001. All Rights Reserved.

 257
The reader is again reminded that the information model is modeling metadata 258
and not actual content. 259
 260

 261

Figure 1: Information Model Public View 262

6.1 ManagedObject 263

The central object in the information model is a ManagedObject. An instance of 264
ManagedObject exists for each content instance submitted to the Registry. 265
Instances of the ManagedObject class provide metadata about a managed object 266
content in the Registry. The actual managed object content (e.g. a DTD) is not 267
contained in an instance of the ManagedObject class. Note that most classes in 268
the information model are specialized sub-classes of ManagedObject. 269

6.2 Association 270

Association instances are ManagedObjects that are used to define many-to-271
many associations between objects in the information model. Associations are 272
described in detail in chapter 10. 273

6.3 ExternalLink 274

ExternalLink instances are ManagedObjects that model a named URI to content 275
that may reside outside the Registry. ManagedObject may be associated with 276
any number of ExternalLinks. 277

ebXML Registry January 2000

ebXML Registry Information Model Page 10 of 39

Copyright © ebXML 2000 & 2001. All Rights Reserved.

Consider the case where a Submitting Organization submits a managed object 278
content (e.g. a DTD) and wants to associate some external content to that object 279
(e.g. the Submitting Organization's home page). The ExternalLink enables this 280
capability. A potential use of the ExternalLink capability may be in a GUI tool that 281
displays the ExternalLinks to a ManagedObject. The user may click on such links 282
and navigate to an external web page referenced by the link. 283

6.4 ClassificationNode 284

ClassificationNode instances are ManagedObjects that are used to define tree 285
structures where each node in the tree is a ClassificationNode. Classification 286
trees constructed with ClassificationNodes are used to define classification 287
schemes or ontologies. ClassificationNode is described in detail in chapter 11. 288

6.5 Classification 289

Classification instances are ManagedObjects that are used to classify managed 290
object content by associating their ManagedObject instance with a 291
ClassificationNode within a classification scheme. Classification is described in 292
detail in chapter 11. 293

6.6 Package 294

Package instances are ManagedObjects that group logically related 295
ManagedObjects together. One use of a Package is to allow operations to be 296
performed on an entire package of objects. For example all objects belonging to 297
a Package may be deleted in a single request. 298

6.7 AuditableEvent 299

AuditableEvent instances are Objects that are used to provide an audit trail for 300
ManagedObjects. AuditableEvent is described in detail in chapter 8. 301

6.8 PostalAddress 302

PostalAddress is a simple reusable entity class that defines attributes of a postal 303
address. 304

6.9 Contact 305

Contact is a simple reusable entity class that defines attributes of a contact 306
person. 307
 308

6.10 Organization 309

Organization instances are ManagedObjects that provide information on 310
organizations such as a Submitting Organization. Each Organization instance 311
may have a reference to a parent Organization. 312

ebXML Registry January 2000

ebXML Registry Information Model Page 11 of 39

Copyright © ebXML 2000 & 2001. All Rights Reserved.

7 Registry Information Model: Detail View 313

This chapter covers the information model classes in more detail than the Public 314
View. The detail view introduces some additional classes within the model that 315
were not described in the public view of the information model. 316
 317
Figure 3 shows the inheritance or “is a” relationships between the classes in the 318
information model. Note that it does not show the relationships since they have 319
already been shown in . Class attributes and class methods are also not shown. 320
Detailed description of methods and attributes of most interfaces and classes will 321
be displayed in tabular form following the description of each class in the model. 322
 323
The interface Association will be covered in detail separately in chapter 10. The 324
interfaces Classification and ClassificationNode will be covered in detail 325
separately in chapter 11. 326
 327
The reader is again reminded that the information model is modeling metadata 328
and not actual content. 329

ebXML Registry January 2000

ebXML Registry Information Model Page 12 of 39

Copyright © ebXML 2000 & 2001. All Rights Reserved.

 330

Figure 3: Information Model Inheritance View 331

 332

7.1 Interface Object 333

All Known Subinterfaces: 334

Association, Classification, ClassificationNode, ExternalLink, 335
ExtrinsicObject, IntrinsicObject, ManagedObject, Organization, Package, 336
Submission 337

338
Object provides a common base interface for almost all objects in the information 339
model. Information model classes whose instances have a unique identity and an 340
independent life cycle are descendants of the Object class. 341
 342

ebXML Registry January 2000

ebXML Registry Information Model Page 13 of 39

Copyright © ebXML 2000 & 2001. All Rights Reserved.

Note that Contact and PostalAddress are not descendants of the Object class 343
because their instances do not have an independent existence and unique 344
identity. They are always a part of some other class's instance (e.g. Organization 345
has a PostalAddress). 346
 347

 348

Method Summary
 AccessControlPolicy getAccessControlPolicy()

 Gets the AccessControlPolicy object associated
with this Object. An AccessControlPolicy defines the
security model associated with the Object in terms of
“who is permitted to do what” with that Object.

 String getDescription()
 Gets the context independent textual description
for this object.

 String getName()
 Gets user friendly context independent name of
object in repository.

 String getID()
 Gets the universally unique ID (UUID) for this
object. Note that this ID also serves as URI for this object.

 void setDescription(String description)
 Sets the context independent textual description for
this object.

 void setName(String name)
 Sets user friendly context independent name of
object in repository.

 void setID(String id)
 Sets the universally unique ID (UUID) for this
object. Note that this ID also serves as URI for this object.

 349

350

ebXML Registry January 2000

ebXML Registry Information Model Page 14 of 39

Copyright © ebXML 2000 & 2001. All Rights Reserved.

7.2 Interface Versionable 350

All Known Subinterfaces: 351

Association, Classification, ClassificationNode, ExternalLink, 352
ExtrinsicObject, IntrinsicObject, ManagedObject, Organization, Package 353

 354
The Versionable interface defines the behavior common to classes that are 355
capable of creating versions of their instances. At present all ManagedObject 356
classes are required to implement the Versionable interface. 357

 358

Method Summary

 int getMajorVersion()
 Gets the major revision number for this version of the
Versionable object.

 int getMinorVersion()
 Gets the minor revision number for this version of the
Versionable object.

 void setMajorVersion(int majorVersion)
 Gets the major revision number for this version of the
Versionable object.

 void setMinorVersion(int minorVersion)
 Sets the minor revision number for this version of the
Versionable object.

 359

7.3 Interface ManagedObject 360

All Superinterfaces: 361
Object, Versionable 362

All Known Subinterfaces: 363

Association, Classification, ClassificationNode, ExternalLink, 364
ExtrinsicObject, IntrinsicObject, Organization, Package 365

366
ManagedObject is a common base class for all metadata describing submitted 367
content whose life cycle is managed by the registry. Metadata describing content 368
submitted to the registry is further specialized by the ExtrinsicObject and 369
IntrinsicObject subclasses of ManagedObject. 370
 371
 372
 373

374

ebXML Registry January 2000

ebXML Registry Information Model Page 15 of 39

Copyright © ebXML 2000 & 2001. All Rights Reserved.

Method Summary
Collection getAssociatedObjects()

 Returns the collection of Objects associated with this
object.

 Collection getAuditTrail()
 Returns the complete audit trail of all requests that
effected a state change in this object as an ordered Collection
of AuditableEvent objects.

Collection getClassificationNodes()
 Returns the collection of ClassificationNodes associated
with this object.

 Collection getExternalLinks()
 Returns the collection of ExternalLinks associated with
this object.

Collection getPackages()
 Returns the collection of Packages associated with this
object.

 int getStatus()
 Gets the life cycle status of the ManagedObject within the
Registry.

 void setStatus(int status)
 Sets the life cycle status of the ManagedObject within the
Registry.

 375

Methods inherited from interface Object
getAccessControlPolicy, getDescription, getName, getID, setDescription,
setName, setID

 376

Methods inherited from interface Versionable
getMajorVersion, getMinorVersion, setMajorVersion, setMinorVersion

7.3.1 Pre-defined ManagedObject Status Types 377

The following table lists pre-defined choices for ManagedObject status attribute. 378
 379
 380
 381
 382
 383
 384
 385

ebXML Registry January 2000

ebXML Registry Information Model Page 16 of 39

Copyright © ebXML 2000 & 2001. All Rights Reserved.

Field Summary
static int STATUS_APPROVED

 Status of a ManagedObject that catalogues content that has
been submitted to the Registry and has been subsequently
approved.

static int STATUS_DEPRECATED
 Status of a ManagedObject that catalogues content that has
been deprecated.

static int STATUS_SUBMITTED
 Status of a ManagedObject that catalogues content that has
been submitted to the Registry.

 386

7.4 Interface ExtrinsicObject 387

All Superinterfaces: 388
ManagedObject, Object, Versionable 389

 390
ExtrinsicObjects provide metadata that describes submitted content whose type 391
is not intrinsically known to the registry and therefore must be described by 392
means of additional attributes (e.g., mime type). 393
 394
Examples of content described by ExtrinsicObject include Collaboration Protocol 395
Profiles (CPP), business process descriptions, and schemas. 396

 397

Method Summary
 String getContentURI()

 Gets the URI to the content catalogued by this ExtrinsicObject.
 String getMimeType()

 Gets the mime type associated with the content catalogued by
this ExtrinsicObject.

 int getObjectType()
 Gets the pre-defined object type associated with the content
catalogued by this ExtrinsicObject.

 boolean isOpaque()
 Determines whether the content catalogued by this
ExtrinsicObject is opaque to (not readable by) the Registry. In some
situations, a Submitting Organization may submit content that is
encrypted and not even readable by the Registry.

 void setContentURI(String uri)
 Sets the URI to the content catalogued by this ExtrinsicObject.

 void setMimeType(String mimeType)
 Sets the mime type associated with the content catalogued by
this ExtrinsicObject.

ebXML Registry January 2000

ebXML Registry Information Model Page 17 of 39

Copyright © ebXML 2000 & 2001. All Rights Reserved.

 void setObjectType(int type)
 Sets the pre-defined object type associated with the content
catalogued by this ExtrinsicObject.

 void setOpaque(boolean isOpaque)
 Sets whether the content catalogued by this ExtrinsicObject is
opaque to (not readable by) the Registry.

 398

Note that methods inherited from the base interfaces of this interface are not 399
shown. 400

7.4.1 Pre-Defined Extrinsic Object Types 401

The following table lists pre-defined types of ExtrinsicObjects. 402

 403

Field Summary
static int OBJECT_TYPE_CPA

 An ExtrinsicObject of this type catalogues an XML document
Collaboration Protocol Agreement (CPA) representing a technical agreement
between two parties on how they plan to communicate with each other using a
specific protocol.

static int OBJECT_TYPE_CPP
 An ExtrinsicObject of this type catalogues an XML document called
Collaboration Protocol Profile (CPP) that provides information about a party
participating in a business transaction.

static int OBJECT_TYPE_PROCESS
 An ExtrinsicObject of this type catalogues a process description
document.

static int OBJECT_TYPE_ROLE
 An ExtrinsicObject of this type catalogues an XML description of a Role
in a Collaboration Protocol Profile (CPP).

static int OBJECT_TYPE_SERVICE_INTERFACE
 An ExtrinsicObject of this type catalogues an XML description of a
service interface as defined by [CPA].

static int OBJECT_TYPE_SOFTWARE_COMPONENT
 An ExtrinsicObject of this type catalogues a software component (e.g.,
an EJB or class library).

static int OBJECT_TYPE_TRANSPORT
 An ExtrinsicObject of this type catalogues an XML description of a
transport configuration as defined by [CPA]..

static int OBJECT_TYPE_UML_MODEL
 An ExtrinsicObject of this type catalogues a UML model.

static int OBJECT_TYPE_UNKNOWN

ebXML Registry January 2000

ebXML Registry Information Model Page 18 of 39

Copyright © ebXML 2000 & 2001. All Rights Reserved.

 An ExtrinsicObject that catalogues content whose type is unspecified or
unknown.

static int OBJECT_TYPE_XML_SCHEMA
 An ExtrinsicObject of this type catalogues an XML schema (DTD, XML
Schema, RELAX grammar, etc.).

 404

7.5 Interface IntrinsicObject 405

All Superinterfaces: 406
ManagedObject, Object, Versionable 407

All Known Subinterfaces: 408
Association, Classification, ClassificationNode, ExternalLink, Organization, 409
Package 410

 411
IntrinsicObject serve as a common base class for derived classes that catalogue 412
submitted content whose type is known to the Registry and defined by the 413
ebXML registry specifications. 414
 415
This interface currently does not define any attributes or methods. Note that 416
methods inherited from the base interfaces of this interface are not shown. 417
 418

7.6 Interface Package 419

All Superinterfaces: 420
IntrinsicObject, ManagedObject, Object, Versionable 421

 422
Logically related managed objects may be grouped into a Package. It is 423
anticipated that Registry Services will allow operations to be performed on an 424
entire package of objects in the future. 425
 426

 427

Method Summary
 Collection getMemberObjects()

 Get the collection of ManagedObjects that are members of
this Package

 428

 429

7.7 Interface ExternalLink 430

All Superinterfaces: 431

IntrinsicObject, ManagedObject, Object, Versionable 432

ebXML Registry January 2000

ebXML Registry Information Model Page 19 of 39

Copyright © ebXML 2000 & 2001. All Rights Reserved.

 433
ExternalLinks use URIs to associate content in the registry with content that may 434
reside outside the registry. For example, an organization submitting a DTD could 435
use an ExternalLink to associate the DTD with the organization's home page. 436
 437

 438

Method Summary
 URI getExternalURI()

 Gets URI to the external content.
 void setExternalURI(URI uri)

 Sets URI to the external content.
 439
Note that methods inherited from the base interfaces of this interface are not 440
shown. 441

8 Registry Audit Trail 442

This chapter describes the information model elements that support the audit trail 443
capability of the Registry. Several classes in this chapter are entity classes that 444
are used as wrappers to model a set of related attributes. These entity classes 445
do not have any associated behavior. They are analogous to the “struct” 446
construct in the C programming language. 447
 448
The getAuditTrail() method of a ManagedObject returns an ordered Collection of 449
AuditableEvents. These AuditableEvents constitute the audit trail for the 450
ManagedObject. AuditableEvents include a timestamp for the event. Each 451
AuditableEvent has an AuditableIdentity identifying the specific user that 452
performed an action that resulted in an AuditableEvent. Each AuditableIdentity 453
has an Organization, which is usually the submitting Organization. 454

8.1 Interface AuditableEvent 455

All Superinterfaces: 456
Object 457

 458
AuditableEvent instances provide a long-term record of events that effect a 459
change of state in a ManagedObject. A ManagedObject is associated with an 460
ordered Collection of AuditableEvent instances that provide a complete audit trail 461
for that Object. 462
 463
AuditableEvents are usually a result of a client-initiated request. AuditableEvent 464
instances are generated by the Registry service to log such events. 465
 466
Often such events effect a change in the life cycle of a ManagedObject. For 467
example a client request could Create, Update, Deprecate or Delete a 468

ebXML Registry January 2000

ebXML Registry Information Model Page 20 of 39

Copyright © ebXML 2000 & 2001. All Rights Reserved.

ManagedObject. No AuditableEvent is created for requests that do not alter the 469
state of a ManagedObject. Specifically, read-only requests do not generate an 470
AuditableEvent. No AuditableEvent is generated for a ManagedObject when it is 471
classified, assigned to a Package or associated with another Object. 472
 473

 474

Field Summary
static int EVENT_TYPE_CREATED

 An event that created a ManagedObject
static int EVENT_TYPE_DELETED

 An event that deleted a ManagedObject
static int EVENT_TYPE_DEPRECATED

 An event that deprecated a ManagedObject
static int EVENT_TYPE_UPDATED

 An event that updated the state of a ManagedObject
static int EVENT_TYPE_VERSIONED

 An event that versioned a ManagedObject

 475

Method Summary
 AuditableIdentity getAuditableIdentity()

 Gets the AuditableIdentity that sent the request that
generated this event.

 int getEventType()
 The type of this event as defined in table above.

 ManagedObject getManagedObject()
 Gets the ManagedObject associated with this
AuditableEvent

 Timestamp getTimestamp()
 Gets the Timestamp for when this event occured.

 476

Note that methods inherited from the base interfaces of this interface are not 477
shown. 478
 479
 480
 481
 482

8.2 Interface AuditableIdentity 483

All Superinterfaces: 484

Object 485

 486

ebXML Registry January 2000

ebXML Registry Information Model Page 21 of 39

Copyright © ebXML 2000 & 2001. All Rights Reserved.

AuditableIdentity instances are used in an AuditableEvent to keep track of the 487
identity of the requestor that sent the request that generated the AuditableEvent. 488

 489

Method Summary
 Organization getOrganization()

 Gets the Submitting Organization that sent the request that
effected this change.

 490

8.3 Interface Organization 491

All Superinterfaces: 492
IntrinsicObject, ManagedObject, Object, Versionable 493

 494
Organization instances provide information on organizations such as a 495
Submitting Organization. Each Organization instance may have a reference to a 496
parent Organization. In addition it may have a contact attribute defining the 497
primary contact within the organization. An Organization also has an address 498
attribute. 499
See Also: 500

 501

Method Summary
 PostalAddress getAddress()

 Gets the PostalAddress for this Organization.
 Contact getContact()

 Gets the primary Contact for this Organization.
 TelephoneNumber getFax()

 Gets the FAX number for this Organization.
 Organization getParent()

 Gets the parent Organization for this Organization.
 TelephoneNumber getTelephone()

 Gets the main telephone number for this Organization.
 502
Note that methods inherited from the base interfaces of this interface are not 503
shown. 504
 505

8.4 Class Contact 506

 507

 508
Contact is a simple reusable entity class that defines attributes of a contact 509
person. 510

 511

ebXML Registry January 2000

ebXML Registry Information Model Page 22 of 39

Copyright © ebXML 2000 & 2001. All Rights Reserved.

Field Summary
 PostalAddress address

 The postal address for this Contact.
 String email

 The email address for this Contact.
 TelephoneNumber fax

 The FAX number for this Contact.
 TelephoneNumber mobilePhone

 The mobile telephone number for this Contact.
 PersonName name

 Name of contact person
 TelephoneNumber pager

 The pager telephone number for this Contact.
 TelephoneNumber telephone

 The default (land line) telephone number for this
Contact.

 URL url
 The URL to the web page for this contact.

 512

8.5 Class PostalAddress 513

 514

 515
PostalAddress is a simple reusable entity class that defines attributes of a postal 516
address. 517

 518
Field Summary

 String city
 The city

 String country
 The country

 String postalCode
 The postal or zip code

 String state
 The state

 String street
 The street

 519

8.6 Class TelephoneNumber 520

 521
 522

 523

ebXML Registry January 2000

ebXML Registry Information Model Page 23 of 39

Copyright © ebXML 2000 & 2001. All Rights Reserved.

A simple reusable entity class that defines attributes of a telephone number. 524

 525
Field Summary

 String areaCode
 Area code

 String countryCode
 country code

 String extension
 internal extension if any

 String number
 The telephone number suffix not including the country or
area code.

 String url
 A URL that can dial this number electronically

 526

8.7 Class PersonName 527

 528
A simple entity class for a person’s name. 529
 530

 531
Field Summary

 String firstName
 The first name for this Contact.

 String lastName
 The last name (surname) for this Contact.

 String middleName
 The middle name for this Contact.

 532

9 Managed Object Naming 533

A ManagedObject has a name that may or may not be unique within the 534
Registry. 535
 536
In addition a ManagedObjects may have any number of context sensitive 537
alternate names that are valid only in the context of a particular classification 538
scheme. Alternate contextual naming will be addressed in a later version of the 539
Registry Information Model. 540
 541

ebXML Registry January 2000

ebXML Registry Information Model Page 24 of 39

Copyright © ebXML 2000 & 2001. All Rights Reserved.

10 Association of Managed Objects 542

A ManagedObject may be associated with 0 or more objects. The information 543
model defines an Association class. An instance of the Association class 544
represents an association between a ManagedObject and another Object. An 545
example of such an association is between ExtrinsicObjects that catalogue a new 546
Collaboration Protocol Profile (CPP) and an older Collaboration Protocol Profile 547
where the newer CPP supersedes the older CPP as shown in Figure 4. 548

 549

Figure 4: Example of Managed Object Association 550

 551

10.1 Interface Association 552

All Superinterfaces: 553

IntrinsicObject, ManagedObject, Object, Versionable 554
All Known Subinterfaces: 555

Classification 556

 557
Association instances are used to define many-to-many associations between 558
objects in the information model. 559
 560
An instance of the Association class represents an association between two 561
Objects. 562
 563
 564
 565
 566

567

Field Summary
static int ASSOCIATION_TYPE_CLASSIFIED_BY

 Defines that the source object is classified by the target object.
static int ASSOCIATION_TYPE_CONTAINED_BY

ebXML Registry January 2000

ebXML Registry Information Model Page 25 of 39

Copyright © ebXML 2000 & 2001. All Rights Reserved.

 Defines that source object is contained by the target object.
static int ASSOCIATION_TYPE_CONTAINS

 Defines that source object contains the target object.
static int ASSOCIATION_TYPE_EXTENDS

 Defines that source object inherits from or specializes the
target object.

static int ASSOCIATION_TYPE_IMPLEMENTS
 Defines that source object implements the functionality defined
by the target object.

static int ASSOCIATION_TYPE_INSTANCE_OF
 Defines that source object is an instance of target object

static int ASSOCIATION_TYPE_RELATED_TO
 Defines that source object is an instance of target object.

static int ASSOCIATION_TYPE_SUPERSEDED_BY
 Defines that the source object is superseded by the target
object.

static int ASSOCIATION_TYPE_SUPERSEDES
 Defines that the source object supersedes the target object.

static int ASSOCIATION_TYPE_USED_BY
 Defines that the source object is used by the target object in
some manner.

static int ASSOCIATION_TYPE_USES
 Defines that the source object uses the target object in some
manner.

 568

Method Summary
 int getAssociationType()

 Gets the predefined association type for this Association.
 Object getSourceObject()

 Gets the Object that is the source of this Association.
 String getSourceRole()

 Gets the name of the role played by the source Object in this
Association.

 Object getTargetObject()
 Gets the Object that is the target of this Association.

 String getTargetRole()
 Gets the name of the role played by the target Object in this
Association.

 boolean isBidirectional()

ebXML Registry January 2000

ebXML Registry Information Model Page 26 of 39

Copyright © ebXML 2000 & 2001. All Rights Reserved.

 Determine whether this Association is bi-directional.
 void setAssociationType(int associationType)

 Sets the predefined association type for this Association.
 void setBidirectional(boolean bidirectional)

 Set whether this Association is bi-directional.
 void setSourceRole(String sourceRole)

 Sets the name of the role played by the source Object in this
Association.

 void setTargetRole(String targetRole)
 Sets the name of the role played by the destination Object in this
Association.

 569

11 Classification of Managed Objects 570

This section describes the how the information model supports classification of 571
ManagedObjects. It is a simplified version of the OASIS classification model 572
[OAS]. 573
 574
A ManagedObject may be classified in many ways. For example the 575
ManagedObject for the same Collaboration Protocol Profile (CPP) may be 576
classified by its industry, by the products it sells and by its geographical location. 577
 578
A general classification scheme can be viewed as a classification tree. In the 579
example shown in Figure 5, ManagedObjects representing Collaboration 580
Protocol Profiles are shown as shaded boxes. Each Collaboration Protocol 581
Profile represents an automobile manufacturer. Each Collaboration Protocol 582
Profile is classified by the ClassificationNode named Automotive under the root 583
ClassificationNode named Industry. Furthermore, the US Automobile 584
manufacturers are classified by the US ClassificationNode under the Geography 585
ClassificationNode. Similarly, a European automobile manufacturer is classified 586
by the Europe ClassificationNode under the Geography ClassificationNode. 587
 588
The example shows how a ManagedObject may be classified by multiple 589
classification schemes. A classification scheme is defined by a 590
ClassificationNode that is the root of a classification tree (e.g. Industry, 591
Geography). 592

ebXML Registry January 2000

ebXML Registry Information Model Page 27 of 39

Copyright © ebXML 2000 & 2001. All Rights Reserved.

 593

Figure 5: Example showing a Classification Tree 594

[Note]It is important to point out that the dark 595
nodes (gasGuzzlerInc, yourDadsCarInc etc.) are 596
not part of the classification tree. The leaf 597
nodes of the classification tree are Health 598
Care, Automotive, Retail, US and Europe. The 599
dark nodes are associated with the 600
classification tree via a Classification 601
instance that is not shown in the picture 602

 603
In order to support a general classification scheme that can support single level 604
as well as multi-level classifications, the information model defines the classes 605
and relationships shown in Figure 6. 606

ebXML Registry January 2000

ebXML Registry Information Model Page 28 of 39

Copyright © ebXML 2000 & 2001. All Rights Reserved.

 607

Figure 6: Information Model Classification View 608

A Classification is a specialized form of an Association. Figure 7 shows an 609
example of an ExtrinsicObject instance for a Collaboration Protocol Profile (CPP) 610
object that is classified by a ClassificationNode representing the Industry that it 611
belongs to. 612

 613

Figure 7: Classification Instance Diagram 614

11.1 Interface ClassificationNode 615

All Superinterfaces: 616
IntrinsicObject, ManagedObject, Object, Versionable 617

 618
ClassificationNode instances are used to define tree structures where each node 619
in the tree is a ClassificationNode. Such classification trees constructed with 620
ClassificationNodes are used to define classification schemes or ontologies. 621
See Also: 622

Classification 623
 624

ebXML Registry January 2000

ebXML Registry Information Model Page 29 of 39

Copyright © ebXML 2000 & 2001. All Rights Reserved.

 625

Method Summary
 Collection getClassifiedObjects()

 Get the collection of ManagedObjects classified by
this ClassificationNode

 ClassificationNode getParent()
 Gets the parent ClassificationNode for this
ClassificationNode.

String getPath()
 Gets the path from the root ancestor of this
ClassificationNode. Each element in the path is separated
by a “.” character and is the name of a ClassificationNode
in the path (e.g “Geography.Asia.Japan”).

 void setParent(ClassificationNode parent)
 Sets the parent ClassificationNode for this
ClassificationNode.

 626
Note that methods inherited from the base interfaces of this interface are not 627
shown. 628
 629
In Figure 5, several instances of ClassificationNode are defined (all light colored 630
boxes). A ClassificationNode has zero or one ClassificationNodes for its parent 631
and zero or more ClassificationNodes for its immediate children. If a 632
ClassificationNode has no parent then it is the root of a classification tree. Note 633
that the entire classification tree is recursively defined by a single information 634
model element ClassificationNode. 635
 636

11.2 Interface Classification 637

All Superinterfaces: 638

Association, IntrinsicObject, ManagedObject, Object, Versionable 639

 640
Classification instances are used to classify managed object content by 641
associating their ManagedObject instance with a ClassificationNode instance 642
within a classification scheme. 643
 644
This interface currently does not define any attributes or methods. Note that 645
methods inherited from the base interfaces of this interface are not shown. 646
 647
Classification is a specialized form of Association from a ManagedObject to a 648
specific ClassificationNode in the classification tree. The information model 649
defines a Classification class as a sub-class of Association class to allow for 650
future specialization as well as to make classification notion be obvious in the 651
model. 652

ebXML Registry January 2000

ebXML Registry Information Model Page 30 of 39

Copyright © ebXML 2000 & 2001. All Rights Reserved.

 653
In Figure 5, Classification instances are not explicitly shown but are implied as 654
associations between the ManagedObjects (shaded leaf node) and the 655
associated ClassificationNode 656
 657

11.2.1 Context Sensitive Classification 658

Consider the case depicted in Figure 8 where a Collaboration Protocol Profile for 659
ACME Inc. is classified by the Japan ClassificationNode under the Geography 660
classification scheme. In the absence of the context for this classification its 661
meaning is ambiguous. Does it mean that ACME is located in Japan, or does it 662
mean that ACME ships products to Japan, or does it have some other meaning? 663
To address this ambiguity a Classification may optionally be associated with 664
another ClassificationNode (in this example named isLocatedIn) that provides the 665
missing context for the Classification. Another Collaboration Protocol Profile for 666
MyParcelService may be classified by the Japan ClassificationNode where this 667
Classification is associated with a different ClassificationNode (e.g. named 668
shipsTo) to indicate a different context than the one used by ACME Inc. 669

 670

Figure 8: Context Sensitive Classification 671

Thus, in order to support the possibility of Classification within multiple contexts, 672
a Classification is itself classified by any number of Classifications that bind the 673
first Classification to ClassificationNodes that provide the missing contexts. 674
 675
In summary, the generalized support for classification schemes in the information 676
model allows: 677

ebXML Registry January 2000

ebXML Registry Information Model Page 31 of 39

Copyright © ebXML 2000 & 2001. All Rights Reserved.

o A ManagedObject to be classified by defining a Classification that associates 678
it with a ClassificationNode in a classification tree. 679

o A ManagedObject to be classified along multiple facets by having multiple 680
classifications that associate it with multiple ClassificationNodes. 681

o A classification defined for a ManagedObject to be qualified by the contexts in 682
which it is being classified. 683

11.3 Example of Classification Schemes 684

The following table lists some examples of possible classification schemes 685
enabled by the information model. These schemes are based on a subset of 686
contextual concepts identified by the ebXML Business Process and Core 687
Components Project Teams. This list is meant to be illustrative not prescriptive. 688
 689
 690
Classification

Scheme
(Context)

Usage Example

Industry Find all Parties in Automotive industry
Process Find a ServiceInterface that implements a Process
Product Find a business that sells a product
Locale Find a Supplier located in Japan
Temporal Find Supplier that can ship with 24 hours
Role Find All Suppliers that have a role of “Seller”

Table 1: Sample Classification Schemes 691

12 Querying of Managed Objects 692

This chapter describes how the information model supports the querying of 693
managed object contents based on the attributes, content, associations and 694
classifications of managed object contents. Details of the access protocol 695
between clients and the Registry for the purpose of object querying are described 696
in [RS]. This chapter defines at a high level the query mechanisms without 697
defining the actual query protocol and messages exchanged as part of that 698
protocol. 699

12.1 Object Query Use Cases 700

It is recognized that there are several different use cases defining how a client 701
may want to query and search the Registry for managed object contents. 702

12.1.1 Browse and Drill Down Query 703

In this scenario a user browses the Registry content using a GUI tool referred to 704
as the Registry Browser. The user expects to initially browse the content based 705
on the pre-defined classification schemes defined in section 11.3. The user may 706
also use additional classification schemes that may have been defined for 707

ebXML Registry January 2000

ebXML Registry Information Model Page 32 of 39

Copyright © ebXML 2000 & 2001. All Rights Reserved.

objects selected by the pre-defined classification scheme chosen. The user will 708
select a managed object content and drill down to view the details of the object. 709

12.1.2 Ad Hoc Queries Based on Object Metadata And Content 710

This is an advanced form of use case for querying the Registry. In this scenario a 711
client program may search for managed object contents based on the metadata 712
defined as attributes in its corresponding ManagedObject as well as the 713
managed object content itself. 714

12.1.3 Keyword Search Query 715

In this scenario a user may search for managed object contents by specifying 716
keywords that may be used to identify the managed object contents. 717

13 Information Model: Security View 718

This chapter describes the aspects of the information model that relate to the 719
security features of the Registry. 720
 721
Figure 9 shows the view of the objects in the Registry from a security 722
perspective. It shows object relationships as a UML class diagram. It does not 723
show class attributes or class methods that will be described in subsequent 724
sections. It is meant to be illustrative not prescriptive. 725
 726

ebXML Registry January 2000

ebXML Registry Information Model Page 33 of 39

Copyright © ebXML 2000 & 2001. All Rights Reserved.

 727

Figure 9: Information Model: Security View 728

13.1 Interface AccessControlPolicy 729

Every Object is associated with exactly one AccessControlPolicy which defines 730
the policy rules that govern access to operations or methods performed on that 731
Object. Such policy rules are defined as a collection of Permissions. 732
 733
 734

 735
 736

ebXML Registry January 2000

ebXML Registry Information Model Page 34 of 39

Copyright © ebXML 2000 & 2001. All Rights Reserved.

Method Summary
 Collection getPermissions()

 Gets the Permissions defined for this AccessControlPolicy

 737

13.2 Interface Permission 738

 739
The Permission object is used for authorization and access control to Objects in 740
the Registry. The Permissions for an Object are defined in an 741
AccessControlPolicy object. 742
 743
A Permission object authorizes access to a method in an Object if the requesting 744
Principal has any of the Privileges defined in the Permission. 745
See Also: 746

Privilege, AccessControlPolicy 747

 748

Method Summary
 String getMethodName()

 Gets the method name that is accessible to a Principal with
specified Privilege by this Permission.

 Collection getPrivileges()
 Gets the Privileges associated with this Permission.

 749

13.3 Interface Privilege 750

 751
A Privilege object contains zero or more PrivilegeAttributes. A PrivilegeAttribute 752
can be a Group, a Role, or an Identity. 753
 754
A requesting Principal must have all of the PrivilegeAttributes specified in a 755
Privilege in order to gain access to a method in a protected Object. Permissions 756
defined in the Object's AccessControlPolicy define the Privileges that can 757
authorize access to specific methods. 758
 759
This mechanism enables the flexibility to have object access control policies that 760
are based on any combination of Roles, Identities or Groups. 761
See Also: 762

PrivilegeAttribute, Permission 763
 764
 765

 766

ebXML Registry January 2000

ebXML Registry Information Model Page 35 of 39

Copyright © ebXML 2000 & 2001. All Rights Reserved.

Method Summary
 Collection getPrivilegeAttributes()

 Gets the PrivilegeAttributes associated with this Privilege.

 767

13.4 Interface PrivilegeAttribute 768

All Known Subinterfaces: 769

Group, Identity, Role 770

 771
PrivilegeAttribute is a common base class for all types of security attributes that 772
are used to grant specific access control privileges to a Principal. A Principal may 773
have several different types of PrivilegeAttributes. Specific combination of 774
PrivilegeAttributes may be defined as a Privilege object. 775
See Also: 776

Principal, Privilege 777

13.5 Interface Role 778

All Superinterfaces: 779
PrivilegeAttribute 780

 781
A security Role PrivilegeAttribute. For example a hospital may have Roles such 782
as Nurse, Doctor, Administrator etc. Roles are used to grant Privileges to 783
Principals. For example a Doctor role may be allowed to write a prescription but a 784
Nurse role may not. 785

13.6 Interface Group 786

All Superinterfaces: 787

PrivilegeAttribute 788

 789
A security Group PrivilegeAttribute. A Group is an aggregation of users that may 790
have different roles. For example a hospital may have a Group defined for 791
Nurses and Doctors that are participating in a specific clinical trial (e.g. 792
AspirinTrial group). Groups are used to grant Privileges to Principals. For 793
example the members of the AspirinTrial group may be allowed to write a 794
prescription for Aspirin (even though Nurse role as a rule may not be allowed to 795
write prescriptions). 796

13.7 Interface Identity 797

All Superinterfaces: 798
PrivilegeAttribute 799

 800

ebXML Registry January 2000

ebXML Registry Information Model Page 36 of 39

Copyright © ebXML 2000 & 2001. All Rights Reserved.

A security Identity PrivilegeAttribute. This is typically used to identify a person, an 801
organization, or software service. Identity attribute may be in the form of a digital 802
certificate. 803

13.8 Interface Principal 804

 805
Principal is a completely generic term used by the security community to include 806
both people and software systems. The Principal object is an entity that has a set 807
of PrivilegeAttributes. These PrivilegeAttributes include at least one identity, and 808
optionally a set of role memberships, group memberships or security clearances. 809
A principal is used to authenticate a requestor and to authorize the requested 810
action based on the PrivilegeAttributes associated with the Principal. 811
See Also: 812

PrivilegeAttributes, Privilege, Permission 813

 814

Method Summary
 Collection getGroups()

 Gets the Groups associated with this Principal.
 Collection getIdentities()

 Gets the Identities associated with this Principal.
 Collection getRoles()

 Gets the Roles associated with this Principal.

 815

816

ebXML Registry January 2000

ebXML Registry Information Model Page 37 of 39

Copyright © ebXML 2000 & 2001. All Rights Reserved.

14 References 816

[GLS] ebXML Glossary, http://www.ebxml.org/documents/199909/terms_of_reference.htm 817

[TA] ebXML Technical Architecture 818

[OAS] OASIS Information Model 819

http://www.nist.gov/itl/div897/ctg/regrep/oasis-work.html 820

[ISO] ISO 11179 Information Model 821

http://208.226.167.205/SC32/jtc1sc32.nsf/576871ad2f11bba78525662100822
5419d7/b83fc7816a6064c68525690e0065f913?OpenDocument 823

[BDM] Registry and Repository: Business Domain Model 824

http://www.ebxml.org/specdrafts/RegRepv1-0.pdf 825

[RS] ebXML Registry Services Specification 826
http://www.ebxml.org/project_teams/registry/private/RegistryServicesSpec827
ificationv0.83.pdf 828

[BPM] ebXML Business Process Metamodel Specification Schema 829

http://www.ebxml.org/specdrafts/Busv2-0.pdf 830

[CPA] Trading-Partner Specification 831

http://www.ebxml.org/project_teams/trade_partner/private/ 832

[CTB] Context table informal document from Core Components 833
http://www.ebxml.org/project_teams/core_components/ContextTable.doc 834

 835
 836

15 Disclaimer 837

The views and specification expressed in this document are those of the authors 838
and are not necessarily those of their employers. The authors and their 839
employers specifically disclaim responsibility for any problems arising from 840
correct or incorrect implementation or use of this design. 841

842

ebXML Registry January 2000

ebXML Registry Information Model Page 38 of 39

Copyright © ebXML 2000 & 2001. All Rights Reserved.

16 Contact Information 842

 843
Team Leader 844
 Name: Scott Nieman 845
 Company: Norstan Consulting 846
 Street: 5101 Shady Oak Road 847
 City, State, Postal Code: Minnetonka, MN 55343 848
 Country: USA 849
 Phone: 952.352.5889 850
 Email: Scott.Nieman@Norstan 851
 852
Vice Team Lead 853
 Name: Yutaka Yoshida 854
 Company: Sun Microsystems 855
 Street: 901 San Antonio Road, MS UMPK17-102 856
 City, State, Postal Code: Palo Alto, CA 94303 857
 Country: USA 858
 Phone: 650.786.5488 859
 Email: Yutaka.Yoshida@eng.sun.com 860
 861
Editor 862
 Name: Farrukh S. Najmi 863
 Company: Sun Microsystems 864
 Street: 1 Network Dr., MS BUR02-302 865
 City, State, Postal Code: Burlington, MA, 01803-0902 866
 Country: USA 867
 Phone: 781.442.0703 868
 Email: najmi@east.sun.com 869
 870

871

ebXML Registry January 2000

ebXML Registry Information Model Page 39 of 39

Copyright © ebXML 2000 & 2001. All Rights Reserved.

Copyright Statement 871

Copyright © ebXML 2000. All Rights Reserved. 872
 873
 This document and translations of it may be copied and furnished to others, and 874
derivative works that comment on or otherwise explain it or assist in its 875
implementation may be prepared, copied, published and distributed, in whole or 876
in part, without restriction of any kind, provided that the above copyright notice 877
and this paragraph are included on all such copies and derivative works. 878
However, this document itself may not be modified in any way, such as by 879
removing the copyright notice or references to the Internet Society or other 880
Internet organizations, except as needed for the purpose of developing Internet 881
standards in which case the procedures for copyrights defined in the Internet 882
Standards process must be followed, or as required to translate it into languages 883
other than English. 884
 885
 The limited permissions granted above are perpetual and will not be revoked by 886
ebXML or its successors or assigns. 887
 888
 This document and the information contained herein is provided on an 889
 "AS IS" basis and ebXML DISCLAIMS ALL WARRANTIES, EXPRESS OR 890
IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE 891
USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR 892
ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A 893
PARTICULAR PURPOSE. 894

