

A Guide to Reviewing the Microsoft .NET Framework:
a platform for rapidly building and deploying XML Web services and
applications to solve today’s business challenges.

Abstract

The Microsoft .NET Framework is a platform for building, deploying, and running XML Web
services and applications. It provides a highly productive, standards-based, multi-language
environment for integrating existing investments with next-generation applications and services as
well as the agility to solve the challenges of deployment and operation of Internet-scale
applications.

For the latest information on the .NET Framework, visit http://msdn.microsoft.com/net

http://msdn.microsoft.com/net

This is a preliminary document and may be changed substantially prior to final
commercial release of the software described herein.
The information contained in this document represents the current view of Microsoft
Corporation on the issues discussed as of the date of publication. Because Microsoft
must respond to changing market conditions, it should not be interpreted to be a
commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy
of any information presented after the date of publication.
This White Paper is for informational purposes only. MICROSOFT MAKES NO
WARRANTIES, EXPRESS OR IMPLIED, AS TO THE INFORMATION IN THIS
DOCUMENT.
Complying with all applicable copyright laws is the responsibility of the user. Without
limiting the rights under copyright, no part of this document may be reproduced,
stored in or introduced into a retrieval system, or transmitted in any form or by any
means (electronic, mechanical, photocopying, recording, or otherwise), or for any
purpose, without the express written permission of Microsoft Corporation.
Microsoft may have patents, patent applications, trademarks, copyrights, or other
intellectual property rights covering subject matter in this document. Except as
expressly provided in any written license agreement from Microsoft, the furnishing of
this document does not give you any license to these patents, trademarks,
copyrights, or other intellectual property.
 2001 Microsoft Corporation. All rights reserved.
Microsoft, the .NET logo, ActiveX, JScript, Visual Basic, Visual C++, Visual FoxPro,
Visual InterDev, Visual J++, Visual Studio, Win32, Windows, and Windows NT are
either registered trademarks or trademarks of Microsoft Corporation in the United
States and/or other countries.
The names of actual companies and products mentioned herein may be the
trademarks of their respective owners.
Microsoft Corporation • One Microsoft Way • Redmond, WA 98052-6399 • USA
1297

.NET Framework Reviewers Guide i

REVIEW CRITERIA...1
Overview 4

.NET FRAMEWORK: INTRODUCTION ...4
Web Development 4
Challenges 5
Solution: XML Web Services 5
The .NET Framework Design Goals 6

THE XML WEB SERVICES PROGRAMMING MODEL...................8
Core XML Web Services Technologies SOAP Family 8

.NET FRAMEWORK: OVERVIEW..10
The .NET Framework: The Microsoft XML Web Services Engine 10
THE .NET FRAMEWORK: Three Parts 10
The Common Language Runtime 10
What the Programmer Sees: The Unified Classes 13

DEVELOPER PRODUCTIVITY..16
Use any programming language 16
Take advantage of industry-leading tools 16
Developers write less code 16
Employ Windows 2000 Applications Services 17
Create XML Web services Easily 17

AGILITY TO SOLVE TODAY’S BUSINESS PROBLEMS21
Deliver on Software as a Service 21
Supporting ECMA standards for C# and CLI 21
Device support for broad reach 21
Extend all existing software transparently 21
Access databases easily with Microsoft ADO.NET 21
Web Data Access 21
Benefits of ADO.NET 24

IMPROVED OPERATIONS..26
Evidence-based security 26
Internet Capable Security 26
Simplify application deployment 27
Run more reliable applications 29
Improve performance 29

.NET FRAMEWORK FEATURE SUMMARY30
XML Web Services Standards Support 30
Developer Productivity 30
Agility to solve today’s business challenges 31
Building Next-Generation Web Applications 35

CONTENTS

ii .NET Framework Reviewers Guide

SUMMARY..35
Loosely Coupled Designs Enable Scalability 35
Leverages Operating System Services 35
Multi-Language Support 35
Standards Based 35

APPENDIX A FREQUENTLY ASKED QUESTIONS...................36

APPENDIX B .NET FRAMEWORK TOOLS................................43

APPENDIX C GLOSSARY...46

.NET Framework Reviewers Guide 1

The Microsoft® .NET Framework and Microsoft Visual Studio® .NET belong, in
the broadest sense, in the software development category. The leading edge of
the category, according to customers and industry analysts, is the distributed
application development segment. The software development category
contains all developer tools products, while the distributed application
development segment includes only those tools aimed at server- and client-side
application development. Microsoft believes the main contenders in this
segment include the .NET Framework and Visual Studio .NET, versus the Java-
based product offerings of IBM WebSphere and VisualAge, and Sun iPlanet
Application Server and Forte.

If you examine the needs of developers and enterprise organizations, you can
create a list of criteria for evaluating the .NET Framework and Visual Studio
.NET that enables the rapid development, simple integration, and improved
operation of the next generation of XML Web services and applications.. These
include:

Improved Time to Market Criteria

• The ability to use any programming language. Enable developers
the ability to use any programming language. Allow applications written
with different programming languages to integrate deeply with each
other. Leverage current development skills to go forward without
retraining. Customers have discovered the exorbitant cost of finding
developers skilled in some specialized technologies. Prominent
industry analysts recommend using existing skills whenever possible,
and avoiding the high cost and high failure rate of relying on the
technical skills in shortest supply.

• Access to state-of-the-art development tools. Deliver well designed
development tools such as integrated debugging and profiling.

• Improved code design. Provide a highly componentized, plumbing-
free design that enables developers to focus on writing business logic.
Eliminate the need to generate IDL or Registry code. Provide existing,
well-tested controls that encapsulate common programmer tasks.

• Support for loosely coupled and tightly coupled architectures. To
achieve performance, scalability, and reliability in distributed
applications, there are some operations in which components can be
tightly coupled, that is, interdependent in real time. Most modern
systems have this capability. However, successful platforms must also
have complete support for loosely coupled, message-oriented
communication, in which the chain of events supporting a distributed
transaction is not broken or blocked by any real time dependencies.
Both architectures must be supported completely and naturally so
developers create scalable solutions by default.

REVIEW CRITERIA

2 .NET Framework Reviewers Guide

Simple Integration Criteria

• Providing software as a service. Build and deliver software as a
service. Employ standards and protocols built on XML and the SOAP
family of integration standards. Provide the ability for applications to
easily to share and gain access to these services.

• Approved standards for language and infrastructure.
Standards are core to delivering software as a service.
Consequently, Microsoft has submitted the specifications for the C#
programming language and a subset of the .NET Framework called
the common language infrastructure to ECMA and ECMA is
standardizing them. These specifications are a collaboration of six
other ECMA partners including Hewlett-Packard Co and Intel and
are currently on track to be considered by the ECMA General
Assembly later this year for formal approval.

• Transparent extensions for legacy components and applications.
Provide the ability to integrate existing software into a language-
independent platform with proven technology.

• Ease of data access. Make available a productive interface to any
database, one that is designed for Web applications particular use of
loosely coupled style of data access. Support XML as its native data
format.

Improved Operations Criteria

• Providing evidence-based security. Provide a evidence-based-
security model, one that exhibits a fine-grained, method-level control
over what applications can and can’t do based on who wrote the code,
what it’s trying to do, where it was installed from, and who is trying to
run it.

• Simplifying application deployment. Support a simplified application
deployment method that makes installing applications as easy as
copying them into a directory. Build in the ability of a framework to
detect damaged applications, and self-heal to solve the problem.

• Increased reliability for applications. Deliver technologies that make
applications more reliable such as high performance automated
memory management and event-driven monitoring of Web applications
with automated granular control of restarts.

• True performance improvements. At the end of the day, improve the
performance of typical Web services and applications.

• A comprehensive solution that provides all of the services needed
to produce an enterprise-class solution. These include application
services such as an object request broker, transaction-processing
monitor, complete scripting engine, feature rich Web server, world-
class messaging support, monitoring, and management infrastructure.

.NET Framework Reviewers Guide 3

All of these services should be integrated and designed to work
together, so developers can spend their time building applications, not
cobbling together application services.

• A consistent and unified programming model for applications
running within, and applications running across, Internet
firewalls. Related to loosely coupled architectures, this criterion seeks
out the solutions that enable organizations to learn, build, and support
a simple programming model for intranet- and Internet-based
applications in order to reduce training and support costs.

• A consistent and unified programming model for broad reach
Web-based clients, as well as rich client interfaces, and emerging
smart devices. Customers today are evaluating the full range of client
devices, including PC, browser, PDA, and cellular telephone. Only by
having a programming model that elegantly supports all of today’s user
experiences, and those that will emerge in the future, and contains a
simple model for maintaining consistent business logic across any
client architecture, will complex, distributed systems be successful.

A platform embracing the above principles will enable customers to lead in
their respective industries, to build, deploy, and maintain better
applications, and to bring new software and new services to market faster
and less expensively than competitors. The .NET Framework satisfies
these requirements more completely and effectively than any other product
available today, and will do so into the foreseeable future. We invite you to
examine these new tools carefully, and make your own comparison.

4 .NET Framework Reviewers Guide

Overview

The .NET Framework is the result of two projects. The goal of the first project
was to improve development on Windows, looking specifically at improving
COM, the Microsoft Component Object Model. The second project aimed at
creating a platform for delivering software as a service. These two projects
came together more than three years ago. The finished product dramatically
improves programmer productivity, ease of deployment, and reliable application
execution, and introduces a totally new concept to computing: that of Web
Services – loosely coupled applications and components designed for today’s
heterogeneous computing landscape by communicating using standard Internet
protocols such as XML and SOAP.

Web Development

When it was created, the Web was basically a read-only file system with the
added benefit that it used industry standards and protocols, enabling easy
access to the contents of files. The few Web sites that were interactive were
typically outward extensions of existing two-tier applications.

Early Web development was typically done with the C programming language
and the Common Gateway Interface (CGI), with which very few programmers
had experience. As a result, development costs for dynamic Web applications
were high.

In addition, most of these Web applications were built on two-tier architectures,
causing challenges around scalability and application integration. Developers
simply did not design Web applications to be used by anything other than the
Web page they were hosting; in other words, the user interface and the
application logic were the same thing. Consequently, it was difficult to link Web
applications together to form more interesting aggregations. An example of this
problem would be a Web site that sells curtain rods but does not offer curtains,
forcing potential customers to visit at least two separate sites to purchase a
complete solution for their window treatments.

As a result of advances in the Microsoft Component Object Model (COM) and
the release of technologies such as Microsoft’s Active Server Pages (ASP) in
1996, Web sites offered a more interactive user experience. ASP does this by
making it easy to call the business logic and platform services that developers
need through simple script languages. COM support makes it easy to write
applications through its ability to package this business logic into modular units
that can be written in a wide range of popular programming languages, such as
Microsoft Visual Basic®, C++ or COBOL.

Web sites are now offering richer user experiences, and taking basic steps to
overcome some of the challenges of application integration, with tricks such as
using HTML frames to embed one company’s Web site within another and
HTML “screen scraping” to extract data from Web pages.

.NET FRAMEWORK:
INTRODUCTION

But these strategies for application integration have shortcomings. Simply put,
they are brittle: What happens if the other Web site changes its content to
promote a competitor or the company goes out of business, leaving the page
with a broken link?

Advancement s in Web development are rapidly moving from this two-tier
architecture to a N-tier design, which enables a richer integration strategy by
exposing business objects or middle-tier logic to Web and partner integration.
The challenges with trying to use encapsulated business logic in this way is that
most of these applications are designed on tightly coupled, proprietary
protocols.

Challenges

To date, the companies that have tried to offer solutions for enabling a Web site
to expose application integration information and functionality in a modular,
scalable, and Internet-friendly way, have encountered significant challenges.
Chief among these challenges are the following:

Time to market. The length of development time for getting an application or

Web site to market may render the offering no longer viable.
Scaling to the Web. Existing object models and component designs simply do

not work over Internet protocols. Stateless application development that
can be rerouted and served by any server is a foreign concept for many
developers. Yet such a design pattern is vitally important to achieve global
scalability.

Lack of end-to-end development tools. Toolsets available today don’t
empower organizations with the flexibility necessary to stay ahead of their
competitors. In the rapidly changing world of the Internet, organizations
must exhibit the agility to integrate new partners, with development tools
that solve the challenges of today’s heterogeneous computing
environments.

Solution: XML Web Services

To solve the challenges facing Internet development now and for the future, we
need to be able to write applications in any programming language, access
any platform, and scale over the Internet to global proportions. This application
development strategy is very compelling, as it enables companies to make use
of existing hardware, utilize current applications and use developers they have
on staff, without having to retrain them on a new programming language.

Browsers

Business Partners

Cellular
Phones

Open Internet
Communications Protocols

(HTTP, SMTP, XML, SOAP)

Rich
Clients

Other Web
Services

Devices

XML
Web

Services
An XML Web service is an
application that exposes its
functionality programmatically over
the Internet or intranet using
standard Internet protocols such as
HTTP and XML.
.NET Framework Reviewers Guide 5

This style of computing is called XML Web services and represents the next
evolution of application development. An XML Web service is an application
that exposes its functionality programmatically over the Internet or intranet
using standard Internet protocols and standards such as HTTP and XML.

XML Web services solve the challenges facing Web developers by combining
the tightly coupled, highly productive aspects of N-tier computing with the

6 .NET Framework Reviewers Guide

loosely coupled, message-oriented concepts of the Web. Think of XML Web
services as component programming over the Web.

Conceptually, developers integrate XML Web services into their applications by
calling “Web APIs” just as they would call local services. The difference is that
these calls can be routed across the Internet to a service residing on a remote
system. For example, a service such as Microsoft Passport could enable a
developer to provide authentication for an application. By programming against
the Passport service, the developer can take advantage of Passport’s
infrastructure and rely on Passport to maintain the database of users, make
sure that it is up and running, backed up properly, and so on, thus offloading a
whole set of a development and operational chores.

The .NET Framework Design Goals

The .NET Framework is the culmination of the combined efforts of several
teams at Microsoft, working together to create a platform for rapidly building
and deploying XML Web services and applications. The vision for the .NET
Framework platform is to combine a simple-to-use programming paradigm with
the scalable, open protocols of the Internet. To achieve this vision several
intermediate goals had to be delivered.

Integration through Public Internet Standards

To communicate with business partners, customers, geographically separated
divisions and even future applications, development solutions need to offer both
support for open Internet standards and deep, transparent integration with
these protocols that doesn’t force the developer to learn this underlying
infrastructure.

Scalability through a Loosely Coupled Architecture

The largest, most scalable systems in the world are built on message-based
asynchronous architectures. But building applications on such an architecture is
complex, and the tools are often less rich than those of more tightly-coupled, N-
tier application development environments. The .NET Framework was built to
bring together the productivity advantages of tightly-coupled architectures with
the scalability and interoperability advantages of loosely-coupled architectures.

Multi-Language Support

Developers use different languages because the languages are good at
particular things: some languages are particularly adapted at mathematical
manipulation; some have particularly rich financial functions, and so on. Rather
than forcing everyone to learn a single programming language, the .NET
Framework enables applications written in many different programming
languages to integrate deeply with each other. As a result, the .NET Framework
enables companies to take advantage of their current development skills
without the need of retraining, and allows developers to program in the
language of their choice.

.NET Framework Reviewers Guide 7

Enhancing Developer Productivity

With the worldwide shortage of application developers, every developer hour
must be turned to productive work. The .NET Framework development team
focused on eliminating as much programming “plumbing” as possible, leaving
the developer free to focus on writing business logic. So, for example, the .NET
Framework includes time-saving features such as easy-to-use automatic
transactions, automatic memory management, and a rich set of controls that
encapsulate many common development tasks.

Protecting Investments through Advanced Security

One of the largest concerns with the Internet today is security, and it goes
without saying that an Internet development solution needs to have security
implemented as an integral component, not layered on top. The security
architecture of the .NET Framework is designed from the ground up to ensure
that data and applications are protected through a fine-grained, evidence-based
security model.

Utilizing Operating System Services

Windows provides the richest services available with any platform; such as
comprehensive data access, integrated security, interactive user interfaces,
mature component object model, transaction processing monitors and world-
class message queuing. The .NET Framework needed to take advantage of
this richness and expose it in an easy to use way.

8 .NET Framework Reviewers Guide

Core XML Web Services Technologies SOAP Family

At the core of solving the challenges of application integration and delivering
software as a service are XML Web services. XML Web services provide a
simple, flexible, standards-based model for binding applications together over
existing Internet infrastructure. Web applications can be easily assembled with
new or existing services, irrespective of the platform, development language, or
object model used to implement any of the constituent services or applications.

The key to making XML Web services work across the Web and its
heterogeneous infrastructure is to have applications agree on a simple data
description format, based on XML. These formats, along with what they do, are
described below:

Extensible Markup Language (XML)

XML is the major building block for XML Web services. XML’s largest strength
is its flexibility to carry any type of data in a platform-independent way. Sample
XML being returned from an XML Web service can be seen on the left.

Simple Object Access Protocol (SOAP)

At the lowest level, systems need to speak the same language. In particular,
communicating applications need to have a set of rules for how they are going
to represent different data types (e.g., integers and arrays) and how they are
going to represent commands (i.e., what should be done with the data). Also,
the applications need a way to extend this language if they have to. The Simple
Object Access Protocol (SOAP), an XML grammar, represents one common set
of rules about how data and commands will be represented and extended.
SOAP has been accepted by the W3C for standardization.

Web Service Description Language (WSDL)

Once applications have general rules for how they will represent data types and
commands, they need a way to describe the specific data and commands they
accept. It is not enough for an application to say that it accepts integers;
somehow, there must be a way to deterministically say that, if you give it two
integers, it will multiply them. The Web Services Description Language (WSDL)
is an XML grammar that developers and development tools can use to
represent the capabilities of an XML Web Service.

SOAP Discovery (“Disco”)

Beyond WSDL, you need a set of rules for how to locate an XML Web service’s
description – where does a tool look to discover an XML Web service’s
capabilities? The SOAP Discovery specification provides a set of rules for
automatically discovering the WSDL description files on a particular Web site.

Universal Description, Discovery and Integration (UDDI)

UDDI is a directory, like a library card catalog, providing a way to locate all
kinds of Web Services. There are three parts to the UDDI specification:
White pages, which provide business contact information

THE XML WEB
SERVICES
PROGRAMMING MODEL

Order Service

Qty Service

Price Service

Discovery

Catalog Service

Description

Description

Description

Description

W eb Site

SO
AP

D
is

co

W
SD

L

Internet

View of accessing an XML Web
Service

Example of XML being returned
from an XML Web Service

.NET Framework Reviewers Guide 9

Yellow pages, which organize Web Services into categories (e.g. "Credit card
authorization services")

Green pages, which provide detailed technical information about individual
services

The UDDI Business Registry is an implementation of the UDDI specification
and is itself a Web Service that uses SOAP over HTTP as its messaging
protocol. For more information, see http://www.uddi.org/
The .NET Framework implements all of these Web Services standards.
For more information on XML and SOAP see http://www.w3.org/XML/Activity.html

http://www.uddi.org/
http://www.w3.org/XML/Activity.html

10 .NET Framework Reviewers Guide

The .NET Framework: The Microsoft XML Web Services
Engine

Clearly, there is a considerable amount of infrastructure required to make
building XML Web services transparent to developers and users. The Microsoft
.NET Framework provides that infrastructure. The .NET Framework supplies an
application model and key enabling technologies to simplify the creation,
deployment, and ongoing evolution of secure, reliable, scalable, highly available
XML Web services while building on existing developer skills.

To the .NET Framework, all components can be XML Web services, and XML
Web services are just another kind of component. In effect, the .NET
Framework takes the best aspects of COM (the Microsoft Component Object
Model) and combines them with the best aspects of loosely coupled XML Web
services-style computing. The result is a powerful, productive Web component
system that simplifies programmer plumbing, deeply integrates security,
introduces an Internet-scale deployment system, and greatly improves
application reliability and scalability.

THE .NET FRAMEWORK: Three Parts

The goal of the Microsoft .NET Framework is to make it easy to build XML Web
services and applications, but it also has a dramatic effect on every kind of
application, from simple client applications to many other kinds of distributed
applications.

The .NET Framework consists of three main parts: the common language
runtime, a hierarchical set of unified class libraries, and a componentized
version of Microsoft Active Server Pages called Microsoft® ASP.NET.

The common language runtime is built on top of operating system services. It is
responsible for actually executing the application – ensuring that all application
dependencies are met, managing memory, handling security, language
integration, and so on. The runtime supplies many services that help simplify
code development and application deployment while also improving application
reliability.

The developer doesn’t actually interact with the runtime, however. Developers
use a unified set of classes built on top of the runtime. These classes can be
used from any programming language.

As part of these class libraries, the .NET Framework includes a Web
application-programming model called ASP.NET that provides higher-level
components and services targeted specifically at developing XML Web services
and applications.

The Common Language Runtime

The common language runtime is a high performance execution engine. Code

.NET FRAMEWORK:
OVERVIEW

The .NET Framework from the
application view

.NET Framework

Common Language Runtime

Windows
Operating System Services

(COM+, Transactions, Message Queuing etc)

Unified Classes

ASP.NET

View of an Automatically Generated Web
Service Client

.NET Framework Reviewers Guide 11

that targets the runtime and whose execution is managed by the runtime is
referred to as managed code. Responsibility for tasks such as creating objects,
making method calls, and so on is delegated to the common language runtime,
which enables the runtime to provide additional services to the executing
code.

Despite its name, the common language runtime actually has a role in both a
component’s development time and execution time experiences.

While the component is running, the runtime provides services such as memory
management (including garbage collection), process management, thread
management, security enforcement, as well as satisfying any dependencies
that the component may have on other components.

At development time, the runtime’s role changes slightly. Because it automates
so much (e.g., memory management), the runtime makes the developer’s
experience very simple. In particular, features such as lifetime management,
strong type-naming, cross-language exception handling, delegate-based event
management, dynamic binding, and reflection dramatically reduce the amount
of code a developer must write in order to turn business logic into reusable
components.

Runtimes are nothing new for languages: virtually every programming language
has a runtime. Visual Basic has the most well known runtime (the aptly-named
VBRUN), but Visual C++® has one (MSVCRT), as do Visual FoxPro®, JScript®,
SmallTalk, Perl, Python, Haskell, and Java. The critical role of the common
language runtime, and what really sets it apart, is that it provides a unified
runtime environment across all programming languages.

The key features of the runtime include a common type system (enabling cross-
language integration), self-describing components, simplified deployment and
versioning, and integrated security services.

Common Type System and Multi-Language Integration. The runtime makes
use of a new common type system capable of expressing the semantics of
modern programming languages. The common type system defines a standard
set of data types and rules for creating new types. The runtime understands
how to create and execute these types. Compilers for the .NET Framework use
runtime services to define data types, manage objects, and make method calls
instead of using tool- or language-specific methods.

The result of having the common type system is deep multi-language
integration. Code written in one language can inherit implementation from
classes written in another language; exceptions can be thrown from code
written in one language and caught in code written in another; and operations
such as debugging and profiling work seamlessly regardless of the languages
used to write the code. This means that developers no longer need to create
different versions of their reusable libraries for each programming language or
compiler, and developers using class libraries are no longer limited to libraries
developed for the programming language they are using.

Common Language Runtime

Common Language Runtime

Security

Memory Manager

Loader

Common Language Specification

Compiler

12 .NET Framework Reviewers Guide

Metadata and Self-Describing Components. The .NET Framework enables
the creation of self-describing components, which simplifies development and
deployment and improves system reliability. Self-description is accomplished
through metadata – information contained in the binary that supplements the
executable code, providing details about dependencies, versions, and so on.
The metadata is packaged together with the component it describes resulting in
self-describing components.

A key advantage of self-describing components is that you do not need any
other files in order to use a component. This is a contrast with typical
application development today, which requires separate header files for class
definitions, separate interface description language (IDL) files, separate type
libraries, and separate proxies and stubs. Since the metadata is generated from
the source code during the compilation process, and stored with the executable
code, it is never out of sync with the executable.

Because each application contains a full description of itself, the runtime can
dynamically assemble a cache of information about the components installed
on a system. If that cache becomes damaged somehow, for example, the
runtime can rebuild it without the user even knowing. In addition to solving
development challenges, self-description eliminates the dependency on the
Windows Registry for locating components. A benefit of not relying on the
Windows registry is the ability to do No-touch deployment.

“No-touch” Deployment. This is the ability to simply copy a file to a target
machine and have it run…No registration needed. In addition to elimination of
registry dependencies the .NET Framework includes other deployment
advances that virtually eliminate “DLL Hell” – the phenomenon in which a
shared library is becomes out of sync from the applications that are trying to
access it. “Side by side” deployment now allows multiple versions of the same
named libraries to co-exist without conflict. The .NET Framework includes a
very strong internal naming system that makes it much harder for two libraries
that have the same file name to be mistaken for each other. If a new application
overwrites a shared library, an existing application that cannot use the new
shared library can actually repair itself. The next time the existing application
starts up, it will check its shared files. If it finds that one has changed and that
the changes are incompatible, it can ask the runtime to fetch a version it knows
it can work with. Because of the security system, the runtime can do so safely,
and the application can repair itself.

Evidence-based Security. The .NET Framework takes a major step forward in
security by introducing a fine-grained evidence-based security system. This
security system now gives the developer and administrator a wide range of
privileges that they can grant (not just “on” or “off”). In addition, it enables those
privileges to be applied based on key aspects of the code itself, including the
origin of the code and digital signatures.

Beyond that, since the common language runtime is used to load code, create
objects, and make method calls, the runtime can actually perform low-level

.NET Framework Reviewers Guide 13

security checks and enforce security policy as code is loaded and executed.

This design ensures that unauthorized users cannot access resources and
code cannot perform unauthorized actions, which improves overall system
safety and reliability.

What the Programmer Sees: The Unified Classes

The .NET Framework’s classes provide a unified, object-oriented, hierarchical,
and extensible set of class libraries (“APIs”) that developers can use from the
languages they are already familiar with.

Today, Visual C++ developers use the Microsoft Foundation Classes, Visual
J++ developers use the Windows Foundation Classes, and developers using
Visual Basic use the Visual Basic framework. Simply put, the .NET
Framework’s classes unify these different classes, creating a superset of their
features. The result is that developers no longer have to learn multiple object
models or class libraries. By creating a common set of APIs across all
programming languages, the .NET Framework enables cross-language
inheritance, error handling, and debugging. In effect, all programming
languages, from JScript to C++, become equal, and developers are free to
choose the right language for the job.

The .NET Framework provides classes that can be called from any
programming language. These classes comply with a set of naming and design
guidelines to further reduce the learning curve for developers. Some of the key
class libraries are shown in the figure.

The .NET Framework includes a base set of class libraries that developers
would expect in any standard library, such as collections, input/output, data
type, and numerical classes. In addition, there are classes that provide access
to all of the operating system services such as graphics, networking, threading,
globalization, cryptography, data access, classes that development tools can
use, such as debugging As well as a set of classes that supply the services
necessary for building enterprise scale applications such as transactions,
events, partitions and messaging.

Although this Reviewers Guide has focused on the Microsoft .NET Framework
as a way to develop XML Web services and Web applications, the unified
programming classes also offer full support for developing more traditional
Windows-based applications (of course, these applications can use XML Web
services, too).

Developers writing client applications for Windows can use the Windows Forms
(System.Windows.Forms) classes to take advantage of all the rich user
interface features of Windows, including existing ActiveX® controls and new
features of Windows 2000, such as transparent, layered, and floating windows.
Developers will find the Windows Forms programming model and design-time
support very intuitive, given their similarities to existing Windows-based forms
packages.

The .NET Framework Unified Classes

Unified Classes
Web Classes (ASP.NET)

XML Classes

System Classes

Enterprise Services
Transactions, messaging,

partitions, events etc

Windows FormsData (ADO.NET)

Controls, Caching, Security, Session, Configuration etc

Collections, Diagnostics, Globalization, IO, Security,
Threading Serialization, Reflection, Messaging etc

ADO, SQL,Types etc Design, Cmpnt Model etc

XSLT, Path, Serialization etc

14 .NET Framework Reviewers Guide

Web Applications: ASP.NET

A set of classes within the unified class library, ASP.NET provides a Web
application model in the form of a set of controls and infrastructure that make it
simple to build Web applications.

ASP.NET comes with a set of server-side controls (sometimes called Web
Forms) that mirror the typical HTML user interface widgets (including listboxes,
text boxes, and buttons), and an additional set of Web controls that are more
complex (such as calendars and ad rotators). These controls actually run on the
Web server and project their user interface as HTML to a browser. On the
server, the controls expose an object-oriented programming model that brings
the richness of object-oriented programming to the Web developer.

One important feature of these controls is that they can be written to adapt to
client-side capabilities; the same pages can be used to target a wide range of
client platforms and form factors. In other words, Web forms controls can "sniff"
the client that is requesting a page and return an appropriate user experience—
WML for phones or HTML 3.2 for a down-level browser and Dynamic HTML for
Internet Explorer 5.5.

ASP.NET also provides features such as cluster session state management
and process recycling, which further reduce the amount of code a developer
must write and increase application reliability.

ASP.NET uses these same concepts to enable developers to deliver software
as a service. Using ASP.NET XML Web services features, ASP.NET
developers can simply write their business logic and the ASP.NET
infrastructure will be responsible for delivering that service via SOAP and other
public protocols..

ASP.NET works with all development languages and tools (including Visual
Basic, C++, C#, and JScript).

Inside ASP.NET

At the core of ASP.NET is its HTTP runtime (different from the common
language runtime), a high-performance execution engine for processing HTTP
commands. The HTTP runtime is responsible for processing all incoming HTTP
requests, resolving the URL of each request to an application, and then
dispatching the request to the application for further processing. The HTTP
runtime is multithreaded and processes requests asynchronously, which means
it cannot be blocked by bad application code from processing new requests.
Furthermore, the HTTP runtime has a resilient design so it is engineered to
automatically recover from access violations, memory leaks, deadlocks, and so
on.

Updating Applications. ASP.NET uses the Microsoft .NET Framework
deployment technologies, thus gaining all its benefits such as XCOPY
deployment and side-by-side deployment of applications.

Another major benefit of ASP.NET is support for live updating of applications.

A view of ASP.NET

ASP.NET

Web Applications Web Services

ASP.NET Runtime & Infrastracture

.NET Framework Reviewers Guide 15

An administrator does not need to shut down the Web server or even the
application to update application files: application files are never locked, so they
can be overwritten even when the application is running. When files are
updated, the system gracefully switches over to the new version.

Extensible. Within an ASP.NET application, HTTP requests are routed through
a pipeline of HTTP modules, ultimately to a request handler. HTTP modules
and request handlers are simply managed .NET classes that implement specific
interfaces defined by ASP.NET. This modular architecture makes it very easy to
add services to applications: just supply an HTTP module. For example,
security, state management, and tracing are implemented as HTTP modules by
ASP.NET. Higher-level programming models, such as XML Web services and
Web Forms, are also implemented as request handlers. An application can be
associated with multiple request handlers—one per URL—but all HTTP
requests in a given application are routed through the same HTTP modules.

State Management. The Web is a fundamentally stateless model with no
correlation between HTTP requests. This can make writing Web applications
difficult, since applications usually need to maintain state across multiple
requests. ASP.NET enhances the state management services introduced by
ASP to provide three types of state to Web applications: application, session,
and user. ASP.NET session state is stored in a separate process and can even
be configured to be stored on a separate machine or persisted to a SQL Server
Database. This makes session state scalable even when an application is
deployed across the largest Web farms..

User state resembles session state, but generally does not time out and is
persisted. Thus user state is useful for storing user preferences and other
personalization information. All the state management services are
implemented as HTTP modules, so they can be added, extended, or even
removed from an application's pipeline easily. If additional state management
services are required beyond those supplied by ASP.NET, they can be
provided by a third-party module.

Caching. The ASP.NET programming model provides a cache API that
enables programmers to activate caching services (on enterprise software) to
improve performance. An output cache saves completely rendered pages, and
a fragment cache stores partial pages. Classes are provided so applications,
HTTP modules, and request handlers can store arbitrary objects in the cache
as needed.

Aggressive caching capabilities will be provided as part of the ASP.NET.
ASP.NET is designed to provide a robust Web application environment capable
of running mission-critical projects for long periods of time.

Even though it’s not yet released, ASP.NET is already delivering some
significant improvements in Web applications – performance improvements of
up to 3X over existing ASP-based applications, and even more dramatic
productivity improvements.

16 .NET Framework Reviewers Guide

Use any programming language

The .NET Framework enables developers to use any programming language,
and for applications written in any programming languages to integrate deeply
with each other, enabling current development skills to go forward without
retraining.

Objects written on top of the .NET Framework can integrate with each other
regardless of the language in which they were created because they are built
on top of a common type system. The .NET Framework’s multi-language
integration includes:

• Calling methods on other objects
• Inheriting implementations from other objects
• Passing instances of a class to other objects
• Using a single debugger across multiple objects
• Trapping errors from other objects

There are several scenarios where cross-language integration is useful. For
example, development projects gain access to a larger skills base – they can
choose from developers skilled in any programming language and join them
together on the same team. Alternately, if you are writing components for a
distributed Web application, it would be helpful to know that no matter what
language you choose to write your components in, they can interact closely with
each other and with components supplied by other developers.

Take advantage of industry-leading tools

The .NET Framework is designed for development tools and it includes many
features specifically targeted as improving the quality of the tools that use it
such as integrated debug and profiling. Microsoft Visual Studio .NET, the
industry-leading development environment, is built on top of and designed to
take advantage of the .NET Framework.

Developers write less code

The .NET Framework uses a highly componentized, plumbing-free design that
enables developers to focus on writing business logic. Developers don’t need to
write IDL or Registry code, and ASP.NET, for example, includes dozens of
controls that encapsulate common programmer tasks such as a shopping cart

The .NET Framework decreases the amount of code the developer has to write.
This is done through many mechanisms such as self describing metadata,
automatic memory management, a rich set of controls, simplified programming
classes, and the capability to automatically transform any application method
into an XML Web service with the addition of a single keyword.

Decreasing the plumbing. With most development environments today, the
developer has to cope with infrastructure overhead – details that are required
for building an application that aren’t actually business logic. The .NET

DEVELOPER
PRODUCTIVITY

Benefit Summary

• Use any programming
language

• Take advantage of industry-
leading tools

• Developers write less code due
to greater componentization
and reduction of “plumbing”

• Employ Windows application
servicesMulti-language
integration enables
developers to take existing
skills to new challenges

• Integrated XML Web services
technologies make it simple
to build next generation
applications.

• Use COM+ Services for easy
access to advanced
scalability and reliability
features

.NET Framework Reviewers Guide 17

Framework reduces this through many mechanisms such as automatic memory
management, metadata, a rich set of controls, and the capability to
automatically transform any application method into an XML Web service with
the addition of a single keyword.

Automatic Memory Management. Many of the problems associated with
modern applications can be attributed to memory leaks; in fact keeping track of
the memory being used can be a very daunting task. The .NET Framework
solves this problem with a high-performance, generational memory manager
that is responsible for freeing unused memory efficiently and without imposing a
high overhead on application performance.

Metadata. Metadata enables developers to write less code by eliminating the
need for separate interface definition language files (IDL files). This is possible
because the objects themselves maintain metadata. This metadata describes
information about the methods, fields, properties, and events associated with a
class.

Controls. The controls in the .NET Framework offer code savings. These
savings occurs in two primary areas: the adaptive user interface features and
server-side controls.

Automatic Browser Detection. Automatic browser detection is the capability
for the runtime to automatically sense the capabilities of the client and render
suitable HTML. So the HTML rendered to achieve a consistent look of a Web
page for down-level browser software and up-level browser software such as
Internet Explorer 5.5 client may look radically different but the ASP.NET code is
exactly the same.

Server-side Controls. Server side controls assist developers by separating the
code and the content, enabling developers to concentrate on the business logic
they are trying to write.

Employ Windows 2000 Applications Services

Windows 2000 has the most advanced application services available: the
fastest transaction monitor and message queuing engine, the most advanced
data access subsystem, the best Web server. The .NET Framework takes
advantage of these. For example, .NET Framework transactions are COM+
transactions, and all the new COM+ capabilities in WindowsXP and Windows
.NET Server can be used from the .NET Framework.

Create XML Web services Easily

Taking advantage of the Internet using COM component interfaces was made
simple in 1996 with the release Active Server Page (ASP) scripts running under
Windows 2000 Server’s Internet Information Services (IIS). For example, most
developers could easily update a database from a Web page using ADO, Visual
Basic Scripting Edition (VBScript) and ASP. As outlined in the ASP.NET section
of this guide, Microsoft is making doing this even easier and more reliable. With

18 .NET Framework Reviewers Guide

the .NET Framework, all objects can be made Internet-accessible by simply
marking them with the keyword: “WebMethod.”

The important thing to note in the first example is that the function was not
available to the Internet until the keyword “[WebMethod]“ was added.

But this is only half the solution; the WebMethod keyword gives programmers
the capability to expose functionality to the Internet, but how does a developer
use these functions? The .NET Framework supplies the utility
WebServiceUtil.exe that takes the path to a WSDL file and a language (C#,
Visual Basic or JScript) as input arguments. The utility then generates a single
source file as output. This file contains a proxy class, defined using the
language specified, that exposes methods (both synchronous and
asynchronous) for each of the methods exposed by the XML Web service.
Each proxy method contains the appropriate network invocation and
marshalling code necessary to invoke and receive a response from the remote
service. Visual Studio .NET makes this even easier by doing this through an

C# Function Made
Available as an XML
Web service

.NET Framework Reviewers Guide 19

explorer interface (please see the Visual Studio .NET chapters for more
information on the Visual Studio Server Explorer.)

Use COM+ Services

Introduced in 1992, the Microsoft Component Object Model (COM) is the most
popular object model for building reusable components, with more than 10,000
components commercially available. Over time, COM has evolved from a
technology for embedding one document inside another (OLE), to a technology
for distributing self-contained applications (ActiveX), to a technology for building
and running middle-tier business logic (COM+).

With so many years of experience, Microsoft architects undertook the challenge
of making COM development easier. Visual Basic began to show how to
accomplish this in 1995. The .NET Framework takes that simplification to its
next step, automating features of COM such as reference counting, interface
description, and registration.

The .NET Framework natively supports COM. In fact, a COM developer using
the Microsoft Visual Studio 6.0 development system could call a .NET
Framework component and, to the developer, it would look like a COM
component, complete with IUnknown. Conversely, a .NET Framework
developer using Visual Studio .NET would see a COM component as a .NET
Framework component.

COM+ is COM combined with MTS, DCOM, and other component services
such as Partitions. COM+ provides a set of middle-tier-oriented services. In
particular, COM+ provides process management and database and object
connection pooling. In future versions, it will also provide stronger process
isolation designed for application service providers – a feature called
partitioning.

The COM+ services are primarily oriented toward middle-tier application
development and focus on providing reliability and scalability for large-scale,
distributed applications. These services are complementary to the programming
services provided by the .NET Framework. The .NET Framework provides
direct access to these component services.

You can think of COM+ providing component services for building scalable,
reliable distributed middle tier applications. The .NET Framework provides
language services that simplify and speed up application development and
deployment.

Automatic Transaction Support. One of the most critical features of COM+
that developers will want to use from the .NET Framework is COM+
Transactions. It is easy to build applications that need transaction support in the
.NET Framework through simple keywords and settings. In fact, the .NET
Framework takes advantage of the COM+ transaction infrastructure to provide
both manual and automatic distributed transactions.

20 .NET Framework Reviewers Guide

The beauty of the integration between the .NET Framework and COM+
transactions is that .NET Framework developers can use the high-performance
COM+ transaction environment without needing to learn COM+. For example,
you can simply copy your .NET Framework components that need COM+
Services such as transactions into a directory, and the .NET Framework will
dynamically add it to the COM+ transaction monitor.

C# Function Using
Transactions through a
Keyword

.NET Framework Reviewers Guide 21

Deliver on Software as a Service

The .NET Framework was built for delivering software as a service, so it is built
on XML and the SOAP family of integration standards. Simply annotate method
calls and the .NET Framework turns them into full XML Web services. SOAP is
being standardized by the W3C.

Supporting ECMA standards for C# and CLI

Standards are core to delivering software as a service. Consequently, Microsoft
has submitted the specifications for the C# programming language and a
subset of the .NET Framework called the Common Language Infrastructure
(CLI) to ECMA and ECMA is standardizing them. These specifications are a
collaboration of six other ECMA partners including Hewlett-Packard Co and
Intel. The standardization process is currently about half way completed

Device support for broad reach

The Microsoft .NET Compact Framework is a version of the .NET Framework
for rapidly building, and securely deploying and running distributed XML Web
services and applications on smart devices such as cellular telephones,
enhanced televisions, and PDAs. It provides a highly productive, standards-
based, multi-language environment for integrating existing investments with
next-generation applications and services as well as the agility to solve the
challenges of deployment and operation of Internet-scale applications. The
.NET Compact Framework consists of three main parts: the common language
runtime, a hierarchical set of unified class libraries, and a set of profiles for
individual categories of smart device.

Extend all existing software transparently

The .NET Framework is designed to integrate with your existing software,
enabling you to take advantage of all your existing development investments
without replacing them. For example, all your existing COM components are
.NET Framework components automatically, and any .NET Framework
component you create is also a COM component.

Access databases easily with Microsoft ADO.NET

Microsoft® ADO.NET provides a productive interface to any database and is
designed for today’s loosely coupled style of data access that Web applications
in particular use. For easy interoperability, ADO.NET uses XML as its native
data format. It builds on the huge library of ODBC drivers already available.

Web Data Access

Nearly all applications need to query or update persisted data, whether in
simple files, relational databases, or any other type of store. To fulfill this need,
the .NET Framework includes ADO.NET, a data access subsystem optimized

AGILITY TO SOLVE
TODAY’S BUSINESS
PROBLEMS

Benefit Summary

• Deliver on Software as a
Service

• Supporting ECMA standards
for C# and CLI

• Extend all existing software
transparently

• Access databases easily with
ADO.NET

• Reduce total cost of ownership
around application
deployment

• Protect investments with
advanced security (Moved
this to Improved Operations
underneath Evidenc-based
security)

• Next-generation data access
designed for Web-scale
applications

22 .NET Framework Reviewers Guide

for N-tier environments and is interoperable with XML and XML documents.
ADO.NET is designed for loosely-coupled environments. As the name implies,
ADO.NET evolved from ADO, the ActiveX® Data Objects.

ADO.NET is designed to provide data access services for scalable Web-based
applications and services. ADO.NET provides high-performance stream APIs
for connected, as well as a disconnected data model more suitable for returning
data to Web applications.

As you develop applications, you will have different requirements for working
with data. In some cases, you might simply want to display data on a form. In
other cases, you might need to devise a way to share information with another
company.

No matter what you do with data, there are certain fundamental concepts that
you should understand about the data approach in the .NET Framework. You
might never need to know some of the details of data handling — for example,
you might never need to directly edit an XML file containing data — but it is very
useful to understand the data architecture, what the major data components
are, and how the pieces fit together.

Disconnected Data Architecture

In traditional two-tier applications, components establish a connection to a
database and keep it open while the application is running. For a variety of
reasons, this approach is impractical in many applications:

• Open database connections take up valuable system resources. The
overhead of maintaining these connections impacts overall application
performance.

• Applications that require an open database connection are extremely
difficult to scale. An application that might perform acceptably with four
users will likely not do so with a hundred. Web applications in particular
need to be easily scalable, since traffic to a Web site can go up by orders
of magnitude in a very short period.

• In Web applications, the components are inherently disconnected
from each other. The browser requests a page from the server; when the
server has finished processing and sending the page, it has no further
connection with the browser until the next request. Under these
circumstances, maintaining an open connection to a database is not viable,
since there is no way to know whether the data consumer (the client)
requires further data access.

• A model based on connected data can make it difficult to share data
between components, especially components in different
applications. If two components need to share the same data, both have
to be connected, or a way must be devised for the components to pass
data back and forth.

For all these reasons, data access in ADO.NET is designed around a
disconnected architecture. Applications are connected to the database only

.NET Framework Reviewers Guide 23

long enough to fetch or update the data. Because the database is not hanging
on to connections that are largely idle, it can service many, many more users.

Data is cached in datasets

Far and away the most common data task is to retrieve data from the database
and do something with it: display it, process it, or send it to another component.
Very frequently, the application needs to process not just one record, but a set
of them: a list of customers or today's orders, for example. Often the set of
records that the application requires comes from more than one table: my
customers and all their orders; all authors named "Smith" and the books they’ve
written; and other, similar, sets of related records.

Once these records are fetched, the application typically works with them as a
group. For example, the application might allow the user to browse through all
the authors named "Smith" and examine the books for one Smith, then move to
the next Smith, and so on.

In a disconnected data model, it's impractical to go back to the database each
time the application needs to process the next record. (Doing so would undo
much of the advantage of working with disconnected data in the first place.)
The solution, therefore, is to temporarily store the records retrieved from the
database and work with this temporary set.

This is what a dataset is. A dataset is a cache of records retrieved from the
database. It works like a virtual data store – it includes one or more tables
based on the tables in the actual database (or databases), and it can include
information about the relationships between those tables and constraints on
what data the tables can contain.

The data in the dataset is usually a much-reduced version of what's in the
database. However, you can work with it in much the same way you do the real
data. While you are doing so, you remain disconnected from the database,
which frees it to perform other tasks.

Of course, you often need to update data in the database (although not nearly
as often as you retrieve data from it). You can perform update operations on the
dataset, and these are written through to the underlying database.

An important point is that the dataset is a passive container for data. To actually
fetch data from a database and (optionally) write it back, you use a data
adapter. A data adapter contains the instructions for how to populate a single
table in the dataset and how to update the corresponding table in the database.
The instructions are methods that encapsulate SQL statements, such as a
reference to a stored procedure. Thus, the Fill method may invoke a SQL
statement such as SELECT au_id, au_lname, au_fname FROM

authors that runs whenever the method is called.

Data is persisted as XML

Data needs to be moved from the data store to the dataset, and from there, to
various components. In ADO.NET, the format for remoting data is XML.

24 .NET Framework Reviewers Guide

When data needs to be persisted outside of the database (for example, into a
file), it is stored as XML. If you have an XML file available, you can use it like
any data source and create a dataset out of it.

In fact, in ADO.NET, XML is the fundamental format for sharing data. When you
share data, the ADO.NET APIs automatically create XML files or streams out of
information in the dataset and send them to another component. The second
component can invoke similar APIs to read the XML back into a dataset.

Why XML? There are several reasons:

• XML is an industry-standard format. This means that your application
data components can exchange data with any other component in any
other application, as long as that component understands XML. Many
applications are being written to understand XML, which provides an
unprecedented level of exchange between disparate applications.

• XML is text-based. The XML representation of data uses no binary
information, which enables XML to be sent via any protocol, such as HTTP.
Most firewalls block binary information, but by formatting information in
XML, components can still easily exchange the information.

• Interoperability. ADO.NET enables easy creation of custom XML
documents through the use of XSD schemas. The resulting XSD
schemas format the XML specific for your use.

Do you need to know XML in order to share data in ADO.NET? No. ADO.NET
automatically converts data into and out of XML as needed; you interact with
the data using ordinary programming methods.

Benefits of ADO.NET

ADO.NET offers several advantages over other data access solutions. These
benefits fall into the following categories:

Leverage data through interoperability

ADO.NET applications can take advantage of the flexibility and broad
acceptance of XML. Because XML is the format for transmitting datasets
among components and across tiers, any component that can read the XML
format can process an ADO.NET dataset. As an industry standard, XML was
designed with exactly this kind of interoperability in mind.

Simplified code through typed programming

Programmers can manipulate objects of the ADO.NET model through typed
programming. Typed programming is programming in which the types of things
that are important to users are recognized by the programming environment or
programming language itself.

.NET Framework Reviewers Guide 25

For example, consider the following line of code, using generic (non-typed)
programming:

If TotalCost >

Table("Customer").Column("AvailableCredit")

The code contains words such as "Customer" and "Available Credit" that are
interesting to the end user. The code also contains the words "Table" and
“Column".

In a nutshell, typed programming is a style of programming in which the end-
user words figure prominently. For example, consider the following line of code
using typed programming in ADO.NET:

If TotalCost >

DataSet1.Customer("Jones").AvailableCredit

This line of code is equivalent to the earlier line using non-typed programming.
In the typed code, the code is easier to read: A business analyst with little or no
programming experience can grasp the meaning of the condition being tested
without having to filter out the programmer vocabulary in the conventional line
of code.

The typed code is also easier to write, because statement completion is
provided. For example, "AvailableCredit" is among the list of choices for
completing the following statement:

IF TotalCost > Customer.

In addition, the typed code is safer, because it provides for the compile-time
checking of types. For example, suppose that AvailableCredit is
expressed as a currency value. If the programmer erroneously assigns a string
value to AvailableCredit, the typed environment would report the error to
the programmer during compile time. In a weakly typed programming
environment, the programmer would not learn of the error until run time.

Scalability

Because the Web can vastly increase the demands on your data, scalability
has become critical. Internet applications have a limitless supply of potential
users. Although an application might serve a dozen users well, it might not
serve hundreds — or hundreds of thousands — equally well. An application that
consumes resources such as database locks and database connections will not
serve high numbers of users well, because the user demand for those limited
resources will eventually exceed their supply.

Because any ADO.NET application employs disconnected access to data, it
does not retain database locks or active database connections for long
durations and offers performance advantages.

26 .NET Framework Reviewers Guide

Evidence-based security

The .NET Framework security system provides fine-grained, method-level
control over what applications can and can’t do based on who wrote the code,
what it’s trying to do, where it was installed from, and who is trying to run it.

Internet Capable Security

The .NET Framework security infrastructure encompasses features to handle
both authentication of users and code access security that enforces security
permissions on code based on trust policy. An extensible library of
cryptographic functions provides easy access to hashing and encryption from
managed code, including digital signatures for XML. All existing security
mechanisms in the platform exist with and provide the foundation for .NET
Framework security to build upon.

Code Access Security and Role-Based Security. The .NET Framework
offers security through two high-level categories: code access security and role
based security. Code access security is the mechanism by which developers
can specify the level of access their code should have to resources and
operations. Role based security is used for controlling permissions based on
the user identity.

Code access security is deeply integrated into the .NET Framework, and
provides security enforcement of different levels of trust on different code –
even different pieces of code within the same running application. For example,
code from the Internet should be trusted less than code from a reliable vendor.
Many security problems result from less trusted code getting outside the
confines meant to secure it. Since the runtime has control of execution of all
managed code, it continues to enforce restrictions for anything the less trusted
code might do.

Code access security is built on an evidence-based security policy system that
grants to code the appropriate permissions. A permission object represents the
right to do some operation, for example, to write a file, to display on the screen,
and so forth. The evidence for any code – its location, digital signature, and so
forth – is presented to the security policy system for it to make a trust decision
based on policy established by the administrator. If an application attempts to
perform a protected operation, a security check will demand that the code and
all its callers have the necessary permission in order to allow it. The check of all
callers is important to prevent less trusted code from somehow tricking more
trusted code into doing a privileged operation. The .NET Framework can force
managed code to pass a process called verification to enforce security on it.
Verification ensures that the code uses only well-defined interfaces in
interacting with other objects, preventing access to unauthorized memory.

Role-based security is based on two fundamental concepts: authentication and

IMPROVED OPERATIONS

Benefit Summary

• Evidence-based security

• Simplify application
deployment

• Run more reliable applications

• Improve performance

.NET Framework Reviewers Guide 27

authorization. Authentication is the process of validating a set of user
credentials against an authority. If the credentials are valid, that user is said to
have an identity. Authorization is the process of using that identity to grant
access to or protect a resource.

Applications can authenticate users with any authentication protocol, including
Basic, Digest, Microsoft Passport, Integrated Windows authentication (formerly
known as Windows NT® LAN Manager or NTLM), or form-based authentication.
The application program is written the same way no matter what type of
authentication is used. Moreover, additional user-defined authentication
providers can be plugged into this uniform architecture if needed, so for
example a customer database with user names and passwords can easily be
used as a new authentication provider.

Cryptography APIs. A cryptographic library provides easy-to-use hash,
encryption, decryption, and random number generation. Encryption support for
several symmetric and asymmetric algorithms is included. In addition, Microsoft
is tracking the emerging XML digital signature standards work and will have
methods to sign and verify signed XML.

Simplify application deployment

With the .NET Framework metadata technology, installing applications is as
easy as copying them into a directory and eliminate “DLL Hell.” The .NET
Framework is even capable of self-healing when applications are damaged.

Application deployment is greatly simplified with the .NET Framework. One of
the largest challenges faced by developers and administrators (and ultimately
users) is versioning. If your system works fine today and you install a new
application and suddenly nothing works any more, it’s very often because the
new application overwrote some shared library and (more often than not) fixed
some bug that existing applications were relying on. This is so frequent, there’s
even a name for it: DLL Hell.

The .NET Framework includes a couple of advances that virtually eliminate DLL
Hell. First, it includes a very strong internal naming system that makes it much
harder for two libraries that may even have the same file name to be mistaken
for each other. Beyond that, there’s a new feature called “side by side”
deployment. If that new application really does overwrite a shared library, the
existing application can actually repair itself. The next time the existing
application starts up, it’ll check all its shared files. If it finds that one has
changed and that the changes are incompatible, it can ask the runtime to fetch
a version it knows it can work with.

Side-by-side deployment is enabled by assemblies and manifests.

What is an assembly?

An assembly is the primary building block of a .NET application. It is a collection
of functionality built, versioned, and deployed as a single implementation unit

28 .NET Framework Reviewers Guide

(one or multiple files). All managed types and resources are marked either as
assessable only within their implementation unit or as exported for use by code
outside that unit.

Assemblies are self-describing via their manifest, an integral part of every
assembly.

What does the manifest do?
• Establishes the assembly identity, in the form of a text name, version,

culture, and if the assembly is to be shared across applications, a
digital signature.

• Defines what files (by name and file hash) make up the assembly
implementation.

• Itemizes the compile-time dependencies on other assemblies.
• Specifies the types and resources that make up the assembly,

including which ones are exported from the assembly.
• Specifies the set of permissions required for this assembly to run

properly.

This information is used at runtime to resolve references, enforce version
binding policy, and validate the integrity of loaded assemblies. The runtime can
determine and locate the assembly for any running object, since every type is
loaded in the context of an assembly. Assemblies are also the unit at which
code access security permissions are applied. The identity evidence for each
assembly is considered separately when determining what permissions to grant
the code it contains.

Put simply, assemblies contain information about what the things inside depend
upon. The runtime is responsible for making sure these dependencies are
fulfilled, including fetching necessary components from approved sites (a
technique that uses the.NET Framework security system). Because the runtime
is responsible for actually managing applications as they run, the .NET
Framework is even able to run two versions of the same component side by
side. The self-describing nature of assemblies also helps makes zero-impact
install and No-touch deployment feasible.

It has always been possible for multiple copies of a software component to
reside on the same system. In the past, however, only one of these copies can
be registered with the operating system or loaded for execution - the policy for
locating and loading components is global to the system. Through side-by-side
deployment, the .NET Framework adds the infrastructure necessary to support
per-application policies that govern the locating and loading of components.

Application configuration information defines where to look for assemblies, thus
the runtime can load different versions of the same assembly for two different
applications that are running concurrently. This eliminates issues that arise from
incompatibilities between component versions, improving overall system
stability. If necessary, administrators can add configuration information, such as
a different versioning policy, to assemblies at deployment time, but the original

.NET Framework Reviewers Guide 29

information provided at build time is never lost.

Because assemblies are self-describing, no explicit registration with the
operating system is required. Application deployment can be as simple as
copying files to a directory tree. Configuration information is stored in XML files
that can be edited by any text editor.

Run more reliable applications

The .NET Framework includes technologies to make applications more reliable.
For example, memory, threads, and processes are managed by the .NET
Framework to ensure that memory leaks don’t occur. And ASP.NET monitors
running Web applications, and can automatically restart them at administrator-
defined intervals. Many of the reliability features in the .NET Framework come
from the application services supplied by the unified classes called Enterprise
Services (System.EnterpriseServices). Using the same engine as COM+, these
application services provide such features as transactions, messaging, events,
partitions, and object request broker

Improve performance

The .NET Framework improves the performance of typical Web applications.
ASP.NET includes advanced compilation and caching features that improve
performance by a factor of two to three over existing Active Server Pages
applications.

0

500

1000

1500

2000

2500

3000

Pg
s/

se
c

ASP ASP.NET

1 CPU
2 CPU
4 CPU

Typical web application running ASP
versus ASP .NET. Both on the same
computer running Windows 2000 and
SQL Server 2000

30 .NET Framework Reviewers Guide

.NET Framework—Features at a Glance

XML Web Services Standards Support
Pervasive use of Extensible Markup
Language (XML)

XML is a data format for structured document interchange on the Web. The
.NET Framework uses XML pervasively from describing objects to security
configuration files

Interoperability through SOAP support The .NET Framework enables developers to expose and consume XML
Web services transparently through Simple Object Access Protocol
(SOAP), a standard XML grammar for application interoperability.

Easy Description of XML Web Services
with the Web Services Description
Language

The .NET Framework transparently generates Web Services Description
Language (WSDL) descriptions of XML Web services.

Expose Web Services with SOAP
Discovery (Disco)

SOAP Discovery provides the mechanism by which XML Web services can
be found on a Web server; the .NET Framework provides a transparent
way of publishing XML Web services through SOAP Discovery.

Support for UDDI The .NET Framework uses Universal Description, Discovery and
Integration (UDDI) to enable XML Web services which provides the
mechanism by which XML Web services can be found on the Internet(In
addition to other resources)

Developer Productivity
Multiple Programming Languages
Integration

The .NET Framework provides deep, cross-programming language
integration, boosting productivity by enabling developers to extend one
programming language’s components within another language by way of
cross-language inheritance, debugging, and error-handling.

Automatic Versioning Part of the self-describing nature of every .NET Framework component and
application is that each has a unique name that it holds internally. Because
applications bind to components’ unique names rather than filenames, the
.NET Framework runtime is capable of handling the versioning of shared
components intelligently, doing away with so-called “DLL Hell.”

“No-touch” Deployment The .NET Framework includes advanced features for deploying
applications. By eliminating the need for the Windows Registry, installing an
application onto a system is as simple as copying it into a target directory
and running it.

Automatic Memory Management The .NET Framework is a garbage-collected environment. Garbage
collection frees applications using .NET Framework objects from the need
to explicitly destroy those objects, reducing common programming errors
dramatically.

Self-Describing Components The metadata that every .NET Framework object contains enables the
runtime to interrogate objects for data types, functionality, etc., and to verify
that the objects are being called correctly, rather than allowing the call to
happen and fail after the fact. This feature is called reflection.

Advanced ASP.NET user interface
control model and controls

Increases productivity by encapsulating complex interactions in server-side
components.

.NET FRAMEWORK FEATURE SUMMARY

.NET Framework Reviewers Guide 31

Separation of code and content Enables developers and content creators to work in parallel by keeping the
content in a file separate from the application code.

Deep Platform Integration The .NET Framework enables developers to use all existing Windows
applications and services. This enables developers to use their existing
code while taking advantage of the advanced capabilities in the .NET
Framework.

Write Less Code Because the .NET Framework uses highly componentized, plumbing-free
design, developers can concentrate on writing business logic rather than
plumbing for memory and state management or determine the capability of
a client’s browser. .

Agility to solve today’s business challenges
Support Public Internet Standards Standards are core to deliver software as a service. Microsoft submitted the

specifications for the C# programming language and the Common
Language Infrastructure (CLI) to ECMA for standardization.

Asynchronous Support The .NET Framework deeply integrates two asynchronous communication
technologies for scalability and reliability: SOAP and Microsoft Message
Queuing Services (MSMQ).

Transaction Support Application developers can include the .NET Framework operations within
transactions that contain other activities, such as database updates. The
.NET Framework supports transactions through Microsoft Transaction
Services (MTS) and COM+, and provides a standards-compliant XA
interface.

ASP.NET Compilation
Compilation increases performance by compiling pages instead of
interpreting them. Supports both pre-compiled applications and on-the-fly-
compiled applications.

Process-independent, Web-farmable
session state

Increases reliability and scalability by storing session state in a process
external to the ASP.NET application so the state can survive application
crashes and be referenced from other machines in a web farm.

Automatic ASP.NET session monitoring
and restart

Increases reliability by monitoring running ASP.NET applications and even
stopping and starting them when necessary.

Universal Data Access with ADO.NET

The .NET Framework includes ADO.NET, a productive interface to any
database designed specifically for today’s loosely coupled style of data
access. ADO.NET provides data access services for scalable Web-based
applications and XML Web services, including support for connected, as
well as disconnected data models.

Improved Operations

Evidence-based Security

The .NET Framework’s code access security system enables developers
to specify the required permissions that their code needs to accomplish
work. The common language runtime is responsible for ensuring that these
permissions are either met or rejected, depending on evidence including
the user identity, code identity, what the code is actually trying to do, where
the code originated from and so on

32 .NET Framework Reviewers Guide

Integrated Windows Authentication The .NET Framework also integrates with Windows Authentication.
Integrated Windows authentication was formerly known as both NT LAN
Manager (or NTLM) and Windows NT® Challenge/Response
authentication. In integrated Windows authentication, the browser attempts
to use the current user’s credentials from a domain logon. If those
credentials are rejected, integrated Windows authentication will prompt the
user for a user name and password by means of a dialog box. When
integrated Windows authentication is used, the user’s password is not
passed from the client to the server. If a user has logged on as a domain
user on a local computer, the user won’t have to be authenticated again
when accessing a network computer in that domain.

.NET Framework Reviewers Guide 33

Internet Authentication Internet users often need different authentication mechanisms.
Applications using the .NET Framework can take advantage of and be
configured for authentication using a combination of Web Server and .NET
Framework authentication providers.

Anonymous:

The server logs on the user with an anonymous or guest account.

Cookie:

Cookie authentication is generally used to refer to a system
whereby unauthenticated requests are redirected to an HTML
form (using HTTP client-side redirection). The user provides
credentials and submits the forms. If the application authenticates
the request, the system issues a cookie that contains the
credentials in some form or a key for reacquiring the identity.
Subsequent requests are issued with the cookie in the request
headers and they are authenticated and authorized by an
ASP.NET handler using whatever validation method the
application desires.

Basic:

Basic authentication is a security mechanism using a standard
HTTP mechanism in which user information is sent and received
as clear text. It uses a base64 encoded string that contains the
user name and password. Passwords and user names are
encoded but not encrypted in this type of authentication.

Digest

More advanced than basic authentication, digest authentication
sends a hash value, rather than the password, over the network.
This method works across proxy servers and other firewalls.

A challenge-response scheme that challenges using a nonce (a
server-specified data string) value. A valid response contains a
checksum of the user name, the password, the given nonce
value, the HTTP method, and the requested URI.

Passport:

Passport authentication is a centralized authentication service
provided by Microsoft that offers a single sign-in and core profile
services for member sites.

Custom

The .NET Framework enables programmers to use their own
authentication implementations to supply custom authentication
schemes; this enables the flexibility to use custom backends or
databases.

Improved Performance The .NET Framework improves the performance of typical Web
applications. ASP.NET using the ability to optimize for certain processors
and aggressive caching ASP.NET can improve performance in excess of
two to three times over existing Active Server Pages applications.

34 .NET Framework Reviewers Guide

Rock solid Reliability Achieve enterprise scale reliability with the .NET Framework, through the
automated memory management, guaranteed version compatibility,
dynamic application recycling and the enterprise services supplied by the
COM+ engine.

.NET Framework Reviewers Guide 35

Building Next-Generation Web Applications
The .NET Framework is an integral component of the Microsoft .NET Platform,
the end-to-end Internet platform for rapidly building and deploying XML Web
services and Web applications that integrate customers, businesses and
applications. The .NET Framework enables developers to rapidly create XML
Web services and Web Applications through the use of developer productivity
features such as multiple language support, adherence to public Internet
standards, and thru the use of a loosely coupled scalable architecture. While
many vendors sell application servers separately, Microsoft delivers a
comprehensive set of Web application services fully integrated into the
Windows operating systems and available through .NET Framework.

Loosely Coupled Designs Enable Scalability

The core XML Web services technologies upon which the .NET Framework is
built are loosely coupled, which means you can change the implementation at
either end of a connection and the application will continue working.
Technically, this translates to using message-based, asynchronous technology
to achieve scalability and reliability, and using Web protocols such as HTTP,
SMTP, and, most importantly, XML to achieve universal reach.

Leverages Operating System Services

Because other solutions try to provide identical functionality across many
different platforms, these solutions are limited to a least-common denominator
approach, which means that services provided by the operating system are
abandoned and recreated from scratch. In contrast, the .NET Framework
design pattern is designed to exploit the power and flexibility of the operating
system.

Multi-Language Support

With the .NET Framework developers can take advantage of the programming
language they are most comfortable with or use the language that is best suited
to the job at hand. Having objects of one language call into objects of another
may not be new but the .NET Framework takes this a step further by enabling
developers to do cross language implementation inheritance, cross language
debugging and do all of this with a single easy to use unified class library.

Standards Based

The .NET Framework is based on Extensible Markup Language (XML) and the
Simple Object Access Protocol (SOAP), which are standards overseen by
standards bodies. In addition, key parts of the .NET Framework are being
submitted to ECMA for standardization. This is much a safer solution than one
wholly owned and controlled by a single company.

SUMMARY

36 .NET Framework Reviewers Guide

What is .NET?

Simply put, Microsoft® .NET is Microsoft's strategy for delivering software
as a service. For complete information, go to this link:
http://www.microsoft.com/net/whatis.asp.

An excerpt from that paper briefly describes the key points of .NET:

• Microsoft .NET platform
Includes .NET infrastructure and tools to build and operate a new
generation of services, .NET user experience to enable rich
clients, .NET building block services and .NET device software to
enable a new generation of smart Internet devices.

• Microsoft .NET products and services
Includes Microsoft® Windows.NET (with a core integrated set of
building block services), MSN.NET, personal subscription
services, Microsoft® Office.NET, Microsoft® Visual Studio.NET,
and Microsoft® bCentral™ for .NET.

• Third-party .NET services
A vast range of partners and developers will have the opportunity
to produce corporate and vertical services built on the .NET
platform.

 What is the .NET Framework?

The Microsoft .NET Framework is a platform for building, deploying, and
running Web Services and applications. It provides a highly productive,
standards-based, multi-language environment for integrating existing
investments with next-generation applications and services as well as the
agility to solve the challenges of deployment and operation of Internet-
scale applications. The .NET Framework consists of three main parts: the
common language runtime, a hierarchical set of unified class libraries, and
a componentized version of Active Server Pages called ASP.NET. (Please
see this paper for more information)

Does the .NET Framework only apply to people building Web sites?

The .NET Framework enables creating great Web applications. However,
the .NET Framework also enables building the same applications you build
today. If you write Windows software (using ATL/COM, MFC, Microsoft®
Visual Basic®, or even standard Microsoft® Win32®), .NET offers many
advantages to the way you currently build applications. Of course, if you do
develop Web sites, then the .NET Framework has a lot to interest you—
starting with ASP.NET.

How can I get the.NET Framework Beta?

You can download the .NET Framework from the Web at:
http://msdn.microsoft.com/net or order both Visual Studio .NET and the
.NET Framework from the Web for a minimal charge. The cost for the beta

APPENDIX A
FREQUENTLY ASKED
QUESTIONS

http://www.microsoft.com/net/whatis.asp
http://msdn.microsoft.com/net

.NET Framework Reviewers Guide 37

will cover materials and shipping. For North American delivery addresses
please go to:

http://msdn.microsoft.com/vstudio/nextgen/beta.asp

What are the minimum system requirements for .NET Framework Beta 2?

The hardware requirements for this Beta release will be higher, and its
performance may be lower than the final.NET Framework release. Beta 2
version of.NET Framework has been tested on Windows 2000 (Server and
Professional), Windows NT 4 (Server and Workstation), Windows
Millennium Edition, Windows 98, Windows XP, and Windows .NET Server.
Web Application development and some server side components require
Windows NT 4 or Windows 2000. We recommend the following hardware
configurations:

Client

• Processor: Intel Pentium class 90 MHz or higher

• RAM: 32 MB (96 MB or higher recommended)

• Video: 800x600, 256 colors

Server

• Processor: Intel Pentium class 133 MHz or higher

• RAM: 128 MB (256 MB or higher recommended)

• Hard disk space required to install: 360 MB

• Hard disk space required: 210 MB

• Additional space required to install and compile all samples: 300
MB

• Video: 800x600, 256 colors

What are the major changes to the .NET Framework between Beta 1 and
Beta 2 versions?

Top Eight Changes to .NET Framework

Change Explanation

Win95 support discontinued With most customers running Win 98/Me,
Windows NT 4.0, and Windows 2000, it made
sense to concentrate development and test
resources on these platforms to ensure the
reliability customers demand from Microsoft
development tools.

http://msdn.microsoft.com/vstudio/nextgen/beta.asp

38 .NET Framework Reviewers Guide

Namespace changes After extensive usability studies, Microsoft has
tuned the namespaces to be more intuitive,
therefore increasing developer productivity. For
a complete list of all namespace changes, see
APIchangesbeta1tobeta2.htm with the .NET
Framework SDK.

Support for XML Schema
Document (XSD)

W3C is endorsing XML Schema as a
replacement for DTDs and the .NET Framework
enables developers to use this system of
managing XML documents.

Managed Win32 Classes
removed

The .NET Framework Unified Classes provide
developers with all the functionality needed to
write XML Web services and applications, in an
easier, intuitive, hierarchical way. If there is a
need to call into unmanaged dll’s this too is fully
supported through the PInvoke() function.

Runtime Security Enhancements

Policy and Permission
enhancements

New policy level for enterprise policy
enterprise policy administration. Execution
permission checking is now ON by default.

Configuration and
Administration features

New XML schema for security policy
configuration. GUI admin tool contains
security admin support (MSCORCFG.exe).
Tools contain enterprise policy deployment
support

Isolated Storage Now supports a Roaming Store

Advances in
Cryptography

• Support for the Rijndael/AES block
cipher and the SHA256, SHA384 and
SHA512 hash algorithms.

• New streaming model for wrapping
cryptographic transforms (e.g.
symmetric block ciphers) around any
Stream class.

• Support for RFC 3075 XML Digital
Signatures

Granular resource
protection

Permissions now enable a more granular
protection of a number of resources
including SQLServer drivers, OLEDB
providers, the event log, perf counters, the
active directory, printing, MSMQ, and
Services.

Windows Forms Enables code access security so that a
very rich subset of the Windows Forms
functionality can be used by semi-trusted
code

.NET Framework Reviewers Guide 39

ASP.NET Security Enhancements

Support for code access
security

Administrators can assign permissions to
web applications and services at the
application level.

Configuration for
FormsAuthentication

Forms authentication now supports
configuration files for reading cookie values
and encryption keys for a given application.

Control over process
identity

ASP.NET enables administrators to
dynamically set the identity under which the
application runs

ASP.NET not supported on
Windows NT 4.0

Focusing testing and development for Windows
2000 and beyond will ensure the best possible
reliability(and performance) going forward

Configuration and
Administration Tools

New GUI administration tools that uses XML
schema for setting deployment policies and
other administration configuration settings
particularly in areas of security.

These Tools Include:

• .NET Framework Configuration
(Mscorcfg.msc)

• .NET Framework Configuration Wizards
(Mscorcfg.exe)

For a complete list of all of the changes from Beta 1 to Beta 2 of the .NET
Framework see APIchangesbeta1tobeta2.htm in the .NET Framework
SDK.

Where is Visual InterDev®?

The Visual Interdev Web development system has been included into the
Visual Studio .NET IDE. All languages will have access to the market
leading features of the current Visual InterDev product.

When will the .NET Framework be available?

Firm dates have not yet been set for final availability. As with all Microsoft
products, customers let us know when a product is ready to release – the
.NET Framework is no exception. Check back on
http://msdn.Microsoft.com/net for more information.

Can my Visual Basic 6.0-based applications be upgraded to Visual
Basic.NET?

In order to take full advantage of the new language constructs in Visual
Basic.NET, an upgrade tool is included that automatically upgrades Visual

http://msdn.microsoft.com/net

40 .NET Framework Reviewers Guide

Basic 6 projects when they are opened in Visual Basic.NET. The Upgrade
Tool will modify the language for syntax changes and will convert Visual
Basic 6 forms to Windows Forms. In addition, to help developers upgrade
their Visual Basic 6 projects, the Upgrade Tool generates a report which
alerts developers to manual changes that need to be made in their code.
Because these comments are displayed as "TO DO" tasks in the new Task
List window, developers can easily navigate to the code statement simply
by double-clicking the task.

.NET Framework Reviewers Guide 41

How does Microsoft Visual C++ support .NET?

Microsoft Visual C++ can produce code for the .NET platform. In addition
we have extensively improved ATL, MFC and the compiler. We have also
introduced ATL Server for producing native code XML Web service
application.

Where can I learn more about Microsoft Visual Studio .NET and how to
build apps with it?

You can get more information from http://msdn.microsoft.com/vstudio.
Additionally MSDN will be carrying a number of articles and white papers
on .NET. Finally there are the newsgroups on
MSNEWS.MICROSOFT.COM.

How does .NET support my existing COM and COM+ based components?

The .NET Framework enables developers to call existing COM and COM+
components as well as enabling .NET components to be exposed to COM
and COM+ developers. Additionally a considerable amount of COM+ 1.0
“plumbing,” has been simplified in the .NET Framework. Additionally .NET
Framework components can be added to a COM+ application where they
can take advantage of the automatic Component Services – e.g.,
Transactions, ObjectPool, Queued Components, Events, etc , making
building serviced components even easier.

Will there be a cross platform version of the runtime?

There are currently no plans to take the full .NET Framework to non-
Windows platforms. However, there is a version of the .NET Framework
called the .NET Compact Framework that enables the fundamental
architecture of the .NET Framework on small devices such as mobile
phones and digital TVs. The .NET Compact Framework is programming
language, hardware, and operating system independent.

http://msdn.microsoft.com/vstudio

42 .NET Framework Reviewers Guide

How do I secure my XML Web services?

Since XML Web services look and act externally like Web pages (using
HTTP requests and responding with text which happens to be well formed
XML), they are protected in much the same way that Web sites are
protected: through standard web server authentication mechanisms and
through the use of HTTPS and SSL to protect the data on the network (or
IPSec and/or firewalls to further restrict access to client machines of known
IP addresses).

Can I use the Win32® API from a .NET Framework program?

Yes. Using P/Invoke, .NET Framework-based applications can access
native code libraries via static DLL entry points.

What programming languages will the .NET Framework support?

The .NET Framework is language neutral; virtually any language can target
the .NET Framework. Currently, you can build .NET programs in a number
of languages, including C++, Microsoft® Visual Basic.NET, JScript®, and
Microsoft's newest language—C#. A large number of third-party languages
will also be available for building .NET Framework applications. These
languages include COBOL, Eiffel, Perl, Python, Smalltalk, and others. For
a complete list please see: www.gotdotnet.com

http://www.gotdotnet.com/resourcecenter/resource_center.aspx?classification=Language%20Vendors

.NET Framework Reviewers Guide 43

The Microsoft .NET Framework SDK tools are designed to make it easier for you to
create, deploy, and manage applications and components that target the .NET
Framework. This section contains detailed information about the tools that ship with
the .NET Framework SDK.

Configuration and Deployment Tools

Tool Description

Assembly Cache Viewer (Shfusion.dll) Allows you to view and manipulate the contents of the global
assembly cache using Windows Explorer.

Assembly Linker(Al.exe) Generates a file with an assembly manifest from one or more
files that are either resource files or Microsoft intermediate
language (MSIL) files.

Assembly Registration Tool (Regasm.exe) Reads the metadata within an assembly and adds the necessary
entries to the registry, which allows COM clients to create .NET
Framework classes transparently.

Assembly Binding Log Viewer (Fuslogvw.exe) Displays details for failed assembly binds. This information helps
you diagnose why the .NET Framework cannot locate an
assembly at runtime.

Global Assembly Cache Tool (Gacutil.exe) Allows you to view and manipulate the contents of the global
assembly cache. While Shfusion.dll provides similar functionality,
you can use Gacutil.exe from build scripts, makefile files, and
batch files.

Installer Tool (Installutil.exe) Allows you to install and uninstall server resources by executing
the installer components of a specified assembly.

Isolated Storage Tool (Storeadm.exe) Lists or removes all existing stores for the currently logged-on
user.

Native Image Generator (Ngen.exe) Creates a native image from a managed assembly and installs it
into the native image cache on the local computer.

.NET Framework Configuration Tool
(Mscorcfg.msc)

Provides a graphical interface for managing .NET Framework
security policy and applications that use remoting services. This
tool also allows you to manage and configure assemblies in the
global assembly cache.

.NET Services Installation Tool (Regsvcs.exe) Adds managed classes to Windows 2000 Component Services
by loading and registering the assembly and generating,
registering, and installing the type library into an existing COM+
1.0 application.

Soapsuds Tool (Soapsuds.exe) Helps you compile client applications that communicate with
XML Web services by using a technique called remoting.

Type Library Exporter (Tlbexp.exe) Generates a type library from a common language runtime
assembly.

Type Library Importer (Tlbimp.exe) Converts the type definitions found within a COM type library into
equivalent definitions in managed metadata format.

APPENDIX B
.NET FRAMEWORK TOOLS

44 .NET Framework Reviewers Guide

Web Services Description Language Tool
(Wsdl.exe)

Generates code for ASP.NET XML Web services and XML Web
services clients from Web Services Description Language
(WSDL) contract files, XML Schema Definition (XSD) schema
files, and .discomap discovery documents.

Web Services Discovery Tool (Disco.exe) Discovers the URLs of XML Web services located on a Web
server, and saves documents related to each XML Web service
on a local disk.

XML Schema Definition Tool (Xsd.exe) Generates XML schemas that follow the XSD language
proposed by the World Wide Web Consortium (W3C). This tool
generates common language runtime classes and DataSet
classes from an XSD schema file.

Debugging Tools

Tool Description

Microsoft CLR Debugger (DbgCLR.exe) Provides debugging services with a graphical interface to help
application developers find and fix bugs in programs that target
the runtime.

Runtime Debugger (Cordbg.exe) Provides command-line debugging services using the common
language runtime Debug API. Used to find and fix bugs in
programs that target the runtime.

Security Tools

Tool Description

Certificate Creation Tool (Makecert.exe) Generates X.509 certificates for testing purposes only.

Certificate Manager Tool (Certmgr.exe) Manages certificates, certificate trust lists (CTLs), and certificate
revocation lists (CRLs).

Certificate Verification Tool (Chktrust.exe) Verifies the validity of a file signed with an X.509 certificate.

Code Access Security Policy Tool (Caspol.exe) Allows you to examine and modify machine, user, and
enterprise-level code access security policies.

File Signing Tool (Signcode.exe) Signs a portable executable (PE) file with an Authenticode
digital signature.

Permissions View Tool (Permview.exe) Displays the minimal, optional, and refused permission sets
requested by an assembly. You can also use this tool to view all
declarative security used by an assembly.

Secutil Tool (Secutil.exe) Extracts strong name public key information or Authenticode
publisher certificates from an assembly, in a format that can be
incorporated into code.

Set Registry Tool (Setreg.exe) Allows you to change the registry settings for the Software
Publishing State keys, which control the behavior of the
certificate verification process.

Software Publisher Certificate Test Tool
(Cert2spc.exe)

Creates, for test purposes only, a Software Publisher's
Certificate (SPC) from one or more X.509 certificates.

.NET Framework Reviewers Guide 45

Strong Name Tool (Sn.exe) Helps create assemblies with strong names. Sn.exe provides
options for key management, signature generation, and
signature verification.

General Tools

Tool Description

Common Language Runtime Minidump Tool
(Mscordmp.exe)

Creates a file containing information that is useful for analyzing
system issues in the runtime. The Microsoft Dr. Watson tool
(Drwatson.exe) invokes this program automatically.

License Compiler (Lc.exe) Reads text files that contain licensing information and produces
a .licenses file that can be embedded in a common language
runtime executable.

Management Strongly Typed Class Generator
(Mgmtclassgen.exe)

Allows you to quickly generate an early-bound class in C#,
Visual Basic, or JScript for a specified Windows Management
Instrumentation (WMI) class.

MSIL Assembler (Ilasm.exe) Generates a PE file from Microsoft intermediate language
(MSIL). You can run the resulting executable, which contains
MSIL code and the required metadata, to determine whether the
MSIL code performs as expected.

MSIL Disassembler (Ildasm.exe) Takes a PE file that contains MSIL code and creates a text file
suitable as input to the MSIL Assembler (Ilasm.exe).

PEVerify Tool (PEverify.exe) Performs MSIL type safety verification checks and metadata
validation checks on a specified assembly.

Resource File Generator Tool (Resgen.exe) Converts text files and .resx (XML-based resource format) files
to .NET common language runtime binary .resources files that
can be embedded in a runtime binary executable or compiled
into satellite assemblies.

Windows Forms ActiveX Control Importer
(Aximp.exe)

Converts type definitions in a COM type library for an ActiveX
control into a Windows Forms control.

Windows Forms Class Viewer (Wincv.exe) Finds managed classes matching a specified search pattern,
and displays information about those classes using the
Reflection API.

Windows Forms Resource Editor (Winres.exe) Allows you to quickly and easily localize Windows Forms forms.

46 .NET Framework Reviewers Guide

Term Definition

.NET Framework The .NET Framework is a platform for building the next generation of distributed XML
Web services and applications. It exposes a language-independent yet consistent
programming model across all tiers of an application, while providing seamless
interoperability with and easy migration from existing technologies. The .NET Framework
consists of three things: the common language runtime, unified classes, and ASP.NET.

ADO.NET Data Access technology for the .NET Framework.

ASP.NET Active Server Pages technology for the .NET Framework

Assembly The unit of deployment and versioning in the .NET Framework. It establishes the
namespace for resolving requests and determines which resources are exposed
externally and which are accessible from within the assembly. An assembly includes an
Assembly manifest which describes the contents of the assembly

C# The first component orient language in the C/C++ family. Submitted to ECMA for
standardization.

CGI Common Gateway Interface – early Internet protocol used to generate interactive content
over the Web.

Common Language
Infrastructure (CLI)

A subset of the .NET Framework submitted to ECMA for Standardization

Common Language
Runtime (CLR)

The type, metadata and execution systems provided by the .NET Framework, which
supplies managed code and data with services such as cross-language integration, code
access security, object lifetime management, and debugging and profiling support. By
targeting the CLR, compilers and other tools can offer these services to developers

Common Language
Specification (CLS)

A subset of the .NET Framework’s features that are supported by a broad set of
compliant languages and tools. CLS-compliant languages and tools are guaranteed to
interoperate with other CLS-compliant languages and tools. For example, the type Int32
is CLS compliant and languages and tools may expect that other CLS languages and
tools know how to correctly use this type.

Disco SOAP Discovery (Disco) - based on SOAP Discovery specification, provides a set of
rules for discovery of Web services description and capabilities.

ECMA A European standards body created in 1961. Internationally accredited ECMA has fast
track approval for ISO and is the forum for successful standards like ECMAScript.

Evidence-based
security

The .NET Framework introduces the concept of evidence-based security, referring to
inputs to the security policy about code such as from what site, security zone or URL was
an assembly obtained, what is its strong name, and whether it has a digital signature and
from whom. Based upon these and other answers, the appropriate security policy can be
applied, and the appropriate permissions may be granted to the assembly. Answers can
come from multiple sources, including one or more of the CLR, the browser, ASP.NET,
and the shell, depending on the source of the code.

Garbage collection The process of transitively tracing through all pointers to actively used objects to locate all
objects that can be referenced and then arranging to reuse any heap memory that was
not found during this trace. The CLR’s garbage collector also arranges to compact the
memory that is in use to reduce the working space needed for the heap.

APPENDIX C
GLOSSARY

.NET Framework Reviewers Guide 47

HTTP Hyper Text Transfer Protocol, standard Internet protocol for transfer of information
between client/servers and server/server…

IDL Interface Definition Language – a language used by application to specify the various
interfaces they intend to offer to other applications.

Intermediate Language
(IL)

Intermediate Language (IL) is a language used as the output of a number of compilers
and as the input to a JIT compiler. IL defines an abstract stack-based execution
architecture. The CLR may include several JIT compilers for converting IL to native code.

JIT Just-In-Time - a phrase that describes an action that is taken only when it becomes
necessary, such as Just-In-Time compilation or Just-In-Time object activation. By
convention, the term “JIT” alone is used to refer to a JIT compiler.

Loosely coupled
application

A distributed application that you can change the implementation of one tier without
affecting any of the other tiers. Contrast tightly coupled architecture.

Managed code Managed code supplies the metadata necessary for the CLR to provide services such as
memory management, cross-language integration, code access security, and automatic
lifetime control of objects. All code based on IL executes as managed code.

Manifest Metadata describing which modules and resource files are part of a particular assembly,
which types are exported and which other assemblies are referenced. It also specifies
which security permissions are required to run, what additional permissions are optionally
requested, and what permissions the assembly refuses

Metadata Data (or information) about data. In the CLR, metadata is used to describe assemblies
and types. It is stored with them in the executable files, and is used by compilers, tools,
and the runtime to provide a wide range of services. Metadata is essential for runtime
type information and dynamic method invocation. Many systems use metadata, for
example Type Libraries in COM provide metadata

Native code Code that has been compiled to processor-specific machine code.

N-tier System architecture that separates presentation, business logic, data access, and
database (or other persistence mechanism) tiers.

Reflection .NET Framework technology that allows you to examine metadata that describes types
and their members.

SOAP Simple Object Access Protocol, WC3 standard - a lightweight protocol for exchange of
information in a decentralized, distributed environment. It is an XML based protocol that
consists of three parts: an envelope that defines a framework for describing what is in a
message and how to process it, a set of encoding rules for expressing instances of
application-defined datatypes, and a convention for representing remote procedure calls
and responses.

Tightly coupled
architecture

A distributed application where a change to any tier affects some or all the other
remaining tiers. Contrast loosely coupled architecture.

UDDI The Universal Description, Discovery and Integration [UDDI] specification – an initiative
that creates a global, platform-independent, open framework to enable businesses to (1)
discover each other, (2) define how they interact over the Internet, and (3) share
information in a global registry

Unified classes The .NET Framework’s unified, object-oriented, hierarchical, and extensible set of class
libraries (“APIs”) that developers can use from the languages they are already familiar
with.

48 .NET Framework Reviewers Guide

Unmanaged code Code that was created without knowledge for the conventions and requirements of .NET
Framework. Unmanaged code executes in the .NET Framework environment with
minimal services (for example, no garbage collection, limited debugging , no declarative
security). Unmanaged code does not have metadata describing it.

Web API APIs that enable integration of an XML Web service under the .NET Framework.

Web Forms Web Forms are an ASP.NET technology that you use to create programmable Web
pages. They can present information, using any markup language, to the user in any
browser and use code on the server to implement application logic.

WebMethod Programming keyword in .NET Framework that enables objects to be Internet accessible.

Windows Forms The Windows Forms framework encapsulates native Win32 APIs and exposes secure,
managed classes for creating Win32 client-side applications. The Windows Forms class
library provides many controls such as buttons, check boxes, drop-down lists, combo
boxes, data grid, and others that encapsulate user interface and other client-side
functionality.

WSDL Web Service Description Language – an XML grammar that developers and development
tools use to represent the capabilities of an XML Web service

XML Extensible Markup Language – WC3 standard for the format of structured documents and
data on the Web.

XML Web service An XML Web service is an application that exposes its functionality programmatically
over the Internet or intranet using standard Internet protocols and standards such as
HTTP and XML.

.NET Framework Reviewers Guide 49

For More Information

For the latest information on the .NET Framework, please see
http://msdn.microsoft.com/net

http://msdn.microsoft.com/net

	REVIEW CRITERIA
	Overview

	.NET FRAMEWORK: INTRODUCTION
	Web Development
	Challenges
	Solution: XML Web Services
	The .NET Framework Design Goals
	Integration through Public Internet Standards
	Scalability through a Loosely Coupled Architecture
	Multi-Language Support
	Enhancing Developer Productivity
	Protecting Investments through Advanced Security
	Utilizing Operating System Services

	THE XML WEB SERVICES PROGRAMMING MODEL
	Core XML Web Services Technologies SOAP Family
	Extensible Markup Language (XML)
	Simple Object Access Protocol (SOAP)
	Web Service Description Language (WSDL)
	SOAP Discovery (“Disco”)
	Universal Description, Discovery and Integration (UDDI)

	.NET FRAMEWORK: OVERVIEW
	The .NET Framework: The Microsoft XML Web Services Engine
	THE .NET FRAMEWORK: Three Parts
	The Common Language Runtime
	What the Programmer Sees: The Unified Classes
	Inside ASP.NET

	DEVELOPER PRODUCTIVITY
	Use any programming language
	Take advantage of industry-leading tools
	Developers write less code
	Employ Windows 2000 Applications Services
	Create XML Web services Easily
	Use COM+ Services

	AGILITY TO SOLVE TODAY’S BUSINESS PROBLEMS
	Deliver on Software as a Service
	Supporting ECMA standards for C# and CLI
	Device support for broad reach
	Extend all existing software transparently
	Access databases easily with Microsoft ADO.NET
	Web Data Access
	Disconnected Data Architecture
	Data is cached in datasets
	Data is persisted as XML

	Benefits of ADO.NET
	Leverage data through interoperability
	Simplified code through typed programming
	Scalability

	IMPROVED OPERATIONS
	Evidence-based security
	Internet Capable Security
	Simplify application deployment
	Run more reliable applications
	Improve performance

	.NET FRAMEWORK FEATURE SUMMARY
	
	
	
	
	
	
	.NET Framework—Features at a Glance

	XML Web Services Standards Support

	SUMMARY
	APPENDIX A �FREQUENTLY ASKED QUESTIONS
	
	
	€What is the .NET Framework?

	APPENDIX B �.NET FRAMEWORK TOOLS
	APPENDIX C GLOSSARY

