
Design and Implementation of an Access Control Processor for XML

Documents�

Ernesto Damiani1 Sabrina De Capitani di Vimercati2 Stefano Paraboschi3 Pierangela Samarati1

(1) Universit�a di Milano, Polo Didattico di Crema, Via Bramante 65, Crema (CR), Italy

(2) Universit�a di Brescia, Dip. Elettronica per l'Automazione, Via Branze 38, 25123 Brescia, Italy

(3) Politecnico di Milano, Dip. Elettronica e Informazione, Piazza L. da Vinci 32, 20133 Milano, Italy

edamiani@crema.unimi.it, fdecapita,samaratig@dsi.unimi.it, parabosc@elet.polimi.it

Abstract

More and more information is distributed in XML format, both on corporate Intranets and on
the global Net. In this paper an Access Control System for XML is described allowing for de�nition
and enforcement of access restrictions directly on the structure and content of XML documents, thus
providing a simple and e�ective way for users to protect information at the same granularity level
provided by the language itself.

Keywords

Security, Access control model, XML

1 Introduction

As more and more information is made available in eXtensible Markup Language (XML) format, both on
corporate Intranets and on the global Net, concerns are being raised by developers and end-users about
XML security problems. Early research work about XML was not directly related to access control and
security, because XML was initially introduced as a data format for documents; therefore, many researchers
assumed well-known techniques for securing documents to be straightforwardly applicable to XML data.
But the way XML is being positioned has caused some to question if additional measures will be necessary.

For example, in the scenario of the oncoming FASTER (Flexible Access to Statistics, Tables, and
Electronic Resources) project, end-users will be able to control their interaction with Web sites by pulling
the information they are interested in out of dynamically generated XML documents. However, di�erent
users may well have di�erent interests or access authorizations, and XML enabled servers will need to
know which data each user should get, at a �ner level of granularity than whole documents. In other
words, some FASTER applications will need to block or allow access to entire XML instances, while others
will control access at the tag level. The control residing at the tag level is particularly important in the
view of wider use of the XLink and XPointer standards, which enable applications to retrieve portions
of documents. Indeed, a clean model for dynamic access control with granularity control is needed to
allow XML documents to link against arbitrary XML chunks. It is interesting to remark that the same
observation applies to authentication and encryption-based techniques, that naturally complement access
control in our usage scenario. With authentication, the server will know what information can be sent to
the user based on that user's identity or certi�ed property (e.g., group membership), whereas encryption

�The work presented in the paper has been supported by Esprit Project \W3I3", Esprit Project \FASTER", MURST

project \Data-X", and by the HP Internet Philanthropic Initiative

1

will only let users with adequate decryption keys see the message. Therefore, XML security should support
the entire range of coarse to �ne grain granularity. In the remainder of this section, we propose �ve basic
requirements for standardizing XML access control at the tag level. Our requirements take into account the
experience of other FASTER consortium partners, and are directed at large-scale knowledge management
within organizations using XML, as well as at XML-based Internet applications.

1. Support of authorizations at di�erent organizational levels. Organizations may need to enforce se-
curity policies on huge document-bases, often dynamically created from heterogeneous datasources;
on the other hand, site administrators require full control on authorization speci�cations on single
documents.

2. Extension to existing Web server technology. XML documents are usually made available by means
of Web sites, using a variety of HTTP-based protocols. XML access control must exploit current
solutions in much the same way as cryptography-based services, without interfering with existing
APIs and development tools.

3. Fine-grained access control. Access control policies should be supported at all levels of granularity,
including documents and individual XML elements.

4. Transparency. The access control system operation should be as transparent as possible to the
requesters. The requester should not be aware of the information within a document which is being
hidden to them by the access control system. The transparency of the access control must be preserved
by the presentation and rendering phases and may therefore impose constraints on the behavior of
technologies such as CSS and XSL [18]. In particular, access control should preserve the validity of
the documents with respect to their DTDs.

5. Smoothless integration with existing technologies for user authentication (e.g. digital signatures).
Access control should complement tag-level authentication based on digital signatures.

Figure 1 depicts the conceptual architecture of our approach. A central authority uses a pool of XML
DTDs to specify the format of information to be exchanged within the organization. XML documents
instances of such DTDs are de�ned and maintained at each site, describing the site-speci�c information.
The schema-instance relationship between XML documents and DTDs naturally supports the distinction
between two levels of authorizations, both of them allowing for �ne grained speci�cations. Namely, we
distinguish: 1) Low-level authorizations, associated to XML documents, providing full control on au-
thorizations on a document-by-document basis; 2) High-level authorizations, associated to XML DTDs,
providing organization-wide and department-wide declarations of access permissions. Centrally speci�ed
DTD-level authorizations can be mandatory, stating impositions of the central authority to lower organiza-
tional levels where XML documents are created and managed, usually by means of a network of federated
Web sites. This technique allows for easy, centralized modi�cation of access permissions on large document
sets, and provides a general, abstract way of specifying access authorizations. In other words, specifying
authorizations at the DTD level cleanly separates access control speci�ed via XML markup from access
control policies de�ned for the individual datasources (e.g., relational databases vs. �le systems) which
are di�erent from one another both in granularity and abstraction level. Each departmental authority
managing a Web site retains the right to de�ne its own authorizations (again, at the granularity of XML
tags) on individual documents, or to document sets by means of wild cards. In our model local authorities
can also de�ne authorizations at the DTD level; however such authorizations only apply to the documents
of the local domain.

2

Figure 1: Conceptual architecture

2 Authorization Speci�cation

The architectural framework depicted in Figure 1 describes the basic components taking part in the spec-
i�cation of access and protection requirements. We now discuss their speci�cation. Before introducing the
form and semantics of the authorizations supported by our model, we describe the basic features that they
need to provide to satisfy requirements 1 and 3 discussed in the introduction.

Collection based vs instance based authorizations The di�erent protection requirements that dif-
ferent documents may have call for the support of access restrictions at the level of each speci�c
document. On the other hand, requiring the speci�cation of authorizations for each single document
would make the authorization speci�cation task much too heavy. The system should support, beside
authorizations on single documents, authorizations on collections of documents. The concept of DTD
can be naturally exploited to this end, by allowing protection requirements to refer to DTD or XML
documents, where requirements speci�ed at the level of DTD apply to all those documents instance
of the DTDs. The use of DTDs as a primary way to refer to sets of documents as opposed to the
use of �le system structures (directory) used in previous approaches, is consistent with the fact that
our approach takes advantage of the data semantics, departing from the limitations of storage-based
structures. The fact that instances of DTDs share a common (semi)structure, allows the association
with DTD-level authorizations of conditions that limit the documents/elements to which the autho-
rization apply. This way authorizations can be speci�ed which apply only to certain instances of a
DTD. While using DTDs as a primary way to reference classes of documents, we do not discard other
methods. In particular, our model also supports the use of wild cards in the speci�cation of document
URIs and the possibility of referencing and evaluating meta properties, such as RDF markup [19].
The use of wildcards allows the speci�cation of authorizations that apply to all documents matching
a given path expression, depending on the �le system organization. The reference to meta properties
allows the speci�cation of authorizations that apply to all documents satisfying speci�c properties,
expressed by means of meta information associated with the documents (e.g., creator, creation date,

3

and so on). Meta properties can also be used to provide organization of documents in domains [13].

Organization's wide vs. site speci�c authorizations Access and protection requirements can be spec-
i�ed both at the level of the enterprise, stating general regulations that should hold, and at the level
of speci�c domains (part of the enterprise) where, according to a local policy, additional constraints
may need to be speci�ed or some constraints may need to be relaxed. Organizations specify autho-
rizations with respect to DTDs; sites can specify authorizations with respect to speci�c documents as
well as to DTDs. The two types of DTD-level authorizations have complementary roles in increasing
access control exibility. Global DTD-level authorizations stated by a central authority can be e�ec-
tively used to implement corporate-wide access control policies on document classes. Local DTD-level
authorizations speci�ed by departmental authorities allow for department-wide access control poli-
cies complementing the corporate ones. Moreover they alleviate administration chores by allowing
concise speci�cation of site-wide authorizations.

Document vs. element/attribute authorizations The identi�cation of elements and attributes with-
in a document provided by XML tags can be exploited to specify authorizations at a �ne grained
level. Authorizations speci�ed for an element are intended to be applicable to all its attributes.
Again, to avoid the need of specifying authorizations for each single element in a document, the doc-
ument structure can be exploited by supporting a recursive interpretation of authorizations by which
an authorization speci�ed on an element applies to its whole content (attributes and subelements).
Our model allows to specify whether an authorizations speci�ed for an element is local to its own
data (PC data and attributes) or applies recursively to all its subelements. The authorization on a
document in its entirety is speci�ed as a recursive authorization on its root.

Exception support (permissions and denials) The support of authorizations at di�erent granular-
ity levels allows for easy expressiveness of both �ne and coarse grained authorizations. Such an
advantage would remain however very limited without the ability of the authorization model to sup-
port exceptions, since the presence of a granule (document or an element/attribute) with protection
requirements di�erent from those of its siblings would require the explicit speci�cation of authoriza-
tions at that speci�c granularity level. For instance, the situation where a user should be granted
access to all the documents of a DTD but one speci�c instance, would imply the need of stating
the authorizations explicitly for all the other documents as well; thereby ruling out the advantage of
supporting authorizations at the DTD level. A simple way to support exceptions is by using both
positive (permissions) and negative (denials) authorizations; where permissions and denials can over-
ride each other. According to intuition, overriding typically occurs when going to a �ner granularity
level, according to the \most speci�c takes precedence principle" [11, 8]. Finer grained authorizations
override coarser ones { each document being at a �ner grain than its DTD and each element/attribute
being at a �ner grain than the elements in which it is contained.

Hard and soft statements (ruling out exceptions and �lling the blanks) The support of excep-
tions while clearly adding to the expressiveness of the model, allows stated protection requirements to
be possibly overridden. When authorization speci�cation spans di�erent administrative competences
and authorities, as it is the case of organization-wide authorizations vs. site-speci�c authorizations,
there might be cases where such a capability needs to be restricted. The \most speci�c takes prece-
dence" principle dictates that authorizations speci�ed on a document override (where conicting)
authorizations speci�ed on its DTD. In organizational terms, the authorization speci�ed at a site
would always override the authorizations speci�ed at the organization level. We can imagine two
scenarios where such a behavior is not wanted. First, at the organization level certain speci�cations
may need to be declared as mandatory, meaning they should be obeyed at all the sites { no site dis-

4

cretionary statement allowed. Second, at the site level, certain speci�cations may need to be declared
as soft , meaning they should be applied only if nothing has been stated at the organization level. In
both scenarios the need is to subvert the \most speci�c takes precedence principle". The fact that
the need may come either from the organization or from the site, requiring the ability to support
its expression in association with the both DTD and document authorizations. In particular, the
enterprise can specify DTD authorizations as hard, sites can specify document authorizations as soft.
(For the sake of simplicity of the model, we do not allow sites to specify strong DTD authorizations
as it would introduce complications while not adding in expressiveness.)

3 Authorizations

The list of features illustrated in the previous section outlines the form and semantics of the authorizations
supported by our model. We can then summarize the discussion above and introduce our authorizations
as follows.

� Authorizations can be speci�ed at the level of a DTD (schema) or speci�c documents (instance). DTD
authorizations can be speci�ed either at the global organization level or at the local site. Document
authorizations can be speci�ed at the local site.

� Both DTD and XML authorizations can be speci�ed with reference to each single element/attribute
in a document. Authorizations on an element can be declared as recursive (apply to its subelements)
or local (apply only to its direct attributes and PCdata).

� DTD-level authorizations speci�ed at the global level can be declared as hard .

� Document-level authorizations can be declared as soft .

Authorizations speci�ed for each XML document/DTD (elements within) are stored in a (XML Access
Sheets - XAS) associated with the document/DTD, bringing to the organization illustrated in Figure 2.
The representation and storage of authorizations in a component XAS separate from the document they
protect follows the well known design principle requiring clean separation between data model and access
control model [4]. Also, it has the great advantage of allowing the speci�cation of authorizations on
dynamically generated XML documents. Besides, enclosing authorizations in the documents themselves
would compromise readability of both the documents and its access restrictions.

We anticipate that, in the access control processing, DTD-level authorizations speci�ed at the global
level and those speci�ed at the local level are, with respect to each DTD, merged by performing a at
union. In other words, organization-wide and site speci�c authorizations are treated in the same way
(although, remember, that organization-wide authorizations apply to all the documents in the network
while site-speci�c authorizations apply only to documents stored at the site). Given this, in the future we
will simply refer to DTD authorizations without making any distinction of where they have been speci�ed.
The reason for merging the two sets of authorizations with a simple at union is simplicity. We do observe
that, in principle, even at this level some notion of \speci�city" could be applied. This reasoning could
also be possibly extended by considering any number of intermediate organizational levels which could
be reected in priorities associated with the authorizations. We note however, that the most speci�c
principle of DTD vs XML, together with the possibility of specifying hard and soft options subverting it,
does already provide, on the two organizational levels considered which were of interest in our project,
such expressiveness. As it may be clear from the previous discussion, we allow the speci�cation of hard
authorizations only at the global level. In this way no unresolvable conict can arise. This does not
limit expressiveness: site administrators that want their authorizations to override global authorizations

5

Figure 2: Authorization information stored at the di�erent levels

6

<!ELEMENT set_of_authorizations (authorization)+>

<!ELEMENT authorization (subject,object,action,sign,type,priority)>

<!ELEMENT subject (#PCDATA)>

<!ELEMENT object (#PCDATA)>

<!ELEMENT action empty>

<!ELEMENT sign empty>

<!ELEMENT type empty>

<!ELEMENT priority empty>

<!ATTLIST set_of_authorizations about CDATA #REQUIRED >

<!ATTLIST action value (read) #REQUIRED>

<!ATTLIST sign value (+|-) #REQUIRED>

<!ATTLIST type value (local|recursive) #REQUIRED>

<!ATTLIST priority value (hard|soft) #IMPLIED>

Figure 3: XAS syntax

can simply do so by going to the instance level (wildcard characters and meta properties allow doing so
without the need of specifying an authorization for each instance).

The XAS associated with a document/DTD contains the set of authorizations speci�ed for the doc-
ument/DTD or elements within. The authorizations are expressed in XML and comply to the DTD
illustrated in Figure 3. Each authorization states the permission or denial (depending on the value of
sign) for a subject to execute a certain action on an object, together with the priority (soft vs hard)
and type (recursive vs local) of such a statement. Here object identi�es an element or set of elements in
a document or set of documents. We now describe in more details how documents and elements/attributes
within them are references to the purpose of specifying authorizations. We then discuss authorization
subjects.

3.1 Identifying Authorization Objects via Path Expressions

In the traditional Web security setting, Uniform Resource Identi�ers (URI) [2] are used to denote the
resources to be protected. Each document and DTD is characterized by a single URI. As we go to a �ner
level of granularity we need to reference speci�c elements and attributes in documents. Elements/attributes
in a document can be referenced by means of path expressions. A straightforward way of writing path
expressions is by using the XPath language [20]. The reason for this choice is that several tools are currently
available which can be easily reused to produce a functioning system. XPath expressions make reference
to the tree organization of documents/DTDs which is obtained in a simple way by interpreting elements
and attributes as children of the element in which they are directly contained. Each element and attribute
can be then referenced by means of the tree path that must be followed to reach it. An XPath on an
XML document tree is a sequence of element names or prede�ned functions separated by the character /
(slash): l1=l2= : : : =ln. For instance, path expression /division/about div/member denotes the nodes of
the member element which are children of about div elements, which are children of division elements.
Path expressions can be absolute or relative. Absolute path expressions, pre�xed by a slash character, start
from the root of the document. Relative path expressions, which start with an element name, describe a
path whose initial point is any element in the document.

A very interesting characteristic of path expressions which very conveniently increases the expressiveness
of authorizations is the support of conditions. Conditions associated with a path expression re�ne the set
of nodes matching the path expression. Conditions may impose constraints on element contents (i.e., the
\text" of elements) or on names and values of attributes. A condition can follow any label in a path

7

expression and is identi�ed as such by enclosing it between square brackets. Given a path expression
l1=l2= : : : =ln, a condition on label li restricts the application of the path expressions only to those node(s)
li for which the condition evaluates true.

3.2 Identifying Authorization Subjects

A straightforward and largely used approach to refer to authorization subjects and access requesters is via
user identity and/or the location from which their requests originate, where locations can be expressed via
numeric IP addresses (e.g., 159.149.51.40) or via symbolic names (e.g., tweety.acme.com). Our system
combines all these features. Subjects requesting access are characterized by a triple huser-id,IP-address,
sym-addressi, where user-id is the login name with which the user connected to the server, IP-address is
the address of the client machine and sym-addressis the machine's DNS name. (Remote identities trusted
by the server (using a Certi�cation Authority, or any other secure infrastructure) can be considered as
well.) Authorizations can also be speci�ed with reference to user groups and/or location patterns. Groups
are set of users de�ned at the server; they do not need to be disjoint and can be nested. A location pattern
is an expression identifying a set of physical locations, with reference to either their symbolic names or
IP addresses. Patterns are speci�ed by using the wild card character *. For instance, 159.149.* denotes
all the machines belonging to subnetwork 159.149. Similarly, *.edu, and *.it respectively denote all the
machines in the Educational and Italy domains. A user can be seen a singleton group, a location as a simple
pattern. Groups and location patterns provide an e�ective way to specify authorizations holding for large
set of subjects: authorizations granted to a group with respect to some location pattern apply to all the
members of the group when connected from a machine satisfying the pattern. For instance, authorizations
granted to hEmployee,159.149.100.*,*i apply to all the members of group Employee when connected
from machines in subnetwork 159.149.100.*. Authorizations granted to hEmployee,*,*.acme.comi apply
to all employees connected from the local acme network. We observe that while authorization subjects
are conceptually identi�ed by triples of the general hierarchy, relationships between address (and symbolic
names) patterns can be detected straightforwardly; therefore, only the usual user-group hierarchy needs
to be explicitly de�ned and stored at the sites (or communicated to them [7]). It is also important to
note that the consideration of user's identity and location identi�ers does not rule out the possibility of
partial or completely anonymous connection, to which general authorizations, speci�ed for a group Public

to which everybody belongs and pattern * can be applied.

4 Authorization Enforcement

For each possible requester (user connected from a certain location) and document, the authorizations
on the document applicable to the requester describe what information can or cannot be returned to
the requester. Hence, given the request from a subject to access a document, the joint application of
the DTD-level and document-level authorizations applicable to the subject will produce a custom view
on the document, including only the information that particular requester is entitled to see. The access
control process must therefore evaluate the authorizations applicable to an access request to compute such
a view. We now briey outline this computation process which exploits the hierarchical organization of
documents, by operating on their DOM tree. Intuitively, the analysis of all the authorizations holding
for the requester on a document produces an access decision (access or not access) on each node of the
document. The process to obtain this �nal outcome starts with a labeling procedure whose output reects
the authorizations on the di�erent nodes applicable to the subject. Since authorizations can be of di�erent
level (DTD vs. instance), type (local vs. recursive), and priority (hard vs. soft), more than one sign is
associated with each node. More precisely, the process assigns to each node a label reecting the sign
(permission or denial) of authorizations, if any, existing for that node at the considered type, priority,

8

and level. A simple representation of these labels is to associate with a node an 8-tuple (23, each of the
three �elds has two possible values). The sign of each label can be: `+' (permission), `�' (denial), or `"'
(no authorization). We note that more authorizations can exist with respect to each label. In this case
a resolution policy is applied to get a unique �nal sign [6, 8] for the label. Simple and natural conict
resolution policies include the \most speci�c subject takes precedence principle" (users/subgroups are more
speci�c than the groups to which they belong, sub-patterns are more speci�c than their more general form)
and the \denial takes precedence principle" [8], and are those currently supported by our prototype.

After this initial labeling, propagation is applied so that local authorizations holding for each node
are propagated to its attributes, while recursive authorizations are also propagated to its sub-elements.
Authorizations may be overridden as follows:

1. authorizations on a node take precedence over those on its ancestors,

2. authorizations at the document level take precedence over authorizations at the local and global DTD
levels, unless they are explicitly declared as soft.

3. hard authorizations at the global-DTD level override authorizations at other levels.

This labeling process can be obtained by means of a preorder visit on the document's DOM tree. At
the end of the tree visit a single label is associated with each node de�ning its �nal sign, if any. If no
sign has been determined for a node (no authorizations have been speci�ed nor can be derived for it), its
value is set to the null value `"'. Value `"' can be interpreted either as a negation (transformed in a `-') or
as a permission (transformed in a `+'), corresponding to the enforcement of a closed and the open policy,
respectively [8]. In the sequel, we shall act conservatively, choosing the closed policy.

For how the labeling process has been performed, the requester is allowed to access all the elements
and attributes whose label is positive. Note that, in order to preserve the structure of the document, the
portion of the document visible to the requester will also include start and end tags of elements with a
negative or unde�ned label, if the elements have a descendant with a positive label. The �nal view on the
document can be obtained simply by pruning from the original document tree all the subtrees containing
only nodes labeled negative. This pruning is performed by a procedure that executes a postorder visit
on the document and removes any leaf labeled `�'. The pruned document may not be valid with respect
to the DTD referenced by the original XML document. This will happen, for instance, when required
attributes are deleted because the requester is not entitled to receive them. To avoid this problem, a
loosening transformation can be applied to the DTD. In the simplest case, loosening a DTD simply means
to de�ne as optional all the elements and attributes marked as required in the original DTD. This \naive"
loosening technique is currently justi�ed by implementation-related considerations, as there is no eÆcient
technology for processing DTDs even remotely comparable to the one available for documents. However, as
DTD processing standards such as DOM level-2 [17] come of age, more sophisticated loosening techniques
can be devised by taking into account the elements that are pruned by the transformation and selectively
rede�ning them as optional. \Looser" DTDs also prevent users from detecting whether information was
hidden by access control enforcement or was simply missing in the original document. The loosening
process is aimed at the satisfaction of requirement 4 stated in Section 1.

5 Design and Implementation Guidelines

First of all, architectural design will be briey discussed. Two main architectural patterns are currently
used for the design of XML/XSL systems: server side and client side XSL processing (see Section 6). The
former technique is common in association with translation to HTML and provides limited interaction:
XML documents are translated to HTML before sending them to the client, avoiding the need for the

9

Figure 4: Design pattern for the processor transformer

client browser to provide XML support. The latter technique requires an XSL processor to be part of the
client, in order to provide it with rendering capabilities. In our approach, access control enforcement is
always performed on the server side, regardless of whether other operations, such as XSL-based rendering
or translation to HTML, are performed by the server site or by the client module.

The reason for this architectural choice are twofold: �rst, server-side execution prevents transferring
to the client of information it is not allowed to see or process; second, it ensures the operation and even
the presence of security checking to be completely transparent to remote clients. The main usage scenario
for our system involves a user requesting a set of XML elements from a remote site, either through an
HTTP request or as the result of a query [5]. Our processor takes as input the valid XML document
requested by the user or computed by the query, together with an XML Access Sheet (XAS) listing the
associated access authorizations at document level. The processor operation also involves the document's
DTD and the associated XAS specifying DTD level authorizations. In our design, the processor module is
a transformer in the framework of a complete architecture complying to the well- known Pipes and Filters
design pattern (Figure 4) [3]. The service's interface is locally available to Web servers components storing
XML documents. This solution is aimed to satisfy requirement 2 stated in Section 1. The processor output
is a valid XML document including only the information the user is allowed to access. The XML document
computed by processor is then transferred to the client as the result of its original request.

5.1 Internal Data Model

In our system, documents and DTDs are internally represented as object trees, according to the Document
Object Model (DOM) Level 1 speci�cation [16]. DOM provides an object-oriented Application Program
Interface (API) for HTML and XML documents. Namely, DOM de�nes a set of object de�nitions such
as Element, Attr, and Text, to build an object-oriented document which closely models the document

10

structure. While DOM trees are topologically equivalent to the XML trees de�ned in Section 3.1, they
represent element containment by means of the object-oriented part-of relationship. For example, an XML
element is represented in DOM by an Element object; an element contained within another element is
represented as a child Element object, and text contained in an element is represented as a child Text

object. The main classes of the DOM hierarchy are Node, Document, Element, Attr and Text. Node is the
generic element in an XML document and provides basic methods for insertion, deletion and editing; via
inheritance, such methods are also de�ned for more specialized classes in the hierarchy. Node also provides
a powerful set of navigation methods, such as parentNode, firstChild and nextSibling. Navigation
methods allow transformer modules of the security processor to visit the DOM representation of XML
documents via a sequence of calls to the interface. Speci�cally, the NodeList method, which returns in a
container all the children of the current node, has been used to implement the fast labeling procedure which
is the core of the access control processor. Our implementation is based on a Secure extension of the classes
of the DOM hierarchy, like SecureDocument and SecureElement. Our extension is fully compatible with
other extensions supporting element-wise digital signatures, such as DOMhash [1]. Such compatibility is
a step towards satisfaction of requirement 5 stated in Section 1.

5.2 Execution Phases

Our security processor computes an on line transformation on XML documents. Its execution cycle consists
of four basic steps:

1. Parsing. The parsing step consists in the syntax check of the requested document with respect to
the associated DTD and its compilation to obtain an object-oriented document graph according to
the DOM format. Since parsing is performed externally when the access control processor is used
as a transformer in the framework of a Pipes and Filters system, here we do not deal with parsing
issues in detail.

2. Tree labeling. The labeling step involves the propagation of the labeling of the DOM tree according to
the authorizations listed in the XAS associated to the document and its DTD, both at the organization
and at site level. Its implementation takes advantage of the extended DOM interface for object nodes,
which provides a labeling interface. Standard DOM methods allow the transformer to follow part-of
links from each node to its children by means of a standard method call. The authorizations relevant
for the user are analyzed and applied to the nodes.

3. Transformation. The transformation phase is a pruning of the DOM tree according to its labeling,
based on the transformation presented in Section 4. Such a pruning is computed by means of a
standard preorder visit to the labeled DOM tree. This pruning preserves the validity of the document
with respect to the loosened version of its original DTD.

4. Unparsing. Finally, the fourth step is the generation of a valid XML document in text format,
simply by unparsing (again, by means of a standard component) the pruned DOM tree computed by
the previous step. Once again, this step is performed externally when the access control process is
executed as a transformer module in the framework of a Pipes and Filters system

The resulting XML document, together with the loosened DTD, can then be transmitted to the user
who requested access to the document.

5.3 Performance and caching

In a complex server environment, performance and memory usage are critical issues. Moreover, the process-
ing requirement for XML parsing, transformation, document processing and formatting are particularly

11

DOM tree

2. tree labeling

DOM labeled tree

+

+ +
3. transformation

+

+ +

umparsing4.

document
XML

transformed

parsing1.

document

XML

XSS

XSS

DTD
loose
DTDloosening

Figure 5: Document transformations by the security processor

heavy. For this reason, a special cache system is needed, in order to cache dynamically created pages.
Caches of this kind are already available for XSLT processors which store their stylesheets in a pre-parsed
form [12]. A cache for labelled documents is an important part of our system. When the request comes,
the cache is searched. If an instance of the requested document for the same subject is found in the cache,
then the cache copy is served. Otherwise, the document is parsed, labelled, transformed, unparsed and
sent to the client; also, the transformed document is stored into the cache. Whenever authorizations are
changed the whole cache is emptied. This technique allows dynamically generated pages (for example,
XML documents created by querying a database) to be transformed and cached. Assuming that the fre-
quency of requests is higher than that of resource changes, the cache may greatly reduce the total server
load. The eÆciency gain is particularly relevant when authorizations are speci�ed with respect to a limited
number of groups, as it may be the case for Internet-based servers. Moreover, the cache system can be
based on a persistent object storage system which is able to save stored objects in a persistent state that
outlives the module execution. This technique can be e�ectively used for pages that are very expensive to
generate and last very long without changes, such as compiled server pages.

6 Related Work

Conventional HTML tagging is aimed at de�ning page rendering and is seldom if ever related to information
granulation. For this reason, access control mechanisms currently available for Web sites tend to be coarse-
grained. For instance, the Apache Web server (http://www.apache.org) allows the speci�cation of access
control lists via a con�guration �le (access.conf) containing a list of users, hosts (IP addresses), or
host/user pairs, which must be allowed/forbidden connection to the server. Users are identi�ed by user-
and group-names and passwords, to be speci�ed via Unix-style password �les. By specifying a di�erent
con�guration �le for each directory on the Web server's disk, it is possible to de�ne authorizations on
a directory basis; �les belonging to the same directory are subject to the same authorizations. The
speci�cation of authorizations at the level of single �le (i.e., Web pages) is quite awkward, while it is not
possible to specify authorizations on portions of �les. This limitation forces protection requirements to
a�ect data organization at the �le system level. Recent proposals addressing authorization enforcement in

12

the Web, addressing topics such as certi�cate management [9] and support of groups and roles [10] are not
thought for XML, and, therefore consider whole documents as granule of protection. The proposal in [14]
speci�es authorizations at a �ne granularity providing a model for referencing portions of a �le. However,
again, no semantic context similar to that provided by XML can be supported and the model remains
limited. Other approaches, such as the EIT SHTTP scheme (http://www.ietf.org/rfc/rfc2660.txt),
explicitly represent authorizations within the documents by using security-related HTML tagging. Every
document may have associated security (meta)tags describing its access authorizations. However, due to
HTML fundamental limitations, even this proposal cannot take into full consideration the information
structure and semantics.

The Role of Encryption Since the advancement of public-key cryptography has solved most of the
security problems in communication, it is interesting to explore authentication and encryption role in pro-
viding �ne-grained security to XML documents. Indeed, some commercial products are becoming available
(e.g., AlphaWorks' XML Security Suite [1]) providing �ne-grained security features, such as element-wise
encryption and digital signatures. A rather coarser solution has been proposed by DataChannel, whose
DataChannel Server product (http://www.datachannel.com) links XML authentication to existing direc-
tory systems, supporting both Windows NT and Lightweight Directory Access Protocol 3 directories.
DataChannel servers map each XML document to the requesting user's ID and then to the �le system
access control. Thanks to authentication, an encryption-based XML server knows what information can
be sent to a user based on that user's access level, and employs element-wise encryption to prevent users
without appropriate decryption keys to access the parts of the documents containing private information.
However, encryption-based approaches unequally split security responsibilities between the connection pro-
tocol, the XML content, and the application processing the document, while the need for a standardization
of access control is becoming well recognized for XML data. Moreover, some encryption-based techniques
leave encrypted private information in the hands of unauthorized users, a design choice which may well
prove unwise in the long run.

Server-side XML/XSL processing Much work has been done recently on server side XML/XSL
processing, and several design and implementation techniques have been proposed to obtain eÆcient,
scalable systems based on DOM representation. Cocoon [12] is a Web publishing system for the Apache
Web server whose engine is loosely based on the Reactor design pattern [3]. It deals with server-side
requests, obtained processing client's requests and augmenting them with all the information needed by
the processing engine. The request indicates what client generated the request, what URI is being requested
and what producer should handle the request. Producer modules handle the requested URI and produce
XML documents. Since producers are pluggable, they work like subservlets for this framework, allowing
site designers to de�ne and implement their own producers. It's up to the producer implementation to
de�ne the function that produces the document from the request object. Our access control processor is
designed to be smoothlessly integrated in server-side architectures like Cocoon's.

7 An example

We now illustrate an example of authorization speci�cation and document transformation.

Data organization: DTD and documents
We consider the case of an organization maintaining information regarding its departments, member-
s, and projects. Each department is composed of one or more divisions and is responsible to create
an XML document for each of them. To provide a uniform representation of this information, these

13

<!ELEMENT division (about_div,res_activity*,seminar*)>

<!ELEMENT about_div (member+,contact)>

<!ELEMENT member (name,position,e-mail?)>

<!ELEMENT e-mail (#PCDATA)>

<!ELEMENT contact (#PCDATA)>

<!ELEMENT res_activity (topic,description,project*)>

<!ELEMENT topic (#PCDATA)*>

<!ELEMENT description (#PCDATA)>

<!ELEMENT project (name,report*,fund*)>

<!ELEMENT fund (sponsor,amount)>

<!ELEMENT sponsor (#PCDATA)*>

<!ELEMENT amount (#PCDATA)*>

<!ELEMENT report (title,author+,text)>

<!ELEMENT title (#PCDATA)*>

<!ELEMENT author (#PCDATA)*>

<!ELEMENT seminar (date,title,speaker+)>

<!ELEMENT text (#PCDATA)*>

<!ATTLIST division name CDATA #REQUIRED>

<!ATTLIST seminar category (public|internal) #REQUIRED>

<!ATTLIST project domain (public|private) #REQUIRED>

<!ATTLIST report code ID #REQUIRED>

Figure 6: An example of DTD

XML documents must be valid with respect to a DTD de�ned by the organization. We consider DTD
http://www.acme.com/dtd.xml reported in Figure 6. According to the DTD, each division is charac-
terized by general information about it (about div element), its current research activities (res activity

element), and seminars. The about div element includes information about the division members and
how to contact the division (contact element). The res activity element contains the topic of the
research, a description, and a set, possibly empty, of related projects. Seminars, which can be open
to everybody or restricted to the division members, are characterized by a date, title, and one or more
speaker elements. Each member of the division has a name, position, and e-mail address. Projects are
described by a name, the fund to which the project expenses must be charged, and by zero or more report
elements with title and author elements belonging to them. Funds are characterized by sponsor and
amount elements. Attributes of elements are de�ned in the attribute list declarations. Element division
has a name identifying the division. Element seminar has a category attribute used to make a distinction
between seminars open to all (i.e., category = `public') and seminars restricted to the division members
(i.e., category = `internal'). Element project has a required attribute domain representing the project
visibility (public vs private). Finally, element report has an attribute code used as an identi�er for the
report.

Among the departments of the organizations is the CS Department which includes division Security.
The information about this division is represented in the XML document http://www.acme.com/sec.xml
illustrated in Figure 7.

Authorization speci�cation
We now discuss some protection requirements that the acme organization and the CS department may
need to express and illustrate how they are translated into authorizations of the form considered by our

14

<division name = "Security">

<about_div>

<member>

<name> Bob </name>

<position> Computer Scientist </position>

<e-mail> bob@acme.com </e-mail>

</member>

<member>

<name> Tom </name>

<position> Software Engineering </position>

<e-mail> tom@acme.com </e-mail>

</member>

<contact>

Security Div. - 180 Lane St. - 81231 New Park

</contact>

</about_div>

<res_activity>

<topic> Web security </topic>

<description> The purpose of ... </description>

<project domain = "private">

<name> Access Control </name>

<fund>

<sponsor> IT </sponsor>

<amount> 10000 </amount>

</fund>

<report code ="R1-99">

<title> A new access control model </title>

<author> Sam </author>

<author> Ron </author>

<text> </text>

</report>

</project>

<project domain = "public">

<name> Cryptography </name>

<report code ="R2-99">

<title> The study of encryption </title>

<author> Steve </author>

<text> </text>

</report>

</project>

</res_activity>

<seminar category="internal">

<date> Tues., June 8 </date>

<title> Safe statistics </title>

<speaker> Jan </speaker>

</seminar>

<seminar category="public">

<date> Thurs., July 15 </date>

<title> UML </title>

<speaker> Karen </speaker>

</seminar>

</division>

Figure 7: An example of XML document valid with respect to the DTD in Figure 6

15

system. In the following , for the sake of simplicity, relative URIs (http://www.acme.com is the base URI)
in the authorizations.

Organization's policy Speci�ed at the DTD level { applicable to all the divisions of all departments of
the organization.

1. Information about the name of members of any division in any department is publicly accessible;
unless otherwise stated by the speci�c departments.

<<Public,*,*>,dtd.xml:/division/about_div/member/name,read,+,local,->

2. Information about the name of public projects must be publicly accessible.

<<Public,*,*>,dtd.xml:/division/res_activity/project[./@domain="public"]/name,

read,+,local,hard>

3. Information about report of public projects must be publicly accessible.

<<Public,*,*>,dtd.xml:/division/res_activity/project[./@domain="public"]/report,

read,+,recursive,hard>

Computer Science department's policy Speci�ed at the DTD level and instance level to complement
or override the organization's policy.

4. Information about members of any division in the department is accessible to all members of
the organization (OrgMembers group) unless otherwise stated by the organization.

<<OrgMembers,*,*>,dtd.xml:/division/about_div/member,read,+,recursive,soft>

5. Information on funds of any division is accessible only to the members of Admin group connected
from network 145.*.

<<Admin,145.*,*>,dtd.xml:/division//fund,read,+,recursive,->

<<Public,*,*>,dtd.xml:/division//fund,read,-,recursive,->

6. Information about public seminars of any division is publicly accessible.

<<Public,*,*>,dtd.xml:/division/seminar[./@category="public"],read,+,recursive,->

7. Information about seminars of the Security division is accessible only to users connected from
network 145.*.

<<Public,145.100.*,*>,sec.xml:/division/seminar,read,+,recursive,->

<<Public,*,*>,sec.xml:/division/seminar,read,-,recursive,->

8. Topics and description of research activities of the Security division are publicly accessible.

<<Public,*,*>,sec.xml:/division/res_activity/topic,read,+,recursive,->

<<Public,*,*>,sec.xml:/division/res_activity/description,read,+,recursive,->

9. Contact information about the Security division is publicly accessible unless otherwise stated
by the organization.

<<Public},*,*>,sec.xml:/division/about_div/contact,read,+,local,soft>

10. Bob cannot access information about the Security division projects.

<<Bob},*,*>,sec.xml:/division//project,read,-,recursive,->

11. Information about projects can be accessed by members of the Security division when con-
nected from hosts in the domain *.com.

<<Security,*,*.com>,sec.xml:division//project,read,+,recursive,->

16

Figure 8: An example of view on the document in Figure 7

Document view
We now illustrate an example of document view visible to a requester in obedience to the authoriza-
tions speci�ed. Consider a request to read the document http://www.acme.com/sec.xml describing the
Security division (Figure 7). The request is submitted by user Bob, who is a member of the Security

group, connected from machine cslab.uniacme.edu with numeric IP 150.100.80.3. According to DTD-
level authorizations 1 and 4, Bob can access information about the members of the division. According to
document-level authorization 10, Bob cannot access information on projects. However, for public projects,
this denial is overridden by hard authorizations 2 and 3 stated by the organization. Finally, Bob cannot
access seminars information, since this is visible only to connections from network 145.* (authorizations 7).
The resulting view on the document of Figure 7 as returned to Bob is illustrated in Figure 8.

8 Conclusions

We have presented an access control system providing �ne-grained access control for XML documents. The
approach proposed is focused on enforcing and resolving �ne grained authorizations with respect to the
data model and semantics. Although presented in association with a speci�c approach to authorization

17

speci�cation and subject identi�cation, as supported in the current prototype, its operation is independent
from such approaches and could then be applied in combination with di�erent admninistrative policies.
For instance, it can be combined with the treatment of roles [15, 21] and of authentication/authorization
certi�cates [7, 9]. We are currently exploring such extensions.

References

[1] AlphaWorks. XML Security Suite, April 1999. http://www.alphaWorks.com/tech/xmlsecuritysuite.

[2] T. Berners-Lee, R. Fielding, and L. Masinter. Uniform Resource Identi�ers (URI): Generic Syntax,
1998. http://www.isi.edu/in-notes/rfc2396.txt.

[3] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal. Pattern-Oriented Software
Architecture - A System of Patterns. Wiley and Sons Ltd., 1996.

[4] S. Castano, M.G. Fugini, G. Martella, and P. Samarati. Database Security. Addison-Wesley, 1995.

[5] S. Ceri, S. Comai, E. Damiani, P. Fraternali, S. Paraboschi, and L. Tanca. XML-GL: A graphical
language for querying and restructuring XML documents. In Proc. of the Eighth Int. Conference on
the World Wide Web, Toronto, May 1999.

[6] E. Damiani, S. De Capitani di Vimercati, S. Paraboschi, and P. Samarati. Securing XML documents.
In Proc. of the 2000 International Conference on Extending Database Technology (EDBT2000), Kon-
stanz,Germany, March 2000. (to appear).

[7] B. Gladman, C. Ellison, and N. Bohm. Digital signatures, certi�cates and electronic commerce.
http://www.clark.net/pub/cme/html/spki.html.

[8] S. Jajodia, P. Samarati, V.S. Subramanian, and E. Bertino. A Uni�ed Framework for Enforcing
Multiple Access Control Policies. In Proc. of the 1997 ACM International SIGMOD Conference on
Management of Data, Tucson, AZ, May 1997.

[9] J. Kahan. WDAI: A simple World Wide Web distributed Authorization infrastructure. In Proc. of
the 8th Int. World Wide Web Conference, May 1999.

[10] S. Lewontin and M.E. Zurko. The DCE project: Providing authorizations and other distributed
services to the world-wide web. In Proc. of the 2nd World Wide Web Conference, October 1994.
http://www.ncsa.uiuc.edu/SDG/IT94/Proceedings/Security/lewontin/Web DCE Conf 94.html.

[11] T.F. Lunt. Access Control Policies for Database Systems. In C.E. Landwehr, editor, Database Security,
II: Status and Prospects, pages 41{52. North-Holland, Amsterdam, 1989.

[12] S. Mazzocchi. Cocoon User Manual. http://www.apache.org/java/cocoon.

[13] J. D. Mo�ett and M. Sloman. Policies hierarchies for distributed systems management. IEEE Journal
of Selected Areas in Communications, 11(9):1404{1414, 1993.

[14] P. Samarati, E. Bertino, and S. Jajodia. An Authorization Model for a Distributed Hypertext System.
IEEE Transactions on Knowledge and Data Engineering, 8(4):555{562, August 1996.

[15] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman. Role-based access control models.
IEEE Computer, 29(2):38{47, February 1996.

18

[16] World Wide Web Consortium (W3C). Document Object Model (DOM) Level 1 Speci�cation Version
1.0, October 1998. http://www.w3.org/TR/REC-DOM-Level-1.

[17] World Wide Web Consortium (W3C). Document Object Model (DOM) Level 2 Speci�cation Version
1.0., September Working Draft 1999. http://www.w3.org/TR/WD-DOM-Level-2.

[18] World Wide Web Consortium (W3C). Extensible Stylesheet Language (XSL) Speci�cation, April 1999.
http://www.w3.org/TR/WD-xsl.

[19] World Wide Web Consortium (W3C). Resource Description Framework (RDF) Model and Syntax
Speci�cation, February 1999. http://www.w3.org/TR/REC-rdf-syntax.

[20] World Wide Web Consortium (W3C). XML Path Language (XPath), November 1999.
http://www.w3.org/TR/xpath.

[21] M. E. Zurko, R. Simon, and T. San�lippo. A user-centered, modular authorization service built on
an RBAC foundation. In Proc. of the 20th IEEE Symposium on Security and Privacy, pages 57{71,
Oakland, May 1999.

Vitae

� Ernesto Damiani holds a Laurea Degree in Ingegneria Elettronica from Universit�a di Pavia and a
PhD degree in Computer Science from Universit�a di Milano. He is currently an assistant professor
at the campus located in Crema of Universit�a di Milano. His research interests include distributed
and object oriented systems, semi-structured information processing and soft computing.

� Sabrina De Capitani di Vimercati is an Assistant Professor at Dipartimento di Elettronica per
l' Automazione of the University of Brescia. Her research interests are in the area of information
security, databases, and information systems. She has been an international fellow in the Computer
Science Laboratory at SRI, CA (USA). She is co-recipient of the ACM-PODS'99 Best Newcomer
Paper Award.

� Stefano Paraboschi is an associate professor at the Dipartimento di Elettronica e Informazione of
Politecnico di Milano. He received the Laurea Degree in Ingegneria Elettronica in 1990, and a PhD
in Ingegneria Informatica in 1994, both from Politecnico di Milano. His main research interests are
in the area of databases, with a focus on active databases, data warehouses, and the construction of
data-intensive Web sites. He is the author, together with Paolo Atzeni, Stefano Ceri, and Riccardo
Torlone, of the book \Database Systems: Concepts, Languages and Architectures" (McGraw-Hill
1999).

� Pierangela Samarati is an Associate Professor at the Department of Computer Science of the
University of Milan. Her main research interests are in data and application security. She has
been Computer Scientist in the Computer Science Laboratory at SRI, CA (USA). She has been a
visiting researcher at the Computer Science Department of Stanford University, CA (USA), and at
the ISSE Department of George Mason University, VA (USA). She is co-author of the book \Database
Security," Addison-Wesley, 1995. She is co-recipient of the ACM-PODS'99 Best Newcomer Paper
Award.

19

