

Universal Object Language 1.2

Specification

Authors

Recerca Informàtica
Daimler-Benz Research and Technology

OMG Document: ad/98-07-07
Version 1.2 /T-UOL-19980707

July 7th, 1998

Copyright © 1998 Recerca Informàtica, SL
Copyright © 1998 Daimler-Benz Research and Technology

The companies listed above hereby grant a royalty-free license to the Object Management Group,
Inc. (OMG) for worldwide distribution of this document or any derivative works thereof within OMG
and to OMG members for evaluation purposes, so long as the OMG reproduces the copyright notices
and the below paragraphs on all distributed copies.

The companies listed above have granted to the Object Management Group, Inc. (OMG) a
nonexclusive, royalty-free, paid up, worldwide license to copy and distribute this document and to
modify this document and distribute copies of the modified version.

The copyright holders listed above have agreed that no person shall be deemed to have infringed the
copyright, in the included material of any such copyright holder by reason of having used the
specification set forth herein or having conformed any computer software to the specification.

NOTICE : The information contained in this document is subject to change with notice.

The material in this document details a submission to the Object Management Group for evaluation in
accordance with the license and notices set forth on this page. This document does not represent a
commitment to implement any portion of this specification by the submitters.

WHILE THE INFORMATION IN THIS PUBLICATION IS BELIEVED TO BE ACCURATE, THE
OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE MAKE NO WARRANTY
OF ANY KIND WITH REGARD TO THIS MATERIAL INCLUDING, BUT NOT LIMITED TO THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
The Object Management Group and the companies listed above shall not be liable for errors
contained herein or for incidental or consequential damages in connection with the furnishing,
performance or use of this material.

The copyright holders listed above acknowledge that the Object Management Group (acting itself or
through its designees) is and shall at all times be the sole entity that may authorize developers,
suppliers and sellers of computer software to use certification marks, trademarks or other special
designations to indicate compliance with these materials.

This document contains information that is patented which is protected by copyright. All Rights
Reserved. No part of the work covered by copyright hereon may be reproduced or used in any form
or by any means--graphic, electronic, or mechanical, including photocopying, recording, taping, or
information storage and retrieval systems--without permission of the copyright owner. All copies of
this document must include the copyright and other information contained on this page.

The copyright owners grant member companies of the OMG permission to make a limited number of
copies of this document (up to fifty copies) for their internal use as part of the OMG evaluation
process.

RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by government is subject to
restrictions as set forth in subdivision (c) (1) (ii) of the Right in Technical, Data and Computer
Software Clause at DFARS 252.227.7013

OMG® is a registered trademark of the Object Management Group, Inc.

The most recent updates of the Universal Object Language can be found, via
worldwide web, at: http://www.recercai.com

Primary Contacts for the UOL submission:

Recerca Informàtica Joan M. Moral uol@arrakis.es

Daimler-Benz Research and
Technology

Mario Jeckle mario.jeckle@dbag.ulm.DaimlerBenz.COM

Table of Contents
The table of Contents contains entries for both the Specification and the Appendices.

1 Overview 7
1.1 Introduction..7

1.1.1 Rationale...8
1.1.2 Goals and objectives..8

1.2 Structure of This Submission..9
1.2.1 Universal Object Language submission Overview...9
1.2.2 Universal Object Language (UOL) Appendices...10

1.3 Resolution of Requirements ..10
1.3.1 Mandatory Requirements..10
1.3.2 Optional Requirements..11

1.4 Resolution of RFP Issues to be Discussed..12
1.5 Business Requirements...13

1.5.1 Copyright Waiver ...13
1.5.2 Proof of Concept...13

1.6 Acknowledgements...14
1.6.1 UOL Co-Submitters...14
1.6.2 UOL Supporters..14
1.6.3 Additional Contributors and Supporters ..14

2 Facility Purpose and Use 15
2.1 Introduction..15
2.2 What is a Textual OO Full Life-cycle Language ?..15
2.3 Why we Need a Full Life-cycle Language ...16
2.4 Person to Tool Communication ..16
2.5 UOL as a Round-Trip Engineering Language..17

2.5.1 Why Round-Trip Engineering is Necessary..17
2.5.2 What is a Round-Trip Engineering Language?...19

2.6 Tool to Tool Communication ..20
2.7 Conclusions..22

3 The Universal Object Language Specification 23
3.1 UOL Syntax..23

3.1.1 Lexical Specification..23
3.1.2 Syntax Specification...24
3.1.3 Encoding, tokenizing ...40
3.1.4 UNICODE..40

4 The XML-DTDs 41
4.1 The Mapping between UOL and XML..41

4.1.1 Justification..41
4.1.2 The mapping between UOL and XML ...41

5 Mappings 62
5.1 The mapping between UOL and MOF...62

5.1.1 Direct mapping..62
5.1.2 Support for meta-model extensions ..63

5.2 The mapping between UOL and CDIF..63
5.2.1 Introduction...63
5.2.2 Transfer Envelope ..64
5.2.3 Transfer Contents ...64
5.2.4 Transfer Example and UOL Mapping ..80

5.3 The mapping between UOL and STEP/EXPRESS..96

5.3.1 Data types ..97
5.3.2 Declaration.. 108
5.3.3 Interface specification... 154
5.3.4 Expression .. 159
5.3.5 Executable statements .. 159
5.3.6 Built-in constants... 160
5.3.7 Built-in functions... 160

6 Additional Specification 161
6.1 Full UML Support .. 161

6.1.1 Justification... 161
6.1.2 Mapping between UOL and UML with UML constructs .. 163
6.1.3 Benefits of UOL with UML constructs... 164

7 References 169

A UOL Grammar without UML constructs Ap-5

B UOL Grammar with UML constructs Ap-12

C UOL code for the MOF meta-meta-model Ap-32

D UOL grammar in WSN format: Ap-49

E ASCII, UNICODE and ISO 10646 Character Set Ap-65

Overview

(UOL 1.2)

- 7 -

1 Overview

1.1 Introduction
The following companies are pleased to co-submit to the OMG ad/97-12-03 RFP: Stream-based
Model Interchange Format the Universal Object Language 1.2 specification (hereafter referred to
as the UOL):

• Recerca Informàtica, SL

• Daimler-Benz Research and Technology

In accordance to the RFP the main purpose of UOL is to:

• Establish an industry standard specification for a stream-based model interchange
format,

• Provide a generic format that can be used to transfer a wide variety of models,

• Demonstrate that it can be used to exchange OMG Object Analysis and Design Facility
(OADF) compliant models (UML based) and models compliant to other MOF-
compliant meta-models and extensions (e.g. Workflow Management Facility and
Business Object Facility meta-models), and

• Leverage existing vendor-neutral transfer formats as much as possible.

This submission mainly consists of:

• The Universal Object Language Specification

• The XML-DTDs

• Mappings

• The mapping between UOL and MOF

• The mapping between UOL and CDIF

• The mapping between UOL and STEP/EXPRESS

• Additional Specification

• The mapping between UOL and UML with UML constructs

• Supporting Appendices

Introduction

(UOL 1.2)

- 8 -

This submission defines these standards and provides proof of concept that covers key aspects of
the RFP.

1.1.1 Rationale
UOL is a human readable format that allows representing MOF and UML models in a very
compact way and easily learnable and usable by any person. The companion XML-DTDs allows
publication of UOL in an industry standard format and facilitates its use by all XML supporting
tools.

There are several reasons that make UOL a good transfer format:
§ It is high level and thus clearly compact.
§ It supports the transfer between any pair of tools in batch and real-time.
§ It supports the human-tool transfer.
§ It supports human processing.

The first reason is easily supported by a quick scan through the UOL grammar, it has constructs
with a direct mapping to the MOF ones that avoid the assembler-like look of other transfer
languages.

UOL supports the transfer between tools; in fact text is the most easily transferable format. The
tool only needs to have a parser, as the one provided within this proposal, to translate the
information into its particular format. UOL can also be easily generated by a simple traverse of the
information contained in the repository. As a proof of concept this process has been done by
Recerca Informàtica: a repository is queried for its contents, or parts of it, and the repository returns
a UOL stream with the required information. Then, this stream can be introduced again in the
repository, the same or a new one. Inserting UOL text into the repository is also a very easy
process: the parser receives the UOL stream and populates the repository with the contained
information.

The human readability and processing of UOL text is a consequence of its high level nature. The
constructs of UOL evolve from analysis and design concepts and Eiffel-like syntax, therefore a
software engineer should be able to read and use the UOL as easily as the graphic notation.

1.1.2 Goals and objectives
The objective of this submission is to specify the Universal Object Language (UOL) and its
companion XML-DTDs as the Stream-based model interchange format.

The main goal of the UOL is to provide a format allowing for the most efficient batch or real-time
transfer between tools. To allow for this efficiency the format must allow a very compact
representation of the MOF and UML models and the MOF meta-data. The UOL, with is rich
semantics, offers this compact representation while at the same time being human readable.

Human readability is another goal of the UOL. There are several reasons for this goal. Output of a
tool, in many situations, is susceptible of being analyzed by a human before inputting it to another
tool. A very special and important case of this is round-trip engineering, which we will discuss
further on in this document. Humans use other tools than CASE tools such as word processors or
compilers, and the transfer format should also be valid for these tools. Being that the only format
accepted universally by any tool is the human readable text the UOL assumes this requirement.

Another goal of this proposal is to allow publishing in the XML format parts of a repository.
Given the importance of XML, the availability of many tools and products based on XML and the
reasonable need to make the repository accessible in this format we have developed the necessary
DTDs for UOL.

Overview

(UOL 1.2)

- 9 -

Although the MOF allows for many meta-models, UML is the first one supported and the main
meta-model CASE tools will support. Therefore, one final goal of this proposal is to simplify and
optimize transfer of UML models. This simplification and optimization is obtained extending the
basic UOL with UML constructs giving the most compact possible transfer format. This extension
is proposed as non mandatory or compliant.

Additional benefits of this extension are having a UML textual representation and being a valid
alternative to graphical UML for visually impaired individuals. These two features are two
milestones in the OOA&D Task Force road map.

1.2 Structure of This Submission
This section briefly describes the major portions of the Universal Object Language (UOL)
submission. The submission is made up of two documents. The first is this document titled
Universal Object Language 1.2 Specification. The UOL Specification section gives the UOL
specification and the XML DTDs that are being proposed for standardization. The submission also
includes several mappings:

• UOL-MOF basic requirement of the SMIF RFP
• UOL-CDIF to allow transferring of repositories in CDIF format to UOL
• UOL-STEP/EXPRESS to allow transferring of STEP/EXPRESS models to MOF based

repositories and vice-versa.

This submission also includes an additional specification to the SMIF RFP: direct support of the
UML meta-model constructs to simplify and allow the utmost compact transfer of UML models.

The second document is the Universal Object Language Appendices, which describes the grammar
of UOL in different formats (BNF format with and without UML constructions), the WSN format
and the character set used in UOL mapped to the different more used representations.

1.2.1 Universal Object Language submission Overview
The UOL specification section describes the UOL, the XML-DTDs, mappings and an additional
specification to the SMIF RFP.

1.2.1.1 Overview
 Provides an introduction to the Universal Object Language submission. The key RFP
requirements summary and how this submission addresses the RFP requirements is addressed.
The key contributors to the specification are acknowledged.

1.2.1.2 Facility Purpose and Use
 Viewing the SMIF as a communication language, this chapter reviews the different types of
communications needs that exist. It then describes why a textual OO full life-cycle language, such
as UOL, fulfills all these needs.

1.2.1.3 The Universal Object Language Specification
 Together with the next section this is the main portion of the UOL submission. The lexical and
syntactic specification is given. Semantics are described and examples are given of each construct.

1.2.1.4 The XML-DTDs
 Together with the previous section this is the main portion of the UOL submission. This chapter
justifies the need of an XML representation of UOL and describes the mapping between UOL and
XML with DTDs giving several examples.

Resolution of Requirements

(UOL 1.2)

- 10 -

1.2.1.5 Mappings
Describes the mappings between UOL and several languages and models. More precisely, it
describes the UOL-MOF mapping, basic requirement of the SMIF RFP. It also describes the UOL-
CDIF to allow transferring of repositories in CDIF format to UOL to preserve previous investments
of tool builders. Finally, a mapping between UOL and STEP/EXPRESS is presented following the
SMP RFP requirement to allow transferring of STEP/EXPRESS models to MOF based repositories
and vice-versa.

1.2.1.6 Additional Specification
An additional specification to the SMIF RFP is given to support the UML meta-model constructs to
simplify and allow the utmost compact transfer of UML models. Additional advantages are being
able to use UOL as a round-trip engineering language, a UML textual language and an alternative
to graphics for visually impaired individuals. These last benefits are milestones in the OOA&D
road map.

1.2.2 Universal Object Language (UOL) Appendices
This section describes the various appendices that support this specification. This information
includes the grammar of UOL in different formats: BNF format with and without UML
constructions and the WSN format. The character set used in UOL with the different more used
representations is attached.

1.2.2.1 Appendix A: UOL Grammar without UML constructions
This section gives the UOL grammar in a BNF format, without the UML constructions, i.e. UOL
independent on any Meta-model, only with MOF as it Meta-meta-model.

1.2.2.2 Appendix B: UOL Grammar with UML constructions
This section gives the UOL grammar in a BNF format, with the UML constructions, i.e. UOL with
an extension of UML constructions for give an upward compatibility with UML based models.

1.2.2.3 Appendix C: UOL grammar in WSN format
This section gives the UOL grammar in WSN format. This format is used in the STEP/EXPRESS
mapping.

1.2.2.4 Appendix D: ASCII, UNICODE and ISO 10646 Character Set
Being that the proposal shall support use of international standard code-sets, a code chart of the
most important code-sets is attached.

1.3 Resolution of Requirements
This section describes how this submission meets the key requirements identified in the RFP.

1.3.1 Mandatory Requirements

 RFP Requirement How submission addresses the requirement

Use the MOF as its meta-meta-model. UOL has MOF as its meta-meta-model and it
describes all MOF concepts in addition to UML and
other object engineering related concepts.

 The Section 4.1 addresses this requirement by
detailing the complete mapping between MOF and
UOL.

Overview

(UOL 1.2)

- 11 -

 RFP Requirement How submission addresses the requirement

Provide a complete specification of the
syntax and encoding needed to export/import
models and meta-model extensions included
in-line as part of the transfer stream. This
syntax and encoding shall have an
unambiguous identification to support
evolution of this technology.

UOL provides an extension mechanism based on
stereotypes and tagged values. This mechanism
provides the required meta-model and model
extension capabilities.
 The Section 4.1 addresses this requirement.

Provide a means for unambiguous
identification of any concept specified in a
MOF-compliant meta-model that is
referenced (but the specification is not
included) in a transfer stream.

All concepts expressed in MOF are unambiguously
expressed in UOL. This allows using UOL as transfer
format for any MOF based solution.
 The Section 4.1 addresses this requirement by
detailing the complete mapping between MOF and
UOL.

Demonstrate support for import/export of
UML models and the UML meta-model.
This demonstration shall include
demonstration of a round-trip model
exchange without information loss.

The SMIF RFP requires that the interchange format
should be independent of the semantic constructs in a
meta-model.
 The Section 4.2.1 addresses this requirement.

However, UOL also has a direct support of the UML
constructs because of its important benefits. This
support is proposed as non-mandatory.

 Sections 4.2.2 and 8.2 address this proposal.

Support use of international standard code-
sets.

UOL supports the use of UNICODE and ASCII as its
code-set.
 The Section 3.2 addresses this requirement.

1.3.2 Optional Requirements

 RFP Requirement How submission addresses the requirement

A compact data representation in addition to
the text-based representation as an alternative
to the interface-based representation defined
in the MOF.

UOL is intended to serve as model communication
language in several situations where humans may be
involved. Therefore it includes full UML and other
object engineering concepts support. Situations in
which a more concise form is required may appear.
To solve this scenario UOL includes also a more
compact representation.
 The Section 3.2 addresses this requirement.

Upward-compatibility with the EIA/CDIF
1994 (CDIF94) Transfer Format standards.

UOL has been developed to express object analysis
and design concepts in a seamless way. To achieve
this goal we have developed a new format instead of
trying to extend a non-Object-Oriented existing one.
However, to protect the investments already done in
CDIF, a mapping between CDIF and UOL and a
conversion utility have been developed.
 The Section 4.3 addresses this requirement.

Contain an unambiguous, complete mapping
of the concepts in the CDIF94 meta-meta-
model to the concepts in the MOF.

To protect the investments already done in CDIF a
mapping between CDIF and MOF has been
developed. There is a mapping between CDIF-UOL
and one between UOL and MOF, therefore, the
mapping CDIF-MOF is via UOL.

Resolution of RFP Issues to be Discussed

(UOL 1.2)

- 12 -

Identify the impact of the proposed SMIF
specification on transfer files produced using
the CDIF94 Transfer Format standards.
This includes identification of any changes to
CDIF transfer files required to produce valid
syntax and encoding per the proposed SMIF
specification. This requirement may be met
by providing a specification for a conversion
utility for transfer files created using the
CDIF94 Transfer Format standards to make
them compliant with the proposed SMIF
specification.

UOL does not require any change to CDIF. However,
since UOL is not an extension of CDIF a mapping
between CDIF and UOL and a conversion utility have
been developed.

 The Section 4.3 addresses this requirement.

Provide transfer stream examples that use
concepts from other industry standard meta-
models.

To allow UOL to support STEP/EXPRESS a mapping
and conversion utilities have been developed.
Examples are included in this proposal.
 The Section 4.6 addresses this requirement.

Identify specific modeling language
differences between EXPRESS and the
MOF/UML and discuss ways to map
between these languages

 The Section 4.6 addresses this requirement.

Identify the impact of the proposed SMIF
specification on existing schema definitions
and transfer files produced using STEP
EXPRESS. This may include identification
of any changes to STEP EXPRESS files
required to produce valid syntax and
encoding per the proposed SMIF
specification. Submissions may include a
specification for converting STEP schemas
and/or transfer files created using STEP
EXPRESS standards to make them compliant
with the proposed SMIF specification

 The Section 4.6 addresses this requirement.

1.4 Resolution of RFP Issues to be Discussed

 RFP Issue How submission addresses the issue

Meta-Object Definition Language (MODL) There is not any connection with the MODL.

Object Constraint Language (OCL) OCL is embedded in UOL as formal constraint
language. In addition free text constraints are also
allowed.

 The Section 3.1 addresses this requirement.

Support semantic interoperability between
tools that share and manipulate STEP
schemas and STEP schema instances in
addition to tools that support sharing and
manipulation of OAD models.

 The Section 4.6 addresses this requirement.

Overview

(UOL 1.2)

- 13 -

Include information on how to perform
conformance tests (for checking syntax and
transfer stream specific validation rules for
schemas and schema instances) on transfer
streams prior to import into other
applications. This may include
recommendations for adding additional
functionality to the MOF to satisfy transfer
file conformance test requirements identified
by the STEP community. Proposals should
discuss an approach to address this difference
in problem scope. For example, proposals
may describe how to use the MOF to
describe STEP schemas at the same level as
the UML meta-model.

 The Section 4.6 addresses this requirement.

The connection, if any, between the proposed
transfer format syntax and encoding and the
Objects-by-Value syntax and encoding.

 There is not any connection

1.5 Business Requirements

1.5.1 Copyright Waiver
In the event that this specification is adopted by OMG, the submitters grant to the OMG, a non-
exclusive, royalty-free, paid-up, worldwide license to copy and distribute this specification
document and to modify the document and distribute copies of the modified version. For more
detailed information, see the disclaimer on the inside of the cover page of this submission.

1.5.2 Proof of Concept

In order to test the UOL concept it has been integrated in a CASE tool under development. The tool
is capable of exporting and importing UOL code without any loss of information. The process is
quite straightforward; the repository is queried for its contents in UOL format. The resulting stream
can be redirected towards a file or a TCP/IP connection. The resulting model can be edited or
processed in different ways (i.e. user implemented metrics or rule checkers) and then re-imported
in order to keep the repository up to date. This is an example of the round-trip capacities of UOL
but, of course, the stream can be presented to another repository to make a duplicate of the original
one.

The implementation of such process has been done through a parser integrated within the tool. The
parser receives the UOL code and translates it into the specific repository format. The generation of
the UOL code has been done with a traverse utility that generates the UOL code for each element it
found in the repository.

Acknowledgements

(UOL 1.2)

- 14 -

1.6 Acknowledgements
The following section lists the team members that worked on the UOL submission during the initial
and revised submissions. The members of the core team that designed and influenced the UOL
model are listed below. The primary contact in each company is listed first.

1.6.1 UOL Co-Submitters

Joan M. Moral uol@arrakis.es

Josep Oncins recercai@arrakis.es

Teresa Masot library@arrakis.es

Albert Sorroche e4005868@est.fib.upc.es

Recerca Informàtica

Guillem Vallès e6745766@est.fib.upc.es

Daimler-Benz Research and
Technology

Mario Jeckle mario.jeckle@dbag.ulm.DaimlerBenz.COM

1.6.2 UOL Supporters

J.Hierro jhierro@tid.esTelefónica I+D

Universitat Politècnica de
Catalunya

Allen Peralta peralta@lsi.upc.es

1.6.3 Additional Contributors and Supporters

The co-submitters of the UOL submission appreciate the contributions and support of the following
individuals during the UOL submission and evaluation process:

Alicia Ageno (Universitat Politècnica de Catalunya), Grady Booch (Rational, Inc.), Derek Coleman
(Hewlett-Packard Laboratories), Xavier Escudero (Recerca Informàtica, SL), Antoni Gonzalez
(ICT Electronics), Brian Henderson-Sellers (University of New South Wales), Ivar Jacobson
(Rational, Inc.), Bertrand Meyer (ISE, Inc.), James Odell (Intellicorp, Inc.), Horacio Rodriguez
(Universitat Politècnica de Catalunya), Jordi Rosell (Tao, SA), James Rumbaugh (Rational, Inc.),
Joan Serras (Aceri, SA).

NOTE: In some cases, the individuals are methodologists whose writings and lectures influenced
and helped the creation of this UOL submission or were reviewers of the first version of UOL
(Eiffel+), developed as a PhD thesis.

Facility Purpose and Use

(UOL 1.2)

- 15 -

2 Facility Purpose and Use

2.1 Introduction
The UOL is intended to support a wide range of usage patterns and applications. This capability
comes about because UOL is a textual OO full life-cycle language. Understanding what is a textual
OO full life-cycle language will allow us to understand is usefulness in a wide range of scenarios.

2.2 What is a Textual OO Full Life-cycle Language?
We define a textual OO full life-cycle language as an object engineering language that is capable of
describing all OOAD constructs and concepts and conceptually being executable.

Naturally, when we say when we say all OOAD constructs and concepts we should refer to who’s
definition of OOAD. Happily, OMG’s initiative to standardize an OOAD modeling language
allows us to define UOL based on OMG’s UML 1.1 standard.

In 1994, the UOL co-author, Allen Peralta, developed an OO full life-cycle language based on
Eiffel1 as his thesis. This language was called Eiffel+2 and was finished in March 1995 and
reviewed by Bertrand Meyer that same year. The initial idea was to have a textual language that
would allow describing all OOAD elements, generally accepted at that time, and to obtain different
products at each development phase. It also assumed that graphical languages where neither
adequate for all tasks nor for all people. Accordingly, a textual language that gave support to
OOAD graphical languages could complement them in such a way that at each moment one could
choose the best representation paradigm.

Being that Eiffel was, and is, considered one of the best-engineered languages, if not the best and
certainly the most complete and easiest to learn, it was chosen as the basis on which to develop the
new language. Developing a new language from scratch was discarded because of the difficulty of
introducing a new language to the OO community and because it would seem that we already had a
surplus of OO languages.

Most of the elements, defined in UML, were already present in 1995, and included in Eiffel+.
Having much of the work already done and being that readability of programs is a must in any
language the decision to further expand Eiffel+ into UOL supporting UML was immediate.

The transition from Eiffel+ to UOL has been very simple and most of the efforts have been in
trying to make the language as simple as possible. Even though we have tried, to the utmost, to
emulate Bertrand Meyer, we recognize we have added many more new keywords than we would
like but it has seemed necessary for readability purposes.

1 Eiffel is a registered trademark of NICE.
2 The name Eiffel+ was used exclusively for the thesis.

Why we Need a Full Life-cycle Language

(UOL 1.2)

- 16 -

2.3 Why we Need a Full Life-cycle Language
When a software engineer develops an object-oriented system he must describe a model using OO
analysis, design and programming concepts. Models are, essentially, a way of communicating
solutions to a problem. There are three types of communications that are necessary:

• person to person

• person to tool

• tool to tool

Person to person communication can be done verbally or through documentation. Verbal
communication, although essential, resides outside the purpose of UOL.

Communication through documents requires maximum formalization to reduce misunderstandings
to the least possible. Analysis, design and programming languages are a way of formalizing
communications. This formalization is especially efficient if the languages are standardized and
universally known. In this sense UML-MOF is an important step in this direction.

The models we create must be represented graphically and/or textually with tools, which may vary
from a text editor to a CASE tool. If the tool supports the same concepts that must be used to
describe the model the software engineer's task is much easier, allowing concentration on the
problem instead of the means to make the description. Therefore, we need tools that support the
standard OO analysis, design and programming concepts.

One of the important features of OO is its support of what is called "seamless transition". That is,
that the same concepts are used throughout the whole life-cycle. However, to obtain this seamless
transition it is not only necessary to use the same concepts at every stage but also to use at every
stage tools that support the same concepts. The problem arises, naturally, that at some stages we are
forced to use, to communicate with, tools that do not support OO concepts.

A full life-cycle language is therefore a language that allows us to use and to communicate always
with the same OO constructs at any stage and with any tool or between any pair of tools.

Let us review the two types of communications in which a full life-cycle language can be used.

2.4 Person to Tool Communication

There are many tools a software engineer may use: compilers, editors, CASE, GUI builders, etc. In
some cases it is possible for a person to communicate directly with an OO tool based on UML (e.g.
a CASE tool) but in many other situations this is not the case.

Two examples of this might be:

• input to a compiler, even if a CASE tool has generated it, must be manipulated during
debugging with a program editor

• creating analysis documentation extracted from the repository to a word processor

In this situation the seamless transition is not maintained unless we can continue to use our OO
concepts even with a tool that does not support them. If we have maintained consistently our OO
representation, once we finish working with our non-OO tool, we will be able to import the result
of our work "seamlessly" to a tool supporting the OO concepts. To maintain this consistent view

Facility Purpose and Use

(UOL 1.2)

- 17 -

and given that most of our work with non-CASE tools is done textually, what we need is to be able
to have all our texts embedded in OO constructs and this is possible with a textual OO full life-
cycle language such as UOL.

There is, however, an absolute requirement that UOL or any other textual OO full life-cycle must
comply with to be effective in this situation: simplicity and ease of learning and use. Any software
engineer should be able to learn and use the language in a few days.

There is one very special and important case of this need of tool-to-person and person-to-tool
communication. We refer to round-trip engineering and the OO auxiliary tools industry, such as
GUI builders and the component and framework industry.

Round-trip engineering will be explained in the next chapter.

The component and framework builders are, in our opinion, at least as important as tool builders
(CASE or other). If software development is to be an engineering profession it requires the
existence of a component industry. There is no engineering profession (mechanic, electronic, etc.)
that relies on developing in-house all their pieces or materials. The existence of a component
industry in inherent with the concept of an engineering discipline. There are two aspects that we
must consider with respect to these tools.

The first is that, even though one may buy a component(s) or a framework without source code, it
is the exception rather than the norm, at least at present. If we need to investigate how these
components are built it is necessary to view them with all the enrichment that UML allows us,
instead of looking only at the source code and separately at the AD models in a manual. If we
require learning from them more than what we can see through programming language constructs it
is necessary to embed in the code analysis and design constructs.

The second is that we need to connect the output of these tools with the rest of the models we are
developing within the main CASE tool. Therefore, we need to allow importing the source code, and
its corresponding OOAD model, generated by their products (GUI builders, component libraries,
etc.) easily into the repository by CASE tools supporting UML.

Both reasons reflect that we have the need of round-trip engineering the source code with
embedded AD constructs developed from these tools.

2.5 UOL as a Round-Trip Engineering Language

2.5.1 Why Round-Trip Engineering is Necessary
Software engineers consider using CASE tools for several reasons. One of the main reasons is to
maintain only one description of their systems. That is to have, at all times, both models and source
programs synchronized.

When developing a system, software engineers start by working with CASE tools to describe
graphically and document the analysis and design. With a full life-cycle CASE tool they then
proceed to generate code from their design. At this point they start doing testing and debugging
with programming language compilers and text editors. Usually they will introduce changes that
must be reflected in the designs stored in the CASE tool repository. Therefore, if they want to have
both model and source synchronized, they must either re-import the source code restructuring the
model or, at least, reflect in the model manually the changes that have been produced during the
testing phase.

UOL as a Round-Trip Engineering Language

(UOL 1.2)

- 18 -

Source code can also be produced by other tools such as screen designers/painters, 4GLs, etc. This
code or the part of the model that it represents should also be imported to the repository to reflect
the complete design of the system.

Ideally importing the code and restructuring the model or reflecting the changes done to the model
(if the CASE tool does not store the source code) should be done automatically. Doing this
manually is very error prone and especially tedious. What happens, when not done automatically,
in real-life stress situations, is that it is not done and there is a mismatch between model and
program. Being the consequence of this situation evident for all and sufficiently documented we
will not further describe it.

Although this situation is the one most discussed in the industry, one should also consider the
inverse, especially in an iterative life-cycle as we usually apply in OO development. When we start
a new iteration of the system being developed, our main efforts will start again at analysis and
design. Naturally, when we increase our system with new aspects, we will introduce changes to the
previous model. Since this model has been translated to source code and debugged, it will be
necessary to reflect in the previous version of the source code the changes in the model. That is the
precise inverse situation that we have previously described and it is mandatory that the model
reflects exactly what is implemented in the program to be able to generate the necessary changes to
the program or a new version of the program.

In order to fulfil the obvious need of facilitating synchronicity between model and code, it is
necessary that CASE tool builders offer the following functionality:

• Generate source code

• Export source code changes from a modified model

• Import source code generated from other tools and the model it represents

• Import modified source code reconstructing the model

Only the first of these four tasks is trivial for CASE tool builders, generating code from the model.
The second, exporting source code, is also trivial if the CASE tool stores the source code or is
integrated with a Version/Configuration Management tool. If it isn’t it may be more or less difficult
depending on the environment the programmer uses.

The last two however, are inherently difficult for all CASE tool builders, no matter what language
they support. Proof of this can be observed from CASE tool advertisements. Even though most
companies offer support for many languages, they do so only exporting or generating. Importing or
round-trip is offered only for a subset of them.

There are many reasons for this difficulty. In the first place, constructing an efficient parser is
always a difficult task. If the parser is not fast the programmer will desist in using it. The second
reason is that, we not only have to parse the source code but we also have to analyze it
semantically, even if the code is correct from a compiler’s point of view. When analyzing the
source code, for re-import purposes, we must have some way of distinguishing features that are not
supported by programming languages. Some of these features may be distinguishing attributes
implementing associations from those of aggregations, or where have patterns been applied, or
what parts of the system are in a module (in most languages), etc. Finally, interpreting the changes
with respect to the original model can be also quite complex.

What most CASE tool builders do, is to enrich the generated source code with comments (mark-up
code) that assist the round-trip tool in analyzing, from an OOAD point of view, the source code, to
be able to modify the model stored in the repository. Although this way of focusing the solution

Facility Purpose and Use

(UOL 1.2)

- 19 -

may be helpful, it does not totally solve the problem. The reason is that there are several types of
changes that the programmer may introduce:

• Firstly, the programmer may delete something previously written. This type of change
is the easiest of all and does not have any special difficulties.

• The second is that he may modify something written previously. This is much more
difficult. How can we know that he has changed the cardinality of a relation, or that he
now treats it as a different kind of relation or with a different constraint?

• The third is adding some new element. Detecting an attribute may be easy but not so
much if it is used to implement a relation. And what if he modifies something affecting
a use-case?

• Lastly, what happens if during testing he inadvertently changes or deletes some of the
comments generated by the tool? How can we interpret the source code then?

And with respect to source code, generated by GUI builders, component/library manufacturers,
pre-CASE systems, what can we do? There is no mechanism to facilitate importing such code.

We can say the same with respect to changing code from designs changed from within the CASE
tool as mentioned previously. How can we inform a version/configuration management tool of
what has been changed in a meaningful way? How can we reflect the model inside the code, in
such a way that the programmer, when debugging/testing the program, may know how it affects the
model?

The only way to solve all these problems is with a language (a “round-trip engineering language”)
that can be used to enrich the source code in any language. By this we mean, that it is able to
describe all OOAD constructs to facilitate round-trip engineering and that is sufficiently simple that
any programmer can learn in a few days.

We believe UOL is a solution to the above problems or considerations.

2.5.2 What is a Round-Trip Engineering Language?
A Round-Trip Engineering Language is a Textual OO Full Life-Cycle Language that is capable of
being embedded any OO programming language program.

OOAD modeling languages are richer than OO programming languages. They are capable of
describing more concepts and in more detail than any OO programming language. In fact, there is
not even uniformity of concepts among OO programming languages. Some as Delphi3 have
modules expressed syntactically, others as C++ can express them indirectly or maybe not even that,
as in the case of Visual Basic4.

Transforming an OOAD model to code implies, therefore, a loss of information in all cases. The
only way to avoid this is embedding in the source code exported/generated from the CASE tool
additional information that, enriching the code, describes what was originally documented.

Can we consider a round-trip engineering language a new category or a new idea? Yes and no.
Enriching source code with comments has been done traditionally by most CASE tool builders but
in an informal and proprietary way, many times specifically defined for each language. What UOL
brings to the OO community is a formal language that can be embedded in any OO programming

3 Delphi is a registered trademark of Borland
4 VisualBasic is a registered trademark of Microsoft.

Tool to Tool Communication

(UOL 1.2)

- 20 -

language (much in the same way that SQL is embedded) and that is capable of describing all the
elements that the modeler has documented.

A round-trip engineering language must be especially simple and easy to learn by any programmer.
It is expected that he can learn it in a few days and that when he maintains a program, he will
simultaneously maintain both the source code as well as the UOL code and with the minimum
burden possible.

There are two alternatives when generating UOL embedded code. The first is to generate a
complete description of the program with UOL and the second is to generate only those constructs
not supported by the language. In the appendix, we have shown both alternatives. We believe that
the first alternative makes somewhat more readable the generated code. In any case, both can be
make available to the programmer by the CASE tool. For a CASE tool builder, it only affects the
control flow of the reverse engineering tool. In the first case, the UOL parser can always start the
collaborative compilation and it will remain in control of the process at all times. In the second
case, control of the compilation process will depend on the target language. This will be further
explained in the chapter 6.

Although some UOL constructs (i.e. use cases, sequence diagrams, deployment, etc.) may seem
unnecessary from a strict reverse engineering source code task, they are, however, necessary from
the point of view, that they describe the full system and that any part of it may be changed by the
programmer. This will, at the same time, enhance her/his role as a system developer. Using the full
expressive power of UOL reinforces the concept that when we change code we change design, that
the distinction among tasks (analysis/design/programming) in OO is blurred and that we are all
responsible of the system as a whole.

There are also some secondary benefits in using UOL. For example, it easily allows the reverse
engineering tool to analyze syntactically and semantically the reengineered model before importing
and restructuring the repository model. In this way, the tool can detect not only syntactic errors but
also integrity or consistency errors (ex. services used in sequence diagrams and not developed in
the objects because of changes, etc.). It also facilitates version control of the model because the
matching process between the repository and the imported versions (detecting changes, additions
and deletions) is simplified not having to do “automatic deduction” from the source code by the
importing tool.

2.6 Tool to Tool Communication

The second type of communication is the one that must exist for a direct dialog between tools. For
this type of communication the OMG has made the SMIF RFP. Let us now consider what this type
of communication implies.

Communication between tools may have to be done in real-time or in batch.

Real-time communication requires standardizing the language. MOF is already a form of real-time
communication language proposed by OMG. However, there are several situations and/or aspects
that must be considered in this case. If all tools supported MOF the SMIF RFP would not be
necessary.

For many reasons not everybody will accept MOF and CORBA, which is inherent to MOF. A very
special case of this is Microsoft that has assumed UML but not MOF for its repository.

If the language used by a tool is not OMG's standard and the tool builder wants to either connect
their tool to another's or to allow another company to connect to their tool, it will be necessary to
agree between tool constructors what will be the valid language and it will only be valid for the two

Facility Purpose and Use

(UOL 1.2)

- 21 -

partners (and others that may also accept it). Any other tool constructor that does not accept and/or
have access to this private/proprietary language is blocked from a market, which may be very
important.

MOF is based on CORBA and has its many benefits but it also has, however, an important
drawback: it requires working with ORBs even though in many cases it may be unnecessary and,
therefore, expensive and resource consuming.

Finally, a general opinion on CASE tools, which comes from structured method CASE tools, is that
the best tools are those that support the whole life-cycle: the Integrated CASE. That is to say, tools
that allow doing everything from within the tool. Integrated tools have usually been developed by
large companies, which are the only ones with sufficient resources to develop all the required
modules to be considered a full life-cycle tool.

However, although it is positive to be able to carry out every task with only one tool, it is not
necessarily true that the best tool is the one developed entirely by one constructor. In many cases
these tools have some of the modules excellent but others are inadequate in some cases or for some
users. On the other hand, the existence of these "complete" tools does not precisely motivate
smaller companies that can offer interesting or innovative ideas in some aspects but are unable to
develop a full CASE tool.

A CASE tool can have many modules or components integrated: repository, graphical designer,
screen designer, code generator, metrics and standards validator, etc. The central component is,
naturally, the repository but conceptually there is no reason for which any pair of tools should not
be able to communicate if they are based on the same model: UML. We should be able to represent
graphically the design from the source code or obtain metrics or generate code from a graphical
design without having to go through the repository.

From the UML 1.1 (Summary Document, page 8) we read:

"Standardizing a language is necessarily the foundation for tools and process. The
Object Management Group’s RFP (OADTF RFP-1) was a key driver in motivating the
UML definition. The primary goal of the RFP was to enable tool interoperability.
However, tools and their interoperability are very dependent on a solid semantic and
notation definition, such as the UML provides. The UML defines a semantic meta-
model, not a tool interface, storage, or run-time model, although these should be fairly
close to one another. ".

In the same way that UML-MOF standard will incentive the CASE tool industry, if a real-time tool
communication standard language existed, it would be possible to create a CASE component
industry allowing users to build tailored CASE tools adapted to their precise needs.

A language, such as UOL, would permit communication between any two tools used in the
construction of OO systems. That is, it would be a Tool Interface Language.

Batch communication requires also standardizing the language. The OMG's SMIF RFP hopes to
define a standard for batch communication. Naturally, this RFP mentions CDIF to protect tool
builder's previous investment in this technology. Even though this argument is out of the question
and must be completely accepted, there are other aspects that must be considered and that make an
extension of CDIF inadequate as the SMIF solution.

Even if an extension to CDIF is developed CDIF it is pre-OO and not OO. CDIF was developed to
port full models between tools and It was based on pre-OO concepts that were not standardized
(data modeling, data-flow diagrams, etc.). CDIF has no semantics and given that the
communication between tools is batch it easily allows for errors during the port.

Conclusions

(UOL 1.2)

- 22 -

In many situations two tools must communicate in batch form (CASE tools generating code and
compiler) but it is necessary for the software engineer to understand the port. There is one very
special case of this situation. We refer to round-trip engineering as we have previously mentioned:
code with embedded AD constructs. In this respect we must consider two aspects.

First that being CDIF non-OO and developed exclusively to communicate between tools, it is
complex and cryptic for the programmer if it were possible to embed in their code. It would also
require working with two different paradigms.

And second, that in some cases the software engineer must work with two tools, in which one or
the other (or both) does not support the full standard: UML does not support all OO concepts and
programs, certainly, do not support full UML

A textual OO full life-cycle language, such as UOL is a solution to all these considerations.

2.7 Conclusions

Now that we have reviewed what a textual OO full life-cycle language is and its need let us
summarize the main requirements that any proposal in response to the SMIF RFP should comply
with:

• Stream-based Model Interchange Format

From the SMIF RFP we extract that its specific objectives are:

• Establish an industry standard specification for a stream-based model
interchange format,

• Provide a generic format that can be used to transfer a wide variety of models,

• Demonstrate that it can be used to exchange OMG Object Analysis and Design
Facility (OADF) compliant models (UML based) and models compliant to
other MOF-compliant meta-models and extensions (e.g. Workflow
Management Facility and Business Object Facility meta-models), and

• Leverage existing vendor-neutral transfer formats as much as possible.

• Generic Communication and Interchange

From the previous discussion we obtain the following requirements:

• It must be a textual, human readable, format,

• It must be specially simple, easy to learn and use,

• It must provide maximum support for all UML constructs to allow for
seamlessness,

• It must be adequate for tool to tool communication both in real-time and batch,

• It must be independent of CORBA although compatible with it and

• It must be adequate to support Round-Trip Engineering.

The Universal Object Language Specification

(UOL 1.2)

- 23 -

3 The Universal Object Language Specification

3.1 UOL Syntax
To describe this part, we use an Extended BNF grammar for its reading simplicity. Please see
appendix 7.1 for the BNF syntax of UOL

3.1.1 Lexical Specification
The lexical part of UOL consists of a large number of tokens because of the many definitions and
concepts that in UML are described. They are:

action branch deferred final instance package simple true
actions by diagrams flow interface partitioned state undefine
activity call else fork is postcondition static unique
actor class end from join precondition stereotype use
adaptation collaboration entry frozen like prefix stereotyped usecase
addonly component event history link raise subactivity values
after composite exception implements machine redefine submachine viewed
all concurrent exit implies model relation subsystem when
alternative constrained expanded import node rename synchronous with
and constraint export in none request tag xor
any course extend infix not result then
as creates extension inherit of select to
attached current false initial or shallow transition
BIT deep feature inout out signal trigger

There are some tokens that must be included for the inclusion of OCL, they are:

Bag Collection else endif enum if Set Sequence
then

The regular expressions defined in UOL are:

OCLtypeName: [A-Z][a-zA-Z_0-9]+
OCLname: [a-z][a-zA-Z_0-9]+
Integer_constant: ([1-9][0-9]*|0)
Character_constant: "([^\t\n] | (\\[^\t\n]))"
Range: [1-9][0-9]* {mdot} ([1-9][0-9]*| *)
Float_constant: ([0-9]+.[0-9]*([eE][+|-]?[0-9]+)?
Comment: -- [^(--)\n]
String: ' ([^'\\] | \\\\[ntbrf\\\\''\"]|[0-7][0-7]?|[0-3][0-7][0-7] |

[\n\r])* '
TextMultiline: text " [^"] "
CommentMultiline: comment " [^"] "

UOL Syntax

(UOL 1.2)

- 24 -

Anonymous ?[0-9]*

3.1.2 Syntax Specification

3.1.2.1 Start production
In UOL the transmission unit, and thus the codification unit, are the model and the package. The
model construction allows the interchange of models, and the package construction allows the
auxiliary industry to give the design of frameworks or class libraries.

Start_production -> (Model_declaration | Package_declaration)

3.1.2.1.1 Examples

-- Can be a model
model anExample

-- body ommited
end -- model anExample

-- Can be a package
package UML_UOL

-- body ommited
end -- package UML_UOL

3.1.2.2 Model declaration
In UOL we leave most of the constructs as optional. In this way we can obtain correct UOL from
incomplete models.

Model_declaration -> model Model_name
(Package_or_subsystem_declaration)*
(View_element_decl_list)? end

Model_name -> identifier

In this production we declare the diagrams that compose the model.

View_element_decl_list -> diagrams View_element_declaration (';'
View_element_declaration)* end

View_element_declaration -> Identifier_list ':' View_element_kind
View_element_name -> identifier
View_element_kind -> identifier Extension_use (Invariant)?

The view_element_kind is the name of a kind of diagram (i.e. static diagram or use case). We leave
the name as an identifier instead of providing a closed list of diagram names to allow the use of a
large list of diagrams from different methodologies.

Package_or_subsystem_declaration -> (Subsystem_declaration
| Package_element_decl | Use_of_tagged_value
| Use_of_constraint | Use_of_stereotype)

The Universal Object Language Specification

(UOL 1.2)

- 25 -

A model is also the top most package and thus can declare all the elements that can be found in a
package. In addition it can declare also subsystems.

3.1.2.2.1 Example
model anExample

-- Element declarations (package, subsystem, ...)
-- Declaration of the diagrams used in the model
diagrams

MainD,SecondD:StaticDiagram
-- Declaration of the stereotypes, tag values and

-- constraints applied to the MainD and SecondD
-- If there are more diagrams, we must put a ';'
-- else the end token.
end -- diagrams

end -- model anExample

3.1.2.3 Package
Package_declaration -> package Package_name

(viewed with View_element_name_list)?
Extension_use
(inherit Package_name_list)?
(import Package_import_list)?
(Package_element_decl_list)?
(Use_of_constraint)? end;

Package_name -> identifier
View_element_name_list -> View_element_name Position (',' View_element_name

Position)*;
Position -> ('(' Dec ',' Dec Third_dimension ')')?;
Third_dimension -> (',' Dec)?;
Package_name_list -> (Use_of_constraint)? Package_name ('('Name')')?

(',' Package_name ('(' Name ')')?)*;
Package_import_list -> Package_import_elem (',' Package_import_elem)*;
Package_import_elem -> ('{' Visibility '}')? (Element_name

('::' Element_name)* As_alias)?
from Package_name;

As_alias -> (as Alias)?;
Element_path -> Element_name ('::' Element_name)* ;
Alias -> Element_name;

The package construction can declare all the other constructions except model and subsystem. Each
element can give the list of diagrams in which it appears. Also, most of the elements can inherit
from compatible elements. A package can optionally import elements from other packages. This
import can specify a list of elements to import or can import the whole package. The import of an
element is conditioned by the element's visibility. An imported element may receive an alias and
change its visibility by a more restrictive one. These changes only affect the element as a member
of the importing package.

Of course the main use of a package is to group elements together. Following is the declaration of
such elements.

Package_element_decl_list -> is (('{' Visibility '}')? Package_element_decl)+;
Package_element_decl -> Package_declaration | Interface_declaration

| Class_declaration | Relation_declaration
| Extension_declaration | Usecase_abstraction
| Activity_model | Comment_definition
| Object_declaration
| (actor | exception) Light_body
| (component | node) Ultra_light_body

UOL Syntax

(UOL 1.2)

- 26 -

| Collaboration_declaration

This construction reflects a comment in the model. It is usually attached to an element. Standalone
comments are also allowed and then they need to declare in which diagram(s) they are shown.

Comment_definition -> CommentMultiline (attached to Element_name
| viewed with View_element_name_list)

Light_body -> Name (Formal_generics)? Extension_use
(viewed with View_element_name_list)?
(Inheritance)? Features (Use_of_constraint)?
end

Ultra_light_body -> Name (Formal_generics)? Extension_use
(viewed with View_element_name_list)?
(Inheritance)? Name_list (

Use_of_constraint)?
end

3.1.2.3.1 Example
package PMain viewed with MainD -- Position for the viewed

inherit constrained with { aConstraint } UOL_UML
import from UML_UOL
-- is keyword must be put if there is at least one element.
-- declaration of the elements of a package

end -- pachage PMain

3.1.2.4 Subsystem
Subsystem_declaration -> Subsystem_header (Formal_generics)?

Extension_use
(viewed with View_element_name_list)?
(Inheritance)?
(import Package_import_list)?
(feature '{'Visibility }' Operation_list end)*
(Package_element_decl_list)?
(Use_of_constraint)?
end

A subsystem is 'a package with behavior'. It declares elements, like a package, but also declares
operations and, optionally can be instantiated (if is not marked as 'deferred').

Subsystem_header -> (deferred)? subsystem Subsystem_name
Subsystem_name -> identifier

3.1.2.4.1 Example
subsystem aSubsystem -- can not be deferred if it is final.

-- subsystem body (Use of extensions, inheritance,...)
end -- subsystem aSubsystem

3.1.2.5 Features
Features share the semantics of UML and most of the syntax with Eiffel. It is a block beginning
with the keyword 'feature' then a visibility and list of operations, methods and attributes. Not all
the elements that can have features can declare all the kinds of features.

Features -> (feature '{' Visibility '}' Feature_rest end)*

The Universal Object Language Specification

(UOL 1.2)

- 27 -

The a là Eiffel visibility declares which element can access a marked element. However the
mapping to the UML's visibility's is straightforward.

Visibility -> any | none | Classifier_list
Classifier_list -> Classifier_name (',' Classifier_name)*

Feature_rest -> Use_of_stereotype
| Use_of_stereotype ';' Feature_list
| Feature_list

Feature_list -> Feature_declaration (';' Feature_declaration)*

Feature_declaration -> Use_of_tagged_value
| Operation_declaration
| Method_declaration
| Attribute_declaration

The rest are needed to allow describing all the ways in which a feature can be declared.

Operation_rest -> is Specification
Method_rest -> Specification is Routine

| is Routine | like identifier is Routine
Attribute_rest -> ',' Identifier_list Type_mark

|(Use_of_constraint)? Type_mark is
Initial_value

|(Use_of_constraint)? Type_mark
|(Use_of_constraint)? ':' unique '{'
Identifier_list '}'

Signature_rest -> static identifier | identifier

3.1.2.5.1 Attributes
The attributes can have cardinality, invariants, type, initial values, stereotypes and tagged values.

Attribute_declaration -> Attribute_signature Attribute_single_or_multi
Extension_use

Attribute_single_or_multi -> Attribute_rest | Cardinality2
(Use_of_constraint)? Type_mark
(is '{' Expression_list '}')?

Attribute_signature -> Signature_rest
| frozen Signature_rest
| addonly Signature_rest

Initial_value -> Expression;

The type mark includes a delegation mechanism. The type can be the same that the one of the
element that appears after the 'like' keyword.

Type_mark -> ':' identifier | ':' like identifier

3.1.2.5.2 Operations
Operations are only specifications and thus never instantiable. They can have a full signature, pre
and post conditions, and a specification.

Operation_declaration -> Signature Operation_body;
Operation_body -> OM_body Operation_rest;
Entity_declaration_list -> Entity_declaration_group

(';' Entity_declaration_group)*
Entity_declaration_group -> (Parameter_kind)? Parameter_name_list Type_mark

(is Initial_value)?;
Parameter_name_list -> identifier (Cardinality)?;
Parameter_name_list -> Parameter_name_list ',' identifier (Cardinality)?;

UOL Syntax

(UOL 1.2)

- 28 -

Identifier_list -> identifier (',' identifier)*;
Parameter_kind -> in | out | inout;
Specification -> TextMultiline;

3.1.2.5.3 Methods

A method can have the same components that an operation can have plus an implementation.

Method_declaration -> Method_header Method_body;
Method_header -> Signature | Signature_rest;
Method_body -> OM_body Method_rest;
Routine -> TextMultiline;

The following is part of the body of the method and operations.

OM_body -> '('(Entity_declaration_list)? ')' (Type_mark)?
('{' PrePost)?
Extension_use (Use_of_constraint)?;

Signature -> deferred Signature_rest
PrePost -> precondition ':' Constraint_expression Post_opt

| postcondition ':' Constraint_expression '}'
Post_opt -> '}' MorePost
MorePost -> ('{' postcondition':' Constraint_expression '}')?

3.1.2.5.4 Features with only Attributes and Operations

These features, are declared separatly from the others, to have a more readable grammar. These
features are used in the elements that can not declare methods (usecases,...)

Features_attrib_or_Oper -> (feature '{' Visibility '}'
Feature_rest_attrib_or_Oper end)*

Feature_rest_attrib_or_Oper -> Use_of_stereotype
| Use_of_stereotype ';'
Feature_list_attrib_or_Oper

 | Feature_list_attrib_or_Oper
Feature_list_attrib_or_Oper -> Feature_declaration_attrib_or_Oper

(';' Feature_declaration_attrib_or_Oper)*
Feature_declaration_attrib_or_Oper -> Use_of_tagged_value

| Operation_declaration | Attribute_declaration

3.1.2.5.5 Example
feature {any}

isMarried, isUnemployed:Boolean;
birthDate:Date;
age:Integer;
firstName,lastName:String;
sex: unique { male,female };
deferred income(d:Date):Integer is text""

end -- feature

Note that the semicolon ';' is used as a concatenator (as in Eiffel) and not as a final sentence (as in
C or Java), therefore, the following declaration is correct:

feature
anAttrib1:aType1;
anAttrib2:aType2

end

The Universal Object Language Specification

(UOL 1.2)

- 29 -

But these others are incorrect:

 feature
anAttrib1:aType1
anAttrib2:aType2

 -- ^ ; expected
 end

or

 feature
anAttrib1:aType1;

 end
-- ^ an attribute, operation or method expected

3.1.2.6 Classes
A class may declare and use extensions, can be a template, can inherit, can have any kind of feature
and it can also use invariants. It must be marked as deferred if any of its methods is deferred.

Class_declaration -> Class_header (Formal_generics)?
(viewed with View_element_name_list)?
Extension_declaration_list
Extension_use
Class_body end

Class_body -> Inheritance Rest (Use_of_constraint)?
| Features State_machine (Use_of_constraint)?
| Features feature '{' Visibility '}'
Feature_rest end (Use_of_constraint)?

Rest -> Features (State_machine)?
Class_header -> (deferred)? class Class_name
Class_name -> identifier

3.1.2.6.1 Example
class Person viewed with MainD

feature {any}
isMarried, isUnemployed:Boolean;
birthDate:Date;
age:Integer;
firstName,lastName:String;
sex: unique { male,female };
deferred income(d:Date):Integer is text"Incoming operation"

end
-- State machine for the class Person
-- declaration of an invariant
constrained by
{ self.age>=0 }
-- rest of constraints ommited

end -- Class Person

3.1.2.7 Instances
The instances will follow the definition of its base class, giving values to its attributes, using
extensions such as stereotypes and tag values and/or defining invariants.

Object_declaration -> Object_name [Formal_generics] instance of
Element_path Extension_use [Viewed_with]
[Object_body] [Invariant] end;

UOL Syntax

(UOL 1.2)

- 30 -

Object_name -> identifier
Object_body -> is Attribute_value (';' Attribute_value)*
Attribute_value -> identifier is Expression

3.1.2.7.1 Example
CloseObject instance of Usecase

is
annotation is '(a) The system will load the current object that

is referenced (b) ask to the actor for its username update
the username in the document (c), finally save the document
(d)';

name is CloseObject;
extension_point is <<'a','b','c','d'>>

end

3.1.2.8 Interfaces
An interface is very similar to a class but can not have methods or attributes.

Interface_declaration -> Interface_header (Formal_generics)?
(viewed with View_element_name_list)?
Extension_declaration_list
Extension_use (Inheritance)?
(feature '{' Visibility '}' Operation_list

end)*
(Use_of_constraint)? end

Interface_header -> interface identifier;
Operation_list -> Operation_declaration (';'Operation_declaration)*

3.1.2.8.1 Example
interface anInterface[Param1 constrained by {self.Param1>=0}, Param2]

viewed vith aDiagram
feature {any}

-- only operations
deferred static anOperation(aParam:aType):aReturnType

{precondition: aConstraint}
{postcondition: aConstraint}
constrained by {aConstraint}
is text "Specification"

end
-- constrained by...

end -- interface anInterface

3.1.2.9 Declaration and use of extensions
Some extensions (tag values or stereotype) must be declared before their use. Constraints may be
declared also but are not mandatory.

Extension_declaration_list -> (Extension_declaration)*
Extension_declaration -> Constraint | Tagged_values | Stereotype

The following productions allow using stereotypes and tagged values. Note that only one
stereotype use is permited.

Extension_use -> (Use_of_stereotype)? (Use_of_tagged_value)*

3.1.2.9.1 Declaration of constraints

The Universal Object Language Specification

(UOL 1.2)

- 31 -

The declaration of a constraint is the mechanism to reuse constraints. A name is tied to a constraint
expression and this name can be used after in any constraint.

Constraint -> constraint Constraint_def_list end
Constraint_def_list -> (identifier is '{' Constraint_expression '}')+

A constraint can be either an OCL_expression or a TextMultiline. A TextMultiline is just a free
text description. The OCL_expression is a valid OCL expression defined in the OMG document
number ad970808. The OCL grammar has been merged with the UOL grammar, exactly as it is
described in the document mentioned previously. This improves the use of constraints
(preconditions, postconditions, invariants,...).

Constraint_expression -> OCLexpression | TextMultiline

3.1.2.9.2 Use of constraints
Use_of_constraint -> constrained by '{' Constraint_expression '}'

3.1.2.9.3 Tagged values declaration
The declaration of a tag value allows assigning a default value.

Tagged_values -> tag values Tagged_values_def_list end
Tagged_values_def_list -> (Tagged_values_def)+
Tagged_values_def -> identifier (is Initial_value)?

3.1.2.9.4 Use of tagged values
The use of tag values is a list of properties of the form <tag,value>. A tag value with default value
can appear simply as <tag> if the default value is suitable.

Use_of_tagged_value -> with tag values '(' Property_list ')'
Property_list -> Property (',' Property)*
Property -> '<' identifier (',' Expression)? '>'

3.1.2.9.5 Stereotypes declaration
The stereotype declaration gives a name to the stereotype, declares its base class (the class that can
be stereotyped with this stereotype) and declares the tagged values that act as attributes for the
stereotype. A stereotype can also inherit from other stereotypes with compatible base class and
declares constraints.

Stereotype -> stereotype identifier of Base_class (Icon)?
(inherit Stereotype_parent_list)?
Stereotype_extension_dec end

Stereotype_extension_dec -> (Constraint | Tagged_values)*
Base_class -> identifier;
Icon -> viewed as String;
Stereotype_parent_list -> identifier ('(' Name ')')? (',' identifier,

('(' Name ')')?)*

3.1.2.9.6 Use of stereotypes
Use_of_stereotype -> stereotyped with identifier

UOL Syntax

(UOL 1.2)

- 32 -

3.1.2.10 Identifiers
Identifier is divided in OCLtypeName or OCLname. This is to give the maximum support to the
OCL grammar. Therefore, there will be a production where an identifier will be an OCLtypeName
or an OCLname, where an OCLtypeName is an identifier that must begin with an uppercase letter
and an OCLname is an identifier that must begin with a lowercase letter. Another branch that can
be taken is expressing that the name of an element is no name (in UML exists a difference between
an element with the name null and an element without name). For this reason, we include a
'Anonymous' token expressed as a question mark '?'.

identifier -> OCLtypeOrName | Anonymous

3.1.2.10.1 Example
aValidName
AValidTypeName
anIdentifier_1
AnIdentifier_2
?
InvalidOne? -- The question mark not included as a letter
7NotCorrect -- It must begin with a letter.
_NotCorrect -- It must begin with a letter.

3.1.2.11 State machine
State machines are defined as in UML. They must contain a composite state in which there all the
states of the state machines are declared. A composite state that is the top state must not end with
the keyword end, because it uses the same end that the state machine. This is defined in this way
for readability purposes.

State_machine -> state machine Name
(viewed with View_element_name_list)?
(Constraint_use_def)?

 Machine_body
end

Name -> identifier
Path_name -> Name (Path Path_name)*
Constraint_use_def -> Constraint (Use_of_constraint)?

| Use_of_constraint

In the next production we define the top most state. It can be seen that there is no end.

Machine_body -> Composite_state Transition_list Action_def_list;
State_definition -> state Name (viewed with View_element_name_list)?

(Constraint_use_def)?
(Action)?
Internal_transition_list
(deferred (event Name)+)?

Action -> actions (entry Action_list)? (exit Action_list)?

States defined as substates (i.e. not the top most state) must be all of the same kind, concurrent or
not, but they can not be mixed.

Composite_state -> composite State_definition Concurrent_state_list
| composite State_definition State_list

Concurrent_state_list -> (concurrent State_list)+
State_list -> (State_kind)+

In the next production there is a branch that can match with Machine_body, this is the composite
state. UML defines that the state machine contains all the transitions and the action definitions, but

The Universal Object Language Specification

(UOL 1.2)

- 33 -

in UOL those are defined in the concurrent state in which they are included. If it is not defined in
this way, it implies putting path references for all the states, and this is completely unreadable.

State_kind -> (Simple_state | Pseudostate | Submachine
| Machine_body) end

Simple_state -> simple State_definition
Pseudostate -> Pseudostate_kind Name (Constraint_use_def)?

(Action)?
Pseudostate_kind -> (deep | shallow) history

| initial
| final
| join
| fork
| branch

Submachine -> submachine Name
(viewed with View_element_name_list)?
(Constraint_use_def)? Machine_body

Internal_transition_list -> (transition When_or_after (Trigger_expression)?
(Action_sequence)?)*

When_or_after -> when Guard_expression
| after Time_expression ;

Time_expression -> Integer_constant String;
Guard_expression -> Expression | TextMultiline;
Trigger_expression -> call Operation_use

| trigger Signal_or_time_or_change
Signal_or_time_or_change -> Signal_definition

| after Time_expression
| when Boolean_expression;

Boolean_expression -> TextMultiline;
Transition_definition -> transition Name from (Path_name | initial) to

(Path_name | final)
Guard_expression_opt (Trigger_expression)?
(Action_sequence)?

Transition_list -> (Transition_definition)*
Guard_expression_opt -> When_or_after
Action_sequence -> actions Action_list
Action_list -> identifier (',' identifier)*
Action_def_list -> (Action_definition)*
Action_definition -> (synchronous)? action Name (Recurrence)?

(Script)?
Object_set_expression_opt
(request Operation_or_signal)?
Action_kind

Script -> String
Recurrence -> '(' Expression ')'
Object_set_expression_opt -> (to Object_set_expression)?
Object_set_expression -> Name (',' Name)*
Operation_or_signal -> Operation_use | Signal_definition
Signal_definition -> signal Name (Reception)? (Exception)?
Reception -> to Name_comma_list
Name_comma_list -> Name (',' Name)*
Exception -> Exception_list
Exception_list -> (raise Exception_use)+
Exception_use -> Name from Name_comma_list
Action_kind -> (call Operation_use

| creates identifier
| TextMultiline)?

Operation_use -> Name '.' Name '(' Expression_list ')'

3.1.2.11.1 Example
state machine SPerson viewed with PersonD

composite state SCPerson
-- States definitions
concurrent composite state CivilStatus

simple state Single viewed with PersonD end
simple state Married viewed with PersonD end
transition ? from initial to Single when not isMarried

UOL Syntax

(UOL 1.2)

- 34 -

transition ? from initial to Married when isMarried
transition ? from Single to Married when isMarried
transition ? from Married to Single when not isMarried

end
concurrent composite state JobStatus

simple state Unemployed viewed with PersonD end
simple state Employer viewed with PersonD end
transition ? from initial to Unemployed

when isUnemployed
transition ? from initial to Employer

when not isUnemployed
transition ? from Employer to Unemployed

when isUnemployed
transition ? from Unemployer to Employer

when not isUnemployed
end

-- Transitions definitions
transition ? from initial to CivilStatus
transition ? from initial to Job

end -- State machine SPerson

3.1.2.12 Activity model
Activity models are exactly as the state machines, but they add new features such as the partition in
which a state belongs and the object flow state.

Activity_model -> activity Name
(viewed with View_element_name_list)?
(Constraint_use_def)?
Activity_body
end

Activity_body -> Activity_state Transition_list Action_def_list
Activity_state -> composite State_definition partitioned in Name

Act_concurrent_state_list
| composite State_definition partitioned in

Name
Act_state_list

Act_concurrent_state_list -> (concurrent Act_state_list)+
Act_state_list -> (Act_state_kind partitioned in Name end)+
Act_state_kind -> Activity_body

| Act_simple_state
| Pseudostate
| Subactivity

Act_simple_state -> Action_state | Object_flow_state
Action_state -> state Name (viewed with View_element_name_list)?

(Constraint_use_def)?
(Action)?

Object_flow_state -> State_definition flow Name '[' Name ']'
(Use_of_constraint)?

Subactivity -> subactivity Name
(viewed with View_element_name_list)?
(Constraint_use_def)? Activity_body

3.1.2.12.1 Example

activity anActivity
viewed with anActivityD
-- constraint def
-- constraint use
composite state aSComposite

-- States definitions

The Universal Object Language Specification

(UOL 1.2)

- 35 -

state anState1
viewed with aDiagram
partitioned in aPartition1

end
state anState2

viewed with PersonD
partitioned in aPartition1

end
transition init from initial to anState1 after 3 'sec'
transition ? from anState1 to anState2 when anExpression
transition ending from anState2 to final

when not anExpression
-- There is no end for this composite state, because it is the
-- end of the state machine

end -- activity anActivity

3.1.2.13 Usecases
There are three kinds of usecases: the declaration, the extension and the instance of a usecase.

Usecase_abstraction -> Usecase_definition
| Usecase_instance
| Usecase_extension

This is the declaration of a usecase, defined in UML as UseCase

Usecase_definition -> usecase Name (Formal_generics)?
(inherit Name_inherit_list)?
(use Name_list)?
(actor Name_list)? Features_attrib_or_Oper
(TextMultiline)?
(alternative course TextMultiline)?
(extension in Extension_point_list)? end

The instance of a usecase has a type mark that defines the usecase that is instantiated. The
instantiation consists of a list of arguments instantiating the formal generics and a list of attributes
with their values, all defined in the usecase definition.

Usecase_instance -> usecase Name '(' (Entity_declaration_list)? ')'
(Type_mark)? is Usecase_method_list end

The extension of a usecase is defined separately from the usecase, because there can be many
extensions of the same point of a given usecase.

Usecase_extension -> extend Usecase_path with Usecase_path_list
in Extension_point

Usecase_method_list -> (Usecase_method)+
Usecase_method -> identifier is Expression
Extension_point -> String
Extension_point_list -> String_list
Name_inherit_list -> Name ('(' Name ')')? (',' Name ('(' Name ')')?)*
Name_list -> Name (',' Name)*
Usecase_path -> Name (Path Name)*
Usecase_path_list -> Usecase_path (',' Usecase_path)*
String_list -> String (',' String)*

UOL Syntax

(UOL 1.2)

- 36 -

3.1.2.13.1 Examples
-- Usecase definition
usecase aUsecase [aUsecase1,aUsecase2]

inherit aUsecase1(aDiscriminator),aUsecase2
use aUsecase3,aUsecase4
actor anActor1,anActor2
feature {any}

-- Only attributes or operations
anAttribute:Integer;
deferred anOperation() is text "Operation"

end
text "(1) This is the description of the usecase
 (2) using text multiline"
alternative course
text "This decribes the exceptions in the usecase"
 extension in '(1)','(2)'

end -- usecase aUsecase

-- Usecase instance
usecase anInstance(aParam1,aParam2:aType1;aParam2:aType2):aUsecaseDef
is

aName1 is anExpression
aName2 is anExpression

end -- usecase anInstance

-- Usecase extensions
extend aPackage::aUsecase with aUsecase7 in '(1)'
extend aPackage::aUsecase with aUsecase8 in '(2)'

3.1.2.14 Collaborations
A collaboration is a set of elements (classes and relations) that provides the implementations of a
classifier or operation. Therefor, it describes required classifiers (with features) and interaction
between them to achieve the desired goal.

Collaboration_declaration -> collaboration Collaboration_name
(Formal_generics)?
(viewed with View_element_name_list)?
(implements Classifier_or_operation)?
Class_or_intf_or_rel_decl_list
Action_def_list (Message_list)? end

Collaboration_name -> identifier
Classifier_or_operation -> identifier
Class_or_intf_or_rel_decl_list -> (Class_declaration

| Element_name
| Interface_declaration
| Relation_declaration)*

Message_list -> (Message)+
Message -> actions Action_list to Classifier_name from

Classifier_name
Classifier_name -> Element_name
Formal_generics -> '[' Formal_generic_list ']'
Formal_generic_list -> Formal_generic (',' Formal_generic)*
Formal_generic -> Element_name (Use_of_constraint)?
Element_name -> identifier

3.1.2.14.1 Example
collaboration aCollaboration

-- Formal generics

The Universal Object Language Specification

(UOL 1.2)

- 37 -

-- Viewed with
implements aClassOrOp

class aClass
-- body ommited

end
relation aRelation

-- body ommited
end
interface anInterface

-- body ommited
end

-- action def list
actions anAction1, anAction2 to aClassName1 from aClassName2
actions anAction3, anAction4 to aClassName3 from aClassName4

end -- collaboration aCollaboration

3.1.2.15 Expressions
Expression -> Call

| Operator_expression
| Equality
| Manifest_constant
| Manifest_array

Call -> (Parenthesized_qualifier)? Call_chain
Call_chain -> Unqualified_call ('.' Unqualified_call)*
Parenthesized_qualifier -> Parenthesized '.'
Parenthesized -> '(' Expression ')'
Unqualified_call -> Entity (Actuals)?
Entity -> identifier

| result
| current

Actuals -> '(' Actual_list ')'
Actual_list -> Actual (',' Actual)*
Actual -> Expression
Operator_expression -> Parenthesized

| Unary_expression
| Binary_expression;

Unary_expression -> Unary Expression
Unary -> not

| '+'
| '-'

Binary_expression -> Expression Binary Expression
Binary -> '+' | '-' | '*' | '/' | '<' | '>' | '<=' | '>='

| '\\' | '//' | '^' | and | or | xor | implies
Manifest_constant -> Boolean_constant | Character_constant

| Integer_constant
| Float_constant | String

Boolean_constant -> true | false
Float_constant -> 'FLOATINGconstant0'
Manifest_array -> ANGLEBL Expression_list ANGLERR
Expression_list -> Expression (',' Expression)*
Comparision -> '=' | '/='
Equality -> Expression Comparision Expression

3.1.2.16 Inheritance
Inheritance -> inherit Parent_list
Parent -> (Use_of_constraint)? Class_type ('(' Name ')')?
Parent_list -> Parent (';' Parent)*
Class_type -> Class_name (Actual_generics)?
Actual_generics -> '[' Type_list ']'
Type_list -> Type (',' Type)*
Type -> Class_type | Class_type_expanded | Anchored

| Bit_type
Class_type_expanded -> expanded Class_type
Anchored -> like Anchor

UOL Syntax

(UOL 1.2)

- 38 -

Anchor -> identifier | current
Bit_type -> BIT Constant
Constant -> Manifest_constant | Entity
Rename -> rename Rename_list
Rename_list -> Rename_pair (',' Rename_pair)*
Rename_pair -> Feature_name as Feature_name
Feature_name -> identifier | Prefix | Infix
Infix -> infix '(' Infix_operator ')'
Infix_operator -> Binary | identifier
Prefix -> prefix '(' Prefix_operator ')'
Prefix_operator -> Unary identifier
New_export_item -> Clients Feature_set
New_export_list -> New_export_item (';' New_export_item)*
New_exports -> export New_export_list
Class_list -> Class_name (',' Class_name)*
Clients -> '{' Class_list '}'
Feature_set -> Name_list | all
Undefine -> undefine Feature_list
Select -> select Feature_list

3.1.2.17 Relations
We reify the association into a class-like construct. It can have all the items a class can have except
methods and adding a link list that declares the names of the elements linked by the association.

Relation_declaration -> relation Relation_name
Extension_declaration_list
Extension_use
(Relation_inheritance)?
(Link_list)?
Features_attrib_or_Oper
(Use_of_constraint)?
end

Relation_name -> identifier
Relation_inheritance -> inherit Parent_relation_list
Parent_relation_list -> Parent_relation (';' Parent_relation)*
Parent_relation -> (Use_of_constraint)? Relation_type

(Relation_feature_adaptation)?
Relation_type -> Relation_path
Relation_path -> Element_path
Relation_feature_adaptation -> adaptation (Rename)? (New_exports)?

(Undefine)? Relation_redefine
(Select)? end

Relation_redefine -> redefine Feature_or_redef
Feature_or_redef -> Feature_list | Redefine_with_list
Redefine_with_list -> Redefine_pair (',' Redefine_pair)*
Redefine_pair -> Feature_name with Feature_name

Here we have the main differences with classes. The link clause provides a list of elements joined
by the relationship. The link list may have two forms: plain list (a, b, c, d) or list of pairs (a to b, c
to d). The first corresponds to an association, the second to a dependency (the pairs have
'direction'). Each entity declared in the link list may have an association end. Grammatically, an
association end is a feature clause with visibility to the class which it is attached.

Link_list -> link Type_or_dependency
Type_or_dependency -> Type_link_two_list (with Classifier_name)?

| Dependency_list (Dependency_description)?
Type_link_two_list -> Type_link (Cardinality2)? ',' Type_link_list
Cardinality2 -> '[' Cardinality ']'
Cardinality -> Range_list Range_last
Range_last -> Range | Int_or_star
Range_mid -> Range ',' | Integer_constant ','
Range_list -> (Range_mid)*
Int_or_star -> Integer_constant | '*'

The Universal Object Language Specification

(UOL 1.2)

- 39 -

Type_link_list -> Type_link (',' Type_link)*
Type_link -> Classifier_name (Cardinality2)?
Dependency_list -> Dependency (',' Dependency)*
Dependency -> Element_path to Element_path
Dependency_description -> (is TextMultiline)?

3.1.2.18 OCL
Finally, we introduce the grammar for the OCL, taken from the OMG document ad970808. The
most recent updates on the Unified Modeling Language are available via the worldwide web:

 http://www.rational.com/uml.

A free OCL Parser and the most recent information on the Object Constraint Language are
available via the worldwide web: http://www.software.ibm.com/ad/ocl.

All the rules' names are changed adding the word OCL at the beginning; therefore it is easier to
read and differentiates between the UOL grammar and the OCL grammar

OCLexpression -> OCLlogicalExpression
OCLifExpression -> if OCLexpression

then OCLexpression
else OCLexpression
endif

OCLlogicalExpression -> OCLrelationalExpression
(OCLlogicalOperator OCLrelationalExpression)*

OCLrelationalExpression -> OCLadditiveExpression
(OCLrelationalOperator OCLadditiveExpression)?

OCLadditiveExpression -> OCLmultiplicativeExpression
(OCLaddOperator OCLmultiplicativeExpression)*

OCLmultiplicativeExpression -> OCLunaryExpression
(OCLmultiplyOperator OCLunaryExpression)*

OCLunaryExpression -> (OCLunaryOperator OCLpostfixExpression)
| OCLpostfixExpression

OCLpostfixExpression -> OCLprimaryExpression (('.'|'->') OCLfeatureCall)*
OCLprimaryExpression -> OCLliteralCollection

| OCLliteral
| OCLpathName OCLtimeExpression? OCLqualifier?
OCLfeatureCallParameters?
| '(' OCLexpression ')'
| OCLifExpression

OCLfeatureCallParameters -> '('(OCLdeclarator)? (OCLactualParameterList)?')'
OCLliteral -> OCLstring | OCLnumber | '#' OCLname
OCLenumerationType -> enum '{' '#' OCLname (',' '#' OCLname)* '}'
OCLsimpleTypeSpecifier -> OCLpathTypeName

| OCLenumerationType
OCLliteralCollection -> OCLcollectionKind '{'OCLexpressionListOrRange?'}'
OCLexpressionListOrRange -> OCLexpression

((',' OCLexpression)+ |('..' OCLexpression
))?
OCLfeatureCall -> OCLpathName OCLtimeExpression? OCLqualifiers?

OCLfeatureCallParameters?
OCLqualifiers -> '[' OCLactualParameterList ']'
OCLdeclarator -> OCLname (',' OCLname)*

(':' OCLsimpleTypeSpecifier)? '|'
OCLpathTypeName -> OCLtypeName ('::' OCLtypeName)*
OCLpathName -> (OCLtypeName | OCLname)

('::' (OCLtypeName | OCLname))*
OCLtimeExpression -> '@' OCLname
OCLactualParameterList -> OCLexpression (',' OCLexpression)*
OCLlogicalOperator -> and | or | xor | implies
OCLcollectionKind -> Set | Bag | Sequence | Collection
OCLrelationalOperator -> '=' | '>' | '<' | '>=' | '<=' | '<>'
OCLaddOperator -> '+' | '-'
OCLmultiplyOperator -> '*' | '/'
OCLunaryOperator -> '-' | not
OCLnumber -> Integer_constant

UOL Syntax

(UOL 1.2)

- 40 -

OCLstring -> String

3.1.2.19 Example
This example is taken from the OMG document ad970808

(context: Company::hireEmployee(p : Person)
not employee->includes(p)and
employees->includes(p) and stockprice() = stockprice@pre() + 10

3.1.3 Encoding, tokenizing
The encoding is the one used in text-based files.

The tokenizing is 1 to 1 with the keywords.

3.1.4 UNICODE
Being that it is text-based format, the UNICODE can be used with no problems. As a proof of
concept, in the parser that we developed, we read from ASCII format or UNICODE format. A table
of properties (ftp://ftp.unicode.org/Public/UNIDATA/) for Unicode characters is provided on the
Unicode ftp site, and complete information on the processes involved in proper Unicode rendering
(such as the bidi algorithm or Indic reordering) can be found in The Unicode Standard, Version 2.0.
(http://www.unicode.org/unicode/ uni2book/ u2.html). These algorithms are easy to implement,
and we use it for the Unicode-based UOL files.

The XML-DTDs

(UOL 1.2)

- 41 -

4 The XML-DTDs

4.1 The Mapping between UOL and XML

4.1.1 Justification

One could believe that XML would be a valid alternative for the SMIF RFP. Advantages of XML
as a SMIF RFP proposal would be:

• XML is a standard defined by W3C and, therefore will be supported by Internet tools

• XML is textual and easily comprehensible and usable

• XML is object-oriented and could easily be mapped with MOF and UML

• XML carries meta-data and is extensible

• XML offers the possibility of performing structural validations using the Document Type
Definition (DTD)

Then, if XML has all these advantages, why not propose XML to the SMIF RFP instead of UOL?
Two of the main reasons are:

• XML has not been developed to be used heavily by humans without specific tools and,
therefore, is not adequate for generic human to tool and human to human
communication

• Software engineers would not accept XML as a round-trip engineering language
because it is too cumbersome to use without syntactic editors

• XML obscures the embedded documents if read without a XML viewer

• XML only offers structural control, in the same sense as BNF, and, for example, is not
susceptible to be extended as a procedural specification language or many object-
oriented other requirements.

Therefore, we believe and, as such propose in this proposal the combination of both UOL and
XML. This combination is presented in the following chapter.

4.1.2 The mapping between UOL and XML

4.1.2.1 Graphical Definition of the Tags

The Mapping between UOL and XML

(UOL 1.2)

- 42 -

TAG ATTRIBUTES TAG'S STRUCTURE FOR AN XML UOL DOCUMENT

act

action
name
synchronous
expression

actions

action
state

activity name
viewed

activity
state partitioned

actor name
viewed

adaptation

The XML-DTDs

(UOL 1.2)

- 43 -

after

alternative

argument

as

attribute
name
static
changes

atts

BIT

call

class
name
deferred
viewed

collabora
tion

name
viewed
implements

comment

The Mapping between UOL and XML

(UOL 1.2)

- 44 -

component name
viewed

composite

constant

constrained

constraint name

create name

deferred

dependency

diagram type

entry name

exception name
viewed

exit name

export name

expresion

ENTITY
extends

ENTITY
extension

extensionin

The XML-DTDs

(UOL 1.2)

- 45 -

feature

flow classname
statename

formal
generics name

from

identifier name

ENTITTY
idlist

import

in

inherit name

interface name
viewed

The Mapping between UOL and XML

(UOL 1.2)

- 46 -

inout

internal
transition

is

like

link with

linktype

roleA
roleB
cardA
cardB

message

method
name
deferred
static

The XML-DTDs

(UOL 1.2)

- 47 -

model name

node name
viewed

operate class
operation

operation
name
static
deferred

out

package name
viewed

The Mapping between UOL and XML

(UOL 1.2)

- 48 -

ENTITY
package

post

pre

pseudo
state

name
type

raise name

redefine name

relation

rename name

select name

signal name

state name
viewed

The XML-DTDs

(UOL 1.2)

- 49 -

state
def

state
kind

state
machine

name
viewed

sterotype name
of

stereo
typed

subactivity name
viewed

submachine name
viewed

subsystem
name
viewed
deferred

tagged

text

The Mapping between UOL and XML

(UOL 1.2)

- 50 -

transition from
to

trigger

tv

type

typemark like

typedef

uc

The XML-DTDs

(UOL 1.2)

- 51 -

ucext

ucinst name

uctype name

undefine

uol

use

usecase name

visibility

with

when

4.1.2.2 Document Type Definition (DTD) of UOL

<!ENTITY % extends " (stereotyped | tagged)+ " >
<!ENTITY % extension " stereotype | constraint | tv " >
<!ENTITY % package " (package | interface |class | relation | stereotype |

constraint | tv | usecase | activity | comment | actor | exception |
component | node | collaboration) " >

<!ENTITY % idlist " identifier+ " >
<!ELEMENT act (#PCDATA) >
<!ELEMENT action (to* , (operate | signal)? ,(call | create | text)) >
<!ATTLIST action

name ID #REQUIRED
synchronous (YES|NO) #IMPLIED
expression CDATA #IMPLIED>

<!ELEMENT actions (entry* , exit*) >
<!ELEMENT actionstate ((activitystate , transition? , actions?) | state |

(statedef , flow) | pseudostate | subactivity) >
<!ELEMENT activity (constraint? , constrained? , activitystate , transition?

, action?) >
<!ATTLIST activity

name ID #REQUIRED
viewed CDATA #IMPLIED>

<!ELEMENT activitystate (statedef , actionstate+) >

The Mapping between UOL and XML

(UOL 1.2)

- 52 -

<!ATTLIST activitystate
partitioned CDATA #IMPLIED>

<!ELEMENT actor (formalgenerics? , (%extends;)? , inherit? , feature) >
<!ATTLIST actor

name ID #REQUIRED
viewed CDATA #IMPLIED>

<!ELEMENT adaptation ((rename , as)+ | export+ | redefine+ | select+) >
<!ELEMENT after (#PCDATA) >
<!ELEMENT alternative (#PCDATA) >
<!ELEMENT argument ((in | out | inout) , identifier+ , typemark)* >
<!ELEMENT as (#PCDATA) >
<!ELEMENT attribute (constrained? ,(typedef | ((%idlist;)? , typemark)) ,

(%extends;)?) >
<!ATTLIST attribute

name ID #REQUIRED
static (NO|YES) #FIXED "NO"
changes (addonly|frozen) #IMPLIED>

<!ELEMENT atts (identifier)+ >
<!ELEMENT BIT (#PCDATA) >
<!ELEMENT call (operate) >

<!ELEMENT class (formalgenerics? , (%extension;)? , (%extends;)? , ((inherit ,
constrained?)? , (feature , constrained?)? , (statemachine+ ,
constrained?)?)?) >

<!ATTLIST class
name ID #REQUIRED
deferred (no|yes) #IMPLIED
viewed CDATA #IMPLIED >

<!ELEMENT collaboration (formalgenerics? , (class | identifier | interface |
relation)* , action? , message?) >

<!ATTLIST collaboration
name ID #REQUIRED
viewed CDATA #IMPLIED
implements ID #IMPLIED>

<!ELEMENT comment (#PCDATA) >
<!ELEMENT component (formalgenerics? , (%extends;)? , inherit? , identifier+

,constrained?) >
<!ATTLIST component

name ID #REQUIRED
viewed CDATA #IMPLIED>

<!ELEMENT composite (statedef , statekind+) >
<!ELEMENT constant (#PCDATA) >
<!ELEMENT constrained (#PCDATA) >
<!ELEMENT constraint (#PCDATA) >
<!ATTLIST constraint

name ID #REQUIRED>
<!ELEMENT create EMPTY >
<!ATTLIST create

name ID #REQUIRED>
<!ELEMENT deferred (identifier)+ >
<!ELEMENT dependency (identifier+ , to) >
<!ELEMENT diagram (identifier)+ >
<!ATTLIST diagram

type ID #REQUIRED>
<!ELEMENT entry (identifier)+ >
<!ATTLIST entry

The XML-DTDs

(UOL 1.2)

- 53 -

name ID #REQUIRED>
<!ELEMENT exception (formalgenerics? , (%extends;)? , inherit? , feature) >
<!ATTLIST exception

name ID #REQUIRED
viewed CDATA #IMPLIED>

<!ELEMENT exit (identifier)+ >
<!ATTLIST exit

name ID #REQUIRED>
<!ELEMENT export EMPTY >
<!ATTLIST export

name CDATA #REQUIRED>
<!ELEMENT expresion (#PCDATA) >
<!ELEMENT extensionin (#PCDATA) >
<!ELEMENT feature (visibility , ((stereotyped , (method | attribute |

operation | tagged)*) | (method | attribute | operation | tagged)+))
>

<!ELEMENT flow (constraint? , constrained?) >
<!ATTLIST flow

classname ID #REQUIRED
statename CDATA #REQUIRED>

<!ELEMENT formalgenerics (constraint)? >
<!ATTLIST formalgenerics

name ID #REQUIRED>
<!ELEMENT from (#PCDATA) >
<!ELEMENT identifier EMPTY >
<!ATTLIST identifier

name ID #REQUIRED>
<!ELEMENT import (visibility? , (identifier+ , as?)? , from)+ >
<!ELEMENT in EMPTY>
<!ELEMENT inherit (identifier , type*)+ >
<!ATTLIST inherit

name ID #REQUIRED>
<!ELEMENT inout EMPTY >
<!ELEMENT interface (formalgenerics? , (%extension;)? , (%extends;)? ,

inherit? , ((visibility , operation*)* , constrained?)) >
<!ATTLIST interface

name ID #REQUIRED
viewed CDATA #IMPLIED>

<!ELEMENT internaltransition (((when | after) , (call | (trigger , (when |
after | signal)))?)+ , (%idlist;)?) >

<!ELEMENT is (visibility? , %package;)+ >
<!ELEMENT like (#PCDATA) >

<!ELEMENT link (linktype | (dependency+ , text)+) >
<!ATTLIST link

with ID #REQUIRED>
<!ELEMENT linktype EMPTY >
<!ATTLIST linktype

roleA ID #REQUIRED
roleB ID #REQUIRED
cardA CDATA #IMPLIED
cardBed CDATA #IMPLIED>

<!ELEMENT message (identifier)+ >
<!ELEMENT method (argument , typemark? , (pre? , post)? , (%extends;)? ,

constrained? , (text | identifier) , PCDATA) >

The Mapping between UOL and XML

(UOL 1.2)

- 54 -

<!ATTLIST method
name ID #REQUIRED
deferred(YES|NO) #IMPLIED
static (YES|NO) #IMPLIED>

<!ELEMENT model (diagram* , (subsystem | stereotyped | constrained | tagged |
%package;)*) >

<!ATTLIST model
name ID #REQUIRED>

<!ELEMENT node (formalgenerics? , (%extends;)? , inherit? , identifier+ ,
constrained?) >

<!ATTLIST node
name ID #REQUIRED
viewed CDATA #IMPLIED>

<!ELEMENT operate (expresion)+ >
<!ATTLIST operate

class ID #REQUIRED
operation ID #REQUIRED>

<!ELEMENT operation (argument , typemark? , (pre | post) , (%extension;)? ,
(%extends;)? , constrained? , PCDATA) >

<!ATTLIST operation
name ID #REQUIRED
static (YES|NO) #IMPLIED
deferred(YES|NO) #IMPLIED>

<!ELEMENT out EMPTY >
<!ELEMENT package ((%extends;)? , (%idlist;)? , import? , is? , constrained?)

>
<!ATTLIST package

name ID #REQUIRED
viewed ID #IMPLIED>

<!ELEMENT post (#PCDATA) >
<!ELEMENT pre (#PCDATA) >

<!ELEMENT pseudostate (constraint? , constrained? , actions?) >
<!ATTLIST pseudostate

type (deephistory|shallowhistory|initial|final|join|fork|branch)
#REQUIRED
name ID #REQUIRED>

<!ELEMENT raise (identifier)+ >
<!ATTLIST raise

name ID #REQUIRED>
<!ELEMENT redefine EMPTY >
<!ATTLIST redefine

name CDATA #REQUIRED>
<!ELEMENT relation (formalgenerics? , (%extension;)? , (%extends;)? ,

identifier+ , adaptation , (link | (feature? , constrained?))) >
<!ELEMENT rename EMPTY >
<!ATTLIST rename

name CDATA #REQUIRED>
<!ELEMENT select EMPTY >
<!ATTLIST select

name CDATA #REQUIRED>
<!ELEMENT signal (to? , raise*) >
<!ATTLIST signal

name ID #REQUIRED>
<!ELEMENT state (constraint? , constrained? , actions?) >
<!ATTLIST state

The XML-DTDs

(UOL 1.2)

- 55 -

name ID #REQUIRED
viewed CDATA #IMPLIED>

<!ELEMENT statedef (state , internaltransition* , deferred?) >
<!ELEMENT statekind (statedef | pseudostate | (submachine? , composite ,

transition* , action)) >
<!ELEMENT statemachine (constraint? , constrained? , composite , transition?

, action?) >
<!ATTLIST statemachine

name ID #REQUIRED
viewed CDATA #IMPLIED>

<!ELEMENT stereotype (identifier+ , (constraint | tv)+) >
<!ATTLIST stereotype

name ID #REQUIRED
of ID #REQUIRED>

<!ELEMENT stereotyped (#PCDATA) >

<!ELEMENT subactivity (constraint? , constrained? , activitystate ,
transition+ , action+) >

<!ATTLIST subactivity
name ID #REQUIRED
viewed CDATA #IMPLIED>

<!ELEMENT submachine (constraint? , constrained?) >
<!ATTLIST submachine

name ID #REQUIRED
viewed CDATA #IMPLIED>

<!ELEMENT subsystem (formalgenerics? , (%extends;)? , inherit? , import? ,
(visibility , (identifier , operate)?)? , (visibility , %package;)*
, constrained?) >

<!ATTLIST subsystem
name ID #REQUIRED
deferred(YES|NO) #IMPLIED
viewed CDATA #IMPLIED>

<!ELEMENT tagged (identifier , expresion)+ >
<!ELEMENT text (#PCDATA) >
<!ELEMENT to (identifier)+ >
<!ELEMENT transition ((when | after) , (call | (trigger , (when | after |

signal)))? , (%idlist;)?) >
<!ATTLIST transition

from ID #REQUIRED
to ID #REQUIRED>

<!ELEMENT trigger (#PCDATA) >
<!ELEMENT type ((expanded? , (identifier , type* , rename* , export* ,

undefine* , redefine* , select*)+) | like | BIT) >
<!ELEMENT typedef (#PCDATA) >
<!ELEMENT typemark (#PCDATA) >
<!ATTLIST typemark

like (NO|YES) #FIXED "NO">
<!ELEMENT tv (identifier , #PCDATA)+ >
<!ELEMENT uc (formalgenerics? , (%idlist;)? , use* , act* , (visibility? ,

(operation+ | (atts , typemark , (%extends;) , is))?)? , text? ,
alternative? , extensionin?) >

<!ELEMENT ucext (identifier+ , with , identifier+ , #PCDATA) >
<!ELEMENT ucinst (identifier+ , uctype , (identifier , is)*) >
<!ATTLIST ucinst

name ID #REQUIRED>

The Mapping between UOL and XML

(UOL 1.2)

- 56 -

<!ELEMENT uctype EMPTY >
<!ATTLIST uctype

name ID #REQUIRED>
<!ELEMENT undefine (#PCDATA) >
<!ELEMENT uol (model | package) >
<!ELEMENT use (#PCDATA) >
<!ELEMENT usecase (uc | ucext | ucinst) >
<!ATTLIST usecase

name ID #REQUIRED>
<!ELEMENT visibility (identifier)+ >
<!ELEMENT when (#PCDATA) >
<!ELEMENT with (#PCDATA) >

4.1.2.3 Examples

example1.uol

model Example0
 diagrams
 MainD,MainE:StaticDiagram;
 PersonD:StateDiagram
 end -- diagrams
end -- model

example1.xml

<?XML VERSION="1.0" ?>
<!DOCTYPE uol SYSTEM "uol.dtd">
<uol>

<model name="Example0">
 <diagram type="StaticDiagram">

<identifier name="MainD"/>
<identifier name="MainE"/>

</diagram>
 <diagram type="StateDiagram">

<identifier name="PersonD"/>
</diagram>

</model>
</uol>

example2.uol

model aModel
package aPMain is {any}

class SCHEMA
-- features of schema ommited

end
class aClass

-- features of aClass ommited
end
stereotype EXPRESS_SCHEMA of SCHEMA end

The XML-DTDs

(UOL 1.2)

- 57 -

stereotype aStereoType of aClass end
stereotype typeA of aClass end
class Schema_Class

stereotyped with EXPRESS_SCHEMA
feature {any}

a:integer;
b:integer is 3;
c [1..3,6..*] constrained by {aConstraint}

:integer is {2,3,4}
stereotyped with aStereoType

end -- feature
end -- class
class aClass2

feature {any}
stereotyped with typeA

end -- feature
end -- class

end -- package
end -- model

example2.xml

<?XML VERSION="1.0" ?>
<!DOCTYPE uol SYSTEM "uol.dtd">
<uol>
<model name="aModel">

<package name="pMain">
<visibility> <identifier name="ANY"/>
</visibility>
<class name="SCHEMA"> </class>
<class name="aClass"> </class>
<stereotype name="EXPRESS_SCHEMA" of="SCHEMA">
</stereotype>
<stereotype name="aStereoType" of="aClass">
</stereotype>
<stereotype name="typeA" of="aClass"> </stereotype>
<class name="Schema_Class">

<stereotyped>EXPRESS_SCHEMA</stereotyped>
<feature>

<visibility> <identifier name="ANY"/>
</visibility>
<attribute name="a">

<typemark>integer</typemark>
</attribute>
<attribute name="b">

<typedef>integer is 3</typedef>
</attribute>
<attribute name="c">

<constrained>{aConstraint}
</constrained>
<typedef>

<typemark>integer
</typemark>

[1..3,6..*] is {2,3,4}
</typedef>
<stereotyped>aStereoType

The Mapping between UOL and XML

(UOL 1.2)

- 58 -

</stereotyped>
</attribute>

</feature>
</class>
<class name="aClass2">

<feature>
<visibility>

<identifier name="ANY"/>
</visibility>
<stereotyped>typeA</stereotyped>

</feature>
</class>

</package>
</model>
</uol>

example3.uol

model Example3
 -- Subsystem declaration
 deferred subsystem adSubsystem
 -- extension use
 -- inheritance
 import
 {any} anElement as thisElement from aPackage,
 anotherElement from aPackage2,
 from aPackage3
 end -- subsystem adSubsystem
 package AllElements is
 -- Package declaration
 package aPackage
 end -- package aPackage
 -- Interface declaration
 interface anInterface

feature {any}
 -- only operations
 deferred static anOperation(aParam:aType):aReturnType
 {precondition: aConstraint}
 {postcondition: aConstraint}
 constrained by {aConstraint}
 is text "Specification"
 end
 end – interface anInterface
 -- Class declaration
 class Person viewed with MainD
 feature {any}
 isMarried, isUnemployed:Boolean;
 birthDate:Date;
 age:Integer;
 firstName,lastName:String;
 sex: unique { male,female };
 deferred income(d:Date):Integer
 is text"Incoming operation"

 end
 constrained by { self.age>=0 }
 end – Class Person

The XML-DTDs

(UOL 1.2)

- 59 -

 -- Relation declaration
 relation job
 link Person[0..*], Company[0..*] with Marriage
 feature {Person}
 stereotyped with UMLAssociationEnd;
 with tag values (<AssociationEndName , employee>)
 end
 feature {Company}
 stereotyped with UMLAssociationEnd;
 with tag values (<AssociationEndName , employer>);
 deferred jobAmount(accountNumber:Integer)
 is text "Amounting count"
 end
 constrained by
 { self.employee->size <=50 }
 -- rest of constraints ommited
 end -- Relation job
 -- Stereotype declaration
 stereotype aStereotype of aBaseClass viewed as 'anIcon.gif'
 inherit aName1(aDiscriminator),aName2
 tag values
 AssociationEndName
 IsNavigable is true
 IsOrdered is false
 Aggregation is 'none'

 end -- tag values
 constraint
 aConstraint1 is { text "This is a constraint" }
 aConstraint2 is { aConstraintDef }
 end -- constraint
 end -- stereotype aStereotype
 end -- package AllElements

end -- model Example3

example3.xml

<?XML VERSION="1.0" ?>
<uol>
<model name="Example3">

<subsystem name="adSubsystem" deferred="yes">
<import>

<visibility>any</visibility>
 <identifier name="anElement"/>

<as>thisElement</as>
<from>aPackage</from>

</import>
<import>

<identifier name="anotherElement"/>
<from>aPackage2</from>

</import>
<import><from>aPackage3</from></import>

 </subsystem>
<package name="aPackage">
</package>

 <package name="AllElements">

The Mapping between UOL and XML

(UOL 1.2)

- 60 -

</package>
 <interface name="anInterface">
 <visibility>any</visibility>

 <operation name="anOperation" static="yes">
 <argument>
 <out/><identifier name="aReturnType"/>

 </argument>
 <argument>

 <in/><identifier name="aParam"/>
 <typemark>aType</typemark>
 </argument>

 <pre>aConstraint</pre>
 <post>aConstraint2</post>

 <constraint>{aConstraint3}</constraint>
 Specification

</operation>
 </interface>

<class name="Person" viewed="MainD">
 <feature>

 <visibility>any</visibility>
 <attribute name="isMarried">

 <typemark>boolean</typemark>
 </attribute>

 <attribute name="isUnemployed">
 <typemark>boolean</typemark>
 </attribute>

 <attribute name="birthDate">
 <typemark>date</typemark>
 </attribute>

 <attribute name="age">
 <typemark>boolean</typemark>
 </attribute>

 <attribute name="firstName">
 <typemark>string</typemark>
 </attribute>

 <attribute name="lastName">
 <typemark>string</typemark>
 </attribute>

 <attribute name="sex">
 <typedef>unique enum={male,female}</typedef>
 </attribute>

 <operation name="income" deferred="Yes" type="Integer">
 <parameter name="d" type="Date"/>
 Incoming operation
 </operation>
 </feature>

 <constraint> {self.age>=0} </constraint>
 </class>
 <relation name="job">
 <feature>

 <visibility>Person</visibility>
 <stereotyped>UMLAssociationEnd</stereotyped>
 <tagged>
 <identifier name="AssociationEndName"/>

The XML-DTDs

(UOL 1.2)

- 61 -

 husband
 </tagged>

 </feature>
 <feature>

 <visibility>Company</visibility>
 <stereotyped>UMLAssociationEnd</stereotyped>
 <tagged>
 <identifier name="AssociationEndName"/>
 employer
 </tagged>

 </feature>
 <constraint>{self.employee->size %le=50}</constraint>

 <link roleA="Person" cardA="[0..*]" roleB="Company"
 cardb="[0..*]" with="Marriage"/>
 </relation>

<stereotype name="aStereotype" of="aBaseClass">
 <identifier name="anIcon.gif"/>

 <tv>
 <identifier name="AssociationEndName"/>
 husband
 </tv>

 <tv>
 <identifier name="IsNavigable"/>
 true
 </tv>

 <tv>
 <identifier name="IsOrdered"/>
 false
 </tv>

 <tv>
 <identifier name="Aggregation"/>
 %quot none %quot
 </tv>

 <constraint name="aConstraint1">
 text \"This is a constraint\"
 </constraint>

 <constraint name="aConstraint2">
 aConstrainDef
 </constraint>
 </stereotype>
</model>

</uol>

The mapping between UOL and MOF

(UOL 1.2)

- 62 -

5 Mappings

5.1 The mapping between UOL and MOF

5.1.1 Direct mapping

MOF Meta-metamodel UOL
Association (binary) Association (n-ary)
NA AssociationClass
AssociationEnd AssociationEnd
Attribute Attribute
BehavioralFeature BehavioralFeature
Class Class
Classifier Classifier
Constraint Constraint
DataType DataType
/ dependsOn (association) Dependency (class)
Exception Exception
Feature Feature
GeneralizableElement GeneralizableElement
generalizes (association) Generalization (class)
Generalization Generalization
Interface Interface Class (as Interface)
ModelElement ModelElement
Reference NA
Constant Attribute
Namespace Namespace
Operation Operation
Package Package
Parameter Parameter
StructuralFeature StructuralFeature
Class (as Type) Type (stereotype)

MOF META-METAMODEL UOL
AggregationKind AggregationKind
CORBA Boolean Boolean
CORBA Enum unique
NameType Expression
CORBA Short, Long, Unsigned
Short, Unsigned Long, Double,

Integer

Mappings

(UOL 1.2)

- 63 -

Octet, Float
List, Set List
MultiplicityKind Multiplicity
NameKind Name
DirectionKind OperationDirectionKind
DependencyKind (enum) dependencies (reified as

classes)
ScopeKind ScopeKind
CORBA String, Char String
CORBA Time Service Data Types Time
TypeDef NA
CORBA Any TextMultiline
VisibilityKind VisibilityKind

5.1.2 Support for meta-model extensions
MOF can be extended via descendents of the MOF class and UOL can be extended via tagged
values and stereotypes.

The reason for the way MOF is extended is that a meta-model describes such concepts as instances
of the concepts defined in the meta-meta-model. Therefore, new concepts will be descendents in
MOF of the only suitable MOF entity, the MOF class.

Being that MOF's extension mechanism is different from the concepts defined in UOL, these
concepts will be mapped to a MOF class through the UOL's extension mechanisms. The exact
mapping is pending.

5.2 The mapping between UOL and CDIF

5.2.1 Introduction

5.2.1.1 Document structure
This document explains the translation from a CDIF Transfer to UOL code. The CDIF structures
are presented in the same order as they appear in the EIA/IS-109 document standard from
Electronic Industries Association. For every CDIF element, we present an explanation of it
according to the standard referenced followed by its UOL mapping, where we justify the concrete
mapping. Then, we give the part of the CDIF grammar corresponding to the CDIF element and a
mapping example extracted from the standards examples. These examples are part of the complete
CDIF Transfer presented at the final chapter.

Finally, we translate a complete CDIF Transfer to UOL, giving also its UML graphical
representation.

5.2.1.2 Structure of a CDIF Transfer
A CDIF Transfer consists of two elements, the TransferEnvelope and the TransferContents. They
are detailed in each of the corresponding chapters.

The general syntax of a CDIF Transfer is as follows:

<CDIFTransfer>::= <TransferEnvelope>
<TransferContents>

[extracted from EIA/IS-109,page 8]

The mapping between UOL and CDIF

(UOL 1.2)

- 64 -

5.2.2 Transfer Envelope

5.2.2.1 Introduction
The Transfer Envelope consists of the CDIF Signature, the Syntax Identifier and the Encoding
Identifier.

[extracted from EIA/IS-109,page 8]

5.2.2.2 UOL mapping
The Transfer Envelope maps to UOL as a comment.

The information of the Transfer Envelope has no meaning in an UOL source code because it refers
to the syntax standard and the encoding standard used in the source CDIF file.

5.2.2.3 Grammar
<TransferEnvelope> ::= <CDIFSignature> , <SyntaxIdentifier> ,

<EncodingIdentifier>
<SyntaxIdentifier> ::= SYNTAX <TransferEnvelopeSpace> <SyntaxId>

 <TransferEnvelopeSpace> <SyntaxVersion>
<EncodingIdentifier> ::= ENCODING <TransferEnvelopeSpace>

<EncodingId> <TransferEnvelopeSpace>
<EncodingVersion>

<CDIFSignature> ::= CDIF
<SyntaxId> ::= <TransferEnvelopeString>
<SyntaxVersion> ::= <TransferEnvelopeString>
<EncodingId> ::= <TransferEnvelopeString>
<EncodingVersion> ::= <TransferEnvelopeString>

[extracted from EIA/IS-109,page 35]

5.2.2.4 Example
CDIF Source Example:

 CDIF , SYNTAX “SYNTAX.1” “02.00.00” , ENCODING “ENCODING.1” “02.00.00”
[extracted from EIA/IS-110 Extract,page 26]

UOL Mapping Example:

-- CDIF,SYNTAX “SYNTAX.1” “02.00.00”,ENCODING “ENCODING.1” "02.00.00"
-- Transfer Contents

5.2.3 Transfer Contents

5.2.3.1 Introduction
The first level of the grammar of the Transfer Contents is the same for any CDIF Transfer, its
structure is as follows:

<TransferContents>::= <HeaderSection >
<MetaModelSection>
[<ModelSectionClause>]

[extracted from EIA/IS-109,page 8]

Mappings

(UOL 1.2)

- 65 -

5.2.3.2 Header Section

5.2.3.2.1 Introduction
The Header Section defines information that applies to the whole transfer.

[extracted from EIA/IS-109, page 9]

5.2.3.2.2 UOL mapping
The Header Section mappes to UOL as a comment.

The information of the Header Section has no meaning in an UOL source code because it specifies
summary information about the transfer, in the form of a number of items.

5.2.3.2.3 Grammar
<HeaderSection> ::= <OpenScope> <HeaderKeyword>

<SummaryClause> <CloseScope>
<SummaryClause> ::= <OpenScope> <SummaryKeyword>

[<IdentifierValuePair>]...
<CloseScope>

<IdentifierValuePair> ::= <OpenScope> <SummaryIdentifier>
<StringValue> <CloseScope>

<SummaryIdentifier> ::= <Identifier>
<StringValue> ::= <String>

[extracted from EIA/IS-109, pages 9,10]

5.2.3.2.4 Example
CDIF Source Example:

(: HEADER
(:SUMMARY

(ExporterName “CASE Genius”)
(ExporterVersion “01.00.00”)
(ExportDate “1991/04/01”)
(ExporterTime “07:00:00”)
(PublisherName “Mary Lomas”)

)
)

[extracted from EIA/IS-110 Extract,page 26]

UOL Mapping Example :

--SUMMARY
-- (ExporterName “CASE Genius”)
-- (ExporterVersion “01.00.00”)
-- (ExportDate “1991/04/01”)
-- (ExporterTime “07:00:00”)
-- (PublisherName “Mary Lomas”)

5.2.3.3 Meta-model Section

5.2.3.3.1 Introduction
The Meta-model Section of the Transfer consists of references to standardized Subject Areas,
followed by extensions to the Meta-Model. The Meta-model for the transfer, known as the

The mapping between UOL and CDIF

(UOL 1.2)

- 66 -

“Working Meta-model”, is defined by the set of meta-meta-entity and meta-meta-relationship
instances that are used in any of the referenced Subject Areas, plus those added by extensions.

Its grammar is as follows:

<MetaModelSectionClause>::= <OpenScope> <MetaModelKeyword>
<CDIFSubjectAreaReferenceClause>...
[<MetaModelExtensionClause>]...
<CloseScope>

[extracted from EIA/IS-109,pages 11,12]

5.2.3.3.2 CDIF Subject Area Reference Clause

5.2.3.3.2.1 Introduction

This section identifies the standardized CDIF Subject Areas that should be used by the importer
when interpreting model data. The appropriate version of each of these Subject Areas is also
identified (as defined in the relevant Subject Area standard).

[extracted from EIA/IS-108,page 14]

5.2.3.3.2.2 UOL mapping

Subject Area References are mapped as an UOL import statement. Subject Areas should be
mapped as UOL packages.

Each package defined from a SubjectAreaReference, contains a non-instantiable class, called
“VersionNumber<SubjectAreaName>”, with one attribute, “VersionNumber”, that contains the
version number of the imported Subject Area.

Mapping Subject Areas as UOL packages allows the model to import them and gives support to the
underlying structure, grouping the model and the meta-model in a package each. The meta-model
contains a number of packages, corresponding to the referenced Subject areas, and the package
containing the extensions.

5.2.3.3.2.3 Grammar

<CDIFSubjectAreaReferenceClause>::= <OpenScope>
<SubjectAreaReferenceKeyword>
<SubjectAreaName>
<OpenScope>
<VersionNumberKeyword>
<SubjectAreaVersionNumber>
<CloseScope>
<CloseScope>

<SubjectAreaName>::= <MetaObjectName>
<SubjectAreaVersionNumber>::= <String>

[extracted from EIA/IS-109, page 12]

5.2.3.3.2.4 Example

CDIF Source Example :

(:SUBJECTAREAREFERENCE DataModeling
(:VERSIONNUMBER “01.00”)

)
(:SUBJECTAREAREFERENCE DataDefinition

(:VERSIONNUMBER “01.00”)
)

Mappings

(UOL 1.2)

- 67 -

[extracted from EIA/IS-110 Extract,page 27]

UOL Mapping Example :

-- code in the Model package
import from OwnMetaModel::DataModeling
import from OwnMetaModel::DataDefinition

-- code in the Meta-model package
-- code in DataModeling Meta-model package

class VersionNumberDataModeling
feature {any}

VersionNumber: String is ’01.00’
end

end

-- code in DataDefinition Meta-model package
class VersionNumberDataDefinition

feature {any}
VersionNumber: String is ’01.00’

end
end

5.2.3.3.3 Meta-model Extension Clause

5.2.3.3.3.1 Introduction

This section contains meta-model extension information that must be communicated to the
importer before it encounters model data. This section must be empty if importers and exporters
use only the standardized CDIF Subject Areas.

When an exporter needs to extend the standardized CDIF meta-model or to provide its own meta-
model definition(s), it places these extensions in this section. All Syntaxes shall provide
mechanisms for extension.

The syntax of the Meta-model Extension Clause:

<MetaModelExtensionClause>::=
 <MetaMetaEntityInstance>

| <MetaMetaRelationshipInstance>
| <EnumeratedMetaAttributeExtension>

[extracted from EIA/IS-108,page 14 and EIA/IS-109,page 13]

5.2.3.3.3.2 Meta-meta-entity Instance

5.2.3.3.3.2.1 Introduction

A meta-meta-entity is the definition of the behaviour and structure of meta-entities, meta-
relationships, meta-attributes, or subject areas (i.e., a definition of the meta-object definitions used
to describe information in models).

[extracted from EIA/IS-109,page 50]

5.2.3.3.3.2.2 UOL Mapping

The extensions are mapped into a package containing all the extensions. This package is included
in our own meta-model package. These extensions are mapped as a class stereotyped with Utility.

The mapping between UOL and CDIF

(UOL 1.2)

- 68 -

The use of a Utility stereotype allows expressing all the meaning of the Meta-meta-entity in a
simple way resulting in a very straightforward mapping.

5.2.3.3.3.2.3 Grammar

<MetaMetaEntityInstance> ::= <OpenScope> <MetaMetaEntityName>
<CDIFMetaIdentifier>

 [<MetaMetaAttributeInstance>]...
<CloseScope>

<MetaMetaEntityName> ::= <MetaMetaObjectName>
<CDIFMetaIdentifier> ::= <Identifier>

[extracted from EIA/IS-109, page 13]

5.2.3.3.3.2.4 Example

CDIF Source Example:

(MetaEntity ME001 [MetaMetaAttributeInstance]...)
[extracted from EIA/IS-110 Extract,pages 38-39]

UOL Mapping Example:

class ME001
stereotyped with Utility
feature {any}

-- Translation of MetaMetaAttributeInstance
end

end

5.2.3.3.3.3 Meta-meta-attribute Instance

5.2.3.3.3.3.1 Introduction

A meta-meta-attribute instance clause is used to represent each of the meta-meta-attributes (other
than the CDIF MetaIdentifier meta-meta-attribute) of the meta-meta-entity.

[extracted from EIA/IS-109,page 14]

5.2.3.3.3.3.2 UOL Mapping

Meta-meta-attribute instances are mapped as features of the UOL class they belong to.

The mapping of a meta-meta-attribute instance as a feature is a consequence of having translated its
meta-meta-entity as a class stereotype. This is because a feature is the mean we have of adding
characteristics to a class.

5.2.3.3.3.3.3 Grammar
<MetaMetaAttributeInstance> ::= <OpenScope>

<MetaMetaAttributeName>
<MetaMetaAttributeValue>
<CloseScope>

<MetaMetaAttributeName> ::= <MetaMetaObjectName>
<MetaMetaAttributeValue> ::= <MetaAttributeValue>

[extracted from EIA/IS-109, page 14]

5.2.3.3.3.3.4 Example

CDIF Source Example:

Mappings

(UOL 1.2)

- 69 -

(MetaEntity ME001
(Name *SecurityClassification*)
 ...
)

[extracted from EIA/IS-110 Extract,page 38]

UOL Mapping Example:

class ME001
stereotyped with Utility
feature {any}

Name: String is ‘*SecurityClassification*’
...
end

end

5.2.3.3.3.4 Meta-meta-relationship Instance

5.2.3.3.3.4.1 Introduction

A meta-meta-relationship is a definition of a type of data object that occurs in CDIF meta-models.
Specifically, a meta-meta-relationship represents the definition of a relationship between instances
of meta-meta-entities.

[extracted from EIA/IS-109,page 50]

5.2.3.3.3.4.2 UOL Mapping

Meta-meta-relationship instances are mapped as UOL classes stereotyped with UMLAssociation,
in the meta-model extension package.

The relationships are mapped as classes instead of relations because, at this level, a relationship
does not connect classes. It is at the model level when a relationship takes its role as connector
between classes. In the meta-model, we only define the concept of connector, but we do not
connect classes actually.

5.2.3.3.3.4.3 Grammar

<MetaMetaRelationshipInstance> ::=
<OpenScope>
<FullMetaMetaRelationshipName>
<SourceMetaMetaEntityCDIFMetaIdentifier>

 <DestinationMetaMetaEntityCDIFMetaIdentifier>
 <CloseScope>
<FullMetaMetaRelationshipName> ::=

<SourceMetaMetaEntityName> <Dot>
 <MetaMetaRelationshipName> <Dot>
 <DestinationMetaMetaEntityName>
<SourceMetaMetaEntityName> ::=
<MetaMetaObjectName>
<MetaMetaRelationShipName> ::=
<MetaMetaObjectName>
<DestinationMetaMetaEntityName>::= <MetaMetaObjectName>
<SourceMetaMetaEntityCDIFMetaIdentifier>:= <CDIFMetaIdentifier>
<DestinationMetaMetaEntityCDIFMetaIdentifier>::= <CDIFMetaIdentifier>
<CDIFMetaIdentifier>::= <Identifier>

[extracted from EIA/IS-109, page 15]

The mapping between UOL and CDIF

(UOL 1.2)

- 70 -

5.2.3.3.3.4.4 Example

CDIF Source Example:

(MetaRelationship.HasDestination.MetaEntity MR001 ME001)
[extracted from EIA/IS-110 Extract, page 39]

UOL Mapping Example:

class HasDestination
stereotyped with UMLAssociation
feature {any}

from: String is MR001
to: String is ME001

end
end

5.2.3.3.3.5 Enumerated Meta-attribute Extension

5.2.3.3.3.5.1 Introduction

This construction extends an enumerated meta-attribute, adding values that are appended to those
values that have already been defined for the meta-attribute.

5.2.3.3.3.5.2 UOL mapping

Enumerated Meta-attributes are mapped as “unique <List-of-values>”. On the list of values there
are all the values of the Meta-attribute. The UOL mapping only appears when an attribute of a
(Meta-)entity or relationship is defined with it.

To extend an enumerated value, we redefine the enumerated value adding the new values with the
UOL equivalent construction for enumerated values, unique <List-of-values>.

5.2.3.3.3.5.3 Grammar

<EnumeratedMetaAttributeExtension>::=
<OpenScope>
<ExtendMetaAttributeKeyword>
<CDIFMetaIdentifier>
<OpenScope>
<EnumeratedIdentifierValue>
[<EnumeratedSeparator><EnumeratedIdentifierValue>]...
<CloseScope>
<CloseScope>

<CDIFMetaIdentifier>::= <Identifier>
<EnumeratedIdentifierValue>::= <Identifier>

[extracted from EIA/IS-109, page 16]

5.2.3.3.3.5.4 Example

CDIF Source Example:

(:EXTENDMETA-ATTRIBUTE MA001 (Encrypted,Nonencrypted))
[extracted from EIA/IS-109, page 16]

UOL mapping Example: (appears when MA001 is used as a Type)

MA001: unique {<Before defined values (if necessary)>,

Mappings

(UOL 1.2)

- 71 -

Encrypted,Nonencrypted};
<AttributeName> : MA001

5.2.3.4 Model Section

5.2.3.4.1 Introduction
The Model Section contains references to attributable meta-objects (object types) and actual model
data. The object types referenced here are instances of MetaEntities and MetaRelationships that
were defined in the Meta-model Section as part of the CDIF Subject Area references or in the
Meta-model Extensions clauses. The model data are in the form of meta-entity instances, meta-
relationships instances and meta-attribute instances.

[extracted from EIA/IS-109,page 16]

Its Grammar is as follows:

<ModelSectionClause>::= <OpenScope>
<ModelKeyword> <ObjectClause>...
<CloseScope>

<ObjectClause>::= <MetaEntityInstance>
| <MetaRelationshipInstance>

[extracted from EIA/IS-109, page 17]

An example of the Model Section Clause is

(:MODEL <ObjectClause> ...)
[extracted from EIA/IS-109, page 17]

5.2.3.4.2 Meta-entity Instance

5.2.3.4.2.1 Introduction

Meta-entity is a definition of a type of data object that occurs in CDIF models. Specifically, a
meta-entity represents a set of zero or more meta-attributes, stored together to represent a thing,
event or concept that has instances in a model.

[extracted from EIA/IS-109,page 49]

5.2.3.4.2.2 UOL mapping

Meta-entity instances are mapped as classes stereotyped with the Meta-meta-entity they are
instances of.

The decision of mapping a meta-entity instance as a stereotype of the meta-meta-entity it is related
to allows keeping all the characteristics of the meta-entity while adding necessary details for a
model entity.

5.2.3.4.2.3 Grammar

<MetaEntityInstance> ::= <OpenScope> <MetaEntityName>
<CDIFIdentifier>
[<MetaAttributeInstance>]...
<CloseScope>

<MetaEntityName> ::= <MetaObjectName>
<CDIFIdentifier> ::= <Identifier>

[extracted from EIA/IS-109, page 17]

5.2.3.4.2.4 Example

The mapping between UOL and CDIF

(UOL 1.2)

- 72 -

CDIF Source Example:

(DataModel MOD01
[MetaAttributeInstance]...

)
[extracted from EIA/IS-110 Extract,page 27]

UOL Mapping Example:

class MOD01
stereotyped with DataModel
feature {any}
-- Translation of MetaAttributeInstance
end

end

5.2.3.4.3 Meta-relationship Instance

5.2.3.4.3.1 Introduction

A meta-relationship is a definition of a type of data object that occurs in CDIF models.
Specifically, a meta-relationship represents the definition of a relationship between meta-entities
that has instances in a model. A meta-relationship may also define a set of zero or more meta-
attributes, stored together to represent characteristics of a relationship between meta-entities.

[extracted from EIA/IS-109, page 50]

5.2.3.4.3.2 UOL mapping

Meta-relationship instances are mapped as relations stereotyped with the Meta-meta-relationship
they are instances of.

A meta-relationship instance is mapped as a relation because, at the model level, it links classes. In
UOL, this is accomplished with relations stereotyped with the meta-meta-relationship it is related
to.

5.2.3.4.3.3 Grammar

<MetaRelationshipInstance>::=
<OpenScope>
<FullMetaRelationshipName>
<MetaRelationshipCDIFIdentifier>
<SourceMetaEntityCDIFIdentifier>
<DestinationMetaEntityCDIFIdentifier>
[MetaAttributeInstance]...

 <CloseScope>
FullMetaRelationshipName::=

<SourceMetaEntityName><Dot><MetaRelationshipName>
<Dot><DestinationMetaEntityName>

SourceMetaEntityName::= <MetaObjectName>
MetaRelationshipName::= <MetaObjectName>
DestinationMetaEntityName::= <MetaObjectName>
MetaRelationshipCDIFIdentifier::= <CDIFIdentifier>
SourceMetaEntityCDIFIdentifier::= <CDIFIdentifier>
DestinationMetaEntityCDIFIdentifier ::=

<CDIFIdentifier>
CDIFIdentifier::= <Identifier>

[extracted from EIA/IS-109, page 18]

Mappings

(UOL 1.2)

- 73 -

5.2.3.4.3.4 Example

CDIF Source Example:

(DataModel.IsCollectionOf.DataModelObject R001 MOD01 ENT02)
[extracted from EIA/IS-110 Extract, page 30]

UOL Mapping Example:

relation MOD01_IsCollectionOf_ENT02
stereotyped with IsCollectionOf
link MOD01[1], ENT02[1]

end

5.2.3.4.4 Meta-attribute Instance

5.2.3.4.4.1 Introduction

A meta-attribute is a definition of a characteristic of a meta-entity or a meta-relationship. Instances
of a meta-attribute occur in a model as data values.

[extracted from EIA/IS-109,page 49]

5.2.3.4.4.2 UOL mapping

Meta-attribute instances are mapped as features of the UOL class/relation they belong to.

The use of features is the mean UOL has to specify characteristics of a class, which is what an
attribute express.

5.2.3.4.4.3 Grammar

<MetaAttributeInstance>::= <OpenScope> <MetaAttributeName>
<MetaAttributeValue>
<CloseScope>

<MetaAttributeName>::= <MetaObjectName>
[extracted from EIA/IS-109, page 19]

5.2.3.4.4.4 Example

CDIF Source Example:

(DataModel MOD01
(Name “Example2”)
...

)
[extracted from EIA/IS-110 Extract, page 27]

UOL Mapping Example:

class MOD01
stereotyped with DataModel
feature {any}

Name: String is ‘Example2’
...

end
end

5.2.3.4.5 Meta-attribute Value

The mapping between UOL and CDIF

(UOL 1.2)

- 74 -

5.2.3.4.5.1 Introduction

Different values supported by CDIF.

5.2.3.4.5.2 UOL mapping

All values are mapped as “is <Value>” in the definition of the attribute in the Meta-entity instance
in the ownmodel_package.

Values directly supported are mapped as they are (its type and its value), and values non-directly
supported are mapped as strings.

There are some constructions with a direct equivalence in UOL for which we can do a direct
mapping. The constructions with no direct equivalence can be translated using UOL standard
elements.

5.2.3.4.5.3 Grammar

<MetaAttributeValue>::= <BitmapValue>
| <BooleanValue>
| <DateValue>
| <EnumeratedValue>
| <FloatValue>
| <IdentifierValue>
| <IntegerValue>
| <IntegerListValue>
| <PointValue>
| <PointListValue>
| <StringValue>
| <TextValue>
| <TimeValue>

<BitmapValue>::= <BitmapKeyword><Height><Width>
<OpenScope><Bitmap><CloseScope>

<Height>::= <HeightKeyword><PositiveInteger>
<Width>::= <WidthKeyword><PositiveInteger>
<Bitmap>::= <PixelValue> [<ListSeparator>

<PixelValue>] ...
<PixelValue>::= <OpenScope>

<PixelRedIntensity> <PixelSeparator>
<PixelGreenIntensitiy><PixelSeparator>
<PixelBlueIntensity>

<CloseScope>
<PixelRedIntensity>::= <PixelIntensity>
<PixelGreenIntensity>::= <PixelIntensity>
<PixelBlueIntensity>::= <PixelIntensity>
<BooleanValue>::= <TrueValue> | <FalseValue>
<DateValue>::= <DateKeyword><Date><DateClassValue>
<DateClassValue>::= <Absolute> | <RelativePositive> |
<RelativeNegative>
<IntegerValue>::= <DecimalIntegerValue> |
<BinaryValue>

| <HexaDecimalValue>
| <OctalValue>

<IntegerListValue>::= <IntegerListKeyword><OpenScope>
<IntegerValue> [<ListSeparator>
<IntegerValue>]...
<CloseScope>

<PointValue>::= <PontKeyword><Point>

Mappings

(UOL 1.2)

- 75 -

<Point>::= <OpenScope>
<XValue><PointSeparator>
<YValue><PointSeparator>
<ZValue>
<CloseScope>

<XValue>::= <Integer>
<YValue>::= <Integer>
<ZValue>::= <Integer>
<PointListValue>::= <PointListKeyword><OpenScope>

<Point> [<ListSeparator> <Point>] ...
<CloseScope>

<Point>::= <OpenScope>
<XValue><PointSeparator>
<YValue><PointSeparator>
<ZValue>
<CloseScope>

<StringValue>::= <String>
<TextValue>::= <TextString> [<ListSeparator>
<TextString>]...
<TimeValue>::= <TimeKeyword> <Time> <TimeClassValue>
<TimeClassValue>::= <AbsoluteUTC> | <AbsoluteLocal>

| <RelativePositive>
| <RelativeNegative>

[extracted from EIA/IS-109, pages 19-25]

5.2.3.4.5.4 Example

All the CDIF examples are extracted from EIA/IS-109

BitmapValue

CDIF Source Example:

:BITMAP :HEIGHT 2 WIDTH 2
((120,50,35),(130,80,70),(100,28,231),(111,255,0))

[extracted from EIA/IS-109, page 20]

UOL Mapping Example:

class BitmapValue
stereotyped with DataType
feature {any}

Height : integer;
Width : integer;
PixelList [0..*] : Pixel

end
feature {none}

Pixel[0..2] : integer
end

end

a:BitmapValue
a.Height=2
a.Width=2
a.PixelList[0][0]=120
a.PixelList[0][1]=50
a.PixelList[0][2]=35

The mapping between UOL and CDIF

(UOL 1.2)

- 76 -

(...)

BooleanValue

CDIF

-TRUE-
[extracted from EIA/IS-109, page 21]

UOL

boolean is true

DateValue

CDIF

:DATE 1940/12/07 Absolute
[extracted from EIA/IS-109, page 21]

UOL (As a string)

string is ‘1940/12/07 Absolute’

EnumeratedValue

CDIF (As part of a enumeration)

 (..,red,..)
[extracted from EIA/IS-109, page 21]

UOL (As a enumerated value)

 unique {..,red,..}

FloatValue

CDIF

 #f123.45E2
[extracted from EIA/IS-109, page 22]

UOL

 float is 123.45E2

IdentifierValue

CDIF

 johnBrownsBody
[extracted from EIA/IS-109, page 22]

Mappings

(UOL 1.2)

- 77 -

UOL

 Identifier is johnBrownsBody

IntegerValue

CDIF

 #d12345
 #d-12345

[extracted from EIA/IS-109, page 22]

UOL

 integer is 12345
 integer is -12345

IntegerListValue

CDIF

 :INTEGERLIST (#d10,#d20,#d11)
[extracted from EIA/IS-109, page 23]

UOL

 ...
 a[0..2]: integer;
 ...

 a[0] = 10
 a[1] = 20
 a[2] = 11

PointValue

CDIF

 :POINT (0 0 0)
[extracted from EIA/IS-109, page 23]

UOL

 PointValue[0..2] : integer
 p : PointValue
 p[0] = 0
 p[1] = 0
 p[2] = 0

PointListValue

CDIF

The mapping between UOL and CDIF

(UOL 1.2)

- 78 -

 :POINTLIST ((0 0 0),(1 1 1),(3 3 3))
[extracted from EIA/IS-109, page 24]

UOL

 ...
 a[0..*]: PointValue ;
 ...

 a[0][0] = 0
 a[0][1] = 0
 a[0][2] = 0
 ...

StringValue

CDIF

 “This is a string”
[extracted from EIA/IS-109, page 24]

UOL

 string is ‘This is a string’

TextValue

CDIF

 #[Program SumIntegers (Input, Output);
 var
 total, input_integer : Integer;
 begin
 while not EOF(Input) do

begin
ReadLn(input_integer);
Total:= total + input_integer
end

 WriteLn(‘Total = ‘,total’);
 end.]#

[extracted from EIA/IS-109, page 25]

UOL

 a: string is 'Program SumIntegers (Input, Output);
var
total, input_integer : Integer;
begin
while not EOF(Input) do
 begin

ReadLn(input_integer);
Total:= total + input_integer

 end

Mappings

(UOL 1.2)

- 79 -

WriteLn(\'Total = \',total\');
end.'

TimeValue

CDIF

 :TIME 07:20:23 AbsoluteUTC
 :TIME 00:00:00.250 RelativePositive

[extracted from EIA/IS-109, page 25]

UOL

 string is ‘07:20:23 AbsoluteUTC’
 string is ‘00:00:00.250 RelativePositive’

5.2.3.5 Comments

5.2.3.5.1 Introduction
Comments may appear anywhere in the syntax between any two terminal symbols.

5.2.3.5.2 UOL mapping
Comments are mapped in UOL as comments too, respecting the meaning that user gives them. If
comment has more than one line, each line must be mapped in UOL has a comment (UOL has no
multi-line comments, only permit them as a group of one-line comments).

5.2.3.5.3 Grammar

<Comment>

5.2.3.5.4 Example

CDIF Source Example:

 #| this is
 a multi-line
 comment
 |#

UOL Mapping Example:

 -- this is
 -- a multi-line
 -- comment

The mapping between UOL and CDIF

(UOL 1.2)

- 80 -

5.2.4 Transfer Example and UOL Mapping

5.2.4.1 CDIF Code.
CDIF,SYNTAX "SYNTAX.1" "02.00.00",ENCODING "ENCODING.1" "02.00.00"
#| Sample CDIF Transfer using CDIF Integrated Meta-model |#
#| H e a d e r S e c t i o n |#
(:HEADER
(:SUMMARY
(ExporterName "CASE Genius")
(ExporterVersion "01.00.00")
(ExportDate "1991/04/01")
(ExportTime "06:00:00")
(PublisherName "Mary Lomas")
)
)
#| M e t a - m o d e l S e c t i o n |#
(:META-MODEL
 (:SUBJECTAREAREFERENCE DataModeling
(:VERSIONNUMBER "01.00")
)
(:SUBJECTAREAREFERENCE DataDefinition
(:VERSIONNUMBER "01.00")
)
)
#| M o d e l S e c t i o n |#
(:MODEL
(DataModel MOD01
(Name "Example 1")
(BriefDescription "The first example Data Model.")
(ModelType "Conceptual")
)
(Entity ENT02
(Name "Customer Account")
(BriefDescription "The bank account of a customer.")
)
(Entity ENT06
(Name "Transaction")
(BriefDescription "An action generated by an ATM session against a
customer's bank account.")
)
(Entity ENT07
(Name "Card Retention")
(BriefDescription "The action generated by retaining the Card
within the ATM.")
)
(Entity ENT08
(Name "Single Account Transaction")
(BriefDescription "A subtype transaction indicating action against
one account.")
)
(Entity ENT09
(Name "Transfer")
(BriefDescription "A subtype transaction indicating movement of

Mappings

(UOL 1.2)

- 81 -

funds between multiple accounts.")
)
(LocalAttribute DMATT12
(Name "Transaction Identifier")
(BriefDescription "The unique identifier of a Transaction.")
(IsOptional -False-)
)
(LocalAttribute DMATT13
(Name "Transaction Date")
(BriefDescription "The date the transaction took place.")
(IsOptional -False-)
)
(LocalAttribute DMATT14
(Name "Transaction Time")
(BriefDescription "The time the transaction took place.")
 (IsOptional -False-)
)
(LocalAttribute DMATT15
(Name "Customer Account Identifier")
(BriefDescription "The unique identifier of a Customer Account.")
(IsOptional -False-)
)
(LocalAttribute DMATT16
(Name "Customer Account Type")
(BriefDescription "A code that indicates the type of account.")
(IsOptional -False-)
)
(LocalAttribute DMATT17
(Name "Customer Account Balance")
(BriefDescription "The amount of money in a customer's account.")
(IsOptional -False-)
)
(LocalAttribute DMATT20
(Name "Amount")
(BriefDescription "The amount of money transferred between
accounts.")
(IsOptional -False-)
)
(Relationship REL04
(Name "CarriedOut")
(BriefDescription "This relates a Customer Account to the Single
Account Transaction performed against it.")
)
(Relationship REL05
(Name "Movement")
(BriefDescription "This relates a Customer Account to a
Transfer.")
)
(OrthogonalSubtypeSet OSS01
(Name "TransactionType")
)
(Role ROLE09
(RoleName "On")
(MinOuterCardinality "1")
(MaxOuterCardinality "1")
(MinInnerCardinality "0")

The mapping between UOL and CDIF

(UOL 1.2)

- 82 -

(MaxInnerCardinality "N")
)
(Role ROLE10
(RoleName "Is")
(MinOuterCardinality "1")
(MaxOuterCardinality "1")
(MinInnerCardinality "1")
(MaxInnerCardinality "1")
)
(Role ROLE11
 (RoleName "From")
(MinOuterCardinality "1")
(MaxOuterCardinality "1")
(MinInnerCardinality "0")
(MaxInnerCardinality "N")
)
(Role ROLE12
(RoleName "To")
(MinOuterCardinality "1")
(MaxOuterCardinality "1")
(MinInnerCardinality "0")
(MaxInnerCardinality "N")
)
(Role ROLE13
(RoleName "Is")
(MinOuterCardinality "1")
(MaxOuterCardinality "1")
(MinInnerCardinality "1")
(MaxInnerCardinality "1")
)
(RolePlayer RP01
(Name "Actor")
)
(RolePlayer RP02
(Name "Object")
)
(RolePlayer RP03
(Name "Actor")
)
(RolePlayer RP04
(Name "Sender")
)
(RolePlayer RP05
(Name "Receiver")
)
(IntegerType ELEM01
(Name "Int")
(SignedFlag -True-)
)
(DataElementType TYPE01
(Name "Identifier")
)
(DataElementType TYPE03
(Name "AccountType")
)
(MoneyType TYPE04

Mappings

(UOL 1.2)

- 83 -

(Name "Amount")
)
(DateType TYPE08
(Name "Date")
)
(TimeType TYPE09
(Name "Time")
)
(DomainGroup DOM57)
(DomainValueEnumeration DOM58
(Name "Checking")
)
(DomainValueEnumeration DOM59
(Name "Savings")
)
(DataModel.IsCollectionOf.DataModelObject R001 MOD01 ENT02)
(DataModel.IsCollectionOf.DataModelObject R002 MOD01 ENT06)
(DataModel.IsCollectionOf.DataModelObject R003 MOD01 ENT07)
(DataModel.IsCollectionOf.DataModelObject R004 MOD01 ENT08)
(DataModel.IsCollectionOf.DataModelObject R005 MOD01 ENT09)
(DataModel.IsCollectionOf.DataModelObject R006 MOD01 REL04)
(DataModel.IsCollectionOf.DataModelObject R007 MOD01 REL05)
(InheritableDataModelObject.Has.OrthogonalSubtypeSet R044 ENT06 OSS01)
(OrthogonalSubtypeSet.IsContructedWith.InheritableDataModelObject R008
OSS01 ENT07)
(OrthogonalSubtypeSet.IsContructedWith.InheritableDataModelObject R009
OSS01 ENT08)
(OrthogonalSubtypeSet.IsContructedWith.InheritableDataModelObject R010
OSS01 ENT09)
(DataModelObject.Plays.Role R011 ENT02 RP02)
(DataModelObject.Plays.Role R012 ENT08 RP01)
(DataModelObject.Plays.Role R013 ENT02 RP04)
(DataModelObject.Plays.Role R014 ENT02 RP05)
(DataModelObject.Plays.Role R015 ENT09 RP03)
(RolePlayer.Plays.Role R039 RP01 ROLE10)
(RolePlayer.Plays.Role R040 RP02 ROLE09)
(RolePlayer.Plays.Role R041 RP03 ROLE13)
(RolePlayer.Plays.Role R042 RP04 ROLE11)
(RolePlayer.Plays.Role R043 RP05 ROLE12)
(Role.BelongsTo.Relationship R016 ROLE09 REL04)
(Role.BelongsTo.Relationship R017 ROLE10 REL04)
(Role.BelongsTo.Relationship R018 ROLE11 REL05)
(Role.BelongsTo.Relationship R019 ROLE12 REL05)
(Role.BelongsTo.Relationship R020 ROLE13 REL05)
(DataType.HasSubtype.DataType R021 ELEM01 TYPE01)
(DataType.TakesValuesFrom.DomainGroup R022 TYPE03 DOM57)
(DomainGroup.Contains.Domain R023 DOM57 DOM58)
(DomainGroup.Contains.Domain R024 DOM57 DOM59)
(DataObject.IsDescribedBy.Attribute R025 ENT06 DMATT12
(SequenceNumber #d1)
)
(DataObject.IsDescribedBy.Attribute R026 ENT06 DMATT13
(SequenceNumber #d2)
)
(DataObject.IsDescribedBy.Attribute R027 ENT06 DMATT14
(SequenceNumber #d3)

The mapping between UOL and CDIF

(UOL 1.2)

- 84 -

)
(DataObject.IsDescribedBy.Attribute R028 ENT02 DMATT15
(SequenceNumber #d1)
)
(DataObject.IsDescribedBy.Attribute R029 ENT02 DMATT16
(SequenceNumber #d2)
)
(DataObject.IsDescribedBy.Attribute R030 ENT02 DMATT17
(SequenceNumber #d3)
)
(DataObject.IsDescribedBy.Attribute R031 ENT09 DMATT20
(SequenceNumber #d1)
)
(Attribute.IsOccurrenceOf.DataType R032 DMATT12 TYPE01)
(Attribute.IsOccurrenceOf.DataType R033 DMATT13 TYPE08)
(Attribute.IsOccurrenceOf.DataType R034 DMATT14 TYPE09)
(Attribute.IsOccurrenceOf.DataType R035 DMATT15 TYPE01)
(Attribute.IsOccurrenceOf.DataType R036 DMATT16 TYPE03)
(Attribute.IsOccurrenceOf.DataType R037 DMATT17 TYPE04)
(Attribute.IsOccurrenceOf.DataType R038 DMATT20 TYPE04)
)

Mappings

(UOL 1.2)

- 85 -

5.2.4.2 UML Translation.
In this chapter we introduce the structure of the packages used for the translation. The definitions
of the stereotypes used in the example are also included.

DataModeling

DataDefinition

UsedInTransferMeta
Model

Here comes the UML
Translation of the
Standard CDIF Data
Definition Subject Area

Here comes the UML
translation of the
Standard CDIF
DataModeling

Model ER package

CDIF Transfer

Model

ModelER

Main package

The mapping between UOL and CDIF

(UOL 1.2)

- 86 -

MoneyType
<<Utility>>

Name : String
LocalAttribute

<<Utility>>

Name : String
BriefDescription : String
IsOptional : Boolean

Role
<<Utility>>

RoleName : String
MinOuterCardinality : String
MaxOuterCardinality : String
MinInnerCardinality : String
MaxInnerCardinality : String

DataElementType
<<Utility>>

Name : StringOrthogonalSubtypeSet
<<Utility>>

Name : String

TimeType
<<Utility>>

Name : String
RolePlayer
<<Utility>>

Name : String

DataModel
<<Utility>>

Name : String
BriefDescription : String
ModelType : String

Relationship
<<Utility>>

Name : String
BriefDescription : String

DomainGroup
<<Utility>>

Entity
<<Utility>>

Name : String
BriefDescription : String

IntegerType
<<Utility>>

Name : String
SignedFlag : Boolean

DateType
<<Utility>>

Name : String

DomainValueEnumeration
<<Utility>>

Name : String

Subset of the
Meta-model of the
transfer. Here is the
used part of the
metamodel.

BelongsTo
<<UMLAssociation>>

extreme : Class
extreme : Class

IsDescribedBy
<<UMLAssociation>>

extreme : Class
extreme : Class

IsOccurrenceOf
<<UMLAssociation>>

extreme : Class
extrene : Class

TakesValuesFrom
<<UMLAssociation>>

extreme : Class
extreme : Class

Plays
<<UMLAssociation>>

extreme : Class
extreme : Class

IsCollectionOf
<<UMLAssociation>>

extreme : Class
extreme : Class

Contains
<<UMLAssociation>>

extreme : Class
extreme : Class

IsConstructedWith
<<UMLAssociation>>

extreme : Class
extreme : Class

HasSubtype
<<UMLAssociation>>

extreme : Class
extreme : Class

UsedInTransferMetamodel

Mappings

(UOL 1.2)

- 87 -

1

1

1
1

1

1

1

OSS01
<<OrthogonalSubtypeSet>>

1

1 1
ENT07

<<Entity>>

OSS01_IsConstructedWith_ENT07

1
1

ENT08
<<Entity>>

OSS01_IsConstructedWith_ENT08

1 1

1 1

REL05
<<Relation

1 1
ENT09

<<Entity>>

OSS01_IsConstructedWith_ENT09

1 1
ENT06

<<Entity>>

REL04
<<Relation

1
MOD01

<<DataModel>>

MOD01_IsCollectionOf_ENT07

MOD01_IsCollectionOf_ENT08

MOD01_IsCollectionOf_REL04

MOD01_IsCollectionOf_REL05

MOD01_IsCollectionOf_ENT09

MOD01_IsCollectionOf_ENT06

1

11
1

ENT02
<<Entity>>MOD01_IsCollectionOf_ENT02

The mapping between UOL and CDIF

(UOL 1.2)

- 88 -

11

11

1

1
RP01

<<RolePlayer>>

1
1

1

1
ROLE13
<<Role>>

1 1
RP03

<<RolePlayer>>

RP03_Plays_ROLE13

1

1

1 11

1

1

1

1

1

1

ROLE09
<<Role>>

RP01_Plays_ROLE09

1
ENT07

<<Entity>>

1
ENT08

<<Entity>> ENT08_Plays_RP01

1

1

REL05
<<Relation

ROLE13_BelongsTo_REL05

1
ENT09

<<Entity>> ENT09_Plays_RP03

1
ENT06

<<Entity>>
1

ROLE12
<<Role>> ROLE12_BelongsTo_REL05

1

1

ROLE11
<<Role>>

ROLE11_BelongsTo_REL05

1

1
REL04

<<Relation

ROLE09_BelongsTo_REL04

1

RP05
<<RolePlayer>>

RP05_Plays_ROLE12

RP04
<<RolePlayer>>

RP04_Plays_ROLE11
1

ROLE10
<<Role>>

ROLE10_BelongsTo_REL04

1

ENT02
<<Entity>>

RP02
<<RolePlayer>>

RP02_Plays_ROLE10

Mappings

(UOL 1.2)

- 89 -

1

TYPE08
<<DataElementType>>

1

1

TYPE09
<<Time

1

1

DOM59
<<DomainValueEnumeration>>

1

1
DOM58

<<DomainValue

1

DMATT13
<<LocalAttribute>>

DMATT12_IsOccurrenceOf_TYPE08

DMATT14
<<LocalAttribute>>

DMATT14_IsOccurrenceOf_TYPE09

1

ELEM01
<<Integer

1

1

1

DMATT12
<<LocalAttribute>>

1

DOM57
<<Domain

DOM57_Contains_DOM59 DOM57_Contains_DOM58

1

1

TYPE01
<<DataElementType>>

ELEM01_HasSubtype_TYPE01

DMATT12_IsOccurrenceOf_TYPE01

1
1

TYPE03
<<DataElementType>>

TYPE03_TakesValuesFrom_DOM57

1

DMATT15
<<LocalAttribute>>

DMATT15_IsOccurrenceOf_TYPE01

DMATT16
<<LocalAttribute>>

DMATT16_IsOccurrenceOf_TYPE3

The mapping between UOL and CDIF

(UOL 1.2)

- 90 -

DMATT13
<<LocalAttribute>>

DMATT12
<<LocalAttribute>>

DMATT14
<<LocalAttribute>>

ENT02
<<Entity>>

ENT06
<<Entity>>

1

1

DMATT20
<<LocalAttribute>>

1

TYPE04
<<DataElementType>>

DMATT20_IsOccurrenceOf_TYPE04

1

1

DMATT17
<<LocalAttribute>>

DMATT17_IsOccurrenceOf_TYPE04

ENT02_IsDescribedBy_DMATT17

ENT09_IsDescribedBy_DMATT20

ENT09
<<Entity>>

ENT02
<<Entity>>

Mappings

(UOL 1.2)

- 91 -

5.2.4.3 UOL Mapping.
package MetaModelER
is {any}

package ModelER
import from UOL_UML
is {any}

class RelationShip
stereotyped with Utility
feature {any}

Name: String;
BriefDescription: String

end
end
class LocalAttribute

stereotyped with Utility
feature {any}

Name: String;
BriefDescription: String;
IsOptional: Boolean

end
end
class DataModel

stereotyped with Utility
feature {any}

Name: String;
BriefDescription: String;
ModelType: String

end
end
class MoneyType

stereotyped with Utility
feature {any}

Name: String
end

end
class TimeType

stereotyped with Utility
feature {any}

Name: String
end

end
class Entity

stereotyped with Utility
feature {any}

Name: String;
BriefDescription: String

end
end
class Role

stereotyped with Utility
feature {any}

RoleName: String;
MinOuterCardinality: Character;
MaxOuterCardinality: Character;

The mapping between UOL and CDIF

(UOL 1.2)

- 92 -

MinInnerCardinality: Character;
MaxInnerCardinality: Character

end
end
class DataElementType

stereotyped with Utility
feature {any}

Name: String
end

end
class DomainGroup stereotyped with Utility end
class RolePlayer

stereotyped with Utility
feature {any}

Name: String
end

end
class OrthogonalSubtypeSet

stereotyped with Utility
feature {any}

Name: String
end

end
class IntegerType

stereotyped with Utility
feature {any}

Name: String;
SignedFlag: Boolean

end
end
class DateType

stereotyped with Utility
feature {any}

Name: String
end

end
class DomainValueEnumeration

stereotyped with Utility
feature {any}

Name: String
end

end
class IsCollectionOf stereotyped with UMLAssociation end
class IsConstructedWith stereotyped with UMLAssociation end
class HasSubtype stereotyped with UMLAssociation end
class IsOccurrenceOf stereotyped with UMLAssociation end
class IsDescribedBy stereotyped with UMLAssociation end
class Contains stereotyped with UMLAssociation end
class TakesValuesFrom stereotyped with UMLAssociation end
class Plays stereotyped with UMLAssociation end
class BelongsTo stereotyped with UMLAssociation end

end
package Model
import from ModelER
is {any}

class MOD01 stereotyped with DataModel end

Mappings

(UOL 1.2)

- 93 -

class ENT02 stereotyped with Entity end
class ENT06 stereotyped with Entity end
class ENT07 stereotyped with Entity end
class ENT08 stereotyped with Entity end
class ENT09 stereotyped with Entity end
class REL04 stereotyped with RelationShip end
class REL05 stereotyped with RelationShip end
class OSS01 stereotyped with OrthogonalSubtypeSet end
class ELEM01 stereotyped with IntegerType end
class TYPE01 stereotyped with DataElementType end
class TYPE08 stereotyped with DataElementType end
class TYPE09 stereotyped with TimeType end
class DOM59 stereotyped with DomainValueEnumeration end
class DOM58 stereotyped with DomainValueEnumeration end
class DOM57 stereotyped with DomainGroup end
class TYPE03 stereotyped with DataElementType end
class TYPE04 stereotyped with DataElementType end
class DMATT12 stereotyped with LocalAttribute end
class DMATT13 stereotyped with LocalAttribute end
class DMATT14 stereotyped with LocalAttribute end
class DMATT15 stereotyped with LocalAttribute end
class DMATT16 stereotyped with LocalAttribute end
class DMATT17 stereotyped with LocalAttribute end
class DMATT20 stereotyped with LocalAttribute end
class RP01 stereotyped with RolePlayer end
class RP02 stereotyped with RolePlayer end
class RP03 stereotyped with RolePlayer end
class RP04 stereotyped with RolePlayer end
class RP05 stereotyped with RolePlayer end
class ROLE09 stereotyped with Role end
class ROLE10 stereotyped with Role end
class ROLE11 stereotyped with Role end
class ROLE12 stereotyped with Role end
class ROLE13 stereotyped with Role end
relation MOD01_IsCollectionOf_ENT02

stereotyped with IsCollectionOf
link MOD01[1], ENT02[1]

end
relation MOD01_IsCollectionOf_ENT06

stereotyped with IsCollectionOf
link MOD01[1], ENT06[1]

end
relation MOD01_IsCollectionOf_ENT07

stereotyped with IsCollectionOf
link MOD01[1], ENT07[1]

end
relation MOD01_IsCollectionOf_ENT08

stereotyped with IsCollectionOf
link MOD01[1], ENT08[1]

end
relation MOD01_IsCollectionOf_ENT09

stereotyped with IsCollectionOf
link MOD01[1], ENT09[1]

end
relation MOD01_IsCollectionOf_REL04

stereotyped with IsCollectionOf

The mapping between UOL and CDIF

(UOL 1.2)

- 94 -

link MOD01[1], REL04[1]
end
relation MOD01_IsCollectionOf_REL05

stereotyped with IsCollectionOf
link MOD01[1], REL05[1]

end
relation OSS01_IsConstructedWith_ENT07

stereotyped with IsConstructedWith
link OSS01[1], ENT07[1]

end
relation OSS01_IsConstructedWith_ENT08

stereotyped with IsConstructedWith
link OSS01[1], ENT08[1]

end
relation OSS01_IsConstructedWith_ENT09

stereotyped with IsConstructedWith
link OSS01[1], ENT09[1]

end
relation ELEM01_HasSubtype_TYPE01

stereotyped with HasSubtype
link ELEM01[1], TYPE01[1]

end
relation DOM57_Contains_DOM59

stereotyped with Contains
link DOM57[1], DOM59[1]

end
relation DOM57_Contains_DOM58

stereotyped with Contains
link DOM57[1], DOM58[1]

end
relation TYPE03_TakesValuesFrom_DOM57

stereotyped with TakesValuesFrom
link TYPE03[1], DOM57[1]

end
relation DMATT12_IsOccurrenceOf_TYPE01

stereotyped with IsOccurrenceOf
link DMATT12[1], TYPE01[1]

end
relation DMATT13_IsOccurrenceOf_TYPE08

stereotyped with IsOccurrenceOf
link DMATT13[1], TYPE08[1]

end
relation DMATT14_IsOccurrenceOf_TYPE09

stereotyped with IsOccurrenceOf
link DMATT14[1], TYPE09[1]

end
relation DMATT15_IsOccurrenceOf_TYPE01

stereotyped with IsOccurrenceOf
link DMATT15[1], TYPE01[1]

end
relation DMATT16_IsOccurrenceOf_TYPE03

stereotyped with IsOccurrenceOf
link DMATT16[1], TYPE03[1]

end
relation DMATT17_IsOccurrenceOf_TYPE04

stereotyped with IsOccurrenceOf

Mappings

(UOL 1.2)

- 95 -

link DMATT17[1], TYPE04[1]
end
relation DMATT20_IsOccurrenceOf_TYPE04

stereotyped with IsOccurrenceOf
link DAMTT20[1], TYPE04[1]

end
relation ENT02_IsDescribedBy_DMATT15

stereotyped with IsDescribedBy
link ENT02[1], DMATT15[1]

end
relation ENT02_IsDescribedBy_DMATT16

stereotyped with IsDescribedBy
link ENT02[1], DMATT16[1]

end
relation ENT02_IsDescribedBy_DMATT17

stereotyped with IsDescribedBy
link ENT02[1], DMATT17[1]

end
relation ENT06_IsDescribedBy_DMATT12

stereotyped with IsDescribedBy
link ENT06[1], DMATT12[1]

end
relation ENT06_IsDescribedBy_DMATT13

stereotyped with IsDescribedBy
link ENT06[1], DMATT13[1]

end
relation ENT06_IsDescribedBy_DMATT14

stereotyped with IsDescribedBy
link ENT06[1], DMATT14[1]

end
relation ENT09_IsDescribedBy_DMATT20

stereotyped with IsDescribedBy
link ENT09[1], DMATT20[1]

end
relation ENT02_Plays_RP02

stereotyped with Plays
link ENT02[1], RP02[1]

end
relation ENT02_Plays_RP04

stereotyped with Plays
link ENT02[1], RP04[1]

end
relation ENT02_Plays_RP05

stereotyped with Plays
link ENT02[1], RP05[1]

end
relation ENT08_Plays_RP01

stereotyped with Plays
link ENT08[1], RP01[1]

end
relation ENT09_Plays_RP03

stereotyped with Plays
link ENT09[1], RP03[1]

end
relation RP02_Plays_ROLE10

stereotyped with Plays

The mapping between UOL and STEP/EXPRESS

(UOL 1.2)

- 96 -

link RP02[1], ROLE10[1]
end
relation RP04_Plays_ROLE11

stereotyped with Plays
link RP04[1], ROLE11[1]

end
relation RP05_Plays_ROLE12

stereotyped with Plays
link RP05[1], ROLE12[1]

end
relation RP01_Plays_ROLE09

stereotyped with Plays
link RP01[1], ROLE09[1]

end
relation RP03_Plays_ROLE13

stereotyped with Plays
link RP03[1], ROLE13[1]

end
relation ROLE10_BelongsTo_REL04

stereotyped with BelongsTo
link ROLE10[1], REL04[1]

end
relation ROLE11_BelongsTo_REL05

stereotyped with BelongsTo
link ROLE11[1], REL05[1]

end
relation ROLE12_BelongsTo_REL05

stereotyped with BelongsTo
link ROLE12[1], REL05[1]

end
relation ROLE09_BelongsTo_REL04

stereotyped with BelongsTo
link ROLE09[1], REL04[1]

end
relation ROLE13_BelongsTo_REL04

stereotyped with BelongsTo
link ROLE13[1], REL04[1]

end
end

end

5.3 The mapping between UOL and STEP/EXPRESS
It outlines a mapping between the proposed human readable Unified Object Language (UOL) and
the international standard in data modeling STEP/EXPRESS.

The structure of this chapter is oriented on the normative STEP/EXPRESS document (ISO 10303-
11:1994(E)).

The mapping described here is a way to show a STEP/EXPRESS file with UOL, it’s not a mapping
between STEP/EXPRESS and UML. Even if it’s possible to extend it in that way.
Hence no UML specific constructs are used within the resulting UOL schema.

Every UOL statement within this document has been parsed and checked with the latest version of
the UOL grammar available.

Mappings

(UOL 1.2)

- 97 -

5.3.1 Data types

5.3.1.1 Simple data types
UOL doesn’t make any assumptions constraining valid data types. All data types used within an
EXPRESS schema are valid within UOL as well.

The basic EXPRESS data types are:

• NUMBER
EXPRESS syntax:
248 number_type = NUMBER

• REAL; optional enriched by the tag value “precision” (holding the length of the value as
numeric expression)
EXPRESS syntax:
264 real_type = REAL [‘(‘ precision_spec ‘)’].
255 precision_spec = numeric_expression.

• INTEGER
EXPRESS syntax:
277 integer_type = INTEGER.

• LOGICAL
EXPRESS syntax:
243 logical_type =LOGICAL.

• BOOLEAN
EXPRESS syntax:
173 boolean_type = BOOLEAN.

• STRING; optional enriched by the tag values “width” (holding the length of the string as
integer value) and “fixed” (true if the specified length is immutable)
EXPRESS syntax:
293 string_type = STRING [width_spec].
318 width_spec = ‘(‘ width ‘)’ [FIXED].
317 width = numeric_expression.

• BINARY; optional enriched by the tag values “width” (holding the length of the length as
integer value) and “fixed” (true if the specified length is immutable).
EXPRESS syntax:
172 binary_type = BINARY [width_spec].
318 width_spec = ‘(‘ width ‘)’ [FIXED].
317 width = numeric_expression.

The mapping between UOL and STEP/EXPRESS

(UOL 1.2)

- 98 -

Example:
EXPRESS

ENTITY Test1;
 myNumber = NUMBER;
 myReal1 = REAL;
 myReal2 = REAL (3);
 myInteger = INTEGER;
 myLogical = LOGICAL;
 myBoolean = BOOLEAN;
 myString1 = STRING;
 myString2 = STRING (10);
 myString3 = STRING (5) FIXED;
 myBinary1 = BINARY;
 myBinary2 = BINARY (2);
 myBinary3 = BINARY (2) FIXED;
END_ENTITY;

UOL
class Test1
 feature {any}
 myNumber : NUMBER;
 myReal1 : REAL;
 myReal2 : REAL with tag values (<precision,3>);
 myInteger : INTEGER;
 myLogical : LOGICAL;
 myBoolean : BOOLEAN;
 myString1 : STRING;
 myString2 : STRING with tag values (<width,10>);
 myString3 : STRING with tag values (<width,5>,<FIXED>);
 myBinary1 : BINARY;
 myBinary2 : BINARY with tag values (<width,2>);
 myBinary3 : BINARY with tag values (<width,2>,<FIXED>)
 end
end

Mappings

(UOL 1.2)

- 99 -

5.3.1.2 Aggregation data types

EXPRESS semantics:

Aggregation data types have as their domain collections of values of a given base data type. These
base data types values are called elements of the aggregation collection. EXPRESS provides for the
definition of four kinds of aggregation data types: ARRAY, LIST, BAG and SET. Each kind of
aggregation data type attaches different properties to its values.

• An ARRAY is a fixed-size ordered collection. It is indexed by a sequence of integers
EXPRESS syntax:
165 array_type = ARRAY bound_spec OF [OPTIONAL] [UNIQUE]
base_type.
176 bound_spec = ‘[‘ bound_1 ‘:’ bound_2 ’]’.
174 bound_1 = numeric_expression.
175 bound_2 = numeric_expression.
171 base_type = aggregation_types | simple_types | named_types.

• A LIST is a sequence of elements which can be accessed according to their position. The
number of elements in a list may vary, and can be constrained by the definition of the data
type.
EXPRESS syntax:
237 list_type = LIST [bound_spec] OF [UNIQUE] base_type.
176 bound_spec = ‘[‘ bound_1 ‘:’ bound_2 ‘]’.
174 bound_1 = numeric_expression.
175 bound_2 = numeric_expression.
171 base_type = aggregation_types | simple_types | named_types.

• A BAG is an unordered collection in which duplication is allowed. The number of elements in
a bag may vary, and can be constrained by the definition of the data type.
EXPRESS syntax:
170 bag_type = BAG [bound_spec] OF base_type.
176 bound_spec = ‘[‘ bound_1 ‘:’ bound_2 ‘]’.
174 bound_1 = numeric_expression.
175 bound_2 = numeric_expression.
171 base_type = aggregation_types | simple_types | named_types.

• A SET is an unordered collection of elements in which no two elements are instance equal.
The number of elements in a set may vary, and can be constrained by the definition of a data
type. 5

EXPRESS syntax:
285 set_type = SET [bound_spec] OF base_type.
176 bound_spec = ‘[‘ bound_1 ‘:’ bound_2 ‘]’.
174 bound_1 = numeric_expression.
175 bound_2 = numeric_expression.
171 base_type = aggregation_types | simple_types | named_types.

5 Cf. [ISO EXPRESS RM 94] 22

The mapping between UOL and STEP/EXPRESS

(UOL 1.2)

- 100 -

Rules and restrictions:
• The bound_1 expression shall evaluate to an integer value greater or equal to zero.
• The bound_2 expression shall evaluate to an integer value greater or equal to bound_1, or an

indeterminate (?) value.
• If the bound_spec is omitted the limits are [0:?]6

EXPRESS aggregations are one dimensional. An aggregation data type can represent objects
usually considered to have multiple dimensions (such as mathematical matrices) whose base
type is another aggregation data type. Aggregation data types can be thus nested to an
arbitrary depth, allowing any number of dimensions to be represented.

Example:
A = LIST [1:3] OF ARRAY [5:10] OF INTEGER

Generic mapping:
Since UOL allows only one dimensional objects the transformation processor splits the one n
dimensional defined object into n one dimensional defined ones. By doing so the processor has to
create internal names for the build objects.

A special named UOL identifier supports this (in the example: ?001).

For the example above:

A : [1..3] ?001
 with tag values (<list>)
?001 : [5..10] INTEGER
 with tag values (<array>)

6 [ISO EXPRESS RM 94] 26

Mappings

(UOL 1.2)

- 101 -

Example:
EXPRESS

ENTITY Test_Entity;
 myArray1 = ARRAY [1:5] OF INTEGER;
 myArray2 = ARRRAY [1:?] OF BOOLEAN;
 myArray3 = ARRAY [1:5] OF OPTIONAL REAL (2);
 myArray4 = ARRAY [1:?] OF UNIQUE INTEGER;
 myList1 = LIST OF INTEGER;
 myList2 = LIST OF STRING (10) FIXED;
 myList3 = LIST [0:?] OF REAL;
 myBag1 = BAG OF NUMBER;
 myBag2 = BAG [1:?] OF NUMBER;
 mySet1 = SET OF NUMBER;
 mySet2 = SET [1:?] OF INTEGER;
 myMultiArray = ARRAY [1:10] OF
 ARRAY [11:14] OF UNIQUE something;
END_ENTITY;

UOL
class Test_Entity
 feature {any}
 myArray [1..5] : INTEGER with tag values (<array>);
 myArray2 [1..*] : BOOLEAN with tag values (<array>);
 myArray3 [0,1..5] : REAL
 with tag values (<array>,<precision,2>);
 myArray4 [1..*] : INTEGER
 with tag values (<array>,<UNIQUE>);
 myList1 [0..*] : INTEGER
 with tag values (<list>);
 myList2 [0..*] : STRING
 with tag values (<list>,<width,10>,<FIXED>);
 myList3 [0..*] : REAL;
 myBag1 [0..*] : NUMBER
 with tag values (<bag>);
 myBag2 [1..*] : NUMBER
 with tag values (<bag>);
 mySet1 [0..*] : NUMBER
 with tag values (<set>);
 mySet2 [1..*] : INTEGER
 with tag values (<set>);
 myMultiArray [1..10] : ?001
 with tag values (<array>);
 ?001 [11..14] : something
 with tag values (<array>,<UNIQUE>)
 end
end

relation ?002
 stereotyped with express_association
 link TestEntity, something [11..14]
 feature {TestEntity}
 with tag values (<IsNavigable,‘FALSE’>)
 end
 feature {something}
 with tag values (<IsNavigable,’TRUE’>)
 end
end

The mapping between UOL and STEP/EXPRESS

(UOL 1.2)

- 102 -

Remarks:
The concrete semantics of a multi valued attribute is determined by a tag value (array, set, bag or
list). Additional constraints on the collection are also expressed using tag values (e.g. UNIQUE)
Constraints on the elements of the collection arising from the basic type (e.g. the width
specification for a STRING) are also expressed as tag values of the new collection type.
The myMulitArray shows the splitting of a two dimensional attribute into two one dimensional
ones by creating a new attribute.

Mappings

(UOL 1.2)

- 103 -

5.3.1.3 Named data types

EXPRESS semantics:
The named data types are the data types that may be declared in a formal specification. There are
two kinds of named data types: entity data types and defined data types.7

5.3.1.3.1 Entity data type

EXPRESS semantics:
Entity data types are established by ENTITY declarations (see 2.2).

Example:
EXPRESS

ENTITY point;
 x, y, z : REAL;
END_ENTITY;

ENTITY line;
 p0, p1 : point;
END_ENTITY;

UOL
class point
 feature {any}
 x : REAL;
 y : REAL;
 z : REAL
 end
end

class line
 feature {any}
 p0 : point;
 p1 : point
 end
end

relation ?001
 stereotyped with express_association
 link line, point[1..1]
 feature {line}
 with tag values (<IsNavigable,FALSE>)
 end
 feature {point}
 with tag values (<IsNavigable,TRUE>,
 <AssociationEndName,p0>)
 end
end

relation ?002
 stereotyped with express_association
 link line, point[1..1]
 feature {line}
 with tag values (<IsNavigable,FALSE>)
 end

7 Cf. [ISO EXPRESS RM 94] 28

The mapping between UOL and STEP/EXPRESS

(UOL 1.2)

- 104 -

 feature {point}
 with tag values (<IsNavigable, TRUE>,
 <AssociationEndName,p1>)
 end
end

Mappings

(UOL 1.2)

- 105 -

5.3.1.3.2 Defined data type

EXPRESS semantics:
Defined data types are declared by TYPE declarations (see 2.1).

Mapping:
The TYPE maps into a class stereotyped with user_declared_type. The underlying type is
expressed using a tag value underlying_type.

Example:
EXPRESS

TYPE volume = REAL;
END_TYPE;

ENTITY PART;
 bulk : volume;
END_ENTITY;

UOL
class volume
 stereotyped with user_declared_type
 with tag values (<underlying_type,REAL>)
end

class PART
 feature {any}
 bulk : volume
 end
end

relation ?001
 stereotyped with express_association
 link PART, volume[1..1]
 feature {volume}
 with tag values (<IsNavigable,FALSE>,
 <AssociationEndName,bulk>)
 end
 feature {part}
 with tag values (<IsNavigable,TRUE>)
 end
end

The mapping between UOL and STEP/EXPRESS

(UOL 1.2)

- 106 -

5.3.1.4 Constructed data types

EXPRESS semantics:
There are two kinds of constructed data types in EXPRESS: ENUMERATION data types and
SELECT data types.

5.3.1.4.1 Enumeration data types

EXPRESS semantics:
An ENUMERATION data type has as its domain an ordered set of names. The names represent
values of the enumeration data type. These names are designated by enumeration_ids and are
referred to as enumeration items.8

EXPRESS syntax:
201 enumeration_type = ENUMERATION OF ‘(‘ enumeration_id { ‘;’
enumeration_id} ‘)’.

Mapping:
The enumeration type is transferred into a class stereotyped with express_enumeration.
Additionally the class gets a tag express_enumeration with a string value consisting of all the
enumeration items.

When using a enumerated type the enumeration is expanded within the resulting UOL schema.
Additionally the name of the enumeration is placed as tag value.

A dependency association is established between the resulting classes, directed from the
enumeration using to the declaring class. This dependency is also stereotyped with
express_enumeration.

Example:
EXPRESS

TYPE car_can_move = ENUMERATION OF
 (left, right, backward, forward);
END_TYPE;

ENTITY Use_enum;
 car_move : car_can_move;
END_ENTITY;

8 Cf. [ISO EXPRESS RM 94] 29

Mappings

(UOL 1.2)

- 107 -

UOL
class car_can_move
 stereotyped with express_enumeration
 with tag value
 (<express_enumeration,’left,right,backward,forward’>)
end

class Use_enum
 stereotyped with express_entity
 feature {any}
 car_move : unique {left, right, backward, forward}
 with tag values (<express_enumeration, car_can_move>)
 end
end

relation ?001
 stereotyped with express_enumeration
 link Use_enum to car_can_move
end

The mapping between UOL and STEP/EXPRESS

(UOL 1.2)

- 108 -

5.3.2 Declaration

5.3.2.1 Type declaration

EXPRESS semantics:
A type declaration creates a defined data type (see 1.3.2) and declares an identifier to refer to it.
Specially, the type_id is declared as the name of a defined type. The representation of this data type
is the underlying_type.9

EXPRESS syntax:
304 type_decl = TYPE type_ID ‘=’ underlying_type ‘;’
[where_clause] END_TYPE ‘;’.
309 underlying_type = constructed-types | aggregate_types |
simple_types | type_ref.

Mapping:
Every TYPE maps into a class stereotyped with “user_declared_type”. A tag value of the class
specifies the underlying type.

Example:
EXPRESS

TYPE person_name = STRING
END_TYPE;

UOL
class person_name
 stereotyped with user_declared_type
 with tag values (<underlying_type,STRING>)
end

9 Cf. [ISO EXPRESS RM 94] 33

Mappings

(UOL 1.2)

- 109 -

Domain rules (WHERE clause):

EXPRESS semantics:
Domain rules specify constraints that restrict the domain of the defined data type. The domain of
the defined data type is the domain of its underlying representation constrained by the domain
rule(s).10

EXPRESS syntax:
315 where_clause = WHERE domain_rule ‘;’ {domain_rule ‘;’}.

Mapping:
Each where clause corresponds to a tag domain_rule with the name of the rule as value.
Additionally a second tag labeled with the name of the domain_rule (i.e., the value of the first tag)
and the complete domain rule as uninterpreted string serving as value is used.

Example:
EXPRESS

TYPE positive = INTEGER
WHERE
 notnegative : SELF > 0;
END_TYPE;

UOL
class positive
 stereotyped with user_declared_type
 with tag value (<underlying_type,INTEGER>)
 with tag value (<domain_rule,notnegative>,
 <notnegative,’SELF > 0’>)
end

10 Cf. [ISO EXPRESS RM 94] 34

The mapping between UOL and STEP/EXPRESS

(UOL 1.2)

- 110 -

5.3.2.2 Entity declaration

EXPRESS semantics:
An ENTITY declaration creates an entity data type and declares an identifier to refer to it.
Each attribute represents a property of an entity and may be associated with a value in each entity
instance. The data type of the attribute establishes the domain of possible values.11

EXPRESS syntax:
196 entity_decl = entity_head entity_body END_ENTITY ‘;’.
197 entity_head = ENTITY entity_id [subsuper].
194 entity_body = {explcit_attr} [derive_clause] [inverse_clause]
[unique_clause] [where_clause].

Mapping:
An entity is mapped into a class with the same name as the entity. The class is stereotyped with
“express_entity”.

Example:
EXPRESS

ENTITY Entity1;
END_ENTITY;

UOL
class ENTITY1
 stereotyped with express_entity
end

5.3.2.2.1 Attributes

EXPRESS semantics:
The attributes of an entity data type represent an entity’s essential traits, qualities or properties. An
attribute declaration establishes a relationship between the entity data type and the data type
referenced by the attribute. The name of an attribute represents the role played by its associated
value in the context of the entity in which it appears.
There are three kinds of attribute:

• Explicit: An attribute whose value shall be supplied by an implementation in order to
create an entity instance.

• Derived: An attribute whose value is computed in some manner.
• Inverse: An attribute whose value consists of the entity instance, which uses the entity

in a particular role.12

Since EXPRESS doesn’t support any kind of visibility constraints all attributes of an entity are
public, visible when mapping EXPRESS to UOL.
On the other hand, when mapping an existing UOL schema into STEP/EXPRESS all visibility
constraints are ignored.

11 Cf. [ISO EXPRESS RM 94] 35
12 Cf. [ISO EXPESS RM 94] 25-36

Mappings

(UOL 1.2)

- 111 -

5.3.2.2.1.1 Explicit attribute

EXPRESS semantics:
An explicit attribute represents a property whose value shall be supplied by an implementation in
order to create an instance. Each explicit attribute identifies a distinct property. An explicit attribute
declaration creates one or more explicit attributes having the indicated domain, and assigns an
identifier to each.13

EXPRESS syntax:
203 explicit_attr = attribute_decl { ‘;’ attribute_decl} ‘:’
[OPTIONAL] base_type ‘;’.
167 attribute_decl = attribute_id | qualified_attribute.
171 base_type = aggregation-type | simple_type | named_types.

Mapping:
Every attribute of an EXPRESS entity maps into an attribute of the resulting UOL class.
Multivalued attributes are mapped into a UOL attribute with the corresponding cardinality (see
1.2). If the multivalued attribute consists of more than one dimension new attributes have to be
introduced by splitting the one n-dimensional attribute into n one-dimensional ones.
If attribute is declared as optional the cardinality is changed to reflect this property.

Attributes which basic type is not one of the EXPRESS simple types BINARY, BOOLEAN,
INTEGER, LOGICAL, NUMBER, REAL or STRING are additionally mapped into an
unidirectional associations which are stereotyped with express_association. The association is
directed form the using element to the supplying one. The name of the explicit attribute is
transferred into the role of the embedding class against the supplying one.

Example:
EXPRESS

ENTITY Entity2;
 a, b : REAL;
 c : INTEGER;
 d : OPTIONAL STRING (10);
 e : OPTIONAL ARRAY [2:5] OF OPTIONAL REAL;
 f : LIST [1:5] OF LIST [0:10] OF STRING;
END_ENTITY;

UOL
class Entity2
 stereotyped with express_entity
 feature {any}
 a : REAL;
 b : REAL;
 d [0..1] : INTEGER with tag values (<width,10>);
 e [0,2..5] : REAL with tag values (<array>,<OPTIONAL>);
 f [1..5] : ?001 with tag values (<list>);
 ?001 [0..10] : STRING
 end
end
See also example of section 1.2

13 Cf. [ISO EXPRESS RM 94] 36

The mapping between UOL and STEP/EXPRESS

(UOL 1.2)

- 112 -

5.3.2.2.1.2 Derived attribute

EXPRESS semantics:
A derived attribute represents a property whose value is composed by evaluating an expression.
Derived attributes are declared following the DERIVE keyword. The declaration consists of the
attribute identifier, its representation type and an expression to be used to compute the attribute
value.14

EXPRESS syntax:
190 derived_attr = attribute_decl ‘:’ base_type ‘:=’ expression
‘;’.
167 attribute_decl = attribute_id | qualified_attribute.
171 base_type = aggregation_types | simple_types | named_types.

Mapping:
Every derived attribute of an EXPRESS entity maps into an attribute of the resulting UOL class.
Additionally the attribute gets a tag value “derived” followed by the derivation formula as string.

Example:
EXPRESS

ENTITY circle;
 centre : point;
 radius : REAL;
 axis : vector;
DERIVE
 area : REAL := PI*radius**2;
 perimeter : REAL := REAL := 2.0*PI*radius;
END_ENTITY;

UOL
class circle
 stereotyped with express_entity
 feature {any}
 centre : point;
 radius : REAL;
 axis : vector;
 area : REAL
 with tag values (<derived,’PI*radius**2’>);
 perimeter : REAL
 with tag values (<derived,’2.0*PI*radius’>)
 end
end

relation ?001
 stereotyped with express_association
 link circle, point[1..1]
 feature {circle}
 with tag values (<IsNavigable,FALSE>)
 end
 feature {point}
 with tag values (<IsNavigable,TRUE>,
 <AssociationEndName,centre>
 end
end

14 Cf. [ISO EXPRESS RM 94] 37

Mappings

(UOL 1.2)

- 113 -

relation ?002
 stereotyped with express_association
 link circle, vector[1..1]
 feature {circle}
 with tag values (<IsNavigable,FALSE>)
 end
 feature {vector}
 with tag values (<IsNavigable,TRUE>,
 <AssociationEndName,axis>)
 end
end

The mapping between UOL and STEP/EXPRESS

(UOL 1.2)

- 114 -

5.3.2.2.1.3 Inverse attribute

EXPRESS semantics:
If another entity has established a relationship with the current entity by way of an explicit
attribute, an inverse attribute may be used to describe that relationship in the context of the current
entity. This inverse attribute may also be used to constrain the relationship further.
Inverse attributes are declared following the INVERSE keyword.15

EXPRESS syntax:
234 inverse_attr = attribute_decl ‘:’ [(SET|BAG) [bound_spec] OF
] entity_ref FOR attriubte_ref ‘;’.
167 attribute_decl = attribute_id | qualified_attribute.
176 bound_spec = ‘[‘ bound_1 ‘:’ bound_2 ‘]’.
174 bound_1 = numeric_expression.
175 bound_2 = numeric_expression.

Mapping:
The inverse attribute is mapped similar to the explicit one. Additionally the tag value “inverse” and
the name of the referenced attribute as its value.

Since the inverse attribute is the inverse direction of the implicit relationship stated by an explicit
attribute which type is an entity it’s not explicated just as the explicit attribute.

EXPRESS
ENTITY door;
 handle : knob;
 hinges : SET [1:?] OF hinge;
END_ENTITY;

ENTITY knob;
...
INVERSE
 opens : door FOR handle;
END_ENTITY;

UOL
class door
 stereotyped with express_entity
 feature {any}
 handle : knob;
 hinges [1..*] : hinge with tag values (<set>)
 end
end

class knob
 stereotyped with express_entity
 feature {any}
 opens : door with tag values (<inverse,handle>)
 end
end

15 Cf. [ISO EXPRESS RM 94] 38

Mappings

(UOL 1.2)

- 115 -

relation ?001
 stereotyped with express_association
 link door, knob[1..1]
 feature {door}
 with tag values (<IsNavigable, FALSE>)
 end
 feature {knob}
 with tag values (<IsNavigable, TRUE>)
 end
end

relation ?001
 stereotyped with express_association
 link door, knob[1..1]
 feature {door}
 with tag values (<IsNavigable,FALSE>)
 end
 feature {knob}
 with tag values (<IsNavigable,TRUE>,
 <AssociationEndName,handle>)
 end
end

relation ?002
 stereotyped with express_association
 link door, hinge[1..*]
 feature {door}
 with tag values (<IsNavigable,FALSE>)
 end
 feature {hinge}
 with tag values (<IsNavigable,TRUE>,
 <AssociationEndName,hinges>)
 end
end

The mapping between UOL and STEP/EXPRESS

(UOL 1.2)

- 116 -

5.3.2.2.2 Local rules

EXPRESS semantics:
Local rules are assertions on the domain of entity instances and thus apply to all instances of that
entity data type. There are two kinds of local rules. Uniqueness rules control the uniqueness of
attribute values among all instances of a given entity data type. Domain rules describe other
constraints on or among the values of the attributes of each instance of a given entity data type.16

5.3.2.2.2.1 Uniqueness rule

EXPRESS semantics:
A uniqueness constraint for individual attributes or combinations of attributes may be specified in a
uniqueness rule. The uniqueness rules follow the UNIQUE keyword, and specify either a single
attribute name or a list or attribute names. A rule, which specifies a single attribute name, called a
simple uniqueness rule, specifies that no two instances of the entity data type in the domain shall
use the same instance for the named attribute. A rule, which specifies two or more attribute names,
called a joint uniqueness rule, specifies that no two instances of the entity data type shall have the
same combination of instances for the named attributes.17

EXPRESS syntax:
310 unique_clause = UNIQUE unique_rule ‘;’ {unique_rule ‘;’}.
311 unique_rule = [label ‘:’] refernced_attribute {‘;’
referenced_attribute}.
266 referenced_attribute = attribute_ref | qualified_attribute.

Mapping:
The uniqueness rule is transferred into the tag value “express_unique” of the affected attribute(s).
The tag value is true if the attribute is unique or holds the name of the uniqueness rule (i.e. the label
specified in EXPRESS). If the tag values of two or more attributes hold the same value for the
“unique” tag the two attributes combined should be unique. If no label is specified in EXPRESS
and a uniqueness constraint should apply to two or more attributes, the transformation processor
creates an internal name.

16 Cf. [ISO EXPRESS RM 94] 40
17 Cf. [ISO EXPRESS RM 94] 40

Mappings

(UOL 1.2)

- 117 -

Example:
EXPRESS

ENTITY e;
 a, b, c : INTEGER;
UNIQUE
 ur1 : a;
 ur2 : b;
 ur3 : c;
END_ENTITY;

ENTITY person_name;
 last : STRING;
 first : STRING;
 middle : STRING;
 nickname : STRING;
END_ENTITY;
ENTITY employee;
 badge : NUMBER;
 name : person_name;
UNIQUE
 ur1: badge, name;
END_ENTITY;

UOL
class e
 stereotyped with express_entity
 feature {any}
 a : INTEGER with tag values (<express_unique,ur1>);
 b : INTEGER with tag values (<express_unique,ur2>);
 c : INTEGER with tag values (<express_unique,ur3>)
 end
end

class person_name
 stereotyped with express_entity
 feature {any}
 last : STRING;
 first : STRING;
 middle : STRING;
 nickname : STRING
 end
end

class employee
 stereotyped with express_entity
 feature {any}
 badge : NUMBER with tag values (<express_unique,ur1>);
 name : person_name with tag values (<express_unique,ur1>)
 end
end

The mapping between UOL and STEP/EXPRESS

(UOL 1.2)

- 118 -

relation ?001
 stereotyped with express_association
 link employee, person_name[1..1]
 feature {employee}
 with tag values (<IsNavigable,FALSE>)
 end
 feature {person_name}
 with tag values (<IsNavigable,TRUE>,
 <AssociationEndName,name>)
 end
end

Mappings

(UOL 1.2)

- 119 -

5.3.2.2.2.2 Domain rules (WHERE clause)

EXPRESS semantics:
Domain rules constrain the values of individual attributes or combinations of attributes for every
entity instance. All domain rules follow the WHERE keyword.18

EXPRESS syntax:
315 where_clause = WHERE domain_rule ‘;’ {domain_rule ‘;’}.

Mapping:
Each domain rule maps into a tag value “domain rule” optionally followed by the domain rule
label. If a rule label is specified the rule label introduces an additional tag value followed by the
rule as string. If not rule label is specified the transformation processor generates an internal name.

Example:
EXPRESS

ENTITY unit_vector1;
 a, b, c : REAL;
WHERE
 length_1 : a**2 + b**2 + c**2 = 1.0;
END_ENTITY;

ENTITY unit_vector2;
 a, b : REAL;
 c : OPTIONAL REAL;
WHERE
 length_1 : a**2 + b**2 + c**2 = 1.0;
END_ENTITY

ENTITY unit_vector3;
 a, b : REAL;
 c : OPTIONAL REAL;
WHERE
 length_1 : a**2 + b**2 + NVL(c, 0.0) = 1.0;
END_ENTITY;

UOL
class unit_vector1
 stereotyped with express_entity
 with tag values (<domain_rule,length_1>,
 <length_1, ‘a**2 + b**2 + c**2 = 1.0’)
 feature {any}
 a : REAL;
 b : REAL;
 c : REAL
 end
end

18 Cf. [ISO EXPRESS RM 94] 41

The mapping between UOL and STEP/EXPRESS

(UOL 1.2)

- 120 -

class unit_vector2
 stereotyped with express_entity
 with tag values (<domain_rule,length_1>,
 <lenght_1, ‘a**2 + b**2 + c**2 = 1.0’>)
 feature {any}
 a : REAL;
 b : REAL;
 c [0..1] : REAL
 end
end

class unit_vector3
 stereotyped with express_entity
 with tag values (<domain_rule,length_1>,
 <lenght_1, ‘a**2 + b**2 + NVL(c, 0.0) = 1.0’>)
 feature {any}
 a : REAL;
 b : REAL;
 c [0..1] : REAL
 end
end

Mappings

(UOL 1.2)

- 121 -

5.3.2.2.3 Subtypes and supertypes

EXPRESS semantics:
EXPRESS allows for the specification of entities as subtypes of other entities, where a subtype
entity is a specialization of its supertype. This establishes an inheritance (i.e., subtype/supertype)
relationship between the entities in which the subtype inherits the properties (i.e., attributes and
constraints) of its supertype. Successive subtype/supertype relationships establish an inheritance
graph in which every instance of a subtype is an instance of its supertype(s).19

EXPRESS syntax:
294 supsuper = [subpertype_constraint] [subtype_declaration].
297 supertype_constraint = abstract_supertype_declaration |
supertype_rule.
156 abstract_supertype_declaration = ABSTRACT SUPERTYPE
[supertype_constraint].
295 subtype_constraint = OF ‘(‘ supertype_expression ‘)’.
298 supertype_expression = supertype_factor { ANDOR
supertype_factor}.
299 supertype_factor = supertype_term { AND supertype_term }.
301 supertype-term = entity_ref | one_of | ‘(‘
supertype_expression ‘)’.
250 one_of = ONEOF ‘(‘ supertype_expression { ‘;’
supertype_expression } ‘)’.
300 supertype_rule = SUPERTYPE subtype_constraint.

5.3.2.2.3.1 Specifying subtypes

EXPRESS semantics:
An entity is a subtype if it contains a SUBTYPE declaration. The subtype declaration shall identify
all the entity’s immediate supertype(s).20

EXPRESS syntax:
296 subtype_declaration = SUBTYPE OF ‘(‘ entity_ref { ‘;’
entity_ref } ‘)’.

19 Cf. [ISO EXPRESS RM 94] 43
20 Cf. [ISO EXPRESS RM 94] 44

The mapping between UOL and STEP/EXPRESS

(UOL 1.2)

- 122 -

5.3.2.2.3.2 Specifying supertypes

EXPRESS semantics:
An entity is a supertype through either an explicit or implicit specification. An entity is explicitly
specified to be a supertype if it contains an ABSTRACT SUPERTYPE declaration and is implicitly
specified to be a supertype if it is named in a subtype declaration of at least one other entity.21

EXPRESS syntax:
297 supertype_constraint = abstract_supertype_declaration |
supertype_rule.
156 abstract_supertype_declaration = ABSTRACT SUPERTYPE
[subtype_constraint].
295 subtype_constraint = OF ‘(‘ supertype_expression ‘)’.
298 supertype_expression = supertype_factor { ANDOR
supertype_factor }.
299 supertype_factor = supertype_term { AND supertype_term }.
301 supertype_term = entity_ref | one_of | ‘(‘
supertype_expression ‘)’.
250 one_of = ONEOF ‘(‘ supertype_expression { ‘;’
supertype_expression } ‘)’.
300 supertype_rule = SUPERTYPE subtype_constraint.

Mapping:
Inheritance between entities map into inheritance between the resulting classes.

Example:
EXPRESS

ENTITY integer_number;
 val : INTEGER;
END_ENTITY;

ENTITY odd_number
 SUBTYPE OF (integer_number);
WHERE
 not_even : ODD (val);
END_ENTITY;

UOL
class integer_number
 stereotyped with express_entity
 feature {any}
 val : INTEGER
 end
end

class odd_number
 stereotyped with express_entity
 with tag values (<domain_rule,not_even>,
 <not_even,'ODD(val)'>)
 inherit integer_number
end

21 Cf. [ISO EXPRESS RM 94] 44

Mappings

(UOL 1.2)

- 123 -

5.3.2.2.3.3 Attribute inheritance

EXPRESS semantics:
The attribute identifiers in a supertype are visible within the scope of the subtype. Thus, a subtype
inherits all of the attributes of its supertype. This allows the subtypes to specify either constraints or
their own attributes using the inherited attribute. If a subtype has more than one supertype, subtype
inherits all of the attributes from all of its supertypes.22

Mapping:
Like the single inheritance of the prior example, the EXPRESS inheritance maps into an
inheritance hierarchy in UOL.

Example:
EXPRESS

ENTITY e1;
 attr : REAL;
END_ENTITY;

ENTITY e2;
 attr : BINARY;
END_ENTITY;

ENTITY e12
 SUBTYPE OF (e1, e2);
WHERE
 positive : SELF\e1.attr > 0.0;
END_ENTITY;

UOL
class e1
 stereotyped with express_entity
 feature {any}
 attr : REAL
 end
end

class e2
 stereotyped with express_entity
 feature {any}
 attr : BINARY
 end
end

class e12
 stereotyped with express_entity
 inherit e1,e2
 with tag values (<domain_rule,positive>,
 <positive,’ SELF\\e1.attr > 0.0’)
end
Remark: UOL recognizes the backslash ‘\’ character as escape character and hence the backslash of
the EXPRESS source is converted into two subsequent ones.

22 Cf. [ISO EXPRESS RM 94] 45

The mapping between UOL and STEP/EXPRESS

(UOL 1.2)

- 124 -

5.3.2.2.3.4 Attribute declaration

EXPRESS semantics:
An attribute declaration in a supertype can be redeclared in a subtype. The attribute remains in the
supertype but the allowed domain of values for that attribute is governed by the redeclaration given
in the subtype.23

EXPRESS syntax:
262 qualified_attribute = SELF group_qualifier
attribute_qualifier.
219 group_qualifier = ‘\’ entity_ref.
169 attribute_qualifier = ‘.’ attribute_ref.

Mapping:
Every redeclared attribute at subtype level maps into an explicit attribute declaration in the
subclass. A tag “redeclaration” with the name of the source class as value clarifies the redeclaration
within the redeclaring subclass.

Example I:
EXPRESS

ENTITY point;
 x : NUMBER;
 y : NUMBER;
END_ENTITY;

ENTITY integer_point
 SUBTYPE OF (point);
 SELF\point.x : INTEGER;
 SELF\point.y : INTEGER;
END_ENTITY;

UOL
class point
 stereotyped with express_entity
 feature {any}
 x : NUMBER;
 y : NUMBER
 end
end

class integer_point
 stereotyped with express_entity
 inherit point
 feature {any}
 x : INTEGER with tag values (<redeclaration,point>);
 y : INTEGER with tag values (<redeclaration,point>)
 end
end

23 Cf. [ISO EXPRESS RM 94] 46

Mappings

(UOL 1.2)

- 125 -

Example II:
EXPRESS

ENTITY super;
 things : LIST [3:?] OF thing;
 items : BAG [0:?] of widget;
 may_be : OPTIONAL stuff;
END_ENTITY;

ENTITY sub
 SUBTYPE OF (super);
 SELF\super.things : LIST [3:?] OF UNIQUE thing;
 SELF\super.items : SET [1:10] OF widget;
 SELF\super.may_be : stuff;
END_ENTITY;

UOL
class super
 stereotyped with express_entity
 feature {any}
 things [3..*] : thing with tag values (<list>);
 items [0..*] : widget with tag values (<bag>);
 may_be [0..1] : stuff
 end
end

relation ?001
 stereotyped with express_association
 link super, thing[3..*]
 feature {super}
 with tag values (<IsNavigable,FALSE>)
 end
 feature {thing}
 with tag values (<IsNavigable, TRUE>,
 <AssociationEndName,things>)
 end
end

relation ?002
 stereotyped with express_association
 link super, widget[0..*]
 feature {super}
 with tag values (<IsNavigable,FALSE>)
 end
 feature {widget}
 with tag values (<IsNavigable, TRUE>,
 <AssociationEndName,items>)
 end
end

The mapping between UOL and STEP/EXPRESS

(UOL 1.2)

- 126 -

relation ?003
 stereotyped with express_association
 link super, stuff[0..1]
 feature {super}
 with tag values (<IsNavigable,FALSE>)
 end
 feature {stuff}
 with tag values (<IsNavigable, TRUE>,
 <AssociationEndName,may_be>)
 end
end

class sub
 stereotyped with express_entity
 inherit super
 feature {any}
 things [3..*] : thing
 with tag values (<list>,<UNIQUE>,
 <redeclaration,super>);
 items [1..10] : widget
 with tag values (<set>,<redeclaration,super>);
 may_be [0..1] : stuff
 with tag values (<redeclaration,super>)
 end
end

relation ?004
 stereotyped with express_association
 link sub, thing[3..*]
 feature {super}
 with tag values (<IsNavigable,FALSE>)
 end
 feature {thing}
 with tag values (<IsNavigable, TRUE>
 <AssociationEndName,things>)
 end
end

relation ?005
 stereotyped with express_association
 link sub, widget[1..10]
 feature {super}
 with tag values (<IsNavigable,FALSE>)
 end
 feature {widget}
 with tag values (<IsNavigable, TRUE>,
 <AssociationEndName,items>)
 end
end

Mappings

(UOL 1.2)

- 127 -

relation ?006
 stereotyped with express_association
 link sub, stuff[0..1]
 feature {super}
 with tag values (<IsNavigable,FALSE>)
 end
 feature {stuff}
 with tag values (<IsNavigable, TRUE>,
 <AssociationEndName,may_be>)
 end
end

The mapping between UOL and STEP/EXPRESS

(UOL 1.2)

- 128 -

Example III:
EXPRESS

FUNCTION distance(p1, p2 : point) : REAL;
 (* Compute the shortest distance between two points *)
END_FUNCTION;

FUNCTION NORMAL (p1, p2, p3 : point) : vector
(* Compute normal of a plane given three points on the plane *)
END_FUNCTION;

ENTITY circle;
 centre : point;
 radius : REAL;
 axis : vector;
DERIVE
 area : REAL := PI*radius**2;
END_ENTITY;

ENTITY circle_by_points
 SUBTYPE OF (circle)
 p2 : point;
 p3 : point;
DERIVE
 SELF\circle.radius : REAL := distance(cantre,p2);
 SELF\circle.axis : vector := normal(centre,p2,p3);
WHERE
 not_coincident : (centre <> p2) AND
 (p2 <> p3) AND
 (p3 <> centre);
 is_circle : distance (centre,p3) = distance(centre,p2);
END_ENTITY;

UOL
class schema
 stereotyped with express_schema
 feature {any}
 deferred distance (p1,p2 : point) : REAL is text "distance";
 deferred normal (p1, p2 ,p3 :point) : vector is text "normal"
 end
end

class circle
 stereotyped with express_entity
 feature {any}
 centre : point;
 radius : REAL;
 axis : vector;
 area : REAL with tag values (<derived,'PI*radius**2'>)
 end
end

Mappings

(UOL 1.2)

- 129 -

relation ?001
 stereotyped with express_association
 link circle, point[1..1]
 feature {circle}
 with tag values (<IsNavigable,FALSE>)
 end
 feature {point}
 with tag values (<IsNavigable,TRUE>,
 <AssociationEndName,centre>)
 end
end

relation ?002
 stereotyped with express_association
 link circle, vector[1..1]
 feature {circle}
 with tag values (<IsNavigable,TRUE>,
 <AssociationEndName,axis>)
 end
end

class circle_by_points
 stereotyped with express_entity
 with tag values (<domain_rule,not_coincident>,
 <not_coincident,'(centre <> p2) AND (p2 <> p3) AND
 (p3 <> centre)'>,
 <domain_rule,is_circle>,
 <is_circle,'distance(centre,p3) = distance(centre,p2)'>)
 inherit circle
 feature {any}
 p2 : point;
 p3 : point;
 radius : REAL
 with tag values (<redeclaration,circle>,
 <derived,'dirstance(centre,p2)'>);
 axis : vector
 with tag values (<redeclaration,circle>,
 <derived,'normal(centre,p2,p3)'>)
 end
end

The mapping between UOL and STEP/EXPRESS

(UOL 1.2)

- 130 -

5.3.2.2.3.5 Rule inheritance

EXPRESS semantics:
Every local or global rule that applies to a supertype applies to its subtype(s). Thus, a subtype
inherits all the rules of its supertype(s). If a subtype has more than one supertype, the subtype shall
inherit all the rules constraining the supertypes.
It is not possible to change or delete any of the rules that are associated with a subtype via rule
inheritance but it is possible to add new rules, which further constrain the subtype.24

Mapping:
Since rules are not redeclared within the inheriting subtype in the EXPRESS schema they’re not
redeclared in the resulting UOL class, as well. Additional rules may be declared on the level of the
subtype.

Example:
EXPRESS

SCHEMA s;
ENTITY person;
 ss_no : INTEGER;
 born : date;
DERIVE
 age : INTEGER := years_since(born);
UNIQUE
 un1 : ss_no;
END_ENTITY;

ENTITY teacher
 SUBTYPE OF (person);
 teaches : SET [1:?] OF course;
WHERE
 old : age >= 21;
END_ENTITY;

ENTITY student
 SUBTYPE OF (person);
 takes : SET [1:?] OF course;
WHERE
 young : age >= 5;
END_ENTITY;

ENTITY graduate
 SUBTYPE OF (student, teacher);
WHERE
 limited : NOT (GRAD_LEVEL IN teaches);
END_ENTITY;

TYPE course = ENUMERATION OF (....., GRAD_LEVEL, ...);
END_TYPE;
END_SCHEMA;

24 Cf. [ISO EXPRESS RM 94] 48

Mappings

(UOL 1.2)

- 131 -

UOL
package s is
 class person
 stereotyped with express_entity
 feature {any}
 ss_no : INTEGER with tag values
 (<express_unique,un1>);
 born : date;
 age : INTEGER with tag values
 (<derived,'years_since(born)'>)
 end
 end

 relation ?001
 stereotyped with express_association
 link person, date[1..1]
 feature {person}
 with tag values (<IsNavigable,FALSE>)
 end
 feature {date}
 with tag values (<IsNavigable, TRUE>,
 <AssociationEndName,born>)
 end
 end

 class teacher
 stereotyped with express_entity
 with tag values (<domain_rule,old>, <old,'age >= 21'>)
 inherit person
 feature {any}
 teaches [1..*] : course_ with tag values (<set>)
 end
 end

 relation ?002
 stereotyped with express_association
 link teacher, course_[1..*]
 feature {teacher}
 with tag values (<IsNavigable,FALSE>)
 end
 feature {thing}
 with tag values (<IsNavigable, TRUE>,
 <AssociationEndName,teaches>)
 end
 end

 class student
 stereotyped with express_entity
 with tag values (<domain_rule, young>,
 <young, 'age >= 5'>)
 inherit person
 feature {any}
 takes : unique {Level1,GRAD_LEVEL,Level2}
 with tag values (<set>,<express_enumeration,course_>)
 end

The mapping between UOL and STEP/EXPRESS

(UOL 1.2)

- 132 -

 end

 class graduate
 stereotyped with express_entity
 with tag values (<domain_rule, limited>,
 <limited,'NOT (GRADE_LEVEL IN teaches)'>)
 inherit student; teacher
 end

 class course_
 stereotyped with express_enumeration
 with tag values (<Level1>,<GRAD_LEVEL>,<Level2>)
 end
end
Remark: Since “course” is a UOL keyword a tailing underscore “_” is appended to the string
during the transformation process. The tool has to remove it when re-transferring the UOL code.

Mappings

(UOL 1.2)

- 133 -

5.3.2.2.4 Subtype/supertype constraints

EXPRESS semantics:
An instance of an entity data type, which is a subtype, is an instance of each of its supertypes. An
instance of an entity data type which is either explicitly or implicitly declared to be a supertype
may also be an instance of one or more of its subtypes.25

EXPRESS syntax:
294 subsuper = [supertype_constraint] [subtype_declaration].
297 supertype_constraint = abstract_supertype_declaration |
supertype_rule.
156 abstract_supertype_declaration = ABSTRACT SUPERTYPE
[subtype_constraint].
295 subtype_constraint = OF ‘(‘ supertype_expression ‘)’.
298 supertype_expression = supertype_factor {ANDOR
supertype_factor}.
299 supertype_factor = supertype_term {AND supertype_term}.
301 supertype_term = entity_ref | one_of |
‘(‘ supertype_expression ‘)’.
250 one_of = ONEOF ‘(‘ supertype_expression { ‘,’
supertype_expression} ‘)’.
300 supertype_rule = SUPERTYPE subtype_constraint.

25 Cf. [ISO EXPRESS RM 94] 49

The mapping between UOL and STEP/EXPRESS

(UOL 1.2)

- 134 -

5.3.2.2.4.1 Abstract supertypes

EXPRESS semantics:
EXPRESS allows for the declaration of supertypes that are not intended to be directly instantiated.
An entity data type shall include the phrase ABSTRACT SUPERTYPE in a supertype constraint
for this purpose. An abstract supertype shall not be instantiated except in conjunction with at least
one of its subtypes.26

Mapping:
An abstract supertype of EXPRESS corresponds to an abstract UOL class. Additionally, the UOL
class has a tag value abstract.

Example:
EXPRESS

ENTITY vehicle
 ABSTRACT SUPERTYPE
END_ENTITY;

ENTITY land_based
 SUBTYPE OF (vehicle);
END_ENTITY;

ENTITY water_based
 SUBTYPE OF (vehicle);
END_ENTITY;

UOL
class vehicle
 stereotyped with express_entity
 with tag values (<abstract>)
end

class land_based
 stereotyped with express_entity
 inherit vehicle
end

class water_based
 stereotyped with express_entity
 inherit vehicle
end

26 Cf. [ISO EXPRESS RM 94] 50

Mappings

(UOL 1.2)

- 135 -

5.3.2.2.4.2 ONEOF

EXPRESS semantics:
The ONEOF constraint states that the elements of the ONEOF list are mutually exclusive. None of
the elements may be instantiated with any other element in the list. Each element shall be a
supertype expression, which may resolve to a single subtype of the entity data type.27

EXPRESS syntax:
250 one_of = ONEOF ‘(‘ supertype_expression { ‘,’
supertype_expression } ‘)’.
299 supertype_factor = supertype_term { AND supertype_term}.
301 supertype_term = entity_ref | one_of | ‘(‘
supertype_expression ‘)’.

Mapping:
The EXPRESS ONEOF constraint is transferred into a constraint applied on all of the resulting
inheritance relationships. This constrained is named EXPRESS_ONEOF.

Example:
EXPRESS

ENTITY pet
 ABSTRACT SUPERTYPE OF (ONEOF(cat, rabbit, dog));
 name : pet_name;
END_ENTITY;

ENTITY cat
 SUBTYPE OF (pet);
END_ENTITY;

ENTITY rabbit
 SUBTYPE OF (pet);
END_ENTITY;

ENTITY dog
 SUBTYPE OF (pet);
END_ENTITY;

UOL
class pet
 stereotyped with express_entity
 with tag values (<abstract>)
end

class cat
 stereotyped with express_entity
 inherit pet constrained by {EXPRESS_ONEOF}
end

class rabbit
 stereotyped with express_entity
 inherit pet constrained by {EXPRESS_ONEOF}
end
class dog
 stereotyped with express_entity
 inherit pet constrained by {EXPRESS_ONEOF}
end

27 Cf. [ISO EXPRESS RM 94] 50

The mapping between UOL and STEP/EXPRESS

(UOL 1.2)

- 136 -

5.3.2.2.4.3 ANDOR

EXPRESS semantics:
If the subtypes are not mutually exclusive, that is, an instance of the supertype may be an instance
of more than one of its subtypes, the relationship between the subtypes shall be specified using the
ANDOR constraint.28

Mapping:
The EXPRESS ANDOR constraint is transferred into a constraint applied on all of the resulting
inheritance relationships. This constrained is named EXPRESS_ANDOR.

Example:
EXPRESS

ENTITY person
 SUPERTYPE OF (employee ANDOR student);
END_ENTITY;

ENTITY employee
 SUBTYPE OF (person);
END_ENTITY;

ENTITY student
 SUBTYPE OF (person);
END_ENTITY;

UOL
class person
 stereotyped with express_entity
end

class employee
 stereotyped with express_entity
 inherit person constrained with {EXPRESS_ANDOR}
end

class student
 stereotyped with express_entity
 inherit person constrained by {EXPRESS_ANDOR}
end

28 Cf. [ISO EXPRESS RM 94] 51

Mappings

(UOL 1.2)

- 137 -

5.3.2.2.4.4 AND

EXPRESS semantics:
If the supertype instances are categorized into multiple groups of mutually exclusive subtypes (i.e.,
multiple ONEOF groupings) indicating that there is more than one way to completely categorize
the supertype, the relationship between those groups shall be specified sing the AND constraint.
The AND constraint is only used to relate groupings established by other subtype/supertype
constraints.29

Mapping:
The EXPRESS AND constraint is transferred into a constraint applied on all of the resulting
inheritance relationships. This constrained is named EXPRESS_AND.

Every inheritance path gets a unique name, which serves as anchor point of a constrained
nondirected dependency relation connecting them. The relation describing the intra-
inheritance constrained is stereotyped with EXPRESS_INHERITANCE_CONSTRAINT.

Example:
EXPRESS

ENTITY person
 SUPERTYPE OF (ONEOF(male,female) AND ONEOF(citizen,alien));
END_ENTITY;

ENTITY male
 SUBTYPE OF (person)
END_ENTITY;

ENTITY female
 SUBTYPE OF (person)
END_ENTITY;

ENTITY citizen
 SUBTYPE OF (person)
END_ENTITY;

ENTITY alien
 SUBTYPE OF (person)
END_ENTITY;

UOL
class person
 stereotyped with express_entity
end

class male
 stereotyped with express_entity
 with tag values (<inheritance_id,?001>)
 inherit person
end

class female
 stereotyped with express_entity
 with tag values (<inheritance_id,?002>)
 inherit person

29 Cf. [ISO EXPRESS RM 94] 52

The mapping between UOL and STEP/EXPRESS

(UOL 1.2)

- 138 -

end

class citizen
 stereotyped with express_entity
 with tag values (<inheritance_id,?003>)
 inherit person constrained by {EXPRESS_ONEOF}
end

class alien
 stereotyped with express_entity
 with tag values (<inheritance_id,?004>)
 inherit person constrained by {EXPRESS_ONEOF}
end

relation ?005
 stereotyped with express_inheritance_constraint
 link ?001, ?002
 constrained by {text “express_oneof”}
end

relation ?006
 stereotyped with express_inheritance_constraint
 link ?003, ?004
 constrained by {text “express_oneof”}
end

relation ?007
 stereotyped with express_inheritance_constraint
 link ?005, ?006
 constrained by {text “express_and”}
end

Mappings

(UOL 1.2)

- 139 -

5.3.2.2.4.5 Precedence of supertype operators

EXPRESS semantics:
The evaluation of supertype expressions proceeds from left to right, with the highest precedence
operators being evaluated first. The table summarizes the precedence rules for the supertype
expression operators. Operators in the same row have the same precedence, and the rows are
ordered by decreasing precedence.

Precedence Operators
1 () ONEOF
2 AND
3 ANDOR

Mapping:
If the precedence is stated explicitly by using additional brackets the brackets are transferred into
UOL.

Since UOL serves as transfer format with the same expressive power as EXPRESS there’s no need
to state the implicit precedence rules of EXPRESS explicitly in UOL. The retransformation has to
ensure the preservation of the precedence order.

Example:
EXPRESS

ENTITY x
 SUPERTYPE OF (a ANDOR b AND c);
END_ENTITY;

ENTITY x
 SUPERTYPE OF ((a ANDOR b) AND c);
END_ENTITY;

UOL

The mapping between UOL and STEP/EXPRESS

(UOL 1.2)

- 140 -

5.3.2.2.5 Implicit declarations

EXPRESS semantics:
When an entity is declared, a constructor is also implicitly declared. The constructor identifier is
the same as the entity identifier and the visibility of the constructor declaration is the same as that
of the entity declaration.

The constructor, when invoked, shall return a partial complex entity value for that entity data type
of the point of invocation. Each attribute in this partial complex entity value is given by the actual
parameter passed in the constructor call, if an actual parameter is an entity instance, that entity
instance plays the role described by an attribute in the partial complex entity value. The constructor
shall only provide the attribute, which are explicit in a particular entity declaration.30

EXPRESS syntax:
195 entity_constructor = entity_ref ‘(‘ [expression { ‘;’
expression }] ‘)’.

Mapping:
Since the constructor is only implicit declared it is not explicited with in the UOL.

5.3.2.3 Schema

EXPRESS semantics:
A SCHEMA declaration defines a common scope for a collection of related entity and other data
type declarations.31

EXPRESS syntax:
281 schema_decl = SCHEMA schema_id ‘;’ schema_body END_SCHEMA ‘;’.
280 schema_body = {interface_specification} [constant_decl]
{declaration | rule_decl}.
228 interface_specification = reference_clause | use_cluase.
189 declaration = entity_decl | function_decl | procedure_decl |
type_decl.

Mapping:
The schema definition matches to the UOL package. The package gets the same name as the
EXPRESS schema. Additionally a “schema class” is created within the package covering all the
schema global accessible information. This class is stereotyped with “express_schema”.

Example:
EXPRESS

SCHEMA test;
END_SCHEMA;

UOL
package test is
 class test
 stereotyped with express_schema
 end
end

30 Cf. [ISO EXPRESS RM 94] 53-54
31 Cf. [ISO EXPRESS RM 94] 55

Mappings

(UOL 1.2)

- 141 -

5.3.2.4 Constant

EXPRESS semantics:
A constant declaration is used to declare named constants. The scope of a constant identifier shall
be the function, procedure, rule or schema in which the constant declaration occurs. A named
constant appearing in a CONSTANT declaration shall have an explicit initialization the value of
which is computed by evaluating the expression. A named constant may appear in the declaration
of another named constant.32

EXPRESS syntax:
185 constant_decl = CONSTANT constant_body {constant_body}
END_CONSTANT ‘;’.
184 constant_body = constant_id ‘:’ base_type ‘:=’ expression ‘;’.
171 base_type = aggregation_types | simple_types | named_types.

Mapping:
The EXPRESS constants match immutable attributes of the UOL. The value of the constant
remains unchanged as string within UOL.
Depending on the occurrence of the constant declaration it’s mapped into:

• an attribute of the schema class – if it’s declared on schema level
• a part of the whole function mapping – if it’s declared within a function
• a part of the whole procedure mapping – it’s declared within a procedure
• a part of the whole rule mapping – if it’s declared within a rule

Example:
EXPRESS

CONSTANT
 thousand : NUMBER := 1000;
 million : NUMBER := thousand**2;
 origin : point := point(0.0, 0.0, 0.0);
END_CONSTANT;

UOL
frozen thousand : NUMBER is ‘1000’;
frozen million : NUMBER is ‘thousand**2’;
frozen origin : point is ‘point(0.0, 0.0, 0.0)

32 Cf. [ISO EXPRESS RM 94] 56

The mapping between UOL and STEP/EXPRESS

(UOL 1.2)

- 142 -

5.3.2.5 Algorithms

EXPRESS semantics:
An algorithm is a sequence of statements that produces some desired and state. The two kinds of
algorithms that can be specified are functions and procedures.33

5.3.2.5.1 Function

EXPRESS semantics:
A function is an algorithm, which operates on parameters and that, produces a single resultant
value of a specific data type.34

EXPRESS syntax:
208 function_decl = function_head [algorithm_head] stmt {stmt}
END_FUNCTION’;’.
209 function_head = FUNCTION function_id [‘(‘ formal_parameter {
‘;’ formal_parameter } ‘)’] ‘:’ parameter_type ‘;’.
206 formal_parameter = parameter_id { ‘,’ parameter_id } ‘:’
parameter_type.
253 parameter_type = generalized_type | named types |
simple_types.
163 algorithm_head = {declaration} [constant_decl] [local_decl].
189 declaration = entity_decl | function_decl | procedure_decl |
type_decl.

Mapping:
Since functions are declared on schema level (i.e., the same level as the entity declaration) they
correspond to operations declared within the UOL schema class resulting from the EXPRESS
schema. Additionally the UOL operation is stereotyped with “express_function”.

Furthermore EXPRESS doesn’t support any visibility constraints; hence all corresponding UOL
functions have public visibility.

33 Cf. [ISO EXPRESS RM 94] 56
34 Cf. [ISO EXPRESS RM 94] 57

Mappings

(UOL 1.2)

- 143 -

5.3.2.5.2 Procedure

EXPRESS semantics:
A procedure is an algorithm that receives parameters from the point of invocation and operates on
them in some manner to produce the desired end state. Changes to the parameters within a
procedure are only reflected to the point of invocation when the formal parameter is preceded by
the VAR keyword.35

EXPRESS syntax:
258 procedure_decl = procedure_head [algorithm_head] {stmt}
END_PROCEDURE ‘;’.
259 proedure_head = PROCEDURE procedure_id [‘(‘ [VAR]
formal_parameter { ‘;’ [VAR] formal_parameter} ‘)’] ‘;’.
206 formal_parameter = parameter_id { ‘,’ parameter_id } ‘:’
parameter_type.
253 parameter_type = generalized_types | named_types |
simple_types.
163 algorithm_head = {declaration} [constant_decl] [local_decl].
189 declaration= entity_decl | function_decl | type_decl.

Mapping:
An EXPRESS procedure corresponds to an operation of schema class. This operation is
stereotyped with express_procedure.

35 Cf. [ISO EXPRESS RM 94] 58

The mapping between UOL and STEP/EXPRESS

(UOL 1.2)

- 144 -

5.3.2.5.3 Parameters

EXPRESS semantics:
A function or procedure can have formal parameters. Each formal parameter specifies a name and
parameter type. The name is an identifier, which shall be unique within the scope of the function or
procedure. A formal parameter to a procedure may also be declared as VAR (variable), which
means that, if the parameter is changed within the procedure, the change shall be propagated to the
point of invocation. Parameters not declared as VAR can be changed also, but the change will not
be apparent when control is returned to the caller.36

EXPRESS syntax:
206 formal_parameter = parameter_id { ‘,’ parameter_id} ‘:’
parameter_ype.
253 parameter_type = generalized_types | named_types |
simple_types.

Mapping:
The formal parameter list of EXPRESS corresponds to the formal parameter list of UOL. If a
parameter is declared as VAR within the EXPRESS schema the tag value express_VAR_parameter
reflects the name of the parameter declared so.

Example:
EXPRESS

FUNCTION dist (p1, p2 : point) : REAL;

PROCEDURE midpt (p1, p2 : point; VAR result : point);
UOL

class schema_class
 stereotyped with express_schema
 feature {any}
 dist (p1,p2 : point):REAL
 stereotyped with express_function
 text "imlementation" is text "...";
 midpt (p1, p2, result : point)
 stereotyped with express_procedure
 with tag values (<VAR_parameter,result>)
 text "implementation" is text "..."
 end
end

36 Cf. [ISO EXPRESS RM 94] 58

Mappings

(UOL 1.2)

- 145 -

5.3.2.5.3.1 Aggregate data type

EXPRESS semantics:
An AGGREGATE data type is a generalization of all aggregation data types.
When a procedure or function which has a formal parameter defined to be an aggregate data type is
invoked, the actual parameter passed shall be an ARRAY, BAG, LIST or SET. The operations that
can be performed shall then depend on the data type of the actual parameter.

Type labels may be used to ensure that two or more parameters passed are of the same data type, or
that the return data type is the same as one of the passed parameters, irrespective of the actual data
type passed.37

EXPRESS syntax:
161 aggregate_type = AGGREGATE [‘:’ type_lavel] OF
parameter_type.
306 type_label = type_label_id | type_label_ref.
253 parameter_type = generalized_types | named_types |
simple_types.

Mapping:
The EXPRESS aggregate types map UOL’s multi valued parameters. The multiplicity is stated as
1..*.

Example:
EXPRESS

FUNCTION scale (input:AGGREGATE:intype OF NUMBER;
 scalar:NUMBER):AGGREGATE:intype OF NUMBER;
 LOCAL
 result : AGGREGATE:intype OF NUMBER;
 END_LOCAL;

 REPEAT i := LOINDEX(input) TO HIINDEX(input);
 result[i] := scalar * input[i];
 END_REPEAT;

 RETURN(result);
END_FUNCTION;

UOL
scale (input [1..*] : NUMBER, scalar : NUMBER) : [1..*] NUMBER
 stereotyped with express_function
 with tag values (<input,intype>)
 text “implementation” is text
 “LOCAL
 result : AGGREGATE:intype OF NUMBER;
 END_LOCAL;

 REPEAT i := LOINDEX(input) TO HIINDEX(input);
 result[i] := scalar * input[i];
 END_REPEAT;

 RETURN(result);”

37 Cf. [ISO EXPRESS RM 94] 59

The mapping between UOL and STEP/EXPRESS

(UOL 1.2)

- 146 -

5.3.2.5.3.2 Generic data type

EXPRESS semantics:
A GENERIC data type is a generalization of all other data types.
When a procedure or function is invoked with a generic parameter, the actual parameter passed
may not be of GENERIC data type. The operations that can be performed depend on the data type
of the actual parameter.

The labels may be used to ensure that two or more parameters passed are of the same data type, or
that the return data type is the same as one of the passed parameters, irrespective of the actual data
types passed.38

EXPRESS syntax:
218 generic_type = GENERIC [‘:’ type_label].
306 type_label = type_label_id | type_label_ref.

Mapping:
The GENERIC data type labeled with type type_label corresponds to a UOL operation parameter
of type “GENERIC” additionally enriched by a tag value stating the type_label of the given formal
parameter.
If the return value is GENERIC, the tag value “express_return_type” is used.

Example:
EXPRESS

FUNCTION add(a,b : GENERIC : intype) : GENERIC:intype;
 LOCAL
 nr : NUMBER;
 vr : vector;
 END_LOCAL;

 IF (‘NUMBER’ IN TYPEOF(a)) AND (‘NUMBER’ IN TYPEOF(b)) THEN
 nr := a+b;
 RETURN(nr);
 ELSE
 IF (‘THIS_SCHEMA.VECTOR’ IN TYPEOF(a)) AND
 (‘THIS_SCHEMA.VECTOR’ IN TYPEOF(b)) THEN
 vr := vector (a.i + b.i, a.j + b.j, a.k +b.k);
 RETURN (vr);
 END_IF;
 END_IF;
 RETURN(?);
END_FUNCTION;

38 Cf. [ISO EXPRESS RM 94] 60

Mappings

(UOL 1.2)

- 147 -

UOL
add (a,b : GENERIC) : GENERIC
 stereotyped with express_function
 with tag values (<a,intype>,
 <b,intype>,<express_return_type,intype>)
 text “implementation” is text
 “ LOCAL
 nr : NUMBER;
 vr : vector;
 END_LOCAL;

 IF (‘NUMBER’ IN TYPEOF(a)) AND
 (‘NUMBER’ IN TYPEOF(b)) THEN
 nr := a+b;
 RETURN(nr);
 ELSE
 IF (‘THIS_SCHEMA.VECTOR’ IN TYPEOF(a)) AND
 (‘THIS_SCHEMA.VECTOR’ IN TYPEOF(b)) THEN
 vr := vector (a.i + b.i, a.j + b.j, a.k +b.k);
 RETURN (vr);
 END_IF;
 END_IF;
 RETURN(?);
 END_FUNCTION;”

The mapping between UOL and STEP/EXPRESS

(UOL 1.2)

- 148 -

5.3.2.5.3.3 Type labels

EXPRESS semantics:
Type labels shall be used to relate data type of an actual parameter at invocation to the data types of
another actual parameters, local variables, or the return type of a function. Type labels are declared
for AGGREGATE and GENERIC data types within the formal parameter declaration of a function
or procedure and may be referenced by AGGREGATE or GENERIC data types in the formal
parameter declaration, local variable declaration or the declaration of the returned data type of a
FUNCTION.39

EXPRESS syntax:
306 type_label = type_label_id | type_label_ref.

Mapping:
The transfer format doesn’t check the underlying EXPRESS semantics. Hence there’s no difference
in the mapping between declaration and reference.

Example:
EXPRESS

ENTITY a;
...
END_ENTITY;

ENTITY b SUBTYPE OF (a);
...
END_ENTITY;

ENTITY c SUBTYPE OF (b);
...
END_ENTITY;

FUNCTION test (p1 :GENERIC:x; p2:GENERIC:x):GENERIC:x;
...
END_FUNCTION;

UOL
class a
 stereotyped with express_entity
end

class b
 stereotyped with express_entity
 inherit a
end

class c
 stereotyped with express_entity
 inherit b
end

39 Cf. [ISO EXPRESS RM 94] 60

Mappings

(UOL 1.2)

- 149 -

class schema
 stereotyped with express_schema
 feature {any}
 test (p1:GENERIC; p2:GENERIC) : GENERIC
 stereotyped with express_function
 with tag values (<p1,x>, <p2,x>,
 <express_return_value,x>
 text “implementation” is text
 “...”
end

5.3.2.5.3.4 General aggregation data types

EXPRESS semantics:
General aggregation data types from part of the class of types called generalized data types. They
represent a specific aggregation data type (ARRAY, BAG, LIST and SET) with a relaxing of the
constraints which would normally be applied when specifying the aggregation data type (i.e., a
general_list_type is a generalization of a list_type).40

EXPRESS syntax:
212 general_aggregation_types = general_array_type |
general_bag_type | general_list_type | general_set_type.
213 general_array_tpe = ARRAY [bound_spec] OF [OPTIONAL] [UNIQUE]
parameter_type.
176 bound_spec = ‘[‘ bound_1 ‘:’ bound_2 ‘]’.
174 bound_1 = numeric_expression.
175 bound_2 = numeric_expression.
253 parameter_type = generalized_types | named_types |
simple_types.
214 general_bag_type = BAG [bound_spec] OF parameter_type.
215 general_list_type = LIST [bound_spec] OF [UNIQUE]
parameter_type.
217 general_set_type = SET [bound_spec] OF parameter_type.

Mapping:
The aggregation typed formal parameter corresponds to a multi valued formal parameter within the
UOL. The concrete EXPRESS aggregation type is stated as tag value, with the name of the formal
parameter as tag and the type of the aggregation as value.

Example:
EXPRESS

FUNCTION dimension (input:SET [2:3] OF GENERIC):INTEGER;
UOL

dimension (input [2..3] GENERIC) : INTEGER
 stereotyped with express_function
 with tag values (<input,set>

40 Cf. [ISO EXPRESS RM 94] 62

The mapping between UOL and STEP/EXPRESS

(UOL 1.2)

- 150 -

5.3.2.5.4 Local variables

EXPRESS semantics:
Variables local to an algorithm are declared after the LOCAL keyword. A local variable is only
visible within the scope of the algorithm in which it is declared. Local variables may be assigned
values and may participate in expressions.41

EXPRESS syntax:
239 local_decl = LOCAL local_variable {local_variable} END_LOCAL
‘;’.
240 local_variable = variable_id { ‘,’ variable_id } ‘:’
parameter_type [‘:=’ expression] ‘;’.
253 parameter_type = generalized_types | named_types |
simple_types.

Mapping:
Since the local variable declaration occurs only within an algorithm declaration the whole local
section corresponds to the implementation text string describing the implementation unchanged.

Example:
EXPRESS

FUNCTION f1:INTEGER;
 LOCAL
 r_result : REAL := 0.0;
 i_result : INTEGER;
 END_LOCAL;
...
EXISTS(r_result)
EXISTS(i_result)
END_FUNCTION;

UOL
f1():INTEGER
 stereotyped with express_function
 text “implementation” is text
 “LOCAL
 r_result : REAL := 0.0;
 i_result : INTEGER;
 END_LOCAL;
 ...
 EXISTS(r_result)
 EXISTS(i_result)
 END_FUNCTION;”

41 Cf. [ISO EXPRESS RM 94] 69

Mappings

(UOL 1.2)

- 151 -

5.3.2.6 Rule

EXPRESS semantics:
Rules permit the definition of constraints that apply to one or more entity data types within the
scope of a schema. Local rules (i.e., the uniqueness constraint and domain rules in an entity
declaration) declare constraints that apply individually to every instance of an entity data type. A
RULE declaration permits the definition of constraints that apply collectively to the entire domain
of an entity data type, or to instances of more than one entity data type. One application of a RULE
is to constrain the values of attributes that exist in different entities in a coordinated manner.42

EXPRESS syntax:
277 rule_decl = rule_head [algorithm_head] {stmt} where_clause
END_RULE ‘;’.
278 rule_head = RULE rule_id FOR ‘(‘ entity_ref { ‘,’ entity_ref }
‘)’ ‘;’.
163 algorithm_head = {declaration} [constant_decl] [local_decl].
189 declaration = entity_decl | function_decl | procedure_decl |
type_decl.

Mapping:
Every rule constraining an EXPRESS entity corresponds to two tag values. The first tag is “rule”
followed by the name of the rule as value. Secondly, the name of the rule as tag followed by the
whole rule as string (uninterpreted in the original EXPRESS format).

Example I:
EXPRESS

RULE point_match FOR (point);
LOCAL
 first_oct,
 seventh_oct : SET OF POINT := [];
END_LOCAL
 first_oct := QUERY(temp <* point | (temp.x > 0) AND
 (temp.y > 0) AND
 (temp.z > 0));
 seventh_oct := QUERY(temp <* point | (temp.x < 0) AND
 (temp.y < 0) AND
 (temp.z < 0));
WHERE
 SIZEOF(first_oct) = SIZEOF(seventh_oct);
END_RULE;

42 Cf. [ISO EXPRESS RM 94] 63

The mapping between UOL and STEP/EXPRESS

(UOL 1.2)

- 152 -

UOL
class point
 stereotyped with express_entity
 with tag values (<rule,point_match>,
 <point_match,’ LOCAL
 first_oct,
 seventh_oct : SET OF POINT := [];
END_LOCAL
 first_oct := QUERY(temp <* point | (temp.x > 0) AND
 (temp.y > 0) AND
 (temp.z > 0));
 seventh_oct := QUERY(temp <* point | (temp.x < 0) AND
 (temp.y < 0) AND
 (temp.z < 0));
WHERE
 SIZEOF(first_oct) = SIZEOF(seventh_oct);‘>)
end

Example II:
EXPRESS

ENTITY b;
 a1 : c;
 a2 : d;
 a3 : f;
UNIQUE
 ur1: a1, a2;
END_ENTITY;

RULE vu FOR (b);
 ENTITY temp;
 a1 : c;
 a2 : d;
 END_ENTITY;
LOCAL
 s : SET OF temp := [];
END_LOCAL;
REPEAT i := 1 TO SIZEOF(b);
 s := s + temp(b[i].a1, b[i].a2);
END_REPEAT;
WHERE
 wr : VALUE_UNIQUE(s);
END_RULE;

Mappings

(UOL 1.2)

- 153 -

UOL
class b
 stereotyped with express_entity
 with tag values (<rule,vu>,
 <vu,’ ENTITY temp;
 a1 : c;
 a2 : d;
 END_ENTITY;
 LOCAL
 s : SET OF temp := [];
 END_LOCAL;
 REPEAT i := 1 TO SIZEOF(b);
 s := s + temp(b[i].a1, b[i].a2);
 END_REPEAT;
 WHERE
 wr : VALUE_UNIQUE(s);’>)
 feature {any}
 a1 : c with tag values (<express_unique,ur1>);
 a2 : d with tag values (<express_unique,ur1>);
 a3 : f
 end
end

Implicit declaration

EXPRESS semantics:
Within a rule each population is implicitly declared to be a local variable which contains the set of
all instances of the named entity in the domain; i.e., the set of entity instances governed by the
rule.43

EXPRESS syntax:
254 population = entity_ref.

Mapping:
Since the declaration is implicit, it remains even implicitly within the UOL source.

43 Cf. [ISO EXPRESS RM 94] 65

The mapping between UOL and STEP/EXPRESS

(UOL 1.2)

- 154 -

5.3.3 Interface specification

EXPRESS semantics:
This clause specifies the constructs, which enable items declared in one schema to be visible in
another. There are two interface specifications (USE and REFERNCE), both of which enable item
visibility. The USE specification allows items declared in one schema to be independently
instantiated in the schema specifying the USE construct.

An entity instance is independent if it does not play the rule described by an attribute of any other
entity instance, i.e., ROLESOF for an independent entity instance will return an empty set. An
entity data type, which was either declared locally within or USE’d by the schema may be
instantiated independently or play the role described by an attribute of an entity within the
schema.44

EXPRESS syntax:
228 interface_specification = refernce_clause | use_clause.

5.3.3.1 Use interface specification

EXPRESS semantics:
An entity data type or defined data type declared in a foreign schema is made usable by way of a
USE specification. The USE specification gives the name of the foreign schema and optionally the
names of entity data types declared therein. If there are no named_types specified, all of the
named types declared within or USE’d by the foreign schema are treated as if declared locally.45

EXPRESS syntax:
313 use_clause = USE FROM schema_ref [‘(‘ named_type_or_rename {
‘,’ named_type_or_rename } ‘)’] ‘;’.
246 named_type_or_rename = named_types [AS (entity_id | type_id
)].

Mapping:
The use-clause corresponds to a dependency between the packages built from the EXPRESS
schemas. The dependency link has the using package (the dependant element) as source and the
used one (the independent element) as destination. The relation is stereotyped with uses.

The renamed elements correspond to tag values. Using expresss_rename as tag and the name in the
source schema followed by the name in the destination schema comma separated as string (e.g.,
express_rename,’src_name,dst_name’).

Since each UOL relation must have a unique name the transformation implementing tool
automatically generates one. This name is invisible to the user, and lost if the UOL format is re-
transferred into other formats.

44 Cf. [ISO EXPRESS RM 94] 76
45 Cf. [ISO EXPRESS RM 94] 77

Mappings

(UOL 1.2)

- 155 -

Example:
EXPRESS

SCHEMA src;
 ENTITY a1;
 END_ENTITY;
END_SCHEMA;

SCHEMA dst;
 USE FROM src (a1 as a2);
END_SCHEMA;

UOL
package src is
 class src
 stereotyped with express_schema
 end
 class a1
 stereotyped with express_entity
 end
end

package dst
 class dst
 stereotyped with express_schema
 end
end

relation ?001
 stereotyped with uses
 with tag values (<a1,a2>)
 link dst to src
end

The mapping between UOL and STEP/EXPRESS

(UOL 1.2)

- 156 -

5.3.3.2 Reference interface specification

EXPRESS semantics:
A REFERENCE specification enables the following EXPRESS items, declared in a foreign
schema, to be visible in the current schema:

• Constant;
• Entity;
• Function;
• Procedure;
• Type.

The REFERENCE specification gives the name of the foreign schema, and optionally the names of
EXPRESS items declared therein. If there are no names specified, all the EXPRESS items declared
in or USE’d by the foreign schema are visible within the current schema.46

EXPRESS syntax:
267 reference_clause = REFERENCE FROM schema_ref [‘(‘
resource_or_rename { ‘,’ resource_or_rename } ‘)’] ‘;’ .
274 reource_or_rename = resource_ref [AS rename_id].
275 resource_ref = constant_ref | entity_ref | function_ref |
procedure_ref | type_ref.
270 rename_id = constant_id | entity_id | function_id |
procedure_id | type_id.

Mapping:
The reference-clause corresponds to a dependency between the packages built from the EXPRESS
schemas. The dependency link has the referencing package (the dependant element) as source and
the referenced one (the independent element) as destination. The relation is stereotyped with
references.

The renamed elements correspond to tag values. Using expresss_rename as tag and the name in the
source schema followed by the name in the destination schema comma separated as string (e.g.,
express_rename,’src_name,dst_name’).

Since each UOL relation must have a unique name the transformation implementing tool
automatically generates one. This name is invisible to the user, and lost if the UOL format is re-
transferred into other formats.

46 Cf. [ISO EXPRESS RM 94] 88

Mappings

(UOL 1.2)

- 157 -

5.3.3.3 The interaction of use and reference

Note: The distinction between USE and REFERENCE
The USE and REFERENCE statements both enable the import of definitions from another schema.
The definitions that are mentioned in the USE statements become first-class definitions within the
importing schema. That is, in an instantiation of the model, these items may have an independent
existence – instances can occur which are not utilized as attribute values of their items. Definitions
that are imported via a REFERENCE statement are second-class. That is, instances can only occur
when required as attribute values.47

EXPRESS semantics:
If an entity data type or defined data type is both USE’d and REFERENCE’d into the current
schema, the USE specification takes precedence.

When a named data type is USE’d into the current schema, that named data type may be USE’d or
REFERENCE’d from the current schema by another schema (i.e., USE specifications may be
chained between schemas).48

Mapping:
This transitivity semantics is preserved within UOL for the dependencies connecting packages and
stereotyped either with uses or references.

Example:
EXPRESS

SCHEMA s1;
 ENTITY e1;
 END_ENTITY;
END_SCHEMA;

SCHEMA s2;
USE FROM s1 (e1 AS e2);
END_SCHEMA;

SCHEMA s3; SCHEMA s3;
USE FROM s1 (e1 AS e2); USE FROM s2 (e2);
END_SCHEMA; END_SCHEMA;

47 Cf. [Schenck, Wilson 94] 63
48 Cf. [ISO EXPRESS RM 94] 78

The mapping between UOL and STEP/EXPRESS

(UOL 1.2)

- 158 -

UOL
package s1 is
 class s1
 stereotyped with express_schema
 end
 class e1
 end
end

package s2 is
 class s2
 stereotyped with express_schema
 end
end

package s3 is
 class s3
 stereotyped with express_schema
 end
end

relation ?001
 stereotyped with uses
 with tag values (<express_rename,’e1,e2’>)
 link s2 to s1
end

relation ?002
 stereotyped with uses
 with tag values (<express_rename,’e1,e2’>)
 link s3 to s1
end

relation ?002
 stereotyped with uses
 with tag values (<express_uses,e2>)
 link s3 to s2
end

Mappings

(UOL 1.2)

- 159 -

5.3.4 Expression

EXPRESS semantics:
Expressions are combinations of operators, operands and function calls, which are evaluated to
produce a value.49

EXPRESS syntax:
204 expression = simple_expression [rel_op_extended
simple_expression].
269 rel_op_extended = rel_op | IN | LIKE.
268 rel_op = ‘<’ | ‘>’ | ‘<=’ | ‘>=’ | ‘<>’ | ‘=’ | ‘:<>:’ |
‘:=:’.
287 simple_expression = term { add_like_op term }.
303 term = factor { multiplication_like_op factor }.
205 factor = simple_factor [‘**’ simple_factor].
288 simple_factor = aggregate_initializer | entity_constructor |
enumeration_reference | inverval | query_expression | ([unary_op
] (‘(‘ expression ‘)’ | primary)) .
308 unary_op = ‘+’ | ‘-‘ | NOT.
256 primary = literal | (qualifiable_factor { qualifier }).
244 multiplication_like_op = ‘*’ | ‘/’ | DIV | MOD | AND | ‘||’.
158 add_like_op = ‘+’ | ‘-‘ | OR | XOR.

Mapping:
All expression within the EXPRESS source remain uninterpreted and correspond to strings within
the individual use.

5.3.5 Executable statements

EXPRESS semantics:
Executable statements define the actions of functions, procedures and rules. These statements act
only on variables local to a FUNCTION, PROCEDURE or RULE. They are used to define the
logic and actions required to support the definition of constraints, i.e., WHERE clauses and
RULEs. These statements do not affect the entity instances within the domain.50

EXPRESS syntax:
291 stmt = alias_stmt | assignment_stmt | case_stmt |
compound_stmt | escape_stmt | if_stmt | null_stmt|
procedure_call_stmt | repeat_stmt | return_stmt | skip_stmt.

Mapping:
Since the executable statements occur only within functions, procedures and rules they are mapped
within the sections concerning functions, procedures and rules.

In general they remain uninterpreted and correspond to strings within UOL.

49 Cf. [ISO EXPRESS RM 94] 81
50 Cf. [ISO EXPRESS RM 94] 112

The mapping between UOL and STEP/EXPRESS

(UOL 1.2)

- 160 -

5.3.6 Built-in constants

Mapping:
Since constants appear either within algorithms or as initialization of attributes they correspond to
uninterpreted strings (in the case of use within algorithms) or initialization statements.

5.3.7 Built-in functions

Mapping:
Since functions appear either within algorithms or as initialization of attributes they correspond to
uninterpreted strings (in the case of use within algorithms) or initialization statements.

Additional Specification

(UOL 1.2)

- 161 -

6 Additional Specification

6.1 Full UML Support

6.1.1 Justification
The SMIF RFP requires the proposals to submit a format not dependent on meta-model constructs.
This is very reasonable considering that the SMIF is for a meta-meta-model and, therefore, it
should not rely on a lower level meta-model.

However, the main users of MOF will be CASE tool builders and these will also support the UML
standard. In fact some will support UML and not MOF, as is the case of Microsoft. If UOL is
extended to support full UML (all its constructs) a much more efficient interchange format because
having more semantics:

• more information can be represented with less volume with great gains in
speed,

• information being transferred is more comprehensible and

• easier to process for CASE tools

We, therefore, propose extending UOL to support UML constructs as an optional non-mandatory
second level of the SMIF standard.

The support for UML constructs allows for an easier and more compact representation of UML
models. Without the extensions all the UML concepts that are not MOF concepts must be added to
the UOL code cluttering the representation with the description of the meta-model.

usecase CloseObject
actor

Writer
is

'(a)The system (G) will load the current object that is
referenced

(b) update the current closing date (Date) of the document
(c) ask to the actor Writer) for his username update the

username in the document finally,
(d) save the document'

extension in ”(a)”,”(b)”,”(c)”,”(d)”
end – CloseObject

Full UML Support

(UOL 1.2)

- 162 -

In the following example we describe the former use case without specific constructs. It is
incomplete for clarity reasons and shows a first part of description of the meta-model using MOF
and a second part of description of the use case.

-- some classes omitted
class Classifier

with tag values (<Metamodel>)
inherit GeneralizableElement
-- rest of body omitted

end

class Actor
with tag values (<Metamodel>)
inherit Classifier
-- rest of body omitted

end

class Usecase
with tag values (<Metamodel>)
inherit Classifier
-- rest of body omitted

end

Writer instance of Actor
is
name : Writer

end

CloseObject instance of Usecase
is
annotation :

'(a) The system will load the current object that is
referenced

(b) ask to the actor for its username update the username
in the document

(c), finally save the document
(d)';

name : CloseObject;
extension_point: <<'a','b','c','d'>>

end

Of course, even if the specific constructs are not used it is not necessary to include the meta-model
as part of the transmission each time. The meta-model can be appended through an 'import'
sentence, in which case the package must be available for the receiver, or declared with a tag
known by the receiver.

With this extension there are also additional benefits, allowing UOL:

• to become a Universal Round-Trip Engineering Language

• to be a textual representation of UML

• to be an alternative representation to graphics to describe analysis and design
models for visually impaired individuals

Additional Specification

(UOL 1.2)

- 163 -

The UOL has been designed in such a way that all UML constructs are optional and only the MOF
support is mandatory.

6.1.2 Mapping between UOL and UML with UML constructs

In order to describe a UML diagram with UOL, several new elements, stereotypes, tag values and
constraints must be defined. These new elements and their mapping are the following:

UML 1.1 UOL 1.2
Action Action
Action Action
Action sequence Action sequence
ActionSequence ActionList
ActionState State (with an Action associated in context of

an Activity diagram)
Activity model Activity model
ActivityState State (in context of an Activity diagram)
Actor Actor
Argument EntityDeclaration
Association Relationship
Association class Association class
AssociationEnd Feature clause of the relationship
Attribute Attribute
AttributeLink N/A
Binding Actual generics
CallAction Action (used with call clause)
CallEvent Event (with a call clause)
ChangeEvent Event
Class Class
Collaboration Collaboration
Comment Comment
Component Component
Composite state Composite State
Constraint Constraint (splitted in declaration and use)
CreateAction Action (used with create clause)
Data type Class (with stereotype)
DataValue Expression
Dependency Dependency (relationship with a direction

link)
DestroyAction Action (used with TextMultiline)
Element Ownership Element Ownership
Element reference Import clause
Event Event
Event Event
Exception Exception
Generalization Generalization (inherit clause)
Guard Guard
Instance Instance
Interface Class (with stereotype)
Link AssociationEnd (value in an instance of a

Relation)
LinkEnd AssociationEnd (with values)
LocalInvocation Expression

Full UML Support

(UOL 1.2)

- 164 -

MessageInstance Instance
Method Method
Model Model
Node Node
Object Instance
ObjectFlowState State (that flows an object associated in

context of an Activity diagram)
Operation Operation
Package Package
Parameter Parameter
Partition Partition
Pseudostate Pseudostate
Refinement Dependency (with stereotype)
Request Operation/Signal
ReturnAction Action (used with TextMultiline)
SendAction Action (used with TextMultiline)
Signal Signal
SignalEvent Event
Simple state State
State machine State machine
Stereotype Stereotype
Submachine state Submachine
Subsystem Subsystem
Tagged value Tagged value
Template Formal generics
TerminateAction Action (used with TextMultiline)
TimeEvent Event (with a TimeExpression)
Trace Dependency (with stereotype)
Transition Transition
UninterpretedAction Action (used with TextMultiline)
Usage Dependency (with stereotype)
Usecase Usecase
Usecase instance Usecase instance
View Element Diagram and viewed with clause

The abstract UML concepts do not have a specific UOL construct. Instead the information
provided by such elements is included in the non abstract heir's specific construct.

The package UOL_UML package will be automatically loaded and it will contain all the standard
stereotypes, tag values, and constraints defined in the document ad/970805.

6.1.3 Benefits of UOL with UML constructs

6.1.3.1 UOL as a Round-Trip Engineering Language

6.1.3.1.1 Justification
Summarizing the need of a round-trip justification language and the advantages of having UOL as
the required round-trip engineering language we have seen in chapters 2.4 and 2.5:

• CASE tool builders can use it as a substitute for their proprietary incomplete (it is not
well adapted to all OO languages) “mark-up language” that they are presently using.
They usually have different versions of the mark-up code for different languages.

Additional Specification

(UOL 1.2)

- 165 -

• Using only one mark-up language for all programming languages reduces over 80% of
the cost of developing round-trip tools as we show in chapter 6, if round-trip
engineering tools are split in two parsers: a front-end (common to all source languages)
and a back-end (specific for each language) using, what we call, collaborative
compilation.

• It may, also, be used by companies developing GUI builders, component libraries, etc.
to allow the source code, and it’s corresponding OOAD model embedded in the code,
generated by their products to be easily imported into any model by CASE tools
supporting UML.

• The programmer can easily change the code and the model during testing and
debugging, due to the simplicity of the language and the easiness of learning it,
avoiding on necessary guessing by the round-trip tool.

• It allows reverse engineering of non-CASE-tool-generated OO code to be imported
correctly if it is enriched with UOL code. This can be done manually or with a software
product that acts as a Wizard, that can learn from previous experience asking to the
programmer questions of the sort of “Is this declaration an attribute or does it represent
an association?” “Is this pointer a shared aggregation or simply an association?” etc.

• Makes interoperability, both for the model and the code, between CASE tools
immediate and with more semantics than interchange formats allowing for more control
during transfer between tools.

6.1.3.1.2 Modular Structure and Flow of a Round-Trip Engineering Tool
As we can see in the Figure 6.1 we describe the structure of the reverse engineering task modules.

Repository
Source Code with
Embedded UOL

Generator

Enriched Source
Code

Correct Executing
Code

Source Code
PARSE

UOL PARSER

Transient
UML

Model

Transient and
Repository Matcher
RI STRUCTURER
AND IMPORTER

Figure 6.1

Full UML Support

(UOL 1.2)

- 166 -

As can be seen in the diagram, once the code has been tested and debugged, re-importing requires
three modules.

The first two are parsers of UOL and the target source language. They are responsible for parsing
the source code and building, in transient memory, an OO model. We call this process collaborative
compilation, because each parser collaborates with the other in building the OO model from the
input. The UOL parser (if we have chosen to generate full UOL in the source language) starts this
process. This module starts processing UOL sentences and building in memory an equivalent to the
repository OO model. Once it detects input in the target source language it passes control to the
second parser which does the same with the language sentences it is capable of parsing until it
detects UOL code at which moment it returns control to the UOL parser. This process is repeated
until the complete program has been processed.

The third is the repository and transient model matcher. This module will compare the transient
model built by the parsers and update the repository. During this process, if the CASE tool supports
version control of the OOAD model, the differences between the repository version and the current
transient version will be stored for future use.

Since one of the most arduous and difficult tasks is checking the consistency of the program, it is of
the most interest to use a meta-model with the maximum integrity constraints embedded within.
This permits delegating to the meta-model the task of checking the consistency of the program
instead of doing it the parsers (especially the target source language parser).

If we design the round-trip tool with this structure, we can easily see that both, the UOL parser and
the matcher/importer, are target language independent and, therefore, reused for all languages. One
last requirement to simplify the target language parser and make most of the tool language
independent consists in embedding, in our meta-model, the integrity and/or consistency constraints
of UML. If this is done we will relieve, the target source parser of any semantic/consistency
analysis checking and we will be in a position of being able to build round-trip engineering tools
for any language with only a very simple source target language parser.
Once we have built the UOL parser, the constraint-checking meta-model and the repository-
transient model matcher and importer we will be able to produce round-trip engineering tools for
any language with a reduction of over 80% of the efforts that have been necessary until now. This
will allow CASE tool builders to offer round-trip engineering for all the languages they choose to
support, instead of the few they are now offering and accessing larger markets than they presently
can.

Reverse engineering with UOL is not a single pass process or scanning, although this does not
imply a loss of efficiency. OO programming languages may have different structures physically,
C++ has .h and .cpp (where we can define more than one class), Eiffel has only .e entries each
representing one class, etc. This implies that a UML model when translated to code can be
distributed in different ways depending on the target language. To cope with this, we rely on a
MDL (Model Description Language à la PDL of Eiffel) and also on building the transient model
iteratively.

This iterative process will consist in incrementally instantiate model elements and/or enrich them
from smaller or larger pieces described in each target language file. When processing is complete
we will have a complete model in transient memory that can be matched with the repository model.
This iterative and incremental process is by no means inefficient because we process the source
input to build our model only once except for the same syntactic and semantic processing that may
be multi- pass as in all compilers.

Additional Specification

(UOL 1.2)

- 167 -

One final comment on the two alternatives of generating UOL code. As we have mentioned
previously, when the CASE tool generates code it has two alternatives. The first consists in
generating the full UOL code for the model. This implies a redundancy with the target language,
because all the OOAD constructs that can be expressed in the target language are written twice. In
this case, the UOL parser will have the initiative and it will be its responsibility to call the target
language parser. If we choose to generate only the minimum UOL code necessary, then, control
will depend on both parsers depending on what type of sentences are being read at each moment.

Since one of the important objectives is to allow the programmer to maintain both the target
language code and the UOL code, we prefer generating always full-UOL because it will make the
program more readable.

In the Figure 6.2 we show the process that is involved in round-trip engineering with UOL.

Generate Embedded
UOL code

Debug/Maintain
(Programmer)

Parse UOL

Match
Transient Model

Import/Reestructure
Repository

Parse
Source Code

Add Source Code to
Transient Model

Add Code to
Transient Model

[found errors]

[no errors]

[not end]

[not UOL code]

[found UOL code]

[end]

[not source code]

[found source code]

Figure 6.2

Full UML Support

(UOL 1.2)

- 168 -

Besides syntactic and semantic analysis, there are important integrity and consistency checking that
the parsing process can do. UML is a very complete and large language and it is easy, that in the
process of maintaining a program, a programmer can make errors. Some of the constraints of the
meta-model (ex. services used in sequence diagrams and not developed in the objects because of
changes, etc.) may not be respected as we have mentioned previously and it is necessary to detect
them before importing. Before we reimport the models reengineered and update the repository, it is
important to check the full consistency of the transient model. In the process of compiling the
program, the tool can inform the programmers of errors they have made, allowing them to correct
the program before updating the repository. In the same way, the programmers may not have been
aware of the implications of some of their changes with respect to the previous version or the other
parts of the system developed by others. The matching process will allow detection of these errors
or inconsistencies and warn the programmers so that they might take action.

6.1.3.2 UOL as a Textual UML
The OOA&D Task Force put in the road map the need of defining a textual UML. There are many
reasons for this need. We have already given several reasons for this previously. There are reasons
both from the point of view of the need of humans reading and processing textually the models as
well as for compilers, code generators, metric evaluators, etc. that normally require working with
text.

Many universities researching on formal methods and several companies working on critical
systems have started adding formal specifications to UML. These users need a textual language to
process for specification validators, proof generators, theorem demonstrators, code generation, etc.

UOL with full UML support is a complete textual representation of UML and completely adequate
for these requirements.

6.1.3.3 UOL as an alternative to graphics for visually impaired individuals
Another milestone that the OOA&D road map has is developing an alternative to UML's graphics
for visually impaired software engineers.

Object orientation is possibly the technology that requires more intensively the use of CASE tools.
A software engineer using OO will have to handle hundreds, if not thousands, of classes and
components. The only feasible way to control this volume of information is using CASE tools that
allows us to organize our designs, find components to reuse, etc.

Visually impaired software engineers have been severely limited in using CASE tools because of
their graphical interface. This limitation will therefore be worse in object orientation and possibly
limiting many their professional activity to programming tasks instead of analysis and design.

The only valid alternative to graphics for visually impaired individuals is a textual full life-cycle
language with all analysis and design constructs. UOL, being a full textual representation of UML,
completely satisfies this requirement.

References

(UOL 1.2)

- 169 -

7 References

[RC93] Tom Atwood, Douglas Barry, Joshua Duhl, Jeff Eastman, Guy Ferran, David
Jordan, Mary Loomis, Drew Wade, “ The object database standard ODMG-93
release 1.2”, edited by R.G.G. Cattell,Morgan Kaufmann, 1996

[Bock/Odell97a] Conrad Bock, James Odell, “A more complete model of relations and their
implementation”, Journal of Object-Oriented Programming, June 1997, Vol. 10,
No. 3

[Bock/Odell97b] Conrad Bock, James Odell, “A more complete model of relations and their
implementation: mappings”, Journal of Object-Oriented Programming, October
1997, Vol. 10, No. 6

[DECexpress 92] Digital Equipment Corp.:
DECexpress – EXPRESS Language Reference Manual, Order Number: AA-
NKWA-TE, Digital Equipment Corp., Maynard (USA), 1992

[EIA/CDIF97] EIA/CDIF Technical Committee, “The UML meta-model and the CDIF Transfer
Format”, June 19, 1997

[Gray et al92] Peter M.D. Gray, Krishnarao G. Kulkarni, Norman W. Paton, “Object-Oriented
databases, A semantic approach”, C.A.R Hoares series, Prentice-Hall, 1992

[ISO EXPRESS RM 94] International Organization for Standardization (eds.):
Industrial automation systems and integration – Product data representation and
exchange – Part 11: Description methods: The EXPRESS language reference
manual Reference number: ISO 10303-11:1994(E), International Organization
for Standardization, Geneva (CH), 1994

[Meyer92] Bertrand Meyer, “Eiffel: The Language”, Prentice-Hall, 1992

[MOF97] Unisys et al., “Meta Object Facility (MOF) Specification”, 1 September 1997

[OCLv1.197] Rational et al., “Object Constraint Language Specification” version 1.1 ,1
September 1997

[Odella] Odell, James; “Six different kinds of composition”, Journal of Object-Oriented
Programming, Vol. X, No. 5

[Odellb] Odell, James; “A foundation for composition”, Journal of Object-Oriented
Programming, Vol. X, No. 7

[OML96] Donald Firesmith, Brian Henderson-Sellers, Ian graham, Meilir Page-jones;
“OPEN Modeling Language (OML) Reference Manual” Version 1.0 8 December
1996

Full UML Support

(UOL 1.2)

- 170 -

[Peralta97] Alonso J. Peralta, “UOL: A Full Life-Cycle Object-Oriented Software
Development Language”, 1995 draft (complete specification); Ph.D. Thesis,
1998

[Schenck, Wilson 94] Schenck, D., Wilson, P.:
Information Modeling the EXPRESS Way, Oxford University Press, New York
(USA), 1994

[SMIF RFP 97] Object Management Group (eds.):
Stream-based Model Interchange Format – Request for proposal, OMG-
Document: ad/97-12-03, Object Management Group, Farmingham, MA (USA),
1997

[Tanzer95] Christian Tanzer, ”Remarks on object-oriented modeling of associations”,
Journal of Object-Oriented Programming, February 1995, Vol. 7, No 9

[UMLv0.996] Rational “The Unified Modeling Language for Object-Oriented Development
(Version 0.9)”,1996

[UMLv1.097] Rational “The Unified Modeling Language for Object-Oriented Development
(Version 1.0)”, January 1997

[UMLv1.197] Rational et al.“UML Semantics (Version 1.1)”, 1 September 1997

[UML Notation Guide 1.1 97] Rational Software Corp., et al.:
Unified Modeling Language 1.1 - Notation guide, Document: ad/97-08-05,
Rational Software Corp., Santa Clara (USA), 1997

