Universal Object Language 1.2

Specification

Authors

Recerca Informatica
Daimler-Benz Research and Technology

OMG Document: ad/98-07-07
Version 1.2 /T-UOL-19980707
July 7t 1998

Copyright © 1998 Recerca Informatica, SL
Copyright © 1998 Daimler-Benz Research and Technology

The companies listed above hereby grant a royalty-free license to the Object Management Group,
Inc. (OMG) for worldwide distribution of this document or any derivative works thereof within OMG
and to OMG members for evaluation purposes, so long as the OMG reproduces the copyright notices
and the below paragraphs on all distributed copies.

The companies listed above have granted to the Object Management Group, Inc. (OMG) a
nonexclusive, royalty-free, paid up, worldwide license to copy and distribute this document and to
modify this document and distribute copies of the modified version.

The copyright holders listed above have agreed that no person shall be deemed to have infringed the
copyright, in the included material of any such copyright holder by reason of having used the
specification set forth herein or having conformed any computer software to the specification.

NOTICE : The information contained in this document is subject to change with notice.

The material in this document details a submission to the Object Management Group for evaluation in
accordance with the license and notices set forth on this page. This document does not represent a
commitment to implement any portion of this specification by the submitters.

WHILE THE INFORMATION IN THIS PUBLICATION IS BELIEVED TO BE ACCURATE, THE
OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE MAKE NO WARRANTY
OF ANY KIND WITH REGARD TO THIS MATERIAL INCLUDING, BUT NOT LIMITED TO THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
The Object Management Group and the companies listed above shall not be liable for errors
contained herein or for incidental or consequential damages in connection with the furnishing,
performance or use of this material.

The copyright holders listed above acknowledge that the Object Management Group (acting itself or
through its designees) is and shall at all times be the sole entity that may authorize developers,
suppliers and sellers of computer software to use certification marks, trademarks or other special
designations to indicate compliance with these materials.

This document contains information that is patented which is protected by copyright. All Rights
Reserved. No part of the work covered by copyright hereon may be reproduced or used in any form
or by any means--graphic, electronic, or mechanical, including photocopying, recording, taping, or
information storage and retrieval systems--without permission of the copyright owner. All copies of
this document must include the copyright and other information contained on this page.

The copyright owners grant member companies of the OMG permission to make a limited number of
copies of this document (up to fifty copies) for their internal use as part of the OMG evaluation
process.

RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by government is subject to
restrictions as set forth in subdivision (c) (1) (ii) of the Right in Technical, Data and Computer
Software Clause at DFARS 252.227.7013

OMG® is a registered trademark of the Object Management Group, Inc.

The most recent updates of the Universal Object Language can be found, via
worldwide web, at: http://www.recercai.com

Primary Contacts for the UOL submission:

Recerca Informatica Joan M. Moral uol @arrakis.es
Damler-Benz Research and | Mario Jeckle mario.jeckle@dbag.ulm.DaimlerBenz.COM

Technology

Table of Contents

1

The table of Contents contains entries for both the Specification and the Appendices.

Overview 7

11 [T oo [HTox o o FOU OO PO
111 Rationale
112 L T0T=1EST=TaTo o o] =0 1 A= TR

12 Structure of ThiS SUDMISSION......c.ciuriiiriee ittt bbb
121 Universal Object Language submission Overview
122 Universal Object Language (UOL) APPENUICES.......cvurueerrerierieireressresesessseesesssssessssesssssssssssssssssesssns

13 ReSOIULTON Of REGUITEMENTSc.vierirericieeteie et s
131 Mandatory Requirements
132 OpPtioNal REQUITEMENES......coierieeirieeeieeeei e ses s b s

14 Resolution of RFP [SSUES 10 D8 DISCUSSEX.........ccuririuieeiririreisirirese sttt

15 Business Requirements
151 Copyright Waiver
152 PrOOf Of CONCEPL......oececeeeccc sttt ettt bbb s s st es s sttt s naas

16 Acknowledgements
16.1 UOL CO-SUDIMITEEIS......ceieeeeetseeisieisee ettt bbbttt
16.2 UOL SUPPOITEIS ... vittriresesisisesesisisesestsssesessssseststssstssssssssstsbssssstebssssetssesssetebssssstebesssetesesssnsesesssnsesesssnsesesnsns
1.6.3 Additional Contributors and SUPPOITErSccverrirerereresersesessesesesessssssesessessesesssssessessssssssssssssessens

Facility Purpose and Use

21 INEFOAUCTTION ...ttt
22 WhatisaTextual OO Full Life-cycle Language ?.......c.cccovvevenne.
23 Why weNeed aFull Life-cycle Language........c.coveeveverererereenenenens
24 Person to Tool COMMUNICALIONceveeererereeirrereseeereseseeeseseeseeenens
25 UOL asaRound-Trip Engineering Language...........c.coveereeeneeennne

251 Why Round-Trip Engineering iS NeCeSSaryc.ccoveenieennns

252 What is a Round-Trip Engineering Language?...........ccuceuuu.
26 Tool to Tool COMMUNICAIONc.cereurereerereeireeeereeeeseeseseeseseseseseeeens
27 Conclusions

The Universal Object Language Specification 23

Bl UOL SYNLAX ..cuitirtiierieesinssesseeseessssessssssssssssssssessessessessesssssssssssssassasssssessessessessssssssssassassssassassessessesssssssnsassssansssns
311 Lexical Specification

312 SYNEAX SPECITICALION.......ceecreiesicteie ettt b s s ae s s s nantes
313 [T eTo T [T aTo RN (0] (= a1 AT oo PSR TPTTR 40
314 UNITCODE ..ottt ettt a e s bbb bbbt bbb bbb 40
4 The XML-DTDs
41 TheMapping between UOL and XMLcccccovvvevveiceenereceiennnns
411 JUSEIFICAEION. ..ottt
4.1.2 The mapping between UOL and XML
5 Mappings 62
5.1 Themapping between UOL and MOF ...t sssssssssssssssessssssssssssssssssssssssssssessensans 62
511 Direct mapping
512 Support for Meta-MOdel EXTENSIONS.........ccvcrrirerrese s ssssse s ssasesssssesesssnsees 63
52 Themapping between UOL and CDIF ... sesssssssessssssssesesssssssssssssssssssssssessensens 63
521 Introduction
522 TrANSFEY ENVEIOPE ...ttt s
523 TrANSFEI CONEENTS..... .ttt a et s bt n st nensntees

524 Transfer Example and UOL Mapping
5.3 Themapping between UOL and STEP/EXPRESS..........coornccenisese et sssssessssssssssesssssans %

531 DBLA LY PES ... eeeertrirerisis ettt se bbbttt sttt bbb E et A A E e bbb A bbb bbb bbb b bt b beneeas 97
53.2 1= ox =T = (o P 108
533 INEErfaCE SPECITICALION........cvecrreeerre et 154
534 Expression
535 EXECULADI € SEALEIMENTScceieetreeeeeireccie sttt bbbt
5.3.6 BUITE-IN CONSLANES.......cueeuiteerereetsest ettt et ea s s s s b bbbt ennis
537 BUITE-IN FUNCHIONS.....c.otetteectreetse ettt s sttt
Additional Specification

6.1 FUIT UL SUPDPOIT ...ttt et s st s b st es st es e bbbt b s s b s s st b s ens
6.1.1 JUSLITICBETON. ...ttt
6.1.2 Mapping between UOL and UML with UML constructs....
6.1.3 Benefits of UOL With UML CONSITUCES.......c.oiuriiinieririeeeneieieisesisee e sssennas
References 169
UOL Grammar without UML constructs Ap-5
UOL Grammar with UML constructs Ap-12
UOL code for the MOF meta-meta-model Ap-32
UOL grammar in WSN format: Ap-49

ASCII, UNICODE and ISO 10646 Character Set Ap-65

Overview

(UOL 1.2)

1 Overview

1.1 Introduction
The following companies are pleased to co-submit to the OMG ad/97-12-03 RFP: Stream-based

Model Interchange Format the Universal Object Language 1.2 specification (hereafter referred to
asthe UOL):

Recerca Informatica, SL

Daimler-Benz Research and Technology

In accordance to the RFP the main purpose of UOL isto:

Establish an industry standard specification for a stream-based model interchange
format,

Provide a generic format that can be used to transfer awide variety of models,
Demonstrate that it can be used to exchange OM G Object Analysis and Design Facility
(OADF) compliant models (UML based) and models compliant to other M OF-
compliant meta-models and extensions (e.g. Workflow Management Facility and
Business Object Facility meta-models), and
Leverage existing vendor-neutral transfer formats as much as possible.
This submission mainly consists of:
The Universal Object Language Specification
The XML-DTDs
Mappings
The mapping between UOL and MOF
The mapping between UOL and CDIF
The mapping between UOL and STEP/EXPRESS
Additional Specification
The mapping between UOL and UML with UML constructs

Supporting Appendices

Introduction

(UOL 1.2)

This submission defines these standards and provides proof of concept that covers key aspects of
the RFP.

1.1.1 Rationale

UOL isahuman readable format that allows representing MOF and UML modelsin avery
compact way and easily learnable and usable by any person. The companion XML-DTDs allows
publication of UOL in an industry standard format and facilitatesits use by all XML supporting
tools.

There are several reasons that make UOL a good transfer format:

It ishigh level and thus clearly compact.

It supports the transfer between any pair of toolsin batch and real-time.
It supports the human-tool transfer.

It supports human processing.

Thefirst reasonis easily supported by a quick scan through the UOL grammar, it has constructs
with adirect mapping to the MOF ones that avoid the assembler-like look of other transfer
languages.

UOL supports the transfer between tools; in fact text isthe most easily transferable format. The

tool only needsto have a parser, as the one provided within this proposal, to translate the
information into its particular format. UOL can also be easily generated by a simple traverse of the
information contained in the repository. As a proof of concept this process has been done by
Recerca Informatica: arepository is queried for its contents, or parts of it, and the repository returns
aUOL stream with the required information. Then, this stream can be introduced again in the
repository, the same or a new one. Inserting UOL text into the repository is also avery easy

process: the parser receives the UOL stream and popul ates the repository with the contained
information.

The human readability and processing of UOL text is a consequence of its high level nature. The
constructs of UOL evolve from analysis and design concepts and Eiffel-like syntax, therefore a
software engineer should be able to read and use the UOL as easily as the graphic notation.

1.1.2 Goals and objectives

The objective of this submission isto specify the Universal Object Language (UOL) and its
companion XML-DTDs as the Stream-based model interchange format.

The main goal of the UOL isto provide aformat allowing for the most efficient batch or real-time
transfer between tools. To allow for this efficiency the format must allow a very compact
representation of the MOF and UML models and the MOF meta-data. The UOL, withisrich
semantics, offers this compact representation while at the same time being human readable.

Human readability is another goal of the UOL. There are several reasons for this goal. Output of a
tool, in many situations, is susceptible of being analyzed by a human before inputting it to another
tool. A very special and important case of thisis round-trip engineering, which we will discuss
further onin this document. Humans use other tools than CA SE tools such as word processors or
compilers, and the transfer format should also be valid for these tools. Being that the only format
accepted universally by any tool isthe human readabl e text the UOL assumes this requirement.

Another goal of this proposal isto allow publishingin the XML format parts of arepository.
Given the importance of XML, the availability of many tools and products based on XML and the
reasonable need to make the repository accessible in this format we have devel oped the necessary
DTDsfor UOL.

Overview

(UOL 1.2)

Although the MOF allows for many meta-models, UML is the first one supported and the main
meta-model CASE toolswill support. Therefore, onefinal goal of this proposal isto simplify and
optimize transfer of UML models. This simplification and optimization is obtained extending the
basic UOL with UML constructs giving the most compact possible transfer format. This extension
is proposed as non mandatory or compliant.

Additional benefits of this extension are having a UML textual representation and being avalid
aternative to graphical UML for visually impaired individuals. These two features are two
milestones in the OOA& D Task Force road map.

1.2 Structure of This Submission

This section briefly describes the major portions of the Universal Object Language (UOL)
submission. The submission is made up of two documents. The first is this document titled
Universal Object Language 1.2 Specification. The UOL Specification section gives the UOL
specification and the XML DTDsthat are being proposed for standardization. The submission also
includes several mappings:

UOL-MOF basic requirement of the SMIF RFP

UOL-CDIF to allow transferring of repositoriesin CDIF format to UOL

UOL-STEP/EXPRESS to allow transferring of STEP/EXPRESS models to MOF based
repositories and vice-versa.

This submission also includes an additional specification to the SMIF RFP: direct support of the
UML meta-model constructsto simplify and allow the utmost compact transfer of UML models.

The second document is the Universal Object Language Appendices, which describes the grammar
of UOL in different formats (BNF format with and without UML constructions), the WSN format
and the character set used in UOL mapped to the different more used representations.

1.2.1 Universal Object Language submission Overview

1.21.1

1.21.2

1.2.1.3

1214

The UOL specification section describesthe UOL, the XML-DTDs, mappings and an additional
specification to the SMIF RFP.

Overview

Provides an introduction to the Universal Object Language submission. The key RFP
requirements summary and how this submission addresses the RFP requirements is addressed.
The key contributors to the specification are acknowledged.

Facility Purpose and Use

Viewing the SMIF as a communication language, this chapter reviews the different types of
communications needs that exist. It then describes why atextual OO full life-cycle language, such
asUOL, fulfills all these needs.

The Universal Object Language Specification

Together with the next section thisis the main portion of the UOL submission. Thelexical and
syntactic specification is given. Semantics are described and examples are given of each construct.

The XML-DTDs

Together with the previous section thisis the main portion of the UOL submission. This chapter
justifies the need of an XML representation of UOL and describes the mapping between UOL and
XML with DTDsgiving several examples.

Resolution of Requirements

(UOL 1.2)

1.2.1.5

1.2.1.6

Mappings

Describes the mappings between UOL and several languages and models. More precisely, it
describes the UOL-MOF mapping, basic requirement of the SMIF RFP. It also describes the UOL -
CDIF to alow transferring of repositoriesin CDIF format to UOL to preserve previous investments
of tool builders. Finally, a mapping between UOL and STEP/EXPRESS is presented following the
SMP RFP requirement to allow transferring of STEP/EXPRESS models to MOF based repositories
and vice-versa.

Additional Specification

An additional specification to the SMIF RFP is given to support the UML meta-model constructsto
simplify and allow the utmost compact transfer of UML models. Additional advantages are being
ableto use UOL as around-trip engineering language, a UML textual language and an alternative
to graphicsfor visually impaired individuals. These last benefits are milestonesin the OOA&D

road map.

1.2.2 Universal Object Language (UOL) Appendices

1221

1.2.2.2

1.2.2.3

1224

This section describes the various appendices that support this specification. Thisinformation
includes the grammar of UOL in different formats: BNF format with and without UML
constructions and the WSN format. The character set used in UOL with the different more used
representations is attached.

Appendix A: UOL Grammar without UML constructions

This section gives the UOL grammar in a BNF format, without the UML constructions, i.e. UOL
independent on any Meta-model, only with MOF asit Meta-meta-model.

Appendix B: UOL Grammar with UML constructions

This section gives the UOL grammar in a BNF format, with the UML constructions, i.e. UOL with
an extension of UML constructions for give an upward compatibility with UML based models.

Appendix C: UOL grammar in WSN format
This section gives the UOL grammar in WSN format. This format is used in the STEP/EXPRESS
mapping.

Appendix D: ASCII, UNICODE and ISO 10646 Character Set

Being that the proposal shall support use of international standard code-sets, a code chart of the
most important code-sets is attached.

1.3 Resolution of Requirements

This section describes how this submission meets the key requirements identified in the RFP.

1.3.1 Mandatory Requirements

RFP Requirement How submission addresses the requirement

Use the MOF as its meta-meta-model. UOL has MOF asits meta-meta-model and it

describes all MOF conceptsin addition to UML and
other object engineering related concepts.

The Section 4.1 addresses this requirement by
detailing the complete mapping between MOF and
UOL.

-10-

Overview

(UOL 1.2)

RFP Requirement

How submission addresses the requirement

Provide a compl ete specification of the
syntax and encoding needed to export/import
models and meta-model extensions included
in-line as part of the transfer stream. This
syntax and encoding shall have an
unambiguous identification to support
evolution of thistechnology.

UOL provides an extension mechanism based on
stereotypes and tagged values. This mechanism
provides the required meta-model and model
extension capabilities.

The Section 4.1 addresses this requirement.

Provide a means for unambiguous
identification of any concept specifiedina
MOF-compliant meta-model that is
referenced (but the specification is not
included) in atransfer stream.

All concepts expressed in MOF are unambiguously
expressed in UOL. Thisallowsusing UOL astransfer
format for any MOF based solution.

The Section 4.1 addresses this requirement by
detailing the complete mapping between MOF and
UOL.

Demonstrate support for import/export of
UML models and the UML meta-model.
This demonstration shall include
demonstration of around-trip model
exchange without information loss.

The SMIF RFP requires that the interchange format
should be independent of the semantic constructsin a
meta-model.

The Section 4.2.1 addresses this requirement.

However, UOL also has adirect support of the UML
constructs because of itsimportant benefits. This
support is proposed as hon-mandatory.

Sections 4.2.2 and 8.2 address this proposal.

Support use of international standard code-
sets.

UOL supports the use of UNICODE and ASCI| asits
code-set.

The Section 3.2 addresses this requirement.

1.3.2 Optional Requirements

RFP Requirement

How submission addresses the requirement

A compact data representation in addition to
the text-based representation as an alternative
to the interface-based representation defined
inthe MOF.

UOL isintended to serve as model communication
language in several situations where humans may be
involved. Therefore it includes full UML and other
object engineering concepts support. Situationsin
which amore concise form is required may appear.
To solvethisscenario UOL includes also amore
compact representation.

The Section 3.2 addresses this requirement.

Upward-compatibility with the EIA/CDIF
1994 (CDIF94) Transfer Format standards.

UOL has been devel oped to express object analysis
and design conceptsin aseamlessway. To achieve
this goal we have developed a new format instead of
trying to extend a non-Object-Oriented existing one.
However, to protect the investments already donein
CDIF, amapping between CDIF and UOL and a
conversion utility have been devel oped.

The Section 4.3 addresses this requirement.

Contain an unambiguous, compl ete mapping
of the conceptsin the CDIF94 meta-meta-
model to the conceptsin the MOF.

To protect the investments already donein CDIF a
mapping between CDIF and MOF has been
developed. Thereisamapping between CDIF-UOL
and one between UOL and MOF, therefore, the
mapping CDIF-MOF is via UOL.

-11-

Resolution of RFP Issues to be Discussed

(UOL 1.2)

| dentify the impact of the proposed SMIF
specification on transfer files produced using
the CDIF94 Transfer Format standards.
Thisincludesidentification of any changesto
CDIF transfer filesrequired to produce valid
syntax and encoding per the proposed SMIF
specification. This requirement may be met
by providing a specification for aconversion
utility for transfer files created using the
CDIF94 Transfer Format standards to make
them compliant with the proposed SMIF
specification.

UOL does not require any changeto CDIF. However,
since UOL is not an extension of CDIF amapping
between CDIF and UOL and a conversion utility have
been developed.

The Section 4.3 addresses this requirement.

Provide transfer stream examples that use
concepts from other industry standard meta-
models.

To alow UOL to support STEP/EXPRESS a mapping
and conversion utilities have been devel oped.
Examples are included in this proposal.

The Section 4.6 addresses this requirement.

Identify specific modeling language
differences between EXPRESS and the
MOF/UML and discuss ways to map
between these languages

The Section 4.6 addresses this requirement.

I dentify the impact of the proposed SMIF
specification on existing schema definitions
and transfer files produced using STEP
EXPRESS. Thismay include identification
of any changesto STEP EXPRESS files
required to produce valid syntax and
encoding per the proposed SMIF
specification. Submissions may include a
specification for converting STEP schemas
and/or transfer files created using STEP
EXPRESS standards to make them compliant
with the proposed SMIF specification

The Section 4.6 addresses this requirement.

1.4 Resolution of RFP Issues to be Discussed

RFP Issue

How submission addresses the issue

Meta-Object Definition Language (MODL)

There is not any connection with the MODL.

Object Constraint Language (OCL)

OCL is embedded in UOL as formal constraint
language. In addition free text constraints are also
allowed.

The Section 3.1 addresses this requirement.

Support semantic interoperability between
tools that share and manipulate STEP
schemas and STEP schemainstancesin
addition to tools that support sharing and
manipulation of OAD models.

The Section 4.6 addresses this requirement.

-12 -

Overview

(UOL 1.2)

Include information on how to perform
conformance tests (for checking syntax and
transfer stream specific validation rules for
schemas and schemainstances) on transfer
streams prior to import into other
applications. This may include
recommendations for adding additional
functionality to the MOF to satisfy transfer
file conformance test requirementsidentified
by the STEP community. Proposals should
discuss an approach to address this difference
in problem scope. For example, proposals
may describe how to use the MOF to
describe STEP schemas at the same level as
the UML meta-model.

The Section 4.6 addresses this requirement.

The connection, if any, between the proposed
transfer format syntax and encoding and the
Objects-by-Value syntax and encoding.

There is not any connection

1.5 Business Requirements

1.5.1 Copyright Waiver

In the event that this specification is adopted by OMG, the submitters grant to the OMG, anon-
exclusive, royalty-free, paid-up, worldwide license to copy and distribute this specification
document and to modify the document and distribute copies of the modified version. For more
detailed information, see the disclaimer on the inside of the cover page of this submission.

1.5.2 Proof of Concept

In order to test the UOL concept it has been integrated in a CA SE tool under development. The tool
is capable of exporting and importing UOL code without any loss of information. The processis
quite straightforward; the repository is queried for its contentsin UOL format. The resulting stream
can be redirected towards afile or a TCP/IP connection. The resulting model can be edited or
processed in different ways (i.e. user implemented metrics or rule checkers) and then re-imported
in order to keep the repository up to date. Thisis an example of the round-trip capacities of UOL
but, of course, the stream can be presented to another repository to make a duplicate of the original

one.

The implementation of such process has been done through a parser integrated within the tool. The
parser receivesthe UOL code and translates it into the specific repository format. The generation of
the UOL code has been done with atraverse utility that generates the UOL code for each element it

found in the repository.

- 13-

Acknowledgements

(UOL 1.2)

1.6 Acknowledgements

The following section lists the team members that worked on the UOL submission during theinitial
and revised submissions. The members of the core team that designed and influenced the UOL
model arelisted below. The primary contact in each company islisted first.

1.6.1 UOL Co-Submitters

Recerca Informatica Joan M. Moral uol@arrakis.es

Josep Oncins recercai@arrakis.es

Teresa Masot library@arrakis.es

Albert Sorroche 4005868 @est.fib.upc.es

Guillem Valles e6745766@est.fib.upc.es
Daimler-Benz Research and Mario Jeckle mario.jeckle@dbag.ulm.DaimlerBenz.COM
Technology

1.6.2 UOL Supporters

Telefénica I1+D J.Hierro jhierro@tid.es
Universitat Politecnica de Allen Peralta peralta@lsi.upc.es
Catalunya

1.6.3 Additional Contributors and Supporters

The co-submitters of the UOL submission appreciate the contributions and support of the following
individuals during the UOL submission and eval uation process:

AliciaAgeno (Universitat Politécnica de Catalunya), Grady Booch (Rational, Inc.), Derek Coleman
(Hewlett-Packard Laboratories), Xavier Escudero (Recerca Informatica, SL), Antoni Gonzalez
(ICT Electronics), Brian Henderson-Sellers (University of New South Wales), |var Jacobson
(Rational, Inc.), Bertrand Meyer (ISE, Inc.), James Oddll (Intellicorp, Inc.), Horacio Rodriguez
(Universitat Politécnica de Catalunya), Jordi Rosell (Tao, SA), James Rumbaugh (Rational, Inc.),
Joan Serras (Aceri, SA).

NOTE: In some cases, the individual s are methodol ogists whose writings and lectures influenced

and helped the creation of this UOL submission or were reviewers of the first version of UOL
(Eiffel+), developed as a PhD thesis.

-14-

Facility Purpose and Use

(UOL 1.2)

2 Facility Purpose and Use

2.1 Introduction

The UOL isintended to support awide range of usage patterns and applications. This capability
comes about because UOL isatextual OO full life-cycle language. Understanding what is a textual
OO full life-cycle language will allow usto understand is usefulnessin awide range of scenarios.

2.2 Whatis a Textual OO Full Life-cycle Language?

We define atextual OO full life-cycle language as an object engineering language that is capabl e of
describing all OOAD constructs and concepts and conceptually being executable.

Naturally, when we say when we say all OOAD constructs and concepts we should refer to who's
definition of OOAD. Happily, OMG’sinitiative to standardize an OOAD modeling language
allows usto define UOL based on OMG’'s UML 1.1 standard.

In 1994, the UOL co-author, Allen Peralta, developed an OO full life-cycle language based on
Eiffel® as histhesis. Thislanguage was called Eiffel+2 and was finished in March 1995 and
reviewed by Bertrand Meyer that same year. The initial ideawas to have atextual language that
would allow describing all OOAD elements, generally accepted at that time, and to obtain different
products at each development phase. It also assumed that graphical languages where neither
adequate for all tasks nor for all people. Accordingly, atextual language that gave support to
OOAD graphical languages could complement them in such away that at each moment one could
choose the best representation paradigm.

Being that Eiffel was, and is, considered one of the best-engineered languages, if not the best and
certainly the most complete and easiest to learn, it was chosen as the basis on which to develop the
new language. Developing a new language from scratch was discarded because of the difficulty of
introducing a new language to the OO community and because it would seem that we already had a
surplus of OO languages.

Most of the elements, defined in UML, were already present in 1995, and included in Eiffel+.
Having much of the work already done and being that readability of programsisamust in any
language the decision to further expand Eiffel+ into UOL supporting UML was immediate.

The transition from Eiffel+ to UOL has been very simple and most of the efforts have been in
trying to make the language as simple as possible. Even though we have tried, to the utmost, to
emulate Bertrand Meyer, we recognize we have added many more new keywords than we would
like but it has seemed necessary for readability purposes.

! Eiffel is a registered trademark of NICE.
%The name Eiffel+ was used exclusively for the thesis.

-15-

Why we Need a Full Life-cycle Language
(UOL 1.2)

2.3 Why we Need a Full Life-cycle Language

When a software engineer devel ops an object-oriented system he must describe amodel using OO
analysis, design and programming concepts. Models are, essentially, away of communicating
solutionsto a problem. There are three types of communications that are necessary:

person to person
person to tool
tool to tool

Person to person communication can be done verbally or through documentation. Verbal
communication, although essential, resides outside the purpose of UOL.

Communication through documents requires maximum formalization to reduce misunderstandings
to the least possible. Analysis, design and programming languages are away of formalizing
communications. Thisformalization is especially efficient if the languages are standardized and
universally known. In this sense UML-MOF is an important step in this direction.

The models we create must be represented graphically and/or textually with tools, which may vary
from atext editor to a CASE tool. If the tool supports the same concepts that must be used to
describe the model the software engineer's task is much easier, allowing concentration on the
problem instead of the means to make the description. Therefore, we need tools that support the
standard OO analysis, design and programming concepts.

One of the important features of OO isits support of what is called "seamless transition”. That is,
that the same concepts are used throughout the whole life-cycle. However, to obtain this seamless
transition it is not only necessary to use the same concepts at every stage but also to use at every
stage tools that support the same concepts. The problem arises, naturally, that at some stageswe are
forced to use, to communicate with, tools that do not support OO concepts.

A full life-cycle language is therefore alanguage that allows us to use and to communicate always
with the same OO constructs at any stage and with any tool or between any pair of tools.

Let usreview the two types of communications in which afull life-cycle language can be used.

2.4 Person to Tool Communication

There are many tools a software engineer may use: compilers, editors, CASE, GUI builders, etc. In
some cases it is possible for a person to communicate directly with an OO tool based on UML (e.g.
a CASE tool) but in many other situationsthisis not the case.

Two examples of this might be:

input to acompiler, even if a CASE tool has generated it, must be manipulated during
debugging with aprogram editor

creating analysis documentation extracted from the repository to aword processor
In this situation the seamless transition is not maintained unless we can continue to use our OO
concepts even with atool that does not support them. If we have maintained consistently our OO

representation, once we finish working with our non-OO tool, we will be able to import the result
of our work "seamlessly" to atool supporting the OO concepts. To maintain this consistent view

-16 -

Facility Purpose and Use

(UOL 1.2)

and given that most of our work with non-CASE tools is done textually, what we need isto be able
to have all our texts embedded in OO constructs and this is possible with atextual OO full life-
cyclelanguage such asUOL.

Thereis, however, an absolute requirement that UOL or any other textual OO full life-cycle must
comply with to be effective in this situation: simplicity and ease of learning and use. Any software
engineer should be ableto learn and use the language in afew days.

Thereisone very special and important case of this need of tool-to-person and person-to-tool
communication. We refer to round-trip engineering and the OO auxiliary tools industry, such as
GUI builders and the component and framework industry.

Round-trip engineering will be explained in the next chapter.

The component and framework builders are, in our opinion, at least asimportant as tool builders
(CASE or other). If software development isto be an engineering profession it requires the
existence of acomponent industry. There is no engineering profession (mechanic, electronic, etc.)
that relies on developing in-house all their pieces or materials. The existence of a component
industry in inherent with the concept of an engineering discipline. There are two aspects that we
must consider with respect to these tools.

Thefirst isthat, even though one may buy a component(s) or aframework without source code, it
isthe exception rather than the norm, at least at present. If we need to investigate how these
components are built it is necessary to view them with all the enrichment that UML allows us,
instead of looking only at the source code and separately at the AD modelsin amanual. If we
require learning from them more than what we can see through programming language constructs it
is necessary to embed in the code analysis and design constructs.

The second is that we need to connect the output of these tools with the rest of the models we are
developing within the main CASE tool. Therefore, we need to allow importing the source code, and
its corresponding OOAD model, generated by their products (GUI builders, component libraries,
etc.) easily into the repository by CASE tools supporting UML.

Both reasons reflect that we have the need of round-trip engineering the source code with
embedded AD constructs devel oped from these tools.

2.5 UOL as a Round-Trip Engineering Language

2.5.1 Why Round-Trip Engineering is Necessary

Software engineers consider using CASE tools for several reasons. One of the main reasonsisto
maintain only one description of their systems. That isto have, at all times, both models and source
programs synchronized.

When developing a system, software engineers start by working with CASE tools to describe
graphically and document the analysis and design. With afull life-cycle CASE tool they then
proceed to generate code from their design. At this point they start doing testing and debugging
with programming language compilers and text editors. Usually they will introduce changes that
must be reflected in the designs stored in the CASE tool repository. Therefore, if they want to have
both model and source synchronized, they must either re-import the source code restructuring the
model or, at least, reflect in the model manually the changes that have been produced during the
testing phase.

-17 -

UOL as a Round-Trip Engineering Language

(UOL 1.2)

Source code can also be produced by other tools such as screen designers/painters, 4GLs, etc. This
code or the part of the model that it represents should also be imported to the repository to reflect
the complete design of the system.

Ideally importing the code and restructuring the model or reflecting the changes done to the model
(if the CASE tool does not store the source code) should be done automatically. Doing this
manually is very error prone and especially tedious. What happens, when not done automatically,
inreal-life stress situations, isthat it is not done and there is a mismatch between model and
program. Being the consequence of this situation evident for all and sufficiently documented we
will not further describe it.

Although this situation is the one most discussed in the industry, one should also consider the
inverse, especially in an iterative life-cycle as we usually apply in OO development. When we start
anew iteration of the system being developed, our main efforts will start again at analysis and
design. Naturally, when we increase our system with new aspects, we will introduce changes to the
previous model. Since this model has been translated to source code and debugged, it will be
necessary to reflect in the previous version of the source code the changes in the model. That isthe
precise inverse situation that we have previously described and it is mandatory that the model
reflects exactly what isimplemented in the program to be able to generate the necessary changes to
the program or anew version of the program.

In order to fulfil the obvious need of facilitating synchronicity between model and code, it is
necessary that CASE tool builders offer the following functionality:

Generate source code

Export source code changes from a modified model

Import source code generated from other tools and the model it represents
Import modified source code reconstructing the model

Only thefirst of these four tasksistrivial for CASE tool builders, generating code from the model.
The second, exporting source code, isalso trivial if the CASE tool stores the source code or is
integrated with a Version/Configuration Management tool. If it isn't it may be more or less difficult
depending on the environment the programmer uses.

The last two however, are inherently difficult for all CASE tool builders, no matter what language
they support. Proof of this can be observed from CASE tool advertisements. Even though most
companies offer support for many languages, they do so only exporting or generating. Importing or
round-trip is offered only for a subset of them.

There are many reasons for this difficulty. In the first place, constructing an efficient parser is
always adifficult task. If the parser is not fast the programmer will desist in using it. The second
reason isthat, we not only have to parse the source code but we also have to analyze it
semantically, even if the codeis correct from acompiler’s point of view. When analyzing the
source code, for re-import purposes, we must have some way of distinguishing features that are not
supported by programming languages. Some of these features may be distinguishing attributes
implementing associations from those of aggregations, or where have patterns been applied, or
what parts of the system are in amodule (in most languages), etc. Finally, interpreting the changes
with respect to the original model can be also quite complex.

What most CA SE tool builders do, isto enrich the generated source code with comments (mark-up

code) that assist the round-trip tool in analyzing, from an OOAD point of view, the source code, to
be able to modify the model stored in the repository. Although this way of focusing the solution

-18-

Facility Purpose and Use

(UOL 1.2)

may be helpful, it does not totally solve the problem. The reason is that there are several types of
changes that the programmer may introduce:

Firstly, the programmer may delete something previously written. Thistype of change
isthe easiest of all and does not have any special difficulties.

The second is that he may modify something written previously. Thisis much more
difficult. How can we know that he has changed the cardinality of arelation, or that he
now treatsit as adifferent kind of relation or with a different constraint?

Thethird is adding some new element. Detecting an attribute may be easy but not so
much if it is used to implement arelation. And what if he modifies something affecting
ause-case?

Lastly, what happensif during testing he inadvertently changes or deletes some of the
comments generated by the tool ? How can we interpret the source code then?

And with respect to source code, generated by GUI builders, component/library manufacturers,
pre-CASE systems, what can we do? There is no mechanism to facilitate importing such code.

We can say the same with respect to changing code from designs changed from within the CASE
tool as mentioned previously. How can we inform a version/configuration management tool of

what has been changed in a meaningful way? How can we reflect the model inside the code, in

such away that the programmer, when debugging/testing the program, may know how it affects the
model ?

The only way to solve all these problemsis with alanguage (a“round-trip engineering language”)
that can be used to enrich the source code in any language. By this we mean, that it isableto
describe all OOAD constructs to facilitate round-trip engineering and that is sufficiently simple that
any programmer can learn in afew days.

We believe UOL is asolution to the above problems or considerations.

2.5.2 Whatis a Round-Trip Engineering Language?

A Round-Trip Engineering Language is a Textual OO Full Life-Cycle Language that is capable of
being embedded any OO programming language program.

OOAD modeling languages are richer than OO programming languages. They are capable of
describing more concepts and in more detail than any OO programming language. In fact, thereis
not even uniformity of concepts among OO programming languages. Some as Delphi® have
modul es expressed syntactically, others as C++ can express them indirectly or maybe not even that,
asin the case of Visual Basic®.

Transforming an OOAD model to code implies, therefore, aloss of information in all cases. The
only way to avoid thisis embedding in the source code exported/generated from the CA SE tool
additional information that, enriching the code, describes what was originally documented.

Can we consider around-trip engineering language a new category or anew idea? Y es and no.
Enriching source code with comments has been done traditionally by most CA SE tool builders but
in an informal and proprietary way, many times specifically defined for each language. What UOL
brings to the OO community is aformal language that can be embedded in any OO programming

8 Delphi is a registered trademark of Borland
*VisualBasic is a registered trademark of Microsoft.

-19-

Tool to Tool Communication

(UOL 1.2)

language (much in the same way that SQL is embedded) and that is capable of describing all the
elements that the modeler has documented.

A round-trip engineering language must be especially simple and easy to learn by any programmer.
It is expected that he can learn it in afew days and that when he maintains a program, he will
simultaneously maintain both the source code as well asthe UOL code and with the minimum
burden possible.

There are two alternatives when generating UOL embedded code. Thefirst isto generate a

compl ete description of the program with UOL and the second is to generate only those constructs
not supported by the language. In the appendix, we have shown both alternatives. We believe that
the first alternative makes somewhat more readabl e the generated code. In any case, both can be
make available to the programmer by the CASE tool. For a CASE tool builder, it only affectsthe
control flow of the reverse engineering tool. In the first case, the UOL parser can always start the
collaborative compilation and it will remain in control of the process at all times. In the second
case, control of the compilation process will depend on the target language. Thiswill be further
explained in the chapter 6.

Although some UOL constructs (i.e. use cases, sequence diagrams, deployment, etc.) may seem
unnecessary from a strict reverse engineering source code task, they are, however, necessary from
the point of view, that they describe the full system and that any part of it may be changed by the
programmer. Thiswill, at the same time, enhance her/hisrole as a system developer. Using the full
expressive power of UOL reinforces the concept that when we change code we change design, that
the distinction among tasks (analysis/design/programming) in OO is blurred and that we are all
responsible of the system asawhole.

There are also some secondary benefitsin using UOL. For example, it easily allows the reverse
engineering tool to analyze syntactically and semantically the reengineered model before importing
and restructuring the repository model. In thisway, the tool can detect not only syntactic errors but
also integrity or consistency errors (ex. services used in sequence diagrams and not developed in
the objects because of changes, etc.). It also facilitates version control of the model because the
matching process between the repository and the imported versions (detecting changes, additions
and deletions) is simplified not having to do “automatic deduction” from the source code by the
importing tool.

2.6 Tool to Tool Communication

The second type of communication isthe one that must exist for adirect dialog between tools. For
this type of communication the OMG has made the SMIF RFP. Let us now consider what this type
of communication implies.

Communication between tools may have to be donein real-time or in batch.

Real-time communication requires standardizing the language. MOF is already aform of real-time
communication language proposed by OMG. However, there are several situations and/or aspects
that must be considered in this case. If al tools supported MOF the SMIF RFP would not be
necessary.

For many reasons not everybody will accept MOF and CORBA, which isinherent to MOF. A very
special case of thisis Microsoft that has assumed UML but not MOF for its repository.

If the language used by atool is not OMG's standard and the tool builder wants to either connect

their tool to another's or to allow another company to connect to their tool, it will be necessary to
agree between tool constructors what will be the valid language and it will only be valid for the two

-20-

Facility Purpose and Use

(UOL 1.2)

partners (and others that may also accept it). Any other tool constructor that does not accept and/or
have access to this private/proprietary language is blocked from a market, which may be very
important.

MOF is based on CORBA and has its many benefits but it also has, however, an important
drawback: it requires working with ORBs even though in many cases it may be unnecessary and,
therefore, expensive and resource consuming.

Finally, ageneral opinion on CASE tools, which comes from structured method CASE tools, is that
the best tools are those that support the whole life-cycle: the Integrated CASE. That isto say, tools
that allow doing everything from within the tool. I ntegrated tools have usually been devel oped by
large companies, which are the only ones with sufficient resources to develop all the required
modules to be considered afull life-cycle tool.

However, although it is positive to be able to carry out every task with only onetool, it is not
necessarily true that the best tool isthe one developed entirely by one constructor. In many cases
these tools have some of the modules excellent but others are inadequate in some cases or for some
users. On the other hand, the existence of these "complete" tools does not precisely motivate
smaller companies that can offer interesting or innovative ideas in some aspects but are unable to
develop afull CASE tool.

A CASE tool can have many modules or components integrated: repository, graphical designer,
screen designer, code generator, metrics and standards validator, etc. The central component is,
naturally, the repository but conceptually thereis no reason for which any pair of tools should not
be able to communicate if they are based on the same model: UML. We should be able to represent
graphically the design from the source code or obtain metrics or generate code from a graphical
design without having to go through the repository.

From the UML 1.1 (Summary Document, page 8) we read:

"Standardizing alanguage is necessarily the foundation for tools and process. The
Object Management Group’'s RFP (OADTF RFP-1) was a key driver in motivating the
UML definition. The primary goal of the RFP was to enable tool interoperability.
However, tools and their interoperability are very dependent on a solid semantic and
notation definition, such asthe UML provides. The UML defines asemantic meta-
model, not atool interface, storage, or run-time model, although these should befairly
closeto one another. .

In the same way that UML-MOF standard will incentive the CASE tool industry, if areal-time tool
communication standard language existed, it would be possible to create a CA SE component
industry allowing users to build tailored CASE tools adapted to their precise needs.

A language, such as UOL, would permit communication between any two tools used in the
construction of OO systems. That is, it would be a Tool Interface Language.

Batch communication requires also standardizing the language. The OMG's SMIF RFP hopes to
define a standard for batch communication. Naturally, this RFP mentions CDIF to protect tool
builder's previous investment in this technology. Even though this argument is out of the question
and must be completely accepted, there are other aspects that must be considered and that make an
extension of CDIF inadequate as the SMIF solution.

Even if an extension to CDIF is developed CDIF it is pre-OO and not OO. CDIF was developed to
port full models between tools and It was based on pre-OO concepts that were not standardized
(data modeling, data-flow diagrams, etc.). CDIF has no semantics and given that the
communication between toolsis batch it easily allows for errors during the port.

-21-

Conclusions

(UOL 1.2)

In many situations two tools must communicate in batch form (CA SE tools generating code and
compiler) but it is necessary for the software engineer to understand the port. There isone very
special case of thissituation. We refer to round-trip engineering as we have previously mentioned:
code with embedded AD constructs. In this respect we must consider two aspects.

First that being CDIF non-OO and developed exclusively to communicate between tools, it is
complex and cryptic for the programmer if it were possible to embed in their code. It would also
require working with two different paradigms.

And second, that in some cases the software engineer must work with two tools, in which one or
the other (or both) does not support the full standard: UML does not support all OO concepts and
programs, certainly, do not support full UML

A textual OO full life-cycle language, such as UOL isasolution to all these considerations.
2.7 Conclusions

Now that we have reviewed what atextual OO full life-cycle language is and its need let us
summarize the main requirements that any proposal in response to the SMIF RFP should comply
with:

Stream-based Model Interchange Format

From the SMIF RFP we extract that its specific objectives are:

Establish an industry standard specification for a stream-based model
interchange format,

Provide a generic format that can be used to transfer awide variety of models,
Demonstrate that it can be used to exchange OMG Object Analysis and Design
Facility (OADF) compliant models (UML based) and models compliant to
other MOF-compliant meta-models and extensions (e.g. Workflow
Management Facility and Business Object Facility meta-models), and
L everage existing vendor-neutral transfer formats as much as possible.

Generic Communication and Interchange

From the previous discussion we obtain the following requirements:
It must be a textual, human readable, format,

It must be specially simple, easy to learn and use,

It must provide maximum support for all UML constructs to allow for
seaml essness,

It must be adequate for tool to tool communication both in real-time and batch,
It must be independent of CORBA although compatible with it and

It must be adequate to support Round-Trip Engineering.

-22-

The Universal Object Language Specification

(UOL 1.2)

3 The Universal Object Language Specification

3.1 UOL Syntax

To describe this part, we use an Extended BNF grammar for its reading simplicity. Please see
appendix 7.1 for the BNF syntax of UOL

3.1.1 Lexical Specification

Thelexical part of UOL consists of alarge number of tokens because of the many definitions and
conceptsthat in UML are described. They are:

action branch deferred final instance package simple true
actions by diagrams flow interface partitioned state undefine
activity call else fork is postcondition static unique
actor class end from join precondition stereotype use
adaptation collaboration entry frozen like prefix stereotyped usecase
addonly component event history link raise subactivity values
after composite exception implements machine redefine submachine viewed
all concurrent exit implies model relation subsystem when
alternative constrained expanded import node rename synchronous with
and constraint export in none request tag xor
any course extend infix not result then

as creates extension inherit of select to

attached current false initial or shallow transition

BIT deep feature inout out signal trigger

There are some tokens that must be included for the inclusion of OCL, they are:

Bag Collection else endif enum if Set Sequence
then

Theregular expressions defined in UOL are:

OCLtypeName: [A-Z][a-zA-Z_0-9]+
OCLname: [aZ][a-zA-Z_0-9]+
Integer_constant: ([1-9][0-91*|0)
Character_constant: "([™\t\n] | (\["\t\n]))"

Range: [1-9][0-9]* { mdot} ([1-9][0-9]*|*)

Float_constant: ([0-9]+.[0-9]* ([eE][+]-]10-9] +)?

Comment: - [(--)\n]

String: "([MN] | W[ntbrf\W"\"]|[0-7][O-7] A[0-3][O-7][O-7] |
[\n\r)*

TextMultiline: text " [M] "

CommentMultiline: comment " [*"]

-23-

UOL Syntax

(UOL 1.2)
Anonymous ?[0-9]*

3.1.2 Syntax Specification

3.1.2.1 Start production

In UOL thetransmission unit, and thus the codification unit, are the model and the package. The
model construction allows the interchange of models, and the package construction allows the
auxiliary industry to give the design of frameworks or classlibraries.

| Start_production -> (Model _declaration | Package_declaration)

3.1.2.1.1 Examples

-- Can be a nodel
model anExanpl e

-- body onmited
end -- nodel anExanpl e

-- Can be a package
package UM._UOL

-- body onmited
end -- package UM._UOL

3.1.2.2 Model declaration

In UOL we leave most of the constructs as optional. In this way we can obtain correct UOL from
incomplete models.

Mbdel _decl arati on -> model Model _nane
(Package_or _subsystem decl aration)*
(View el ement_decl _list)? end

Model _nane -> identifier

In this production we declare the diagrams that compose the model.

Vi ew el ement _decl _Ii st -> diagrams View el enent_declaration (";*
Vi ew_el enent _decl aration)* end

Identifier_list ":*" View el enent_kind

identifier

identifier Extension_use (lnvariant)?

\

Vi ew_el enent _decl aration
Vi ew_el enent _nane
Vi ew_el enent _ki nd

Vo
vV Vv

Theview_element_kind is the name of akind of diagram (i.e. static diagram or use case). We leave
the name as an identifier instead of providing aclosed list of diagram namesto allow the use of a
large list of diagrams from different methodologies.

Package_or _subsyst em decl arati on -> (Subsystem decl aration
| Package_el ement _decl | Use_of _tagged_val ue
| Use_of _constraint | Use_of stereotype)

=24 -

The Universal Object Language Specification

(UOL 1.2)

A model isalso the top most package and thus can declare all the elements that can befound in a
package. In addition it can declare also subsystems.

3.1.2.2.1 Example

model anExanpl e

-- Element declarations (package, subsystem ...)
-- Declaration of the diagrans used in the nodel
diagrams

Mai nD, SecondD: St at i cDi agr am

-- Declaration of the stereotypes, tag val ues and
-- constraints applied to the MainD and SecondD
-- If there are nore diagrams, we nust put a ';'
-- else the end token.
end -- diagrans

end -- nodel anExanpl e

3.1.2.3 Package

Package_decl arati on -> package Package_nane
(viewed with View el enent_nane_list)?
Ext ensi on_use

inherit Package name_list)?

(Emport Package_inport_list)?

(Package_el enent _decl _list)?

(Use_of _constraint)? end,

—~

Package_nane -> identifier

Vi ew_el ement _nane_| i st -> View el ement _nane Position ("," View el enent _nane
Position)*;

Posi tion ->("(" Dec '," Dec Third_dinmension ")")?;

Thi rd_di nensi on ->("," Dec)?;

Package_name_| i st -> (Use_of _constraint)? Package_nanme (“"("Nane")")?
("," Package_name ((" Nane ")")?)*;

Package_inmport _|i st -> Package_inmport_elem ("," Package_inport_elem)*;

Package_inmport_el em -> ("{" Visibility "}")? (El enment_nane

("::" Elenment_nane)* As_alias)?
from Package_nane;

As_alias ->(as Alias)?;
El enent _path -> Element_nane ("::" Element_nane)* ;
Alias -> H enent _nane;

The package construction can declare al the other constructions except model and subsystem. Each
element can give the list of diagramsin which it appears. Also, most of the elements can inherit
from compatible elements. A package can optionally import elements from other packages. This
import can specify alist of elementsto import or can import the whole package. The import of an
element is conditioned by the element's visibility. Animported element may receive an alias and
changeitsvisibility by amore restrictive one. These changes only affect the element as a member
of the importing package.

Of course the main use of a package isto group elements together. Following is the declaration of
such elements.

Package el enent _decl _|i st -> is (("{" Visibility "}")? Package_el enent _decl) +;
Package_el ement _decl -> Package_decl aration | Interface_declaration

| Cass_declaration | Relation_declaration

| Extension_declaration | Usecase_abstraction

| Activity_nodel | Conment_definition

| Object_declaration

| (actor | exception) Light_body

| (component | node) Utra_light_body

-25-

UOL Syntax

(UOL 1.2)

| Col | aboration_decl aration

This construction reflects acomment in the model. It is usually attached to an element. Standalone
comments are also allowed and then they need to declare in which diagram(s) they are shown.

Comment _definition -> Conmment Mul tiline (attached to El enent_nane
| viewed with View el ement _nane_li st)
Li ght _body -> Narme (Formal _generics)? Extension_use

(viewed with View el enent_nane_list)?
(I'nheritance)? Features (Use_of _constraint)?
end
Utra_light_body -> Narme (Formal _generics)? Extension_use
(viewed with View el enent_nane_list)?
(I'nheritance)? Nane_list (
Use_of _constraint)?
end

3.1.2.3.1 Example

package PMain viewed with MainD -- Position for the viewed
inherit constrained with { aConstraint } UOL_UM
import from UML_UCL
-- is keyword nust be put if there is at |east one el enent.
-- declaration of the elenments of a package

end -- pachage PMin

3.1.2.4 Subsystem

Subsyst em decl arati on -> Subsystem header (Fornal _generics)?
Ext ensi on_use
(viewed with View el enent _nane_list)?
(I nheritance)?
(import Package_inport _list)?
(feature '{'Visibility }' Operation_list end)*

(Package_el enent _decl _list)?
(Use_of _constraint)?
end

A subsystem is 'a package with behavior'. It declares elements, like a package, but also declares
operations and, optionally can be instantiated (if is not marked as'deferred’).

Subsyst em header -> (deferred)? subsystem Subsystem nane
Subsyst em nane -> identifier

3.1.2.4.1 Example

subsystem aSubsystem -- can not be deferred if it is final.
-- subsystem body (Use of extensions, inheritance,...)
end -- subsystem aSubsystem

3.1.2.5 Features

Features share the semantics of UML and most of the syntax with Eiffel. It is ablock beginning
with the keyword 'feature’ then avisibility and list of operations, methods and attributes. Not all
the elements that can have features can declare all the kinds of features.

Feat ures -> (feature "{" Visibility "}" Feature_rest end)*

-26 -

The Universal Object Language Specification

(UOL 1.2)

The ala Eiffel visibility declares which element can access a marked element. However the
mapping to the UML'svisibility'sis straightforward.

Visibility -> any | none | Oassifier_list
Classifier_list -> Oassifier_name ("," dassifier_nane)*
Feat ure_rest -> Use_of _stereotype

| Use_of _stereotype ";" Feature_li st
| Feature_list
Feature |ist -> Feature_declaration (";" Feature_declaration)*

Feat ure_decl arati on -> Use_of _tagged_val ue
| Operation_declaration
| Method_decl aration
| Attribute_declaration

Therest are needed to allow describing all the waysin which afeature can be declared.

Qper ation_rest -> is Specification
Met hod_r est -> Specification is Routine

| §s Routine | like identifier is Routine
Attribute_rest -> "', ldentifier_list Type_mark

| (Use_of _constraint)? Type_mark is
Initial_val ue
| (Use_of _constraint)? Type_mark
| (Use_of _constraint)? ":® unique "{"
Identifier_list "}°
Si gnat ure_rest -> static identifier | identifier

3.1.2.5.1 Attributes
The attributes can have cardinality, invariants, type, initial values, stereotypes and tagged val ues.

Attribute_declaration -> Attribute_signature Attribute_single_or_nulti
Ext ensi on_use
Attribute_single_or_nulti -> Attribute_rest | Cardinality2

(Use_of _constraint)? Type_mark

(is "{" Expression_list "})?
Attribute_signature -> Signature_rest

| frozen Signature_rest

| addonly Signature_rest
Initial_val ue -> Expression;

The type mark includes a del egation mechanism. The type can be the same that the one of the
element that appears after the 'like' keyword.

|Type_nark -> ":" identifier | ":® like identifier

3.1.2.5.2 Operations

Operations are only specifications and thus never instantiable. They can have afull signature, pre
and post conditions, and a specification.

Oper ati on_decl arati on -> Signature Operation_body;

Oper ati on_body -> OM body Qperation_rest;

Entity_declaration_|ist -> Entity_decl aration_group
(";" Entity_declaration_group)*

Entity_decl arati on_group -> (Paraneter_kind)? Paraneter_nane_|ist Type_mark
(is Initial_value)?;

Par armet er _nane_l i st -> identifier (Cardinality)?;

Par anet er _nane_|I i st -> Paranmeter_nane_list ',' identifier (Cardinality)?;

-27 -

UOL Syntax

(UOL 1.2)
Identifier_list ->identifier ("," identifier)*;
Par amet er _ki nd -> in | out | inout;

Speci fication -> TextMil tiline;

3.1.2.5.3 Methods

A method can have the same components that an operation can have plus an implementation.

Met hod_decl arati on -> Met hod_header Met hod_body;
Met hod_header -> Signature | Signature_rest;
Met hod_body -> OM body Method_rest;

Rout i ne -> TextMultiline;

Thefollowing is part of the body of the method and operations.

OM body -> "("(Entity_declaration_list)? ")" (Type_nmark)?
("{" PrePost)?
Ext ensi on_use (Use_of constraint)?;

Si gnature -> deferred Signature_rest
Pr ePost -> precondition ":" Constraint_expression Post_opt
| postcondition ":" Constraint_expression '}’
Post _opt -> "}" MorePost
Mor ePost -> ("{" postcondition":" Constraint_expression "}")?

3.1.2.5.4 Features with only Attributes and Operations

These features, are declared separatly from the others, to have a more readable grammar. These
features are used in the elements that can not declare methods (usecases,...)

Features_attrib_or_Qper -> (feature "{" Visibility "}
Feature_rest_attrib_or_Oper end)*
Feature_rest_attrib_or_Oper -> Use_of _stereotype

| Use_of stereotype ";*
Feature_list_attrib_or_QOper
| Feature_list_attrib_or_Oper
Feature list_attrib_or_Oper -> Feature_declaration_attrib_or_Qper
(";" Feature_declaration_attrib_or_Oper)*
Feature_declaration_attrib_or_Oper -> Use_of tagged_val ue
| Operation_declaration | Attribute_declaration

3.1.2.5.,5 Example

feature {any}

i sMarried, isUnenployed: Bool ean;

bi rt hDat e: Dat e;

age: | nt eger;

firstName, | ast Name: String;

sex: unique { male,female };

deferred i ncome(d: Date): I nteger is text
end -- feature

Notethat the semicolon’;" is used as a concatenator (asin Eiffel) and not as afinal sentence (asin
C or Java), therefore, the following declaration is correct:

feature
anAttribl: aTypel;
anAttrib2: aType2
end

-28-

The Universal Object Language Specification

(UOL 1.2)

But these others are incorrect:

feature
anAttribl: aTypel
anAttrib2: aType2
-- N expected
end

or

feature
anAttribl: aTypel;
end
-- N an attribute, operation or nethod expected

3.1.2.6 Classes

A class may declare and use extensions, can be atemplate, can inherit, can have any kind of feature
and it can also use invariants. It must be marked as deferred if any of its methodsis deferred.

Cl ass_decl aration -> d ass_header (Fornal _generics)?
(viewed with View el enent_nane_list)?
Ext ensi on_decl aration_|i st
Ext ensi on_use
O ass_body end
Cl ass_body -> |Inheritance Rest (Use_of _constraint)?
| Features State_nachine (Use_of _constraint)?
| Features feature "{" Visibility "}*
Feature_rest end (Use_of _constraint)?

Rest -> Features (State_nachine)?
Cl ass_header -> (deferred)? class d ass_nane
G ass_nane -> jidentifier

3.1.2.6.1 Example

class Person viewed with Mai nD
feature {any}
i sMarried, isUnenployed: Bool ean
bi rt hDat e: Dat e;
age: | nteger;
firstNanme, | ast Nane: Stri ng;
sex: unique { male,female };
deferred i ncone(d: Date): I nteger is text"lncom ng operation”
end
-- State machine for the class Person
-- declaration of an invariant
constrained by
{ self.age>=0 }
-- rest of constraints onmted
end -- Class Person

3.1.2.7 Instances

The instances will follow the definition of its base class, giving values to its attributes, using
extensions such as stereotypes and tag values and/or defining invariants.

Ohj ect _decl aration -> (bj ect _nane [Formal _generics] instance of
El ement _pat h Extension_use [Viewed_with]
[Qbj ect _body] [Invariant] end;

-29-

UOL Syntax

(UOL 1.2)
Ooj ect _nane -> identifier
hj ect _body -> is Attribute_value (';" Attribute_value)*
Attribute_val ue -> identifier is Expression

3.1.2.7.1 Example

Cl oseOhj ect instance of Usecase

is

annotation is '(a) The systemw |l |load the current object that
is referenced (b) ask to the actor for its usernane update
the usernane in the docunent (c), finally save the docunent
(d);

name is Cl oseObj ect;

extension_point is <<'a','b','c',"'d >>

end

3.1.2.8 Interfaces
Aninterfaceisvery similar to aclass but can not have methods or attributes.

Interface_declaration -> Interface_header (Formal _generics)?
(viewed with View el enent_nanme_list)?
Ext ensi on_decl aration_|i st
Ext ensi on_use (Inheritance)?
(feature '{' Visibility '}' Qperation_list

end) *
(Use_of _constraint)? end
I nterface_header -> interface identifier;
Operation_list -> (Qperation_declaration (";"Qperation_declaration)*

3.1.2.8.1 Example

interface anlnterface[Paraml constrained by {sel f.Paraml>=0}, Parang]
viewed vith aDi agram
feature {any}
-- only operations
deferred static anOperati on(aParam aType): aRet ur nType
{precondition: aConstraint}
{postcondition: aConstraint}
constrained by {aConstraint}
is text "Specification"
end
-- constrained by..
end -- interface anlnterface

3.1.2.9 Declaration and use of extensions

Some extensions (tag val ues or stereotype) must be declared before their use. Constraints may be
declared also but are not mandatory.

Ext ensi on_decl aration_Ii st -> (Extension_declaration)*
Ext ensi on_decl arati on -> Constraint | Tagged_val ues | Stereotype

The following productions allow using stereotypes and tagged values. Note that only one
stereotype useis permited.

| Ext ensi on_use -> (Use_of _stereotype)? (Use_of tagged val ue)*

3.1.2.9.1 Declaration of constraints

-30-

The Universal Object Language Specification

(UOL 1.2)

The declaration of a constraint is the mechanism to reuse constraints. A nameistied to a constraint
expression and this name can be used after in any constraint.

Constrai nt
Constraint_def _|ist

-> constraint Constraint_def_|ist end
-> (identifier is "{" Constraint_expression "}")+

A constraint can be either an OCL_expression or a TextMultiline. A TextMultilineisjust afree
text description. The OCL_expression isavalid OCL expression defined in the OMG document
number ad970808. The OCL grammar has been merged with the UOL grammar, exactly asit is
described in the document mentioned previously. Thisimproves the use of constraints
(preconditions, postconditions, invariants,...).

Constrai nt _expressi on -> OCLexpression | TextMultiline

3.1.2.9.2 Use of constraints

| Use_of _constraint -> constrained by "{" Constraint_expression "}"

3.1.2.9.3 Tagged values declaration
The declaration of atag value allows assigning a default val ue.

Tagged_val ues
Tagged_val ues_def _|i st
Tagged_val ues_def

-> tag values Tagged_val ues_def |ist end
-> (Tagged_val ues_def)+

-> identifier (

is Initial_value)?

3.1.2.9.4 Use of tagged values

The use of tag valuesis alist of properties of the form <tag,value>. A tag value with default value
can appear simply as <tag> if the default value is suitable.

Use_of _t agged_val ue
Property_list
Property

-> with tag values "(" Property_list ")*
"," Property)*

-> Property (°,
-> "<" jidentifier ("," Expression)? ">*

3.1.2.9.5 Stereotypes declaration

The stereotype declaration gives a name to the stereotype, declares its base class (the class that can
be stereotyped with this stereotype) and declares the tagged values that act as attributes for the
stereotype. A stereotype can also inherit from other stereotypes with compatible base class and
declares constraints.

St ereotype

St er eot ype_ext ensi on_dec
Base_ cl ass

I con

St ereotype_parent _|i st

->
->
->
->

stereotype identifier of Base class (lcon)?
(inherit Stereotype_parent list)?
St er eot ype_ext ensi on_dec end

(Constraint | Tagged_val ues)*

identifier;

viewed as String;

identifier ("(" Nane ")")? ("," identifier,
*

(°C Nane)")?)

3.1.2.9.6 Use of stereotypes

| Use_of _stereotype

stereotyped with identifier

-31-

UOL Syntax
(UOL 1.2)

3.1.2.10 Identifiers

Identifier isdivided in OCLtypeName or OCLname. Thisisto give the maximum support to the
OCL grammar. Therefore, there will be a production where an identifier will be an OCLtypeName
or an OCLname, where an OCLtypeName is an identifier that must begin with an uppercase letter
and an OCLname is an identifier that must begin with alowercase |etter. Another branch that can
be taken is expressing that the name of an element is no name (in UML exists a difference between
an element with the name null and an element without name). For this reason, weinclude a

‘Anonymous token expressed as a question mark ?".

identifier -> OCLtypeOrNane | Anonymous

3.1.2.10.1 Example

aVal i dName

AvVal i dTypeNane
anldentifier_1
Anl dentifier_2

?
Inval i dOne? -- The question mark not included as a letter
7Not Correct -- It nmust begin with a letter.
_NotCorrect -- It nmust begin with a letter.

3.1.2.11 State machine
State machines are defined asin UML. They must contain a composite state in which there all the
states of the state machines are declared. A composite state that is the top state must not end with
the keyword end, because it uses the same end that the state machine. Thisis defined in this way
for readability purposes.

St at e_machi ne -> state machine Nane
(viewed with View el enent_nane_list)?
(Constraint_use_def)?

Machi ne_body
end
Narme -> identifier
Pat h_nane -> Nane (Path Path_nane)*

\

Constraint (Use_of _constraint)?
| Use_of _constraint

Constrai nt _use_def

In the next production we define the top most state. It can be seen that thereis no end.

Machi ne_body -> Conposite_state Transition_list Action_def list;
State_definition -> state Nane (viewed with View el enent_nane_list)?
(Constraint_use_def)?
(Action)?

Internal _transition_list
(deferred (event Nane)+)?
Action -> actions (entry Action_list)? (exit Action_list)?

States defined as substates (i.e. not the top most state) must be al of the same kind, concurrent or
not, but they can not be mixed.

Conposite_state -> composite State definition Concurrent_state_list
| composite State_definition State_list

Concurrent _state_li st -> (concurrent State_ list)+

State_|ist -> (State kind)+

In the next production there is a branch that can match with Machine_body, thisisthe composite
state. UML defines that the state machine contains all the transitions and the action definitions, but

-32-

The Universal Object Language Specification

(UOL 1.2)

in UOL those are defined in the concurrent state in which they are included. If it isnot defined in
thisway, it implies putting path references for all the states, and thisis completely unreadable.

State_kind

Sinple_state
Pseudost at e

Pseudost at e_ki nd

Subrmachi ne

Internal _transition_list
When_or _after

Ti me_expr essi on
Quar d_expr essi on
Tri gger _expression

Si gnal _or _tine_or_change

Bool ean_expressi on
Transition_definition

Transition_list

Quar d_expr essi on_opt
Acti on_sequence
Action_list
Action_def _|ist
Action_definition

Scri pt

Recurrence

bj ect _set _expressi on_opt
Ohj ect _set _expression
Oper ati on_or _si gnal

Si gnal _definition
Recepti on
Nanme_comma_| i st
Excepti on
Exception_li st

Excepti on_use

Acti on_ki nd

Oper ati on_use

-> (Sinple_state | Pseudostate | Subnachine
| Machi ne_body) end
-> simple State_definition
-> Pseudostate_ki nd Name (Constraint_use_def)?
(Action)?
-> (deep | shallow) history
| initial
final

-> submachine Nane
(viewed with View el enent _nane_list)?
(Constraint_use_def)? Machi ne_body
-> (transition Wen_or_after (Trigger_expression)?
(Action_sequence)?)*
-> when Quard_expressi on
| after Tine_expression ;
-> |Integer_constant String;
-> Expression | TextMultiline;
-> call Qperation_use
| trigger Signal _or_time_or_change
-> Signal _definition
| after Ti ne_expression
| when Bool ean_expr essi on;
-> TextMul tiline;
-> transition Nane from (Path_name | initial) to
(Path_nane | Ffinal)
Quar d_expression_opt (Trigger_expression)?
(Action_sequence)?
-> (Transition_definition)*
-> Wien_or_after
-> actions Action_list
-> identifier ("," identifier)*
-> (Action_definition)*
-> (synchronous)? action Nane (Recurrence)?
(Script)?
Ohj ect _set _expr essi on_opt
(request Qperation_or_signal)?
Action_ki nd
-> String
-> "(" Expression ")*
-> (to (bject_set_expression)?
-> Name ("," Nane)*
-> Qperation_use | Signal _definition
-> signal Nane (Reception)? (Exception)?
-> to Nane_comma_li st
-> Name ("," Nane)*
-> Exception_list
-> (raise Exception_use)+
-> Nane from Nanme_comma_| i st
-> (call Operation_use
| creates identifier
| TextMultiline)?
-> Nane "." Name "(" Expression_list ")*

.1.2.11.1 Example

state machine SPerson viewed with PersonD
composite state SCPerson
-- States definitions
concurrent composite state Civil Status
simple state Single viewed with PersonD end
simple state Married viewed with PersonD end
transition ? from initial to Single when not isMarried

-33-

UOL Syntax

(UOL 1.2)
transition ? from initial to Married when isMarried
transition ? from Single to Married when isMarried
transition ? from Married to Single when not isMarried

end
concurrent composite state JobSt at us
simple state Unenpl oyed viewed with PersonD end
simple state Enpl oyer viewed with PersonD end
transition ? from initial to Unenpl oyed
when i sUnenpl oyed
transition ? from initial to Enpl oyer
when not i sUnenpl oyed
transition ? from Enpl oyer to Unenpl oyed
when i sUnenpl oyed
transition ? from Unenpl oyer to Enpl oyer
when not i sUnenpl oyed
end
-- Transitions definitions
transition ? from initial to Civil Status
transition ? from initial to Job
end -- State machi ne SPerson

3.1.2.12 Activity model

Activity models are exactly as the state machines, but they add new features such as the partition in
which a state belongs and the object flow state.

Acti vi ty_nodel -> activity Nare
(viewed with View el enent_nane_list)?
(Constraint_use_def)?
Activity_body

end
Activity_body -> Activity_state Transition_list Action_def_list
Activity_state -> composite State_definition partitioned in Nanme

Act _concurrent_state_list
| composite State_definition partitioned in

Nane
Act _state |ist
Act _concurrent_state_list -> (concurrent Act_state_list)+
Act _state |ist -> (Act_state_kind partitioned in Name end)+
Act _state_kind -> Activity_body
| Act_sinple_state
| Pseudostate
| Subactivity
Act _sinple_state -> Action_state | hject_flow state
Action_state -> state Name (viewed with View el enent _nane_list)?
(Constraint_use_def)?
(Action)?
Ooj ect _flow state -> State_definition flow Nane "[* Nane *]°
(Use_of _constraint)?
Subactivity -> subactivity Nane

(viewed with View el enent _nane_|ist)?
(Constraint_use_def)? Activity_body

3.1.2.12.1 Example

activity anActivity
viewed with anActivityD
-- constraint def
-- constraint use
composite state aSConposite
-- States definitions

-34-

The Universal Object Language Specification

(UOL 1.2)

state anStatel
viewed with abi agram
partitioned in aPartitionl
end
state anSt at e2
viewed with PersonD
partitioned in aPartitionl
end
transition init from initial to anStatel after 3 'sec'
transition ? from anStatel to anState2 when anExpression
transition endi ng from anState2 to final
when not anExpression
-- There is no end for this conposite state, because it is the
-- end of the state machine
end -- activity anActivity

3.1.2.13 Usecases

There are three kinds of usecases: the declaration, the extension and the instance of a usecase.

Usecase_abstraction -> Usecase_definition
| Usecase_i nstance
| Usecase_ext ension

Thisisthe declaration of ausecase, defined in UML as UseCase

Usecase_definition -> usecase Narme (Fornal _generics)?
(inherit Nanme_inherit_list)?
(use Nane_list)?
(actor Name_list)? Features_attrib_or_GQper
(TextMultiline)?
(alternative course TextMultiline)?
(extension in Extension_point_list)? end

The instance of a usecase has atype mark that defines the usecase that isinstantiated. The
instantiation consists of alist of arguments instantiating the formal generics and alist of attributes
with their values, all defined in the usecase definition.

Usecase_i nst ance -> usecase Name "(" (Entity_declaration_list)? ")*
(Type_mark)? is Usecase_nethod_|ist end

The extension of a usecase is defined separately from the usecase, because there can be many
extensions of the same point of a given usecase.

Usecase_ext ensi on -> extend Usecase_path with Usecase path_li st
in Ext ensi on_poi nt

Usecase_net hod_Ii st -> (Usecase_nethod)+

Usecase_net hod -> identifier is Expression

Ext ensi on_poi nt -> String

Ext ensi on_poi nt _| i st -> String_list

Nane_i nherit_|i st -> Nane ("(C" Name ")")? ("," Nane ("(" Nane ")")?)*

Name_| i st -> Name ("," Nane)*

Usecase_path -> Nane (Path Nare)*

Usecase_path_li st -> Usecase _path ("," Usecase path)*

String_list -> String ("," String)*

-35-

UOL Syntax

(UOL 1.2)
3.1.2.13.1 Examples

-- Usecase definition
usecase aUsecase [aUsecasel, aUsecase?2]
inherit aUsecasel(aDi scrim nator), aUsecase2
use aUsecase3, aUsecase4
actor anActorl, anActor 2
feature {any}
-- Only attributes or operations
anAttribute: | nteger
deferred anQOperation() is text "QOperation”
end
text "(1) This is the description of the usecase
(2) using text nultiline"
alternative course
text "This decribes the exceptions in the usecase"
extension in '(1)','(2)
end -- usecase aUsecase

-- Usecase instance
usecase anl nstance(aParamnil, aPar an®: aTypel; aPar anR: aType2) : aUsecaseDef

is
aNanel is anExpression
aNane2 is anExpression
end -- usecase anlnstance

-- Usecase extensions
extend aPackage:: aUsecase with aUsecase7 in ' (1)
extend aPackage:: aUsecase with aUsecase8 in '(2)

3.1.2.14 Collaborations

A collaboration is a set of elements (classes and relations) that provides the implementations of a
classifier or operation. Therefor, it describes required classifiers (with features) and interaction
between them to achieve the desired goal.

Col | aborati on_decl arati on -> collaboration Col | abor ati on_name
(Formal _generics)?
(viewed with View el enent_nanme_list)?
(implements O assifier_or_operation)?

Cass_or_intf_or_rel _decl _list
Action_def _list (Message_list)? end
Col I abor ati on_namne -> identifier
Cl assifier_or_operation -> jidentifier
Cass_or_intf_or_rel _decl Iist -> (dass_declaration

| El ement _nane
| I'nterface_declaration
| Relation_declaration)*

Message | i st -> (Message)+

Message -> actions Action_list to dassifier_nane from
C assi fier_nanme

C assifier_nane -> H enent _name

For mal _generics -> "[" Fornal _generic_list "]*

Formal _generic_li st -> Formal _generic ("," Formal _generic)*

For mal _generic -> H enent_nanme (Use_of _constraint)?

El ement _nane -> identifier

3.1.2.14.1 Example

collaboration aCol | aborati on
-- Formal generics

-36-

The Universal Object Language Specification

(UOL 1.2)
-- Viewed with
implements aCl assOr Op
class adCl ass
-- body onmited
end
relation aRel ati on
-- body onmited
end
interface anlnterface
-- body onmited
end
-- action def |ist
actions anActionl, anAction2 to aCl assNamel from aCl assNane2
actions anAction3, anActiond4 to aCl assName3 from aCl assNane4
end -- coll aboration aCol | aboration
3.1.2.15 Expressions
Expr essi on -> Call
| Operat or_expression
| Equality
| Mani f est _const ant
| Manifest_array
Cal | -> (Parenthesi zed_qualifier)? Call_chain
Cal | _chain -> Unqualified_call ("." Unqualified_call)*
Par ent hesi zed_qual i fi er -> Parenthesized ".*
Par ent hesi zed -> "(" Expression ")*
Unqual i fied_call -> Entity (Actuals)?
Entity -> identifier
| result
| current
Act ual s -> (" Actual _list)"
Actual _|ist -> Actual ("," Actual)*
Act ual -> Expression
Oper at or _expr essi on -> Parent hesi zed
| Unary_expression
| Binary_expression;
Unary_expr essi on -> Unary Expression
Unary -> not
| o
. . [=" .
Bi nary_expressi on -> Expression Binary Expression
Bi nary Ss omem | omom e | o et | st | te=t | =t
| "\\" | *//% | *~" | and | or | xor | implies
Mani f est _const ant -> Bool ean_constant | Character_const ant
| Integer_constant
| Float_constant | String
Bool ean_const ant -> true | false
Fl oat _const ant -> ' FLOATI NGconst ant 0
Mani f est _array -> ANGLEBL Expression_|ist ANGLERR
Expression_li st -> Expression ("," Expression)*
Conpari si on -> =" /="
Equal ity -> Expressi on Conparision Expression

3.1.2.16 Inheritance

I nheritance -> inherit Parent _|ist
Par ent -> (Use_of _constraint)? dass_type ((" Nane ")")?
Parent _|i st -> Parent (";" Parent)*
d ass_type -> O ass_nane (Actual _generics)?
Act ual _generics -> "[* Type_list *]°
Type_l i st -> Type ("," Type)*
Type -> Oass_type | dass_type_expanded | Anchored
| Bit_type
Cl ass_t ype_expanded -> expanded O ass_type
Anchor ed -> like Anchor

-37-

UOL Syntax

(UOL 1.2)
Anchor -> identifier | current
Bit_type -> BIT Const ant
Const ant -> Manifest_constant | Entity
Renane -> rename Renane_li st
Renane_| i st -> Renane_pair ("," Renane_pair)*
Renane_pai r -> Feature_nane as Feature_nane
Feat ure_nane ->identifier | Prefix | Infix
Infix -> infix "(" Infix_operator *)*
I nfi x_operat or -> Binary | identifier
Prefix -> prefix "(" Prefix_operator ")*
Prefi x_operator -> Unary identifier
New_export_item -> dients Feature_set
New _export _|i st -> New export_item (";" New export_item)*
New_exports -> export New export _|i st
Class_list -> dass_nanme ("," Cass_name)*
Cients -> "{" dass_list "}
Feat ure_set -> Nare_list | all
Undefi ne -> undefine Feature_list
Sel ect -> select Feature_list

3.1.2.17 Relations

Wereify the association into a class-like construct. It can have all the items a class can have except
methods and adding alink list that declares the names of the elements linked by the association.

Rel ati on_decl aration ->
Rel ati on_nane ->
Rel ati on_i nheri tance ->
Parent _relation_list ->
Parent _rel ation ->
Rel ati on_t ype ->
Rel ati on_path ->
Rel ati on_f eature_adaptati on ->
Rel ati on_redefi ne ->
Feat ure_or _redef ->
Redefine_with_Iist ->
Redefine_pair ->

relation Rel ati on_nane
Ext ensi on_decl aration_|li st
Ext ensi on_use
(Relation_inheritance)?
(Link_list)?
Features_attrib_or_Qper
(Use_of _constraint)?
end
identifier
inherit Parent _relation_list
Parent _relation (";" Parent_relation)*
(Use_of constraint)? Relation_type
(Relation_feature_adaptation)?
Rel ati on_path
El ement _pat h
adaptation (Renanme)? (New exports)?
(Undefine)? Relation_redefine
(Select)? end
redefine Feature_or_redef
Feature_list | Redefine_with_Iist
Redefine_pair ("," Redefine_pair)*
Feat ure_nane with Feature_nane

Here we have the main differences with classes. The link clause provides alist of elementsjoined
by the relationship. Thelink list may have two forms; plainlist (a, b, ¢, d) or list of pairs(atob, c
to d). Thefirst corresponds to an association, the second to a dependency (the pairs have
'direction’). Each entity declared in the link list may have an association end. Grammatically, an
association end is afeature clause with visibility to the class which it is attached.

Link_list ->
Type_or _dependency ->
Type_link_two_|ist ->
Cardinality2 ->
Cardinality ->
Range_| ast ->
Range_mi d ->
Range_|i st ->
Int_or_star ->

link Type_or_dependency
Type_link_two_list (with dassifier_nane)?

| Dependency_list (Dependency_description)?
Type_link (Cardinality2)? *," Type_link_list
"[F Cardinality *]"
Range_|ist Range_l ast
Range | Int_or_star
Range "," | Integer_constant *,*
(Range_nid)*
I nt eger _const ant

| =t

-38-

The Universal Object Language Specification

(UOL 1.2)

Type_link_list -> Type_link ('," Type_link)*
Type_link -> Cassifier_nane (Cardinality2)?
Dependency_l i st -> Dependency ("," Dependency)*
Dependency -> H enent_path to El enent_path

Dependency_descri ption

->

(is TextMultiline)?

3.1.2.18 OCL

Finally, we introduce the grammar for the OCL, taken from the OMG document ad970808. The
most recent updates on the Unified Modeling Language are available via the worldwide web:

http://www.rational.com/uml.

A free OCL Parser and the most recent information on the Object Constraint Language are
available via the worldwide web: http://www.software.ibm.com/ad/ocl.

All the rules' names are changed adding the word OCL at the beginning; thereforeit is easier to
read and differentiates between the UOL grammar and the OCL grammar

OCLexpr essi on -> QOCLI ogi cal Expr essi on
OCLi f Expr essi on -> if OCLexpression
then OCLexpression
else OCLexpression
endif
OCLI ogi cal Expressi on -> OCLrel ati onal Expressi on
(OCLI ogi cal Operator OCLrel ati onal Expression)*
OCLr el ati onal Expressi on -> OClLaddi ti veExpression
(OCLrel ati onal Operator QOCLadditiveExpression)?
OClLaddi ti veExpr essi on -> OCLnul tiplicativeExpression
(OCLaddOperator OCLnul tiplicativeExpression)*
OCLnul ti plicati veExpression -> OCLunar yExpr essi on
(OCLmul ti pl yOperator OCLunar yExpression)*
OCLunar yExpr essi on -> (OCLunaryQperat or OCLpostfi xExpression)
| OCLpost fi xExpression
OCLpost f i xExpr essi on -> OCLpri maryExpression (("."| "->") OCLfeatureCall)*
OCLpri mar yExpr essi on -> OCLliteral Coll ection
| OCLliteral
| OCLpat hNanme OCLti meExpression? OCLqualifier?
OCLf eat ur eCal | Par anet ers?
| "(" OCLexpression ")*
| OCLi f Expression
OCLf eat ur eCal | Par anet er s -> "("(OCLdecl arator)? (OCLactual ParaneterList)?")"
OCLliteral -> OCLstring | OCLnunber | “#" OCLname
OCLenurrer ati onType -> enum "{" "#" OCLname ("," "#" OCLname)* "}-
OCLsi npl eTypeSpeci fi er -> QOCLpat hTypeNane
| OCLenunerationType
OCLliteral Col | ection -> (QOCLcol | ectionKi nd "{"OCLexpr essi onLi st O Range?"}*
OCLexpr essi onLi st Or Range -> OCLexpressi on
((", OCLexpression)+ |(".." OCLexpression
))?
OCLf eat ur eCal | -> OCLpat hNarme OCLti meExpression? OCLqualifiers?
OCLf eat ur eCal | Par anet er s?
OCLqual ifiers -> "[* OCLactual ParaneterList "]°
OCLdecl ar at or -> OCLname ("," OCLname)*
":" OCLsinpl eTypeSpecifier)? "|*
OCLpat hTypeNane -> OCLtypeName ("::" OCLtypeName) *
OCLpat hNane -> (OCLtypeName | OCLname)
("::" (OCLtypeName | OCLname))*
OCLt i meExpr essi on -> "@" OCLname
QOCLact ual Par anet er Li st -> (CLexpression ("," OCLexpression)*
OCLI ogi cal Qper at or ->and | or | xor | implies
OCLcol | ecti onKi nd -> Set | Bag | Sequence | Collection
OCLr el ati onal Qper at or > T OTST | Ot =T k=T | Tt
OCLaddOper at or E I i
OCLmul ti pl yOper at or -> TRE /T
OCLunar yQper at or -> "-" | not
OCLnunber -> Integer_constant

-39-

UOL Syntax

(UOL 1.2)

| OCLstring -> String

3.1.2.19 Example
This exampleistaken from the OMG document ad970808

(context: Conpany:: hireEnpl oyee(p : Person)
not enpl oyee->i ncl udes(p) and
enpl oyees- >i ncl udes(p) and stockprice() = stockprice@re() + 10

3.1.3 Encoding, tokenizing

The encoding is the one used in text-based files.
Thetokenizing is 1 to 1 with the keywords.

3.1.4 UNICODE

Being that it is text-based format, the UNICODE can be used with no problems. As a proof of
concept, in the parser that we developed, we read from ASCII format or UNICODE format. A table
of properties (ftp://ftp.unicode.org/Public/lUNIDATA/) for Unicode charactersis provided on the
Unicode ftp site, and compl ete information on the processes involved in proper Unicode rendering
(such asthe bidi algorithm or Indic reordering) can be found in The Unicode Standard, Version 2.0.
(http://www.unicode.org/unicode/ uni2book/ u2.html). These algorithms are easy to implement,
and we use it for the Unicode-based UOL files.

-40-

The XML-DTDs

(UOL 1.2)

4 The XML-DTDs

4.1 The Mapping between UOL and XML
4.1.1 Justification

One could believe that XML would be avalid alternative for the SMIF RFP. Advantages of XML
asa SMIF RFP proposal would be;

XML isastandard defined by W3C and, therefore will be supported by Internet tools
XML istextual and easily comprehensible and usable

XML isobject-oriented and could easily be mapped with MOF and UML

XML carries meta-dataand is extensible

XML offersthe possibility of performing structural validations using the Document Type
Definition (DTD)

Then, if XML has all these advantages, why not propose XML to the SMIF RFP instead of UOL?
Two of the main reasons are:

XML has not been devel oped to be used heavily by humans without specific tools and,
therefore, is not adequate for generic human to tool and human to human
communication

Software engineers would not accept XML as a round-trip engineering language
because it istoo cumbersome to use without syntactic editors

XML obscures the embedded documents if read without a XML viewer
XML only offers structural control, in the same sense as BNF, and, for example, is not
susceptible to be extended as a procedural specification language or many object-

oriented other requirements.

Therefore, we believe and, as such propose in this proposal the combination of both UOL and
XML. Thiscombination is presented in the following chapter.

4.1.2 The mapping between UOL and XML

4.1.2.1 Graphical Definition of the Tags

-41-

The Mapping between UOL and XML
(UOL 1.2)

TAG ATTRI BUTES

TAG S STRUCTURE FOR AN XML UOL DOCUMENT

name
action synchronous
expression

actions

action

state = - =Istatedef'|—>|ﬂnwl —ri

™ *| paeudostate =

subact Tty *

e
. i) - iqmnstm
vi ened
"“IEJ:‘ti‘.-'i‘tj?S‘t&tE }—iﬁ transition
activity partitioned |&ctivit3rstate| = —'{statedﬂf' actionstate
state
s o

vi ewed

activity

actor

]

inhent feature l—*

adaptation | =
adaptation E =

%

[}
E 5

[|

-

¥
E“EJ
T
L
L 3
e

-42-

The XML-DTDs
(UOL 1.2)

after |after| = +{ PCDATA

alternative |ﬂmmmwek=+{PCDﬂTﬂ}+

argument
as
nane
attribute static
changes
BIT [BIT| = +{ PCDATA

name
class deferred e irherit constrained

vi ewed
feature
nane collaboration | =
collabora vi eved
tion)

i mpl enents
' L J
L -
raessage

comment ||:-:|mment| = *{:PCDETH}*

-43-

The Mapping between UOL and XML

(UOL 1.2)

name
vi ewed

component
composite

constant
constrained
constraint nane

Create nane

deferred

dependency

diagram type

entry namnme

- n
exception ame
vi ewed
exit nane

export nane

expresion

ENTITY
extends

ENTITY
extension

extensionin

cornponent | = formalgenerics

|cu:umpu:usite | = —-{statedﬂf}m'

|constant| = +{ PCDATA

|constrained| = +{ PCDATA

|constraint| = +{ PCDATA

|create | = -b(:EI'-.-'IPT‘f}P

|d.ef'ened| = identifier

|em:eptinn| = i>{f'u:urrmi'n.lgnaruan):s ir|herit }Lﬁ feature |—>

lexport| = +{ EMPTY J»

[expresion| = +{ PCDATA

|extensionin| = +{ PCDATA J»

- 44 -

The XML-DTDs
(UOL 1.2)

feature [feature] = fvisbility| -+

cl assnane

stat ename

formal name
generics |f'n:nnnalgene1i;:s| = constraint

flow

from |from | = +{ PCDATA >
identifier nane |identifier| = -+ EMPTY -
Ty
fdlist S

import import

_ _ = Tldﬂnt].ﬁer}—.T
inherit nane

[interface] - i-(fnmalgemms extension ——Cextends >

namne

interface vi ewed

-45-

The Mapping between UOL and XML

(UOL 1.2)

inout

internal
transition

linktype

message

method

rol eA
rol eB
cardA
cardB

name
deferred
static

[imout| = +{ EMPTY

mteraltransition | =

- 46 -

The XML-DTDs
(UOL 1.2)

' ™y
'y L

sterectyped

model name todel | =

tagged

package

= ~—+{fommalgenerios |- extends >
namne

node vi ewed

identifier constrained

cl ass operate | = eXpresion
pre
|operation| = —{armurent H
nane

operation static
mmtmd}L{Pcmm e

deferred
out

name
package y; eyeq [Eatiags] =~ extends >+t B

-47 -

The Mapping between UOL and XML
(UOL 1.2)

relation

BCASE

i

ENTITY) =
package package » = actrvity

corntnent

il

collahoration
post |post| = +{ PCDATA

pre

pseudo name
state type pseudnstate| = constraint

raise name -

redefine nanme |redefine | = +{ EMPTY J»

R —

relation
dentifier —F-Iadaptjun
rename nane |rena.me| = --(:EMPTY}»
select nane |select| = +{ EMPTY }»

signal nanme = 'I

namne

ST i oued - -

-48-

The XML-DTDs

state
def

state
kind

state name
machine vi ewed

name
sterotype

stereo
typed

namnme

subact|V|tyVlewed

namne

submachine
vi ewed

name
subsystem vi ewed
deferred

tagged

text

(UOL 1.2)

| statedﬂf'| —r{ atate }—%—{ interrnaltransition }%L—ml‘

* statedzf' * 1

* pseuﬂnstate sk
mmm}msﬂe }—.——{au:tmn

|statema;:1u:ne | i>||:-:|nstrﬂ.1:ﬂt }Libml
—b{cnmpcusﬂe }—iﬁtremsltmn}l—iﬁammn}L'

[sterentyped| = +{ PCDATA J»

|su]:na;:tiv1't3r| = ib{ coretraint }Lib{ constraired }L
-b{activitgrstate }Tﬁtmnsitiun

forualgeneis|
E—Lmﬂuﬂny }—iﬁyﬂﬁmlﬁerl—b{ opetate
wristhility l—-—<paskage }I — cu:unstmjned&'
= I—b{idsnti.f'lerl—-{expresian}—?b

-49-

The Mapping between UOL and XML
(UOL 1.2)

when
transition Igom 1= H

after

trigger

tv = I——{idsntﬁierl—-@cmm)T

type
redefine select
BIT "
typemark |ike hypmnmkk=+{PCDﬂTﬁ]w
typedef [typedef| = +{ PCDATA
:
uc

atts |—F-|t3rpema.rk |—<extenﬂs E

extensinnin

-50-

The XML-DTDs

ucext

ucinst nane

uctype nane

undefine

uol

use

usecase namne

(UOL 1.2)

ucest | = —+]identifier with identifier PCDATA >

luctype| = +{ EMPTY }»

|undefine | = +{ PCDATA

|with| = +{ PCDATA >

lwhen| = +{ PCDATA »

4.1.2.2 Document Type Definition (DTD) of UOL

<IENTI TY % ext ends

(stereotyped

tagged) + >

<IENTITY % extension " stereotype | constraint | tv " >
<IENTITY % package " (package | interface |class | relation | stereotype
constraint | tv | usecase | activity | comrent | actor | exception
conmponent | node | collaboration) " >
<IENTITY %idlist " identifier+ " >
<! ELEMENT act (#PCDATA) >
<! ELEMENT action (to* , (operate | signal)? ,(call | create | text)) >
<l ATTLI ST action
name I D #REQUI RED
synchronous (YES| NO #| MPLI ED
expression CDATA #| MPLI ED>
<l ELEMENT actions (entry* , exit*) >
<l ELEMENT actionstate ((activitystate , transition? , actions?) | state

(statedef , flow) | pseudostate | subactivity) >
<l ELEMENT activity (constraint? , constrained? , activitystate , transition?
, action?) >
<I ATTLI ST activity
name I D #REQUI RED
vi ewed CDATA #| MPLI ED>
<l ELEMENT activitystate (statedef , actionstate+) >

-51-

The Mapping between UOL and XML

(UOL 1.2)

<I ATTLI ST activitystate

partitioned CDATA

<! ELEMENT actor (formml generics? , (%extends;)? , in
<I ATTLI ST actor

name I D #REQUI RED

vi ewed CDATA #| MPLI ED>
<! ELEMENT adaptation ((renane , as)+ | export+ | red
<! ELEMENT after (#PCDATA) >
<! ELEMENT al ternative (#PCDATA) >
<! ELEMENT argunment ((in | out | inout) , identifier+
<! ELEMENT as (#PCDATA) >
<l ELEMENT attribute (constrained? ,(typedef | ((%d

(Y%extends;)?) >
< ATTLI ST attribute
name | D #REQUI RED
static (NQ YES) #FI XED " NO'
changes (addonl y|frozen) #I
<IELEMENT atts (identifier)+ >
<l ELEMENT BI T (#PCDATA) >
<! ELEMENT call (operate) >

<! ELEMENT cl ass (fornal generics? ,
constrained?)? , (feature
constrained?)?)?) >

<! ATTLI ST cl ass
name | D #REQUI RED
deferred (no|yes) #I MPLIED
vi ewed CDATA #| MPLI ED >

<!l ELEMENT col | aboration (fornal gene
relation)* , action?

<! ATTLI ST col | aborati on

(%extension;)? ,

#| MPLI ED>

MPLI ED>

(

constrai ned?)?

rics? , (class |

nmessage?) >

name I D #REQUI RED
vi ewed CDATA #1 MPLI ED
i mpl enent s I D #| MPLI ED>

<! ELEMENT comment

<! ELEMENT conponent
, constrai ned?) >

<I'ATTLI ST conponent

(#PCDATA) >

(formal generics?

(%ext ends;)?

name I D #REQUI RED
vi ewed CDATA #| MPLI ED>
<! ELEMENT conposite (statedef , statekind+) >
<!l ELEMENT constant (#PCDATA) >
<!l ELEMENT constrai ned (#PCDATA) >
<! ELEMENT constraint (#PCDATA) >
<I ATTLI ST constrai nt
nanme I D #REQUI RED>
<! ELEMENT create EMPTY >
<I ATTLI ST create
name I D #REQUI RED>

<! ELEMENT deferred (identifier)+ >

<! ELEMENT dependency (identifier+ , to) >
<!l ELEMENT di agram (identifier)+ >
<I ATTLI ST di agram
type I D #REQUI RED>

<I ELEMENT entry
<I ATTLI ST entry

(identifier)+ >

herit? , feature) >

efine+ | select+) >

, typemark)* >

ist;)? , typemark)) ,

%extends;)? , ((inherit
(st at emachi ne+

identifier | interface

, inherit? , identifier+

-52-

The XML-DTDs

(UOL 1.2)
name I D #REQUI RED>
<! ELEMENT exception (fornalgenerics? , (% xtends;)? , inherit? , feature) >
<I ATTLI ST exception
name I D #REQUI RED
vi ewed CDATA #1 MPLI ED>

<l ELEMENT exit (identifier)+ >
<I ATTLI ST exit
name I D #REQUI RED>
<!l ELEMENT export EMPTY >
<I ATTLI ST export
name CDATA #REQUI RED>
<! ELEMENT expresion (#PCDATA) >
<! ELEMENT extensionin (#PCDATA) >
<! ELEMENT feature (visibility , ((stereotyped , (nmethod | attribute
operation | tagged)*) | (method | attribute | operation | tagged)+))
>
<l ELEMENT flow (constraint? , constrained?) >
< ATTLI ST fl ow
cl assname I D #REQUI RED
st at enane CDATA #REQUI RED>
<! ELEMENT fornmal generics (constraint)? >
<I ATTLI ST fornmal generics
name I D #REQUI RED>
<! ELEMENT from (#PCDATA) >
<! ELEMENT identifier EMPTY >
<I ATTLI ST identifier
name I D #REQUI RED>
<l ELEMENT inport (visibility? , (identifier+ , as?)? , from+ >
<l ELEMENT in EMPTY>
<l ELEMENT inherit (identifier , type*)+ >
<! ATTLI ST inherit
name I D #REQUI RED>
<! ELEMENT i nout EMPTY >
<l ELEMENT interface (fornalgenerics? , (% xtension;)? , (%extends;)?
inherit? , ((visibility , operation*)* , constrained?)) >
< ATTLI ST interface

name I D #REQUI RED
vi ewed CDATA #1 MPLI ED>
<l ELEMENT internaltransition (((when | after) , (call | (trigger , (when

after | signal)))?)+ , (%dlist;)?) >
<IELEMENT is (visibility? , Y%ackage;)+ >
<!l ELEMENT I|ike (#PCDATA) >

<IELEMENT link (linktype | (dependency+ , text)+) >
<I ATTLI ST Iink
with I D #REQUI RED>
<! ELEMENT | i nktype EMPTY >
<I ATTLI ST |i nktype

rol eA I D #REQUI RED
rol eB I D #REQUI RED
car dA CDATA #| MPLI ED
car dBed CDATA #| MPLI ED>

<!l ELEMENT nessage (identifier)+ >
<!l ELEMENT nethod (argument , typemark? , (pre? , post)? , (%extends;)?
constrained? , (text | identifier) , PCDATA) >

-B53-

The Mapping between UOL and XML

(UOL 1.2)

<! ATTLI ST net hod
name I D #REQUI RED
def erred(YES| NO #| MPLI ED
static (YES| NO #1 MPLI ED>

<! ELEMENT nodel (diagrant , (subsystem | stereotyped | constrained | tagged
%package;)*) >
<! ATTLI ST nodel
name I D #REQUI RED>
<! ELEMENT node (fornual generics? , (% xtends;)? , inherit? , identifier+
constrai ned?) >
<l ATTLI ST node
name I D #REQUI RED
vi ewed CDATA #| MPLI ED>
<! ELEMENT operate (expresion)+ >
<! ATTLI ST operate
cl ass ID #REQUI RED
operation I D #REQUI RED>
<! ELEMENT operation (argunent , typemark? , (pre | post) , (%xtension;)?
(%extends;)? , constrained? , PCDATA) >
<I ATTLI ST operation
name I D #REQUI RED
static (YES| NO #| MPLI ED
def erred(YES| NO #| MPLI ED>
<! ELEMENT out EMPTY >
<! ELEMENT package ((%extends;)? , (%dlist;)? , inmport? , is? , constrained?)

>

<I ATTLI ST package
name I D #REQUI RED
vi ewed I D #1 MPLI ED>

<! ELEMENT post (#PCDATA) >
<! ELEMENT pre (#PCDATA) >

<! ELEMENT pseudostate (constraint? , constrained? , actions?) >
<I ATTLI ST pseudostate

type (deephi story| shal l owhi story|initial]|final]|join|fork|branch)
#REQUI RED
name I D #REQUI RED>

<l ELEMENT raise (identifier)+ >
<! ATTLI ST rai se
name I D #REQUI RED>
<! ELEMENT redefine EMPTY >
<! ATTLI ST redefine
name CDATA #REQUI RED>
<l ELEMENT relation (fornmalgenerics? , (%xtension;)? , (%xtends;)?
identifier+ , adaptation , (link | (feature? , constrained?))) >
<! ELEMENT renane EMPTY >
<! ATTLI ST renane
name CDATA #REQUI RED>
<! ELEMENT sel ect EMPTY >
<! ATTLI ST sel ect
name CDATA #REQUI RED>
<l ELEMENT signal (to? , raise*) >
<! ATTLI ST si gnal
name I D #REQUI RED>
<l ELEMENT state (constraint? , constrained? , actions?) >
<! ATTLI ST state

-54-

The XML-DTDs

(UOL 1.2)
name I D #REQUI RED
vi ewed CDATA #1 MPLI ED>
<! ELEMENT statedef (state , internaltransition* , deferred?) >

<! ELEMENT statekind (statedef | pseudostate | (subnachine? , conposite ,
transition* , action)) >

<! ELEMENT st at emachine (constraint? , constrained? , conposite , transition?
, action?) >

<I ATTLI ST st at enachi ne
name I D #REQUI RED
vi ewed CDATA #1 MPLI ED>

<! ELEMENT stereotype (identifier+ , (constraint | tv)+) >

<I ATTLI ST stereotype
name I D #REQUI RED
of I D #REQUI RED>

<! ELEMENT st ereotyped (#PCDATA) >

<! ELEMENT subactivity (constraint? , constrained? , activitystate ,
transition+ , action+) >

<I ATTLI ST subactivity
name I D #REQUI RED
vi ewed CDATA #| MPLI ED>

<! ELEMENT submachi ne (constraint? , constrained?) >

<! ATTLI ST submachi ne

nanme I D #REQUI RED
vi ewed CDATA #| MPLI ED>
<! ELEMENT subsystem (fornal generics? , (%xtends;)? , inherit? , inport? ,

(visibility , (identifier , operate)?)? , (visibility , Y%ackage;)*
, constrained?) >
<I ATTLI ST subsystem

name I D #REQUI RED
def erred(YES| NO #| MPLI ED
vi ewed CDATA #1 MPL| ED>

<l ELEMENT tagged (identifier , expresion)+ >

<! ELEMENT text (#PCDATA) >

<IELEMENT to (identifier)+ >

<l ELEMENT transition ((when | after) , (call | (trigger , (when | after |
signal)))? , (%dlist;)?) >

<I' ATTLI ST transition
from I D #REQUI RED
to I D #REQUI RED>

<l ELEMENT trigger (#PCDATA) >

<l ELEMENT type ((expanded? , (identifier , type* , rename* , export* ,
undefine* , redefine* , select*)+) | like | BIT) >

<! ELEMENT typedef (#PCDATA) >

<! ELEMENT typermark (#PCDATA) >

<I ATTLI ST typemark
like (NQ YES) #FIXED "NO'>

<IELEMENT tv (identifier , #PCDATA)+ >

<l ELEMENT uc (formalgenerics? , (%dlist;)? , use* , act* , (visibility? ,

(operation+ | (atts , typemark , (%extends;) , is))?)? , text? ,
alternative? , extensionin?) >
<l ELEMENT ucext (identifier+ , with , identifier+ , #PCDATA) >

<l ELEMENT ucinst (identifier+ , uctype , (identifier , is)*) >
<I ATTLI ST uci nst
nanme I D #REQUI RED>

-B5-

The Mapping between UOL and XML

(UOL 1.2)

<! ELEMENT uctype EMPTY >
<! ATTLI ST uctype
name I D #REQUI RED>
<! ELEMENT undefine (#PCDATA) >
<!l ELEMENT uol (nodel | package) >
<! ELEMENT use (#PCDATA) >
<!l ELEMENT usecase (uc | ucext | ucinst) >
<! ATTLI ST usecase
name I D #REQUI RED>
<l ELEMENT visibility (identifier)+ >
<! ELEMENT when (#PCDATA) >
<l ELEMENT with (#PCDATA) >

4.1.2.3 Examples

examplel.uol

nodel Exanpl e0
di agrans
Mai nD, Mai nE: St ati cDi agram
Per sonD: St at eDi agr am
end -- diagrans
end -- nodel

examplel_xml

<?XM. VERSI ON="1. 0" ?>
<! DOCTYPE uol SYSTEM "uol . dtd">
<uol >
<nodel nanme="Exanpl e0">
<di agram type="St ati cDi agrani' >
<identifier name="MinD'/>
<identifier name="MinE"/>
</ di agranp
<di agram t ype=" St at eDi agr ani' >
<identifier name="PersonD'/>
</ di agranp
</ model >
</ uol >

example2._uol

nodel aModel
package aPMain is {any}

cl ass SCHEMA
-- features of schema ommited

end

cl ass adCl ass
-- features of aClass onmmted

end

st er eot ype EXPRESS SCHEMA of SCHEMA end

- 56 -

The XML-DTDs

(UOL 1.2)

st ereotype aStereoType of aCl ass end
stereotype typeA of aClass end
class Schema_Cl ass
stereotyped wi th EXPRESS SCHEMA
feature {any}
a:integer;
b:integer is 3;
c [1..3,6..*] constrained by {aConstraint}
cinteger is {2,3,4}
stereotyped with aStereoType
end -- feature
end -- class
cl ass aCl ass?2
feature {any}
stereotyped with typeA

end -- feature
end -- class
end -- package
end -- node

example2.xm

<?XM. VERSI ON="1. 0" ?>
<! DOCTYPE uol SYSTEM "uol . dtd">

<uol >

<nodel nane="alMbdel ">
<package nanme="pMi n">

<visibility> <identifier name="ANY"/>
</visibility>
<cl ass nane="SCHEMA"> </cl ass>
<cl ass nane="aC ass"> </cl ass>
<stereotype name="EXPRESS SCHEMA" of =" SCHEMA" >
</ st ereotype>
<stereotype nane="aStereoType" of="al ass">
</ st ereotype>
<stereotype nanme="typeA" of ="aCl ass"> </stereotype>
<cl ass nanme="Schema_Cl ass" >
<st er eot yped>EXPRESS_SCHEMA</ st er eot yped>
<f eat ure>
<visibility> <identifier name="ANY"/>
</visibility>
<attribute name="a">
<t ypemar k>i nt eger </t ypemar k>
<lattribute>
<attribute name="b">
<typedef >i nteger is 3</typedef>
</attribute>
<attribute name="c">
<constrai ned>{aConstraint}
</ constrai ned>
<t ypedef >
<t ypemar k>i nt eger
</typemar k>
[1..3,6..*] is {2,3,4}
</typedef>
<st er eot yped>aSt er eoType

-57-

The Mapping between UOL and XML

(UOL 1.2)
</ st ereot yped>
</attribute>
</ feature>
</ cl ass>
<cl ass name="aCl ass2" >
<f eat ure>
<visibility>
<identifier name="ANY"/>
</visibility>
<st er eot yped>t ypeA</ st er eot yped>
</ feature>
</ cl ass>
</ package>
</ nodel >
</ uol >

example3._uol

nodel Exanpl e3
-- Subsystem decl arati on
deferred subsystem adSubsystem
-- extension use
-- inheritance
i mport
{any} anEl enent as thisEl ement from aPackage,
anot her El ement from aPackagez2,
from aPackage3
end -- subsystem adSubsystem
package All El enments is
-- Package decl aration
package aPackage
end -- package aPackage
-- Interface declaration
interface anlnterface
feature {any}
-- only operations
deferred static anOperation(aParam aType): aRet urnType
{precondition: aConstraint}
{postcondition: aConstraint}
constrai ned by {aConstraint}
is text "Specification”
end
end — interface anlnterface
-- Class declaration
cl ass Person viewed with MiinD
feature {any}
i sMarried, isUnenployed: Bool ean
bi rt hDat e: Dat e;
age: | nt eger;
firstNanme, | ast Nane: Stri ng;
sex: unique { male, female };
deferred i ncone(d: Date): | nteger
is text"lncom ng operation”
end
constrained by { self.age>=0 }
end — Class Person

- 58 -

The XML-DTDs

(UOL 1.2)

-- Rel ation declaration
relation job
link Person[0..*], Conpany[O..*] with Marriage
feature {Person}
stereotyped with UMLAssoci ati onEnd,;
with tag val ues (<Associ ati onEndName , enpl oyee>)
end
feature {Company}
stereotyped with UMLAssoci ati onEnd,;
with tag val ues (<Associ ati onEndNanme , enpl oyer>);
deferred j obAmount (account Nunber: | nt eger)
is text "Amounting count”
end
constrai ned by
{ sel f.enployee->size <=50 }
-- rest of constraints ommted
end -- Relation job
-- Stereotype declaration
stereotype aStereotype of aBaseCl ass viewed as 'anlcon.gif’
i nherit aNamel(aDbDi scrim nator), aNane2
tag val ues
Associ ati onEndNane
I sNavi gable is true
IsOrdered is fal se
Aggregation is 'none'
end -- tag val ues
constr ai nt
aConstraintl is { text "This is a constraint" }
aConstraint2 is { aConstraintDef }
end -- constraint
end -- stereotype aStereotype
end -- package AllEl enents

end -- nodel Exanple3

example3.xml

<?XM. VERSI ON="1. 0" ?>
<uol >
<nodel nane="Exanpl e3">
<subsyst em nanme="adSubsystent' deferred="yes">
<i nmport>
<visibility>any</visibility>
<identifier name="anEl enent"/>
<as>t hi skl enent </ as>
<f r ompaPackage</fronp
</inport>
<i nport>
<identifier name="anot herEl enent"/>
<fronraPackage2</fronp
</inport>
<i mpor t ><f ronmpaPackage3</frone</i nport >
</ subsyst enp
<package nane="aPackage">
</ package>
<package nanme="Al | El enents" >

-59-

The Mapping between UOL and XML

(UOL 1.2)

</ package>
<i nterface name="anlnterface">
<visibility>any</visibility>
<operati on name="anQperation" static="yes">
<ar gunent >
<out/><identifier nane="aReturnType"/>
</ ar gunment >
<ar gunent >
<in/><identifier nanme="aParani/>
<t ypemar k>aType</t ypemar k>
</ ar gunent >
<pr e>aConstrai nt </ pre>
<post >aConst r ai nt 2</ post >
<constrai nt>{aConstrai nt 3} </ constraint>
Speci fication
</ operation>
</interface>

<cl ass nane="Person" vi ewed="Mi nD">
<f eature>
<visibility>any</visibility>
<attribute name="isMarried">
<t ypemar k>bool ean</t ypemar k>
</attribute>
<attribute name="i sUnenpl oyed">
<t ypemar k>bool ean</t ypemar k>
</attribute>
<attribute name="birthbDate">
<t ypemar k>dat e</ t ypemar k>
</attribute>
<attribute name="age">
<t ypemar k>bool ean</t ypemar k>
</attribute>
<attribute name="firstNane">
<typemar k>stri ng</typenmar k>
</attribute>
<attribute name="| ast Nane" >
<t ypemar k>stri ng</typemar k>
</attribute>
<attribute name="sex">
<t ypedef >uni que enun={mal e, f emal e} </t ypedef >
</attribute>
<operation name="i ncome" deferred="Yes" type="Ilnteger">
<par anet er name="d" type="Date"/>
I ncom ng operation
</ operation>
</ feature>

<constraint> {sel f.age>=0} </constraint>
</cl ass>
<rel ati on nane="j ob">
<f eat ure>
<visibility>Person</visibility>
<st ereot yped>UM.Associ ati onEnd</ st er eot yped>
<t agged>
<i dentifier name="Associ ati onEndName"/>

- 60 -

The XML-DTDs

(UOL 1.2)

husband
</t agged>
</ feature>
<f eat ure>
<vi sibility>Conpany</visibility>
<st er eot yped>UM.Associ ati onEnd</ st er eot yped>
<t agged>
<i dentifier name="Associ ati onEndName"/>
enpl oyer
</t agged>
</ feature>
<constraint >{sel f. enpl oyee->si ze % e=50} </ constrai nt>
<link rol eA="Person" cardA="[0..*]" rol eB="Conpany"
cardb="[0..*]" with="Marriage"/>
</rel ation>
<stereotype nanme="aStereotype" of ="aBaseC ass">
<identifier name="anlcon.gif"/>
<tv>
<i dentifier name="Associ ati onEndName"/>
husband
</tv>

<tv>
<identifier name="IsNavi gable"/>
true
</[tv>
<tv>
<identifier nane="1sOrdered"/>
fal se
</tv>
<tv>
<identifier name="Aggregation"/>
%guot none %guot
</[tv>
<constraint nane="aConstraintl1l">
text \"This is a constraint\"”
</ constraint>
<constraint nane="aConstraint2">
aConst r ai nDef
</ constrai nt>
</ st ereotype>
</ nmodel >

</ uol >

-061-

The mapping between UOL and MOF

(UOL 1.2)

5 Mappings

5.1 The mapping between UOL and MOF

5.1.1 Direct mapping

MOF Meta-metamodel

UOL

Association (binary)

Association (n-ary)

NA AssociationClass
AssociationEnd AssociationEnd
Attribute Attribute
Behavioral Feature Behavioral Feature
Class Class

Classifier Classifier
Constraint Constraint
DataType DataType

/ dependsOn (association) Dependency (class)
Exception Exception

Feature Feature

Generalizabl eElement

Generalizabl eElement

generalizes (association)

Generalization (class)

Generalization

Generalization

Interface Interface Class (as Interface)
M odel Element M odel Element

Reference NA

Constant Attribute

Namespace Namespace

Operation Operation

Package Package

Parameter Parameter

Structural Feature Structural Feature

Class (as Type) Type (stereotype)

MOF META-METAMODEL

UOL

AggregationKind

AggregationKind

Short, Unsigned Long, Double,

CORBA Boolean Boolean
CORBA Enum unigue
NameType Expression
CORBA Short, Long, Unsigned Integer

-62-

Mappings

(UOL 1.2)
Octet, Float
List, Set List
MultiplicityKind Multiplicity
NameKind Name
DirectionKind OperationDirectionKind
DependencyKind (enum) dependencies (reified as
classes)
ScopeKind ScopeKind
CORBA String, Char String
CORBA Time Service Data Types | Time
TypeDef NA
CORBA Any TextMultiline
VisibilityKind VisibilityKind

5.1.2 Support for meta-model extensions

MOF can be extended via descendents of the MOF class and UOL can be extended via tagged
values and stereotypes.

Thereason for the way MOF is extended is that a meta-model describes such concepts as instances
of the concepts defined in the meta-meta-model. Therefore, new conceptswill be descendentsin
MOF of the only suitable MOF entity, the MOF class.

Being that M OF's extension mechanism is different from the concepts defined in UOL, these
concepts will be mapped to a MOF class through the UOL's extension mechanisms. The exact
mapping is pending.

5.2 The mapping between UOL and CDIF

5.2.1 Introduction

5.2.1.1 Document structure

This document explains the translation from a CDIF Transfer to UOL code. The CDIF structures
are presented in the same order as they appear in the EIA/1S-109 document standard from
Electronic Industries Association. For every CDIF element, we present an explanation of it
according to the standard referenced followed by its UOL mapping, where we justify the concrete
mapping. Then, we give the part of the CDIF grammar corresponding to the CDIF element and a
mapping exampl e extracted from the standards examples. These examples are part of the complete
CDIF Transfer presented at the final chapter.

Finally, we translate a complete CDIF Transfer to UOL, giving also its UML graphical
representation.

5.2.1.2 Structure of a CDIF Transfer

A CDIF Transfer consists of two elements, the TransferEnvelope and the TransferContents. They
are detailed in each of the corresponding chapters.

The general syntax of a CDIF Transfer is asfollows:;

<CDl FTransfer>:: = <Tr ansf er Envel ope>
<Tr ansf er Cont ent s>

[extracted from EIA/IS-109,page 8]

-063-

The mapping between UOL and CDIF

(UOL 1.2)
5.2.2 Transfer Envelope

5.2.2.1 Introduction

The Transfer Envelope consists of the CDIF Signature, the Syntax Identifier and the Encoding

Identifier.
[extracted from EIA/IS-109,page 8]

5.2.2.2 UOL mapping

The Transfer Envelope maps to UOL as a comment.

The information of the Transfer Envelope has no meaning in an UOL source code because it refers
to the syntax standard and the encoding standard used in the source CDIF file.

5.2.2.3 Grammar

<TransferEnvel ope> :: <CDI FSi gnature> , <Syntaxldentifier>

<Encodi ngl denti fi er>

SYNTAX <TransferEnvelopeSpace> <Synt ax| d>

<TransferEnvelopeSpace> <Synt axVersi on>

<Encodi ngldentifier> ::= ENCODING <TransferEnvelopeSpace>
<Encodi ngl d> <TransferEnvelopeSpace>

<Encodi ngVer si on>

<Syntaxldentifier> ::

<CDI FSi gnature> ::= CDIF

<Syntaxld> ::= <TransferEnvelopeString>

<Synt axVersion> ::= <TransferEnvelopeString>

<Encodi ngld> ::= <TransferEnvelopeString>
<Encodi ngVer si on> S <TransferEnvelopeString>

[extracted from EIA/IS-109,page 35]

5.2.2.4 Example
CDIF Source Example:

| CDI F , SYNTAX “SYNTAX. 1" “02.00. 00" , ENCODI NG “ENCODI NG 1" “02. 00. 00”

[extracted from EIA/IS-110 Extract,page 26]

UOL Mapping Example:

-- CDI F, SYNTAX “SYNTAX. 1" “02.00. 00", ENCODI NG “ENCODI NG. 1" "02. 00. 00"
-- Transfer Contents

5.2.3 Transfer Contents

5.2.3.1 Introduction

Thefirst level of the grammar of the Transfer Contents is the same for any CDIF Transfer, its
structureisasfollows:

<TransferContents>:: = <Header Secti on >
<Met alWbdel Secti on>
[<Model Secti onCl ause>]

[extracted from EIA/IS-109,page 8]

-64-

Mappings

(UOL 1.2)
5.2.3.2 Header Section

5.2.3.2.1 Introduction

The Header Section defines information that applies to the whole transfer.
[extracted from EIA/IS-109, page 9]

5.2.3.2.2 UOL mapping
The Header Section mappesto UOL as acomment.

The information of the Header Section has ho meaning in an UOL source code because it specifies
summary information about the transfer, in the form of a number of items.

5.2.3.2.3 Grammar

<Header Secti on> :: <OpenScope> <HeaderKeyword>
<Sunmar yCl ause> <CloseScope>
<OpenScope> <SummaryKeyword>

[<ldentifierValuePair>]...

<Summar yCl ause> ::

<CloseScope>
<l dentifierVal uePair> ::= <OpenScope> <Sunmaryl dentifier>
<StringVal ue> <CloseScope>
<Summaryldentifier> ::= <ldentifier>
<StringVvalue> ::= <String>
[extracted from EIA/IS-109, pages 9,10]
5.2.3.2.4 Example
CDIF Source Example:
(: HEADER
(: SUMVARY
(Exporter Nane “CASE Ceni us”)
(ExporterVersion “01. 00.00")
(Export Dat e “1991/04/01")
(ExporterTi ne “07:00:00")
(Publ i sher Nane “Mary Lomas”)
)
)

[extracted from EIA/IS-110 Extract,page 26]

UOL Mapping Example :

- - SUMVARY

- - (Export er Name “CASE Ceni us”)
- - (ExporterVersion “01. 00.00")

- - (Export Dat e “1991/04/01")
- - (ExporterTinme “07:00:00")

- - (Publ i sher Narre “Mary Lomas”)

5.2.3.3 Meta-model Section
5.2.3.3.1 Introduction

The Meta-model Section of the Transfer consists of references to standardized Subject Areas,
followed by extensionsto the Meta-Model. The Meta-model for the transfer, known as the

- 65 -

The mapping between UOL and CDIF

(UOL 1.2)

“Working Meta-model”, is defined by the set of meta-meta-entity and meta-meta-rel ationship
instances that are used in any of the referenced Subject Areas, plus those added by extensions.

Its grammar is as follows:

<Met aMbdel Secti onCl ause>: : = <OpenScope> <MetaModelKeyword>
<CDI FSubj ect Ar eaRef er enceCl ause>. . .
[<Met aModel Ext ensi onCl ause>]. ..
<CloseScope>

[extracted from EIA/IS-109,pages 11,12]

5.2.3.3.2 CDIF Subject Area Reference Clause

5.2.3.3.2.1 Introduction
This section identifies the standardized CDIF Subject Areas that should be used by the importer
when interpreting model data. The appropriate version of each of these Subject Areasis aso

identified (as defined in the relevant Subject Area standard).
[extracted from EIA/IS-108,page 14]

5.2.3.3.2.2 UOL mapping

Subject Area References are mapped as an UOL import statement. Subject Areas should be
mapped as UOL packages.

Each package defined from a SubjectAreaReference, contains a non-instantiable class, called
“VersionNumber<SubjectAreaName>", with one attribute, “VersionNumber”, that contains the
version number of the imported Subject Area.

Mapping Subject Areas as UOL packages allows the model to import them and gives support to the
underlying structure, grouping the model and the meta-model in a package each. The meta-model
contains a number of packages, corresponding to the referenced Subject areas, and the package
containing the extensions.

5.2.3.3.2.3 Grammar

<CDI FSubj ect Ar eaRef er enceCl ause>: : = <OpenScope>
<SubjectAreaReferenceKeyword>
<Subj ect Ar eaNane>
<OpenScope>
<VersionNumberKeyword>
<Subj ect Ar eaVer si onNunber >

<CloseScope>

<CloseScope>
<Subj ect Ar eaNane>: : = <MetaObjectName>
<Subj ect Ar eaVer si onNunber >: : = <String>

[extracted from EIA/IS-109, page 12]

5.2.3.3.2.4 Example
CDIF Source Example :

(: SUBJECTAREAREFERENCE Dat aMbdel i ng
(: VERSI ONNUMBER “01.00")
)

(: SUBJECTAREAREFERENCE Dat aDefinition
(: VERSI ONNUMBER “01.00")
)

- 66 -

Mappings

(UOL 1.2)
[extracted from EIA/IS-110 Extract,page 27]

UOL Mapping Example :

-- code in the Mdel package
import from OwnMet aMbdel : : Dat aMbdel i ng
import from OwnMet aMbdel : : Dat aDefi nition

-- code in the Meta-nopdel package
-- code in DataModeling Mta-nodel package

class Versi onNunber Dat aMbdel i ng
feature {any}
Ver si onNunber: String is '01. 00
end
end

-- code in DataDefinition Meta-nodel package
class Versi onNunber Dat aDefinition
feature {any}
Ver si onNunber: String is ’01. 00’
end
end

5.2.3.3.3 Meta-model Extension Clause

5.2.3.3.3.1 Introduction
This section contains meta-model extension information that must be communicated to the
importer before it encounters model data. This section must be empty if importers and exporters
use only the standardized CDIF Subject Areas.

When an exporter needs to extend the standardized CDIF meta-model or to provide its own meta-
model definition(s), it places these extensionsin this section. All Syntaxes shall provide
mechanisms for extension.

The syntax of the Meta-model Extension Clause:

<Met aModel Ext ensi onCl ause>: : =
<Met aMet aEnti tyl nst ance>
| <MetaMet aRel ati onshi pl nstance>
| <Enuner at edMet aAttri but eExt ensi on>

[extracted from EIA/IS-108,page 14 and EIA/IS-109,page 13]

5.2.3.3.3.2 Meta-meta-entity Instance

5.2.3.3.3.2.1 Introduction

A meta-meta-entity isthe definition of the behaviour and structure of meta-entities, meta-
relationships, meta-attributes, or subject areas (i.e., adefinition of the meta-object definitions used

to describe information in models).
[extracted from EIA/IS-109,page 50]

5.2.3.3.3.2.2 UOL Mapping

The extensions are mapped into a package containing all the extensions. This packageisincluded
in our own meta-model package. These extensions are mapped as a class stereotyped with Utility.

- 67 -

The mapping between UOL and CDIF

(UOL 1.2)

The use of a Utility stereotype allows expressing all the meaning of the Meta-meta-entity in a
simple way resulting in avery straightforward mapping.

5.2.3.3.3.2.3 Grammar

<Met aMet aEnti tyl nstance> ::= <OpenScope> <Met aMet aEnti t yName>
<CDl FMet al denti fier>

[<Met aMet aAttri but el nstance>]. ..
<CloseScope>
<MetaMetaObjectName>
<ldentifier>

<Met aMet aEnti t yNanme>
<CDl FMet al denti fi er >

[extracted from EIA/IS-109, page 13]

5.2.3.3.3.2.4 Example
CDIF Source Example:

| (MetaEntity MEOOL [Met aMet aAttri but el nstance] .. .)

[extracted from EIA/IS-110 Extract,pages 38-39]

UOL Mapping Example:

class MEOO1
stereotyped with Uility
feature {any}
-- Transl ati on of MetaMetaAttri butel nstance
end
end

5.2.3.3.3.3 Meta-meta-attribute Instance

5.2.3.3.3.3.1 Introduction

A meta-meta-attribute instance clause is used to represent each of the meta-meta-attributes (other

than the CDIF Metaldentifier meta-meta-attribute) of the meta-meta-entity.
[extracted from EIA/IS-109,page 14]

5.2.3.3.3.3.2 UOL Mapping
M eta-meta-attribute instances are mapped as features of the UOL class they belong to.

The mapping of a meta-meta-attribute instance as afeature is a consequence of having translated its

meta-meta-entity as a class stereotype. Thisis because afeature isthe mean we have of adding
characteristicsto aclass.

5.2.3.3.3.3.3 Grammar

<Met aMet aAttri but el nstance> = <OpenScope>
<Met aMet aAttri but eNanme>
<Met aMet aAttri but eval ue>
<Cl oseScope>

<Met aMet aObj ect Nanme>
<Met aAttri but eval ue>

<Met aMet aAt t ri but eNane>
<Met aMet aAttri but evVal ue>

[extracted from EIA/IS-109, page 14]

5.2.3.3.3.3.4 Example
CDIF Source Example:

- 68 -

Mappings

(UOL 1.2)

(MetaEntity MEOO1
(Name *SecurityClassification*)

)

[extracted from EIA/IS-110 Extract,page 38]

UOL Mapping Example:

class MEOO1
stereotyped with Uility
feature {any}
Name: String is ‘*SecurityC assification*’
end
end

5.2.3.3.3.4 Meta-meta-relationship Instance

5.2.3.3.3.4.1 Introduction

A meta-meta-relationship is adefinition of atype of data object that occursin CDIF meta-models.
Specifically, a meta-meta-relationship represents the definition of arelationship between instances
of meta-meta-entities.

[extracted from EIA/IS-109,page 50]

5.2.3.3.3.4.2 UOL Mapping

M eta-meta-relationship instances are mapped as UOL classes stereotyped with UM LAssociation,
in the meta-model extension package.

The relationships are mapped as classes instead of relations because, at thislevel, arelationship
does not connect classes. It is at the model level when arelationship takes its role as connector
between classes. In the meta-model, we only define the concept of connector, but we do not
connect classes actually.

5.2.3.3.3.4.3 Grammar

<Met aMet aRel ati onshi pl nstance> :: =
<OpenScope>
<Ful | Met aMet aRel ati onshi pNane>
<Sour ceMet aMet aEnt i t yCDI FMet al denti fi er >
<Desti nati onMet aMet aEnti t yCDI FMet al denti fier>
<Cl oseScope>
<Ful | Met aMet aRel ati onshi pName> :: =
<Sour ceMet aMet aEnt i t yNanme> <Dot >
<Met aMet aRel at i onshi pName> <Dot >
<Desti nati onMet aMet aEnti t yNane>
<Sour ceMet aMet aEnti t yNanme> M
<Met aMet aObj ect Nane>
<Met aMet aRel at i onShi pNanme> i =
<Met aMet aObj ect Nanme>

<Desti nati onMet aMet aEnt it yName>: : = <Met aMet aObj ect Nanme>
<Sour ceMet aMet aEnti t yCDI FMet al denti fi er>: = <CDI FMet al denti fi er>
<Desti nati onMet aMet aEnti t yCDI FMet al denti fier>::= <CDlI FMet al denti fi er>
<CDI FMet al denti fier>:: = <ldentifier>

[extracted from EIA/IS-109, page 15]

- 09 -

The mapping between UOL and CDIF

(UOL 1.2)

5.2.3.3.3.4.4 Example
CDIF Source Example:

| (Met aRel ati onshi p. HasDesti nati on. MetaEntity MROO1 MEOO1)

[extracted from EIA/IS-110 Extract, page 39]

UOL Mapping Example:

class HasDesti nation
stereotyped with UMLAssoci ation
feature {any}
from String iIs MRO1
to: String is MEOO1
end

end

5.2.3.3.3.5 Enumerated Meta-attribute Extension

5.2.3.3.3.5.1 Introduction

This construction extends an enumerated meta-attribute, adding values that are appended to those
values that have already been defined for the meta-attribute.

5.2.3.3.3.5.2 UOL mapping

Enumerated Meta-attributes are mapped as “ unique <List-of-values>". On thelist of valuesthere
are adl the values of the Meta-attribute. The UOL mapping only appears when an attribute of a
(Meta-)entity or relationship is defined with it.

To extend an enumerated value, we redefine the enumerated value adding the new values with the
UOL equivalent construction for enumerated values, unique <List-of-values>.

5.2.3.3.3.5.3 Grammar

<Enumer at edMet aAtt ri but eExt ensi on>: : =
<OpenScope>
<Ext endMet aAttri but eKeywor d>
<CDI FMet al dent i fi er >
<OpenScope>
<Enuner at edl denti fi er Val ue>
[<Enuner at edSepar at or ><Enuner at edl denti fi er Val ue>]. ..
<Cl oseScope>
<Cl oseScope>
<CDI FMet al dentifier>:: = <ldentifier>
<Enuner at edl denti fi erVal ue>:: = <ldentifier>

[extracted from EIA/IS-109, page 16]

5.2.3.3.3.5.4 Example
CDIF Source Example:

| (: EXTENDMETA- ATTRI BUTE MAOO1 (Encrypted, Nonencrypted))

[extracted from EIA/IS-109, page 16]

UOL mapping Example: (appears when MAOQOL is used as a Type)

| MAOOL1l: unique {<Before defined values (if necessary)>,

-70-

Mappings

(UOL 1.2)

Encrypt ed, Nonencr ypt ed} ;
<AttributeName> : MAOO1L

5.2.3.4 Model Section

5.2.3.4.1 Introduction

The Model Section contains references to attributable meta-objects (object types) and actual model
data. The object typesreferenced here are instances of MetaEntities and M etaRel ationships that
were defined in the Meta-model Section as part of the CDIF Subject Areareferences or in the
Meta-model Extensions clauses. The model data are in the form of meta-entity instances, meta-

relationshipsinstances and meta-attribute instances.
[extracted from EIA/IS-109,page 16]

Its Grammar is as follows:

<Mbdel Secti onCl ause>: : = <OpenScope>
<Mbdel Keywor d> <Cbj ect Cl ause>. ..
<Cl oseScope>

<Obj ect Cl ause>: : = <Met aEntityl nstance>
| <Met aRel ati onshi pl nstance>

[extracted from EIA/IS-109, page 17]

An example of the Model Section Clauseis

| (: MODEL <Qbj ect Cl ause> .. .)

[extracted from EIA/IS-109, page 17]

5.2.3.4.2 Meta-entity Instance

5.2.3.4.2.1 Introduction

Meta-entity is a definition of atype of data object that occursin CDIF models. Specificaly, a
meta-entity represents a set of zero or more meta-attributes, stored together to represent athing,

event or concept that hasinstancesin a model.
[extracted from EIA/IS-109,page 49]

5.2.3.4.2.2 UOL mapping

M eta-entity instances are mapped as classes stereotyped with the M eta-meta-entity they are
instances of .

The decision of mapping a meta-entity instance as a stereotype of the meta-meta-entity it is related
to allows keeping all the characteristics of the meta-entity while adding necessary detailsfor a
model entity.

5.2.3.4.2.3 Grammar

<Met aEntityl nstance> ::= <OpenScope> <MetaEntityNane>
<CDI Fl dentifier>

[<Met aAttri butelnstance>]. ..
<Cl oseScope>

<Met aCbj ect Nane>

<l dentifier>

<Met aEnt it yName> ::
<CDI Fldentifier>::

[extracted from EIA/IS-109, page 17]
5.2.3.4.2.4 Example

-71-

The mapping between UOL and CDIF

(UOL 1.2)
CDIF Source Example:

(Dat aMbdel MODO1
[MetaAttri butel nstance]. ..
)

[extracted from EIA/IS-110 Extract,page 27]

UOL Mapping Example:

class MODO1
stereotyped with Dat aModel
feature {any}
-- Translation of MetaAttri butel nstance
end

end

5.2.3.4.3 Meta-relationship Instance

5.2.3.4.3.1 Introduction

A meta-relationship is adefinition of atype of data object that occursin CDIF models.
Specifically, a meta-relationship represents the definition of arelationship between meta-entities
that has instancesin amodel. A meta-relationship may also define a set of zero or more meta-

attributes, stored together to represent characteristics of arelationship between meta-entities.
[extracted from EIA/IS-109, page 50]

5.2.3.4.3.2 UOL mapping

M eta-rel ationship instances are mapped as rel ations stereotyped with the Meta-meta-rel ationship
they are instances of .

A meta-relationship instance is mapped as arelation because, at the model level, it links classes. In
UOL, thisisaccomplished with relations stereotyped with the meta-meta-relationship it is related
to.

5.2.3.4.3.3 Grammar

<Met aRel ati onshi pl nst ance>: : =
<OpenScope>
<Ful | Met aRel ati onshi pNane>
<Met aRel ati onshi pCDI Fl denti fier>
<Sour ceMet akEnti tyCDI Fl dentifier>
<Desti nati onMetaEntityCDI Fldentifier>
[MetaAttri butel nstance]...
<Cl oseScope>
Ful | Met aRel ati onshi pNane: : =
<Sour ceMet aEnt i t yName><Dot ><Met aRel at i onshi pName>
<Dot ><Dest i nati onMet aEnti t yName>

Sour ceMet aEnti t yNane: : = <Met aObj ect Nane>
Met aRel ati onshi pNane: : = <Met aObj ect Nanme>
Desti nati onMet aEntityNane:: = <Met aObj ect Nanme>
Met aRel ati onshi pCDI Fldentifier::= <CDI Fldentifier>

SourceMetaEntityCDI Fldentifier:: <CDI Fldentifier>
Destinati onMetabEntityCDI Fldentifier ::=

<CDI Fl denti fier>
CDl Fldentifier::= <l dentifier>

[extracted from EIA/IS-109, page 18]

-72-

Mappings

(UOL 1.2)

5.2.3.4.3.4 Example
CDIF Source Example:

| (Dat aModel . I sCol | ecti onCf . Dat aMbdel Obj ect RO01 MODO1 ENT02)

[extracted from EIA/IS-110 Extract, page 30]

UOL Mapping Example:

relation MODO1_|sCol | ecti onOfF _ENTO02
stereotyped with |sColl ectionCf
link MODO1[1], ENTOZ2[1]

end

5.2.3.4.4 Meta-attribute Instance

5.2.3.4.4.1 |Introduction

A meta-attribute is a definition of a characteristic of a meta-entity or a meta-relationship. Instances

of a meta-attribute occur in amodel as data values.
[extracted from EIA/IS-109,page 49]

5.2.3.4.4.2 UOL mapping
M eta-attribute instances are mapped as features of the UOL class/relation they belong to.

The use of featuresisthe mean UOL hasto specify characteristics of aclass, which iswhat an
attribute express.

5.2.3.4.4.3 Grammar

<Met aAttri butel nstance>:: = <OpenScope> <Met aAttri but eNane>
<Met aAttri but evVal ue>
<Cl oseScope>

<Met aAttri but eNane>: : = <Met aObj ect Nane>

[extracted from EIA/IS-109, page 19]

5.2.3.4.4.4 Example
CDIF Source Example:

(Dat aMbdel MODO1
(Nanme “Exanpl e2”)

)

[extracted from EIA/IS-110 Extract, page 27]

UOL Mapping Example:

class MODO1
stereotyped with Dat aModel
feature {any}
Name: String is ‘ Exanpl e2’

end
end

5.2.3.4.5 Meta-attribute Value

-73-

The mapping between UOL and CDIF

(UOL 1.2)

5.2.3.4.5.1 Introduction
Different values supported by CDIF.

5.2.3.4.5.2 UOL mapping

All values are mapped as “is<Value>" in the definition of the attribute in the M eta-entity instance
in the ownmodel_package.

Values directly supported are mapped as they are (itstype and its value), and values non-directly
supported are mapped as strings.

There are some constructions with a direct equivalence in UOL for which we can do adirect
mapping. The constructions with no direct equivalence can be translated using UOL standard
elements.

5.2.3.45.3 Grammar

<Met aAttri buteVal ue>:: = <Bi t mapVal ue>
| <Bool eanVal ue>
| <DateVal ue>
| <Enuner at edVval ue>
| <Fl oat Val ue>
| <ldentifierValue>
| <IntegerVal ue>
| <IntegerListVal ue>
| <Poi nt Val ue>
| <Poi ntListVal ue>
| <StringVval ue>
| <Text Val ue>
| <Ti meVal ue>

<Bi t mapVal ue>: : = <Bi t mapKeywor d><Hei ght ><W dt h>
<OpenScope><Bi t map><Cl oseScope>

<Hei ght>:: = <Hei ght Keywor d><Posi t i vel nt eger >

<Wdth>::= <W dt hKeywor d><Posi ti vel nt eger >

<Bitmap>:: = <Pi xel Val ue> [<Li st Separ at or >
<Pi xel Val ue>]

<Pi xel Val ue>: : = <OpenScope>

<Pi xel Redl nt ensi ty> <Pi xel Separ at or >
<Pi xel Greenl nt ensi ti y><Pi xel Separ at or >
<Pi xel Bl uel nt ensi ty>

<Cl oseScope>

<Pi xel RedI ntensity>:: = <Pi xel I ntensity>

<Pi xel Greenlntensity>::= <Pixellntensity>

<Pi xel Bl uel ntensity>:: = <Pi xel I ntensity>

<Bool eanVal ue>: : = <TrueVal ue> | <Fal seVval ue>
<Dat eVal ue>: : = <Dat eKeywor d><Dat e><Dat eCl assVal ue>
<Dat eCl assVal ue>: : = <Absol ute> | <Rel ativePositive> |
<Rel ati veNegati ve>

<I nt eger Val ue>: : = <Deci mal I nt eger Val ue> |

<Bi naryVal ue>
| <HexaDeci mal Val ue>
| <Cctal val ue>

<I nt eger Li st Val ue>: : = <I nt eger Li st Keywor d><OpenScope>
<I nt eger Val ue> [<Li st Separ at or >
<I nt eger Val ue>] . ..
<Cl oseScope>

<Poi nt Val ue>: : = <Pont Keywor d><Poi nt >

- 74 -

Mappings

(UOL 1.2)
<Point>::= <OpenScope>
<XVal ue><Poi nt Separ at or >
<YVal ue><Poi nt Separ at or >
<ZVal ue>
<Cl oseScope>
<XVal ue>: : = <I nt eger >
<YVal ue>: : = <I nt eger >
<ZVal ue>: : = <I nt eger >
<Poi nt Li st Val ue>: : = <Poi nt Li st Keywor d><OpenScope>
<Poi nt > [<Li st Separ at or > <Poi nt >]
<Cl oseScope>
<Point>::= <OpenScope>
<XVal ue><Poi nt Separ at or >
<YVal ue><Poi nt Separ at or >
<ZVal ue>
<Cl oseScope>
<StringVal ue>:: = <String>
<Text Val ue>: : = <Text String> [<Li st Separ at or>
<TextString>]...
<Ti meVal ue>: : = <Ti meKeywor d> <Ti ne> <Ti meCl assVal ue>
<Ti meCl assVal ue>: : = <Absol ut eUTC> | <Absol utelLocal >
| <Rel ativePositive>
| <Rel ativeNegative>

[extracted from EIA/IS-109, pages 19-25]

5.2.3.4.5.4 Example
All the CDIF examples are extracted from EIA/1S-109

BitmapValue

CDIF Source Example:

"Bl TVAP : HEI GHT 2 W DTH 2
((120, 50, 35), (130, 80, 70), (100, 28, 231), (111, 255, 0))

[extracted from EIA/IS-109, page 20]

UOL Mapping Example:

cl ass Bit mapVal ue
stereotyped with DataType
feature {any}
Hei ght : integer;
W dth : integer
PixelList [0..*] : Pixe
end
feature {none}
Pixel [0..2] : integer
end
end

: Bi t mapVal ue

. Hei ght =2

. W dt h=2

. Pi xel Li st[0][0] =120
. PixelList[O][1] =50
. PixelList[0][2] =35

SV DI I S SV)

-75-

The mapping between UOL and CDIF

(UOL 1.2)

[(...)

BooleanValue

CDIF

| - TRUE-

[extracted from EIA/IS-109, page 21]

UoOL

bool ean is true

DateValue

CDIF

: DATE 1940/ 12/ 07 Absol ute

[extracted from EIA/IS-109, page 21]

UOL (As a string)

string is 1940/ 12/ 07 Absol ute’

EnumeratedValue

CDIF (As part of a enumeration)

| (...red,..)

[extracted from EIA/IS-109, page 21]

UOL (As a enumerated value)

| unique {.. red, ..}

FloatValue

CDIF

| #f123. 45E2

[extracted from EIA/IS-109, page 22]

UoOL

| float is 123.45E2

IdentifierValue

CDIF

| *j ohnBr ownsBody*

[extracted from EIA/IS-109, page 22]

-76 -

Mappings

(UOL 1.2)

UoOL

Identifier is johnBrownsBody

IntegerValue
CDIF

#d12345
#d- 12345

[extracted from EIA/IS-109, page 22]

UoOL

i nteger is 12345
i nteger is -12345

IntegerL istValue

CDIF

: I NTEGERLI ST (#d10, #d20, #d11)

[extracted from EIA/IS-109, page 23]

UOL

étb..Z]: i nt eger;

a[0]
al 1]
al 2]

10
20
11

PointValue

CDIF

"PO NT (0 0 0)

[extracted from EIA/IS-109, page 23]

uoL

Poi nt Val ue[0..2] : integer
p : PointVal ue

p[0] 0

p[1] 0

pL2] 0

PointL istValue

CDIF

-77 -

The mapping between UOL and CDIF

(UOL 1.2)

| :PONTLIST ((0 0 0),(111),(3 3 3))

[extracted from EIA/IS-109, page 24]

UoOL

a[0..*]: PointVal ue ;

a[0][0] =0

a[0][1] =0

a[0][2] =0
StringValue
CDIF

| “This is a string’

[extracted from EIA/IS-109, page 24]

UOL

| string is ‘This is a string’

TextValue
CDIF
#[Program Sunml ntegers (I nput, Qutput);
var
total, input_integer : Integer;
begin
while not EOF(Input) do
begi n
ReadLn(i nput _i nteger);
Total : = total + input_integer
end
WiteLn(*Total = *‘,total’);
end.] #

[extracted from EIA/IS-109, page 25]

UoOL

var
total, input_integer : Integer;
begi n
while not EOF(Input) do
begin
ReadLn(i nput _i nt eger);
Total : = total + input_integer
end

a: string is 'Program Sunl ntegers (Input,

Qut put) ;

-78 -

Mappings
(UOL 1.2)

WiteLn(\'Total = \'",total\"');
end.’

TimeValue

CDIF

:TIME 07:20: 23 Absol uteUTC
: TI ME 00: 00: 00. 250 Rel ativePositive

[extracted from EIA/IS-109, page 25]

UoOL

string is ‘07:20:23 Absol uteUTC
string is ‘00:00:00.250 RelativePositive’

5.2.3.5 Comments

5.2.3.5.1 Introduction
Comments may appear anywhere in the syntax between any two terminal symbols.

5.2.3.5.2 UOL mapping

Comments are mapped in UOL as comments too, respecting the meaning that user givesthem. If
comment has more than one line, each line must be mapped in UOL has a comment (UOL has no
multi-line comments, only permit them as a group of one-line comments).

5.2.3.5.3 Grammar

<Conmment >

5.2.3.5.4 Example

CDIF Source Example:

#| this is
a multi-line
coment

| #

UOL Mapping Example:

-- this is
-- amulti-line
- - conmment

-79-

The mapping between UOL and CDIF

(UOL 1.2)

5.2.4 Transfer Example and UOL Mapping

5.2.4.1 CDIF Code.

CDI F, SYNTAX " SYNTAX. 1" "02. 00. 00", ENCODI NG " ENCODI NG. 1" "02. 00. 00"
#| Sanple CDIF Transfer using CDIF Integrated Meta-nodel |#

#] Header Secti on|#

(: HEADER

(: SUMMARY

(ExporterName " CASE CGeni us")

(ExporterVersion "01.00.00")

(ExportDate "1991/04/01")

(ExportTi me "06:00:00")

(Publ i sher Namre "Mary Lomas")

)

)
#l Met a- model Secti on|#

(: META- MODEL

(: SUBJECTAREAREFERENCE Dat aMbdel i ng
(: VERSI ONNUMBER "01. 00")
)
(: SUBJECTAREAREFERENCE Dat aDef i ni ti on
(: VERS| ONNUMBER "01. 00")

)

)

#l Model Secti on|#
(: MODEL

(Dat aMbdel MODO1

(Narme "Exanmple 1")

(BriefDescription "The first exanple Data Mdel.")
(Mbdel Type "Conceptual ")

)
(Entity ENTO2

(Name "Customer Account")

(BriefDescription "The bank account of a custoner.")
)
(Entity ENTO6

(Name "Transaction")

(BriefDescription "An action generated by an ATM sessi on agai nst a
customer's bank account.")

)
(Entity ENTO7

(Name "Card Retention")

(BriefDescription "The action generated by retaining the Card
within the ATM ")

)
(Entity ENTO8

(Name "Single Account Transaction")

(BriefDescription "A subtype transaction indicating action agai nst
one account.")

)
(Entity ENTO9

(Nanme "Transfer")

(BriefDescription "A subtype transaction indicating novement of

-80-

Mappings

(UOL 1.2)

funds between nultiple accounts.")

)

(Local Attri bute DVATT12

(Name "Transaction ldentifier")

(BriefDescription "The unique identifier of a Transaction.")

(IsOptional -False-)

)

(Local Attri bute DVATT13

(Name "Transaction Date")

(BriefDescription "The date the transaction took place.")

(1sOptional -False-)

)

(Local Attri bute DVATT14

(Name "Transaction Tine")

(BriefDescription "The time the transaction took place.")
(I'sOptional -False-)

)

(Local Attri bute DVATT15

(Name "Customer Account ldentifier")

(BriefDescription "The unique identifier of a Customer Account.")
(IsOptional -False-)

)
(Local Attri bute DVATT16

(Name "Custoner Account Type")

(BriefDescription "A code that indicates the type of account.")
(IsOptional -False-)

)
(Local Attri bute DVATT17

(Name "Customer Account Bal ance")

(BriefDescription "The amount of nopney in a custoner's account.")
(I'sOptional -False-)

)
(Local Attri bute DVATT20

(Narmre " Amount™)

(BriefDescription "The ampunt of noney transferred between
accounts. ")

(IsOptional -False-)

)
(Rel ati onshi p RELO4

(Nanme "CarriedCQut")

(BriefDescription "This relates a Custonmer Account to the Single
Account Transaction performed against it.")

)
(Rel ati onshi p RELO5

(Nanme "Movenent")

(BriefDescription "This relates a Custoner Account to a
Transfer.")

)
(Orthogonal Subt ypeSet 0SS01
(Name "TransactionType")

)

(Rol e ROLEO9

(Rol eNarmre "On")
(MnCuterCardinality "1")
(MaxQuterCardinality "1")
(MnlnnerCardinality "0")

-81-

The mapping between UOL and CDIF

(UOL 1.2)

(Maxl nnerCardinality "N')

)

(Rol e ROLELO

(Rol eNanme "Is")
(MnQuterCardinality "1")
(MaxQuterCardinality "1")
(MnlnnerCardinality "1")
(Maxl nnerCardinality "1")
)
(Rol e ROLE11

(Rol eNanme " Front)
(MnQuterCardinality "1")
(MaxQuterCardinality "1")
(MnlnnerCardinality "0")
(Maxl nnerCardinality "N')
)
(Rol e ROLE12

(Rol eNanme "To")
(MnCuterCardinality "1")
(MaxQuterCardinality "1")
(MnlnnerCardinality "0")
(Maxl nnerCardinality "N')
)
(Rol e ROLE13

(Rol eNanme "Is")
(MnQuterCardinality "1")
(MaxQuterCardinality "1")
(MnlnnerCardinality "1")
(MaxI nnerCardinality "1")

)

(Rol ePl ayer RPO1
(Name "Actor")

)
(Rol ePl ayer RP02
(Narmre " Object")
)
(Rol ePl ayer RPO3
(Name "Actor")

)
(Rol ePl ayer RP04
(Name "Sender")

)
(Rol ePl ayer RPO5
(Nanme "Receiver")
)
(I nteger Type ELEMD1
(Name "Int")

(Si gnedFl ag - True-)
)
(Dat aEl enent Type TYPEO1
(Name "ldentifier")

)
(Dat aEl ement Type TYPEO3
(Name " Account Type")

)
(MoneyType TYPEO4

-82-

Mappings

(UOL 1.2)

(Name " Amount™)
)
(Dat eType TYPEOS8
(Name "Date")

)
(Ti meType TYPEO9
(Narme "Tinme")

)
(Domai nGroup DOVB7)

(Domai nVal ueEnuner ati on DOVb8
(Name " Checki ng")

)
(Domai nVal ueEnuner ati on DOVB9
(Nanme "Savi ngs")

)

(Dat aMbde
(Dat aMbde
(Dat aMbde

(Dat aMbdel
(Dat aMbdel
(Dat aMbdel

(Dat aMbde

.1 sCol | ect
.1 sCol | ect
.IsCol | ect
| sCol | ect
I sCol | ect
| sCol | ect
.1sCol | ect

onCOf .

onOf

onCOf

Dat aModel Obj ect

. Dat aMbdel Obj ect
onCr .
onCr .
onCf .
onCf .
. Dat aMbdel Obj ect

Dat aModel Obj ect
Dat aModel Obj ect
Dat aModel Obj ect
Dat aModel Obj ect

ROO1
R002
RO03
R0O04
RO0S5
RO06
ROO7

MODO 1
MODO 1
MODO 1
MODO1
MODO 1
MODO1
MODO 1

(I'nheritabl eDat aModel Obj ect. Has. Ort hogonal Subt ypeSet

(Orthogonal SubtypeSet. | sContructedWth. | nheritabl eDat aModel Obj ect

0SS01 ENTO7)

(Orthogonal SubtypeSet. | sContructedWth. | nheritabl eDat aModel Obj ect

0SS01 ENTO08)

(Orthogonal SubtypeSet. | sContructedWt h.

0SS01 ENT09)

(Dat avbdel Obj ect .
(Dat aMbdel Obj ect .
(Dat aMbdel Obj ect .
(Dat aMbdel Obj ect .
(Dat aMbdel Obj ect .

(Rol ePl ayer
(Rol ePl ayer
(Rol ePl ayer
(Rol ePl ayer
(Rol ePl ayer

. Pl ays. Rol e
. Pl ays. Rol e
. Pl ays. Rol e
. Pl ays. Rol e
. Pl ays. Rol e

Pl ays.
Pl ays.
Pl ays.
Pl ays.
Pl ays.

Rol e
Rol e
Rol e
Rol e
Rol e
R039
R040
RO41
R042
R043

RO11
RO12
RO13
RO14
RO15
RPO1
RPO2
RPO3

ENTO02
ENTO8
ENTO02
ENTO02
ENTO09
ROLE10)
ROLE09)
ROLE13)
RP04 ROLE11)
RPO5 ROLE12)

RP02)
RPO1)
RP04)
RPO5)
RP03)

ENT02)
ENT06)
ENTO7)
ENTOS)
ENT09)
REL04)
REL05)

RO44 ENTO6 OSSO01)

I nherit abl eDat aMbdel Obj ect

RO08

RO09

RO10

RO16 ROLEO9
RO17 ROLE10
R018 ROLE1l1

(Rol e. Bel ongsTo. Rel ati onshi p
(Rol e. Bel ongsTo. Rel ati onshi p
(Rol e. Bel ongsTo. Rel ati onshi p
(Rol e. Bel ongsTo. Rel ati onshi p R019 ROLE12 RELO5)

(Rol e. Bel ongsTo. Rel ati onshi p R020 ROLE13 RELO5)

(Dat aType. HasSubt ype. Dat aType R021 ELEMD1 TYPEO1)

(Dat aType. TakesVal uesFrom Domai nGroup R022 TYPEO3 DOVB7)
(Domai nGroup. Cont ai ns. Domai n R023 DOVb7 DOVB8)

(Domai nGroup. Cont ai ns. Domai n R024 DOVb7 DOVB9)

(Dat aObj ect. | sDescri bedBy. Attri bute R025 ENTO6 DVATT12
(SequenceNunber #d1)

)
(Dat aObj ect. | sDescri bedBy. Attri bute R026 ENTO6 DMATT13
(SequenceNumnber #d2)

)
(Dat aObj ect . | sDescri bedBy. Attri bute R027 ENTO6 DVATT14
(SequenceNunber #d3)

REL04)
REL04)
RELO5)

-83-

The mapping between UOL and CDIF

(UOL 1.2)

)

(SequenceNunber #d1)
)

(SequenceNunber #d2)
)

(SequenceNunber #d3)
)

(SequenceNunber #d1)

)
(Attribute.lsCccurrenced™

(Attribute.lsCccurrenced™

(Attribute.lsCccurrenced

)

(Dat aObj ect . | sDescri bedBy.

(Dat aObj ect . | sDescri bedBy.

(Dat aObj ect . | sDescri bedBy.

(Dat aObj ect . | sDescri bedBy.

Attribute RO28 ENTO2 DVATT15

Attribute RO29 ENTO2 DVATT16

Attribute RO30 ENTO2 DVATTL7

Attribute RO31 ENTO9 DWVATT20

. Dat aType
(Attribute.lsCccurrenceC.
(Attribute.lsCccurrenceCf.

Dat aType
Dat aType

. Dat aType
(Attribute.lsCccurrencedf .

Dat aType

. Dat aType
(Attribute.lsCccurrenceCr.

Dat aType

R032
RO33
R034
RO35
RO36
RO37
R0O38

DVATT12
DVATT13
DVATT14
DVATT15
DVATT16
DVATT17
DVATT20

TYPEO1)
TYPEOS)
TYPE09)
TYPEO1)
TYPEO3)
TYPEO4)
TYPEO4)

-84-

Mappings

(UOL 1.2)

5.2.4.2 UML Translation.

In this chapter we introduce the structure of the packages used for the translation. The definitions
of the stereotypes used in the example are also included.

CDIF Transfer

Model

.

ModelER A/

Main package

]

DataModeling

Here comes the UML
translation of the
Standard CDIF

DataModeling —|

UsedInTransferMeta
Model

[1]

DataDefinition

Here comes the UML
Translation of the
Standard CDIF Data
Definition Subject Area

Model ER package

-85-

The mapping between UOL and CDIF

(UOL 1.2)
<<Utility>> <<Utility>> <<Utility>>
DataModel Entity Relationship

BelongsTo

IsDescribedBy

TakesValuesFrom

Plays

gextreme : Class
gextreme : Class

gextreme : Class
gextreme : Class

gextreme : Class
gextreme : Class

gextreme : Class
gextreme : Class

<<UMLAssociation>>
Contains

<<UMLAssociation>>
IsOccurrenceOf

extreme : Class
gextreme : Class

&extreme : Class
gextrene : Class

<<UMLAssociation>>,
HasSubtype

&extreme : Class
gextreme : Class

UsedInTransferMetamodel

<<UMLAssociation>>
IsCollectionOf

<<UMLAssociation>>
IsConstructedWith

gextreme : Class
gextreme : Class

gextreme : Class
gextreme : Class

- 86 -

@Name : String) &Name : String gName : String Subset of the
OBHEfDESC”PUOH_i String &BriefDescription : String| &BriefDescription : String| Meta-model of the
¢ModelType : String transfer. Here is the
used part of the
metamodel.
<<Utility>> <<Utility>> <<Utlity>> <sutilty>>
LocalAttribute MoneyType' RoIePIayer. TimeType :
oName : String &Name : String gName : String &Name : String
&BriefDescription : String
¢IsOptional : Boolean
<<Utility>> <<Utility>> <<Utility>>
<<Utility>> DateType DataElementType DomainGroup
OrthogonalSubtypeSet &Name : String Name : String
&Name : String
<<Utility>> <<Utility>> <<Utility>>
Role IntegerType DomainValueEnumeration
¢RoleName : String _ @Name : String Name : String
&MinOuterCardinality : String &SignedFlag : Boolean
&MaxOuterCardinality : String
&MinlnnerCardinality : String
¢MaxInnerCardinality : String
<<UMLAssociation>>, <<UMLAssociation>>, <<UMLAssociation>> <<UMLAssociation>>

Mappings

(UOL 1.2)
11
1
<<DataModel>> 1 MODO01_IsCollectionOf_ENT02 1 <<Entity>>
MODO01 ENTO02
1 MODOL_IsCollectionOf ENT06 1 <<Entity>>
ENTO6
1 MODO1_lsCollectionOf_ENT07 1 <<Entity>>
ENTO7
0SS0 | fth_ENTO7 1
1 MODO1_IsCollectionOf_ENT08 1 <<Entity>>
ENTO8 1
OSSO[L_IsC ffh_ENTO8 1
1 MODO1_IsCollectionOf_ENT09 1 | <<Entity>>
ENTO09
1 1
0SSd1_IsCon th_ENTO9
1 MODO1_IsCollectionOf_REL04 1 <<Relation
RELO4
1 MODO01_lIsCollectionOf REL05 1 <<Relation
RELOS

<<OrthogonalSubtypeSet>>
0SS01

-87-

The mapping between UOL and CDIF

(UOL 1.2)
<<Entity>> <<RolePlayer>> || <<RolePlayer>> || <<RolePlayer>>
ENTO2 RP02 RP04 RPO5
. T T T
1 <<Entity>> 11 RPOZ_PIays_ROLE]IO RP04_PIa1ysLROLE11 RIDOS_Plays_ROLElz
ENTO6 1 1
<<Role>> <<Role>> <<Role>> | ROLE12_BelongsTo_RELO5
ROLE10 ROLE11 ROLE12
1 <<Entity>> HOLE11_BelongsTo_RELOS
ENTO7 1
1 RPO1_Plays ‘ROLF0Y
1 <<Entity>> |ENT08_Plays_RP01 |<<RolePlayer>> | 1 <</R$MELQ_BelongsTo_RELO4
ENTO8 T T RPO1 ROLEO9
1 ROLEO9_BelongsTo_REL04
1 [<<Entity>> | ENT09_Plays_RP03 | <<RolePlayer>> |; j]<<Role>> 1
ENTO09 n RPO3 ROLE13
1
1 ROLF13_BelongsTo_RELO5 1
- RP03_Plays_ROLE13
1 <<Relation 1 1
REL04
1 <<Relation 1 11
RELO5

- 88 -

Mappings

(UOL 1.2)

ELEMO1_HasSubtype_T|

<<DomainValue

<<Integer <<DomainValueEnumeration>>
ELEMO1 DOMS9
1
1 DOMS57_Contains_DOM59
PEO1
1
<<DataElementType>> <<DataElementType>> <<Time

TYPEO1 TYPEO8 TYPEOQ9

1 1

Ii/IATle_IsOccurrenceéf_TYPEOB

DOM58
I
1
1 DOMS57_Contains_DOM58
<<Domain
DOM57

1
l TYPE(J3_TakesVaIuesFrom_DOM57

<<DataElementType>>
TYPEO3

1 DMATT16_IsOccurrenceOf _TYPE3

DMATT12_IsOccurrenceOf_[TYPEO1

1
<<LocalAttribute>>
DMATT12

DMATT14_IsOccurrenceOf [TYPEO9

1
<<LocalAttribute>>
DMATT13

DMATT15_IsOccurrenceOf_T[YPEO1
1 1
<<LocalAttribute>> <<LocalAttribute>> <<LocalAttribute>>
DMATT14 DMATT15 DMATT16

-89-

The mapping between UOL and CDIF

(UOL 1.2)
<<LocalAttribute>> <<LocalAttribute>> <<LocalAttribute>>
DMATT12 DMATT13 DMATT14
<<Entity>>
ENTO02
<<Entity>>
ENTO06
<<DataElementType>>
TYPEO4
1
1 DMATT20_IsOccurrenceOf_TYPEO4
1
DMATT17 _IsOccurrenceOf_TYPEQ4
1 <<LocalAttribute>>
<<LocalAttribute>> DMATT20
DMATT17
<<Entity>> 1
ENTO2

ENTO02_IsDescribedBy_DMATT17

ENTO9_IsDescribedBy_DMATT20

<<Entity>>
ENTO09

-90-

Mappings

(UOL 1.2)

5.2.4.3 UOL Mapping.

package Met aModel ER
is {any}
package Model ER
import from UOL_UM
is {any}
class Rel ati onShi p
stereotyped with Uility
feature {any}
Nane: String;
Bri ef Description: String
end
end
class Local Attribute
stereotyped with Utility
feature {any}
Nane: String;
Bri ef Descri ption: String;
| sOptional : Bool ean
end
end
class Dat aMbde
stereotyped with Utility
feature {any}
Nane: String;
Bri ef Descri ption: String;
Model Type: String
end
end
class MoneyType
stereotyped with Utility
feature {any}
Nane: String
end
end
class Ti meType
stereotyped with Uility
feature {any}
Name: String
end
end
class Entity
stereotyped with Utility
feature {any}
Nane: String;
Bri ef Description: String
end
end
class Rol e
stereotyped with Utility
feature {any}
Rol eNane: String;
M nQut er Cardi nality: Character
MaxQut er Car di nal i ty: Character;

-01-

The mapping between UOL and CDIF

(UOL 1.2)
M nl nner Cardi nality: Character
Max| nner Car di nal i ty: Character
end
end
class Dat aEl enent Type
stereotyped with Uility
feature {any}
Nane: String
end
end
class Domai nG oup stereotyped with Utility end
class Rol ePl ayer
stereotyped with Utility
feature {any}
Nane: String
end
end
class Ot hogonal Subt ypeSet
stereotyped with Utility
feature {any}
Name: String
end
end
class | ntegerType
stereotyped with Uility
feature {any}
Nane: String;
Si gnedFl ag: Bool ean
end
end
class DateType
stereotyped with Utility
feature {any}
Nane: String
end
end
class Domai nVal ueEnuner ati on
stereotyped with Utility
feature {any}
Nane: String
end
end
class |IsColl ecti onOF stereotyped with UMLAssoci ati on end
class | sConstructedWth stereotyped with UMLAssoci ati on end
class HasSubtype stereotyped with UMLAssoci ati on end
class I sCccurrence stereotyped with UMLAssoci ati on end
class | sDescri bedBy stereotyped with UMLAssoci ati on end
class Cont ai ns stereotyped with UMLAssoci ati on end
class TakesVal uesFrom stereotyped with UMLAssoci ati on end
class Pl ays stereotyped with UMLAssoci ati on end
class Bel ongsTo stereotyped with UM_Associ ati on end
end
package Model
i mport from Model ER
is {any}
class MODO1 stereotyped with Dat aMbdel end

-02-

Mappings

(UOL 1.2)

class
class
class
class
class
class
class
class
class
class
class
class
class
class
class
class
class
class
class
class
class
class
class
class
class
class
class
class
class
class
class
class
class
class

ENTO2
ENTO6
ENTO7
ENTO8
ENTO09
RELO4
RELO5
0SS01
ELEMD1
TYPEO1
TYPEO8
TYPEO9
DOVB9
DOVb8
DOVB7
TYPEO3
TYPEO4
DVATT12
DMVATT13
DVATT14
DMATT15
DVATT16
DVATT17
DVATT20
RPO1
RPO2
RPO3
RPO4
RPOS
ROLEO9
RCLE10
ROLE11
ROLE12
ROLE13

stereotyped
stereotyped
stereotyped
stereotyped
stereotyped
stereotyped
stereotyped
stereotyped
stereotyped
stereotyped
stereotyped
stereotyped
stereotyped
stereotyped
stereotyped
stereotyped
stereotyped
stereotyped
stereotyped
stereotyped
stereotyped
stereotyped
stereotyped
stereotyped
stereotyped
stereotyped
stereotyped
stereotyped
stereotyped
stereotyped
stereotyped
stereotyped
stereotyped
stereotyped

with
with
with
with
with
with
with
with
with
with
with
with
with
with
with
with
with
with
with
with
with
with
with
with
with
with
with
with
with
with
with
with
with
with

end
end
end

Entity
Entity
Entity
Entity end

Entity end

Rel ati onShi p end

Rel ati onShi p end

Ot hogonal Subt ypeSet end

I nt eger Type end

Dat aEl emrent Type end

Dat aEl emrent Type end

Ti meType end

Domai nVal ueEnuner ati on end
Donmi nVal ueEnuner ati on end
Donmai nGroup end

Dat aEl emrent Type end

Dat aEl emrent Type end

Local Attribute end

Local Attribute end

Local Attri bute end

Local Attri bute end

Local Attribute end

Local Attribute end

Local Attribute end

Rol ePl ayer end

Rol ePl ayer end

Rol ePl ayer end

Rol ePl ayer end

Rol ePl ayer end

Rol e end

Rol e end

Rol e end

Rol e end

Rol e end

relation MODO1_| sCol | ecti onOf _ENTO02

stereotyped with |sColl ectionCf

link MODO1[1], ENTO2[1]

end

relation MODO1_| sCol | ecti onOf _ENTO06
stereotyped with |sCollectionC
link MODO1[1], ENTO6[1]

end

relation MODO1_| sCol | ecti onOf _ENTO7
stereotyped with |sColl ectionCf
link MODO1[1], ENTO7[1]

end

relation MODO1_| sCol | ecti onOf _ENTO8
stereotyped with |sColl ectionCf
link MODO1[1], ENTO8[1]

end

relation MODO1_| sCol | ecti onOf _ENTO09
stereotyped with |sColl ectionCf
link MODO1[1], ENTO9[1]

end

relation MODO1_| sCol | ecti onOf _RELO4
stereotyped with | sCol | ecti onOf

-03-

The mapping between UOL and CDIF

(UOL 1.2)

link MODO1[1], RELO4[1]

end

relation MODO1_| sCol | ecti onOf _RELO5
stereotyped with |sCollectionCO
link MODO1[1], RELO5[1]

end

relation OSS01_| sConstructedWth_ _ENTO7
stereotyped with |IsConstructedWth
link OSS01[1], ENTO7[1]

end

relation OSS01_| sConstructedWth_ ENTO8
stereotyped with | sConstructedWth
link OSS01[1], ENTO8[1]

end

relation OSS01_| sConstructedWth_ ENTO09
stereotyped with |IsConstructedWth
link OSS01[1], ENTO9[1]

end

relation ELEMD1_HasSubt ype_TYPEO1
stereotyped with HasSubtype
link ELEMD1[1], TYPEOL[1]

end

relation DOV67_Cont ai ns_DOV69
stereotyped with Contains
link DOVG7[1], DOVBI[1]

end

relation DOVW67_Cont ai ns_DOVb8
stereotyped with Cont ai ns
link DOV67[1], DOVBS8[1]

end

relation TYPEO3_ TakesVal uesFr om DOVb7
stereotyped with TakesVal uesFrom
link TYPEO3[1], DOMWb7[1]

end

relation DMATT12 | sCccurrenceOf _TYPEOL
stereotyped with IsOccurrencedf
link DMATT12[1], TYPEO1[1]

end

relation DMATT13_ | sCccurrenceOf _TYPEOS
stereotyped with | sCccurrenceC
link DVATT13[1], TYPEOS8[1]

end

relation DMATT14 | sCccurrenceOf _TYPEO9
stereotyped with |IsOccurrencedf
link DVATT14[1], TYPEOQO9[1]

end

relation DMATT15 | sCccurrenceOf _TYPEO1L
stereotyped with IsCccurrenceCt
link DVATT15[1], TYPEO1[1]

end

relation DMATT16_ | sCccurrenceOf _TYPEO3
stereotyped with |IsOccurrencedf
link DVATT16[1], TYPEO3[1]

end

relation DMATTL17 IsCccurrenceO TYPEO4
stereotyped with | sCccurrenceC

-94-

Mappings

(UOL 1.2)

link DMATT17[1], TYPEO4[1]

end

relation DVATT20_I| sCccurrenceCOf _TYPEO4
stereotyped with | sCccurrenceC
link DAMIT20[1], TYPEO4[1]

end

relation ENTO2_ | sDescri bedBy DMATT15
stereotyped with | sDescri bedBy
link ENTO2[1], DMATT15[1]

end

relation ENTO02_| sDescri bedBy_DMATT16
stereotyped with | sDescri bedBy
link ENTO2[1], DVMATT16[1]

end

relation ENTO2_ | sDescri bedBy DMATT17
stereotyped with | sDescri bedBy
link ENTO2[1], DWMATT17[1]

end

relation ENTO06_| sDescri bedBy_DMATT12
stereotyped with | sDescri bedBy
link ENTO6[1], DMATT12[1]

end

relation ENTO06_| sDescri bedBy DMATT13
stereotyped with | sDescri bedBy
link ENTO6[1], DMATT13[1]

end

relation ENTO6_| sDescri bedBy DVATT14
stereotyped with | sDescri bedBy
link ENTO6[1], DMATT14[1]

end

relation ENT09 | sDescri bedBy DMATT20
stereotyped with | sDescri bedBy
link ENTO9[1], DMATT20[1]

end

relation ENTO2_Pl ays_RP02
stereotyped with Pl ays
link ENTO2[1], RP02[1]

end

relation ENTO2_Pl ays_RP04
stereotyped with Pl ays
link ENTO2[1], RPO4[1]

end

relation ENTO02_Pl ays_RP05
stereotyped with Pl ays
link ENTO2[1], RPO5[1]

end

relation ENTO8_Pl ays_RPO1
stereotyped with Pl ays
link ENTO8[1], RPO1[1]

end

relation ENT09_Pl ays_ RP03
stereotyped with Pl ays
link ENTO9[1], RPO3[1]

end

relation RP02_Pl ays ROLE10
stereotyped with Pl ays

-05-

The mapping between UOL and STEP/EXPRESS

(UOL 1.2)

link RPO2[1], ROLE1O0[1]

end

relation RP04_Pl ays ROLE11
stereotyped with Pl ays
link RP0O4[1], ROLE1l1l[1]

end

relation RPO5_Pl ays ROLE12
stereotyped with Pl ays
link RPO5[1], ROLE12[1]

end

relation RPO1_Pl ays ROLEO9
stereotyped with Pl ays
link RPO1[1], ROLEO9[1]

end

relation RPO3_Pl ays ROLE13
stereotyped with Pl ays
link RPO3[1], ROLE13[1]

end

relation ROLE10_Bel ongsTo_RELO04
stereotyped with Bel ongsTo
link ROLE10[1], RELO4[1]

end

relation ROLE11l Bel ongsTo_RELO5
stereotyped with Bel ongsTo
link ROLE11[1], RELO5[1]

end

relation ROLE12_Bel ongsTo_RELO5
stereotyped with Bel ongsTo
link ROLE12[1], RELO5[1]

end

relation ROLEO9 Bel ongsTo_REL04
stereotyped with Bel ongsTo
link ROLEO9[1], RELO4[1]

end

relation ROLE13_Bel ongsTo_RELO04
stereotyped with Bel ongsTo
link ROLE13[1], RELO4[1]

end

end
end

5.3 The mapping between UOL and STEP/EXPRESS
It outlines a mapping between the proposed human readable Unified Object Language (UOL) and
theinternational standard in data modeling STEP/EXPRESS.

The structure of this chapter is oriented on the normative STEP/EXPRESS document (1SO 10303-
11:1994(E)).

The mapping described here isaway to show a STEP/EXPRESS file with UOL, it’ s not a mapping
between STEP/EXPRESS and UML. Evenif it’s possible to extend it in that way.
Hence no UML specific constructs are used within the resulting UOL schema.

Every UOL statement within this document has been parsed and checked with the latest version of
the UOL grammar available.

-06 -

Mappings

(UoL 1.2)
5.3.1 Datatypes

5.3.1.1 Simple data types

UOL doesn’'t make any assumptions constraining valid data types. All datatypes used within an
EXPRESS schemaare valid within UOL as well.

The basic EXPRESS data types are:

NUMBER

EXPRESS syntax:

248 nunber _type = NUMBER

REAL; optional enriched by the tag value “precision” (holding the length of the value as
numeric expression)

EXPRESS syntax:

264 real _type = REAL [‘(' precision_spec ‘)’].

255 precision_spec = numeric_expression.

INTEGER

EXPRESS syntax:

277 integer_type = | NTEGER

LOGICAL

EXPRESS syntax:

243 | ogi cal _type =LOd CAL.

BOOLEAN

EXPRESS syntax:

173 bool ean_type = BOOLEAN.

STRING; optional enriched by the tag values “width” (holding the length of the string as
integer value) and “fixed” (trueif the specified length isimmutable)

EXPRESS syntax:

293 string type = STRING [w dth_spec].

318 width_spec = ‘(' width *)’ [FIXED].

317 width = nuneric_expression.

BINARY:; optional enriched by the tag values “width” (holding the length of the length as
integer value) and “fixed” (trueif the specified length isimmutable).

EXPRESS syntax:

172 binary_type = BINARY [w dt h_spec].

318 width_spec = ‘(* width ‘)’ [FIXED].

317 width = numeric_expression.

-907-

The mapping between UOL and STEP/EXPRESS

(UOL 1.2)
Example:
EXPRESS
ENTI TY Test1;
nyNunber = NUMBER,
nyReal 1 = REAL;
nyReal 2 = REAL (3);
myl nt eger = | NTEGER;
nyLogi cal = LOG CAL;
nmyBool ean = BOOLEAN,
nyStringl = STRI NG
nmyString2 = STRING (10);
nyString3 = STRING (5) FI XED;
nyBi naryl = BI NARY;
nyBi nary2 = BI NARY (2);
nyBi nary3 = BI NARY (2) FI XED;
END_ENTI TY;

UoL

class Test1l
feature {any}
myNunber
nyReal 1 :
nyReal 2 :
myl nt eger
nyLogi cal

R
R

nyBool ean :
nyStringl :
nmyString2 :
nmyString3 :
nyBi naryl :
nyBi nary2 :
nyBi nary3 :

end
end

NUMVBER;
EAL:

EAL with tag val ues (<precision, 3>);

| NTEGER,
LOG CAL;
BOOLEAN;
STRI NG,

STRING with tag val ues (<wi dth, 10>);
STRING with tag val ues (<wi dth, 5>, <FI XED>) ;

Bl NARY;

BI NARY with tag val ues (<wi dth, 2>);
BI NARY with tag val ues (<w dth, 2>, <FI XED>)

-08-

Mappings

(UOL 1.2)

5.3.1.2 Aggregation data types

EXPRESS semantics:

Aggregation data types have as their domain collections of values of agiven base datatype. These
base data types values are called elements of the aggregation collection. EXPRESS provides for the
definition of four kinds of aggregation datatypes: ARRAY, LIST, BAG and SET. Each kind of
aggregation data type attaches different propertiesto its values.

An ARRAY isafixed-size ordered collection. It isindexed by a sequence of integers

EXPRESS syntax:

165 array_type = ARRAY bound_spec OF [OPTI ONAL] [UNI QUE]
base_type.

176 bound_spec = ‘[* bound_1 ‘:’ bound_2 ']’.

174 bound_1 = nuneric_expression.

175 bound_2 = nuneric_expression.

171 base_type = aggregation_types | sinple_types | named_types.
A LIST isasequence of elements which can be accessed according to their position. The
number of elementsin alist may vary, and can be constrained by the definition of the data

type.

EXPRESS syntax:

237 list_type = LIST [bound_spec] OF [UNI QUE] base_type.
176 bound_spec = ‘[bound_1 ‘:’ bound_2 ‘]’.

174 bound_1 = numeri c_expression.

175 bound_2 = numeri c_expression.

171 base_type = aggregation_types | sinple_types | named_types.
A BAG isan unordered collection in which duplication is allowed. The number of elementsin
abag may vary, and can be constrained by the definition of the datatype.

EXPRESS syntax:
170 bag_type = BAG [bound_spec] OF base_type.
176 bound_spec = ‘[bound_1 ‘:’' bound_2 ‘]’.

174 bound_1 = nuneri c_expression.

175 bound_2 = numeri c_expression.

171 base_type = aggregation_types | sinple_types | naned_types.
A SET isan unordered collection of elementsin which no two elements are instance equal .
The number of elementsin aset may vary, and can be constrained by the definition of a data

type.®

EXPRESS syntax:

285 set _type = SET [bound_spec] OF base_type.
176 bound_spec = ‘[‘ bound_1 ‘:’ bound_2 ‘]’.

174 bound_1 = nuneric_expression.
175 bound_2 = nuneric_expression.
171 base_type = aggregation_types | sinple_types | nanmed_types.

5 Cf. [ISO EXPRESS RM 94] 22

-99-

The mapping between UOL and STEP/EXPRESS

(UOL 1.2)

Rules and restrictions:
The bound_1 expression shall evaluate to an integer value greater or equal to zero.
The bound_2 expression shall evaluate to an integer value greater or equal to bound_1, or an
indeterminate (?) value.
If the bound_spec is omitted the limits are [0:7]°

EXPRESS aggregations are one dimensional. An aggregation data type can represent objects
usually considered to have multiple dimensions (such as mathematical matrices) whose base
type is another aggregation data type. Aggregation data types can be thus nested to an
arbitrary depth, allowing any number of dimensions to be represented.

Example:

A = LIST [1:3] OF ARRAY [5:10] OF I NTEGER

Generic mapping:

Since UOL allows only one dimensional objects the transformation processor splitsthe onen
dimensional defined object into n one dimensional defined ones. By doing so the processor has to
create internal names for the build objects.

A specia named UOL identifier supports this (in the example: 2001).

For the example above:

A: [1..3] 2001
with tag values (<list>)
?001 : [5..10] | NTEGER
with tag val ues (<array>)

®[ISO EXPRESS RM 94] 26

- 100 -

Mappings

(UOL 1.2)

Example:

EXPRESS

ENTITY Test_Entity;

nyArrayl = ARRAY [1:5] OF | NTEGER,

nyArray2 = ARRRAY [1:?] OF BOOLEAN;

nmyArray3 = ARRAY [1:5] OF OPTI ONAL REAL (2);
nmyArray4 = ARRAY [1:7?] OF UNI QUE | NTECER,
nyListl = LI ST OF | NTECER,

nyList2 = LIST OF STRING (10) FI XED;

nyList3 = LIST [0:?] OF REAL;

nyBagl BAG OF NUMBER,;

mySet 1 SET OF NUMBER;
nySet2 = SET [1:?] OF | NTEGER;
nmyMul ti Array = ARRAY [1:10] OF

ARRAY [11: 14] OF UNI QUE sonet hi ng;

nyBag2 = BAG [1:?] OF NUMBER;

END_ENTI TY;

UoL

class Test _Entity

feature {any}
nyArray [1..5] : INTEGER with tag val ues (<array>);
nyArray2 [1..*] : BOOLEAN with tag val ues (<array>);
nyArray3 [0,1..5] : REAL

with tag val ues (<array>, <precision,2>);

nyArray4 [1..*] : | NTEGER
with tag val ues (<array>, <UNI QUE>);
myListl [O0..*] : | NTEGER

with tag values (<list>);
nyList2 [0..*] : STRING

with tag values (<list>, <w dth, 10>, <FI XED>) ;
nyList3 [0..*] : REAL;
nyBagl [0..*] : NUMBER

with tag val ues (<bag>);
nyBag2 [1..*] : NUMBER

with tag val ues (<bag>);
mySetl [0..*] : NUMBER

with tag val ues (<set>);
nySet2 [1..*] : | NTEGER

with tag val ues (<set>);
nyMul ti Array [1..10] : 2001

with tag values (<array>);
?001 [11..14] : sonething

with tag val ues (<array>, <UNI QUE>)
end

relation 2002

stereotyped with express_associ ation
link TestEntity, something [11..14]
feature {TestEntity}

with tag val ues (<lsNavigabl e, FALSE >)
end
feature {sonething}

with tag val ues (<lsNavigable,’ TRUE >)
end

- 101 -

The mapping between UOL and STEP/EXPRESS

(UOL 1.2)

Remarks:

The concrete semantics of amulti valued attribute is determined by atag value (array, set, bag or
list). Additional constraints on the collection are also expressed using tag values (e.g. UNIQUE)
Constraints on the elements of the collection arising from the basic type (e.g. the width
specification for aSTRING) are also expressed as tag values of the new collection type.

The myMulitArray shows the splitting of atwo dimensional attribute into two one dimensional
ones by creating a new attribute.

- 102 -

Mappings

(UOL 1.2)

5.3.1.3 Named data types

EXPRESS semantics:
The named data types are the data types that may be declared in aformal specification. There are
two kinds of named data types: entity data types and defined data types.’

5.3.1.3.1 Entity data type

EXPRESS semantics:
Entity datatypes are established by ENTITY declarations (see 2.2).

Example:

EXPRESS

ENTI TY point;
X, Y, z ! REAL;
END_ENTI TY;

ENTITY |i ne;
p0, pl : point;
END_ENTI TY;

UoL

cl ass point
feature {any}

X : REAL;

y : REAL;

z . REAL
end

end

class line
feature {any}
pO : point;
pl : point
end
end

rel ati on 2001
stereotyped with express_associ ation
link line, point[1l..1]
feature {line}
with tag val ues (<IsNavigabl e, FALSE>)
end
feature {point}
with tag val ues (<l sNavi gabl e, TRUE>,
<Associ ati onEndNane, p0>)
end
end

relati on 72002
stereotyped with express_associ ation
link line, point[1..1]
feature {line}
with tag val ues (<IlsNavi gabl e, FALSE>)
end

7 Cf. [ISO EXPRESS RM 94] 28

- 103 -

The mapping between UOL and STEP/EXPRESS

(UOL 1.2)
feature {point}
with tag val ues (<IsNavigable, TRUE>,
<Associ ati onEndNane, pl>)
end
end

- 104 -

Mappings

(UOL 1.2)

5.3.1.3.2 Defined data type

EXPRESS semantics:
Defined datatypes are declared by TY PE declarations (see 2.1).

Mapping:
The TY PE maps into a class stereotyped with user_declared_type. The underlying typeis
expressed using atag value underlying_type.

Example:
EXPRESS
TYPE vol une = REAL;
END TYPE;
ENTI TY PART,;
bul k : vol une;
END_ENTI TY;
uoL

cl ass vol une
stereotyped with user_decl ared_type
with tag val ues (<underlying type, REAL>)
end

cl ass PART
feature {any}
bul k : vol une
end
end

rel ati on 2001
stereotyped with express_associ ation
i nk PART, volune[1l..1]
feature {vol une}
with tag val ues (<l sNavi gabl e, FALSE>,
<Associ ati onEndNane, bul k>)
end
feature {part}
with tag val ues (<l sNavi gabl e, TRUE>)
end
end

- 105 -

The mapping between UOL and STEP/EXPRESS

(UOL 1.2)

5.3.1.4 Constructed data types

EXPRESS semantics:
There are two kinds of constructed datatypesin EXPRESS: ENUMERATION data types and
SELECT datatypes.

5.3.1.4.1 Enumeration data types

EXPRESS semantics:

An ENUMERATION datatype has as its domain an ordered set of names. The names represent
values of the enumeration datatygae. These names are designated by enumeration_ids and are
referred to as enumeration items.

EXPRESS syntax:
201 enuneration_type = ENUVERATION OF ‘(‘ enuneration_id { ‘;’
enuneration_id} *)’.

Mapping:

The enumeration type istransferred into a class stereotyped with express_enumeration.
Additionally the class gets atag express_enumeration with astring value consisting of all the
enumeration items.

When using a enumerated type the enumeration is expanded within the resulting UOL schema.
Additionally the name of the enumeration is placed astag value.

A dependency association is established between the resulting classes, directed from the
enumeration using to the declaring class. This dependency is also stereotyped with
express_enumeration.

Example:

EXPRESS

TYPE car _can_nove = ENUMERATI ON OF
(left, right, backward, forward);
END_TYPE;

ENTI TY Use_enum
car_nove : car_can_nove;
END_ENTI TY;

8 Cf. [ISO EXPRESS RM 94] 29

- 106 -

Mappings

(UOL 1.2)

UoL

cl ass car_can_nove
stereotyped with express_enuneration
with tag val ue
(<express_enuneration,’left,right, backward, forward’ >)
end

cl ass Use_enum
stereotyped with express_entity
feature {any}
car_nove : unique {left, right, backward, forward}
with tag val ues (<express_enuneration, car_can_npve>)
end
end

relati on 2001
stereotyped with express_enuneration
link Use_enumto car_can_nove

end

- 107 -

The mapping between UOL and STEP/EXPRESS

(UOL 1.2)

5.3.2 Declaration

5.3.2.1 Type declaration

EXPRESS semantics:

A type declaration creates a defined datatype (see 1.3.2) and declares an identifier to refer toit.
Specially, thetype id isdeclared as the name of a defined type. The representation of this datatype
isthe underlying_type.®

EXPRESS syntax:

304 type_decl = TYPE type_ID ‘=" underlying_type ‘;’
[where_cl ause] END TYPE *;’.

309 underlying_type = constructed-types | aggregate_types |
simple_types | type_ref.

Mapping:

Every TY PE mapsinto aclass stereotyped with “user_declared type”. A tag value of the class
specifies the underlying type.

Example:
EXPRESS
TYPE person_nane = STRI NG
END_TYPE;
UoL

cl ass person_nane

stereotyped with user_decl ared_type

with tag val ues (<underlying_ type, STRI NG)
end

° Cf. [ISO EXPRESS RM 94] 33

- 108 -

Mappings

(UOL 1.2)
Domain rules (WHERE clause):

EXPRESS semantics:

Domain rules specify constraints that restrict the domain of the defined data type. The domain of
the defilrged datatype isthe domain of its underlying representation constrained by the domain
rule(s).

EXPRESS syntax:
315 where_cl ause = WHERE donmain_rule ‘;’ {domain_rule ‘;’}.

Mapping:

Each where clause corresponds to atag domain_rule with the name of the rule as value.
Additionally asecond tag |abeled with the name of the domain_rule (i.e., the value of the first tag)
and the complete domain rule as uninterpreted string serving as valueis used.

Example:
EXPRESS
TYPE positive = | NTEGER
WHERE
not negative : SELF > 0;
END TYPE;
UoL

cl ass positive
stereotyped with user_decl ared_type
with tag val ue (<underlying_type, | NTEGER>)
with tag val ue (<donmain_rul e, not negative>,
<not negative,’ SELF > 0’ >)
end

0 Cf. [ISO EXPRESS RM 94] 34

- 109 -

The mapping between UOL and STEP/EXPRESS

(UOL 1.2)

5.3.2.2 Entity declaration

EXPRESS semantics:

AnENTITY declaration creates an entity datatype and declares an identifier to refer toit.

Each attribute represents a property of an entity and may be associated with avalue in each entity
instance. The data type of the attribute establishes the domain of possible values.**

EXPRESS syntax:

196 entity decl = entity_head entity_body END ENTITY *;"’.

197 entity head = ENTITY entity_id [subsuper].

194 entity _body = {explcit_attr} [derive_clause] [inverse_cl ause]
[uni que_cl ause] [where_cl ause].

Mapping:
An entity is mapped into a class with the same name as the entity. The classis stereotyped with
“express_entity”.

Example:
EXPRESS
ENTITY Entityl;
END _ENTI TY;
uoL

class ENTITY1
stereotyped with express_entity
end

5.3.2.2.1 Attributes

EXPRESS semantics:
The attributes of an entity data type represent an entity’ s essential traits, qualities or properties. An
attribute declaration establishes a rel ationship between the entity data type and the datatype
referenced by the attribute. The name of an attribute represents the role played by its associated
value in the context of the entity in which it appears.
There are three kinds of attribute:
Explicit: An attribute whose value shall be supplied by an implementation in order to
create an entity instance.
Derived: An attribute whose value is computed in some manner.
Inverse: An attribute whose value consists of the entity instance, which usesthe entity
in aparticular role.*?

Since EXPRESS doesn't support any kind of visibility constraints all attributes of an entity are
public, visible when mapping EXPRESS to UOL .

On the other hand, when mapping an existing UOL schemainto STEP/EXPRESS all visibility
constraints are ignored.

L Cf. [ISO EXPRESS RM 94] 35
2 Cf. [ISO EXPESS RM 94] 25-36

- 110 -

Mappings

(UOL 1.2)

5.3.2.2.1.1 Explicit attribute

EXPRESS semantics:

An explicit attribute represents a property whose value shall be supplied by an implementationin
order to create an instance. Each explicit attribute identifies adistinct property. An explicit attribute
declaration creates one or more explicit attributes having the indicated domain, and assigns an
identifier to each.™

EXPRESS syntax:

203 explicit_attr = attribute_decl { *;’ attribute_decl} ‘:’
[OPTI ONAL] base_type ‘;’.

167 attribute_decl = attribute_id | qualified attribute.

171 base_type = aggregation-type | sinple_type | named_types.

Mapping:

Every attribute of an EXPRESS entity mapsinto an attribute of the resulting UOL class.
Multivalued attributes are mapped into a UOL attribute with the corresponding cardinality (see
1.2). If the multivalued attribute consists of more than one dimension new attributes have to be
introduced by splitting the one n-dimensional attribute into n one-dimensional ones.

If attributeis declared as optional the cardinality is changed to reflect this property.

Attributes which basic type is not one of the EXPRESS simple types BINARY, BOOLEAN,
INTEGER, LOGICAL, NUMBER, REAL or STRING are additionally mapped into an
unidirectional associations which are stereotyped with express_association. The association is
directed form the using element to the supplying one. The name of the explicit attributeis
transferred into the role of the embedding class against the supplying one.

Example:

EXPRESS

ENTITY Entity2;
a, b : REAL;
c | NTEGER;
d : OPTIONAL STRI NG (10);
e OPTI ONAL ARRAY [2: 5] OF OPTI ONAL REAL;
f LIST [1:5] OF LIST [0:10] OF STRING
END _ENTI TY;

UoL

class Entity2
stereotyped with express_entity
feature {any}

a : REAL;
b : REAL;
d [0..1] : INTEGER with tag val ues (<wi dth, 10>);

e [0,2..5] : REAL with tag val ues (<array>, <OPTI ONAL>);
f [1..5] : ?001 with tag values (<list>);
2001 [0..10] : STRING
end
end

See also example of section 1.2

B Cf. [ISO EXPRESS RM 94] 36

-111-

The mapping between UOL and STEP/EXPRESS

(UOL 1.2)

5.3.2.2.1.2 Derived attribute

EXPRESS semantics:

A derived attribute represents a property whose value is composed by evaluating an expression.
Derived attributes are declared following the DERIVE keyword. The declaration consists of the
attri bult4e identifier, its representation type and an expression to be used to compute the attribute
value.

EXPRESS syntax:
190 derived_ attr = attribute _decl ‘:’ base _type ‘:=" expression

1&37 attribute_decl = attribute_id | qualified_ attribute.
171 base_type = aggregation_types | sinple_types | named_types.

Mapping:
Every derived attribute of an EXPRESS entity maps into an attribute of the resulting UOL class.
Additionally the attribute gets atag value “derived” followed by the derivation formulaas string.

Example:

EXPRESS

ENTITY circle;

centre : point;

radi us : REAL;

axis : vector;
DERI VE

area : REAL := Pl *radi us**2;

perinmeter : REAL := REAL : = 2.0*Pl*radi us;
END ENTI TY;

UoL

class circle
stereotyped with express_entity
feature {any}
centre : point;
radi us : REAL;
axis : vector;
area : REAL
with tag val ues (<derived,’ Pl*radius**2'>);
perimeter : REAL
with tag values (<derived,’ 2.0*PIl*radius’>)
end
end

rel ati on 2001
stereotyped with express_associ ation
link circle, point[1..1]
feature {circle}
with tag val ues (<l sNavigabl e, FALSE>)
end
feature {point}
with tag val ues (<l sNavigabl e, TRUE>,
<Associ ati onEndNane, centre>
end
end

Y Cf. [ISO EXPRESS RM 94] 37

- 112 -

Mappings

(UOL 1.2)

relati on 7002
stereotyped with express_association
link circle, vector[1..1]
feature {circle}
with tag val ues (<l sNavigabl e, FALSE>)
end
feature {vector}
with tag val ues (<IsNavigabl e, TRUE>,
<Associ ati onEndNane, axi s>)
end
end

- 113-

The mapping between UOL and STEP/EXPRESS

(UOL 1.2)

5.3.2.2.1.3 Inverse attribute

EXPRESS semantics:

If another entity has established arelationship with the current entity by way of an explicit
attribute, an inverse attribute may be used to describe that relationship in the context of the current
entity. Thisinverse attribute may also be used to constrain the relationship further.

Inverse attributes are declared following the INVERSE keyword.*®

EXPRESS syntax:

234 inverse_attr = attribute_decl ‘:’' [(SET|BAG [bound_spec] OF
] entity ref FOR attriubte_ref *;’.

167 attribute_decl = attribute_id | qualified attribute.

176 bound_spec = ‘[bound_1 ‘:’ bound_2 ‘]’.

174 bound_1 = nuneric_expression.

175 bound_2 nuneri c_expressi on.

Mapping:
Theinverse attribute is mapped similar to the explicit one. Additionally the tag value “inverse” and
the name of the referenced attribute asits value.

Since theinverse attribute is the inverse direction of the implicit relationship stated by an explicit
attribute which typeis an entity it’s not explicated just as the explicit attribute.

EXPRESS

ENTI TY door;

handl e : knob;

hi nges : SET [1:?] OF hinge;
END _ENTI TY;

ENTI TY knob;
| NVERSE

opens : door FOR handl e;
END ENTI TY;

UoL

cl ass door
stereotyped with express_entity
feature {any}
handl e : knob;
hinges [1..*] : hinge with tag val ues (<set>)
end
end

cl ass knob
stereotyped with express_entity
feature {any}
opens : door with tag values (<inverse, handl e>)
end
end

> Cf. [ISO EXPRESS RM 94] 38

- 114 -

Mappings

(UOL 1.2)

rel ati on 2001
stereotyped with express_associ ation
link door, knob[1..1]
feature {door}
with tag val ues (<lsNavigable, FALSE>)
end
feature {knob}
with tag val ues (<IlsNavigable, TRUE>)
end
end

rel ati on 72001
stereotyped with express_associ ation
link door, knob[1..1]
feature {door}
with tag val ues (<IsNavigabl e, FALSE>)
end
feature {knob}
with tag val ues (<IlsNavi gabl e, TRUE>,
<Associ at i onEndNane, handl e>)
end
end

rel ati on 2002
stereotyped with express_associ ation
i nk door, hinge[1l..*]
feature {door}
with tag val ues (<IlsNavi gabl e, FALSE>)
end
feature {hinge}
with tag val ues (<l sNavigabl e, TRUE>,
<Associ at i onEndNamne, hi nges>)
end
end

- 115-

The mapping between UOL and STEP/EXPRESS
(UOL 1.2)

5.3.2.2.2 Local rules

EXPRESS semantics:

Local rules are assertions on the domain of entity instances and thus apply to all instances of that
entity datatype. There are two kinds of local rules. Uniqueness rules control the uniqueness of
attribute values among all instances of a given entity datatype. Domain rules describe other
constraints on or among the values of the attributes of each instance of a given entity datatype.*®

5.3.2.2.2.1 Uniqueness rule

EXPRESS semantics:

A uniqueness constraint for individual attributes or combinations of attributes may be specifiedin a
uniqueness rule. The uniqueness rules follow the UNIQUE keyword, and specify either asingle
attribute name or alist or attribute names. A rule, which specifies a single attribute name, called a
simple uniqueness rule, specifies that no two instances of the entity datatypein the domain shall
use the same instance for the named attribute. A rule, which specifies two or more attribute names,
called ajoint uniqueness rule, specifies that no two instances of the entity data type shall have the
same combination of instances for the named attributes.*’

EXPRESS syntax:
310 unique_clause = UNIQUE unique_rule *;’ {unique_rule *;"}.
311 unique_rule = [label ‘:'] refernced_attribute {‘;’

referenced_attribute}.
266 referenced_attribute = attribute_ref | qualified_ attribute.

Mapping:

The uniquenessruleistransferred into the tag value “express_unique”’ of the affected attribute(s).
Thetag valueistrueif the attribute is unique or holds the name of the uniquenessrule (i.e. the label
specified in EXPRESS). If the tag values of two or more attributes hold the same value for the
“unique” tag the two attributes combined should be unique. If no label is specified in EXPRESS
and a uniqueness constraint should apply to two or more attributes, the transformation processor
creates an internal name.

1°Cf. [ISO EXPRESS RM 94] 40
Y Cf. [ISO EXPRESS RM 94] 40

- 116 -

Mappings

Example:

(UOL 1.2)

EXPRESS

ENTI TY e;
a, b, c : |INTEGER
UNI QUE
url : a
ur2 : b;
ur3 : c;
END_ENTI TY;

ENTI TY person_nane,
last : STRING
first : STRING
m ddl e : STRI NG,
ni ckname : STRI NG

END_ENTI TY;

ENTI TY enpl oyee
badge : NUMBER
nane : person_nane;

UNI QUE
url: badge, nane;

END _ENTI TY;

UoL

class e
stereotyped with express_entity
feature {any}

a : INTECER with tag val ues (<express_unique, url>);
b : INTEGER with tag val ues (<express_unique, ur2>);
c : INTECER with tag val ues (<express_uni que, ur 3>)
end
end

cl ass person_nane
stereotyped with express_entity
feature {any}
| ast : STRI NG
first : STRING
m ddl e : STRING
ni ckname : STRI NG
end
end

cl ass enpl oyee
stereotyped with express_entity
feature {any}

badge : NUMBER with tag val ues (<express_unique, url>);
nane : person_name with tag val ues (<express_unique, url>)

end
end

- 117 -

The mapping between UOL and STEP/EXPRESS

(UOL 1.2)

rel ati on 2001
stereotyped with express_associ ation
link enpl oyee, person_nane[1l..1]
feature {enpl oyee}
with tag val ues (<l sNavigabl e, FALSE>)
end
feature {person_nane}
with tag val ues (<IlsNavigabl e, TRUE>,
<Associ at i onEndNane, nanme>)
end
end

- 118 -

Mappings

(UOL 1.2)

5.3.2.2.2.2 Domain rules (WHERE clause)

EXPRESS semantics:
Domain rules constrain the values of individual attributes or combinations of attributes for every
entity instance. All domain rules follow the WHERE keyword.*®

EXPRESS syntax:
315 where_cl ause = WHERE domain_rule ‘;’ {domain_rule *;"}.

Mapping:

Each domain rule maps into a tag value “domain rule” optionally followed by the domain rule
label. If arulelabel is specified the rule label introduces an additional tag value followed by the
rule as string. If not rule label is specified the transformation processor generates an internal name.

Example:

EXPRESS

ENTITY unit_vectori;

a, b, c : REAL;
VWHERE

length_1 : a**2 + b**2 + ¢c**2 = 1.0;
END_ENTI TY;

ENTITY unit_vector?2;

a, b : REAL;

c : OPTI ONAL REAL;
WHERE

length_1 : a**2 + b**2 + c**2 =
END_ENTI TY

[
=
e

ENTITY unit_vector3;

a, b : REAL;

c : OPTI ONAL REAL;
VWHERE

length_1 : a**2 + b**2 + NVL(c, 0.0) = 1.0;
END_ENTI TY;

UoL

class unit_vectorl
stereotyped with express_entity
with tag values (<dommin_rule,length_1>,
<length_ 1, ‘a**2 + b**2 + c¢**2 = 1.0")
feature {any}

a . REAL;
b : REAL;
c : REAL
end

end

8 Cf. [ISO EXPRESS RM 94] 41

- 119-

The mapping between UOL and STEP/EXPRESS

(UOL 1.2)

class unit_vector?2
stereotyped with express_entity
with tag values (<dommin_rule,length 1>,
<lenght 1, ‘a**2 + b**2 + ¢c**2 = 1.0 >)
feature {any}
a : REAL;
b : REAL;
c [0..1] : REAL
end
end

class unit_vector3
stereotyped with express_entity
with tag values (<donmmin_rule,length_1>,
<lenght 1, ‘a**2 + b**2 + NVL(c, 0.0) = 1.0 >)
feature {any}

a . REAL;
b : REAL;
c [0..1] : REAL
end
end

- 120 -

Mappings

(UOL 1.2)

5.3.2.2.3 Subtypes and supertypes

EXPRESS semantics:

EXPRESS allows for the specification of entities as subtypes of other entities, where a subtype
entity is aspecialization of its supertype. This establishes an inheritance (i.e., subtype/supertype)
relationship between the entities in which the subtype inherits the properties (i.e., attributes and
constraints) of its supertype. Successive subtype/supertype relationships establish an inheritance
graph in which every instance of a subtypeis an instance of its supertype(s).*®

EXPRESS syntax:

294 supsuper = [subpertype_constraint] [subtype_declaration].
297 supertype_constraint = abstract_supertype_decl aration
supertype_rul e

156 abstract _supertype_decl arati on = ABSTRACT SUPERTYPE

[supertype_constraint].

295 subtype_constraint = OF ‘(' supertype_expression ‘)’.

298 supertype_expressi on = supertype_factor { ANDOR
supertype_factor}.

299 supertype_factor = supertype_term { AND supertype_term}
301 supertype-term = entity ref | one_of | *(°
supertype_expression ‘)’.

250 one_of = ONEOF ‘(' supertype_expression { ‘;’
supertype_expression } ‘)’.

300 supertype_rul e = SUPERTYPE subtype_constraint.

5.3.2.2.3.1 Specifying subtypes

EXPRESS semantics:
An entity isasubtypeif it contains a SUBTY PE declaration. The subtype declaration shall identify
all the entity’ simmediate supertype(s).*°

EXPRESS syntax:
296 subtype_declaration = SUBTYPE OF ‘(‘ entity_ ref { *‘;’
entity ref }).

9 Cf. [ISO EXPRESS RM 94] 43
% Cf. [ISO EXPRESS RM 94] 44

-121-

The mapping between UOL and STEP/EXPRESS

(UOL 1.2)

5.3.2.2.3.2 Specifying supertypes

EXPRESS semantics:

An entity is asupertype through either an explicit or implicit specification. An entity is explicitly
specified to be a supertypeif it containsan ABSTRACT SUPERTY PE declaration and is img;licitly

specified to be a supertype if it is named in a subtype declaration of at least one other entity.**
EXPRESS syntax:

297 supertype_constraint = abstract_supertype_declaration |
supertype_rul e.

156 abstract _supertype_decl arati on = ABSTRACT SUPERTYPE

[subtype_constraint].

295 subtype_constraint = OF ‘(' supertype_expression ‘)’.

298 supertype_expressi on = supertype_factor { ANDOR
supertype_factor }.

299 supertype_factor = supertype_term { AND supertype_term}.
301 supertype_term = entity_ref | one_of | ‘('
supertype_expression ‘)’.

250 one_of = ONEOF ‘(' supertype_expression { ‘;’
supertype_expression } ‘)’.

300 supertype_rul e = SUPERTYPE subtype_constraint.

Mapping:
I nheritance between entities map into inheritance between the resulting classes.

Example:

EXPRESS

ENTI TY i nteger _nunber;
val : | NTEGER;
END _ENTI TY;

ENTI TY odd_nunber

SUBTYPE OF (i nteger_nunber);
VWHERE

not _even : ODD (val);
END_ENTI TY;

UoL

cl ass integer_nunber
stereotyped with express_entity
feature {any}
val : | NTEGER
end
end

cl ass odd_nunber
stereotyped with express_entity
with tag val ues (<dommin_rul e, not_even>,
<not _even, ' ODD(val)" >)
i nherit integer_nunber
end

2L Cf. [ISO EXPRESS RM 94] 44

- 122 -

Mappings

(UOL 1.2)

5.3.2.2.3.3 Attribute inheritance

EXPRESS semantics:

The attribute identifiersin a supertype are visible within the scope of the subtype. Thus, a subtype
inherits all of the attributes of its supertype. This allows the subtypes to specify either constraints or
their own attributes using the inherited attribute. If a subtype has more than one supertype, subtype
inherits all of the attributes from all of its supertypes.?

Mapping:
Like the single inheritance of the prior example, the EXPRESS inheritance mapsinto an
inheritance hierarchy in UOL.

Example:

EXPRESS

ENTI TY el;
attr . REAL;
END_ENTI TY;

ENTITY e2;
attr : Bl NARY;
END_ENTI TY;

ENTITY el2

SUBTYPE OF (el, e2);
VWHERE

positive : SELF\el.attr > 0.0;
END_ENTI TY;

UoL

class el
stereotyped with express_entity
feature {any}
attr : REAL
end
end

cl ass e2
stereotyped with express_entity
feature {any}
attr : BINARY
end
end

cl ass el2
stereotyped with express_entity
i nherit el,e2
with tag values (<donmmin_rul e, positive>,
<positive,’” SELF\\el.attr > 0.0")
end

Remark: UOL recognizes the backslash ‘\' character as escape character and hence the backslash of
the EXPRESS sourceis converted into two subsequent ones.

2 Cf.[ISO EXPRESS RM 94] 45

- 123 -

The mapping between UOL and STEP/EXPRESS

(UOL 1.2)

5.3.2.2.3.4 Attribute declaration

EXPRESS semantics:

An attribute declaration in a supertype can be redeclared in a subtype. The attribute remainsin the
supertype but the allowed domain of values for that attribute is governed by the redeclaration given
in the subtype.?®

EXPRESS syntax:

262 qualified_attribute = SELF group_qualifier

attribute_qualifier.

219 group_qualifier = “\" entity_ref.

169 attribute_qualifier = *.’ attribute_ref.

Mapping:

Every redeclared attribute at subtype level maps into an explicit attribute declaration in the
subclass. A tag “redeclaration” with the name of the source class as val ue clarifies the redeclaration
within the redeclaring subclass.

Example I:

EXPRESS

ENTI TY point;
X : NUMBER;
y : NUMBER;

END_ENTI TY;

ENTI TY i nteger _poi nt
SUBTYPE OF (point);
SELF\ poi nt.x : | NTEGER;
SELF\ point.y : | NTEGER;

END ENTI TY;

UoL

cl ass point
stereotyped with express_entity
feature {any}
x © NUMBER,
y : NUMBER
end
end

cl ass integer_point
stereotyped with express_entity
i nherit point
feature {any}
X : INTEGER with tag val ues (<redeclaration, point>);
y : INTEGER with tag val ues (<redecl arati on, poi nt>)
end
end

% Cf. [ISO EXPRESS RM 94] 46

- 124 -

Mappings

(UOL 1.2)

Example 1I:

EXPRESS

ENTI TY super;
things : LIST [3:?] OF thing;
items : BAG [0:7?] of wi dget;
may_be : OPTI ONAL stuff;
END_ENTI TY;

ENTI TY sub
SUBTYPE OF (super);
SELF\ super.things : LIST [3:?] OF UN QUE thing;
SELF\ super.itenms : SET [1:10] OF wi dget;
SELF\ super. may_be : stuff;
END_ENTI TY;

UoL

cl ass super
stereotyped with express_entity
feature {any}
things [3..*] : thing with tag values (<list>);
items [0..*] : widget with tag val ues (<bag>);
may_be [0..1] : stuff
end
end

rel ati on 72001
stereotyped with express_associ ation
link super, thing[3..*]
feature {super}
with tag val ues (<IsNavigabl e, FALSE>)
end
feature {thing}
with tag val ues (<IlsNavigable, TRUE>,
<Associ ati onEndNane, t hi ngs>)
end
end

rel ati on 2002
stereotyped with express_associ ation
link super, widget[O..*]
feature {super}
with tag val ues (<IlsNavi gabl e, FALSE>)
end
feature {w dget}
with tag val ues (<IlsNavigable, TRUE>,
<Associ ati onEndNane, i t ens>)
end
end

- 125-

The mapping between UOL and STEP/EXPRESS

(UOL 1.2)

rel ati on 2003
stereotyped with express_associ ation
link super, stuff[O0..1]
feature {super}
with tag val ues (<l sNavigabl e, FALSE>)
end
feature {stuff}
with tag val ues (<IsNavigable, TRUE>,
<Associ at i onEndName, may_be>)
end
end

cl ass sub
stereotyped with express_entity
i nherit super
feature {any}
things [3..*] : thing
with tag values (<list>, <UNI QUE>,
<redecl arati on, super>);
items [1..10] : wi dget
with tag val ues (<set>, <redecl aration, super>);
may_be [0..1] : stuff
with tag val ues (<redecl aration, super>)
end
end

rel ati on 7004
stereotyped with express_association
link sub, thing[3..*]
feature {super}
with tag val ues (<l sNavigabl e, FALSE>)
end
feature {thing}
with tag val ues (<IsNavigable, TRUE>
<Associ ati onEndName, t hi ngs>)
end
end

rel ati on ?005
stereotyped with express_associ ation
link sub, widget[1l..210]
feature {super}
with tag val ues (<IsNavigabl e, FALSE>)
end
feature {w dget}
with tag val ues (<IlsNavigable, TRUE>,
<Associ ati onEndNane, i t ens>)
end
end

- 126 -

Mappings

(UOL 1.2)

rel ati on ?006
stereotyped with express_associ ation
link sub, stuff[O..1]
feature {super}
with tag val ues (<IsNavigabl e, FALSE>)
end
feature {stuff}
with tag val ues (<IlsNavigable, TRUE>,
<Associ ati onEndNane, may_be>)
end
end

- 127 -

The mapping between UOL and STEP/EXPRESS

(UOL 1.2)

Example I1I:

EXPRESS

FUNCTI ON di stance(pl, p2 : point) : REAL
(* Conpute the shortest distance between two points *)
END_FUNCTI ON

FUNCTI ON NORMAL (pl1, p2, p3 : point) : vector
(* Conpute normal of a plane given three points on the plane *)
END_FUNCTI ON

ENTITY circle;

centre : point;

radi us : REAL;

axis : vector;
DERI VE

area : REAL := Pl *radi us**2;
END ENTI TY;

ENTITY circle_by_points
SUBTYPE OF (circle)

p2 : point;
p3 : point;
DERI VE

SELF\circle.radius : REAL
SELF\circle.axis : vector
WHERE
not _coincident : (centre <> p2) AND
(p2 <> p3) AND
(p3 <> centre);
is_circle : distance (centre,p3) = distance(centre, p2);
END _ENTI TY;

di stance(cantre, p2);
normal (centre, p2, p3);

UoL

cl ass schem
stereotyped with express_schemn
feature {any}
deferred distance (pl,p2 : point) : REAL is text "distance"
deferred normal (pl, p2 ,p3 :point) : vector is text "normal"”
end
end

class circle
stereotyped with express_entity
feature {any}
centre : point;
radi us : REAL;
axis : vector;
area : REAL with tag val ues (<derived,'Pl*radius**2'>)
end
end

- 128 -

Mappings

(UOL 1.2)

relati on 2001
stereotyped with express_associ ation
link circle, point[1..1]
feature {circle}
with tag val ues (<IlsNavigabl e, FALSE>)
end
feature {point}
with tag val ues (<l sNavigabl e, TRUE>,
<Associ ati onEndName, centre>)
end
end

rel ati on 2002
stereotyped with express_associ ation
link circle, vector[1..1]
feature {circle}
with tag val ues (<l sNavigabl e, TRUE>,
<Associ ati onEndNane, axi s>)
end
end

class circle_by points
stereotyped with express_entity
with tag val ues (<domai n_rul e, not _coi nci dent >,
<not _coi ncident,' (centre <> p2) AND (p2 <> p3) AND
(p3 <> centre)' >,
<domai n_rule,is _circle>,
<is_circle, distance(centre, p3) = distance(centre, p2)'>)
i nherit circle
feature {any}
p2 : point;
p3 : point;
radi us : REAL
with tag values (<redeclaration,circle>,
<derived, 'dirstance(centre, p2)"' >);
axis : vector
with tag val ues (<redeclaration,circle>,
<derived, ' normal (centre, p2, p3)"' >)
end
end

- 129 -

The mapping between UOL and STEP/EXPRESS

(UOL 1.2)

5.3.2.2.3.5 Rule inheritance

EXPRESS semantics:

Every local or global rule that applies to a supertype appliesto its subtype(s). Thus, a subtype
inherits all the rules of its supertype(s). If a subtype has more than one supertype, the subtype shall
inherit all the rules constraining the supertypes.

It is not possibleto change or delete any of the rulesthat are associated with asub%pe viarule
inheritance but it is possible to add new rules, which further constrain the subtype.

Mapping:

Since rules are not redeclared within the inheriting subtype in the EXPRESS schema they’ re not
redeclared in the resulting UOL class, as well. Additional rules may be declared on the level of the
subtype.

Example:
EXPRESS

SCHEMA s;
ENTI TY person;

ss_no : | NTEGER;

born : date;
DERI VE

age : |INTECER : = years_since(born);
UNI QUE

unl : ss_no;
END_ENTI TY;

ENTI TY teacher

SUBTYPE OF (person);

teaches : SET [1:7?] OF course;
VWHERE

old : age >= 21;
END_ENTI TY;

ENTI TY student

SUBTYPE OF (person);

takes : SET [1:7?] OF course;
VWHERE

young : age >= 5;
END_ENTI TY;

ENTI TY gr aduat e
SUBTYPE OF (student, teacher);

VWHERE
l[imted : NOT (GRAD_LEVEL IN teaches);
END_ENTI TY;
TYPE course = ENUVERATION OF (..... , GRAD LEVEL, ...);
END_TYPE;
END_SCHEMA;

Cf. [ISO EXPRESS RM 94] 48

- 130 -

Mappings

(UOL 1.2)

UoL

package s is
cl ass person
stereotyped with express_entity
feature {any}
ss_no : INTEGER with tag val ues
(<express_uni que, unl>);
born : date;
age : INTECER with tag val ues
(<derived, ' years_since(born)'>)
end
end

rel ati on 72001
stereotyped with express_associ ation
link person, date[1l..1]
feature {person}
with tag val ues (<IsNavigabl e, FALSE>)
end
feature {date}
with tag val ues (<IlsNavigable, TRUE>,
<Associ ati onEndNane, bor n>)
end
end

cl ass teacher
stereotyped with express_entity
with tag val ues (<domein_rule,old> <old,'age >= 21'>)
i nherit person
feature {any}
teaches [1..*] : course_ with tag val ues (<set>)
end
end

relati on 7002
stereotyped with express_associ ation
link teacher, course_[1..*]
feature {teacher}
with tag val ues (<IlsNavi gabl e, FALSE>)
end
feature {thing}
with tag val ues (<IlsNavigable, TRUE>,
<Associ ati onEndNane, t eaches>)
end
end

cl ass student
stereotyped with express_entity
with tag val ues (<domai n_rule, young>,
<young, 'age >= 5'>)
i nherit person
feature {any}
takes : unique {Level 1, GRAD LEVEL, Level 2}
with tag val ues (<set>, <express_enuneration, course_>)
end

- 131-

The mapping between UOL and STEP/EXPRESS

(UOL 1.2)

end

cl ass graduate
stereotyped with express_entity
with tag values (<domain_rule, limted>,

<limted, ' NOT (GRADE_LEVEL I N teaches)'>)

i nherit student; teacher

end

cl ass course_
stereotyped with express_enuneration
with tag val ues (<Level 1>, <GRAD_LEVEL>, <Level 2>)

end

end

Remark: Since “course” is a UOL keyword a tailing underscore ““_"" is appended to the string
during the transformation process. The tool has to remove it when re-transferring the UOL code.

- 132 -

Mappings
(UOL 1.2)

5.3.2.2.4 Subtype/supertype constraints

EXPRESS semantics:

Aninstance of an entity datatype, which isasubtype, is an instance of each of its supertypes. An
instance of an entity datatype which is either explicitly or implicitly declared to be a supertype
may also be an instance of one or more of its subtypes.?®

EXPRESS syntax:

294 subsuper = [supertype_constraint] [subtype_declaration].
297 supertype_constraint = abstract_supertype_decl aration |
supertype_rul e

156 abstract _supertype_decl arati on = ABSTRACT SUPERTYPE

[subtype_constraint].

295 subtype_constraint = OF ‘(‘ supertype_expression ‘)’.
298 supertype_expressi on = supertype_factor {ANDOR
supertype_factor}.

299 supertype_factor = supertype_term { AND supertype_ternt.
301 supertype_term = entity ref | one_of |

‘(' supertype_expression ‘)’.

250 one_of = ONEOF ‘(' supertype_expression { *,’
supertype_expression} ‘)’.

300 supertype_rul e = SUPERTYPE subtype_constraint.

% Cf. [ISO EXPRESS RM 94] 49

- 133-

The mapping between UOL and STEP/EXPRESS

(UOL 1.2)

5.3.2.2.4.1 Abstract supertypes

EXPRESS semantics:

EXPRESS allows for the declaration of supertypes that are not intended to be directly instantiated.
An entity datatype shall include the phrase ABSTRACT SUPERTY PE in a supertype constraint
for this purpose. An abstract supertype shall not be instantiated except in conjunction with at |east
one of its subtypes.?®

Mapping:
An abstract supertype of EXPRESS corresponds to an abstract UOL class. Additionally, the UOL
class has atag value abstract.

Example:
EXPRESS

ENTI TY vehicle

ABSTRACT SUPERTYPE
END_ENTI TY;
ENTITY | and_based

SUBTYPE OF (vehicle);
END_ENTI TY;
ENTI TY wat er _based

SUBTYPE OF (vehicle);
END_ENTI TY;

uoL

cl ass vehicle
stereotyped with express_entity
with tag val ues (<abstract>)
end

cl ass | and_based
stereotyped with express_entity
i nherit vehicle

end

cl ass wat er _based
stereotyped with express_entity
i nherit vehicle

end

% Cf. [ISO EXPRESS RM 94] 50

- 134-

Mappings

(UOL 1.2)

5.3.2.24.2 ONEOF

EXPRESS semantics:

The ONEOF constraint states that the elements of the ONEOF list are mutually exclusive. None of
the elements may be instantiated with any other element in the list. Each element shall be a
supertype expression, which may resolve to a single subtype of the entity data type.?’

EXPRESS syntax:

250 one_of = ONEOF ‘(' supertype_expression { *,’
supertype_expression } ‘)’.

299 supertype_factor = supertype_term{ AND supertype_ternt.
301 supertype_term= entity ref | one_of | *(*
supertype_expression ‘)’.

Mapping:
The EXPRESS ONEOF constraint istransferred into a constraint applied on all of the resulting
inheritance relationships. This constrained is named EXPRESS_ONEOF.

Example:

EXPRESS

ENTI TY pet
ABSTRACT SUPERTYPE OF (ONEOF(cat, rabbit, dog));
name : pet_nhane;

END_ENTI TY;

ENTI TY cat
SUBTYPE OF (pet);
END_ENTI TY;

ENTI TY rabbi t
SUBTYPE OF (pet);
END_ENTI TY;

ENTI TY dog
SUBTYPE OF (pet);
END_ENTI TY;

UoL

cl ass pet
stereotyped with express_entity
with tag val ues (<abstract>)
end

cl ass cat

stereotyped with express_entity

i nherit pet constrai ned by {EXPRESS_ ONEOF}
end

cl ass rabbit

stereotyped with express_entity

i nherit pet constrai ned by {EXPRESS ONEOF}
end
cl ass dog

stereotyped with express_entity

i nherit pet constrai ned by {EXPRESS_ ONEOF}
end

' Cf. [ISO EXPRESS RM 94] 50

- 135-

The mapping between UOL and STEP/EXPRESS

(UOL 1.2)
5.3.2.2.4.3 ANDOR

EXPRESS semantics:

If the subtypes are not mutually exclusive, that is, an instance of the supertype may be an instance
of more than one of its subtypes, the rel ationship between the subtypes shall be specified using the
ANDOR constraint.?®

Mapping:
The EXPRESS ANDOR constraint is transferred into a constraint applied on all of the resulting
inheritance relationships. This constrained is named EXPRESS_ANDOR.

Example:

EXPRESS

ENTI TY person
SUPERTYPE OF (enpl oyee ANDOR student);
END_ENTI TY;

ENTI TY enpl oyee
SUBTYPE OF (person);
END_ENTI TY;

ENTI TY student
SUBTYPE OF (person);
END ENTI TY;

UoL

cl ass person
stereotyped with express_entity
end

cl ass enpl oyee

stereotyped with express_entity

i nherit person constrained with {EXPRESS_ANDOR}
end

cl ass student
stereotyped with express_entity
i nherit person constrai ned by { EXPRESS_ ANDOR}

end

% Cf. [ISO EXPRESS RM 94] 51

- 136 -

Mappings

(UOL 1.2)

5.3.2.24.4 AND

EXPRESS semantics:

If the supertype instances are categorized into multiple groups of mutually exclusive subtypes (i.e.,
multiple ONEOF groupings) indicating that there is more than one way to completely categorize
the supertype, the relationship between those groups shall be specified sing the AND constraint.
The AND constraint is only used to relate groupings established by other subtype/supertype
constraints.?

Mapping:
The EXPRESS AND constraint istransferred into a constraint applied on all of the resulting
inheritance relationships. This constrained is named EXPRESS_AND.

Every inheritance path gets a unique name, which serves as anchor point of a constrained
nondirected dependency relation connecting them. The relation describing the intra-
inheritance constrained is stereotyped with EXPRESS_INHERITANCE_CONSTRAINT.

Example:

EXPRESS

ENTI TY person
SUPERTYPE OF (ONEOF(nul e, feral e) AND ONEOF(citizen,alien));
END _ENTI TY;

ENTITY mel e
SUBTYPE OF (person)
END_ENTI TY;

ENTITY feral e
SUBTYPE OF (person)
END_ENTI TY;

ENTITY citizen
SUBTYPE OF (person)
END_ENTI TY;

ENTITY alien
SUBTYPE OF (person)
END_ENTI TY;

UoL

cl ass person
stereotyped with express_entity
end

class nale
stereotyped with express_entity
with tag val ues (<inheritance_id, ?2001>)
i nherit person

end

class feml e
stereotyped with express_entity
with tag values (<inheritance_id, ?002>)
i nherit person

Cf. [ISO EXPRESS RM 94] 52

- 137 -

The mapping between UOL and STEP/EXPRESS

(UOL 1.2)

end

class citizen

stereotyped with express_entity

with tag val ues (<inheritance_id, 2003>)

i nherit person constrai ned by { EXPRESS_ ONEOF}
end

class alien

stereotyped with express_entity

with tag val ues (<inheritance_id, 2004>)

i nherit person constrai ned by {EXPRESS ONEOF}
end

rel ati on ?005
stereotyped with express_inheritance_constraint
link ?2001, 2002
constrai ned by {text “express_oneof”}

end

rel ati on ?006
stereotyped with express_inheritance_constraint
[ink 2003, 7004
constrai ned by {text “express_oneof”}

end

rel ati on 72007
stereotyped with express_inheritance_constraint
i nk 2005, ?006
constrai ned by {text “express_and”}

end

- 138 -

Mappings

(UOL 1.2)

5.3.2.2.45 Precedence of supertype operators

EXPRESS semantics:

The evaluation of supertype expressions proceeds from left to right, with the highest precedence
operators being evaluated first. The table summarizes the precedence rules for the supertype
expression operators. Operatorsin the same row have the same precedence, and therows are
ordered by decreasing precedence.

Precedence Operators
1 () ONEOF
2 AND
3 ANDOR
Mapping:
If the precedence is stated explicitly by using additional brackets the brackets are transferred into
UOL.

Since UOL serves as transfer format with the same expressive power as EXPRESS there’ s no need
to state the implicit precedence rules of EXPRESS explicitly in UOL. The retransformation has to
ensure the preservation of the precedence order.

Example:

EXPRESS

ENTI TY X
SUPERTYPE CF (a ANDOR b AND c);
END_ENTI TY;

ENTITY x
SUPERTYPE OF ((a ANDOR b) AND c);
END_ENTI TY;

UoL

- 139 -

The mapping between UOL and STEP/EXPRESS

(UOL 1.2)

5.3.2.2.5 Implicit declarations

5.3.2.3

EXPRESS semantics:

When an entity is declared, a constructor is also implicitly declared. The constructor identifier is
the same as the entity identifier and the visibility of the constructor declaration is the same as that
of the entity declaration.

The constructor, when invoked, shall return apartial complex entity value for that entity data type
of the point of invocation. Each attribute in this partial complex entity value is given by the actual
parameter passed in the constructor call, if an actual parameter is an entity instance, that entity
instance plays the role described by an attribute in the partial complex entity value. The constructor
shall only provide the attribute, which are explicit in a particular entity declaration.*

EXPRESS syntax:
195 entity _constructor = entity ref ‘(‘ [expression { ‘;’

expression }] “)’.

Mapping:
Since the constructor is only implicit declared it is not explicited with in the UOL.

Schema

EXPRESS semantics:
A SCHEMA declaration defines acommon scope for a collection of related entity and other data
type declarations. !

EXPRESS syntax:

281 schema_decl = SCHEMA schenm_id ‘;’ schema_body END SCHEMA * ;.
280 schema_body = {interface_specification} [constant_decl]
{declaration | rule_decl}.

228 interface_specification = reference_cl ause | use_cl uase.

189 decl aration = entity_decl | function_decl | procedure_decl |
type_decl .

Mapping:

The schema definition matches to the UOL package. The package gets the same hame as the
EXPRESS schema. Additionally a“schemaclass’ is created within the package covering all the
schema global accessibleinformation. Thisclassis stereotyped with “express_schema’.

Example:
EXPRESS
SCHEMA t est;
END_SCHEMA;
uoL

package test is
cl ass test
stereotyped with express_schemn
end
end

% Cf. ISO EXPRESS RM 94] 53-54
3 Cf. [ISO EXPRESS RM 94] 55

- 140 -

Mappings

(UOL 1.2)

5.3.2.4 Constant

EXPRESS semantics:

A constant declaration is used to declare named constants. The scope of a constant identifier shall
be the function, procedure, rule or schemain which the constant declaration occurs. A named
constant appearing in a CONSTANT declaration shall have an explicit initialization the value of
which is computed by evaluating the expression. A named constant may appear in the declaration
of another named constant.?

EXPRESS syntax:

185 constant _decl = CONSTANT constant _body {constant_body}

END _CONSTANT ‘;'.

184 constant_body = constant_id base_t ype expression ‘;’
171 base_type = aggregation_types | sinple_types | named_types.

Mapping:
The EXPRESS constants match immutabl e attributes of the UOL. The value of the constant
remains unchanged as string within UOL.
Depending on the occurrence of the constant declaration it's mapped into:
- an attribute of the schema class—if it's declared on schema level

apart of the whole function mapping —if it’s declared within afunction

a part of the whole procedure mapping —it’ s declared within a procedure

apart of the whole rule mapping — if it's declared within arule

Example:

EXPRESS

CONSTANT
t housand : NUMBER : = 1000;
mllion : NUMBER : = thousand**2;
origin : point := point(0.0, 0.0, 0.0);
END_CONSTANT;

UoL

frozen thousand : NUMBER is ‘1000’ ;
frozen mllion : NUMBER is ‘thousand**2’;
frozen origin : point is ‘point(0.0, 0.0, 0.0)

% Cf. [ISO EXPRESS RM 94] 56

- 141 -

The mapping between UOL and STEP/EXPRESS

(UOL 1.2)

5.3.2.5 Algorithms

EXPRESS semantics:
An algorithmis a sequence of statements that produces some desired and state. The two kinds of
algorithms that can be specified are functions and procedures.®

5.3.2.5.1 Function

EXPRESS semantics:

A function is an algorithm, which operates on parameters and that, produces a single resultant
value of aspecific datatype.®*

EXPRESS syntax:

208 function_decl = function_head [al gorithm head] stnt {stnt}
END_FUNCTI ON' ;" .

209 function_head = FUNCTION function_id [‘(* formal _paranmeter {
‘3" formal _parameter } ‘)’] paraneter_type ‘;’
206 fornal _paranmeter = paraneter_id { ‘,’ paraneter_id } ‘:’
par anet er _t ype.

253 paraneter_type = generalized_type | named types |

[

si npl e_t ypes.

163 al gorithm head = {declaration} [constant_decl] [l ocal _decl].
189 declaration = entity_decl | function_decl | procedure_decl |
type_decl .

Mapping:

Since functions are declared on schemalevel (i.e., the same level asthe entity declaration) they
correspond to operations declared within the UOL schema class resulting from the EXPRESS
schema. Additionally the UOL operation is stereotyped with “express_function”.

Furthermore EXPRESS doesn’t support any visibility constraints; hence all corresponding UOL
functions have public visibility.

% Cf. [ISO EXPRESS RM 94] 56
% Cf. [ISO EXPRESS RM 94] 57

- 142 -

Mappings
(UOL 1.2)

5.3.2.5.2 Procedure

EXPRESS semantics:

A procedure is an algorithm that receives parameters from the point of invocation and operates on
them in some manner to produce the desired end state. Changes to the parameters within a

procedure are only reflected to the point of invocation when the formal parameter is preceded by
the VAR keyword.®®

EXPRESS syntax:

258 procedure_decl = procedure_head [al gorithm head] {stnt}
END_PROCEDURE * ;' .

259 proedure_head = PROCEDURE procedure_id [‘(' [VAR]
formal _paranmeter { ‘;’ [VAR] fornal _paranmeter} ‘)"] ‘;’.
206 fornal _parameter = paraneter_id { ‘,’ paraneter_id } ‘:’

par anet er _t ype.

253 paraneter_type = generalized_types | naned_types |

si npl e_types.

163 al gorithm head = {declaration} [constant_decl] [l ocal _decl].
189 decl aration= entity_decl | function_decl | type_decl.

Mapping:
An EXPRESS procedure corresponds to an operation of schemaclass. This operationis
stereotyped with express_procedure.

* Cf. [ISO EXPRESS RM 94] 58

- 143-

The mapping between UOL and STEP/EXPRESS

(UOL 1.2)

5.3.2.5.3 Parameters

EXPRESS semantics:

A function or procedure can have formal parameters. Each formal parameter specifies aname and
parameter type. The nameis an identifier, which shall be unique within the scope of the function or
procedure. A formal parameter to a procedure may also be declared as VAR (variable), which
means that, if the parameter is changed within the procedure, the change shall be propagated to the
point of invocation. Parameters not declared as VAR can be changed also, but the change will not
be apparent when control is returned to the caller.>®

EXPRESS syntax:

206 formal _paraneter = paraneter_id { ‘,’ paranmeter_id}
par anet er _ype.

253 paranmeter _type = generalized_types | naned_types |

si nmpl e_types.
Mapping:
The formal parameter list of EXPRESS corresponds to the formal parameter list of UOL. If a

parameter is declared as VAR within the EXPRESS schema the tag value express_VAR_parameter
reflects the name of the parameter declared so.

Example:

EXPRESS

FUNCTI ON di st (pl, p2 : point) : REAL;

PROCEDURE mi dpt (pl, p2 : point; VAR result : point);

UoL

cl ass schenma_cl ass
stereotyped with express_schemn
feature {any}
di st (pl,p2 : point): REAL
stereotyped with express_function
text "imenmentation" is text "...";
m dpt (pl, p2, result : point)
stereotyped with express_procedure
with tag val ues (<VAR_paraneter,result>)
text "inplenmentation" is text "..."
end
end

% Cf. [ISO EXPRESS RM 94] 58

- 144 -

Mappings
(UOL 1.2)

5.3.2.5.3.1 Aggregate data type

EXPRESS semantics:

An AGGREGATE datatypeisageneralization of all aggregation datatypes.

When a procedure or function which has aformal parameter defined to be an aggregate datatypeis
invoked, the actual parameter passed shall bean ARRAY, BAG, LIST or SET. The operations that
can be performed shall then depend on the data type of the actual parameter.

Type labels may be used to ensure that two or more parameters passed are of the same data type, or
that the return datatype is the same as one of the passed parameters, irrespective of the actual data
type passed.®’

EXPRESS syntax:

161 aggregate_type = AGGREGATE [‘:’' type_lavel] OF
par anmet er _type.

306 type_label = type label _id | type_label ref.

253 paraneter_type = generalized_types | naned_types |
si npl e_t ypes.

Mapping:
The EXPRESS aggregate types map UOL’s multi valued parameters. The multiplicity is stated as
1.*x.

Example:

EXPRESS

FUNCTI ON scal e (i nput: AGGREGATE: i nt ype OF NUMBER,
scal ar: NUMBER) : AGGREGATE: i nt ype OF NUMBER,

LOCAL
result : AGGREGATE: i ntype OF NUMBER,
END_LOCAL;
REPEAT i := LO NDEX(input) TO HI I NDEX(i nput);
result[i] := scalar * input[i];
END_REPEAT;

RETURN(resul t);
END_FUNCTI ON,;

UoL

scale (input [1..*] : NUMBER, scalar : NUMBER) : [1..*] NUMBER
stereotyped with express_function
with tag values (<input,intype>)
text “inplenentation” is text

“LOCAL
result : AGGREGATE: i ntype OF NUMBER,
END LOCAL;
REPEAT i := LO NDEX(input) TO HI I NDEX(i nput);
result[i] := scalar * input[i];
END_REPEAT;

RETURN(resul t);”

% Cf. [ISO EXPRESS RM 94] 59

- 145 -

The mapping between UOL and STEP/EXPRESS

(UOL 1.2)

5.3.2.5.3.2 Generic data type

EXPRESS semantics:

A GENERIC datatypeisageneralization of all other datatypes.

When a procedure or function isinvoked with a generic parameter, the actual parameter passed
may not be of GENERIC data type. The operations that can be performed depend on the datatype
of the actual parameter.

The labels may be used to ensure that two or more parameters passed are of the same data type, or

that the return datatypeis the same as one of the passed parameters, irrespective of the actual data
types passed.®®

EXPRESS syntax:
218 generic_type = GENERIC [‘:’' type_label].
306 type_label = type label _id | type_label ref.

Mapping:
The GENERIC datatype labeled with type type_label correspondsto a UOL operation parameter

of type “GENERIC” additionally enriched by atag value stating the type_label of the given formal
parameter.
If the return value is GENERIC, the tag value “express_return_type” is used.

Example:

EXPRESS

FUNCTI ON add(a,b : GENERIC : intype) : GENERIC:.intype;
LOCAL
nr : NUMBER;
vr : vector;
END_LOCAL;

IF (" NUMBER | N TYPEOF(a)) AND (‘NUMBER | N TYPEOF(b)) THEN
nr := a+b;
RETURN(nr) ;
ELSE
IF (‘ THL S_SCHEMA. VECTOR | N TYPEOF(a)) AND
(* THI S_SCHEMA. VECTOR' | N TYPEOF(b)) THEN

vr := vector (a.i + b.i, a.j + b.j, a.k +b.k);
RETURN (vr);
END_| F;
END | F;
RETURN(?) ;

END FUNCTI ON;

% Cf. [ISO EXPRESS RM 94] 60

- 146 -

Mappings

(UOL 1.2)

UoL

add (a,b : GENERIC) : CGENERIC
stereotyped with express_function
with tag values (<a,intype>,
<b, i ntype>, <express_return_type,intype>)
text “inplenmentation” is text
“ LOCAL
nr : NUMBER;
vr . vector;
END LOCAL;

IF (" NUMBER | N TYPEOF(a)) AND
(* NUMBER I N TYPEOF(b)) THEN
nr := a+b;
RETURN(nr) ;
ELSE
IF (‘ THLS_SCHEMA. VECTOR | N TYPEOF(a)) AND
(* THI' S_SCHEMA. VECTOR' | N TYPEOF(b)) THEN

vr := vector (a.i + b.i, a.j + b.j, a.k +b.k);
RETURN (vr);
END | F;
END_| F;
RETURN(?) ;

END_FUNCTI ON; ”

- 147 -

The mapping between UOL and STEP/EXPRESS

(UOL 1.2)

5.3.2.5.3.3 Type labels

EXPRESS semantics:

Type labels shall be used to relate data type of an actual parameter at invocation to the data types of
another actual parameters, local variables, or the return type of afunction. Type labels are declared
for AGGREGATE and GENERIC data types within the formal parameter declaration of afunction
or procedure and may be referenced by AGGREGATE or GENERIC datatypesin the formal
parameter declaration, local variable declaration or the declaration of the returned data type of a
FUNCTION.*

EXPRESS syntax:

306 type_l abel = type_label _id | type_l abel _ref.

Mapping:

Thetransfer format doesn’t check the underlying EXPRESS semantics. Hence there’ s no difference
in the mapping between declaration and reference.

Example:

EXPRESS

ENTITY a;

END_ENTI TY;

ENTITY b SUBTYPE OF (a);

END_ENTI TY;

ENTI TY ¢ SUBTYPE OF (b);

ENb_EMI TY;

FUNCTI ON test (pl :GENERIC: x; p2: GENERI C: x) : GENERI C: Xx;

END_FUNCTI ON,

uoL
class a
stereotyped with express_entity
end
class b
stereotyped with express_entity
i nherit a
end
class ¢
stereotyped with express_entity
i nherit b
end

¥ Cf. [ISO EXPRESS RM 94] 60

- 148 -

Mappings

(UOL 1.2)

cl ass schem
stereotyped with express_schemn
feature {any}
test (pl: GENERIC, p2: GENERIC) : GENERI C
stereotyped with express_function
with tag values (<pl, x>, <p2, x>,
<express_return_val ue, x>
text “inplenmentation” is text

“

end

5.3.2.5.3.4 General aggregation data types

EXPRESS semantics:

General aggregation data types from part of the class of types called generalized datatypes. They
represent a specific aggregation datatype (ARRAY, BAG, LIST and SET) with arelaxing of the
constraints which would normally be applied when specifying the aggregation datatype (i.e., a

general |ist_type isageneralizationof al i st _type).*

EXPRESS syntax:

212 general _aggregation_types = general _array_type |
general _bag type | general _|list_type | general _set_type.

213 general _array_tpe = ARRAY [bound_spec] OF [OPTI ONAL] [UNI QUE]
par anet er _t ype.

176 bound_spec = ‘[bound_1 ‘:’' bound_2 ‘]’'.

174 bound_1 = numeric_expression.

175 bound_2 = numeri c_expression.

253 paraneter_type = generalized_types | naned_types |

si npl e_t ypes.

214 general _bag_type = BAG [bound_spec] OF paraneter_type.
215 general list_type = LIST [bound_spec] OF [UNI QUE]

par anet er _t ype.

217 general _set _type = SET [bound_spec] OF paraneter _type.

Mapping:

The aggregation typed formal parameter corresponds to a multi valued formal parameter within the
UOL. The concrete EXPRESS aggregation type is stated as tag value, with the name of the formal
parameter as tag and the type of the aggregation as val ue.

Example:
EXPRESS
FUNCTI ON di mensi on (input:SET [2:3] OF GENERI C): | NTECGER,
UoL
dimension (input [2..3] GENERIC) : | NTEGER

stereotyped with express_function
with tag val ues (<input, set>

“0Cf. [ISO EXPRESS RM 94] 62

- 149 -

The mapping between UOL and STEP/EXPRESS

(UOL 1.2)

5.3.2.5.4 Local variables

EXPRESS semantics:

Variables|ocal to an algorithm are declared after the LOCAL keyword. A local variableis only
visible within the scope of the algorithm in which it is declared. Local variables may be assigned
values and may participate in expressions.**

EXPRESS syntax:

239 | ocal _decl = LOCAL | ocal _variable {local _variable} END LOCAL
Zﬁollocal_variable
paranmeter _type [‘:
253 paraneter_type
si nmpl e_types.
Mapping:

Sincethe local variable declaration occurs only within an algorithm declaration the whole local
section corresponds to the implementation text string describing the implementation unchanged.

variable_id { *,’ variable_id } *:’
expression] ‘;’.
general i zed_types | naned_types |

Example:

EXPRESS

FUNCTI ON f 1: | NTEGER,;
LOCAL
r result : REAL := 0.0;
i _result : |NTEGER,
END L OCAL;

EXI STS(r _resul t)
EXI STS(i _result)
END_FUNCTI ON;

UoL

f1(): 1 NTEGER
stereotyped with express_function
text “inplenmentation” is text

“ LOCAL
r result : REAL := 0.0;
i _result : | NTEGER,
END_LOCAL;

EXI STS(r _resul t)
EXI STS(i _result)
END FUNCTI ON; "

“L Cf. [ISO EXPRESS RM 94] 69

- 150 -

Mappings

(UOL 1.2)

5.3.2.6 Rule

EXPRESS semantics:

Rules permit the definition of constraints that apply to one or more entity data types within the
scope of aschema. Local rules (i.e., the uniqueness constraint and domain rulesin an entity
declaration) declare constraints that apply individually to every instance of an entity datatype. A
RULE declaration permits the definition of constraints that apply collectively to the entire domain
of an entity datatype, or to instances of more than one entity datatype. One application of aRULE
isto constrain the values of attributes that exist in different entitiesin a coordinated manner.*?

EXPRESS syntax:

277 rule_decl = rule_head [al gorithm head] {stm} where_cl ause
END RULE *;'.

278 rule_head = RULE rule_id FOR ‘(* entity ref { *," entity ref }
)

163 al gorithm head = {declaration} [constant_decl] [l ocal _decl].
189 declaration = entity_decl | function_decl | procedure_decl |
type_decl .

Mapping:

Every rule constraining an EXPRESS entity corresponds to two tag values. Thefirst tagis“rule’
followed by the name of the rule as value. Secondly, the name of the rule as tag followed by the
whole rule as string (uninterpreted in the original EXPRESS format).

Example I:
EXPRESS
RULE poi nt _match FOR (point);
LOCAL
first_oct,
seventh_oct : SET OF PONT := [];
END_LOCAL

first_oct := QUERY(tenp <* point | (tenp.x > 0) AND
(tenmp.y > 0) AND

(tenmp.z > 0));
seventh_oct := QUERY(tenp <* point | (tenp.x < 0) AND
(tenp.y < 0) AND
(tenp.z < 0));
VWHERE
SI ZEOF(first_oct) = SIZEOF(seventh_oct);
END_RULE;

2 Cf. [ISO EXPRESS RM 94] 63

- 151 -

The mapping between UOL and STEP/EXPRESS

(UOL 1.2)

UoL

cl ass point
stereotyped with express_entity
with tag val ues (<rul e, point_match>,
<poi nt _nmatch,’ LOCAL
first_oct,
seventh_oct : SET OF PONT := [];
END_LOCAL
first_oct := QUERY(tenp <* point | (tenmp.x > 0) AND
(tenp.y > 0) AND

(tenmp.z > 0));
seventh_oct := QUERY(tenp <* point | (tenp.x < 0) AND
(tenp.y < 0) AND
(temp.z < 0));

WHERE

SI ZEOF(first_oct) = SIZEOF(seventh_oct);"‘>)
end
Example II:

EXPRESS

ENTI TY b;

al : c;

a2 : d;

a3 : f;
UNI QUE

url: al, az;
END_ENTI TY;
RULE vu FOR (b);

ENTI TY tenp;

al : c;
a2 : d;

END _ENTI TY;
LOCAL

s : SET OF tenp :=[];
END_LOCAL,;
REPEAT i := 1 TO SI ZEOF(b);

s :=s + temp(b[i].al, b[i].a2);
END REPEAT;
WHERE

wr : VALUE_UNI QUE(S);
END_RULE;

- 152 -

Mappings

(UOL 1.2)

UoL

class b
stereotyped with express_entity
with tag values (<rule, vu>,
<vu,’ ENTITY tenp,
al : c;
a2 : d;
END_ENTI TY;
LOCAL
s : SET OF tenmp :=1[];
END L OCAL;
REPEAT i := 1 TO SI ZEOF(b);
s := s + tenmp(b[i].al, b[i].a2);
END_REPEAT;
WHERE
wr © VALUE_UNI QUE(S);’ >)
feature {any}
al : c with tag val ues (<express_unique, url>);
a2 : d with tag val ues (<express_unique, url>);
a3 : f
end
end

Implicit declaration

EXPRESS semantics:

Within arule each population isimplicitly declared to be alocal variable which contains the set of
ali rlsstances of the named entity in the domain; i.e., the set of entity instances governed by the
rule.

EXPRESS syntax:
254 popul ation = entity_ref.

Mapping:
Since the declaration isimplicit, it remains even implicitly within the UOL source.

8 Cf. [ISO EXPRESS RM 94] 65

- 153 -

The mapping between UOL and STEP/EXPRESS

(UOL 1.2)

5.3.3 Interface specification

5.3.3.1

EXPRESS semantics:

This clause specifies the constructs, which enable items declared in one schemato bevisiblein
another. There are two interface specifications (USE and REFERNCE), both of which enable item
visibility. The USE specification allows items declared in one schemato be independently
instantiated in the schema specifying the USE construct.

An entity instanceisindependent if it does not play the rule described by an attribute of any other
entity instance, i.e., ROLESOF for an independent entity instance will return an empty set. An
entity data type, which was either declared locally within or USE’d by the schema may be
instantiated independently or play the role described by an attribute of an entity within the
schema.*

EXPRESS syntax:
228 interface_specification = refernce_cl ause use_cl ause.

Use interface specification

EXPRESS semantics:

An entity datatype or defined datatype declared in aforeign schemais made usable by way of a
USE specification. The USE specification gives the name of the foreign schema and optionally the
names of entity datatypes declared therein. If thereareno named_t ypes specified, al of the
named types declared within or USE’ d by the foreign schema are treated asif declared locally.*

EXPRESS syntax:

313 use_cl ause = USE FROM schema_ref [‘(‘ nanmed_type_or_renane {
‘,’ nanmed_type_or_renane } ‘)] °;’.

246 naned_type_or_rename = named_types [AS (entity id | type_id

) 1.

Mapping:

The use-clause corresponds to a dependency between the packages built from the EXPRESS
schemas. The dependency link has the using package (the dependant element) as source and the
used one (the independent element) as destination. The relation is stereotyped with uses.

The renamed elements correspond to tag values. Using expresss_rename astag and the namein the
source schemafollowed by the name in the destination schema comma separated as string (e.g.,
express_rename,’ src_name,dst_name’).

Since each UOL relation must have a unique name the transformation implementing tool
automatically generates one. Thisnameisinvisibleto the user, and lost if the UOL format isre-
transferred into other formats.

“ Cf. [ISO EXPRESS RM 94] 76
> Cf. [ISO EXPRESS RM 94] 77

- 154 -

Mappings

(UOL 1.2)

Example:

EXPRESS

SCHEMA src;
ENTITY al;
END_ENTI TY;

END_SCHEMA,;

SCHEMA dst ;
USE FROM src (al as a2);
END SCHEMA,

uoL

package src is
class src
stereotyped with express_schemn
end
class al
stereotyped with express_entity
end
end

package dst
cl ass dst
stereotyped with express_schemn
end
end

relati on 2001
stereotyped with uses
with tag val ues (<al, a2>)
link dst to src

end

- 155-

The mapping between UOL and STEP/EXPRESS

(UOL 1.2)

5.3.3.2 Reference interface specification

EXPRESS semantics:
A REFERENCE specification enables the following EXPRESS items, declared in aforeign
schema, to be visiblein the current schema:

Constant;

Entity;

Function;

Procedure;

- Type.

The REFERENCE specification gives the name of the foreign schema, and optionally the names of
EXPRESS items declared therein. If there are no names specified, all the EXPRESS items declared
in or USE’d by the foreign schema are visible within the current schema.*®

EXPRESS syntax:
267 reference_cl ause = REFERENCE FROM schema_ref [* (°
resource_or_renanme { ‘,’ resource_or_renanme } ‘)"] ‘;’

274 reource_or_rename = resource_ref [ASrename_id].

275 resource_ref = constant_ref | entity_ref | function_ref |
procedure_ref | type_ref.

270 rename_id = constant _id | entity id | function_id |
procedure_id | type_id.

Mapping:

The reference-clause corresponds to a dependency between the packages built from the EXPRESS
schemas. The dependency link has the referencing package (the dependant element) as source and
the referenced one (the independent element) as destination. The relation is stereotyped with
references.

The renamed elements correspond to tag values. Using expresss_rename astag and the namein the
source schemafollowed by the namein the destination schema comma separated as string (e.g.,
express_rename,’ src_name,dst_name’).

Since each UOL relation must have a unique name the transformation implementing tool
automatically generates one. This nameisinvisibleto the user, and lost if the UOL format isre-
transferred into other formats.

“® Cf. [ISO EXPRESS RM 94] 88

- 156 -

Mappings

(UOL 1.2)

5.3.3.3 The interaction of use and reference

Note: The distinction between USE and REFERENCE

The USE and REFERENCE statements both enable the import of definitions from another schema.
The definitions that are mentioned in the USE statements become first-class definitions within the
importing schema. That is, in an instantiation of the model, these items may have an independent
existence — instances can occur which are not utilized as attribute values of their items. Definitions
that are imported viaa REFERENCE statement are second-class. That is, instances can only occur
when required as attribute values.*’

EXPRESS semantics:
If an entity datatype or defined datatypeis both USE’d and REFERENCE' d into the current
schema, the USE specification takes precedence.

When a named data typeis USE’d into the current schema, that named data type may be USE’d or
REFERENCE’ d from the current schema by another schema (i.e., USE specifications may be
chained between schemas).*®

Mapping:
Thistransitivity semanticsis preserved within UOL for the dependencies connecting packages and
stereotyped either with uses or references.

Example:

EXPRESS

SCHEMA s1;
ENTITY el;
END_ENTI TY;

END_SCHEMA,

SCHEMA s2;
USE FROM s1 (el AS e2);
END_SCHEMA;

SCHEMA s3; SCHEMA s3;
USE FROM s1 (el AS e2); USE FROM s2 (e2):
END_SCHEMA:; END_SCHEMA;

7 Cf. [Schenck, Wilson 94] 63
% Cf. ISO EXPRESS RM 94] 78

- 157 -

The mapping between UOL and STEP/EXPRESS

(UOL 1.2)

UoL

package sl is
class sl
stereotyped with express_schemn
end
class el
end
end

package s2 is
class s2
stereotyped with express_schemn
end
end

package s3 is
class s3
stereotyped with express_schema
end
end

rel ati on 72001
stereotyped with uses
with tag val ues (<express_renane,’'el, e2'>)
link s2 to s1

end

rel ati on 7002
stereotyped with uses
with tag val ues (<express_renane,’'el, e2’ >)
link s3 to s1

end

relati on 72002
stereotyped with uses
with tag val ues (<express_uses, e2>)
link s3 to s2

end

- 158 -

Mappings

(UOL 1.2)

5.3.4 Expression

EXPRESS semantics:
Expressions are combinations of operators, operands and function calls, which are evaluated to
produce avalue.*°

EXPRESS syntax:

204 expression = sinple_expression [rel _op_extended
si nmpl e_expression].

269 rel _op_extended = rel_op | IN| LIKE

268 rel _op = ‘< | ‘> | ‘<= | = | > | = | iy

287 sinple_expression = term{ add _like op term}.

303 term= factor { nultiplication_like op factor }.

205 factor = sinple_factor [‘**' sinple_factor].

288 sinple_factor = aggregate_initializer | entity constructor |

enuneration_reference | inverval | query_expression | ([unary_op
] (‘(" expression ‘)’ | primary))

308 unary_op = “+ | ‘-' | NOT.

256 primary = literal | (qualifiable factor { qualifier }).

244 multiplication_like_op =**" | */° | DIV| MOD| AND | ‘||’ .
158 add_like op =+ | ‘- | OR| XOR

Mapping:

All expression within the EXPRESS source remain uninterpreted and correspond to strings within
the individual use.

5.3.5 Executable statements

EXPRESS semantics:

Executable statements define the actions of functions, procedures and rules. These statements act
only on variableslocal to a FUNCTION, PROCEDURE or RULE. They are used to define the
logic and actions required to support the definition of constraints, i.e., WHERE clauses and
RULEs. These statements do not affect the entity instances within the domain.*

EXPRESS syntax:
291 stmt = alias_stnmt | assignnent_stnt | case_stnt |
conpound_stnt | escape_stnt | if_stmt | null_stnt]

procedure_call _stnt | repeat_stmt | return_stm | skip_stnt.

Mapping:
Since the executabl e statements occur only within functions, procedures and rules they are mapped
within the sections concerning functions, procedures and rules.

In general they remain uninterpreted and correspond to strings within UOL.

“ Cf. [ISO EXPRESS RM 94] 81
% Cf. [ISO EXPRESS RM 94] 112

- 159 -

The mapping between UOL and STEP/EXPRESS

(UOL 1.2)

5.3.6 Built-in constants
Mapping:

Since constants appear either within algorithms or asinitialization of attributes they correspond to
uninterpreted strings (in the case of use within algorithms) or initialization statements.

5.3.7 Built-in functions
Mapping:

Since functions appear either within algorithms or asinitialization of attributes they correspond to
uninterpreted strings (in the case of use within algorithms) or initialization statements.

- 160 -

Additional Specification

(UOL 1.2)

6 Additional Specification

6.1 Full UML Support

6.1.1 Justification

The SMIF RFP requires the proposals to submit aformat not dependent on meta-model constructs.
Thisisvery reasonable considering that the SMIF is for a meta-meta-model and, therefore, it
should not rely on alower level meta-model.

However, the main users of MOF will be CASE tool builders and these will also support the UML
standard. In fact some will support UML and not MOF, asisthe case of Microsoft. If UOL is
extended to support full UML (all its constructs) a much more efficient interchange format because
having more semantics:

more information can be represented with less volume with great gainsin
Speed,

information being transferred is more comprehensible and
easier to process for CASE tools

We, therefore, propose extending UOL to support UML constructs as an optional non-mandatory
second level of the SMIF standard.

The support for UML constructs allows for an easier and more compact representation of UML
models. Without the extensions all the UML concepts that are not MOF concepts must be added to
the UOL code cluttering the representation with the description of the meta-model.

usecase Cl oseObj ect
actor
Witer
is
"(a) The system (G will load the current object that is
ref erenced
(b) update the current closing date (Date) of the docunent
(c) ask to the actor Witer) for his usernane update the
username in the docurment finally,
(d) save the docunent’

extension in "(a)”,"(b)","(c)”,"(d)"
end — Cl osej ect

- 161 -

Full UML Support

(UOL 1.2)

In the following example we describe the former use case without specific constructs. It is
incomplete for clarity reasons and shows afirst part of description of the meta-model using MOF
and a second part of description of the use case.

-- sone cl asses onitted

class Classifier
with tag values (<Met anpdel >)
inherit Generalizabl eEl ement
-- rest of body omitted

end

class Actor
with tag values (<Met anpdel >)
inherit Classifier
-- rest of body omtted

end

class Usecase
with tag values (<Met anodel >)
inherit Classifier
-- rest of body omtted

end

Witer instance of Actor
is
nane : Witer
end

Cl oseOhj ect iInstance of Usecase
is
annotation :
"(a) The systemw |l |oad the current object that is
ref erenced
(b) ask to the actor for its username update the usernane
in the docunment
(c), finally save the docunent
(d)";
name : Cl osebj ect;
extension_point: <<'a','b','c,"d >
end

Of course, even if the specific constructs are not used it is not necessary to include the meta-model
as part of the transmission each time. The meta-model can be appended through an 'import’
sentence, in which case the package must be available for the receiver, or declared with atag
known by the receiver.
With this extension there are also additional benefits, allowing UOL :

to become a Universal Round-Trip Engineering Language

to be atextual representation of UML

to be an alternative representation to graphics to describe analysis and design
models for visually impaired individuals

- 162 -

Additional Specification

(UOL 1.2)

The UOL has been designed in such away that all UML constructs are optional and only the MOF
support is mandatory.

6.1.2 Mapping between UOL and UML with UML constructs

In order to describe aUML diagram with UOL, several new elements, stereotypes, tag values and
constraints must be defined. These new elements and their mapping are the following:

UML 1.1 UOL 1.2

Action Action

Action Action

Action sequence Action sequence

ActionSeguence ActionList

ActionState State (with an Action associated in context of
an Activity diagram)

Activity model Activity model

ActivityState State (in context of an Activity diagram)

Actor Actor

Argument EntityDeclaration

Association Relationship

Association class Association class

AssociationEnd Feature clause of the relationship

Attribute Attribute

Attributelink N/A

Binding Actual generics

CallAction Action (used with call clause)

CallEvent Event (with acall clause)

ChangeEvent Event

Class Class

Collaboration Collaboration

Comment Comment

Component Component

Composite state Composite State

Constraint Constraint (splitted in declaration and use)

CreateAction Action (used with create clause)

Datatype Class (with stereotype)

DataVaue Expression

Dependency Dependency (relationship with adirection
link)

DestroyAction Action (used with TextMultiline)

Element Ownership Element Ownership

Element reference Import clause

Event Event

Event Event

Exception Exception

Generalization Generalization (inherit clause)

Guard Guard

Instance Instance

Interface Class (with stereotype)

Link AssociationEnd (value in an instance of a
Relation)

LinkEnd AssociationEnd (with values)

Locallnvocation Expression

- 163 -

Full UML Support

(UOL 1.2)
M essagel nstance Instance
Method Method
Model Model
Node Node
Object Instance
ObjectF owState State (that flows an object associated in

context of an Activity diagram)

Operation Operation
Package Package
Parameter Parameter
Partition Partition
Pseudostate Pseudostate
Refinement Dependency (with stereotype)
Request Operation/Signal
ReturnAction Action (used with TextMuultiline)
SendAction Action (used with TextMuultiline)
Signal Signal
SignalEvent Event
Simple state State
State machine State machine
Stereotype Stereotype
Submachine state Submachine
Subsystem Subsystem
Tagged value Tagged value
Template Formal generics
TerminateAction Action (used with TextMuultiline)
TimeEvent Event (with a TimeExpression)
Trace Dependency (with stereotype)
Transition Transition
UninterpretedAction Action (used with TextMuultiline)
Usage Dependency (with stereotype)
Usecase Usecase
Usecase instance Usecase instance
View Element Diagram and viewed with clause

The abstract UML concepts do not have a specific UOL construct. Instead the information
provided by such elementsisincluded in the non abstract heir's specific construct.

The package UOL_UML package will be automatically loaded and it will contain all the standard

stereotypes, tag values, and constraints defined in the document ad/970805.

6.1.3 Benefits of UOL with UML constructs

6.1.3.1 UOL as a Round-Trip Engineering Language

6.1.3.1.1 Justification

Summarizing the need of around-trip justification language and the advantages of having UOL as

the required round-trip engineering language we have seen in chapters 2.4 and 2.5:

CASE tool builders can useit as a substitute for their proprietary incomplete (it is not
well adapted to al OO languages) “mark-up language” that they are presently using.

They usually have different versions of the mark-up code for different languages.

Additional Specification
(UOL 1.2)

Using only one mark-up language for all programming languages reduces over 80% of
the cost of developing round-trip tools as we show in chapter 6, if round-trip
engineering tools are split in two parsers: afront-end (common to all source languages)
and a back-end (specific for each language) using, what we call, collaborative
compilation.

It may, also, be used by companies developing GUI builders, component libraries, etc.
to allow the source code, and it’s corresponding OOAD model embedded in the code,
generated by their products to be easily imported into any model by CASE tools
supporting UML.

The programmer can easily change the code and the model during testing and
debugging, due to the simplicity of the language and the easiness of learning it,
avoiding on necessary guessing by the round-trip tool.

It allows reverse engineering of non-CA SE-tool-generated OO code to be imported
correctly if it is enriched with UOL code. This can be done manually or with a software
product that acts as a Wizard, that can learn from previous experience asking to the
programmer questions of the sort of “Isthis declaration an attribute or doesit represent
an association?’ “Isthis pointer a shared aggregation or simply an association?’ etc.

Makes interoperability, both for the model and the code, between CASE tools
immediate and with more semantics than interchange formats allowing for more control
during transfer between tools.

6.1.3.1.2 Modular Structure and Flow of a Round-Trip Engineering Tool
Aswe can seein the Figure 6.1 we describe the structure of the reverse engineering task modules.

Source Code with Enviched S
Repository | s Embedded UOL e nriched Source
Generator Code
Correct Executing
Code

v

% UOL PARSER

Source Code

——

'y

Transient
UML
Model

RI STRUCTURER
AND IMPORTER

Figure 6.1

- 165 -

Transient and
Repository Matcher

Full UML Support

(UOL 1.2)

As can be seen in the diagram, once the code has been tested and debugged, re-importing requires
three modules.

Thefirst two are parsers of UOL and the target source language. They are responsible for parsing
the source code and building, in transient memory, an OO model. We call this process collaborative
compilation, because each parser collaborates with the other in building the OO model from the
input. The UOL parser (if we have chosen to generate full UOL in the source language) startsthis
process. This module starts processing UOL sentences and building in memory an equivalent to the
repository OO model. Once it detects input in the target source language it passes control to the
second parser which does the same with the language sentencesit is capable of parsing until it
detects UOL code at which moment it returns control to the UOL parser. This processis repeated
until the complete program has been processed.

The third is the repository and transient model matcher. This module will compare the transient
model built by the parsers and update the repository. During this process, if the CASE tool supports
version control of the OOAD model, the differences between the repository version and the current
transient version will be stored for future use.

Since one of the most arduous and difficult tasks is checking the consistency of the program, it is of
the most interest to use a meta-model with the maximum integrity constraints embedded within.
This permits del egating to the meta-model the task of checking the consistency of the program
instead of doing it the parsers (especially the target source language parser).

If we design the round-trip tool with this structure, we can easily see that both, the UOL parser and
the matcher/importer, are target language independent and, therefore, reused for all languages. One
last requirement to simplify the target language parser and make most of the tool language
independent consists in embedding, in our meta-model, the integrity and/or consistency constraints
of UML. If thisis done we will relieve, the target source parser of any semantic/consistency
analysis checking and we will be in a position of being able to build round-trip engineering tools
for any language with only avery simple source target language parser.

Once we have built the UOL parser, the constraint-checking meta-model and the repository-
transient model matcher and importer we will be able to produce round-trip engineering tools for
any language with areduction of over 80% of the efforts that have been necessary until now. This
will allow CASE tool buildersto offer round-trip engineering for al the languages they choose to
support, instead of the few they are now offering and accessing larger markets than they presently
can.

Reverse engineering with UOL is not a single pass process or scanning, athough this does not
imply aloss of efficiency. OO programming languages may have different structures physically,
C++ has.h and .cpp (where we can define more than one class), Eiffel hasonly .e entries each
representing one class, etc. Thisimpliesthat aUML model when translated to code can be
distributed in different ways depending on the target language. To cope with this, werely on a
MDL (Model Description Language alaPDL of Eiffel) and also on building the transient model
iteratively.

Thisiterative process will consist in incrementally instantiate model elements and/or enrich them
from smaller or larger pieces described in each target language file. When processing is complete
we will have a complete model in transient memory that can be matched with the repository model.
Thisiterative and incremental processis by no means inefficient because we process the source
input to build our model only once except for the same syntactic and semantic processing that may
be multi- passasin all compilers.

- 166 -

Additional Specification

(UOL 1.2)

One final comment on the two alternatives of generating UOL code. As we have mentioned
previously, when the CASE tool generates code it has two alternatives. Thefirst consistsin
generating the full UOL code for the model. Thisimplies aredundancy with the target language,
because all the OOAD constructs that can be expressed in the target language are written twice. In
this case, the UOL parser will have theinitiative and it will be its responsibility to call the target
language parser. If we choose to generate only the minimum UOL code necessary, then, control
will depend on both parsers depending on what type of sentences are being read at each moment.

Since one of the important objectivesisto allow the programmer to maintain both the target
language code and the UOL code, we prefer generating always full-UOL because it will make the
program more readable.

In the Figure 6.2 we show the process that isinvolved in round-trip engineering with UOL .

Generate Embedd&d
UOL code

Debug/Maintain
(Programmer)

[found errors]

[no errors]

[end]

[notend]

not UOL cod¢] Add Code to
Transient Model

[found UOL code]
Match Parse
Transient Model Source Code

Add Source Code
Transient Model

Import/Reestructu
Repository

[found source cofe]

[not source code]

Figure 6.2

- 167 -

Full UML Support

(UOL 1.2)

6.1.3.2

6.1.3.3

Besides syntactic and semantic analysis, there are important integrity and consistency checking that
the parsing process can do. UML isavery complete and large language and it is easy, that in the
process of maintaining a program, a programmer can make errors. Some of the constraints of the
meta-model (ex. services used in sequence diagrams and not devel oped in the objects because of
changes, etc.) may not be respected as we have mentioned previously and it is necessary to detect
them before importing. Before we reimport the models reengineered and update the repository, it is
important to check the full consistency of the transient model. In the process of compiling the
program, the tool can inform the programmers of errors they have made, allowing them to correct
the program before updating the repository. In the same way, the programmers may not have been
aware of the implications of some of their changes with respect to the previous version or the other
parts of the system developed by others. The matching process will allow detection of these errors
or inconsistencies and warn the programmers so that they might take action.

UOL as a Textual UML

The OOA& D Task Force put in the road map the need of defining atextual UML. There are many
reasons for this need. We have already given several reasons for this previously. There are reasons
both from the point of view of the need of humans reading and processing textually the models as
well as for compilers, code generators, metric evaluators, etc. that normally require working with
text.

Many universities researching on formal methods and several companies working on critical
systems have started adding formal specificationsto UML. These users need atextual language to
process for specification validators, proof generators, theorem demonstrators, code generation, etc.

UOL with full UML support is acomplete textual representation of UML and completely adequate
for these requirements.

UOL as an alternative to graphics for visually impaired individuals

Another milestone that the OOA& D road map has is developing an alternative to UML's graphics
for visually impaired software engineers.

Object orientation is possibly the technology that requires more intensively the use of CASE tools.
A software engineer using OO will have to handle hundreds, if not thousands, of classes and
components. The only feasible way to control this volume of information isusing CASE tools that
allows usto organize our designs, find components to reuse, etc.

Visually impaired software engineers have been severely limited in using CA SE tools because of
their graphical interface. Thislimitation will therefore be worse in object orientation and possibly
limiting many their professional activity to programming tasksinstead of analysis and design.

Theonly valid alternative to graphics for visually impaired individualsis atextual full life-cycle

language with all analysis and design constructs. UOL, being afull textual representation of UML,
completely satisfies this requirement.

- 168 -

References

(UOL 1.2)

7 References

[RC93]

[Bock/Odell97a]

[Bock/Odell97b]

Tom Atwood, Douglas Barry, Joshua Duhl, Jeff Eastman, Guy Ferran, David
Jordan, Mary Loomis, Drew Wade, “ The object database standard ODMG-93
release 1.27, edited by R.G.G. Cattell, Morgan Kaufmann, 1996

Conrad Bock, James Odell, “A more complete model of relations and their
implementation”, Journal of Object-Oriented Programming, June 1997, Vol. 10,
No. 3

Conrad Bock, James Odell, “A more complete model of relations and their
implementation: mappings”, Journal of Object-Oriented Programming, October
1997, Vol. 10, No. 6

[DECexpress 92] Digital Equipment Corp.:

[EIA/CDIF97]

[Gray et al92]

DECexpress — EXPRESS Language Reference Manual, Order Number: AA-
NKWA-TE, Digital Equipment Corp., Maynard (USA), 1992

EIA/CDIF Technical Committee, “The UML meta-model and the CDIF Transfer
Format”, June 19, 1997

Peter M.D. Gray, Krishnarao G. Kulkarni, Norman W. Paton, “Object-Oriented
databases, A semantic approach”, C.A.R Hoares series, Prentice-Hall, 1992

[ISO EXPRESS RM 94] International Organization for Standardization (eds.):

[Meyer92]
[MOF97]

[OCLV1.197]

[Odella]

[Odellb]

[OMLO96]

Industrial automation systems and integration — Product data representation and
exchange — Part 11: Description methods: The EXPRESS language reference
manual Reference number: ISO 10303-11:1994(E), International Organization
for Standardization, Geneva (CH), 1994

Bertrand Meyer, “Eiffel: The Language”, Prentice-Hall, 1992
Unisys et al., “Meta Object Facility (MOF) Specification”, 1 September 1997

Rational et al., “Object Constraint Language Specification” version 1.1 ,1
September 1997

Odell, James; “Six different kinds of composition”, Journal of Object-Oriented
Programming, Vol. X, No. 5

Odell, James; “A foundation for composition”, Journal of Object-Oriented
Programming, Vol. X, No. 7

Donald Firesmith, Brian Henderson-Sellers, lan graham, Meilir Page-jones;
“OPEN Modeling Language (OML) Reference Manual” Version 1.0 8 December
1996

- 169 -

Full UML Support

(UOL 1.2)

[Peralta97] Alonso J. Peralta, “UOL: A Full Life-Cycle Object-Oriented Software
Development Language”, 1995 draft (complete specification); Ph.D. Thesis,
1998

[Schenck, Wilson 94] Schenck, D., Wilson, P.:
Information Modeling the EXPRESS Way, Oxford University Press, New York
(USA), 1994

[SMIF RFP 97] Object Management Group (eds.):
Stream-based Model Interchange Format — Request for proposal, OMG-
Document: ad/97-12-03, Object Management Group, Farmingham, MA (USA),
1997

[Tanzer95] Christian Tanzer, "Remarks on object-oriented modeling of associations”,
Journal of Object-Oriented Programming, February 1995, Vol. 7, No 9

[UMLVO0.996] Rational “The Unified Modeling Language for Object-Oriented Development
(Version 0.9)",1996

[UMLv1.097] Rational “The Unified Modeling Language for Object-Oriented Development
(Version 1.0)", January 1997

[UMLv1.197] Rational et al.“UML Semantics (Version 1.1)", 1 September 1997
[UML Notation Guide 1.1 97] Rational Software Corp., et al.:

Unified Modeling Language 1.1 - Notation guide, Document: ad/97-08-05,
Rational Software Corp., Santa Clara (USA), 1997

- 170 -

