
� Duce: a white paper
(working document)

Véronique Benzaken
LRI, UMR 8623,C.N.R.S.

Université Paris-Sud, Orsay, France
����������	��
����
������

Giuseppe Castagna
C.N.R.S., Département d’Informatique

École Normale Sup´erieure, Paris, France
�����������������
������

Alain Frisch
Département d’Informatique

École Normale Sup´erieure, Paris, France
������������
������

Version 0.27 of June 2, 2002
Please consider that this document is regularly updated; the lastest version can be retrived at�������������

Abstract

In this paper, we present the functional language�Duce,
discuss some design issues, and show its adequacy for work-
ing with XML documents. Peculiar features of�Duceare a
powerful pattern matching, first class functions, overloaded
functions, a very rich type system (arrows, sequences, pairs,
records, intersections, unions, differences), precise type in-
ference and a natural interpretation of types as sets of val-
ues. We also discuss how to add constructs for programming
XML queries in a declarative (and, thus, optimizable) way
and finally sketch a dispatch algorithm to demonstrate how
static type information can be used in efficient compilation
schemas.

1 Introduction

In this paper, we present the functional language�Duce, dis-
cuss some design issues, and show its adequacy for writing
applications that handle, transform, and query XML docu-
ments. To keep the presentation short, and because part of
the design is still in progress, we just present some high-
lights of the language. Theoretical foundations of the type
system can be found in [8]. The homepage for�Duce, in-
cluding other references and an online interactive prototype,
is �������������	�
���
.

�Duce is a general purpose typed functional program-
ming language, whose design is guided by keeping XML
applications in mind. The work on�Duce started from an
attempt to overtake some limitations of XDuce [11, 9, 10]:

� XDuce is XML-specific: the only datatype it can ma-
nipulate is (sequences of) XML documents; this makes
it difficult to write complex applications, which are not
just simple transformations (filtering, reordering, re-
naming). XDuce demonstrates how specific features
(regular expression types and patterns) may be ade-
quate to XML applications, but we believe that these
features could be integrated in a less specific language,

improving the interface between XML and the core ap-
plication. �Duce uses a general purpose type algebra,
with standard type constructor (product, records, func-
tions), and retains all the power of XDuce regular ex-
pression types through explicit use of recursive types
and boolean combinations (union, intersection, differ-
ence). It is possible with�Duce to create complex data
structures, model XML document types, and to inter-
face smoothly with other languages.

� As a by-product, we extended the pattern algebra, al-
lowing to extract by a single pattern non-consecutive
subsequences of elements; unlike XDuce, we have an
exacttyping even for non-tail variables, and the pattern
algorithms are easily derived from simple definitions
[8].

� XDuce is a functional language, with a pattern match-
ing reminiscent of ML, but it lacks higher-order func-
tions. �Duce type system includes higher-order func-
tions, and also provides late bound overloaded func-
tions. Such functions may dispatch on the dynamic type
of their argument, making it possible to use an object-
oriented style programming in a functional setting. We
are also considering to support in�Duce incremental
programming through a module system allowing fur-
ther redefinition/specialization of overloaded functions.

� To encode XML attribute sets in a classical language,
the natural datatype seems to be record types. To take
into account attribute specificities (an attribute may be
optional, mandatory, or prohibited), we designed spe-
cial record type constructors.

� An XML document is not only a tree structure; it also
has basic information, such as numbers or structured
strings, in attributes or element contents. We believe
that the type system and the pattern matching should
reflect this in some detail, for instance to express (and
validate) some constraints on the produced XML doc-
uments (for instance, that a date attribute is a string of
the form YYYY-MM-DD).

1

During our work, we found out that�Duce and more gen-
erally XML applications raise some interesting implementa-
tion issues. As a matter of fact, we verified that precise type
information on the documents the applications work on al-
lows many important optimizations (for instance, searching
for an element with a given name in a whole document is of
course much easier when one knows where such an element
may potentially be).

2 A sample session

Let us give and comment a sample�Duce program, on the
lines of the typical example of [7]. First, we declare some
types:

���� 	�� � ���� !	���"#$$
���� 	��� � ����� !%���� &��� ������'#$$
���� &��� � ����� !(��)��#$$
���� %���� � ������ !)�����#$$
���� ������� ������� !)�����#$$
���� (��)�� � *!+,+-+.+#'*$$

The type��� represents XML documents that store bibli-
ographic information (the corresponding XSchema can be
found in [7]). It states that a bibliography is a possibly
empty sequence of book elements, each consisting of a se-
quence formed by one title element, one year element and
one or more author elements. Square brackets�� � �� are
used to denote sequences, whose type is constrained by a
regular expression over types. Regular expressions for char-
acter strings are enclosed in�� � �� (they can be omitted when
they consist of a single string): for example the type������

specifies that the content of a��
��� element is a string
representation of an integer. We could have used directly
integers by defining�
�� as��
�����������������

An XML document satisfying the above type is the fol-
lowing

����
�����
������ /��������� 0�1���)����2��*�����
����� 3..4�*����
������� 5� ���������*������
������� �� 	��
�����*������
������� 6� 5�����*������

�*����
�����

������ 00/7 � ������� �����������*�����
����� 3..8�*����
������� �� ���������*������

�*����
�*���

If the file is stored in the file, say,������ , then it can be
loaded with the built-in operator ���!!�� , assigned to a
local variable����, and immediately checked to be of type
��� by pattern matching:

��� ���, �
2���� 9����:;2� <����;2�<= ����
> 9; ? 	��= - ;
> : - ����� <@���� ���� A<$$

when this declaration is entered interactively the system an-
swers:

>- ���, 7 	��

which indicates that the type checker keeps track that����

is indeed of type��� (
���� raises a fatal exception when
the loaded document is not of the correct type). We could
have defined���� directly as follows

��� ���, �
���� !

����� !
������ !</��������� 0�1���)����2�<#
����� !<3..4<#
������� !<5� ��������<#
������� !<�� 	��
����<#
������� !<6� 5����<#

#
����� !

������ !<00/7 � ������� ����������<#
����� !<3..8<#
������� !<�� ��������<#

#
#

Suppose that instead of working with the XML type��� we
preferred to use an internal representation for bibliographies
based on record types. We can easily define this type and a
conversion function as follows:

���� (����� �
B������)�����$ �����(��$ ��������!)�����'#C$$

��� ��� ������ 9	�� - !(�����"#=
���� � - 2�� � ����
����� !������ !�# ����� !�# �77������'# -
B
����� � �$
���� � ���:��:������ �$
������� � 2�� � ���� ������� !;# - ;

C$$

>- ������ 7 	�� - !(�����"#

��� ���3 � ������ ���,$$

>- ���3 7 !(�����"#

The
� "	� construction defines the function���
��
whose type is���#�����
��$� as declared in theinterface
of the function which follows its name.

The first pattern extracts the sequence of books and binds
it to the variable ; the��� ���� ��� expression trans-
forms each element of into the corresponding record; the
last pattern matching removes the tags�	����. Note that
the application of���!!�"!!%����
 cannot fail because the
� value is of type������; otherwise, the system would have
issued a warning. In the pattern����&������, we observe
two kinds of capture variables:� and� capture a single ob-
ject, whereas� captures a sequence of objects (���� binds
to � the whole subsequence matching the regular expression
�).

We can now define an overloaded function that extracts
the list of authors from either representation; if the argument
is an���
�� object, then we get a sequence of strings; oth-
erwise, we get a sequence of'	���� elements.

2

��� ��� �������9(�����- !)�����'#$ 	���- !������'#=
> B ������� � � C
> ����� !������ : ����� :$ �# - �$$

The matching expression in the body of the function is
formed by a single branch (with an alternative pattern: that
is, �(���)*����&�������#� �). The function interface re-
flects the overloaded aspect of the function as it declares two
distinct arrow types. The underscore symbol! matches ev-
ery expression, while the semi-colon followed by� binds
the rest of the sequence to� (the semicolon expression+� is
syntactic sugar for���,!$-): the type system infers that�
captures an object of type�'	����.�when the argument of
the function is of type���&.

��� ��� �;����� 9!9)�����>������='# - !)�����'#=
� - 2�� � ����

> ������� !�# - �
> � - �$$

This function takes a list of values that are either strings
or �	���� elements and removes the tags; the* in types
stands for union. Now, any sequence of type������
.�

or �'	����.� is a fortiori an acceptable argument for this
function, so we can define:

��� ��� �������D 9 9(�����>	���= - !)�����'# =
� - �;����� 9������� �=$$

(Of course, there is a more direct way to implement this
function.)

Another possible XML representation for the bibliogra-
phy would be a flat sequence of elements, as defined by the
type:

���� ���� � ! 9%���� &��� ������'=" #$$

The corresponding pair of conversion functions is:

��� ��� �������:��� 9!	���"# - ����=
� - ��������2 � ���� ����� ; - ;$$

>- �������:��� 7 !	���"# - ����

��� ��� ���������:��� 9���� - !	���"#=
! �779%���� &��� ������'=$ � # -

!����� �#
 9���������:��� �=
>!# - !#$$

>- ���������:��� 7 ���� - !	���"#

The / operator performs sequence concatenation. The
����%"��� construction is very much like���; the main
difference is that all the returned sequences are concatenated
together (that is, it flattens the result that��� would return).

It is possible to use avaluein type position to force that
specific value; for instance if we declare

���� �����:���� � ������� !</�����<><@�����<#$$
���� ����� � ����� !:" �����:���� :"#$$

then 0���� is the type of books where either Pierce or
Wadler (we chose two names at random that by a funny haz-
ard happen to be those of the Chairmen of the workshop
where we want to submit this paper) appear as one author.
Now we can define an extraction function:

��� ��� �����:����� 9	�� - !9����� ? 	���="#=
���� !9�77����� > :="# - �$$

>- �����:�����7 	�� - !9����� ? 	���="#

The 1 denotes the intersection of types, thus the interface
of the function declares that the result will be both of type
0���� and of type���& (these two being incomparable).
Note that the� variable is under a repetition operator (the$

Kleene-star in regular expressions); the meaning is that all
the matching subsequences are concatenated together (here,
each of them has a single element). As explained in Sec-
tion 3.6 on pattern matching, a variable can occur several
times in the same pattern (in the case above because of the
repetition operator): when this happens the variable is bound
to the recomposition of the bindings of all occurrences by the
constructor they appear in (in the case above all the bindings
of the occurrences of� are recomposed into a sequence).
This example demonstrates how a single pattern can perform
a quite complex operation.

The type0���� does not say anything about the�
�� and
���
 elements. But because the argument of the function is
known to be of type���, it is possible to infer—and�Duce
does it—that the extracted values are both of type0����

and of type���& (this is indicated by the intersection type
operator1).

3 Overview of the � Ducelanguage

3.1 The type algebra

�Duce type algebra has no specific constructor for se-
quences and XML documents. The constructions we used
in the previous section are encoded, as shown in Section 3.2,
in the following core type algebra:

� basic scalar types, such as���2 �����
2 ��� , etc.,
atoms (an atom is a constant of the form3id where
id is an arbitrary identifier) and two type constants
4���� and'�� (the latter is also written!!, especially
in patterns) that denote respectively the empty (i.e., the
smallest) and the universal (i.e., the largest) type;

� classical types constructors: product types,��2��-,
record types(�� 5 ��+ � � � + �� 5 ��), and func-
tional types (�� #� ��);

� boolean connectives: intersection��1��, union ��*��
and difference��6��;

� singleton types: for any scalar or constructed (non-
functional) value�, � is itself a type (for instance,3��
is the type of empty sequences, and�7 is the type of the
integer�7);

� recursive types: they are defined by recursive toplevel
declarations or by the syntax� ��
�
 �� 5 �� ���

3

��� ��� �� 5 ��, where� and ��’ are type iden-
tifiers (i.e., identifiers starting by a capitalized let-
ter). For instance, the type of sequences of inte-
gers may be written� �%� ��
�
 � �%� 5 ,���2

� �%�- * 3�� .

In �Duce types have a set-theoretic interpretation: a type
is the set of all values (i.e. closed irreducible expressions;
sometimes we equivalently use the word “results”) that
have that type. For example, the type,��2��- is the set
of all expressions,��2��- where �� is a value of type
��; similarly ��#��� is the set of all functional expressions
"	� " ,��+���+��-
 for which we can infer the type��#���
(that is, all the functional expressions that when applied to
an expression of type�� return a result in��). Likewise,
when a value is used in a type position (as in0����!!�	��

in the previous section) it denotes the singleton containing
that value (whence the name of singleton types).

This interpretation of types is at the basis of the whole in-
tuition of the�Duce’s type system: the programmer must
rely on it to understand all the type constructions and type
equivalences of the system. Thus, for example, the differ-
ence of two types contains all the values that are contained
in the first type but not in the second, the union of two types
is formed by all the values of each type, and the intersection
of, say, an arrow and a record isequivalent(in the sense that
it has the same interpretation as) to the empty type.

In particular, subtyping is just set inclusion: a type is a
subtype of another if the latter contains all the values that
are in the former (for more details see [8]).

There are actually two kinds of record types: the open
record type(�� 5 ��+� � �+ �� 5 ��) that classifies records
in which the fields labeled�� are present with the pre-
scribed type, but other fields may also appear ; the closed
record type(* �� 5 ��+ � � � + �� 5 �� *), instead, forbids
any label other than the��’s.1 It is also possible (both
for open and for closed record types) to specify optional
fields: the syntax�� 58 �� states that the�� field may be
absent, but when it is present, it must have type��. There
is a lot of natural subtyping and equivalence relations that
hold for record types, like(*� 5 �*)�(� 5 �), or (�� 5 ��+
�� 5 ��) � (�� 5 ��)1(�� 5 ��), or (*��5��+��58��*) �
(*��5��*) * (*��5��+ ��5��*); and once more they can
all be deduced by considering the set theoretic interpretation
of record types as sets of record values.

For scalar types, we also introduce subtypes of��� and
�����
: ���	 � ��� is an interval (� and 	 are integer
constants), and�regexp�������
 is the set of character
strings described by the regular expressionregexp. Regu-
lar expressions are built from string constants, the wild-card

1There is a small subtlety about singleton record types. For instance,
the type� � � � �, being open, contains all the records that have field
� � � and maybe other fields too. The singleton type corresponding to
the value� � � � � must be written�� � � � ��. We have chosen the
same notation for record values andopenrecord types, because we believe
that open record types are much more useful in programming than closed
ones.

“�”, character classes, and usual regular expression opera-
tors*2$282. and concatenation.

3.2 XML documents

�Duce is close in spirit and in syntax to other XML-oriented
languages such as XDuce or the algebra introduced in [7].
However, it is a general purpose programming language
based on a very small functional core. In particular, XML-
related types are encoded in terms of the type constructors
we presented in the previous section.

Sequences Sequences are encodedà la Lisp using pairs
and a terminator3�� representing the empty sequence:
a sequence of values��
 � � �
 �� is written in �Duce as
� ������� �, but this actually is only syntactic sugar for
,��2,� � �2,��2 3�� -� � �--.

In the sample section we saw that regular expressions can
be applied to types to define new sequence types. This is
just syntactic sugar as the same sequence types could be de-
fined by combining boolean type connectives and recursive
types. More precisely it is possible to define sequence types
by �tyregexp� wheretyregexpis a regular expression built
from types and usual regular expression operators. For in-
stance, the� �%� type in the previous section is equivalent
to ����$� while ����$ �����
.� represents sequences
built from a possibly empty list of integers concatenated with
a non-empty list of strings.

XML elements The value3�� is just a special case of
atom type3id where id is any identifier. Atoms are also
used to encode XML tags. We saw in the sample ses-
sion that an XML element�tag� elem-seq��tag� can be
written in �Duce as�tag��elem-seq� where elem-seqis
a sequence of elements. This latter notation actually is
syntactic sugar for,3tag2,()2�elem-seq�--. The expres-
sion () denotes the empty record value. In its more gen-
eral form tags can have attributes as for�tag �� 5 �� � � �
�� 5 ��� elem-seq��tag�. This is written in�Duce as
�tag (�� 5 ��+� � �+�� 5 ��)��elem-seq� which is syntac-
tic sugar for,3tag2,(�� 5 ��+� � �+�� 5 ��)2�elem-seq�--.
When appearing in tags the curly braces can be omitted as
in �� ��
"59� ��&����9��90 ��& �
�
9�. We applied
this convention in all the examples of the sample session as
we always omitted the pair of braces() denoting the empty
record.

As an illustration, here is a set of declarations for an XML
document type representing a (flat) address book where the
address tag has the optional attribute&���:

���� ����	��� � ����� �������$$
���� ������� � !9E�2� ���� %��F="#$$
���� E�2� � ���2� !)�����#$$
���� ���� � ����� B�����F<��2�<><����<C !)�����#$$
���� %�� � ���� !)�����#$$

4

The same convention as for record expressions is used for
openrecord types occurring in tags of XML types (and pat-
terns, see Section 3.6), thus an equivalent notation for the
'��� type is:

���� ���� � ����� �����F<��2�<><����< !)�����#$$

On the contrary the(* *) parentheses for closed record
types cannot be omitted. For example the type

���� ����3 � ����� B>���� �F <��2�<><����<>C !���#

matches elements with tag���� and that haveat mostthe
&��� attribute with the specified type (elements of type
'���, instead, can have arbitrary attributes with the only
restriction that if present the&��� attribute must have the
specified type).

This kind of flat representation (mixing fields for all the
entries in the address book) is somewhat unusual; here is the
�Duce function that transforms it into a sequence of entries
(coded as records) where the address attribute is discarded:

���� G���� � B ��2� �)�����$ ���� �)�����$
��� �F)����� C$$

��� ��� ����� 9������� - !G����"#=
!���2� !�# ����� !�# ���� !�#$ �# -

9B ��2� � �$ ���� � �$ ��� � � CH ����� �=
> !���2� !�# ����� !�#$ �# -

9B ��2� � �$ ���� � � CH ����� �=
> !# - !#$$

The function body is made of a pattern matching, that is a
sequence of branches� #� � where� is a pattern and �
an expression. The powerful pattern algebra (discussed in
Section 3.6) greatly contributes to�Duce expressivity. For
instance, a single pattern can filter out of an addressbook all
the telephone numbers:

��� ��� ����� 9������� - !9E�2� ����="#=
! 9;779E�2� ����= %��F=" # - ;$$

The several matched subsequences for� are con-
catenated together; the pattern could also be writ-
ten �,���,:��
*'���- ;
 8-$� and the�Duce type-
checker would still be clever enough to infer that� can only
bind a sequence of type�,:��
 '���-$� (the inference
algorithm is strictly more precise than XDuce’s). The fol-
lowing function splits a list of4���� records according to
whether the phone number is present or not:

���� � � G���� ? B ��� � ��� C$$
���� 	 � G���� ? B ��� �F G2��� C$$

��� ��� ����� 9!G����"# - 9!�"#H!	"#==
!99;77�= > 9�77	=="# - 9;H�=$$

Note the definition of�. The record type(�
 584����)
means “whenever the field�
 is present, its value must be-
long to the type4����”; as there is no value of type4����,
this is equivalent to saying “the field�
 must be absent”.

3.3 Overloaded functions

The simplest form for a toplevel function declaration is

��� ��� � 9�- �= � - �

in which the body of a function is formed by a single branch
�#�� of pattern matching. As we saw in the previous sec-
tions, the body of a function may be formed by several
branches with complex patterns. The interface,�#��- speci-
fies a constraint on the behavior of the function to be checked
by the type system: when applied to an argument of type�,
the function returns a result of type�. In general the inter-
face of a function may specify several such constraints, as
we did for example in the�	����% function in Section 2.

The general form of a toplevel function declaration is thus:

��� ��� �9��- ��$� � �$��- ��= > ��- �� > � � � > ��- ��

(the first bar can be omitted). Such a function accepts argu-
ments of type (��*� � �*��), it has all the types��#���, and,
thus, it also has their intersection (��#���1� � �1��#���).

The use of several arrow types in an interface serves to
give to the function a more precise (inasmuch as smaller)
type. We can roughly distinguish two different uses of mul-
tiple arrow types in a interface:

1. when each arrow type specifies the behavior of a dif-
ferent piece of code forming the body of the func-
tion, the compound interface serves to specify theover-
loadedbehavior of the function. This is the case for the
�	���� function of Section 2 or for the function below
��� ��� ��� 99(��H(��=- (��$

9)�����H)�����=-)�����=
> 9; ? (��H � ? (��= - ;'�
> 9; ?)�����H � ?)�����= - ;I�$$

where each arrow type in the interface refers to a differ-
ent branch of the body.

2. when the arrow types specify different behavior for a
same code, then the compound interface serves to give
a more precise description of the behavior of the func-
tion. For example the interface below

���� (J � !(��"#$$ integer list
���� EG � !(��'#$$ not empty list
���� GG � 9!#H!#=$$ pair of empty lists

��� ��� ������ 9 99(JH(J=KGG=- EG$ GG- !#=
> 99�H�=H�D= - 9�H ������ 9�H�D==
> 9!#H�D= - �D$$

specifies that the function������ returns an empty se-
quence if and only if both the argument sequences are
empty (and the type checker verifies it).

Of course these two uses can be combined allowing the def-
inition of overloaded function with a precise typing.

3.4 Higher-order functions

Functions are first class values in�Duce. This means
that a function can be fed to or returned by a so-called

5

higher-order function. The syntax for a local function is
the same as a toplevel function declaration,"	�
,��#���+
� � �+��#���-� � �, with the only difference that
 may be
omitted if the function is not recursive. A classical example
of higher order function is the composition function, which
takes two functions and returns as result the function that
composes them:

��� ��� ��2��������9 9�- �H�- �= - 9�- �= =
9�H�= - ���9�- �= ;- �9� ;=

Higher-order holds for all functions, overloaded functions
included. For example consider the following function
which takes a binary integer function, an�;�

, and returns
an integer:

���� (%��� � (�� > 9(%���H(%���=$$
��� ��� �����
�9999(��H(��=- (��=H(%���= - (��=

> 9�H9;H�== - � 9�����
�9�H;=H�����
�9�H�==
> 9�H;= - ;$$

>- �����
� 7 99(��H(��=- (��=H(%���= - (��

it is perfectly correct to pass to%<	

=
 the overloaded
function��� defined before:

�����
�99LH94HL==H���=$$
>- (��
� 3,

we can always pass a function of type,,���2���-#����-
1 ,�����
2�����
-#������
- where a function of type
,���2���-#���� is expected, as the latter is a subtype of
the former. Once more it would be possible to use a com-
pound interface to specialize the behavior of%<	

=
. If
for example�;�

 5 �����
 * ,�;�

2�;�

- then we
could have specified for%<	

=
 the following interface

9 99)�����H)�����=-)����� H)%���= -)����� $
99(��H(��=- (�� H (%���= - (�� =

In this case we would have have extended the application do-
main of%<	

=
 since%<	

=
,���2,9�929�9-- would
typecheck and return the result9��9.

In the setting of XML applications, a typical use of higher
order functions is to parametrize the behavior of another
function. For instance, the function�
��
� below, which
is in charge of “rendering” a complex document to HTML,
is parametrized by a function of type4����>��� that ren-
ders specific parts of the document.

���� M�2� � ���$$
���� G����D��2� � !E�2� ���� %��F# - M�2�$$

��� ��� ������ 99G����D��2�H����	���= - M�2�=
���$$

We next define the function�����!!
���� of type
4����>��� that is passed to�
��
� to define a new func-
tion ��!�
��
�:

��� ��� �����:����� 9
9!E�2� ���� %��F# > G����= - M�2�
=
> !���2� !�# ����� !�# ���� !�##
> B ��2� � �$ ���� � �$ ��� � � C -

���

> !���2� !�# ����� !�##
> B ��2� � �$ ���� � � C -

���$$

��� ��� 2�:������ 9����	��� - M�2�=
���� - ������ 9�����:�����H ����=$$

Note that ,�:��
 '��� ;
 8�*4����- #� ?�� is a
subtype of4����>��� : every function value that when ap-
plied to an argument of type,�:��
 '��� ;
 8�*4����-

returns a result in?�� is also a function that when applied
to an argument of type�:��
 '��� ;
 8� returns a result
in ?�� . Therefore it is legal to use�����!!
���� as the
first argument of�
��
�.

Functions being first-class, it is possible to store them in
data structures; for instance, one could dynamically lookup
a rendering function in an associative table, according to the
value of some field in an input document. This would create
a dynamic template system.

3.5 � Ducemodules

In this section we sketch the design guidelines we are follow-
ing in the definition of the (not yet implemented)�Duce’s
module system.

A �Duce module is a sequence of recursive toplevel dec-
larations (types, functions, data,. . .); amodule may refer to
components defined in other modules using a classical dot
notation. A module may come with aninterfacethat speci-
fies (in a separate file) the type of defined functions and val-
ues.

Type declaration All the type declarations in a single
module are mutually recursive. A declaration���
 ; 5 �
does notcreatea new type; it just gives the name; to the
type �. This is important because it puts the emphasis on
the structure of the values, not the specific type declarations;
two unrelated modules may thus communicate and work on
the same values, even though they do not share any common
declaration.

We are planning to add support for abstract types in two
flavors. A transparentabstract type gives no information
about the structure of its values outside the module where it
is defined, but it is still possible to use pattern matching to
inspect values of this type. Anopaqueabstract type prevents
any such inspection: values are really black boxes outside
the module they belong to.

Incremental programming It is possible to overload a
function first defined in another module. For instance, imag-
ine that the functions��� and������ of Section 3.3 were
defined in some module', and that instead of having������
in a separate function we want to obtain the same behavior
by overloading���. This can be done in a different module
as follows:

�N������ ����� 9 99(JH(J=KGG=- EG$ GG- !#=
> 9�H�= - ��������9�H�=$$

6

This affects the global behavior of the function'����, even
when called inside the module'. Technically, this is referred
to as dynamic binding. The new behavior is obtained by
adding the new branches before the old ones in the definition
of '����. As for typing, we see that it is possible to specify
an additional set of constraints in the interface. Of course
the old constraints must be satisfied by the new function,
too (this automatically enforces the inheritance condition of
��: see [3]). The new constraints are statically visible only
in the module where the overloading occurs (and the ones
that rely on it), not in', as this would require to type-check
it again. However, sometimes, redoing type-checking might
result useful. For instance, if we redefine��� so that it al-
ways returns positive integers

�N������ ����� 99(��H(��=- 9,��2�;���==
> 9;?(��H�?(��= - �� ;'� , ���� ;'� ���� 3$$

and we type check again every function in' that calls���
we might obtain more precise typing by using the informa-
tion that the result of��� is always positive. We are investi-
gating ways to allow this powerful kind of incremental pro-
gramming without sacrificing all the benefit of separate com-
pilation and implementation independence; basically, we are
planning to use some kind ofinterfacefor modules and allow
the parts of the implementation that have to be potentially re-
typechecked to appear in the interface.

3.6 Pattern matching

Pattern matching is one of�Duce’s key features. Although it
has an ML-like flavor, it is much more powerful, as it allows
one to express in a single pattern a complex processing that
can dynamically check both the structure and the type of the
matched values.

We already saw examples of pattern matching forming the
body of a function declaration. As in ML, in�Duce there
is also a standalone pattern-matching expression����� �
���� ��#��� *���* ��#���. Local binding
� � 5 ��
�� �� is just syntactic sugar for����� �� ���� � #� ��.

A pattern may either match or reject a value; when it
matches, it binds itscapture variablesto the corresponding
parts of the value and the computation can continue with the
body of the branch. Otherwise, control is passed to the next
branch. Note that this is only a description of the seman-
tics of pattern matching, but the actual implementation uses
less naive and more efficient algorithms to simulate it; for
instance, we designed an algorithm that uses a single (par-
tial) run on the value to dispatch on the correct branch, and
takes profit of static typing information (see Section 6).

Capture variables and deconstructors As in ML, a vari-
able, say,� is a pattern that accepts any value and binds it
to �. A pair pattern,��2��- accepts every value of the
form ,��2��- where �� matches��. If a variable� ap-
pears both in�� and in ��, then each pattern�� binds �
to some value���; the semantics is here to bind the pair

,��
�
2��

�
- to � for the whole pattern (and so recursively).

For instance, a pattern matching branch,�2,�2�-- #�

,�2�- is equivalent to,��2,�2�>-- #� ,,��2�>-2�-.
Similarly ,�2,�2,�2�--- #� ,�2�- is equivalent to
,��2,�>2,�2�@--- #� ,,��2,�>2�@--2�-. Such ex-
amples are though not very interesting as we really gain in
expressivity when the multiple occurrences of a variable are
generated by the use of recursive patterns, as we show later
on.

Similarly to pair patterns, record patterns are of the form
(��5��+���+��5��) and(*��5��+���+��5��*): the for-
mer matches every record whose fields�� match the�� while
the latter matches record formed exactly by the� � fields
and whose content matches��. We use the same conven-
tion as for types and allow to omit the braces for open record
parentheses occurring in tags. However, contrary to pair pat-
terns, we do not allow multiple occurrences of a variable in a
record pattern: there is no difficulty to structure the results of
the different occurrences into a record, but it seems useless.

Type constraint and conjunction Any type can be used
as a pattern, whose semantics is to accept only values of this
type, and create no binding. This is particularly useful be-
cause in�Duce, a type may reflect precise constraints on the
values (structure or content, for instance�����). Note that
scalar constants can be used, and are just special case of type
constraint with singleton types. The wild-card type!! sim-
ply is an alternative notation for the type constant'�� and as
such it matches every type. Similarly�!!�� (resp.�!! ���)
is a shorthand for,!!2,!!2�-- (resp.,!!2,�2�--).

To combine a type constraint and a capture variable, one
can use the conjunction operator1 for pattern, as in,� 1

���-. The semantics of the conjunction in a pattern is to
check both sub-patterns and merge their respective set of
bindings. This merging may require a non trivial inference
of the type system: for example if we have the pattern,� 1

����&�!!-, then in order to deduce the type of� the type sys-
tem must infer the type of the content of the element����&�.

Alternative and default value There is also an alternative
(disjunction) operator� * < with first match policy: it first
tries to match the pattern�, and if it fails, it tries with<;
the two patterns must have the same set of capture variables.
This pattern may be used in conjunction with the pattern,�

�5 �-, where� is an arbitrary scalar constant, to provide a
default value for a capture variable. For instance, the pattern
,,� 1 ���- * ,� �5 �-- captures a value and binds it to
� when it is an integer, and otherwise ignores it and continue
with the binding� �5 �.

Recursive patterns As for types, recursive patterns may
be defined through the syntax� ��
�
 �� 5 �� ��� ���

��� �� 5 �� where�
 ��
 � � �
 �� are variables ranging over
patterns. Recursive patterns allow to express complex ex-
traction of information from the matched value. For in-

7

stance, consider the pattern� ��
�
 � 5 ,� 1 ���2 !!-

* ,!!2 �-; it extracts the first element of type��� from a
sequence (recall that sequences are coded with pairs). The
order in the alternative is important, because the pattern�

��
�
 � 5 ,!!2 �- * ,� 1 ���2 !!- would extract the
last element of type���.

A pattern may also extract and reconstruct a subse-
quence, using the convention described before that when
a capture variable appears on both side of a pair pattern,
the two values bound to this variable are paired together.
For instance� ��
�
 � 5 ,� 1 ���2 �- * ,!!2 �- *

,� �5 3�� - extracts all the elements of type��� from a
sequence and the pattern� ��
�
 � 5 ,� 1 ���2 ,� 1

���2 !!-- * ,!!2 �- extracts the first pair of consecutive
integers.

Regular expression patterns �Duce provides syntactic
sugar to define patterns working on sequences with regu-
lar expressions built from patterns, usual regular expression
operators, andsequence capture variable. For instance, we
have seen the pattern� ,���,:��
 '���- ;
 8-$ �; the
variable� captures subsequences of consecutive:��
 and
'��� elements, and concatenates all these subsequences. It
is actually compiled into the pattern:

� ����� � � 9; ? E�2�H �= > 9; ? O���=
��� � � 9; ? ����H �=
��� � � 9%��H �= > �

This example illustrates howsequence capture variables
are compiled by propagating them down to simple patterns,
where they become standard capture variable. The,� 1

3�� - pattern above has a double purpose: it checks that
the end of the matched sequence has been reached, and it
binds� to 3�� , to create the end of the new sequence.

Note the difference between� � 1 ��� � and� � ��

��� �. Both patterns accept sequences formed of a single
integer�, but the first one binds� to �, whereas the second
one binds to� the (full) subsequence���.

Regular expression operators$2.28 are greedy in the
sense that they try to match the longest possible sequence.
Ungreedy version$82 .8 and 88 are also provided;
the difference in the compilation scheme is just a matter
of order in alternative patterns. For instance,�!!$,� 1

���- !!$� is compiled to� ��
�
 � 5 ,!!2�- * ,� 1

���2 !!- whereas�!!$8 ,� 1 ���- !!$� is compiled to
� ��
�
 � 5 ,� 1 ���2 !!- * ,!!2�-.

It is often useful to bind (or ignore) the tail of the
matched sequence; instead of���� ���,!!$-� (resp.
���� ,!!$-�), one can use the notation����+ �� (resp.
����+ !!�).

String patterns The previous paragraph introduced regu-
lar expression patterns that match sequences and in which
variables may capture subsequences.�Duce has also
regular expression patterns for strings, with the syntax

�pregexp� where pregexp is a regular expression built
from string constants, wild-cards�, character classes,
usual regular expression operators, andsubstring cap-
ture variables. For instance, the pattern����,����-
9#9 ���,��- 9#9 ���,��-� could be used to ex-
tract relevant numeric information from a string repre-
sentation of a date; if the matched value is known
to be of type ��A�A#A�A�(B) 9#9�A�A#A�A�(>) 9#9

�A�A#A�A�(>)�, then�Duce type-checker can infer that
the value bound to� has type��A�A#A�A�(B)�, and this
can be used to check statically that a call to a function
���!!�"!!%����
 on� will succeed.

3.7 Extra support for sequences

Although there is no special support for sequences in the
core type and pattern algebras (regular expression types and
patterns are just syntactic sugar),�Duce provides some lan-
guage constructions to support them.

Map A common operation on sequences is to apply some
transformation to each element. In ML, this kind of op-
eration may be defined as an higher-order function���,
taking as arguments a list and a function that operates on
the elements of the list; the type of��� is ��
 ���� �

���� ����� � ����. In �Duce, one can define for instance:

��� ��� ���:���
99(�� -)�����H !(��"#= - !)�����"#=
> 9�H9;H�== - 9� ;H ���:��� 9�H�==
> : - O���$$

However, there are two drawbacks:��� we can only define
a monomorphic instantiation of the ML counterpart, hence
code duplication; and���� the application of such a func-
tion is more verbose, because the abstraction (local function)
passed as first argument has to provide an explicit interface
in �Duce (for instance,"	� ,��� #� ���- � #� � . �

instead of the ML"	� � #� � . �).
Actually ���� is related to the following issue: the complex

type algebra of�Duce makes type inference probably unfea-
sible in practice (inferred types may be completely unread-
able); moreover, as the semantics is driven by types, there is
not necessarily a notion ofbesttype for an expression. How-
ever, we are planning to consider limited form of inference,
such as local inference, to handle simple cases as above.

To address���, one can try to add some form of para-
metric polymorphism to�Duce; we already started to con-
sider the problem and adapted�Duce type algebra to han-
dle type variables. But it turns out that ML-like polymor-
phism is not always sufficient for XML-oriented processing
and�Duce like type algebra. The function"	� � #� � .

� has of course type���#����, but also all the types���	
#� ��	��	�	 for any integers� and	. As a different exam-
ple, suppose we have a sequence of type� ,�� ��-$ � and
want to obtain a sequence of type� ,� �

�
��
�
-$ � (say,�� and

��� correspond to XML elements), by applying two distinct

8

transformations for elements of type�� and those of type��.
This is beyond the power of ML polymorphism; we could
instantiate in the type of��� � with �� * �� and� with ��

�

* ��
�
, and this would give� ,��

�
* ��

�
-$ � for the type of

the result, which forgets the order of elements.
As a pragmatic solution, we adopted the following con-

struction in �Duce: ��� � ���� �� #� �� * ��� *

�� #� ��. Here, the expression� must evaluate to a se-
quence, and each of its elements will go through the pattern
matching and get transformed if matched by some branch
(otherwise, it is left unchanged, as if there were an implicit
� #� � branch at the end of the pattern matching). Here
is an example where this kind of polymorphism is required:
the following function uses two different tags to represent
home addresses and work addresses (default is “work”):

���� ����	���3 � ����� !9E�2� ����3 %��F="#$$
���� ����3 � ���2� !)�����# > ����� !)�����#$$

��� ��� �����:���� 9����	��� - ����	���3=
����� ; -
��� � � 2�� ; ����
> ����� �����<��2�<
 - ���2�

> �����
 - �����

��
����� �$$

Transform The ��� construction does not affect the
length of the sequence, and each element is mapped to a
single element in the result.�Duce also provides a variant
of ���, written ����%"���, where each branch of the pat-
tern is supposed to return a (possibly empty) sequence, and
all the returned sequences, for each element in the source
sequence, are concatenated together. The implicit default
branch is now!! #� �� (so, unhandled elements are dis-
carded). Here are some examples:

��������2 � ���� 9; ? (��= - !; ;#$$
9")����� ��� ��������� ��� ������� "=

��������2 � ����
> 9; ? (��= - !9��:������ ;=#
> 9; ?)�����= - !;#$$

9")����� ���� ������� ��� ��������
9��������2�� �� �������= "=

Actually, ����%"��� can be defined from��� and the
" ���
� unary operator, that concatenate a sequence of se-
quences.

Our ����%"��� construction is very similar to the"��
construction in [7]; a loop"�� � �� �� �� �� would be
simply translated to����%"��� �� ���� � #� ��.

4 Types

The type system is at core of�Duce. The whole language
was conceived and designed on it. From a practical point
of view the most interesting and useful characteristic of the
type system is the semantic interpretation we described be-
fore, according to which a type is nothing but a set of values
denoted by some syntactic expression. This simple intuition

is all is needed to grasp the semantics of the�Duce’s type
system and, in particular, of:

Subtyping: subtyping is simply defined as inclusion of sets
of values: a type� is a subtype of� if and only if every
value which has type� has also type�; when this does
not hold, the type system can always exhibit a value of
type� and not of type�.

Boolean connectives:boolean connectives in the type al-
gebra are simply interpreted as their set-theoretic coun-
terpart on sets of values: intersection1, union*, and
difference6 are the usual set theoretic operations.

Type equivalences:two types are equivalent if and only if
all the values in the former are values in the latter and
vice-versa. So for example� ��� ,�����
 ���-$ �

� � ,��� �����
-$ ��� �.

Understanding types is fundamental to�Duce programming
as they are pervasive. In particular, pattern matching is based
on types: all a pattern can do is to capture a value, decon-
struct it, or check its type. So pattern matching can be ba-
sically seen as dynamic dispatch on types, combined with
information extraction. This gives to�Duce a type-driven
semantics reminiscent of object-oriented languages as over-
loaded functions can mimic dynamic dispatch on method in-
vocations. Note however that a class based approach (map-
ping each XML element type to a class) would be unfeasi-
ble, as the standard dispatch mechanism in OO-languages is
much less powerful than pattern matching (which can look
for and extract information deep inside the value). By keep-
ing “methods” outside objects, we also get the equivalent of
multi-methods (dispatch on the type of all the arguments, not
just on the type of a distinguished “self”).

Besides this dynamic function, types play also a major
role in the static counterpart of the language. Type correct-
ness of all�Duce transformations can be statically ensured.
This is an important point: although many type systems have
been proposed for XML documents (DTD, XML-Schema,
. . .), most XML applications are still written in languages
(e.g. XSLT) that, unlike XDuce or�Duce, cannot ensure
that a program will only produce XML documents of the ex-
pected type. Furthermore, in�Duce pattern matching has
exacttype inference, in the sense that the typing algorithm
assigns to each capture variable exactly the set of all values
it may capture. This yields a very precise static type system,
that provides a better description of the dynamic behavior of
programs.

Finally, types play an important role also in the compiler
back-end, as the type-driven computation raises interesting
issues about the execution model of�Duce and opens the
door to type-aware compilation schemas and type-driven op-
timizations that we hint at in Section 6.

9

4.1 Highlights of the type system

Since the whole intuition of the�Duce type system relies on
interpreting types as set of values, it is important to explain
how values are typed. This is straightforward in most cases
apart from function values. So we explain below the typing
rule for functions and, in order to ease the presentation we
split it in two rules, a subrule for typing function bodies (that
is list of pattern matching branches) whose derivation is then
used in the typing rule for functions.

A typing judgment has the form
 � � � � where
 is a
typing environment (a map from variables to types),� is a
�Duce expression, and� is a type; the intended meaning is
that if the free variables of� are assigned values that respect

, then every possible result of� will be a value in�.

Pattern matching Let� denote the sequence of branches
�� #� �� * � � � * �� #� ��. The rule below derives the
typing judgment
 � ��� � �, whose intended meaning is:
matching a value of type� against the sequence of branches
� always succeeds and every possible result is of type�.

� � ����� ��� *���* ��� �����
�� � �6 ��� �� ��� 6 � � � 6 ��� ���� ��� 1 ��� ������

 ������� � �� � �� if �� �� 4����

�� � 4���� if �� � 4����

� � ��*���*��

 � ��� � �

Let us look at this rule in detail. The matched value is sup-
posed to be of type�. The first line checks that the pattern
matching is exhaustive; for each pattern� �, �������� is a type
that represents exactly the values that are matched by� �. The
exhaustivity condition is just saying that every value that be-
longs to type� must be accepted by some pattern.

Now we have to type-check each branch. At runtime,
when the branch��#��� is considered, one already knows
that the value has been rejected by all the previous patterns
��
 � � �
 ����; if the branch succeeds, one also knows that
the value is of type��������. So, when type-checking the ex-
pression of the branch, one knows that the value will be of
type ��, that is, of type�, of type��������, but not of any of the
types��������
 � � �
����������. Now we type-check the body�� of
the branch; to do so, one must collect some type informa-
tion about the variables bound by� �. This is the purpose
of �������: it is a typing environment that associates to each
variable� in �� a type that collects all the values that can be
bound to� by matching some value of type� � against��.

It is evident that all the “magic” of type inference resides
in the operators������� and �����. These operators were in-
troduced in [8]. Their definition reflects their intuitive se-
mantics and is also used to derive the algorithms that com-
pute them. In the next section examples are given to illus-
trate some non-trivial computations performed by these al-
gorithms.

The result of the pattern matching will be the result of
one of the branches that can potentially be used. This is
expressed by taking for the type of the pattern matching the
union of the result type of each branch� such that� � is not
empty; indeed, if�� is empty, the branch cannot be selected,
and we take�� � 4���� as its contribution.

Functions What unused branches are useful for in a pat-
tern matching? The answer is in the typing rule for abstrac-
tions:

� � ��#��� 1 � � � 1 ��#���
����

 �� � ���� � �� � ��

 � "	�
,��#���+� � �+��#���-� � �

The type system simply checks all the constraints given in
the interface (as the function can call itself recursively, we
remember when typing the body that
 is a function of the
type given by the interface). So the body is type-checked
several times, and for some type��, it may be the case that
some branch in� is not used. Let us illustrate this by a
simple example:
��� 9(�� - (��$)����� -)�����=

> (�� - 4D
> 9; ?)�����= - ;

When type-checking the body for the constraint�����
 #�

�����
, the first branch is not used, and even though its
return type is not empty (it isB>, which is the type assigned
to the constantB>), it must not be taken into account to prove
the constraint.

This is not a minor point: the fact of not considering the
return type of unused branches is the main difference be-
tween dynamic overloading and a type-case (or equivalently
the ������� types of [1]). The latter always returns the
union of the result types of all the branches and, as such,
it is not able to discriminate on different input types.

4.2 Pattern type inference: examples

We saw that������� and����� are the core of the type system.
They are defined as the least solution of some set of equa-
tions. These definitions are quite straightforward as they re-
flect the intuitive semantics of the operators. For example,
������� is defined by the following set of equations

������� � '�� �����*����� � �������� * ��� �����
������� � � �����1����� � �������� 1 ��� �����
���,��5�-��� � '�� ���,��2��-��� � ,��������2��������-

which simply states that a pattern formed by a variable
matches (the type formed by) all values, that a pattern type
matches all the values it contains, that an alternative pattern
matches the union of the types matched by each pattern and
so on. The same intuition guides the definition of�����. So
for example:

�������� � �
������*������� � ���1 ����������������*���6 ����������������

...

10

states that when we match the pattern� against values rang-
ing over the type� then the values captured by� will be
exactly those in�, similarly when we match values ranging
over� against an alternative pattern, then the values captured
by a variable� will be those captured by� when the first
pattern is matched against those values of� that are accepted
by ��, union those captured by� when the second pattern is
matched against the values in� that are accepted by�� but
not by��.

The most important result is that the equations above can
be used to define two algorithms that compute������� and�����.
Rather than entering in the details of the algorithms we pre-
fer to give a couple of examples showing the subtlety of the
computation they are required to perform.

Filter Consider the pattern� ��
�
 ,,� 1 ���-2�- *

,!!2�- * ,��53�� - that extracts from a sequence all the
integers occurring in it. In the table below we show the types
of all values that are captured by the variable� of the pattern
� when this latter is matched against (values ranging over)
different types:

� ��������
���� �����
 ���� ���� ����

����*�����
� ����8�

����$ �����
 ���� ����.�

����. �����
 ���� ����. ����

�,�����-. �����
� �,�����-.�

�,��� �����
-.� ����.�

Pairs Consider the following types already introduced in
Section 3.5

���� (J � !(��"#$$ integer list
���� EG � !(��'#$$ not empty list
���� % � 9(JH(J=K9!#H!#=$$ pair of lists not both empty

and the patterns� � ,,�2�-2=- and� � ,��2=-. Then:

��%? ����������� � �; �� (�� 	 � �� (J 	
 �� (J�
��%K ���������
� � �
 �� EG�

The typing of patterns, pattern matching, and functions is
essentially all is needed to understand how the type algo-
rithm works, as the remaining rules are straightforward. The
only exception to that are the typing of the constructions���

and����%"��� which need to compute the transformations
of regular expressions (over types) and for which the same
techniques as those of [7] can be used.

5 Queries

In the world of XML, the boundary between program-
ming languages, transformation languages, and query lan-
guages/algebras is not easy to draw and as pointed out in [12]
there is no definitive standard for query languages for XML.
Indeed, a query can be seen as a transformation that filters

the XML documents to extract the relevant information and
presents it with a given structure, and a transformation is just
a special kind of application. A declarative language such as
XSLT [4] is clearly not on the “programming” side, but sys-
tems such as XQuery [2] or the one in [7] are very close in
spirit to XDuce, and they can be seen as real programming
languages for XML.

�Duce was designed as a programming language, recast-
ing some XML specific features from XDuce in the more
general setting of higher-order functional languages. But it
turns out that a small set of extra constructions can also en-
dow it with query-like facilities which are standard in the
database world: projection, selection, join.

We already mentioned that the����%"��� construction
allows us to encode the"�� iteration from [7] in�Duce.

As in [7], projection can be defined from this construc-
tion. If � is a�Duce expression representing a sequence of
elements and� is a type,��� is syntactic sugar for2:

��������2 � ���� �: � -
��������2 � ���� 9; ? �= - !;#

This new syntax can be used to obtain a notation close
to XPath [5]. For example consider the type'������&
of Section 3.2 modified so that the������ elements con-
tain subelements such as�%��

��, ������ and so on.
If �������& is of type '������&, then the expression
��������&������� &���59���
9�!!�������!! extracts
from �������& the sequence of all town elements that oc-
cur in a “home” address. To enhance readability we use the
syntactic convention that in such paths the wild-cards!! that
follow tags can be omitted and write��������&�������
&���59���
9��������. This corresponds to the XPath ex-
pression�����������	
��
�
������. Our type system al-
lows us to push further the simulation of XPath, for example
to consider the position of the elements. So we may imagine
to write ��������&������� &���59���
9�(>)�������

to select exactly the town of the second “home” address el-
ement of�������& which would correspond to the XPath
expressions��������������	
��
�
������ and coded into
the following (unreadable but efficient) expression:

��������2 �������� ����
�: !9:"F= ����� �����<��2�< : 9:"F=

����� �����<��2�< ! 9;77����� > :=" #$:
- ;

But �Duce path expressions are not just there to mimic
XPath. Since our syntax allows us to specify the type of
element contents, we can use this option to express complex
conditions in paths; for instance, using types defined in Sec-
tion 2, the path

!���#*����� !%���� &��� ������ ������#*������

extracts the titles of all the books with exactly two authors.

2We can take advantage of the fact that in�Duce a single pattern can
perform the complex operation of extracting all the elements of a given type,
to define the following more compact encoding:
���	
���
 � ���� ����� ����� � ���� � �� �

11

A �Duce compiler could take profit of equivalences sim-
ilar to those mentioned in [7] to optimize complex queries;
a typical example of optimization rule is:����%"���
,����%"���
 ���� �� #�
�- ���� �> #�
> �

����%"���
 ���� �� #� ����%"���
� ���� �>

#�
> . Considering query-like features in a programming
language leads to introducing a query optimizer in the code
generator.

To implement joins, we introduce a cartesian product
operator in�Duce; if ��
 ��,. . . ,�� are sequences, then
����,��2��2���2��- evaluates to a sequence containing
all the,��2��2���2��- where�� appears in��. We let the
order of this sequence unspecified so to allow optimizations.
For instance, if�� 5 � � > � and �� 5 � 9'9 9�9 �,
the expression����,��2��- could evaluate to any possible
permutation of� ,�29'9- ,�29�9- ,>29'9- ,>29�9-

�. A typical join creates the cartesian product of sequence
of XML documents, and filters it (with����%"��� or a pat-
tern). The compiler is free to apply algebraic optimizations
or use available indexes to implement the join efficiently.

The typing rule for���� is the following:

 � �� ����$� � � �
 � �� ����$�

 � ����,��2���2��- � �,��2���2��-$�

Note that we restrict the��’s to be homogeneous se-
quences (i.e, sequences whose elements are all of the
same type) which yields the product to be an homoge-
neous sequence, as well. A%

�� construction can be
defined easily. The meaning of%

�� � "��� �� ��

��2���2�� �� �� ��
�
 �� is defined to be the same
as: ����%"��� ����,��2���2��- ���� ,��2���2��-
#� �" �� ��
� �
 %
 ��. The compiler can implement
this more efficiently; for instance, if�� does not involve all
the ��, the query optimizer can, as usual, push selections
(and/or projections) on some components before creating
the full cartesian product. The following example, inspired
from [7], illustrates the join between two documents����

and�
C� of types��� andD
C�
� respectively.

���� P�N��� ����N���� !	��P�N"#$$
���� 	��P�N � ����� !������ !)�����#

���N��� !)�����##$$

��� ��N, � ���N���� !
����� !

������ !</��������� 0�1���)����2�<#
���N��� !<���� �����<##

����� !
������ !<J�� ��������� �������<#
���N��� !<� ���2����� ������<###$$

������ ������ 9!�#*������
!�#*�������
!�#*���N��� =
���2 � �� !���,#*����� H � �� !��N,#*�����
����� !�#*������ � !�#*������

yielding the following result.

!
������ !

������ !</��������� 0�1���)����2�<#
������� !<5� ��������<#

������� !<�� 	��
����<#
������� !<6� 5����<#
���N��� !<���� �����<##

������ !
������ ���#

#

Sometimes we need to access to the content of an element
when this is a sequence of just one element. This is done by
the expression�����
� as in the following example where
we add the review as an attribute of the book tag:

������
����� ��N���������N���
9 !�#*������

!�#*�����

!������ !<�������<## =

���2 � �� !���,#*����� H � �� !��N,#*�����
����� ������� �<D,,,< ��� �������� � ��������

The type system authorizes to access the content of an ele-
ment only if the element occurs exactly once and it contains
a sequence of length 1, as stated by the following typing rule
(where			� is by definition'��6�)

 � � ���			�� ��!!�$ �� ����� �			�� ��!!�$�

 � ���� �� � �

(� is an optional attribute specification) that can be easily de-
duced from the encoding of���� ��:

����� � ���� ��			�� ��!!�$ �� ����� �			�� ��!!�$� #� �

This construct corresponds to the XSLT element��������
where, say,,������������-���� would be written as
������������� ������	
������
�.

On the lines of what precedes we could easily show how to
use�Duce to encode the various examples presented in the
current W3C proposal for XML Query and in general obtain
a more precise typing. However the point is not there, as
we do not want to fix a precise implementation for queries.
On the contrary, we wanted to single out constructions that
left the compiler with maximal freedom in the implementa-
tion and, therefore, a large latitude in query optimization. In
other terms, we sought for constructions that allowed us to
express queries as most “declarative” as possible, especially
because the set-theoretic semantic foundations of�Duce
constitutes an adequate support for defining optimizations.
In the frame of the�Duce type system, the����,���- con-
struction above looks like a promising choice.

6 Implementation

We believe that static typing is a key information for design-
ing an efficient execution model for�Duce and XML lan-
guages in general. In this section, we motivate this idea and
sketch an efficient dispatch algorithm.

Suppose that' and� are two types and consider the func-
tion:

��� 9�� !�'>	'# - (��=
�� !�'# - ,

> �� !	'# - 3$$

12

A naive compilation schema would yield the following be-
havior for the function. First check whether the first pattern
matches the argument. To do this:��� check that it has the
form ,3�2,!!2�-- , and���� run through� to verify that it is
a non-empty sequence of elements of type' (checking that
an element is of type' may be complex, if' represents for
instance a complex DTD). If this fails, try the second branch
and do all these tests again with�. The argument may be run
through completely several times.

There are many useless tests; first, one knows statically
that the argument is necessarily a pair with first compo-
nent3�: there is no need to check this. Then, one knows
that the second is a pair,!!2�- where� is a non-empty se-
quence whose elements are either all of type' or all of type
�. To know in which situation we are, one just has to look
at the first element and perform some tests to discriminate
between' and� (for instance, if' 5 �������� and� 5

��������, it is enough to look at the head tag). Using these
optimizations, only a small part of the argument is looked at
(and just once).

Let us give another example, where we use atoms to sim-
ulate ML datatype constructors:
���� G; �

9O��2���H(��=
> 9O����H9G;HG;==
> 9O2��H9G;HG;==$$

��� ��� �N��9G;- (��=
9O��2���H9� ? (��== - �

> 9O����H9; ? G;H� ? G;== - 9�N�� ;= ' 9�N�� �=
> 9O2��H9; ? G;H� ? G;== - 9�N�� ;= " 9�N�� �=$$

The type constraints1 4� and1 ��� are useless here, but
the programmer may want to specify them. A naive im-
plementation would check that the “constructors arguments”
are of the correct type (and this requires to look at the whole
subexpressions), even though this is guaranteed by the static
type of the function argument. An efficient implementation
would simply look at the tag, dispatch according to its value,
and then assume correct types for the arguments.

A third example is given by the selection expression
���� �� introduced in the previous section that would be
rather implemented by����� � ���� ��			�� ��!!�$ ��

����� +!!� #� � as the static type-checking already en-
sures that��� does not occur in the rest of the sequence.

Even more, combining static information and query opti-
mization techniques such as rewriting, the expression

!���#*����� !%���� &��� ������ ������#*������

mentioned in the previous Section could be translated into:

2���� ��� ���� �: ! 9�: !9;77:= : : :# > :=" # - ;

where tests are reduced to the essential.

An efficient dispatch algorithm Let us sketch an efficient
dispatch compilation schema; we will just present some
ideas, as the full formalization is outside the scope of this
paper. Given� disjoint types��,. . . ,��, and a value� be-
longing to their union to the problem is to decide which� �

the value belongs to. For instance, if the program has to test
at runtime whether a value belongs to a type�, and the type-
checker proves that the value is necessarily of type�, then
the compiler can just produce code that decides between the
types�� � �1� and �� � �6�. If either �� or �� is empty,
then there is no code to produce at all. More generally, a
possible implementation of pattern matching could first de-
termine which branch to choose, by making a choice among
the types�� defined as in the typing rule of the pattern match-
ing (�� � �6 ��� �� ��� � � � 6 ��� ���� ��� 1 ��� �����).

The algorithm we outline has the important property to be
semantic, in the sense that its result does not change if the
�� are replaced by equivalent types (two types are equivalent
if they denote the same set of values). As a consequence,
for instance, there is no need to apply algebraic rewriting
rules to syntactically simplify the types�� before applying
the algorithm.

The compilation schema consists in descending deep in
the value, starting from the root, and accumulate enough in-
formation to stop the process as soon as possible. For in-
stance, if the value is a pair���
 ���, the idea is to generate
a new set of disjoint types��,. . . ,�� and use�� to make a
choice among them; according to the result� (meaning “� �
is in ��”), a new set of types��

�
,. . . ,���� is examined and��

is used to single out a new result	 that will be enough to
determine the�� the pair���
 ��� belongs to.

All the types��, ��� are computed at compile time from
��,. . . ,��.3 The choice of the��’s must be done so that���
any possible value�� will belong to one��, and���� the in-
formation extracted from�� during the selection of the��, is
enough to avoid backtracking to�� (that is, the knowledge
of �� and of the� such that�� is in �� must be enough to
decide the�� the value���
 ��� belongs to).

For example, consider�� � ,,������-2���- and�� �
,,E����E�-2�����
-. A possible choice is���,���B�-,
�� � ,E������-, and �� � ,������E�-. Given � �
,��2��-, if �� is in �� (resp.��), then� is in �� (resp.��); if
�� is in ��, then we to look at�� and check whether it is in
��
�
� ��� or in ��

�
� �����
.

The choice of the��’s is not unique and must be done
heuristically. Indeed, the capture of more information from
�� than the strictly necessary may allow to cut down the ex-
ploration of��. For instance, suppose that�� � ���
 ���,
�� � ���
 ���, that�� is disjoint from�� and�� is disjoint
from ��. In order to decide in which�� a value���
 ��� is,
one can either look at�� (making the choice between�� and
��) and ignore��, or look at�� (making the choice between
�� and��) and ignore��: there is not a better choice in gen-
eral. For the implementation of�Duce we chose to extract
as much information from�� as possible (that is, any subdi-
vision of a�� would give the same set of possible values for
��); our choice is based on the fact that in�Duce sequences

3Actually, it is possible to take�� � � and arrange so that the dispatch
on �� is a tail-recursive call (this means: the result� of dispatching among
the��� is also the result for dispatching among��,. . . ,��).

13

are coded as right associating pairs and we do not want to
run through a whole sequence when the first elements may
be enough to conclude. Similarly for the encoding of XML
elements we first descend on the left of a pair so that we
examine in turn the tag, the attributes, and only at last the
children. We do not detail here fomally how to choose the
��’s, nevertheless it is important to signal that this can be
done “semantically” so that the choice will be invariant to
the replacement of the��’s by equivalent types.

7 Other and future issues

We summarize here some open questions in the design of
�Duce and sketch further research directions.

Polymorphism and inference Section 3.7 discusses lack
of polymorphism and type inference; it suggests that�Duce
could benefit from some kind of powerful polymorphism
mechanism, such as higher-order types; of course, introduc-
ing such features would make everything more complicated.
For instance, we would probably be obliged to get rid of sim-
ple semantic definitions for the typing of pattern matching,
and use more or less ad hoc approximations.

The current approach is to add specific constructions such
as��� or ����%"��� to handle typical cases where poly-
morphism is needed; a possible direction is to allow the pro-
grammer to define new constructions (syntax, typing rules,
compilation schemes) in a meta language (ML for instance),
and use some kind of plug-in mechanism to extend the
�Duce core compiler.

Concrete interaction with XML The natural behavior of
an XML transformation written in�Duce would be to parse
the input XML document, validate it with a given�Duce
type, run the transformation, and output a final XML docu-
ment. However, we can consider improvements to this sim-
ple scenario:

� combining programs: frameworks such as Transmor-
pher [6] are proposed to combine several XML trans-
formations together to form a complex application. Be-
tween two transformations, it may be useless to out-
put and then re-parse immediately documents; instead,
XML transformations engines (and�Duce could be
considered as one of them) should be able to commu-
nicate directly by exchanging internal representation of
documents. Moreover, if the output of a transformation
is proven to have the expected type (and�Duce type
system can enforce such a constraint), it is not neces-
sary to validate the input;

� textual representation of XML is important for ex-
changing documents between several organizations, but
it may be inadequate for some applications. For in-
stance, in the setting of XML databases, we do not want

to parse the full database for each query. A binary rep-
resentation of XML would match current practice of
non-XML databases; the representation should be opti-
mized to take into account the structure of documents,
and types will of course be important in this setting.
For instance, if thecontent modelof an element is com-
pletely fixed by the type, compact and efficient storage
as in relational databases could be used.

� a specific�Duce program, such as a query, may not
need to look at the whole input document (database); it
may be interesting to design communication protocols
between XML programs (the�Duce interpreter or pro-
grams) and (binary) XML storage managers that allow
to extract only needed part of documents.

Missing XML features XML recommendation specifies
a way to refer from an element to another element with ID,
IDREF and IDREFS attributes. Currently, there is no spe-
cific support in�Duce for these. We are planning to add
(mutable) reference types to�Duce to reflect the pointer
structure defined by ID and IDREF inside a document. This
feature would be close to ML references, thus allowing the
definition of complex and spurious data structures (such as
graphs).

We are also planning to add support for namespaces (us-
ing pairs instead of simple atoms to represent element tags).

References

[1] M. Abadi, L. Cardelli, B. Pierce, and G. Plotkin. Dy-
namic typing in a statically typed language.Trans-
actions on Programming Languages and Systems,
13(2):237–268, April 1991.

[2] Scott Boag, Don Chamberlin, Mary Fernan-
dez, Daniela Florescu, Jonathan Robie, J´erôme
Siméon, and Mugur Stefanescu.XQuery 1.0: An
XML Query Language. W3C Recommendation,
������������@���
�;D��% �, November 1999.

[3] G. Castagna, G. Ghelli, and G. Longo. A calculus for
overloaded functions with subtyping.Information and
Computation, 117(1):115–135, 1995.

[4] James Clark. XSL Transformations (XSLT). W3C
Recommendation, ������������@���
�;D��% �,
November 1999.

[5] James Clark and Steve DeRose. XML Path
Language (XPath). W3C Recommendation,
������������@���
�;D������, November 1999.

[6] Jérôme Euzenat and Laurent Tardif. XML transforma-
tion flow processing. In2nd conference on Extreme
markup languages, pages 61–72, 2001. Available at
�����������%�����
������� �
%�"������
��.

14

[7] Mary Fernández, J´erôme Simeon, and Philip Wadler.
An algebra for XML query. InFoundations of Software
Technology and Theoretical Computer Science, pages
11–45, 2000.

[8] Alain Frisch, Giuseppe Castagna, and V´eronique Ben-
zaken. Semantic subtyping. InLogic in Computer Sci-
ence, 2002. To appear.

[9] Haruo Hosoya and Benjamin C. Pierce. XDuce:
A typed XML processing language. InProceed-
ings of Third International Workshop on the Web and
Databases (WebDB2000), 2000.

[10] Haruo Hosoya and Benjamin C. Pierce. Regular ex-
pression pattern matching for XML. InThe 25th An-
nual ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages, 2001.

[11] Haruo Hosoya, J´erôme Vouillon, and Benjamin C.
Pierce. Regular expression types for XML. InProceed-
ings of the International Conference on Functional
Programming (ICFP), 2000.

[12] V. Vianu. A web odissey: from Codd to XML. InProc.
of International Conference on Principles of Database
Systems (PODS ’01), pages 1–15. ACM Press, 2001.

15

