
XPERANTO: Publishing Object-Relational Data as XML
Michael Carey1 Daniela Florescu2 Zachary Ives3 Ying Lu4

Jayavel Shanmugasundaram4 Eugene Shekita Subbu Subramanian
IBM Almaden Research Center

650 Harry Road
San Jose, CA 95120

carey@acm.org, daniela.florescu@inria.fr, zives@cs.washington.edu, luy@cs.wisc.edu, jai@cs.wisc.edu,
shekita@almaden.ibm.com, subbu@us.ibm.com

1 Currently at Propel, 2350 Mission College Blvd., Santa Clara, CA 95054.
2 Work done while the author was visiting the IBM Almaden Research Center from INRIA, Le Chesnay, France.
3 Work done while the author was visiting the IBM Almaden Research Center from the University of Washington, Seattle, WA 98155
4 Work done while the author was visiting the IBM Almaden Research Center from the University of Wisconsin, Madison, WI 53706.

ABSTRACT
Since its introduction, XML, the eXtended Markup Language,
has quickly emerged as the universal format for publishing and
exchanging data in the World Wide Web. As a result, data
sources, including object-relational databases, are now faced
with a new class of users: clients and customers who would like
to deal directly with XML data rather than being forced to deal
with the data source’s particular (e.g., object-relational) schema
and query language. The goal of the XPERANTO project at the
IBM Almaden Research Center is to serve as a middleware layer
that supports the publishing of XML data to this class of users.
XPERANTO provides a uniform, XML-based query interface
over an object-relational database that allows users to query and
(re)structure the contents of the database as XML data, ignoring
the underlying SQL tables and query language. In this paper, we
give an overview of the XPERANTO system prototype,
explaining how it translates XML-based queries into SQL
requests, receives and then structures the tabular query results,
and finally returns XML documents to the system’s users and
applications.

Keywords
XML, object-relational database, middleware, views, query.
processing

1. INTRODUCTION
Since its introduction, XML, the eXtended Markup Language
[2], is quickly emerging as the universal format for publishing
and exchanging data over the World Wide Web. In this paper, we
will focus on the problem of publishing data in object-relational
databases as XML. In the business-to-business e-commerce area,
there is a widely recognized need to create XML documents by
combining one or more object-relational tables (e.g. creating an
XML purchase order by joining a customer with information
drawn from other tables). For example, a music store might wish
to publish its inventory of used instruments on the web,
including each instrument’s make, model, condition, price,
description, and so on, in order to make this information
available to specialized web search engines that help musicians
find good deals on used instruments. Further, such a store might
provide query access to its inventory in order to support web

queries such as “find used 5-string Fender Jazz Bass guitars
available for between US $500 and US $900 from stores in the
San Francisco Bay area”. One approach to meeting the needs of
such a music store would be to materialize and publish the
store’s inventory as XML on its web site on a daily basis. A
different approach, and the approach on which we shall focus in
this paper, is for the store to provide a virtual XML view of its
inventory database (which resides in an existing object-relational
DBMS) and to directly support XML queries against this view.

In this paper, we describe our research prototype system for
publishing database content as queryable XML views. Our focus
is on doing so in a “web-friendly”' manner – more specifically,
our assumption is that there is likely to be a growing community
of XML web site developers who “live and breathe” XML, and
who would prefer to work solely in an XML context. The aim of
our project, XPERANTO (Xml Publishing of Entities,
Relationships, ANd Typed Objects), is to support this class of
developers. To this end, we are developing an XML-centric
middleware layer that automatically provides a default XML
view of existing databases and an XML query facility with which
developers can define new, more desirable XML views. These
views can also be queried using the same XML query facility, all
without the developers having to learn or write SQL. Internally,
of course, XPERANTO translates incoming XML queries into
SQL, submits them to the underlying database system, receives
the queries' answers, and then translates their results back into
XML terms.

A key advantage of the XPERANTO “pure XML”
philosophy is that XML can be used to model both relational data
and relational meta-data in the same framework. Users can thus
query seamlessly over relational data and meta-data using an
XML query language. For instance, in a stock database where
there are separate tables containing stock quotes for each
company, with the table names being the same as the
corresponding company names, XPERANTO users can issue an
XML query that asks for the names of companies (meta-data)
whose stock value (data) exceeded $100 on any day. In this
sense, XPERANTO provides a query capability that is more
powerful than SQL.

The XPERANTO way of publishing object-relational data as
XML is unique in many ways. Unlike other similar systems that
we are aware of, such as SilkRoute [6], XPERANTO takes the
pure XML, single query language approach to solving the
problem. Thus users and developers of XPERANTO need only
be familiar with XML and an XML query language and need not
know SQL or learn a new query language (such as RXL [6]).
Further, as mentioned above, the pure XML approach adopted by
XPERANTO allows for a more powerful query capability
because both relational data and meta-data can be represented
and queried in the same framework. XPERANTO is also unique
in that it publishes not only relational data as XML, but also
object-relational structures, including such features as typed
tables and columns, oids and references, inheritance, and
collections. Finally, unlike [6], XPERANTO pushes all relational
logic, such as join and merge, into the object-relational engine
thus fully exploiting the sophisticated query processing capability
of object-relational databases.

2. XPERANTO ARCHITECTURE
XPERANTO is organized into four major software components,
which are further broken down into smaller logical sub-
components. As shown in Figure 1, the major components of
XPERANTO are: Query Translation, XML View Services, the
XML Schema Generator, and the XML Tagger. The core of
XPERANTO, and the primary focus of this paper, is the Query
Translation component. This component translates from the
XML query language used by clients (currently XML-QL [4])
into the appropriate dialect of SQL for the underlying O-R
DBMS. The main role played by each of the sub-components in
Figure 1 is described below.

• XML-QL Parser: Takes an XML-QL query and generates
XQGM (XML Query Graph Model) – a language-neutral
intermediate representation for XML queries. XQGM
shields XPERANTO from the details of a particular XML
query language. Thus, XPERANTO can easily adapt to the
XML query language standard when one becomes available.

• Query Rewrite: Takes the XQGM representation of a
query, resolves view references, performs XML view
composition, and produces a semantically equivalent
XQGM representation of the query. It also consults the
database system catalogs in case the user query is over both
relational data and meta-data.

• SQL Translation: Translates XQGM to SQL statements.
This sub-component makes use of (potentially cached)
database system catalog information to perform type
checking etc.

• XML View Services: Serves as a storage and retrieval
interface for XML-QL view definitions. When views are
defined, they are stored in a dedicated table. They can be
later retrieved for view unfolding.

• XML Schema Generator: Takes (potentially cached)
database catalog information and produces schema
information for (user-defined and default) XML views and
query results.

• XML Tagger: Converts tabular SQL query results into
structured XML documents.

Figure 1: XPERANTO Architecture

SQL Queries

XPERANTO

O-R Database

SQL Query Processor

Stored
Tables

System
Catalog

XML View Services

Query Translation

XQGM

XML-QL Parser

XQGM

Query Rewrite

SQL Translation

XML Schema Generator

XML Schema

XML Tagger

Data Tuples

View defns.

View description

Catalog
Info XML Result

<simpleType name=”string255” source=”string”> <maxLength value=”255”/> </simpleType>

<simpleType name=”string30” source=”string”> <maxLength value=”30” /> </simpleType>

<complexType name=“bookTupleType”>

 <element name=“bookID” type=“string30” />

 <element name=“name” type=“string255” />

 <element name=“publisher” type=“string30” />

</complexType>

<complexType name=“bookSetType”>

 <element name=“bookTuple” type=“bookTupleType” maxOccurs=“*” />

</complexType>

<element name=“book” type=“bookSetType” />

<complexType name=“author_type”>

 <element name=“bookID” type=“string30” />

 <element name=“first” type=“string30” />

 <element name=“last” type=“string30” />

</complexType>

<complexType name=“authTupleType” source=”author_type” derivedBy=”extension”>

 <attribute name=“ssn” type=“ID” />

</complexType>

<complexType name=“authSetType”>

 <element name=“authTuple” type=“authTupleType” maxOccurs=“*” />

</complexType>

<element name=“author” type=“authSetType” />

3. XML SCHEMA MAPPING
As mentioned earlier, one of the goals of XPERANTO is to allow
XML developers to publish object-relational data in XML form
without having to deal with the database system’s native schema
or SQL query dialect. XPERANTO achieves this goal by
providing a default XML view of the database. Developers can
then use this default view to write queries and define more

situation-appropriate XML views. The structure of an XML view
is described using an XML Schema Specification [10] (XML
Schema has been designated to supplant the XML DTD [1],
adding important features such as data types, value constraints,
inheritance, and foreign key information.) We first briefly
introduce object-relational database schemas before describing
the construction of default XML views.

Figure 3: Schema of Default XML View over Example Object-Relational Database

1. Create Table book AS (bookID CHAR(30), name VARCHAR(255), publisher VARCHAR(30))

2. Create Table publisher AS (name VARCHAR(30), address VARCHAR(255))

3. Create Type author_type AS (bookID CHAR(30), first VARCHAR(30), last VARCHAR(30))

4. Create Table author OF author_type (REF IS ssn USER GENERATED)

Figure 2: DDL for Example Object-Relational Database

3.1 Object-Relational Database Schemas
The schemas of object-relational databases are composed of the
usual SQL database primitives (schemas, tables/views, columns,
basic built-in data types) augmented with a set of additional
primitives (structured types, inheritance, object IDs, references,
typed tables/views) that enable database designers to define new
data types and complex object structures. (See [3][7] for an
overview of the object-relational data definition primitives from
a DB2 UDB perspective.) In the interest of space, we will
explain these primitives through the use of a single object-
relational schema example that incorporates a number of them.
Figure 2 shows the Data Definition Language (DDL) used to
define an object-relational schema in SQL99 terms. (Let us
assume that these definitions are for a schema named library
within a database called books.) The first DDL statement in
Figure 2 defines a book table. This is a conventional (SQL92)
table having three primitive data type columns – bookID, name,
and publisher. The second DDL statement similarly defines a
(SQL92) publisher table. The third DDL statement defines a
SQL99 structured type – author_type . This structured type has
three attributes, namely bookID, first, and last (each a primitive
data type). The fourth DDL statement creates an author table.
Rows of the author table are objects of type author_type. Each
row will contain an object ID column (ssn is the name chosen by
the database administrator for this column), plus one column for
each of the type’s attributes.

3.2 Default XML Views
Figure 3 shows a fragment of the XML Schema describing the
default XML view of the object-relational schema defined in
Figure 2. (The XML Schema definition for the publisher table is
omitted in the interest of space). XML Schema uses the
complexType element to define complex element structures. In
the default views produced by XPERANTO, structured types in
an object-relational schema are thus directly mapped to the
corresponding XML Schema complexType definitions. This
mapping is shown in Figure 3, where the DB2 structured type
author_type has been mapped to a similarly named XML
Schema complexType. The XML Schema complexType has sub-
elements named bookID, first, and last, corresponding to the
attributes of author_type. Note that these sub-element types are
constrained versions of the basic string type (the XML Schema
base type string) with maximum lengths specified; we use the
XML Schema simpleType element to define each type separately.

A conventional (SQL92) table is mapped to a corresponding
XML Schema element with the table's name. This element is
defined to hold multiple occurrences of another element, namely
the table's tuple type element. Thus, in our ongoing example, the
XML Schema description corresponding to the book table is
obtained by first defining a bookTupleType whose sub-elements
are obtained from the column names of the book table (elements
bookID, name, and publisher). Then, in order to define the type
for the book element itself, a bookSetType type is defined as
being zero or more occurrences of elements of type
bookTupleType. The book table is then mapped to an element
having the name book and type bookSetType.

Typed (SQL99) tables are handled in a manner similar to
that of conventional (SQL92) tables. There are, however, two

significant differences. The first difference lies in the use of the
XML Schema type extension facility to derive tuple types for
typed tables. In our example, the authorTupleType is derived
from author_type by adding an extra sub-element, ssn. The
second difference lies in the mapping of the object ID columns
and object reference columns (if any) that appear in typed tables.
XPERANTO uses the ID and IDREF type facilities of XML
Schema to map these SQL99 concepts. For example, the
authTupleType definition has an attribute ssn of type ID. Though
not shown in this example, XPERANTO can also capture SQL99
type hierarchies using the XML Schema type extension facility.

4. QUERY PROCESSING AND XML
DOCUMENT CONSTRUCTION
Once XPERANTO publishes a default XML view of an object-
relational database, users can then pose queries and define more
complex views using an XML query language. Figure 4 shows an
example XML-QL query that selects information about books
published by a publisher having a name that contains the string
“Wesley”. For each book, the query constructs a book element
having the book name, the publisher of the book (the first nested
sub-query), and the authors of the book (the second nested sub-
query). The result of the query therefore will be a tree-structured
document where each book element contains information about
the publisher(s) and authors of the book. We will use this
example query for the remainder of this paper to illustrate query
processing in XPERANTO. We first describe the query rewrites
performed for XML view composition before describing SQL
query generation and XML document construction.

4.1 XML Query Rewriting
As mentioned earlier, XPERANTO allows users to define
complex (virtual) XML views over the default XML view using
an XML query language. Other XML views may be defined in
terms of these XML views and user queries (in the same XML
query language used for view definition) can then be posed over
them. In fact, in many cases, end users may never see the default
XML view but may only see a more sophisticated, application-
specific XML view created by an administrator. The goal of the
query rewrite engine is to perform XML view composition and
simplify complex user queries over complex XML views and
produce equivalent simple queries over the default XML view.

In order to perform XML view composition effectively,
XPERANTO translates user queries into an intermediate
representation suitable for view composition. This intermediate
representation, called XQGM (XML Query Graph Model),
closely mirrors the QGM (Query Graph Model) representation
used for rewriting queries in the commercial DB2 UDB object-
relational database system [8]. There are three main reasons for
choosing XQGM as the intermediate representation. First, it
ensures that the XPERANTO query rewrite engine will be
“upward compatible” with next-generation XML query
languages, which will most likely have sophisticated SQL
features such as aggregation, null values, universal and
existential quantification, etc. [5]. Second, it becomes easier to
translate queries in an XML query language to SQL queries
because both are represented using similar structures. Finally,
the XQGM rule engine can inherit much of the rules and
extensibility properties of QGM rule engine, which has proved to
be very effective for SQL view composition.

It is important to note that using a QGM-like representation
does not in any way tie XPERANTO to the DB2 UDB object-
relational database system. XPERANTO merely uses an internal
representation like QGM in the middleware for the purpose of
XML query rewrites and can work on top of any object-relational
database system. There are, however, some extensions that need
to be made to QGM to make it appropriate for XML query
languages. Specifically, means to represent, navigate and
construct nested XML elements needs to be added to QGM.
XQGM does this by adding an XML type and by supporting new
XML-specific functions for navigating (example functions are
GetSubElements, GetAttributes) and constructing (example
functions are CreateElement, CreateAttribute) elements of this
type. These functions are modeled in XQGM the same way that
SQL functions, such as max and concat, which operate on SQL
types, are modeled in QGM.

The main purpose of XQGM query rewrites is the
elimination of unnecessary XML element and attribute
construction for those elements that are constructed in
intermediate views but do not appear in the final query result.
This is done by performing functional composition and exploiting
certain equivalences. As an example, consider an XML element
created in an XML view. This is represented using the
CreateElement function in the corresponding XQGM
representation of the view. This function takes as its inputs the
tag name of the element to be constructed, the list of attributes of
the element to be constructed, and the list of sub-elements of the
element to be constructed. Now assume that an user query over
the view asks for all the sub-elements of the constructed element
(and does not require the constructed element to be returned). In
this case, it is unnecessary to construct the element during query
execution because the sub-elements of the constructed element
can be directly returned to the user. In XQGM, obtaining the
sub-elements of the constructed element is represented using the

GetSubElements function and query rewrite exploits the fact that
the CreateElement function (of the view) and the
GetSubElements function (of the query) compose to just return
the list of sub-elements that are passed as an input parameter to
the CreateElement function. Unnecessary element creation is
thus avoided. Similar functional equivalences are used to handle
recursion and wild cards in XML queries.

Special techniques are required when the user queries over
both object-relational data and meta-data. For example, consider
an XML query over the example default view that asks for the
tag names of all the sub-elements of “library” (these tag names
represent table names) that contain a sub-element having the tag
name (this represents a column name) “name” and having the
content (this represents a column value) “Addison-Wesley”. This
cannot be translated to a SQL query because SQL does not
support seamless querying over data and meta-data. In such
cases, during query rewrite, XPERANTO automatically
generates SQL queries over the database catalog in order to
obtain the relevant meta-data (all the tables having a column
named “name”, in our example) and incorporates this
information in the XQGM representation of the query. The
resulting XQGM representation does not access meta-data
information and can be directly translated to SQL. Space
constraints preclude a more detailed discussion of query rewrite.

4.2 SQL Generation and XML Document
Construction
Once the XPERANTO query rewrite engine performs view
composition, the resulting XQGM structure represents a query
over the default XML view. The final step in the XPERANTO
query translation process is then to create a hierarchical, XML
document from flat, relational tables as per the query
specification. There are many implementation alternatives to
achieve this translation, and XPERANTO uses one of the most

Figure 4: Example XML-QL Query over Default XML View

WHERE <library.book.bookTuple>
 <bookID> $bid </>
 <name> $bname </>
 <publisher> $bpub </>
 </> IN “db2:xml:books/library”,

 $bpub LIKE “Wesley”
CONSTRUCT <book id=$bid>
 <name> $bname </>
 {WHERE <library.publisher.publisherTuple>
 <name> $bpub </>
 <address> $addr </>
 </> IN “db2:xml:books/library”
 CONSTRUCT <publisher>
 <address> $addr </>
 </>}
 {WHERE <library.author.authorTuple>
 <bookID> $bid </>
 <first> $fname </>
 <last> $lname </>
 </> IN “db2:xml:books/library”
 CONSTRUCT <author first=$fname last=$lname/>}
 </>

efficient and robust approaches called the “sorted outer union”
approach [9]. In the sorted outer union approach, there are two
distinct phases in constructing the result XML document. In the
first phase, the (object-relational) data that is necessary to
construct the result document is generated. In the second phase,
the data is tagged to produce the result XML document. The
query processing capabilities of the object-relational engine are
used for the first phase, while a tagger in the XPERANTO
middleware is used for the second phase. (In cases where there is
more XML support in the underlying database system, the
tagging can also be done inside the database engine [9].)

Figure 5 shows the SQL query that produces the relational
data for the query shown in Figure 4. The SQL query is a union
of many sub-queries. Each SQL sub-query corresponds to a
(sub)query in the original XML-QL query (see Figure 4). Thus
the first sub-query produces book information, the second sub-
query produces publisher information and the third sub-query
produces author information. Since each sub-query only produces
information about one entity, only some of the fields are filled in
and the others are null. A special type field (the first field) is
added to distinguish the contents produced by each sub-query.
The result of the union is sorted by the bookID and type so that
in the result XML document, all information about a book
appears together, and all publisher information of a book appears
before all author information of the same book. Since the
information in the result of the query is in document order, a
constant space, streaming tagger can consume the result and
construct the result XML document. More details of the sorted
outer union approach, such as optimizations using common sub-
expressions etc., can be found in [9].

5. CONCLUSION AND FUTURE WORK
In this paper, we have described a systematic approach to
publishing XML data from existing object-relational databases.
As we have explained, our work on XPERANTO is based on a
“pure XML” philosophy – we are building the system as a
middleware layer that makes it possible for XML experts to
define XML views of existing databases in XML terms. As a
result, XPERANTO makes it possible for its users to create XML
documents from object-relational databases without having to
deal with their native schemas or SQL query interfaces.
XPERANTO also provides a means to seamlessly query over

object-relational data and meta-data. Our plans for future work
include providing support for insertable and updateable XML
views. We are also exploring the construction and querying of
XML documents having a recursive structure, such as part
hierarchies and bill of material documents.

6. REFERENCES
[1] J. Bosak, T. Bray, D. Connolly, E. Malor, G. Nicol, C.M.

Sperberg-McQueen, “W3C XML Specification DTD,”
http://www.w3.org/XML/1998/06/xmlspec-report.htm.

[2] T. Bray, J. Paoli, C.M. Sperberg-McQueen, “Extensible
Markup Language (XML) 1.0,”
http://www.w3.org/XML/1998/06/xmlspec-report-
19980910.htm.

[3] M.J. Carey, et. al., “O-O, What’s Happening to DB2?”,
Proceedings of the VLDB Conference, Scotland, 1999.

[4] A. Deutsch, M. Fernandez, D. Florescu, A. Levy, D. Suciu,
“XML-QL: A Query Language for XML,” 8th International
World Wide Web Conference, Toronto, May 1999.

[5] P. Fankhauser, M. Marchiori, J. Robie, “XML Query
Requirements”, http://www.w3.org/TR/xmlquery-req.

[6] M. Fernandez, W. Tan, D. Suciu, “SilkRoute: Trading
Between Relations and XML,” 9th International World Wide
Web Conference, Amsterdam, May 2000 (to appear).

[7] Y. C. Fuh, et. al., “Implementation of SQL3 Structured
Types with Inheritance and Value Substitutability”,
Proceedings of the VLDB Conference, Scotland, 1999.

[8] H. Pirahesh, J. M. Hellerstein, W. Hasan, “Extensible/Rule
Based Query Rewrite Optimization in Starburst”,
Proceedings of the SIGMOD Conference, San Diego, 1992.

[9] J. Shanmugasundaram, E. Shekita, R. Barr, M. Carey, B.
Lindsay, H. Pirahesh, B. Reinwald, “Efficiently Publishing
Relational Data as XML Documents”, submitted for
publication.

[10] H. S. Thompson, D. Beech, M. Maloney, N. Mendelsohn,
“XML Schema Part I: Structures”, World Wide Web
Consortium (W3C) working draft,
http://www.w3.org/TR/xmlschema-1.

Figure 5: Outer Union SQL Query Corresponding to our Example

WITH OuterUnion (type, bookID, bookName, pubName, pubAddr, authFirst, authLast) AS (
 SELECT ‘0’, b.bookID, b.name, NULL, NULL, NULL, NULL
 FROM book b
 WHERE b.publisher LIKE “Wesley”
UNION ALL

 SELECT ‘1’, b.bookID, NULL, p.name, p.address, NULL, NULL
 FROM book b, publisher p
 WHERE b.publisher LIKE “Wesley” and b.publisher = p.name
UNION ALL
 SELECT ‘2’, b.bookID, NULL, NULL, NULL, a.first, a.last
 FROM book b, author a
 WHERE b.publisher LIKE “Wesley” and b.bookID = a.bookID
)
SELECT * FROM OuterUnion ORDER BY bookID, type

