XML Dataspacesfor Mobile Agent Coordination

Giacomo Cabri, LetiziaLeonardi, Franco Zambonrelli
Dipartimento di Scienze dell’ Ingegneria— Universitadi Modena eReggio Emilia
ViaCampi 213b — 41100Modena— ITALY
Phore: +39-059-376735 —Fax: +39-059-376799
E-mail: {giacomo.cabri, |etizialeonardi, franco.zambonrelli } @unimo.it

Abstract

This paper presents XMARS, a pogrammable cordination architedure for
Internet appications based on mohile agents. In XMARS, agnts coordinate —
both with each aher and with their current exeation environment — through
programmable XML dataspaces, accessed by agents in a Lindalike fashion. This
suits very well the dharacteristics of the Internet environment: on the one hand, it
offers all the advantages of XML in terms of interoperability and standad
representation d information; on the other hand, it enforces open and urouped
interactions, as required by the dynamicity of the environment and ty the mohility
of the apdication comporents. In addtion, coordinationin XMARSis made more
flexible and seaure by the apahblity of programning the behaviour of the
coordination media in reaction to the agents accesss. An apgication example
related to the management of on-line academic courses $ows the suitability and
the dfedivenessof the XMARS achitecture.
Keyword: Internet Architectures, XML, Mobile Agents, Tuple Spaes,
Interoperahility

1. Introduction

The growth of the Internet infrastructure and the pervasion d the WWW techndogy have
changed the way the Internet is concaved and exploited. Far from considering the Internet either as
araw communication media or as a global information repository, the arrent chall enge is to exploit
the Internet as a globally distributed computing system, where aty kind d computation on
distributed data and coordination among distributed entities can be performed. However, deploying
distributed applicaions in the Internet raises svera problems, due to the intrinsic charaderistics of
the Internet itself. First, decentralised management and goenness make the Internet popuated by a
multitude of heterogeneous entities (services and information sources) with which application
comporents may be in need to interad, thus raising interoperability problems. Second, the intrinsic
dynamicity of the scenario and the unréiability of Internet conredions require suitable
programming paadigms and coordination techndogies, to fadlit ate the design and the exeaution
of Internet applicaions.

With regard to interoperability, the incredible successof HTML has recently led the WWW
consortium to the development of XML [W3Ca], alanguage for data representation which is likely
to become astandard for interoperabili ty in the Internet, due to the advantagesin can provide in this
context [KhaR97]. First, XML represents data in a familiar (HTML-like) tagged textua form, and
explicitly separates the treatment of data from its representation. Unlike an HTML document, which
expresses how a document must be processed and visualised by a browser, an XML document only
spedfies what the data structures are, and leaves any processng dedsion at the goplication level.
For example, a browser must be instructed abou how to visuaise an XML document via an XSL
style sheet [W3Cb]. This achieves the platform-independence required for the Internet and the well
appredated fedure of human-readability. In addition, since the XML tag-set is fredy extensible,

1

XML can be made capable of representing whatever kind of data and entity oneislikely to findin
the Internet: complex documents [CiaVM99], service interfaces and oheds [GIUTM99],
communicaion protocols [NakY 98], aswell as agents [LanHO99]. These charaderistics let us think
that interoperability in the Internet will be information-oriented and besed on XML, rather than
service-oriented and besed on CORBA [OMG97]. In fad, by focusing mainly on communication
interoperabili ty, CORBA fals dhort when complex data and documents are involved.

With regard to programming paadigms and coordination techndoges for Internet
applications, the most suitable solutions em to be represented by mobile agents and Linda-like
tuple spaces, respedively. On the one hand, a programming paradigm based onmobile agents, i.e.,
adive and autonamous ftware entities that can dynamically plan their exeaution adivities,
thereby included the caability of transferring their exeaution across different exeation
environments (i.e., Internet sites), suits well Internet applications. In fad, mobile agents can help
application designers in dealing with the intrinsic uncertainty that they can have aou the target
environment, as well as with the intrinsic dynamicity and wreliability of Internet sites and their
conredions [FugPV98, KarT98]. On the other hand, whenever mobility and dynamicity are
involved, coordination models which forces a strict couding between the interacting entiti es (such
as pea-to-peer and client-server ones) forces odd design choices in applicaions and lead to
inefficiency in exeaution. Therefore, we argue that fully uncoupged coordination models based on
the tuple space oncept [AhuCG86, PapA 98], adopted for both inter-agent coordination and for
making agents interact with their current exeaution environment, suits Internet applicaions based
onmobhile ggents and leads to simpler application design [Auth99.

Putting all together, we have designed and implemented XMARS, a coordination
architeaure for mobile agents, which exploits the advantages of the XML language and of Linda
like wordinationin the mntext of a more general Internet architecture based onXML. In XMARS,
derived from the MARS coordination architecture [Auth9g, agents coordinate — bah with eadh
other and with their current exeaution environment — through programmable XML dataspaces
asciated to each exeaution environment and accessed by agents in a Lindalike fashion, as if they
were tuple spaces. This can provide severa advantages in mobile agent applications. On the one
hand, by exploiting XML as the base language for data representation, XMARS provides for a high-
degreeof interoperabili ty among the multitude of heterogeneous information sources with which an
agent may bein need o interad. On the other hand, by exploiting Linda-like cordination, XMARS
enables a high-degree of uncouging in interadions and suits the opennessand the dynamicity of the
Internet scenario. In addition, since the behaviour of the XML dataspaces in resporse of the
aaceses made to them by agents can be fully programmed [DenNO98], XMARS enables bath
environment-spedfic and applicaion-spedfic coordination laws to be enbedded in a dataspace
thus providing for more seaure and flexible aordination adivities. An applicaion example in the
areaof agent-mediated management of on-line academic coursesis assumed as a case study to show
the dfedivenessof the XMARS approach.

The paper is organised as foll ows. Sedion 2 discusss the architedural isues arising in the
adoption d XML as a base for interoperability and propcses a general Internet architedure based
on XML. Section 3 presents the XMARS architedure. Sedion 4 presents the gplicaion example.
Sedion 5 dscusses related work. Sedion 6 concludes the paper and oulines our future research
work.

2. XML Architectures

XML is a promising technology to achieve interoperability in the Internet world. However,
one shoud ask what architedure @muld be mnceived so as to alow heterogeneous comporents to
interoperate via XML dataspaces. In this ®dion, starting from two simple and intuitive XM L-based
sample achitectures, we will try to sketch a more genera architedure, based on XML, which can

acommodate any kind d Internet services and information, as well as any kind d applicaion level
comporent, included mobil e agents.

2.1 XML ontheWeb

Currently, the most natural and intuitive way to exploit XML isin the Web server, as a data
representation format more flexible and pawerful than HTML. In XML, like in HTML, data is
recorded in a standard, textual, format that can be read and manipulated by several kinds of
applicaion. However, in HTML, tags explicitly commit applicaions to a spedfic use (i.e, a
spedfic visuaisation format) of the enclosed information. Instead, in XML, it is up to the
applicaion level to deade what to do (i.e., how to elaborate and visualise) enclosed information.
Therefore, in the cntext of Web servers, XML enables a more moduar approach to servers design.
At the lowest level, the server administrator can store its information in XML, adogting the most
natural format for its data, and dsregarding any isaue related to data visuali sation. At ahigher level,
the XML-coded information can be trandated into HTML pages to be visuadised by a standard
HTML browser, onthe basis of specific visuaisation information spedfied in XSL [W3Cb]. In this
case, a software layer is needed to trandate data from XML to HTML, accordingly to XSL
spedficdions, and to provide browsers with the normal interface of a HTTP server. In addition, the
information level can also store XML information related to server management, to be read and
interpreted by the server during its adivities, asit is for example defined by the Channel Definition
Format [CDF97], and exploited by Microsoft Active Channels.

By trying to generalise the dove example, ore could think at the XML information in the
server as originated by a different information source and made avail able in XML format for use by
the XML server (asit can considered an HTTP server cgpable of trandating XML to HTML on the
basis of XSL). Let us consider a DBMS that stores information using a proprietary representation.
The most efficient way to make this information avail able on the Web isto provide asoftware layer
that dynamically queries the database and produces its results in a Web accessble format. This is
what happens in several Web servers, where aCGl application is provided to accessa DBMS and
trandate the results in HTML. Also in this case, a more moduar approach would first translate the
information produced by the database in XML format, to be further translated by the XML server in
HTML, when to be retrieved by a browser.

L HTML
Application browser
level

A4

Interface XML server
level (HTTP server +XSL)

Py

L
XML

information
VAN

Legacy
databases

Middleware
level

Information
level

Figure 1. An XML architecture for the Web

2.2 Towardsa General XML Architecture

The previous example shows how exploiting XML in the Web naturally leads to a multi-
layered architecture (see figure 1). At the apdication leve, the browser must be dlowed to

3

elaborate information in HTML format. Therefore, if a browser is not an XML-enabled one, an
XML server (that is, an HTTP server cgpable of transforming XML documents into HTML ones,
acordingly to XSL spedficaions) must be provided at the interface levd for interfacing the
browser with the XML dataspace The XML dataspace ats as a middeware level for the data
stored inaDBMS at the lowest information levd. Whenever the information ona site is not already
stored in XML format (in which case the middleware and the information level collapse in asingle
level), dataistrandated from/to the information level up to the middieware level.

Mobile Distributed

agents objects
Application XML HTML ?

level browser g_@ browser ¢

AVA
Interface XML .
level interface Linda-like || CORBA XML Generic
interface || interface server interface
,,,,,,,,, A s s 71
Middleware
level
Inf ti XML : U Y Gé\lﬁeric
nformation ;
ovel information | TUPle Web Files (legacy)
eve space server information

Figure 2. A general architecture based on XML

The identified four-level architedure may be mnsidered as a more genera architecture for
Internet applications (seeFigure 2). In the information level, we can take into ac@urt the presence
of any kind d data stored in whatever kind o format: bare files, tuples in a tuple space, oljects,
service interfaces. Provided that all this data can be represented in XML, the middleware level can
furnish the necessary tod to transform this data in XML format and viceversa, and store (or
dynamically produce) them into the XML dataspace It is expeded that the energence of XML asa
standard will make these kinds of tods widely available. The interface level is in charge of
pubishing the information in the formats requested by the diff erent appli cation components and/or
acording to specific protocol/coordination models. Different components may be present at this
level, depending onthe variety of different application comporents that may bein need of accessng
the XML dataspace from the gplicaion level. Such comporents may include XML browsers,
CORBA interfaces for enabling distributed olject applicaions to interad with the XML dataspaces,
or Lindalike interfaces for enabling mobile agent coordination. It is expeded that the increasing
diffusion & XML will aso increase the capability of application components to dredly read and
elaborate on XML dataspaces, thus making it unrecessary any trandation d data from XML to a
spedfic gplication level format. Nevertheless the interface level will maintain its role of
implementing speafic padicies of accessto the data. On the one hand, it has to implement the
necessary paliciesto preserve the ansistency of the XML data, from simple readers/writers palicies
up to complex transadion-based ores, if necessary. On the other hand, the interface level must
implement the necessary accesscontrol palicy to proted data from malicious access

The @owve described architedure is very genera and presents ®vera advantages. First, it
grants a high degree of interoperability, since different applicaions can access information
acordingly to their own interadion model. Seand, it permits to access in the XML format
whatever kind of information, trandating the information ondemand and giving the possbility of

4

maintaining the origina format. Third, the architedure echibits a high degree of scdability, since
different kinds of information format or interface @n be alded by designing an appropriate XML
trandator.

In the following, we will restrict our focus to mobile agents applicaions, and on the
provision d aLindalike interface to mobil e agents.

- ~<

e Node / Local Domain of Nodes ™
Application / N\

/
level / Locally \
executing

\

:‘ i

| [}

: ﬁ agents ﬁ ﬁ i

| [}

i v i

V A'A [}

Interface i Linda-like (JavaSpaces) |
. [}

lovel i interface i

: [}

| [}

| [}

| [}

| L~ e |

_ : Reactions i
Middleware 1 (meta-level tuple spac :
level : !

| [}

: i

: Y v U U N !
Information |~ AME |
level t information :

‘ 1

Figure 3. The XMARS architecture

3. The XMARS Coordination Architecture

In mobile agent applicaions, the alopion d a Lindalike @ordination model is the most
suitable solution for bath inter-agent and agent-to-exeaution environment coordination [Auth99,
OmizZ99]. In the wntext of the general XML architedure described in the previous =dion,
acommodating a Linda-like mordination style for mobile agents amourts at: (i) integrating
spedfic architedura solutions tuned to mobile agent applications,; (ii) providing a Lindalike
interface for enabling agent accessto XML dataspaces; (iii) enabling the asciation o spedfic
computational adivities to the acesss performed by agents, thus defining a programmable tuple
spacemodd.

In this sction, we describe the XMARS coordination architecture for mobile agents (see
Figure 3) and show how the @owe isaies have found appropriate solutions, via: (i) an architedure
which enforces locality in the accesss; (ii) the implementation d the standard JavaSpaces interface
and (iii) asimple yet effedive programmabl e tuple space model based onmeta-level tuple spaces.

As a genera note, we emphasise that XMARS does nat implement a whole new Java agent
system. Instead, it has been designed to complement the functionality of aready avail able agent
systems, and it is not boundto any spedfic implementation: it can be associated to dfferent Java
based mobile agent systems with orly a dlight extension. In addition, we fed it shodd na be
difficult to adapt the arrent implementationin order to allow different applicaion-level entities, in
addition to mobil e agents, to exploit XMARS for the @wordination d their adivities.

3.1 The XMARS Architecture

Sincemobile ayents travel the network in the effort of enforcing locdity in the accessto the
needed resources, the architedure needs to somehow facilit ate the agents' efforts. To this end, a
coordination architedure for mobile agents (whether based on XML dataspaces or not) must
provide amultiplicity of independent tuple spaces, to be accessed by agents in a locad way. This
means that XML dataspaces have to be considered locd resources associated to a node, or at most
to alocd domain of nodks.

XMARS enforces the concept of locdity in interactions: an Internet node must define its
own XML dataspace and the asciated Linda-like interface When an agent arrives onanode, it is
automaticdly provided with areference to the locd XMARS tuple spaceinterface sssociated to that
node. Then, it can use this reference to accessthe XML dataspace in a Lindalike fashion, i.e, by
reading, extrading, inserting fragments of XML data into the dataspace, as if they were tuples. In
addition, alocd domain of nodes (e.g., alocal network) can federate and implement a single XML
dataspace. All the agents exeauting in nodes of the domain are aitomaticdly provided with a
XMARS interfacereference, with which they can aacessthe XML dataspace transparently from
anywhere in the domain.

3.2 TheXMARS Interface

XMARS adops a JavaSpaces [JS98] compliant interface (see Figure 4). Therefore, as in
JavaSpaces, an XMARS tuple space asaumes the form of a Java objed making available the
foll owing three operations for accessng the tuple space

* read, which retrieves atuple matching a given template;

* take, Which extrads the matching tuple from the tuple space;

* write, which pusatuplein the tuple space
Two additional operations, readAll and takeAll, na present in the JavaSpaces interface, have been
added to the XMARS interface to avoid agents being forced to perform severa readsi/takes to retrieve
al the needed information, with the risk of retrieving the same tuples sveral times. Thisis a well-
known problem of tuple space model, due to the non-determinism in the seledion d atuple anong
multi ple matching ones.

public interface XMARS extends JavaSpace
{
/l interface methods inherited from JavaSpace

/I Lease write(Entry e, Transaction txn, long lease); // put a tuple into the space

/I Entry read(Entry tmpl, Transaction txn, long timeout); // read a matching tuple from the space
/I Entry take(Entry tmpl, Transaction txn, long timeout); // extract a matching tuple from the space

/l methods added by MARS and not present in the JavaSpace interface

Vector readAll(Entry tmpl, Transaction txn, long timeout); [/l read all matching tuples
Vector takeAll(Entry tmpl, Transaction txn, long timeout); /I extract all matching tuples
}

Figure 4. The XMARS interface

For al the operations, the txn parameter can spedfy a transadion the operation belongs to.
The timeout parameter of read, take, readAll and takeAll, spedfies the time to wait before the operation
returns a null value if no matching tuple is found while NO_WAIT means to return immediately, 0
means to wait indefinitely. The lease parameter of the write operation sets the lifetime of the written
tuple.

Our chaoice of implementing JavaSpaces interface rather than defining a new "XML-
oriented" Lindalike interface, has been mainly driven by the fad that the JavaSpaces tedndogy is
likely to have agreat impad in the context of distributed Java goplications. Furthermore, we think
that the JavaSpaces choice better suits the objed-orientation d Java agents, by making them
manage object tuples rather than XML fragments. In fad, from the agents' point of view, XMARS

6

tuples are Java objeds whaose instance variables represent the tuple fields. The interface operations
are in charge of trandating the object representation d tuples to the crrespondng XML
representation (write operation) and Viceversa (read, take, readAll, takeAll operations), as well as of
handling the insertior/removal of tuples from the documents of the XML dataspace

In JavaSpaces, and therefore in XMARS, tuple management requires that tuple dasses
implement the Entry interface The eaiest way to do this is to derive atuple dass from the
AbstractEntry class (that defines the basic tuple properties by implementing the Entry interface) and
to define, as instance variables, the spedfic tuple fields. Each field of the tuple is a referenceto an
objed that can aso represent primitive data type (wrapper oljeds in the Java terminology). In
addition, in XMARS, a tuple dass must have astatic private field that spedfies the DTD that
describes the structure of the XML documents correspondng to the instances of such class In fact,
in XMARS the DTDs correspondto the tuple dasss, as well asthe XML documents correspondto
the tuple objeds. An example of tuple dassis srown in figure 5, whil e figure 6 shows how an agent
can use this classto accessthe XML dataspace

class _infoN extends AbstractEntry { // AbstractEntry: generic tuple
llclass field
static private final URL DTDfile = new URL(“http://mysite/myDTD.dtd");
/I tuple fields
public Integer f1;
public String f2;
public String f3;
public Integer f4;

Figure 5. Example of tuple class

_infoN t = new _infoN();

t.f2 = “foo”,
t.f3 = “*bI*”;
t.f4 = 17;

myEntry result = space.read(t, new Transaction(null), NO_WAIT);

Figure 6. Fragment of code of an agent

A tuple correspondsto an element of an XML document. In particular:

* the name of the dass which must begin with the underscore darader corresponds, orce
deleted the initial underscore, to the name of the tag defining the XML element;

» the names of instance variables correspond, aderly, to the name of the tags enclosed in the
element;

» the values of the instance variables correspond, aderly, to the data enclosed in the
correspondng tags.

Names of clases and instance variables can be dynamically aaquired via Java refledion. For

example, the _infoN tuple dassdefined in figure 5, corresponds to an <infoN>...</infoN> element in

the XML document of figure 7. The translation d a tuple to/from the @rrespondng representation

as an XML element is automaticdly performed by XMARS uponinvocaion d one of the interface

operations. This also includes the trandlation in a textual form of non-string fields, such as Integer

and Float ones.

The pattern matching currently implemented in XMARS uses a textual comparison between
the XML elements. A template tuple in an inpu operation can contain formal values (i.e.,, na
defined), which can match with any value in the @rrespondng XML element, and actual values
(i.e,, with a well-defined value). In the cae of string fields, partially defined values can be
expressed by exploiting wild cards ("*" and "?" only, in the aurrent implementation). When an input

operation is invoked by an agent, XMARS performs a search in the XML dataspace, to find ore

element in a XML document such that:

1. the DTD used by the document is the one spedfied in the static private field o the template
tuple;

2. thetupletrandated in XML format corresponds to at least one dement in the document

3. thevalues of the defined (or partialy defined) fields in the tuple crrespondto the values in the
tags of the dement.

Figure 7 shows (in gray background the fragment of an XML document that can be returned, in the

form of atuple, by the read operation requested in figure 6. The agent initiali ses the fields f2, f3 and

f4, maintaining f1 as formal. Match occurs because the values of the fields f2 and f4 are the same of

those spedfied in the template tuple by the agent, and because the value of the field f3 matches the

regular expresson in the field f3 of the tuple. The same XML fragment would have been extraded

from the document if the agent would have performed a take operation with the same template

tuple.

<?XML version="1.0"?>
<IDOCTYPE myEntry SYSTEM “http://mysite/myDTD.dtd">

<infoN>
<f1>3</f1>
<f2>foo</f2>
<f3>blahblah</f3>
<f4>17</f4>
</infoN>
<infoN>
<f1>5</f1>
<f2>foo2</f2>
<f3>bar</f3>
<f4>23</f4>
</infoN>

Figure 7. Tuples as XML elements

The arrent implementation o the XMARS interface, although operative, still suffers of
some limitations, which are being addressed at the time of writing. First, the interface still [adks the
cgpacity of managing in an appropriate way al of the cmmponrents and structures that can be found
in XML documents. In particular: (i) the aurrent implementation considers the dtributes of a tag as
additional tags, thus ladking in redising a perfed one-to-one @rrespondence between XML
elements and Entry objects; (ii) the implementation daes not handle XML namespaces, necessary to
avoid corflicts in the tags names and, therefore, to corredly implement the pattern-matching
medanism. Seand, synchronisation o concurrent accesss is based on a MR/SW (Multiple
Readers/Single Writers) padlicy applied at the level of single XML documents. This choice promotes
simplicity and also allows any other applicaionlevel entity to access an XML dataspace in
concurrency with mobile agents, provided that it conforms to the same padlicy. However, the
MR/SW pdlicy at the level of single documents may nat be the most appropriate choice when
multiple agents are in need of performing complex transadions over different documents, or when
multiple agents are in neal of performing concurrent operations on dfferent parts of the same XML
documents. Therefore, we are aurrently evaluating whether different synchronisation pdicies can be
conceaved and can coexist with the MR/SW in adataspace A third dredion d improvement relates
to seaurity control. Currently, the mechanisms for controlli ng the acesses to the XML dataspace
are based on AccessControl Lists associated to eadh XML document, to spedfy which agents can
read, write, or extrad elements (i.e., tuples) from the document. This kind d access control may
have marse granularity when mobile agents arein need of working at the level of single tuples.

3.3 The XMARS Reactive M odedl

The behaviour of XMARS can be programmed, bah by administrators and by mobile
agents, via the installation d reactions associated to spedfic access events, which are triggered
when the crrespondng events occur. Such readions can modify the result of the operations they
are aciated with, can manipulate the mntent of the XML dataspace, and can access whatever
kind d external entity they arein need of accessng.

The introduction d a programmable tuple space model (whether based on XML dataspaces or
nat) provides for much greaer flexibility and control in interactions than the raw Linda model
[Auth99,0miz99]. A site administrator can program readions to monitor the acess events to the
locd resources and, in need, to issue spedfic actions to preserve its resources from malicious
aacesss. Reactions can be used to implement a dynamic dataspacemodel, in which the datais not
staticdly stored in the dataspace but, instead, is dynamically produced on-demand and is posshbly
originated from different sources. In the context of XML dataspaces, and with reference to the
general XML architedure sketched in section 2, reactions can thus act as a bridge between the
information level and the XML middeware level (see Figure 3). Dynamic production d tuples aso
enables a simple data-oriented way of accessng services on a site: the atempt to read a specific
tuple by an agent can trigger the exeaution d alocd service in charge of producing the required
tuple & a result. In this direction, reactions can be used to establish and control sesson-based
communicaions between agents. Consequently, in the context of XML dataspaces, which are likely
to be acessd by entities other than mobile agents, we dso envision the posshility of exploiting
readions to control the interadions between entities that are heterogeneous in terms of suppated
coordination models.

Further advantages could be provided by giving applicaion agents the capability of defining
their own coordination rules. agents can cary aong the @de of the readions implementing
applicaion-spedfic coordination pdicies, and install them in the tuple spaces of the sites visited.
This adchieves a sharp separation d concerns between agorithmic and coordination issles
[GelC92]: the agents are in charge of embodying the dgorithms to solve the problems; the readions
represent the gopli cation-spedfic coordination rules. This can bah reduce the agent complexity and
simplify the global applicaion design, as siown in [Auth99g.

In the implementation o a programmable tuple space model, XMARS currently exploit the
implementation d the MARS readive model [Auth98. Readions are stateful objeds with a method
(named "reaction") whose ade represents the cre of the readion, and are aciated to specific
aaessevents on the basis of the three @mporents that characterise the acessevent: tuple item (T),
operation type (O) and agent identity (I). Therefore, the asciation o areaction to an accessevent
is then represented via a4-ple (Rct, T, O, 1): the readion method d the objed Rct (i.e., the readion
itself) is exeauted when an agent with identity | invokes the operation O on a tuple matching T. In
this perspedive, the assciation d readions to tuples can be @nsidered as dealt with meta-level
tuples enclosed in a meta-level tuple space, which has to follow associative medhanisms smilar to
the one of the base-level tuple space Putting and extrading tuples from the meta-level tuple space
provide installing and de-installi ng reactions. A meta-level 4-ple (possbly with some non-defined
values) asociates the readion to al the accesses that matches that 4-ple. A match in the meta-level
triggers the crrespondng readion. For example, a meta-level 4-ple (ReactionObj, null, read, null)
asciates the reaction d ReactionObj to all read operations, disregarding bath the peculiar tuple
content and the agent identity. Analogously, one can associate reactions to a spedfic tuple, to all
tuples, or to the tuples of a given class The pattern-matching mechanism in the meta-level tuple
spaceis activated for any access to the “base-level” tuple spaceto chedk for the presence of
reationsto be exeauted.

The readion method hes to be defined according to the foll owing prototype:

public Entry reaction(XMARS s, Entry Fe, Operation Op, Identity 1d)
The parameters represent, orderly: the reference to the local XMARS space the reference to the
tuple resulting from the matching medhanism issued by the as<ciated gperation, the operation

9

itself, and the identity of the invoking agent. The cde of the readion hes accessto the base-level
tuple space ad to the meta-level one and can perform any kind o operation onthem (tuple space
aacess operations performed within the @mde of a readion do nd issue awy readion, to avoid
endessreaursions). As a consequence, the behaviour of the readion can depend bdh onthe adual
content of the tuple space and onpast accessevents. Also, having the avail abili ty of the result of the
matching mechanism and d the associated gperation, the reaction can aso influence the semantics
of operations and, for example, can return to specific invoking agents different tuples than the ones
resulting from the raw, statelessand lessflexible, Linda-li ke matching mechanisms.

The aurrent seaurity mechanisms defined for the meta-level tuple space ae, again, based on
AccessControl Lists, to spedfy which agents have the rights to install which kinds of reactions in
an XML dataspace For instance, a manager agent may be allowed to install whatever kind d
readion; a generic goplication agent can ony install reactions to be triggered by other agents of the
same gplicaions. Also in this case, we feel that the dove seaurity model is too coarse-grained to
satisfy the needs of baoth administrators and appli caion agents, and its refinement is an in-progress
work diredion. As ancther limitation, the airrent implementation d the XMARS reactive modd,
which fully re-use the MARS implementation [Auth9§, dces not redise the meta-level tuple space
as an XML dataspace. Insteal, it stores meta-level tuples in an oljed form and, consequently,
requires the meta-level pattern-matching mechanisms to occur with application level tuples in their
objea form, too. It is our intention to upgrade the implementation d the meta-level tuple space so
asto make it beacome an XML dataspacein its turn.

4. Application Example

In this sction, we gply XMARS in the @ntext of the management of on-line university
courses. First, we introduce some simple examples related to information retrieval and
management, with the goal of bath clarifying the presented concepts and showing a few samples of
XML documents and Java ade. Then, we sketch a more cmplex example related to inter-agent
coordinationto ill ustrate the power of the XMARS programmable cordination model.

4.1 Information Retrieval and M anagement

Let us sppce different universities and acalemic departments federate to make the
material of the murses avail able on-lineg, to al ow both students to easily retrieve material of interest
and teaters to easily upgade it. To this end, they can agreeon adopting XML as a standard data
representation format for course material, and adopt a well-defined DTD for the crrespondng
XML documents. Figure 8 shows a sample of XML document containing information related to a
course. This include general information abou the curse, as well as pedfic information for each
of the lesns of the murse, such as abstract and suggested readings.

With reference to the general architedure described in section 2,the XML representation o
course material defines an XML dataspace that could either derive from a trandation d previously
available material stored at the information level in a different format, or be written from scratch in
XML if no material were previously available. In addition, this material could be made avail able to
applicaionclientsin dfferent ways, i.e., by adogting different interfaces.

As a first, simple, example related to information retrieval, let us consider a student that
wants to aaquire information related to a urse or to a spedfic leson. If the academic federation
makes avail able XML serversontheir sites, (s)he can simply adopt a browser to navigate trough the
XML dataspaces of the federation and analyse their content. However, this search activities can be
rather time expensive and toring if the federationis alarge one and the murse materia detail ed and
verbose. Therefore, if the sites of the federation can hast mobile agents and make the XMARS
interface avail able, students can dedde to delegate the seach adivities to mohile agents. To this
end, the agent must define (or have the availability of) the tuple dasses representing the XML
elements of interest. Figure 9 reports the definition o the tuple dasses representing the XML

10

elements <course>, <lesson> and <reading>. Then, the agent can exploit the operations of the
XMARS interface to retrieve the needed information in a simple and effedive way. Figure 10
reports a simple cde fragment of an agent that travels acossthe sites of the federation to retrieve
information about those lessons containing the keyword "network™ in the dstrad.

<?XML version="1.0"?>
<IDOCTYPE CourseEntry SYSTEM “http://university.site/UnivCourse.dtd ">

<course>
<coursename>Computer Networks</coursename>
<year>4</year>
<semester>1</semester>
<teacher>Jane Smith</teacher>

<lesson>

<lessonname>Introduction</lessonname>
<lessonnumber>1</lessonnumber>
<abstract>blah blah</abstract>
<reading>

<authors>..</authors>

<title>..</title>

<book>..</book>

</readiné;
<reading>....</reading>
</lesson>

<lesson>
<lessonname>Basic Protocols</lessonname>
<lessonnumber>2</lessonnumber>
<abstract>blah blah</abstract>
<reading>....</reading>

</lesson>

</course>

Figure 8. Example of an XML document describing a course

class _course extends AbstractEntry {
static private URL DTDfile = new URL(“http://university.site/UnivCourse.dtd”);

public String coursename; /l the name of the course

public Integer year; /[when it is scheduled: year

public Integer semester; /I and semester

public String Teacher; /I the teacher of the course

public _lesson lesson(]; /I lessons that compose the course }

class _lesson extends AbstractEntry {
static private URL DTDfile = new URL(“http://university.site/UnivCourse.dtd”);

public String lessonname; /I the name of the lesson
public Integer lessonnumber; /I the number of the lesson
public String abstract; /I the abstract of the lesson
public _reading reading[]; /I suggested readings

class _reading extends AbstractEntry {
static private URL DTDfile = new URL(“http://university.site/UnivCourse.dtd”);

public String authors]; /I authors of the reading
public String title; /I title of the reading
public String Book; /I where it is published:
public Integer volume; /l volume

public Integer number; /I and number }

Figure 9. XMARS tuples corresponding to course, lesson, reading elements.

11

_lesson foundlesson,;

_lesson templatelesson = new _lesson();
templatelesson.abstract = "*networks*" // partially defined field
for(i=0; i< sites_of the_federation.length;i++) // for all the sites in the federation
{ go(sites_of_the_federation[i]); // go to the current site in the list
if ((foundlesson = S.read(templatelesson, new Transaction(null), NO_WAIT)) != null)
/l'if a lesson containing "network" in the abstract is found
go(home); /I go back home

Figure 10. Code fragment of an agent searching for a specific lesson

_course updatecourse;

_course templatecourse = new _course();
templatecourse.teacher = "Jane Smith" // defined field

for(i=0; i< sites_of the_federation.length;i++) /I for all the sites in the federation
{ go(sites_of_the_federation[i]); // go to the current site in the list
if ((updatecourse = S.take(templatecourse, new Transaction(null), NO_WAIT)) != null)
{ if(updatecourse.semester == 1) updatecourse.semester = 2;
else updatecourse.semester = 1;
S.write(updatecourse, new Transaction(null), 0); }
go(home); /I go back home

}

Figure 11. Code fragment of an agent in charge of upd ating semester information

Another simple example relates to information management. Let us consider that professor
Jane Smith wants to updite the information abou the murses deis the teacher of. For example, let
us suppacse that she wants to exchange the semester during which her courses are held. To this end,
she can deploy an agent that travels acrossthe sites of the federation (or just acrossa few known
sites goring information abou her courses), extrads the information abou a @murse and writes it
again with the updated semester indicaion. Figure 11 shows a simple ade fragment of agent
performing this task. Of course, to perform its task, the agent launched by Jane Smith must be
allowed to extrad and write tuples from the XML documents containing information about her
courses. However, it must not be dlowed to extrad and modify information abou courses held by
other teaders. To this end, since Access Control Lists in XMARS apply at the level of single
document, seaurity reasons require each course to be stored in a different XML document, thus
forcing each site to adopt a spedfic file organisation for the XML dataspace. This clarifies why we
consider the aurrent AccessControl Lists approach of XMARS inadequate.

In bah the @ove examples, athough very smple, XMARS programmability can provide
advantages. With regard to the first example, a site can dedde to associate areadion to any read
operation performed onits dataspace with the goal of monitoring the adiviti es on the dataspace ad
maintaining a log file. The code for this smple readion is sown is figure 12 and it can be
asciated to any read event by writing the meta-level tuple (MonitorObj, read, null, null) in the meta-
level tuple space(MonitorObj has to be an instance of the Monitor reaction class.

class Monitor implements Reactivity
{
public Entry reaction(XMARS s, Entry Fe, Operation Op, ldentity Id)
{ SecurityRegister.add(“read”, Fe, Id); /l'log the access

return Fe } / returns the matching tuple to the invoking agent
}

Figure 12. The Monitor reaction class

12

With regard to the seamnd example, readions can be asciated to bah take and write
operation in arder to preserve the ansistency of the information in the dataspace, i.e., to guarantee
that the information abou a wurseis deleted from the dataspace only when the updated information
is inserted. To this end, a readion associated to the take operation must return the @urse tuple
withou deleting it from the space, and must keep record of the a@tempted take, for example via an
updae reaord that is a tuple stored in the space The readion associated to the writing of a new
course tuple must check whether such record for the same ourse tuple eists, and delete the old
version from the dataspace. Figure 13 shows the mde of the dasses that implement such readions,
which can be installed by writing the two meta-level tuples (PreventTakeObj, take, new _course(),
null) and (RightUpdateObj, write, new _course(), null) in the meta-level tuple space. By spedfying agent
identities in the fourth field in the meta-level tuples, one can also dscriminate which classes of
agents must trigger the reactions and which must not. For instance, there may be the need of letting
spedfic “administrator agents’ perform take operations on course tuples withou having to insert
updated tuples. One culd criticise that the mll ective behaviour of the PreventTake and RightUpdate
readions can be eaily implemented by making use of the JavaSpaces transadion mechanism.
However, JavaSpaces' transadions require an agent-level identificaion d the problem. In XMARS,
insteal, the agent can dsregard the problem, because the @nsistency of the XML dataspace is
ensured from the internal, through a proper programming of its behaviour.

class PreventTake implements Reactivity

{
public Entry reaction(XMARS s, Entry Fe, Operation Op, Identity 1d)

{
UpdateTuple ut = new UpdateTuple(); // create the update record
ut.coursename = ((_course)Fe).coursename; // information about the deleted tuple
ut.tuple = Fe;
s.write(ut, new Transaction(null), 0); /I store the update record
return Fe; } I returns the matching tuple to the invoking agent without deleting it

}

class RightUpdate implements Reactivity
{
public Entry reaction(XMARS s, Entry Fe, Operation Op, Identity 1d)
{ UpdateTuple ut = new UpdateTuple();

ut.coursename = ((_course)Fe).coursename;

UpdateTuple tupleupdated;

if ((tupleupdated = s.take(ut, new Transaction(null), NO_WAIT)) I= null) // if there is an update
record for the same course

s.take(ut.tuple, new Transaction(null), NO_WAIT); [/l delete the old tuple
return null;

}

Figure 13. The PreventTake and RightUpdate reaction classes

4.2 Inter-agent coordination

Coming to a more cmplex example, let us now suppacse that the XML dataspaces, rather
than being asimple repository of course material, becomes a general workplace for the management
of the course adivities. For instance, a spedfic XML dataspace ca be eploited by professor Jane
Smith for managing the periodic assgnment for the students of her courses. She can publish the
texts of the assgnments in the dataspace, and her students can exploit the dataspacebath to retrieve
assgnments and to make them avail able for evaluation. Each student can accessthe dataspacevia a
browser to select an assgnment and, afterwards, to post the completed assgnment (to be composed

13

in XML) in the dataspace The teader, by her side, can exploit a browser to accessto the dataspace,
read and evaluate the completed assgnments.

Alternatively, each student can be provided with a persona user agent, in charge of
aacessng the dataspace, retrieving the sssgnment and, lately, storing the cmpleted assgnment in
the dataspace. Anaogoudly, the teacher can assciate an agent with the dataspace, in charge of
natifying her abou the presence of a new completed assgnment in the dataspace, and pcsbly
cgpable of some preliminary controls abou the rrectness of the mmpleted assgnments. These
controls may include dheding that al of the parts of one asgnment have been completed and/or
verifying that no two assgnments developed by two dff erent students are the same. In addition, the
teader agent could verify whether assgnments have been completed by the due deadline or nat, in
which case it can warn bah the student and the teacher about the delay. Furthermore, the agent can
control that assgnments are submitted in the @rred sequence by students. when an assgnment is
submitted before the preceding one, the agent can send a warning message to the student and shoud
not natify to the teacher about the incorred submisson.

In the dowve sketched agent-mediated scenario, besic interadions between the student agents
and the teacher one occur — accordingly to the Linda @ordination model — viathe insertion d XML
elements/tuples representing assgnments. The insertion d a wmpleted assgnment performed by
one student's agent (via awrite operation) triggers the teacher agent, which was waiting (via a
blocking read operation) for these kinds of insertion events. However, the scenario also require
these basic interadions to obey higher-order, applicaion-specific, rules (speaficdly, workflow
rules related to the order of assgnment submisgons), whase antrol is in charge of the teader
agent.

Let us now suppcse that professor Jane Smith deddes to change the rules related to the way
student have to perform the assgnments. For example, let us sippcse that she starts puldishing the
spedficdions for the next assgnment before the deadline for the completion d the preceding one,
thus opening the posshbility for students to complete essgnments out of sequence Unfortunately,
this requires the teacher has to modify the cde of its agent in according with the new workflow
rules. once a assgnment is submitted to the dataspace the teader's agent must no longer check
that al previous assgnments have been submitted too. The fact that the agent code has to be
modified derives from an inappropriate design of the system comporent, which make the teacher
agent in charge of controlling bath the wrrectnessof a submisgon in itself and the @rrectness of
the submisson in relation with the history of the submissons. In a more cordination-oriented
perspedive, the agent in na only in charge of handing the interadion events related to the insertion
of anew assgnment, bu it also hasto verify that this interadion oley specific coordination laws.

In the presence of a programmable dataspace model, a more dean solution can be sketched.
The teader's agent can be charged of controlling the mrrednessof the assgnment content only,
withou worrying at all abou whether students have to submit assgnments in a given sequence or
not. The latter problem, identifying a wordination law, can be darged to the interaction media
itself, that is, the dataspace In particular, in XMARS, the XML dataspace ca be programmed in
order to read to the insertion d a new assgnment, and check whether the interadion event is
respedful of the wordination laws. This acieves a dea separation d concerns and simplify agent
design and development.

5. Related Work

While several mobhile agent systems have been propcsed in the last few years, and rew ones
keep onappeaing, only a few of them focus on the definition d appropriate aordination models
and/or onthe aloption d XML as alanguage for agent interadions.

The PageSpace coordination architedure for interactive Web applicaions exploits Linda-like
coordination [Cia98]: a multitude of tuple spaces in dfferent exeaution environments can be used
by agents to coordinate with ead aher; furthermore, agents can crede private tuple spaces to

14

interad privately withou aff ecting exeaution environments. However, urike XMARS, PageSpace
neither defines a programmable wordination model nor spedficdly focuses on the problem of
standardising data representation toward interoperability. With regard to the latter problem, a
foreign entity can be enabled to interoperate with a PageSpace aplicaion only by "agentifying" it,
i.e., by asociating it with a spedal-purpose PageSpace agent.

The LIME coordination model addresses in a unifying model both logical and physicd
mohili ty [PicMC99]. Each mobhil e entity — whether an agent or a physical device— has asociated an
Interface Tuple Space(ITS), which can be seen as a personal tuple space where to store and retrieve
tuples. When mobil e entities med in the same physical place their ITSs automaticaly merged, thus
allowing Linda-like mordination between mobile entities via temporarily shared tuple spaces.
LIME aso provides for programmabili ty of tuple spaces, athough in a form more limited than the
XMARS one: a mobile entity can program the behaviour of its own ITS only, in order to provide
better control over the accesses to it. As afinal nate, being an abstract model rather than a wncrete
implementation, LIME currently negleds interoperabili ty problems, such as data representation.

The TuCSAN model [OmiZ99], developed in the cntext of an affiliated research project,
defines a programmable coordination model based on logic tuple spaces associated with the
exeaution environments and to be used for the mordination d knowledge-oriented mobil e agents.
Logic tuple spaces define aLinda-li ke interface, whil e readions are programmed as first-order logic
tuples. The eploitation d logic programming in readion complements the object-oriented XMARS
read¢ion model and makes TUCSoN very well suited to the distributed management of large
information systems. However, athough the untyping of data of the logic model somehow
fadlit ates interoperability (and it would aso facilitate translation d logic tuples into an XML
format), interoperability problems have to be solved in TUCSoN by explicitly programming
"trandator" reactions.

The T Spaes project at IBM [IBM98] defines Lindalike interaction spaces to be used as
general-purpose information repositories for networked and mobile gplications. In particular,
T Spaces aims at providing a powerful and standard interface for accessng large anounts of
information aganised as a database. For this reason, T Spaces recgnises the limits of the basic
Linda model and integrates a peculiar form of programmabili ty, by enabling new behaviours to be
added to atuple space, in terms of new admisgble operations on atuple space. Thismakes T Spaces
lessusable in the open Internet environment, sinceit requires appli caion agents either to be avare
of the operations available in a given tuple space or to somehow dynamicaly acquire this
knowledge. With regard to interoperability, a project related to T Spaces and described in
[AbrLC99] reports the only effort we have knowledge @ou for the integration d XML and Linda
tecdhndogies. In particular, the goal of the project is to enable T Spaces to accept XML documents
and store them as tuples in the tuple space Incoming XML documents are processed to produce a
DOM tree whose nodes are stored as T Spaces tuples, while tuples representing fragments of an
XML file can be extraded to reconstruct the original XML document. This approadc is somewhat
dual of the XMARS one, where JavaSpaces tuples are trandated for storing as fragments of an
XML file and, viceversa, fragments of an XML file can be extraded and trandated into JavaSpaces
tuples. In our opinion, the XMARS approach has to be preferred. In fact, to preserve
interoperability in amore dficient way, it is better to store XML filesin their original format (as it
may be required by other entities such as browsers, users, etc.), and produce tuples on-demand,
when they are needed by some gpli caion agents.

The emergent importance of XML in the mntext of agent applicaions is gressed by the
presence of several other propcsals in the area, although na strictly related to tuple space
coordination techndogies. In [NakY 98], XML is used to represent agent interaction protocols: by
exchanging XML messages accordingly to a specific schema, communication sessons between
agents can be eaily established and the order of the exchanged messages easily controlled. An
XML framework for agent-mediated E-commerce is described in [GIUTM99]: the framework
provides an extensible library of generic XML document templates, to be used to facilit ate the

15

exchange of information among eledronic suppiers, resell ers and customers, and buld upan open
and flexible ecommerce system. Other approadies go further, and exploit XML as a programming
language for agents. In [Xage9§], data and status of agents are represented in XML format, while
their code can be written in a scripting language (such as JavaScript) and enclosed in spedfic XML
tags. In [LanHO99], the agent code itself can be written in XML, by expressng control instructions
interms of XML tags (e.g., <if>condition</if>).

6. Conclusions and Future Work

The presented XMARS architecture, by exploiting the power and the flexibility of a
programmable Linda-like @ordination modd in the context of XML dataspaces, may provide
several advantages in Internet applicaions based on mobhile agents. In fact, while programmable
Linda-like cordination suits the mobhility of the gplication comporents and the openness of the
Internet scenario, the anergent XML standard for Internet data representation may guarantee a
high-degree of interoperabili ty between heterogeneous comporents.

However, apart from the need of updating portions of the arrent implementation (as
discussed sedion 3, there are till several iswues to be solved to make the XMARS architedure
pradicdly usable. These issues mainly relates to the ladk of some XML specificaions that are
instead necessary for any eff ective management (and consequently for a tuple-based management)
of XML documents [Tau99. First of al, the XML schemas spedficaion will permit to better
spedfy data types in XML documents than the aurrent version; this gedfication, together with the
integration d XML namespaces in the aurrent implementation, will be of great help in trangating
XML fields into Java objeds (and Mceversa), and in improving the dfediveness of the pattern
matching mechanism. Sewnd, the XML fragments spedficaion will precisely define how
fragments of an XML document can be extraded and inserted in a harmlessway (i.e., preserving
the validity of the XML document itself), thus meeing the need of handing single dements inside
a possbly long document and, in the mntext of XMARS, enabling the system to extrad/insert
tuples representing a fragment of a large document in a onsistent way. Strictly related, the XLink
and XPointer spedfications, which will rule the mnnedions between dfferent (parts of) XML
documents, will possbly lead to richer and more complex tuple types.

7. References

[AbrLC99] J. Abraham, H. Le, C. Cedro, “XML Repository In T Spaces & UIA Event Notification
Application”, http://www.cse.scu.edu/projects/199899 project19/, 199.

[AhuCG86] S. Ahuja, N. Carriero, D. Gelernter, “Linda and Friends’, IEEE Computer, Vol. 19, No. 8, pp.
26-34, August 1986.

[Authd8] The Authors, “Reative Tuple Spaces for Mobile Agent Coordination”, 2 International
Workshop a1 Mobile Agents, LNCS, No. 1477, pp 237-248, Springer-Verlag (D), Sept. 1998.

[Auth9] The Authors, “Coordination Models for Internet Applications based on Mobile Agents’, IEEE
Computer Magazine, 1999,to appear.

[CDF97] Channel Definition Format, http://www.w3.org/ TR/NOTE-CDFsubmit.html, 197

[Ciagsg] P. Ciancarini, R. Tolksdorf, F. Vitai, D. Ross, A. Knoche, “Coordinating Multi-Agents
Applications on the WWW: a Reference Architecture”, IEEE Transadions on Software
Engineaing, Vol. 24,No. § pp.362-375,May 1998.

[CiavM99] P. Ciancarini, F. Vitali, C. Mascolo, “Managing complex documents over the WWW: a cae
study for XML”, IEEE Transadions on Knowledge and Data Engineaing, Vol. 11,No. 4, 199,
to appear.

[DenNO98] E. Denti, A. Natali, A. Omicini, “On the Expressive Power of a Language for Programmable
Coordination Media”, 1998ACM Sympasium on Applied Computing, Atlanta (G), Feb. 1998.

16

[FugPVv9sg]
[GelC92]
[GIuTM99]

[IBM9g]
[JS98]
[KarT98]

[KhaR97]
[LanHO99]
[NakY 98]

[OMG97]
[OmiZ9g]

[PapA98]
[PicMC99]
[Tau99]
[W3Cq]

[W3Ch]

A. Fuggetta, G. Picco, G. Vigna, “Understanding Code Mohility”, IEEE Transactions on
Software Engineering, Vol. 24,No. 5, pp.352361,May 1998.

D. Gelernter, N. Carriero, “Coordination Languages and Their Significance’”, Communications
of the ACM, Vol. 35,No. 2 pp.96-107,February 1992.

R. J. Glushko, J. M. Tenenbaum, B. Meltzer, "An XML-Framework for Agent-based E-
commerce', Communicdions of the ACM, Vol.42,No.3,pp.106114,March 1999.

T Spaces Home Page, IBM, http://www.al maden.ibm.com/Tspaaes, 1998.
Sun Microsystems, JavaSgaces Tedhnology, http://java.sun.com/products/javaspaces/, 1998.

N. M. Karnik, A. R. Tripathi, “Design Isaues in Mobile-Agent Programming Systems’, IEEE
Concurrency, Vol. 6,No. 3,pp. 5261, July-September 1998.

R. Khare, A. Rifkin, “Capturing the State of Distributed Systems with XML”, The World Wide
Web Journal, Vol.2,No.4, pp.207218,Fall 1997.

D. B. Lange, T. Hill, M. Oshima, "A New Internet Agent Scripting Language Using XML",
AAAI-99 Workshop onAl in Electronic Commerce, July 1999

Y. Nakamura, G. Yamamoto, “A Framework for representing Agent Interaction Protocols based
onXML", IBM Research, Tokyo Research Laboratory, Japan, September 1998.

OMG, CORBAZ2.1 specifications, http://www.omg.org, 1997.

A. Omicini, F. Zamborelli, “Coordination for Internet Application Development”, Journal of
Autonamous Agents and Multi-agent Systems, Vol. 2,No. 3,pp.251-269, Sept. 1999.

G. A. Papadopoulos and F. Arbab, “Coordination Models and Languages’, Advances in
Computers, Vol. 46,pp.329400,Academic Press Aug. 1998.

G. P. Picco, Amy L. Murphy, G. Catalin Roman, "Lime: Linda Meets Mobility", International
Conference on Software Engineeaing, Los Angeles (CA), May 1999.

J. Tauber, “XML after 1.0: You Ain't Seen Nothin’ Yet”, IEEE Internet Computing, Vol. 3, No.
3, pp. 100102,May-June 1999

The World Wide Web Consortium, eXtensible Markup Language pages,
http://www.w3.org/ XML

The World Wide Web Consortium, eXtensible Styleshed Language pages,
http://www.w3.org/Style/X SL

[WonPM99] D. Wong, N. Padored, D. Moore, "Java-based Mohile Agents', Communicdions of the ACM,

[Xage9§g]

Vol.42,No.3, pp.92102,March 1999.
The XML Agents (XML-A) Initi ative, http://www.jxml.com/xmlagent.html, 1998.

17

