
cXML User’s Guide
V E R S I O N 1 . 2 . 0 0 7

N O V E M B E R, 2 0 0 1

Ariba, Inc. (Ariba) hereby grants to you a perpetual, nonexclusive, royalty-free, worldwide right
and license to use the cXML specification (the “Specification”) under any Ariba copyrights in the
Specification to use, copy, publish, modify and distribute the Specification. Ariba further agrees to
grant to you a royalty-free license under applicable Ariba intellectual property rights to implement
and use the cXML tags and schema guidelines included in the Specification for the purpose of
creating computer programs that adhere to such guidelines. One condition of this license shall be
your agreement not to assert any intellectual property rights against Ariba and other companies for
their implementation of the Specification. Ariba expressly reserves all other rights it may have in
the material and subject matter of this Specification. Ariba expressly disclaims any and all
warranties regarding this Specification, including any warranty that this Specification or
implementations thereof does not violate the rights of others. This Specification is provided “as is”
without any express or implied warranty. If you publish, copy or distribute this Specification, then
this copyright notice must be attached; however, if you modify this Specification, the name of the
modified specification may not include the term “cXML” in the new name. If you submit any
comments or suggestions to Ariba, and Ariba modifies cXML based on your input, Ariba shall own
the modified cXML version.

Information in this document is subject to change without notice.

cXML User’s Guide iii

Table of Contents

 Preface . xi
Audience and Prerequisites. xi
Which Chapters to Read . xi
Typography . xii

Chapter 1
Introduction to cXML . 13

cXML, an XML Implementation . 13
cXML Capabilities . 14

Catalogs . 14
PunchOut . 15
Purchase Orders . 17

Types of Applications That Use cXML . 18
Procurement Applications . 18
Commerce Network Hubs . 18
PunchOut Catalogs . 18
Order-Receiving Systems . 19

Content Delivery Strategy . 19
Validation Against DTDs . 20

Getting cXML DTDs. 20
Performing Validation . 21

Profile Transaction . 21
ProfileRequest . 22
ProfileResponse . 22

Service Status Response . 22
XML Utilities . 22

iv cXML User’s Guide November, 2001

Table of Contents

Chapter 2
cXML Basics . 25

Protocol Specification. 25
Request-Response Model . 25
cXML Conventions . 27
cXML Document . 27
Wrapping Layers . 28
cXML Envelope . 30
Special Characters . 32
Header . 35
Request . 37
Response . 37
One-Way (Asynchronous) Model . 40
Message . 42
Transport Options . 42
Service Status Response . 46

Basic Elements . 46
Type Entities . 46
Base Elements . 47

Chapter 3
Profile Transaction. 49

ProfileRequest. 50
ProfileResponse . 50

Option Element . 51
Transaction. 53

Scenarios . 53
From Buyer to Supplier . 54
From Buyer to the Network. 54
From a Network to Supplier . 56
From the Network to Service Provider . 58
From a Network to Buyer . 58
From Service Provider to Buyer . 59

cXML User’s Guide v

Table of Contents

Chapter 4
Implementing PunchOut . 61

PunchOut Requirements . 61
Buying Organizations . 61
Suppliers . 63

PunchOut Event Sequence . 65
Steps 1 & 2: PunchOut Request . 65
Step 3: Product Selection. 66
Step 4: Check Out . 67
Step 5: Transmittal of Purchase Order. 68

PunchOut Documents . 70
PunchOut Index Catalog . 70
PunchOutSetupRequest . 71
PunchOutSetupResponse. 76
PunchOutOrderMessage . 76

Modifications to the Supplier’s Web Pages . 78
Launch Page . 79
Start Page . 82
Sender Page . 83
Order Receiver Page . 86

PunchOut Website Suggestions . 87
Implementation Guidelines . 87
Buyer and Supplier Cookies . 88
Personalization. 88

PunchOut Transaction. 89
Sourcing. 89
PunchOutSetupRequest . 89
PunchOutSetupResponse. 94
PunchOutOrderMessage . 95

vi cXML User’s Guide November, 2001

Table of Contents

Chapter 5
Path Routing . 101

Nodes . 102
Path Element . 102
Router Nodes . 103
Copy Nodes . 104

Adding Nodes to the PunchOutOrderMessage 104
Path Element . 104
Credentials . 105

Creating OrderRequests . 105
Path Element . 105
Credentials . 105

Other Routable Documents. 108
PunchOutSetupRequests . 108
ConfirmationRequests and ShipNoticeRequests 108

Chapter 6
Receiving cXML Purchase Orders 109

Purchase Order Process . 109
Receiving Purchase Orders . 110

OrderRequest . 110
Response to an OrderRequest . 123
Accepting Order Attachments . 124

Chapter 7
Master Agreements . 125

MasterAgreementRequest. 125
MasterAgreementRequestHeader Element 127
AgreementItemOut Element . 128

cXML User’s Guide vii

Table of Contents

Chapter 8
Later Status Changes . 129

StatusUpdateRequest . 129
DocumentReference Element . 131
PaymentStatus Element . 131
SourcingStatus Element. 133
InvoiceStatus Element . 133

ConfirmationRequest . 133
OrderReference Element . 136
ConfirmationHeader Element . 136
ConfirmationItem Element . 144

ShipNoticeRequest . 148
ShipNoticeHeader Element . 150
ServiceLevel Element . 153
Route Element . 154
CarrierIdentitifier Element . 155
ShipmentIdentifier Element. 156
PackageIdentification Element . 156
ShipNoticePortion Element . 157
ShipNoticeItem Element . 158
OrderReference Element . 160

viii cXML User’s Guide November, 2001

Table of Contents

Chapter 9
Invoices . 161

Overview of Invoicing . 161
Early InvoiceRequest Document . 162
Debit and Credit Amounts . 162
Shipping Information. 162
Types of Invoices . 162
Invoice DTD . 164

InvoiceDetailRequest . 164
InvoiceDetailRequestHeader . 165
InvoiceDetailHeaderIndicator . 166
InvoiceDetailLineIndicator . 166
InvoicePartner . 167
DocumentReference . 168
InvoiceDetailOrder . 168
InvoiceDetailHeaderOrder. 168
InvoiceDetailOrderInfo . 168
InvoiceDetailPaymentTerm . 169
InvoiceDetailOrderSummary. 170
InvoiceDetailLineShipping . 171
InvoiceDetailItem . 171
InvoiceDetailItemReference . 173
InvoiceDetailDiscount . 174
InvoiceDetailShipping . 174
InvoiceDetailSummary . 175

Example Invoices . 176
Standard Header Invoice . 176
Standard Detail Invoice . 179
Marketplace Invoice . 184

Response . 185
Invoice Status Update . 185

cXML User’s Guide ix

Table of Contents

Chapter 10
Catalogs . 187

Catalog Definitions . 187
Supplier . 188
Index . 190
Contract . 192

Subscription Management Definitions . 193
Supplier Data . 194
Catalog Subscriptions . 197

Catalog Upload Transaction . 200
Introduction to Catalog Upload . 200
Sending a CatalogUploadRequest . 200
Receiving the Response. 205

Chapter 11
GetPending Transaction . 209

GetPendingRequest. 209
GetPendingResponse . 210

Chapter 12
Provider PunchOut Transaction 211

Message Flow . 211
ProviderSetupRequest Document . 212

Header . 212
Request . 213
Sample . 215

ProviderSetupResponse Document. 216
Sample . 217

ProviderDoneMessage Document . 218
Header . 218
Message . 219
OriginatorCookie . 219
ReturnData. 220
ReturnValue . 220
Sample . 220

x cXML User’s Guide November, 2001

Table of Contents

Appendix A
New Features in cXML 1.2.007 .223

InvoiceDetail Documentation . 223
version Attribute Deprecated . 223
InvoiceStatus Added to StatusUpdateRequest 224
Multiple Provider URLs Returned by ProfileRequest 224
Contact Role Enhancements for Compatibility with EDI 225

 Index . 227

cXML User’s Guide xi

 P
re

fa
ce

 P
re

fa
ce

 P
re

fa
ce

 P
re

fa
ce

 P
re

fa
ce

 P
re

fa
ce

Preface

This document describes how to use cXML (commerce eXtensible Markup
Language) for communication of data related to electronic commerce.

Audience and Prerequisites

This document is intended for application developers who design cXML-enabled
applications.

cXML is an open versatile language for the transaction requirements of:

• Network e-commerce hubs

• Electronic product catalogs

• PunchOut catalogs

• Procurement applications

• Buying communities

• E-commerce service providers

Readers should have a working knowledge of e-commerce concepts, the HTTP
Internet communication standard, and XML format.

This document does not describe how to use specific procurement applications or
commerce network hubs.

Which Chapters to Read

• E-commerce Business Managers—For an overview of cXML capabilities, read
Chapter 1, “Introduction to cXML.”

• Web Programmers—Web programmers who implement e-commerce sites should
read all chapters.

xii cXML User’s Guide November, 2001

Typography Preface

• PunchOut Site Administrators—Web engineers experienced with PunchOut
Websites should read Appendix A, “New Features in cXML 1.2.007.”

Typography

cXML elements and attributes are denoted with a monotype font. cXML element and
attribute names are case-sensitive. Both are a combination of lower and uppercase,
with elements beginning with an uppercase letter, and attributes beginning with a
lowercase letter. For example, MyElement is a cXML element, and myAttribute is a
cXML attribute.

The following table describes the typographic conventions used in this book:

Typeface or Symbol Meaning Example

<AaBbCc123> Text you need to change is
italicized, and appears
between angle brackets.

http://<server>:<port>/
inspector

AaBbCc123 The names of user interface
controls, menus, and menu
items.

Choose Edit from the File
menu.

AaBbCc123 Files and directory names,
parameters, fields in CSV files,
command lines, and code
examples.

There is one line in
ReportMeta.csv for each
report in the system.

AaBbCc123 The names of books. For more information, see
Acme Configuration
Overview.

cXML User’s Guide 13

1
 In

tr
o

d
u

ct
io

n
 t

o

cX
M

L
1

 In
tr

o
d

u
ct

io
n

 t
o

cX

M
L

1
 In

tr
o

d
u

ct
io

n
 t

o

cX
M

L
1

 In
tr

o
d

u
ct

io
n

 t
o

cX

M
L

1
 In

tr
o

d
u

ct
io

n
 t

o

cX
M

L
1

 In
tr

o
d

u
ct

io
n

 t
o

cX

M
L

Chapter 1
Introduction to cXML

This chapter introduces cXML (commerce eXtensible Markup Language) for
electronic-commerce transactions.

This chapter provides an overview of cXML. It discusses the following topics:

• cXML, an XML Implementation

• cXML Capabilities

• Types of Applications That Use cXML

• Content Delivery Strategy

• Validation Against DTDs

• Profile Transaction

• XML Utilities

cXML, an XML Implementation

XML (eXtensible Markup Language) is a meta-markup language used to create
syntaxes for languages. It is also a standard for passing data between applications,
particularly those that communicate across the Internet.

XML documents contain data in the form of tag/value pairs, for example:

<DeliverTo>Joe Smith</DeliverTo>

XML has a structure similar to HTML (HyperText Markup Language), which is an
implementation of SGML, XML’s parent meta language. But, applications can extract
and use data from XML documents more easily than from HTML ones, because in
XML, all data is tagged according to its purpose. XML contains only data, while
HTML contains both data and presentation information.

cXML Capabilities Chapter 1 Introduction to cXML

14 cXML User’s Guide November, 2001

Each cXML document is constructed based XML Document Type Definitions
(DTDs). Acting as templates, DTDs define the content model of a cXML document,
for example, the valid order and nesting of elements, and the data types of attributes.

The DTDs for cXML are files available on the www.cXML.org Website. For more
information, see “Getting cXML DTDs” on page 20.

cXML Capabilities

cXML allows buying organizations, suppliers, service providers, and intermediaries
to communicate using a single, standard, open language.

Successful business-to-business electronic commerce (B2B e-commerce) portals
depend upon a flexible, widely adopted protocol. cXML is a well-defined, robust
language designed specifically for B2B e-commerce, and it is the choice of high
volume buying organizations and suppliers.

cXML transactions consist of documents, which are simple text files containing
values enclosed by predefined tags. Most types of cXML documents are analogous to
hardcopy documents traditionally used in business.

The most commonly used types of cXML documents are:

• Catalogs

• PunchOut

• Purchase Orders

The following subsections describe these cXML documents.

Catalogs

Catalogs are files that convey product and service content to buying organizations.
They describe the products and services offered by a supplier and their prices, and
they are the main communication channel from suppliers to their customers.

Suppliers create catalogs so that organizations that use procurement applications can
see their product and service offerings and buy from them. Procurement applications
read catalogs and store them internally in their databases. After a buying organization

http://www.cXML.org

cXML User’s Guide 15

1
 In

tr
o

d
u

ct
io

n
 t

o

cX
M

L
1

 In
tr

o
d

u
ct

io
n

 t
o

cX

M
L

1
 In

tr
o

d
u

ct
io

n
 t

o

cX
M

L
1

 In
tr

o
d

u
ct

io
n

 t
o

cX

M
L

1
 In

tr
o

d
u

ct
io

n
 t

o

cX
M

L
1

 In
tr

o
d

u
ct

io
n

 t
o

cX

M
L

Chapter 1 Introduction to cXML cXML Capabilities

approves a catalog, that content is visible to users, who can choose items and add
them to purchase requisitions.

Suppliers can create catalogs for any product or service, regardless of how it is
measured, priced, or delivered.

For each item in a catalog, basic information is required, and optional information
enables advanced catalog features, such as multi-language descriptions.

PunchOut

PunchOut is an easy-to-implement protocol for interactive sessions managed across
the Internet. Using real-time, synchronous cXML messages, PunchOut enables
communication between applications, providing seamless user interaction at remote
sites.

There are three types of PunchOut:

• Procurement PunchOut

• PunchOut Chaining

• Provider PunchOut

Procurement PunchOut

Procurement PunchOut gives suppliers an alternative to static catalog files. PunchOut
sites are live, interactive catalogs running on a Website.

Sending product and service
content to a buying organization

cXML Capabilities Chapter 1 Introduction to cXML

16 cXML User’s Guide November, 2001

Suppliers that have e-commerce Websites can modify them to support PunchOut.
PunchOut sites communicate with procurement systems over the Internet by using
cXML.

For PunchOut sites, procurement applications display a button instead of product or
pricing details. When users click this button, their Web browsers display pages from
the supplier’s local Website. Depending on how the supplier implements these pages,
users can browse product options, specify configurations, and select delivery meth-
ods. When users are done selecting items, they click a button that returns the order
information to the procurement application. The fully configured products and their
prices appear within users’ purchase requisitions.

Suppliers’ Websites can offer previously agreed-upon contract products and prices.

PunchOut Chaining

PunchOut chaining is Procurement PunchOut that involves more than one PunchOut.
cXML Path Routing enables this functionality.

cXML Path Routing allows the order and other subsequent messages to return to the
marketplaces and suppliers involved in producing the quote. Path Routing notifies all
parties about the final order, and any subsequent PunchOut specifies to the
procurement application how to split orders on behalf of the marketplace.

For more information:

Chapter 4,
“Implementing
PunchOut.”

Interactive PunchOut session between
a user and a supplier Website

Buyer Marketplace Supplier

cXML User’s Guide 17

1
 In

tr
o

d
u

ct
io

n
 t

o

cX
M

L
1

 In
tr

o
d

u
ct

io
n

 t
o

cX

M
L

1
 In

tr
o

d
u

ct
io

n
 t

o

cX
M

L
1

 In
tr

o
d

u
ct

io
n

 t
o

cX

M
L

1
 In

tr
o

d
u

ct
io

n
 t

o

cX
M

L
1

 In
tr

o
d

u
ct

io
n

 t
o

cX

M
L

Chapter 1 Introduction to cXML cXML Capabilities

Provider PunchOut

Provider PunchOut enables applications to punch out to a remote applications that
supply services to the originating application, such as credit card validation, user
authentication, or self-registration.

Purchase Orders

Buying organizations send purchase orders to suppliers to request fulfillment of a
contract.

cXML is better for communicating purchase orders than other formats (such as ANSI
X12 EDI 850), because it is flexible, inexpensive to implement, and it supports the
widest array of data and attachments.

For more information:

Chapter 6, “Receiving
cXML Purchase
Orders.”

Purchase order communicated
to a supplier

Types of Applications That Use cXML Chapter 1 Introduction to cXML

18 cXML User’s Guide November, 2001

Types of Applications That Use cXML

cXML can be used by any e-commerce application. It is currently used by buying
organizations, vertical and horizontal buying communities, suppliers, and application
vendors. The following subsections describe the main types of applications that
currently use cXML.

Procurement Applications

Procurement applications, such as Ariba Buyer and Ariba Marketplace, Network
Edition, use cXML for external transactions.

Ariba Buyer is an enterprise application hosted by large organizations for use by their
employees over an intranet.

Ariba Marketplace, Network Edition, is an Internet-based service that allows the
creation of buying communities composed of many small- to medium-sized
businesses.

These applications allow communities of users to buy contract products and services
from vendors approved by their purchasing managers. Managers in the communities
first approve requested purchases, and approved purchase orders are transmitted to
suppliers through several possible channels, including cXML over the Internet.

Commerce Network Hubs

Commerce network hubs, such as Ariba Commerce Services Network (Ariba CSN),
are Web-based services for connecting buyers and suppliers. These Web services
provide features such as catalog validation and versioning, catalog publishing and
subscription, automated purchase order routing, and purchase order history.

Commerce network hubs can act as intermediaries that authenticate and route
requests and responses to and from diverse organizations. Communication between
these organizations can occur entirely through cXML over the Internet.

PunchOut Catalogs

As described in the previous section, PunchOut catalogs are interactive catalogs,
available at supplier Websites. PunchOut catalogs are made possible by Web server
applications, written in a programming language such as ASP (Active Server Pages),
JavaScript, or CGI (Common Gateway Interface), that manage buyers’ PunchOut
sessions.

cXML User’s Guide 19

1
 In

tr
o

d
u

ct
io

n
 t

o

cX
M

L
1

 In
tr

o
d

u
ct

io
n

 t
o

cX

M
L

1
 In

tr
o

d
u

ct
io

n
 t

o

cX
M

L
1

 In
tr

o
d

u
ct

io
n

 t
o

cX

M
L

1
 In

tr
o

d
u

ct
io

n
 t

o

cX
M

L
1

 In
tr

o
d

u
ct

io
n

 t
o

cX

M
L

Chapter 1 Introduction to cXML Content Delivery Strategy

PunchOut catalogs accept PunchOut requests from procurement applications, identify
the buying organization, and display the appropriate products and prices in HTML
format. Users then select items, configure them, and select options if appropriate.

At the end of the PunchOut session, the PunchOut site sends descriptions of the users’
selections, in cXML format, to the procurement applications.

Order-Receiving Systems

Order-receiving systems are applications at supplier sites that accept and process
purchase orders sent by buying organizations. Order-receiving systems can be any
automated system, such as inventory management systems, order-fulfillment systems,
or order-processing systems.

Because it is simple to extract information from cXML purchase orders, it is
relatively easy to create the adapters that enable existing order-receiving systems to
accept them.

Content Delivery Strategy

Procurement applications present product and service content to users. Suppliers want
to control the way their customers view their products or services, because
presentation is critical to their sales process. Buying organizations want to make
content easily accessible and searchable to ensure high contract compliance.

Buying organizations and suppliers can choose from multiple methods for delivering
product and service content. The particular method to use is determined by agreement
between a buying organization and a supplier, and the nature of the products or
services traded.

For more information:

Chapter 4,
“Implementing
PunchOut.”

For more information:

Chapter 6, “Receiving
cXML Purchase
Orders.”

Validation Against DTDs Chapter 1 Introduction to cXML

20 cXML User’s Guide November, 2001

The following table lists example categories of commonly procured products and
services, and their preferred content delivery methods.

Buying organizations can either store content locally within the organization, or they
can access it remotely on the Internet, through PunchOut. cXML catalogs support
both storage strategies.

As this table indicates, PunchOut offers a flexible framework upon which suppliers,
depending on their commodity or customer, can provide customized content. The
objective of this content strategy is to allow buyers and suppliers to exchange catalog
data by the method that makes the most sense.

Validation Against DTDs

Because cXML is an XML language, a set of Document Type Definitions (DTDs)
thoroughly define it. These DTDs are text files that describes the precise syntax and
order of cXML elements. DTDs enable applications to validate the cXML they read
or write.

cXML applications are not required to validate cXML documents received, although
it is recommended. However, all cXML documents must be valid and must refer to
the cXML DTDs described in the following section.

Getting cXML DTDs

DTDs for all versions of cXML are available on cxml.org:

Commodities Properties Content Delivery Method

Office Supplies,
Internal Supplies

Static content, stable
pricing

Static catalogs

Lab Supplies,
MRO (Maintenance,
Repair, and Operations),
Electronic Parts

Requires normalization to
be useful

PunchOut to a vertical
commodity portal

Books,
Chemicals

Large number of line
Items

PunchOut to a supplier
hosted site

Computers,
Network Equipment,
Peripherals

Many possible
configurations

PunchOut to a supplier
hosted configuration tool

Services,
Printed Materials

Content has highly
variable attributes

PunchOut to an electronic
form at a supplier site

cXML User’s Guide 21

1
 In

tr
o

d
u

ct
io

n
 t

o

cX
M

L
1

 In
tr

o
d

u
ct

io
n

 t
o

cX

M
L

1
 In

tr
o

d
u

ct
io

n
 t

o

cX
M

L
1

 In
tr

o
d

u
ct

io
n

 t
o

cX

M
L

1
 In

tr
o

d
u

ct
io

n
 t

o

cX
M

L
1

 In
tr

o
d

u
ct

io
n

 t
o

cX

M
L

Chapter 1 Introduction to cXML Profile Transaction

http://xml.cXML.org/schemas/cXML/<version>/cXML.dtd

where <version> is the full cXML version number, such as 1.2.006.

cXML uses multiple DTDs to optimize the performance of validating parsers. Some
transactions are defined in DTDs other than cXML.dtd:

• Confirmation and Ship Notice: Fulfill.dtd.

http://xml.cXML.org/schemas/cXML/<version>/Fulfill.dtd

• InvoiceDetail: InvoiceDetail.dtd.

http://xml.cXML.org/schemas/cXML/<version>/InvoiceDetail.dtd

Performing Validation

Your applications can use these DTDs to validate all incoming and outgoing cXML
documents. XML validation applications are available on the Web.

For the most robust transaction handling, validate all cXML documents received. If
you detect errors, issue the appropriate error code so the sender can retransmit.

For best performance, cXML clients should cache DTDs. After cXML DTD files are
published, they never change, so you can cache them indefinitely. (Each new version
of the DTDs has a new URL). When cXML applications parse a cXML document,
they should look at the SYSTEM identifier in the document header and retrieve that
DTD if it has not already been stored locally.

Profile Transaction

The Profile transaction communicates basic information about what transactions a
particular cXML server can receive. All cXML servers must support this transaction.
It is intended for back-end integrations between applications, making the capabilities
of cXML servers available to client systems.

This transaction consists of two documents, ProfileRequest and ProfileResponse.
Together, they retrieve server capabilities, including supported cXML version,
supported transactions, and options to those transactions.

Note: All cXML 1.1 and higher servers must support the Profile
transaction.

Service Status Response Chapter 1 Introduction to cXML

22 cXML User’s Guide November, 2001

ProfileRequest

The ProfileRequest document has no content. It simply routes to the specified cXML
server.

ProfileResponse

The server responds with a ProfileResponse document, which lists the cXML
transactions it supports, their locations, and any named options with a string value.

Service Status Response

A response with a status code of 200 from an URL that accepts POSTed cXML is up
and running. When an HTTP GET is sent to a service location, the service responds
with a valid, dynamically generated cXML Response document. A service can be any
HTTP URL at which cXML Request documents are received.

XML Utilities

Utilities for editing and validating XML files are available for free and for purchase
on the Web. The following listing describes a few of these utilities:

• Internet Explorer 5 from Microsoft. An XML-aware Web browser that can
validate XML files against DTDs.

www.microsoft.com/windows/ie/default.htm

• XML Authority from TIBCO Software. A Java-based XML Schema and DTD
editor, with an intuitive tree-based graphical user interface.

www.extensibility.com

• Turbo XML from TIBCO Software. A professional XML development and
management solution with intuitive XML, Schema, and DTD editing facilities.

www.extensibility.com

• XML Spy from Icon Information Systems. A tool for maintaining DTDs and XML
files with a grid, source and browser view.

www.icon-is.com

http://www.extensibility.com
http://www.microsoft.com/windows/ie/default.htm
http://www.extensibility.com
http://www.icon-is.com

cXML User’s Guide 23

1
 In

tr
o

d
u

ct
io

n
 t

o

cX
M

L
1

 In
tr

o
d

u
ct

io
n

 t
o

cX

M
L

1
 In

tr
o

d
u

ct
io

n
 t

o

cX
M

L
1

 In
tr

o
d

u
ct

io
n

 t
o

cX

M
L

1
 In

tr
o

d
u

ct
io

n
 t

o

cX
M

L
1

 In
tr

o
d

u
ct

io
n

 t
o

cX

M
L

Chapter 1 Introduction to cXML XML Utilities

• XMetaL from Softquad Software. A customizable XML authoring tool.

www.softquad.com

• CLIP from Techno2000 USA. An easy-to-use XML authoring tool with guided
editing.

www.t2000-usa.com

• XMLwriter from Wattle Software. A graphical XML authoring tool designed to
manage XML projects.

www.xmlwriter.net

In addition, the following Websites list more XML tools:

www.xmlsoftware.com
www.xml.com

http://www.softquad.com
http://www.xml.com
http://www.t2000-usa.com
http://www.xmlwriter.net
http://www.xmlsoftware.com

XML Utilities Chapter 1 Introduction to cXML

24 cXML User’s Guide November, 2001

cXML User’s Guide 25

2
 c

X
M

L
 B

as
ic

s
2

 c
X

M
L

 B
as

ic
s

2
 c

X
M

L
 B

as
ic

s
2

 c
X

M
L

 B
as

ic
s

2
 c

X
M

L
 B

as
ic

s
2

 c
X

M
L

 B
as

ic
s

Chapter 2
cXML Basics

This chapter describes the basic protocol and data formats of cXML. It contains
information needed to implement all transactions.

Protocol Specification

There are two communication models for cXML transactions: Request-Response and
One-Way. Because these two models strictly specify the operations, they enable
simple implementation. Both models are required, because there are situations when
one model would not be appropriate.

Request-Response Model

Request-Response transactions can be performed only over an HTTP or HTTPS
connection. The following figure illustrates the steps in a Request-Response
interaction between parties A and B:

This transaction contains the following steps:

1. Site A initiates an HTTP/1.x connection with Site B on a predetermined URL
that represents Site B’s address.

2. A uses a POST operation to send the cXML document through the HTTP
connection.

A B

Response

Request

One HTTP
POST/Response

B Performs
Request A Request-Response

Transaction

Protocol Specification Chapter 2 cXML Basics

26 cXML User’s Guide November, 2001

3. A waits for a response to return through the HTTP connection.

4. Site B has an HTTP/1.x-compliant server that dispatches the HTTP Request
to the resource specified by the URL used in step 1. This resource can be any
valid location known to Site B’s HTTP server, for example, a CGI program
or an ASP page.

5. Site B’s resource identified in step 4 reads the cXML document contents and
maps the Request to the appropriate handler for that request.

6. Site B’s handler for the cXML Request performs the work that the Request
specifies and formats a cXML document as a Response.

7. Site B sends the cXML Response to Site A through the HTTP connection
established in step 1.

8. Site A reads the cXML Response and returns it to the process that initiated
the Request.

9. Site A closes the HTTP connection established in step 1.

This process is then repeated for further Request/Response cycles.

To simplify the work in the above steps, cXML documents are divided into two
distinct parts:

• Header—Contains authentication information and addressing.

• Request or Response data—Contains a specific request or response and the
information to be passed.

Both of these elements are carried in a parent envelope element. The following
example shows the structure of a cXML Request document:

<cXML>
<Header>

Header information
</Header>
<Request>

Request information
</Request>

</cXML>

The following example shows the structure of a cXML Response document:

<cXML>
<Response>

cXML User’s Guide 27

2
 c

X
M

L
 B

as
ic

s
2

 c
X

M
L

 B
as

ic
s

2
 c

X
M

L
 B

as
ic

s
2

 c
X

M
L

 B
as

ic
s

2
 c

X
M

L
 B

as
ic

s
2

 c
X

M
L

 B
as

ic
s

Chapter 2 cXML Basics Protocol Specification

Response information
</Response>

</cXML>

The Response structure does not use a Header element. It is not necessary, because the
Response always travels in the same HTTP connection as the Request.

cXML Conventions

cXML uses elements to describe discrete items, which are properties in traditional
business documents. Elements also describe information with obvious subdivisions
and relationships between those subdivisions, such as an addresses, which are
composed of street, city, and country.

cXML also uses attributes, which modify elements or provide context.

Element and attribute names are case-sensitive and use whole words with capitals
(not hyphens) separating the words. Element names begin with an uppercase letter;
attribute names begin with a lowercase letter, for example:

Elements: Sender, Credential, Payment, ItemDetail
Attributes: payloadID, lineNumber, domain

cXML Document

The cXML element is the body of a cXML document. A document might begin as
follows:

<?xml version=’1.0’ encoding=’UTF-8’?>
<!DOCTYPE cXML SYSTEM "http://xml.cxml.org/schemas/cXML/1.2.001/cXML.dtd">
<cXML xml:lang="en-US"

payloadID=”1234567.4567.5678@test.ariba.com"
timestamp="2000-01-09T01:36:05-08:00">
…

The first characters in cXML documents must be <? or <!. Documents must not start
with white space or tabs. For example, the HTML form that contains a
PunchOutOrderMessage document must not insert any character between the opening
quote and the left angle bracket.

The second line in cXML documents must contain the DOCTYPE document type
declaration. This is the only external entity that can appear in cXML documents. This
line references the cXML DTD. See “Validation Against DTDs” on page 20 for more
information about cXML DTDs.

Protocol Specification Chapter 2 cXML Basics

28 cXML User’s Guide November, 2001

cXML documents can have any one of the following top-level elements: cXML,
Supplier, Contract, and Index. The cXML element is for “transactional” data. The other
elements describe static content.

Wrapping Layers

cXML documents are usually transmitted through HTTP with the HTTP header
specifying a MIME (Multipurpose Internet Mail Extensions) media type of text/xml
and a charset parameter matching the encoding in the cXML document.

Because HTTP is eight-bit clean, any character encoding supported by the receiving
parser can be used without a content-transfer encoding such as base64 or quoted-
printable. All XML parsers support the UTF-8 (Universal Transformation Format)
encoding, which includes all Unicode characters, including all of US-ASCII.
Therefore, applications should use UTF-8 when transmitting cXML documents.

Note: According to RFC 2376 “XML Media Types,” the MIME charset
parameter overrides any encoding specified in the XML declaration. Further,
the default encoding for the text/xml media type is us-ascii, not UTF-8 as
mentioned in Section 4.3.3 of the XML Specification. For clarity, cXML
documents should include an explicit encoding in the XML declaration.
MIME envelopes should use a matching charset parameter for the text/xml.
You can also use the application/xml media type, which does not override
the XML declaration or affect the recipient's decoding notes, and which does
not require the charset parameter.

An HTTP transmission of a cXML document might include the following MIME and
HTTP headers:

POST /cXML HTTP/1.0
Content-type: text/xml; charset="UTF-8"
Content-length: 1862
Accept: text/html, image/gif, image/jpeg, *; q=.2, */*; q=.2
User-Agent: Java1.1
Host: localhost:8080
Connection: Keep-Alive

<?xml version="1.0" encoding="UTF-8"?>
…

cXML User’s Guide 29

2
 c

X
M

L
 B

as
ic

s
2

 c
X

M
L

 B
as

ic
s

2
 c

X
M

L
 B

as
ic

s
2

 c
X

M
L

 B
as

ic
s

2
 c

X
M

L
 B

as
ic

s
2

 c
X

M
L

 B
as

ic
s

Chapter 2 cXML Basics Protocol Specification

Attachment Transmission

The cXML protocol supports attachment of external files through MIME. For
example, buyers often need to clarify purchase orders with supporting memos,
drawings, or faxes. Procurement applications can attach files of any type to
OrderRequest documents by using MIME. The XML document contains only
references to external MIME parts sent within one multipart MIME envelope.

When sending an OrderRequest that references external files, the referenced files can
either reside on a server accessible by the supplier, or they can be transmitted along
with the cXML document. This second option requires the use of a multipart MIME
envelope. One cXML requirement for this envelope (over the basics described in
RFC 2046 “Multipurpose Internet Mail Extensions Part Two: Media Types”) is the
inclusion of Content-ID headers with each attached file.

The following example shows the required skeleton of a cXML document with an
attached JPEG image (without the HTTP headers shown above):

POST /cXML HTTP/1.0
Content-type: multipart/mixed; boundary=something unique

--something unique
Content-type: text/xml; charset="UTF-8"

<?xml version="1.0" encoding="UTF-8"?>
…
--something unique
Content-type: image/jpeg
Content-ID: <uniqueCID@cxml.org>
…
--something unique--

This skeleton is also all that a receiving MIME parser must be able to process.
Applications that make use of the media type described in RFC 2387 “The MIME
Multipart/Related Content-type” will get much more information if the skeleton is
enhanced:

POST /cXML HTTP/1.0
Content-type: multipart/related; boundary=something unique;

type="text/xml"; start=<uniqueCIDmain@cxml.org>

--something unique
Content-type: text/xml; charset="UTF-8"
Content-ID: <uniqueCIDmain@cxml.org>

<?xml version="1.0" encoding="UTF-8"?>
…

Protocol Specification Chapter 2 cXML Basics

30 cXML User’s Guide November, 2001

--something unique
Content-type: image/jpeg
Content-ID: <uniqueCID@cxml.org>
…
--something unique--

Receiving MIME parsers that do not understand the multipart/related media type must
treat the two examples above identically. Each part of the MIME transmission can
additionally have a Content-transfer-encoding and use that encoding. This addition is
not necessary for HTTP transmission. Content-description and Content-disposition
headers are optional within the cXML protocol, although they provide useful
documentation.

For more information about the MIME standard, see the following Websites:

www.hunnysoft.com/mime
www.rad.com/networks/1995/mime/mime.htm

For more information about attaching external files to purchase orders, see
“Attachment” on page 119.

cXML Envelope

The cXML element is the root of cXML documents, and it contains all other elements.
The cXML element is present in every cXML transaction. The following example
shows a fully specified cXML element:

<cXML xml:lang="en-US"
payloadID=1234567.4567.5678@test.ariba.com
timestamp="1999-03-31T18:39:09-08:00">

http://www.hunnysoft.com/mime
http://www.rad.com/networks/1995/mime/mime.htm

cXML User’s Guide 31

2
 c

X
M

L
 B

as
ic

s
2

 c
X

M
L

 B
as

ic
s

2
 c

X
M

L
 B

as
ic

s
2

 c
X

M
L

 B
as

ic
s

2
 c

X
M

L
 B

as
ic

s
2

 c
X

M
L

 B
as

ic
s

Chapter 2 cXML Basics Protocol Specification

cXML has the following attributes:

Locale Specified by xml:lang

The xml:lang attribute also appears with most free text elements (such as Description and
Comments). While the XML specification allows the locale for an element to default to
that specified for any parent element, such defaults result in inefficient queries of the
document tree. cXML attempts to keep the locale identifiers together with the
affected strings. The most descriptive and specific locale known should be specified
in this attribute.

The xml:lang attributes appearing throughout the cXML protocol have no effect on
formatted data such as numbers, dates, and times. As described for the timestamp
attribute in the following section, for the timestamp attribute, such discrete values are
formatted according to their data types. Longer strings (and referenced Web pages)
not intended for machine processing might contain a locale-specific numeric or date
format that matches a nearby xml:lang attribute.

version
(deprecated)

This attribute was deprecated in cXML 1.2.007; do not use it in
new cXML documents.

Specifies the version of the cXML protocol. A validating XML
parser could also determine the version attribute from the
referenced DTD. Because this version number also appears in
the SYSTEM identifier in the cXML document, you should omit
this attribute.

xml:lang
(optional)

The locale used for all free text sent within this document. The
receiver should reply or display information in the same or a
similar locale. For example, a client specifying xml:lang=“en-UK”
in a request might receive “en” data in return. Specify the most
descriptive and specific locale possible.

payloadID

A unique number with respect to space and time, used for
logging purposes to identify documents that might have been
lost or had problems. This value should not change for retry
attempts.

The recommended implementation is:

datetime.process id.random number@hostname

timestamp

The date and time the message was sent, in ISO 8601 format.
This value should not change for retry attempts.

The format is YYYY-MM-DDThh:mm:ss-hh:mm (for example,
1997-07-16T19:20:30+01:00).

Protocol Specification Chapter 2 cXML Basics

32 cXML User’s Guide November, 2001

Date, Time, and other Data Types

The timestamp attribute, and all other dates and times in cXML, must be formatted in
the restricted subset of ISO 8601. This is described in the Word Wide Web
Consortium (W3C) Note entitled “Date and Time Formats” available at
www.w3.org/TR/NOTE-datetime-970915.html.

Timestamps require a minimum of a complete date plus hours, minutes, and seconds.
Fractions of a second are optional. This protocol requires times expressed in local
time with a time-zone offset from UTC (Coordinated Universal Time, also known as
Greenwich Mean Time). The “Z” time zone designator is not allowed.

For example, 2000-04-14T013:36:00-08:00 corresponds to April 14, 2000, 1:36 p.m., U.S.
Pacific Standard Time.

Further references for the date, time, and other data type formats used by cXML are:

• Microsoft’s XML Data Types Reference, msdn.microsoft.com/library/
default.asp?url=/library/en-us/xmlsdk30/htm/xmrefxmldatatypes.asp

• The original XML Data proposal to the Word Wide Web Consortium (W3C),
www.w3c.org/TR/1998/NOTE-XML-data-0105

Special Characters

In cXML, as in XML, not all characters can be typed from the keyboard, such as the
registered trademark symbol (®). Others, such as < and &, have special meaning to
XML. These characters must be encoded using character entities.

XML defines the following built-in character entities:

For characters outside of the encoding you use, use the Unicode number of the
character (decimal or hexadecimal), preceded by pound (#). For example, ® and
® represent a registered trademark symbol, ®.

For example,

Entity Character

< >

> <

& &

" “

' ‘

http://www.w3.org/TR/NOTE-datetime-970915.html
http://www.w3c.org/TR/1998/NOTE-XML-data-0105
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/xmlsdk30/htm/xmrefxmldatatypes.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/xmlsdk30/htm/xmrefxmldatatypes.asp

cXML User’s Guide 33

2
 c

X
M

L
 B

as
ic

s
2

 c
X

M
L

 B
as

ic
s

2
 c

X
M

L
 B

as
ic

s
2

 c
X

M
L

 B
as

ic
s

2
 c

X
M

L
 B

as
ic

s
2

 c
X

M
L

 B
as

ic
s

Chapter 2 cXML Basics Protocol Specification

<Description xml:lang="en-US">The best prices for software®</Description>

could be encoded as

<Description xml:lang="en-US">The best prices for software ®</Description>

Single (’)or double (")quotation marks must be escaped only within attribute values
that are quoted using that delimiter. It is recommended that you use only single quotes
to delimit attributes, unless the content will never contain quotes.

▼ To handle special characters in documents:

1. Use a template that only uses single quotes to delimit attributes.

2. Add values to the template by doing one of the following:

• If the document is a PunchOutOrderMessage to be transmitted by the
cxml-urlencoded hidden field, fill the values in the template using US-
ASCII encoding. This encoding requires XML character entities for all
characters beyond that encoding. For example, as described above, enter
the registered trademark symbol, which is not available in US-ASCII, as
®.

• Otherwise, fill the values in the document using UTF-8 encoding. UTF-8
should be used for all documents sent by HTTP Post directly, or embedded
in a cXML-base64 hidden field. UTF-8 includes all of US-ASCII.

3. XML escape attribute values and element content as you create the cXML
document. Characters that must be escaped are &, ’, < and >.

The following steps are required if you are transmitting the document in a
PunchOutOrderMessage.

4. Pay attention to all characters that browsers interpret:

a. If you are using a cxml-urlencoded hidden field, convert all double
quotes to ".

b. Further (for the cxml-urlencoded field), escape all ampersands that
appear in contexts significant to HTML with &. To be safe, you can
escape all ampersands. For example, escape & as &amp; and
' as &apos;. Escape the trademark symbol ® as &#174;.

c. Otherwise, if you are using a cxml-base64 hidden field, base64 encode
the entire cXML document.

Protocol Specification Chapter 2 cXML Basics

34 cXML User’s Guide November, 2001

5. Embed the document in the HTML form with double quotes around the
string value. For example, to send a Money element with an attribute having
the value ®®'"""&<>> and containing the value ®®''"""&<>>", the XML
document might appear as:

<?xml version='1.0' encoding='UTF-8'?>
<!DOCTYPE Money SYSTEM 'SpecialChars.dtd'>
<Money alternateAmount='®®'"""&<>>'>
®®''"""&<>></Money>

which should be encoded as follows:

<!-- Recommendation for cXML-urlencoding: Uses double quotes to delimit the -->
<!-- field value and single quotes for the contained attributes. -->
<Input type="Hidden" name="cXML-urlencoded" value="<?xml version='1.0'
encoding='UTF-8'?>
<!DOCTYPE Money SYSTEM 'SpecialChars.dtd'>
<Money alternateAmount='&#174;&#xAE;&apos;"&#34;
&quot;&amp;&lt;>&gt;'>&#174;&#xAE;'&apos;
"&#34;&quot;&amp;&lt;>&gt;</Money>">

<!-- Best choice: Base64 encode the value. Don't have to worry about what -->
<!-- the browser interprets. -->
<Input type="Hidden" name="cXML-
base64"value="PD94bWwgdmVyc2lvbj0nMS4wJyBlbmNvZGluZz0nVVRGLTgnPz4K
PCFET0NUWVBFIE1vbmV5IFNZU1RFTSAnU3BlY2lhbENoYXJzLmR0ZCc+CjxNb
25leSBhbHRlcm5hdGVBbW91bnQ9JyYjMTc0OyYjeEFFOyZhcG9zOyImIzM0OyZxd
W90OyZhbXA7Jmx0Oz4mZ3Q7Jz4KJiMxNzQ7JiN4QUU7JyZhcG9zOyImIzM0OyZx
dW90OyZhbXA7Jmx0Oz4mZ3Q7PC9Nb25leT4K">

The preceding examples illustrate alternatives for encoding the cXML-urlencoded
field. They avoid XML escaping a few characters, such as angle brackets, that are not
special to XML in all contexts. A direct implementation of the previous steps would
result in an HTML field such as:

<Input type="Hidden" name="cXML-urlencoded" value="<?xml version='1.0'
encoding='UTF-8'?>
<!DOCTYPE Money SYSTEM 'SpecialChars.dtd'>
<Money alternateAmount='&#174;&#174;&apos;"""
&amp;&lt;&gt;&gt;'>&#174;&#174;''"""
&amp;&lt;&gt;&gt;</Money>">

or the XML document:

<?xml version='1.0' encoding='UTF-8'?>
<!DOCTYPE Money SYSTEM 'SpecialChars.dtd'>
<Money alternateAmount='®®'"""&<>>'>
®®''"""&<>></Money>

cXML User’s Guide 35

2
 c

X
M

L
 B

as
ic

s
2

 c
X

M
L

 B
as

ic
s

2
 c

X
M

L
 B

as
ic

s
2

 c
X

M
L

 B
as

ic
s

2
 c

X
M

L
 B

as
ic

s
2

 c
X

M
L

 B
as

ic
s

Chapter 2 cXML Basics Protocol Specification

Header

The Header element contains addressing and authentication information. The Header
element is the same regardless of the specific Request or Response within the body of
the cXML message. Applications need the requestor’s identity, but not validation that
the information provided for identity is correct.

The following example shows the Header element:

<Header>
<From>

<Credential domain="AribaNetworkUserId">
<Identity>admin@acme.com</Identity>

</Credential>
</From>
<To>

<Credential domain="DUNS">
<Identity>012345678</Identity>

</Credential>
</To>
<Sender>

<Credential domain="AribaNetworkUserId">
<Identity>sysadmin@ariba.com</Identity>
<SharedSecret>abracadabra</SharedSecret>

</Credential>
<UserAgent>Ariba Network 1.1</UserAgent>

</Sender>
</Header>

The From and To elements are synonymous with From and To in SMTP mail
messages; they are the logical source and destination of the messages. Sender is the
party that opens the HTTP connection and sends the cXML document.

Sender contains the Credential element, which allows the receiving party to authenticate
the sending party. This credential allows strong authentication without requiring a
public-key end-to-end digital certificate infrastructure. Only a user name and
password need to be issued by the receiving party to allow the sending party to
perform Requests.

When the document is initially sent, Sender and From are the same, However, if the
cXML document travels through e-commerce network hubs, the Sender element
changes to indicate current sending party.

Protocol Specification Chapter 2 cXML Basics

36 cXML User’s Guide November, 2001

From

This element identifies the originator of the cXML request. It can optionally contain
more than one Credential element, allowing requestors to identify themselves using
multiple identification methods. This use of multiple credentials is analogous to
sending both SMTP and X.400 addresses in an e-mail message.

To

This element identifies the destination of the cXML request. Like the From element, it
can contain more than one Credential to help identify the target.

Sender

This element allows the receiving party to identify and authenticate the party that
opened the HTTP connection. It contains a stronger authentication Credential than the
ones in the From or To elements, because the receiving party must authenticate who is
asking it to perform work.

UserAgent

A textual string representing the UserAgent who is conducting the cXML conversation.
This should be a unique per-product string, and ideally, per-version. Analogous to
UserAgent for HTTP conversations.

Credential

This element contains identification and authentication values.

Credential has the following attributes:

Credential contains an Identity element and optionally a SharedSecret element. The Identity
element states who the Credential represents, while the optional authentication
elements verify the identity of the party.

domain Specifies the type of credential. This attribute allows
documents to contain multiple types of credentials for multiple
authentication domains.

For messages sent on Ariba CSN, for instance, the domain can
be AribaNetworkUserId to indicate an email address, DUNS for a
D-U-N-S number, or NetworkId for a preassigned ID.

type
(optional)

Requests to or from a marketplace identify both the
marketplace and the member company in From or To Credential
elements. In this case, the credential for the marketplace uses
the type attribute, which is set to the value “marketplace”.

cXML User’s Guide 37

2
 c

X
M

L
 B

as
ic

s
2

 c
X

M
L

 B
as

ic
s

2
 c

X
M

L
 B

as
ic

s
2

 c
X

M
L

 B
as

ic
s

2
 c

X
M

L
 B

as
ic

s
2

 c
X

M
L

 B
as

ic
s

Chapter 2 cXML Basics Protocol Specification

The SharedSecret element is used when the Sender has a username/password
combination that the requester recognizes.

Note: Do not use authentication elements in documents sent through one-
way communication. This transport routes through users’ browsers, so users
would be able to see the document source, including Credential elements.

Request

Clients send requests for operations. Only one Request element is allowed for each
cXML envelope element, which simplifies the server implementations, because no de-
multiplexing needs to occur when reading cXML documents. The Request element
can contain virtually any type of XML data.

Typical Request elements are:

• OrderRequest

• ProfileRequest

• PunchOutSetupRequest

• StatusUpdateRequest

• GetPendingRequest

• ConfirmationRequest

• ShipNoticeRequest

• ProviderSetupRequest

Request has the following attribute:

Response

Servers send responses to inform clients of the results of operations. Because the
result of some requests might not have any data, the Response element can optionally
contain nothing but a Status element. A Response element can also contain any
application-level data. During PunchOut for example, the application-level data is
contained in a PunchOutSetupResponse element.

The typical Response elements are:

• ProfileResponse

deploymentMode
(optional)

Indicates whether the request is a test request or a production
request. Allowed values are “production” (default) or “test”.

Protocol Specification Chapter 2 cXML Basics

38 cXML User’s Guide November, 2001

• PunchOutSetupResponse

• GetPendingResponse

Status

This element conveys the success, transient failure, or permanent failure of a request
operation.

Status has the following attributes:

The attributes of the Status element indicate what happened to the request. For
example:

<Status xml:lang="en-US" code="200” text="OK"> </Status>

The content of the Status element can be any data needed by the requestor and should
describe the error. For a cXML 200/OK status code, there might be no data. However,
for a cXML 500/Internal Server Error status code, or other similar code, it is strongly
recommended that the actual XML parse error or application error be presented. This
error allows better one-sided debugging and interoperability testing. For example:

<Status code="406" text="Not Acceptable">cXML did not validate. Big Problem!</Status>

The following table describes the cXML status code ranges:

code The status code of the request. For example, 200 represents a
successful request. See the table of codes, below.

text The text of the status message. This text aids user readability
in logs, and is a canonical string for the error in English.

xml:lang
(optional)

The language of the data in the Status element. Optional for
compatibility with cXML 1.0. Might be required in future
versions of cXML.

Range Meaning

2xx Success

4xx Permanent error. Client should not retry. The error prevents the request
from being accepted.

5xx Transient error. Typically a transport error. Client should retry. The
recommended number of retries is 10, with a frequency of one hour. At a
minimum a six hour retry window is recommended. For high priority
requests, such as rush orders, you might want to increase the retry
frequency.

cXML User’s Guide 39

2
 c

X
M

L
 B

as
ic

s
2

 c
X

M
L

 B
as

ic
s

2
 c

X
M

L
 B

as
ic

s
2

 c
X

M
L

 B
as

ic
s

2
 c

X
M

L
 B

as
ic

s
2

 c
X

M
L

 B
as

ic
s

Chapter 2 cXML Basics Protocol Specification

Servers should not include additional Response elements (for example, a
PunchOutSetupResponse element) unless the status code is in the cXML 200 range (for
example, cXML 200/OK).

Because cXML is layered above HTTP in most cases, many errors (such as HTTP
404/Not Found) are handled by the transport. All transport errors should be treated as
transient and the client should retry, as if a cXML 500 range status code had been
received. All HTTP replies that don’t include valid cXML content, including HTTP
404/Not found and HTTP 500/Internal Server Error status codes, are considered
transport errors. Other common transport problems include timeouts, TCP errors
(such as “connection refused”), and DNS errors (such as “host unknown”). Validation
errors in parsing a Request document would normally result in a cXML permanent
error in the 400 range, preferably 406/Not Acceptable.

The following table includes possible cXML status codes:

Status Text Meaning

200 OK The server was able to execute this Request, although
the returned Response might contain application
warnings or errors. Specifically, the cXML Request itself
generated no errors or warnings. However, this status
does not reflect any errors or warnings that might be
generated afterwards by the application itself.

201 Accepted Some processing might not yet have completed.

As mentioned in “StatusUpdateRequest” on page 129,
the client should expect later StatusUpdate transactions if
this status is returned in response to an OrderRequest.

204 No Content All Request information was valid and recognized. The
server has no Response data of the type requested.

In a PunchOutOrderMessage, this status indicates that the
PunchOut session ended without change to the
shopping cart (or client requisition).

400 Bad Request Request unacceptable to the server, although it parsed
correctly.

401 Unauthorized Credentials provided in the Request (the Sender element)
were not recognized by the server.

402 Payment
Required

This Request must include a complete Payment element.

403 Forbidden The user has insufficient privileges to execute this
Request.

406 Not Acceptable Request unacceptable to the server, likely due to a
parsing failure.

409 Conflict The current state of the server or its internal data
prevented the (update) operation request. An identical
Request is unlikely to succeed in the future, but only after
another operation has executed, if at all.

Protocol Specification Chapter 2 cXML Basics

40 cXML User’s Guide November, 2001

When receiving unrecognized codes, cXML clients must handle them according to
their class. Therefore, older clients should treat all new 2xx codes as 200 (success),
4xx codes as 400 (permanent failure), and 5xx codes as 500 (transient error). This
behavior allows for both further expansions of the cXML protocol and server-specific
codes without loss of interoperability.

One-Way (Asynchronous) Model

Unlike Request-Response transactions, One-Way messages are not restricted to the
HTTP transport. One-way messages are for situations when an HTTP channel (a
synchronous request-response type operation) is not appropriate. The following figure

412 Precondition
Failed

A precondition of the Request (for example, a PunchOut
session appropriate for a PunchOutSetupRequest edit)
was not met. This status normally implies the client
ignored some portion of a previous transmission from a
server (for example, the operationAllowed attribute of a
PunchOutOrderMessageHeader).

417 Expectation
Failed

Request implied a resource condition that was not met.
One example might be a SupplierDataRequest asking for
information about a supplier unknown to the server. This
status might imply lost information at the client or server.

450 Not
Implemented

The server does not implement the particular Request.
For example, PunchOutSetupRequest or the requested
operation might not be supported. This status normally
implies the client has ignored the server’s profile.

500 Internal Server
Error

Server was unable to complete the Request.

550 Unable to
reach cXML
server

Unable to reach next cXML server to complete a
transaction requiring upstream connections. An
intermediate hub can return this code when a supplier
site is unreachable. If upstream connections complete,
intermediate hubs should return errors directly to the
client.

551 Unable to
forward
request

Unable to forward request because of supplier
misconfiguration. For example, an intermediate hub
failed to authenticate itself to a supplier. Clients cannot
rectify this error, but this error might be resolved before
the client retries.

560 Temporary
server error

For example, a server might be down for maintenance.
The client should retry later.

Status Text Meaning

cXML User’s Guide 41

2
 c

X
M

L
 B

as
ic

s
2

 c
X

M
L

 B
as

ic
s

2
 c

X
M

L
 B

as
ic

s
2

 c
X

M
L

 B
as

ic
s

2
 c

X
M

L
 B

as
ic

s
2

 c
X

M
L

 B
as

ic
s

Chapter 2 cXML Basics Protocol Specification

shows an example of how A and B might communicate with messages instead of the
Request-Response transaction.

In this case, a possible scenario would be:

1. A formats and encodes a cXML document in a transport that B understands.

2. A sends the document using the known transport. A does not (and cannot)
actively wait for a response to come back from B.

3. B receives the cXML document and decodes it out of the transport stream.

4. B processes the document.

In the One-Way model, A and B do not have an explicit Request-Response cycle. For
example, between One-Way messages, messages from other parties might arrive and
other conversations could take place.

To fully specify a one-way transaction, the transport used for the message must also
be documented. For the cXML transactions that use the one-way approach, the
transport and encoding are specified. A common example of a transaction that uses
one-way is the PunchOutOrderMessage.

One-way messages have a similar structure to the Request-Response model:

<cXML>
<Header>

Header information here…
</Header>
<Message>

Message information here…
</Message>

</cXML>

The Header element is treated exactly as it is in the Request-Response case. The cXML
element is also identical to the one described on page 30. The easiest way to tell the
difference between a one-way message and a Request-Response message is the
presence of a Message element (instead of a Request or Response element). The
following section discusses the Message element in more detail.

A B

Message One-Way Message
(Asynchronous)

Protocol Specification Chapter 2 cXML Basics

42 cXML User’s Guide November, 2001

The Header element in a one-way message should not contain shared secret
information in the sender credential. Authentication is done using the BuyerCookie.
This is different from Request-Response Header.

Message

This element carries all the body level information in a cXML message. It can contain
an optional Status element, identical to that found in a Response element—it would be
used in messages that are logical responses to request messages.

Message has the following attributes:

The inReplyTo attribute can also reference the payloadID of an earlier Request or Response
document. When a Request-Response transaction initiates a “conversation” through
multiple one-way interactions, the first message can include the payloadID of the most
recent relevant Request or Response that went in the other direction. For example, a
Message containing a PunchOutOrderMessage might include an inReplyTo attribute
containing the payloadID of the PunchOutSetupRequest that started the PunchOut session.
The BuyerCookie included in the PunchOut documents performs a similar function to
that of the inReplyTo attribute.

Transport Options

There are two commonly used transports for one-way messages: HTTP and URL-
Form-Encoding. These are just two of the well-defined transports today; more could
become supported in the future.

HTTP

Procurement applications pull information using one-way HTTP communication. The
one type of transaction that uses one-way HTTP communication is GetPendingRequest,
discussed on page 209.

HTTPS is preferred, because it encrypts transmitted data for security.

deploymentMode
(optional)

Indicates whether the request is a test request or a production
request. Allowed values are “production” (default) or “test”.

inReplyTo
(optional)

Specifies to which Message this Message responds. The
contents of the inReplyTo attribute would be the payloadID of a
Message that was received earlier. This would be used to
construct a two-way conversation with many messages.

cXML User’s Guide 43

2
 c

X
M

L
 B

as
ic

s
2

 c
X

M
L

 B
as

ic
s

2
 c

X
M

L
 B

as
ic

s
2

 c
X

M
L

 B
as

ic
s

2
 c

X
M

L
 B

as
ic

s
2

 c
X

M
L

 B
as

ic
s

Chapter 2 cXML Basics Protocol Specification

URL-Form-Encoding

URL-Form-Encoding enables integration between remote Websites and procurement
applications. It also serves as a way to avoid requiring a listening server on the
buyer’s system that is directly accessible through the Internet. This transport is best
understood by examining how the PunchOutOrderMessage transaction works.

Remote Websites do not directly send cXML PunchOutOrderMessage documents to
procurement applications; instead, they encode them as hidden HTML Form fields
and post them to the URL specified in the BrowserFormPost element of the
PunchOutSetupRequest. When the user clicks a Check Out button on the Website after
shopping, the Website sends the data to the procurement application as an HTML
Form Submit. The following diagram illustrates what happens:

The semantics of packing and unpacking are described below.

Form Packing

Remote Websites assign each PunchOutOrderMessage document to a hidden field on the
Form named cXML-urlencoded or cXML-base64. They assign the HTML Form element a
METHOD of POST and an ACTION consisting of the URL passed in the
BrowserFormPost element of the PunchOutSetupRequest. For example:

Remote
Website

Originating
System

Web
Browser

Internet

HTML page with
Form-encoded
cXML message

User clicks Submit
button, Form is

sent to URL
specified by
Originating

System
Form is decoded,
cXML message
extracted and

passed to
Originating System

as a new cXML
Request

1

2

3

Protocol Specification Chapter 2 cXML Basics

44 cXML User’s Guide November, 2001

<FORM METHOD=POST
ACTION="http://workchairs.com:1616/punchoutexit">

<INPUT TYPE=HIDDEN NAME="cXML-urlencoded"
VALUE="Entire URL-Encoded PunchOutOrderMessage document">

<INPUT TYPE=SUBMIT VALUE="Proceed">
</FORM>

Additional HTML tags on the page might contain the above fragment to describe the
contents of the shopping basket in detail.

Note: When Web servers send the cXML-urlencoded field, it is not yet URL
encoded. This encoding is required only when the form is submitted by Web
browsers (when users click Check Out in the above example). Web browsers
themselves meet this requirement. The Web server must HTML-encode only
the field value, escaping quotation marks and other special characters, so the
form displays properly for the user.

The names cXML-urlencoded and cXML-base64 are case insensitive.

cXML-urlencoded

The cXML-urlencoded field is URL encoded (per the HTTP specification) by the Web
browser, not by the Web server or the supplier. This is because the encoding is
required only when the form is submitted by a Web browser, such as when a user
clicks Check Out in the previous example. However, the Web server must HTML-
encode the field value, escaping quotation marks and other special characters, so that
the form will display correctly.

Note: Suppliers should never URL encode the cXML-urlencoded field.
This field is automatically URL-encoded by the web browser.

For cXML-urlencoded data, the receiving parser cannot assume a charset parameter
beyond the default for media type text/xml. No character encoding information for the
posted data is carried in an HTTP POST. The receiving Web server cannot determine
the encoding of the HTML page containing the hidden field. The cXML document
forwarded in this fashion must therefore use us-ascii character encoding. Any
characters (including those “URI encoded” as “%XX”) found in the XML source
document must be in the “us-ascii” set. Other Unicode symbols can be encoded using
character entities in that source document.

cXML-Base64

The cXML-base64 hidden field supports international documents. cXML documents
containing symbols outside of “us-ascii” should use this field instead of the cXML-
urlencoded hidden field. This alternative has almost identical semantics, but the entire
document is base64-encoded throughout transport and not HTML-encoded to the

cXML User’s Guide 45

2
 c

X
M

L
 B

as
ic

s
2

 c
X

M
L

 B
as

ic
s

2
 c

X
M

L
 B

as
ic

s
2

 c
X

M
L

 B
as

ic
s

2
 c

X
M

L
 B

as
ic

s
2

 c
X

M
L

 B
as

ic
s

Chapter 2 cXML Basics Protocol Specification

browser or URL-encoded to the receiving Web server. Base64-encoding is described
in RFC 2045 “Multipurpose Internet Mail Extensions (MIME) Part One: Format of
Internet Message Bodies.”

Base64-encoding from the remote Website through the browser and to the receiving
Web server at the client maintains the original character encoding of a cXML
document. Though no charset parameter arrives with the posted information, the
decoded document (after the transfer encoding is removed) can be treated as the
media type application/xml. This encoding allows the receiving parser to honor any
encoding attribute specified in the XML declaration. For this field (as for any application/
xml documents), the default character encoding is UTF-8.

Either of these hidden fields (cXML-urlencoded or cXML-base64) must appear in the data
posted to the procurement application. Though recipients should first look for
cXML-base64 in the data, it is wasteful to send both fields.

Form Unpacking and Processing

The procurement application, which previously provided the appropriate URL,
receives an HTML Form POST containing the Form data as described above. The
Form POST processor would first look for the cXML-base64 variable, extract the value
and base64-decode its contents. If that field does not exist in the data, the Form POST
processor would look for the cXML-urlencoded variable, extract the URL-encoded
cXML message and URL-decode it. The decoded content of the field is then
processed as if it had been received through a normal HTTP Request/Response cycle.

The implied media type of the document after decoding varies, with different possible
character encodings:

• The cXML-urlencoded variable is of media type text/xml with no charset attribute. It is
thus restricted to the us-ascii character encoding. The receiving parser must ignore
any encoding attribute in the XML declaration of the cXML document because the
browser might have changed the encoding.

• The cXML-base64 variable is of media type application/xml and thus might have any
character encoding (indicated by the encoding attribute of the contained XML
declaration, if any). The default character encoding is UTF-8, as for any application/xml
documents.

The primary difference between this transaction and a normal Request-Response
transaction is that there is no response that can be generated, because there is no
HTTP connection through which to send it.

Basic Elements Chapter 2 cXML Basics

46 cXML User’s Guide November, 2001

Service Status Response

This transaction determines whether a particular service is currently available. When
an HTTP GET is sent to a service location, the service responds with a valid,
dynamically generated cXML Response document. A service can be any HTTP URL
at which cXML Request documents are received.

For example, an HTTP GET sent to https://service.ariba.com/service/transaction/cxml.asp
yields the following response:

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE cXML "http://xml.cxml.org/schemas/cXML/1.2.001/cXML.dtd">
<cXML timestamp="2001-01-08T10:47:01-08:00" payloadID="978979621537--
4882920031100014936@206.251.25.169">

<Response>
<Status code="200" text="OK">Ping Response Message</Status>

</Response>
</cXML>

Note: This combination of transport (HTTP) and protocol (cXML) levels
should be used only for the case described above.

Basic Elements

The following entities and elements are used throughout the cXML specification.
Most of the definitions listed here are basic vocabulary with which the higher-order
business documents are described. The common type entities and the common
elements representing low-level objects are defined here.

Type Entities

Most of these definitions are from the XML-Data note submission to the World Wide
Web Consortium (W3C). A few higher-level type entities that are also defined here
are not from XML-Data. These types are also discussed in “cXML Envelope” on
page 30.

isoLangCode

An ISO Language Code from the ISO 639 standard.

cXML User’s Guide 47

2
 c

X
M

L
 B

as
ic

s
2

 c
X

M
L

 B
as

ic
s

2
 c

X
M

L
 B

as
ic

s
2

 c
X

M
L

 B
as

ic
s

2
 c

X
M

L
 B

as
ic

s
2

 c
X

M
L

 B
as

ic
s

Chapter 2 cXML Basics Basic Elements

isoCountryCode

An ISO Country Code from the ISO 3166 standard.

xmlLangCode

A language code as defined by the XML 1.0 Specification (at www.w3.org/TR/1998/
REC-xml-19980210.html). In the most common case, this includes an ISO 639
Language Code and (optionally) an ISO 3166 Country Code separated by a hyphen.
Unlike the full XML recommendation, IANA or private language codes should not be
used in cXML. IANA and private subcodes are allowed, though they should come
after a valid ISO 3166 Country Code.

The recommended cXML language code format is xx[-YY[-zzz]*]? where xx is an
ISO 639 Language code, YY is an ISO 3166 Country Code and zzz is an IANA or
private subcode for the language in question. Again, use of the Country Code is
always recommended. By convention, the language code is lowercase and the country
code is uppercase. This is not required for correct matching of the codes.

unitOfMeasure

UnitOfMeasure describes how the product is packaged or shipped. It must conform to
UN/CEFACT Unit of Measure Common Codes. For a list of UN/CEFACT codes, see
www.unetrades.net.

URL

A URL (Uniform Resource Locator) as defined by the HTTP/1.1 standard.

Base Elements

These elements, used throughout the specification, range from generic ones such as
Name and Extrinsic to specific ones such as Money.

Money

The Money element is used by the UnitPrice, Total, Shipping, Charge, and Tax elements.
There are three possible attributes: currency, alternateAmount, alternateCurrency. The
attributes currency and alternateCurrecy must be a three-letter ISO 4217 currency code.
The content of the Money element and of the aternateAmount attribute should be a
numeric value. For example:

http://www.w3.org/TR/1998/REC-xml-19980210.html
http://www.w3.org/TR/1998/REC-xml-19980210.html
http://www.unece.org/cefact

Basic Elements Chapter 2 cXML Basics

48 cXML User’s Guide November, 2001

<Money currency="USD">12.34</Money>

The optional alternateCurrency and alternateAmount attributes are used together to specify
an amount in an alternate currency. These can be used to support dual-currency
requirements such as the euro. For example:

<Money currency="USD" alternateCurrency=”EUR” alternateAmount=”14.28”>12.34</
Money>

Note: Clients can optionally use or receive numbers containing commas.

Country

Contains the name of the country in a location. Contained by the PostalAddress
element.

CountryCode

Contains the International ITU dial code for the country code. It can be entered onto a
telephone keypad after the escape code to reach the country. Used by the Phone and
Fax elements.

Contact

The Contact element contains information about any contact important to the current
transaction. For example:

<Contact>
<Name xml:lang="en-US">Mr. Smart E. Pants</Name>
<Email>sepants@workchairs.com</Email>
<Phone name="Office">
…
</Phone>

</Contact>

cXML User’s Guide 49

3
 P

ro
fi

le
 T

ra
n

sa
ct

io
n

3
 P

ro
fi

le
 T

ra
n

sa
ct

io
n

3
 P

ro
fi

le
 T

ra
n

sa
ct

io
n

3
 P

ro
fi

le
 T

ra
n

sa
ct

io
n

3
 P

ro
fi

le
 T

ra
n

sa
ct

io
n

3
 P

ro
fi

le
 T

ra
n

sa
ct

io
n

Chapter 3
Profile Transaction

The Profile transaction is used to retrieve cXML server capabilities, including the
supported cXML version, transactions, and options on those transactions. The
ProfileRequest and ProfileResponse documents must be supported by all cXML 1.1
and higher server implementations.

The Profile transaction enables one party to query another for cXML capabilities. On
both ends, these parties include suppliers, buyers, commerce network hubs, service
providers, and marketplaces. To inquire about server capabilities, send a
ProfileRequest document. The server returns a ProfileResponse document containing
the server information.

The Profile transaction is the only transaction that all cXML servers must support. It
is intended for back-end integrations between applications, making the capabilities of
cXML servers available to client systems.

The Profile Response should list all Requests supported at a particular Website, not
necessarily all those supported by the organization. Suppliers that can receive
OrderRequest documents and send various messages or initiate Request/Response
transactions describe their OrderRequest support in the profile transaction.

A ProfileRequest is generally pulled by the network no more than once every 24
hours, and less if no request is sent to that supplier within a particular window.

The Profile transaction can also be used to simply “ping” a server within the cXML
protocol.

The Profile transaction can also retrieve the locations for follow-up documents. This
use replaces the Followup element used in Order Requests. To obtain information about
where to send any document, send a ProfileRequest document to the server.

ProfileRequest Chapter 3 Profile Transaction

50 cXML User’s Guide November, 2001

ProfileRequest

This element has no content. It is simply routed to the appropriate cXML server using
the Header. The server responds with a single ProfileResponse as described below. The
only dynamic portions of this response are the payloadId and timestamp attributes of the
cXML element itself. In this particular case, servers are not required to provide
responses in multiple locales.

An example Request of this type is:

<cXML payloadID="9949494"
xml:lang="en-US" timestamp="2000-03-12T18:39:09-08:00">
<Header>

Routing, identification, and authentication information.
</Header>
<ProfileRequest />

</cXML>

ProfileRequest documents should be sent to the “root” URL of a commerce network
hub, which should never change. Sending a Profile Request to this root URL obtains
the URL location for every other cXML Request type. The Response from a
commerce network hub depends on the To element in the Profile Request.

ProfileResponse

This element contains a list of supported transactions, their locations, and any
supported options. The following is a possible ProfileResponse:

<ProfileResponse effectiveDate="2001-03-03T12:13:14-05:00">
<Option name="Locale">1</Option>
…
<Transaction requestName="PunchOutSetupRequest">

<URL>http://www.workchairs.com/cXML/PunchOut.asp</URL>
<Option name="operationAllowed">create inspect</Option>
<Option name="dynamic pricing">0</Option>
…

</Transaction>
…

</ProfileResponse>

A more likely ProfileResponse from a current supplier might be:

<ProfileResponse effectiveDate="2000-01-01T05:24:29-08:00"
lastRefresh="2001-09-08T05:24:29-08:00">

cXML User’s Guide 51

3
 P

ro
fi

le
 T

ra
n

sa
ct

io
n

3
 P

ro
fi

le
 T

ra
n

sa
ct

io
n

3
 P

ro
fi

le
 T

ra
n

sa
ct

io
n

3
 P

ro
fi

le
 T

ra
n

sa
ct

io
n

3
 P

ro
fi

le
 T

ra
n

sa
ct

io
n

3
 P

ro
fi

le
 T

ra
n

sa
ct

io
n

Chapter 3 Profile Transaction ProfileResponse

<Transaction requestName="OrderRequest">
<URL>http://workchairs.com/cgi/orders.cgi</URL>
<Option name=”service”>workchairs.orders</Option>

</Transaction>
<Transaction requestName="PunchOutSetupRequest">

<URL>http://workchairs.com/cgi/PunchOut.cgi</URL>
<Option name=”service”>workchairs.signin</Option>

</Transaction>
</ProfileResponse>

ProfileResponse has the following attributes:

Option Element

The Option element contains the value for a defined option for either the overall
service or a specific transaction. Option has the following attribute:

Service

The Profile transaction can return multiple variations of a single transaction type.

If a cXML server supports multiple implementations of a particular transaction,
ProfileResponse can distinguish them. For example, a marketplace might provide two
services within the ProviderSetupRequest transaction: marketplace.signin and
marketplace.console. The ProfileReponse must list them in a way that differentiates
them:

ProfileResponse can uniquely identify a specific location for each variation of a
transaction. In the case of ProviderSetupRequest, the variation is the service name.
ProfileResponse uses the Option element to include the service name and value, for
example:

effectiveDate The date and time when these services became available.
Dates should not be in the future.

lastRefresh Indicates when the profile cache was last refreshed. When an
application receives a ProfileResponse from a profile caching
server, it will know the age of the data in the cache.

name The name of this option. This attribute should not be viewed
directly (because the profile is intended for machine
consumption). The client system must understand this before
receiving a ProfileResponse document.

Currently defined values for name are service, attachments,
changes, and requestNames.

ProfileResponse Chapter 3 Profile Transaction

52 cXML User’s Guide November, 2001

<Transaction requestName=”ProviderSetupRequest”>
<URL>http://service.hub.com/signin</URL>
<Option name="service">signin</Option>

</Transaction>

<Transaction requestName=”ProviderSetupRequest”>
<URL>http://service.hub.com/console</URL>
<Option name="service">console</Option>

</Transaction>

If there is only one location for a particular type of transaction, then the Option element
is not needed.

When looking for a particular transaction type and Option name=”service” is provided,
use the transaction that matches the desired service. If there is no such Option name
and option value match, use the first transaction with no option name and value.

Each variation of a transaction must uniquely identify its particular location. In the
case of ProviderSetupRequest, the unique identifier is “service”. These unique identifiers
use the Option element in the Transaction element. The Option element contains the
unique identifier’s name. The value for the Option element is the unique identifier’s
value.

OrderRequest

When OrderRequest is returned as a supported transaction, two options must be
specified: attachments and changes. The attachments option indicates whether
attachments are accepted. The changes option specifies if change and delete orders are
accepted. To specify acceptance of attachments:

<Option name = "attachments">Yes</Option>

To specify acceptance of change orders:

<Option name = "changes">Yes</Option>

The default for both options is No. Documents with attachments or changes set to No
should be handled identically to documents that do not mention the option.

For more information about cXML document attachments, see “Wrapping Layers” on
page 28.

cXML User’s Guide 53

3
 P

ro
fi

le
 T

ra
n

sa
ct

io
n

3
 P

ro
fi

le
 T

ra
n

sa
ct

io
n

3
 P

ro
fi

le
 T

ra
n

sa
ct

io
n

3
 P

ro
fi

le
 T

ra
n

sa
ct

io
n

3
 P

ro
fi

le
 T

ra
n

sa
ct

io
n

3
 P

ro
fi

le
 T

ra
n

sa
ct

io
n

Chapter 3 Profile Transaction Scenarios

SessionStatusRequest

If the requestName of a Transaction is “SessionStatusRequest,” an Option element with
name="requestNames" must be specified within that Transaction element. There is no
default. This informs the client that the server supports session checks and updates
when performing any of the transactions specified in the content of the Option
element. This content must be a space-separated list from the set
“OrderStatusSetupRequest,” “ProviderSetupRequest” and “PunchOutSetupRequest.”
Transaction elements for each of the listed requests must also be included in the
ProfileResponse document.

Transaction

The description of a transaction supported by this service. The Profile definition
currently indicates the locations to which to send specific requests. Future versions of
cXML might add more Option definitions and extend the Profile information to
include more information about supported requests.

The Transaction element must contain a URL element.

Transaction has the following attribute:

Scenarios

ProfileRequest documents can be sent by several possible entities to obtain server
capabilities and information from suppliers, buyers, commerce network hubs, service
providers, and marketplaces. The possible combinations of these parties and the kinds
of transaction information that can be returned are described in the following
scenarios.

requestName A specific request that this server accepts at the given URL.
Values can be the name of any Request document defined by
cXML.

Scenarios Chapter 3 Profile Transaction

54 cXML User’s Guide November, 2001

From Buyer to Supplier

A Profile Request document is sent from a buyer to a supplier through a commerce
network hub. The network commerce hub queries a supplier once a day, and caches
the information to use in profile responses in reply to profile requests about a
particular supplier.

The supplier returns in the Profile Response the following possible transactions that it
can support:

• OrderRequest

• PunchOutSetupRequest

The Profile Response sent to the buyer can include capabilities offered by the network
on behalf of that supplier.

From Buyer to the Network

A Profile Request document is sent from a buyer to the network.

The network can return in the Profile Response the following possible transactions
that it can support:

• SupplierDataRequest

• SubscriptionListRequest

• SubscriptionContentRequest

• GetPendingRequest

• OrderStatusSetupRequest

• SupplierListRequest

• ProviderSetupRequest

• SessionStatusSetupRequest

Profile Response

Profile Request Profile Request

Profile Response
Buyer Network Supplier

Network
Profile Request

Profile Response
Buyer

cXML User’s Guide 55

3
 P

ro
fi

le
 T

ra
n

sa
ct

io
n

3
 P

ro
fi

le
 T

ra
n

sa
ct

io
n

3
 P

ro
fi

le
 T

ra
n

sa
ct

io
n

3
 P

ro
fi

le
 T

ra
n

sa
ct

io
n

3
 P

ro
fi

le
 T

ra
n

sa
ct

io
n

3
 P

ro
fi

le
 T

ra
n

sa
ct

io
n

Chapter 3 Profile Transaction Scenarios

Profile Request document sample:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE cXML SYSTEM "http://xml.cXML.org/schemas/cXML/1.2.001/cXML.dtd">

<cXML payloadID="9949494" xml:lang="en-US"
timestamp="2000-02-04T18:39:09-08:00">
<Header>

<From>
<Credential domain="NetworkId">

<Identity>AN01001010101</Identity> <!-- marketplace’s id -->
</Credential>

</From>
<To>

<Credential domain="NetworkId">
<Identity>AN01000000001</Identity> <!-Network -->

</Credential>
</To>
<Sender>

<Credential domain="NetworkId">
<Identity>AN01001010101</Identity>
<!-- marketplace’s shared secret -->
<SharedSecret>abracadabra</SharedSecret>

</Credential>
<UserAgent>Ariba Marketplace 7.5</UserAgent>

</Sender>
</Header>
<Request>

<ProfileRequest />
</Request>

</cXML>

Profile Response document sample:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE cXML SYSTEM "http://xml.cXML.org/schemas/cXML/1.2.001/cXML.dtd">

<cXML payloadID="9949494" xml:lang="en-US"
timestamp="2000-02-04T18:39:49-08:00">

<Response>
<Status code="200" text="OK"/>
<ProfileResponse effectiveDate="2000-01-01T05:24:29-08:00">

<Transaction requestName="OrderStatusSetupRequest">
<URL>https://superduper.com/a/OrderStatusSetup</URL>

</Transaction>
<Transaction requestName="GetPendingRequest">

<URL>https://superduper.com/a/GetPending</URL>
</Transaction>
<Transaction requestName="SubscriptionListRequest">

<URL>https://superduper.com/b/SubscriptionList</URL>

Scenarios Chapter 3 Profile Transaction

56 cXML User’s Guide November, 2001

</Transaction>
<Transaction requestName="SubscriptionContentRequest">

<URL>https://superduper.com/b/SubscriptionContent</URL>
</Transaction>
<Transaction requestName="SupplierListRequest">

<URL>https://superduper.com/c/SupplierList</URL>
</Transaction>
<Transaction requestName="SupplierDataRequest">

<URL>https://superduper.com/c/SupplierData</URL>
</Transaction>
<Transaction requestName="ProviderSetupRequest">

<URL>https://superduper.com/d/ProviderSetup</URL>
</Transaction>
<Transaction requestName="SessionStatusRequest">

<URL>https://superduper.com/d/SessionStatus</URL>
<Option name="requestNames">OrderStatusSetupRequest</Option>

</Transaction>
</ProfileResponse>

</Response>
</cXML>

From a Network to Supplier

A Profile Request is sent from a network commerce hub to a supplier. The Network
commerce hub queries a supplier once a day, and then caches the information to use
in profile responses in reply to profile requests about a particular supplier.

The supplier can return in the Profile Response document the following possible
transactions that it supports:

• OrderRequest

• PunchOutSetupRequest

Profile Request sample:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE cXML SYSTEM "http://xml.cXML.org/schemas/cXML/1.2.001/cXML.dtd">

<cXML payloadID="9949494" xml:lang="en-US"
timestamp="2000-02-04T18:39:09-08:00">

<Header>
<From>

<Credential domain="NetworkId">

Supplier
Profile Request

Profile Response
Network

cXML User’s Guide 57

3
 P

ro
fi

le
 T

ra
n

sa
ct

io
n

3
 P

ro
fi

le
 T

ra
n

sa
ct

io
n

3
 P

ro
fi

le
 T

ra
n

sa
ct

io
n

3
 P

ro
fi

le
 T

ra
n

sa
ct

io
n

3
 P

ro
fi

le
 T

ra
n

sa
ct

io
n

3
 P

ro
fi

le
 T

ra
n

sa
ct

io
n

Chapter 3 Profile Transaction Scenarios

<Identity>AN01001010101</Identity> <!-- Network’s id -->
</Credential>

</From>
<To>

<Credential domain="NetworkId">
<Identity>AN01234663636</Identity> <!-- any supplier’s id -->

</Credential>
</To>
<Sender>

<Credential domain="NetworkId">
<Identity>AN01001010101</Identity>
<!- Network’s sharedscret -->
<SharedSecret>abracadabra</SharedSecret>

</Credential>
<UserAgent>Ariba Marketplace 7.5</UserAgent>

</Sender>
</Header>
<Request>

<ProfileRequest />
</Request>

</cXML>

Profile Response sample:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE cXML SYSTEM "http://xml.cXML.org/schemas/cXML/1.2.001/cXML.dtd">

<cXML payloadID="9949494" xml:lang="en-US"
timestamp="2000-02-04T18:39:49-08:00">

<Response>
<Status code="200" text="OK"/>
<ProfileResponse effectiveDate="2000-01-01T05:24:29-08:00">

<Transaction requestName="PunchOutSetupRequest">
<URL>https://www.acme.com/cxml/PunchOutSetup</URL>

</Transaction>
<Transaction requestName="OrderRequest">

<URL>https:// www.acme.com/cxml /Order</URL>
<Option name="attachments">yes</Option>
<Option name="changes">yes</Option>

</Transaction>
</ProfileResponse>

</Response>
</cXML>

Scenarios Chapter 3 Profile Transaction

58 cXML User’s Guide November, 2001

From the Network to Service Provider

A Profile Request is sent from the network commerce hub to service provider
partners. Routing service providers need to specify if one or two Profile Reponses
will be returned, since profile information can be returned for both the service
provider and downstream supplier accounts.

The service provider can return in the Profile Response document the following
possible transactions that it supports:

• ProviderSetupRequest

• SessionStatus

• OrderRequest

From a Network to Buyer

A Profile Request is sent from a network commerce hub to a buyer. The Network
commerce hub queries a buyer once a day, and then caches the information. Later, this
information about the buyer is used in profile responses in reply to profile requests
from providers and suppliers.

A buyer can return in the Profile Response document the following possible
transactions that it supports:

• StatusUpdateRequest

• InvoiceRequest

Provider
Profile Request

Profile Response
Network

Buyer
Profile Request

Profile Response
Network

cXML User’s Guide 59

3
 P

ro
fi

le
 T

ra
n

sa
ct

io
n

3
 P

ro
fi

le
 T

ra
n

sa
ct

io
n

3
 P

ro
fi

le
 T

ra
n

sa
ct

io
n

3
 P

ro
fi

le
 T

ra
n

sa
ct

io
n

3
 P

ro
fi

le
 T

ra
n

sa
ct

io
n

3
 P

ro
fi

le
 T

ra
n

sa
ct

io
n

Chapter 3 Profile Transaction Scenarios

From Service Provider to Buyer

A Profile Request is sent from a service provider to a buyer and routed through the
network. This scenario is a replacement for the Followup element. The network queries
a buyer once a day, and then caches the information. Later, this information about the
buyer is used in profile responses in reply to profile requests from providers.

The network commerce hub can return in the Profile Response document to the
service provider the following possible transactions that it supports on behalf of a
buyer’s account:

• StatusUpdateRequest

• InvoiceRequest

Profile Response

Profile Request Profile Request

Profile Response
Provider Network Buyer

Scenarios Chapter 3 Profile Transaction

60 cXML User’s Guide November, 2001

cXML User’s Guide 61

4
 Im

p
le

m
en

ti
n

g

P
u

n
ch

O
u

t
4

 Im
p

le
m

en
ti

n
g

P

u
n

ch
O

u
t

4
 Im

p
le

m
en

ti
n

g

P
u

n
ch

O
u

t
4

 Im
p

le
m

en
ti

n
g

P

u
n

ch
O

u
t

4
 Im

p
le

m
en

ti
n

g

P
u

n
ch

O
u

t
4

 Im
p

le
m

en
ti

n
g

P

u
n

ch
O

u
t

Chapter 4
Implementing PunchOut

PunchOut enables users of procurement applications to access supplier contracts for
products or services that reside at the supplier’s Website. It eliminates the need for the
suppliers to send whole catalogs to buying organizations. Instead, suppliers send just
short index files that name their storefronts, product categories, or products.

This chapter shows how suppliers can modify a Website to support PunchOut. It
discusses the following topics:

• PunchOut Requirements

• PunchOut Event Sequence

• PunchOut Documents

• Modifications to the Supplier’s Web Pages

• PunchOut Website Suggestions

• PunchOut Transaction

PunchOut Requirements

Before buying organizations configure their procurement applications for PunchOut,
or suppliers implement PunchOut Websites, both parties must evaluate the benefits
and requirements of PunchOut.

Buying Organizations

Setup and testing of cXML-compatible procurement applications with a PunchOut-
enabled supplier can be completed in less than one day.

PunchOut Requirements Chapter 4 Implementing PunchOut

62 cXML User’s Guide November, 2001

Therefore, PunchOut is a good solution for buying organizations of all sizes and
levels of technical expertise. The decision to use PunchOut should be based on the
business practices and types of commodities purchased. (See “Content Delivery
Strategy” on page 19 for a list of commodities that are well suited for PunchOut.)

Business Issues

Buying organizations should consider the following questions when deciding whether
to use static catalog content such as an Index or Contract documents, or PunchOut:

• Do requisitioners and approvers have Internet access? If not, would controlled
access to the Internet be allowed?

• Does the buying organization want their suppliers to create and maintain catalog
content (including pricing)?

• Do requisitioners currently procure goods on the Internet? If so, do these goods
require a supplier-side configuration tool or contain unique attributes that cannot
conform to a static content model?

• Does the buying organization use content aggregators for catalogs (for example,
Aspect, TPN Register, or Harbinger)?

• Does the buying organization currently procure services (for example, consultants,
temp services, or maintenance) through the Internet?

• Does the buying organization currently conduct online sourcing?

If the answer to any of the above questions is yes, PunchOut might be appropriate for
the buying organization.

Technical Issues

Buying organizations must meet the following technical requirements:

• Direct Internet Access—Users within buying organizations must have direct
Internet access. PunchOut relies on regular Web browser sessions where the user
interacts with live supplier Websites. This communication occurs through regular
intranet/Internet infrastructure, not through the procurement application.

• Reliable Internet Connection—Internet access must be constantly operational and
reliable. If users cannot procure products because of Internet outages, they are
likely to make rogue purchases.

• Contracts with PunchOut Suppliers—Purchasing agents must have established
contracts with PunchOut-enabled suppliers. PunchOut Websites allow access only
to known, authenticated buying organizations.

cXML User’s Guide 63

4
 Im

p
le

m
en

ti
n

g

P
u

n
ch

O
u

t
4

 Im
p

le
m

en
ti

n
g

P

u
n

ch
O

u
t

4
 Im

p
le

m
en

ti
n

g

P
u

n
ch

O
u

t
4

 Im
p

le
m

en
ti

n
g

P

u
n

ch
O

u
t

4
 Im

p
le

m
en

ti
n

g

P
u

n
ch

O
u

t
4

 Im
p

le
m

en
ti

n
g

P

u
n

ch
O

u
t

Chapter 4 Implementing PunchOut PunchOut Requirements

Suppliers

The term supplier in the context of PunchOut encompasses more than the traditional
definition of the term. The PunchOut protocol was designed as a flexible framework
capable of transmitting data about virtually any kind of product or service from any
kind of supplier, distributor, aggregator, or manufacturer.

Example products and services include:

• Computers direct from a manufacturer or reseller

• Chemicals and reagents from an aggregator

• Office supplies from a distributor

• Contract services from a temp agency

The supplier might already have a transactive Website capable of hosting content and
receiving purchase orders. Given this capability, the supplier needs to consider both
the supplier’s business practices and technical resources in deciding whether to
implement PunchOut.

Business Issues

Suppliers should consider the following questions:

• Does the supplier currently sell the supplier’s products or services through the
Internet? If so, do they offer customer-specific content (contract pricing) through
their Website?

• Does the supplier’s products and services fall into one of the PunchOut categories
as described in the chart in “Content Delivery Strategy” on page 19? To review,
these categories include:

Highly configurable products (such as computers)
Large number of line items (such as books)
Unique product attributes (such as chemicals)
Normalized data (such as MRO Supplies)
Rapidly changing or expanding items (such as temperary services or books)

• Does the supplier prefer to receive purchase orders and/or payment through their
Website?

If the answer to any of the above questions is yes, PunchOut might be appropriate for
the supplier’s organization.

PunchOut Requirements Chapter 4 Implementing PunchOut

64 cXML User’s Guide November, 2001

Technical Issues

Suppliers must meet the following technical requirements:

• Reliable Internet Connection—The Web server infrastructure and Internet
connection must be extremely reliable. If users cannot access remote content, they
are likely to go to another supplier.

• Competent Website Administrators—The PunchOut Website and supporting
applications will require periodic maintenance and modification. Users’ needs and
the supplier’s product offerings will change, so the supplier needs personnel to
modify the supplier’s PunchOut infrastructure.

• Support for Basic Transactions—PunchOut Websites do not need to support all
cXML functionality, but they must support the following required transactions:

Profile Transaction
PunchOutSetupRequest
PunchOutSetupResponse
PunchOutOrderMessage

Work Estimate

The following table lists estimates of work required for cXML PunchOut integration
based on estimates from suppliers:

Understanding XML

The first step to becoming PunchOut enabled is to understand XML. For an
explanation of XML, see “cXML, an XML Implementation” on page 13. To
implement a PunchOut Website, the supplier must have a fundamental understanding
of how to create, parse, query, receive, and transmit XML data to and from a remote
source.

Level of Pre-existing Infrastructure Estimated Time for Completion

cXML enabled and integrated with Ariba CSN 1-2 weeks with in-house IT staff
2-3 weeks with contractors

Transactive site with XML infrastructure 3 weeks with in-house IT staff
3-4 weeks with contractors

Transactive site without XML infrastructure 4 weeks with in-house IT staff
4-5 weeks with contractors

cXML User’s Guide 65

4
 Im

p
le

m
en

ti
n

g

P
u

n
ch

O
u

t
4

 Im
p

le
m

en
ti

n
g

P

u
n

ch
O

u
t

4
 Im

p
le

m
en

ti
n

g

P
u

n
ch

O
u

t
4

 Im
p

le
m

en
ti

n
g

P

u
n

ch
O

u
t

4
 Im

p
le

m
en

ti
n

g

P
u

n
ch

O
u

t
4

 Im
p

le
m

en
ti

n
g

P

u
n

ch
O

u
t

Chapter 4 Implementing PunchOut PunchOut Event Sequence

The basic tools to process XML documents are XML parsers. These parsers are freely
available from Microsoft and other companies (for example, an XML parser is
standard in Microsoft Internet Explorer 5). For a list of XML tools, see “XML
Utilities” on page 22.

PunchOut Event Sequence

A PunchOut session is composed of several distinct steps.

Steps 1 & 2: PunchOut Request

Users log in to a procurement application and open new purchase requisitions. They
find desired items by searching their local catalogs by commodity, supplier, or
product description. When they select a PunchOut item, the procurement application
opens a new browser window and logs them into their accounts at the supplier’s
Website.

The following figure illustrates the PunchOut request steps:

How does it work? When a user clicks a PunchOut item, the procurement application
sends a cXML PunchOutSetupRequest document to a network e-commerce hub. Acting
as the trusted third party, the hub accepts the request, verifies the buying organization,
and passes the request to the supplier’s PunchOut Website.

2. E-commerce network
hub authenticates
buying organization and
opens secure HTTP
session with supplier.

E-commerce HubE-commerce HubE-commerce Hub

PunchOut
 Dispatcher
PunchOutPunchOut

 DispatcherDispatcher

Procurement ApplicationProcurement ApplicationProcurement Application

1. Requisitioner selects
supplier for PunchOut.
Procurement application
makes request to
e-commerce network hub.

PunchOut Event Sequence Chapter 4 Implementing PunchOut

66 cXML User’s Guide November, 2001

Note: All cXML documents sent through the Internet can travel through
SSL (Secure Socket Layer) 3.0-encrypted HTTPS connections.

The purpose of this request is to notify the supplier’s Website of the buyer’s identity,
and to communicate the operation to be performed. Supported operations include the
following:

• create – Initiates a new PunchOut session

• edit – Re-opens a PunchOut session for editing

• inspect – Re-opens a PunchOut session for inspection (no changes can be made to
the data)

• source – Initiates a PunchOut session for a RFQ (Request for Quote) create/edit
session in a sourcing application

After the supplier’s Website receives a request, it sends back a PunchOutSetupResponse
containing a URL that tells the procurement application where to go to initiate a
browsing session on the supplier’s Website.

The procurement application opens a new browser window, which displays a session
logged into an account on the supplier’s Website. This account can be specific to a
region, a company, a department, or a user.

Step 3: Product Selection

Users select items from the supplier’s inventory using all the features and services
provided by the supplier’s Website:

Depending on the product or customer, these features might include the following:

• Configurator tools for building customized products (for example, computers,
organic compounds, or personalized products)

• Search engines for finding desired products from large catalogs.

3. Requisitioner uses
supplier site to find and
configure products.

cXML User’s Guide 67

4
 Im

p
le

m
en

ti
n

g

P
u

n
ch

O
u

t
4

 Im
p

le
m

en
ti

n
g

P

u
n

ch
O

u
t

4
 Im

p
le

m
en

ti
n

g

P
u

n
ch

O
u

t
4

 Im
p

le
m

en
ti

n
g

P

u
n

ch
O

u
t

4
 Im

p
le

m
en

ti
n

g

P
u

n
ch

O
u

t
4

 Im
p

le
m

en
ti

n
g

P

u
n

ch
O

u
t

Chapter 4 Implementing PunchOut PunchOut Event Sequence

• Views of normalized data for comparing products based on price, features, or
availability (for example, MRO products)

• Views of attributes unique to a particular commodity (for example, printed
materials, chemical and reagents, or services)

• Real-time pricing, inventory, and availability checking

• Automatic tax and freight calculations based on ship-to destination, size, or
quantity of items (not necessary to calculate during the PunchOut session)

How does it work? After the procurement application directs users to the supplier’s
Website, the shopping experience is the same as if they had logged on to the
supplier’s Website directly. Thus, none of the previously listed features and services
require modification.

Step 4: Check Out

The supplier’s Website calculates the total cost of the user’s selections, including tax,
freight, and customer-specific discounts. Users then click the supplier’s Website’s
“Check Out” button to send the contents of the shopping cart to the their purchase
requisitions within the procurement application.

The following figure illustrates the check-out steps:

Procurement ApplicationProcurement ApplicationProcurement Application

4. Requisitioner checks
out of your site.

Items then appear in
purchase requisition in
procurement application.

E-commerce HubE-commerce HubE-commerce Hub

PunchOut
 Dispatcher
PunchOutPunchOut

 DispatcherDispatcher

PunchOut Event Sequence Chapter 4 Implementing PunchOut

68 cXML User’s Guide November, 2001

How does it work? When users click the supplier’s “Check Out” button, they submit
an HTML form back to their procurement application. One form field consists of a
cXML PunchOutOrderMessage containing product details and prices. The supplier can
also send hidden supplier cookies, which can later associate items with a specific
shopping session.

Effectively, the supplier has provided a quote for the requested items—the supplier
has not yet received a purchase order, so the supplier cannot yet book the order.

If users, including approvers, later need to edit any of the items in a purchase
requisition, the supplier can allow them to “re-PunchOut” to the supplier’s Website.
The procurement application sends back the contents of the original shopping cart to
the supplier’s Website, and users make any changes there. Upon check out, the
supplier’s Website returns the items to the purchase requisition.

The supplier’s Website is the information source for all PunchOut items. Changes to
the quantity or the addition of new items to the requisition might alter tax or shipping
charges, which would require recalculation at the supplier’s Website. Thus, any
changes to the original items need to be made at the supplier’s Website, not in the
procurement application, therefore the need to re-PunchOut. A re-PunchOut is simply
a PunchOutSetupRequest with “edit” as its operation.

Step 5: Transmittal of Purchase Order

After the contents of the shopping cart have been passed from the supplier’s Website
to the user's purchase requisition, the procurement application approval processes
take over. When the purchase requisition is approved, the procurement application
converts it into a purchase order and sends it back to the supplier’s Website for
fulfillment. Purchasing card data can be transmitted along with the order, or the
supplier can invoice the order separately.

cXML User’s Guide 69

4
 Im

p
le

m
en

ti
n

g

P
u

n
ch

O
u

t
4

 Im
p

le
m

en
ti

n
g

P

u
n

ch
O

u
t

4
 Im

p
le

m
en

ti
n

g

P
u

n
ch

O
u

t
4

 Im
p

le
m

en
ti

n
g

P

u
n

ch
O

u
t

4
 Im

p
le

m
en

ti
n

g

P
u

n
ch

O
u

t
4

 Im
p

le
m

en
ti

n
g

P

u
n

ch
O

u
t

Chapter 4 Implementing PunchOut PunchOut Event Sequence

The following figure illustrates purchase order transmittal:

How does it work? The procurement application sends all purchase orders to the
e-commerce hub in cXML format. The hub then routes them to the supplier, using the
supplier’s preferred order-routing method. When the supplier acknowledges the
receipt of a purchase order, the supplier has effectively booked the order.

For PunchOut-enabled suppliers, the order routing method should be cXML, for the
following reasons:

• cXML purchase orders allow embedded supplier cookie information to be
transmitted back to the supplier. Because the supplier cookie is of data type “any”,
it does not easily map to other order routing methods such as fax, e-mail, or EDI.

• PunchOut-enabled suppliers are cXML-aware, so accepting cXML purchase orders
is a small incremental effort.

Purchase orders are discussed in detail in Chapter 6, “Receiving cXML Purchase
Orders.”

Procurement ApplicationProcurement ApplicationProcurement Application

5. When request is fully
approved, order is sent to
supplier through
e-commerce network hub.

E-commerce HubE-commerce HubE-commerce Hub

Order
 Dispatcher

OrderOrder
 Dispatcher Dispatcher

PunchOut Documents Chapter 4 Implementing PunchOut

70 cXML User’s Guide November, 2001

PunchOut Documents

There are four types of cXML documents:

• PunchOut Index Catalog

• PunchOutSetupRequest

• PunchOutSetupResponse

• PunchOutOrderMessage

All but the PunchOut Index Catalog are considered PunchOut session documents
because they are used to transmit data between a supplier’s PunchOut site and the
buyer during a PunchOut session.

PunchOut Index Catalog

PunchOut index catalogs are files that list PunchOut items and point to the supplier’s
PunchOut Website.

The following example shows a PunchOut index catalog:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE Index SYSTEM "http://xml.cxml.org/schemas/cXML/1.2.001/cXML.dtd">
<Index>

<SupplierID domain="DUNS">83528721</SupplierID>
<IndexItem>

<IndexItemPunchout>
<ItemID>

<SupplierPartID>5555</SupplierPartID>
</ItemID>
 <PunchoutDetail>

<Description xml:lang="en-US">Desk Chairs</Description>
<Description xml:lang="fr-FR">Chaises de Bureau</Description>
<URL>http://www.workchairs.com/punchout.asp</URL>
<Classification domain="UNSPSC">5136030000</Classification>

</PunchoutDetail>
</IndexItemPunchout>

</IndexItem>
</Index>

SupplierID identifies the supplier organization. The supplier can use any identification
domain, but the recommended ones are D-U-N-S (Dun & Bradstreet Universal
Naming System) and NetworkId. For more information about D-U-N-S numbers, see
www.dnb.com.

Type of cXML document
and URL of DTD

The supplier’s identifier
for the PunchOut item

URL of the PunchOut
Website (launch page) if
not configured elsewhere

http://www.dnb.com

cXML User’s Guide 71

4
 Im

p
le

m
en

ti
n

g

P
u

n
ch

O
u

t
4

 Im
p

le
m

en
ti

n
g

P

u
n

ch
O

u
t

4
 Im

p
le

m
en

ti
n

g

P
u

n
ch

O
u

t
4

 Im
p

le
m

en
ti

n
g

P

u
n

ch
O

u
t

4
 Im

p
le

m
en

ti
n

g

P
u

n
ch

O
u

t
4

 Im
p

le
m

en
ti

n
g

P

u
n

ch
O

u
t

Chapter 4 Implementing PunchOut PunchOut Documents

Description specifies the text that the procurement application displays in product
catalogs. The supplier can provide the description in multiple languages, and the
procurement application displays the appropriate one for the user’s locale.

Classification specifies the commodity grouping of the line item to the buyer. All the
supplier’s products and services must be mapped and standardized to the UNSPSC
schema. For PunchOut index catalogs, the Classification determines the location of
the PunchOut item within catalogs displayed to users. For a list of UNSPSC codes,
see www.unspsc.org.

Creating and Publishing Index Catalogs

Create these catalogs and publish them on an e-commerce hub to the supplier’s
customers. The catalog manager within buying organizations downloads them and
stores them for use with procurement applications.

Users see the contents of the supplier’s PunchOut index catalogs alongside regular,
static catalog items.

PunchOut Item Granularity

The supplier can create store-level, aisle-level, or product-level catalogs.

• Store-level catalogs list one PunchOut item for all of the supplier’s products and
services. Users must search the supplier site to find the desired item.

• Aisle-level catalogs list multiple PunchOut items corresponding to related products
and services.

• Product-level catalogs list only one product or service. Users do not need to search.

To determine how broad to make PunchOut items, consider the supplier’s business
model, the makeup of the supplier’s product and service offerings, and the structure of
the supplier’s PunchOut Website.

The more search and configuration tools the supplier has on the supplier’s Website,
the more broad they can make the PunchOut items in the supplier’s index catalogs.

PunchOutSetupRequest

To initiate a PunchOut session, the user selects the supplier’s PunchOut item. The
procurement application generates a PunchOutSetupRequest document and sends it to
an e-commerce hub, which forwards it to the supplier’s PunchOut Website.

Following is a sample PunchOutSetupRequest document:

http://www.unspsc.org

PunchOut Documents Chapter 4 Implementing PunchOut

72 cXML User’s Guide November, 2001

<?xml version="1.0"?>
<!DOCTYPE cXML SYSTEM "http://xml.cxml.org/schemas/cXML/1.2.001/cXML.dtd">
<cXML xml:lang="en-US" payloadID="933694607118.1869318421@jlee"
timestamp="2000-08-15T08:36:47-07:00">

<Header>
<From>

<Credential domain="DUNS">
<Identity>65652314</Identity>

</Credential>
</From>
<To>

<Credential domain="DUNS">
<Identity>83528721</Identity>

</Credential>
</To>
<Sender>

<Credential domain="AribaNetworkUserId">
<Identity>sysadmin@ariba.com</Identity>
<SharedSecret>abracadabra</SharedSecret>

</Credential>
<UserAgent>Ariba Buyer 7.0.4 (build 1802, 04/03/2001)</UserAgent>

</Sender>
</Header>
<Request>

<PunchOutSetupRequest operation="create">
<BuyerCookie>1CX3L4843PPZO</BuyerCookie>
<Extrinsic name="CostCenter">610</Extrinsic>
<Extrinsic name="User">john_smith</Extrinsic>
<BrowserFormPost>

<URL>https://aribaorms:26000/punchout.asp</URL>
</BrowserFormPost>
<SupplierSetup>

<URL>http://www.workchairs.com/punchout.asp</URL>
</SupplierSetup>
<SelectedItem>

<ItemID>
<SupplierPartID>5555</SupplierPartID>

</ItemID>
</SelectedItem>

</PunchOutSetupRequest>
</Request>

</cXML>

The payloadID and timestamp attributes near the beginning are used by cXML clients to
track documents and to detect duplicate documents.

Originator (buying
organization)

Destination (supplier)

Previous relaying entity
(Ariba CSN in this case)

Type of request

Destination for final
PunchOutOrderMessage

Item selected by user

cXML User’s Guide 73

4
 Im

p
le

m
en

ti
n

g

P
u

n
ch

O
u

t
4

 Im
p

le
m

en
ti

n
g

P

u
n

ch
O

u
t

4
 Im

p
le

m
en

ti
n

g

P
u

n
ch

O
u

t
4

 Im
p

le
m

en
ti

n
g

P

u
n

ch
O

u
t

4
 Im

p
le

m
en

ti
n

g

P
u

n
ch

O
u

t
4

 Im
p

le
m

en
ti

n
g

P

u
n

ch
O

u
t

Chapter 4 Implementing PunchOut PunchOut Documents

The From, To, and Sender elements allow receiving systems to identify and authorize
parties. The From and To elements in a document do not change. However, as the
document travels to its destination, intermediate nodes (such as Ariba CSN) change
the Sender element.

Create, Edit, Inspect, and Source Operations

The operation attribute specifies the type of session the buyer initiates. It can create, edit,
inspect, or source.

• create sessions generate new shopping carts, which correspond to new purchase
requisitions.

• edit sessions reopen previously created shopping carts or RFQs for modification.
The procurement application sends line-item data as part of the
PunchOutSetupRequest. The PunchOut Website can use this data to re-instantiate the
shopping cart created during the original session.

• inspect sessions reopen previously created shopping carts or RFQs for viewing only.
As with the edit operation, the procurement application sends line-item data as part
of the PunchOutSetupRequest. However, after re-instantiating the shopping cart, the
PunchOut Website does not allow modification of its contents.

• source sessions generate a RFQ for a sourcing application.

The following example lists an edit request:

<?xml version="1.0"?>
<!DOCTYPE cXML SYSTEM "http://xml.cxml.org/schemas/cXML/1.2.001/cXML.dtd">
<cXML xml:lang="en-US" payloadID="933695135608.677295401@jlee"
timestamp="2000-08-15T08:45:35-07:00">

<Header>
<From>

<Credential domain="DUNS">
<Identity>65652314</Identity>

</Credential>
</From>
<To>

<Credential domain="DUNS">
<Identity>83528721</Identity>

</Credential>
</To>
<Sender>

<Credential domain="AribaNetworkUserId">
<Identity>sysadmin@ariba.com</Identity>
<SharedSecret>abracadabra</SharedSecret>

</Credential>
<UserAgent>Ariba ORMS 6.1</UserAgent>

</Sender>

PunchOut Documents Chapter 4 Implementing PunchOut

74 cXML User’s Guide November, 2001

</Header>
<Request>

<PunchOutSetupRequest operation="edit">
<BuyerCookie>1CX3L4843PPZO</BuyerCookie>
<Extrinsic name="CostCenter">610</Extrinsic>
<Extrinsic name="User">john_smith</Extrinsic>
<BrowserFormPost>

<URL>https://aribaorms:26000/punchout.asp</URL>
</BrowserFormPost>
<SupplierSetup>

<URL>http://www.workchairs.com/punchout.asp</URL>
</SupplierSetup>
<ItemOut quantity="2">

<ItemID>
<SupplierPartID>220-6338</SupplierPartID>
<SupplierPartAuxiliaryID>E000028901
</SupplierPartAuxiliaryID>

</ItemID>
</ItemOut>

</PunchOutSetupRequest>
</Request>

</cXML>

If the user initiated the edit session by selecting a catalog item, the
PunchOutSetupRequest would contain a SelectedItem element, like a create session.

Authentication by an E-commerce Hub

All PunchOutSetupRequest documents route through an e-commerce hub for
authentication and to look up the URL of the supplier’s PunchOut Website. The steps
are:

1. The hub receives the PunchOutSetupRequest document from the user.

2. The hub verifies the buyer's ID (From and Shared Secret) with that buyer’s e-
commerce account. It also identifies the requested supplier (To).

3. The hub looks up the supplier’s shared secret from the supplier’s account
and inserts it (Shared Secret) into the Sender element.

4. The hub finds the URL of the supplier’s PunchOut Website in the supplier’s
account and sends the PunchOutSetupRequest document to it.

5. The supplier’s Website receives the cXML document and knows that it is
authenticated because it contains the supplier’s own shared secret.

cXML User’s Guide 75

4
 Im

p
le

m
en

ti
n

g

P
u

n
ch

O
u

t
4

 Im
p

le
m

en
ti

n
g

P

u
n

ch
O

u
t

4
 Im

p
le

m
en

ti
n

g

P
u

n
ch

O
u

t
4

 Im
p

le
m

en
ti

n
g

P

u
n

ch
O

u
t

4
 Im

p
le

m
en

ti
n

g

P
u

n
ch

O
u

t
4

 Im
p

le
m

en
ti

n
g

P

u
n

ch
O

u
t

Chapter 4 Implementing PunchOut PunchOut Documents

6. The supplier’s Website uses information in the From element to identify the
requester at the company level (for example, acme.com).

7. The supplier can use the Contact and extrinsic data in the body of the request
to uniquely identify the user (for example, John Smith in Finance at
acme.com).

The PunchOutSetupRequest and PunchOutSetupResponse documents pass through the
e-commerce hub for authentication. The PunchOutOrderMessage document (returning
the contents of the shopping basket to the procurement application) travels directly
between the supplier’s Website and the procurement application through standard
HTML Form submission.

Supplier Setup URL and SelectedItem

In previous cXML releases, the SupplierSetup element provided the only way to specify
the URL of the supplier’s PunchOut Website. Beginning with cXML 1.1, the e-
commerce hub already knows the URL of the supplier’s PunchOut Website.

Also, starting with cXML 1.1, procurement applications can use the SelectedItem
element to specify store-, aisle-, or product-level PunchOut.

The SupplierSetup element has been deprecated. However, the supplier’s PunchOut
Website must handle both methods until all PunchOut Websites and procurement
applications recognize and send the SelectedItem element.

Contact Data for Extrinsic Data and User Identification

The PunchoutSetupRequest document can contain detailed user information in the
Contact element that the supplier’s Website can use to authenticate and direct users,
such as:

• User name and role

• E-mail address

In addition, the PunchOutSetupRequest might also contain extrinsic data, data that the
supplier can use to further identify users, such as:

• User cost center and subaccount

• Region

• Supervisor

• Default currency

PunchOut Documents Chapter 4 Implementing PunchOut

76 cXML User’s Guide November, 2001

Buying organizations configure their procurement applications to insert contact and
extrinsic data. Ask the supplier’s customers what data the supplier can expect to
receive.

PunchOutSetupResponse

After receiving a PunchOutSetupRequest, the supplier’s Website sends a
PunchOutSetupResponse. The PunchOutSetupResponse document serves two functions:

• It indicates that the PunchOutSetupRequest was successful.

• It provides the procurement application with a redirect URL to the supplier’s Start
Page.

It contains a URL element that specifies the Start Page URL to pass to the user’s Web
browser for the interactive browsing session. This URL must contain enough state
information to bind to a session context on the supplier’s Website, such as the identity
of the requester and the contents of the BuyerCookie element. Due to URL length
restrictions in many applications, this URL should refer to the state information rather
than including it all.

The following example lists a PunchOutSetupResponse document:

<?xml version="1.0"?>
<!DOCTYPE cXML SYSTEM "http://xml.cxml.org/schemas/cXML/1.2.001/cXML.dtd">
<cXML xml:lang="en-US" payloadID="933694607739" timestamp="2000-08-15T08:46:00-
07:00">

<Response>
<Status code="200" text="success"></Status>
<PunchOutSetupResponse>

<StartPage>
<URL>
http://xml.workchairs.com/retrieve?reqUrl=20626;Initial=TRUE
</URL>

</StartPage>
</PunchOutSetupResponse>

</Response>
</cXML>

PunchOutOrderMessage

After the user selects items on the supplier’s Website, configures them, and clicks the
supplier’s “Check Out” button, the supplier’s Website sends a
PunchOutOrderMessage document to communicate the contents of the shopping
basket to the buyer’s procurement application. This document can contain much more

cXML User’s Guide 77

4
 Im

p
le

m
en

ti
n

g

P
u

n
ch

O
u

t
4

 Im
p

le
m

en
ti

n
g

P

u
n

ch
O

u
t

4
 Im

p
le

m
en

ti
n

g

P
u

n
ch

O
u

t
4

 Im
p

le
m

en
ti

n
g

P

u
n

ch
O

u
t

4
 Im

p
le

m
en

ti
n

g

P
u

n
ch

O
u

t
4

 Im
p

le
m

en
ti

n
g

P

u
n

ch
O

u
t

Chapter 4 Implementing PunchOut PunchOut Documents

data than the other documents, because it needs to be able to fully express the
contents of any conceivable shopping basket. This document does not strictly follow
the Request/Response paradigm; its use will be explained in detail.

The following example lists a PunchOutOrderMessage:

<?xml version="1.0"?>
<!DOCTYPE cXML SYSTEM "http://xml.cxml.org/schemas/cXML/1.2.001/cXML.dtd">
<cXML xml:lang="en-US" payloadID="933695160894" timestamp="2000-08-15T08:47:00-
07:00">

<Header>
<From>

<Credential domain="DUNS">
<Identity>83528721</Identity>

</Credential>
</From>
<To>

<Credential domain="DUNS">
<Identity>65652314</Identity>

</Credential>
</To>
<Sender>

<Credential domain="workchairs.com">
<Identity> website 1</Identity>

</Credential>
<UserAgent>Workchairs cXML Application</UserAgent>

</Sender>
</Header>
<Message>

<PunchOutOrderMessage>
<BuyerCookie>1CX3L4843PPZO</BuyerCookie>
<PunchOutOrderMessageHeader operationAllowed="edit">

<Total>
<Money currency="USD">763.20</Money>

</Total>
</PunchOutOrderMessageHeader>
<ItemIn quantity="3">

<ItemID>
<SupplierPartID>5555</SupplierPartID>
<SupplierPartAuxiliaryID>E000028901
</SupplierPartAuxiliaryID>

</ItemID>
<ItemDetail>

<UnitPrice>
<Money currency="USD">763.20</Money>

</UnitPrice>
<Description xml:lang="en">

<ShortName>Excelsior Desk Chair</ShortName>
Leather Reclining Desk Chair with Padded Arms

</Description>

Modifications to the Supplier’s Web Pages Chapter 4 Implementing PunchOut

78 cXML User’s Guide November, 2001

<UnitOfMeasure>EA</UnitOfMeasure>
<Classification domain="UNSPSC">5136030000
</Classification>

</ItemDetail>
</ItemIn>

</PunchOutOrderMessage>
</Message>

</cXML>

BuyerCookie enables the procurement application to associate a given
PunchOutOrderMessage with its originating PunchOutSetupRequest. Therefore, the
supplier’s Website should return this element whenever it appears. Do not use the
BuyerCookie to track PunchOut sessions, because it changes for every session, from
create, to inspect, to edit.

SupplierPartAuxiliaryID acts as a supplier cookie. This field allows the supplier to
transmit additional data, such as quote number or another cXML document. The
procurement application passes it back to the supplier in any subsequent
PunchOutSetupRequest edit or inspect sessions, and in the resulting cXML purchase
order. The supplier can use the supplier cookie to associate items in a purchase
requisition with the corresponding items in a shopping cart at the supplier’s Website.

UnitOfMeasure describes how the product is packaged or shipped. It must conform to
UN/CEFACT Unit of Measure Common Codes. For a list of UN/CEFACT codes, see
www.unetrades.net/.

Classification lists the UNSPSC (Universal Standard Products and Services
Classification) commodity code for each selected item. These codes are used by back-
end systems within buyer and supplier organizations for accounting and report
generation. For the list of UNSPSC codes, see www.unspsc.org.

Modifications to the Supplier’s Web Pages

To receive or send the three cXML PunchOut session documents,
PunchOutSetupRequest, PunchOutSetupResponse, and PunchOutOrderMessage, the
supplier might need to modify or create four pages on the supplier’s Website:

• Launch Page

• Start Page

• Sender Page

• Order Receiver Page

http://www.unspsc.org
http://www.unetrades.net

cXML User’s Guide 79

4
 Im

p
le

m
en

ti
n

g

P
u

n
ch

O
u

t
4

 Im
p

le
m

en
ti

n
g

P

u
n

ch
O

u
t

4
 Im

p
le

m
en

ti
n

g

P
u

n
ch

O
u

t
4

 Im
p

le
m

en
ti

n
g

P

u
n

ch
O

u
t

4
 Im

p
le

m
en

ti
n

g

P
u

n
ch

O
u

t
4

 Im
p

le
m

en
ti

n
g

P

u
n

ch
O

u
t

Chapter 4 Implementing PunchOut Modifications to the Supplier’s Web Pages

To illustrate how the supplier might implement these pages, this chapter uses simple
Active Server Page (ASP) code samples and the Microsoft Internet Explorer 5 XML
Parser. Actual implementation of these pages will vary depending on the supplier
development environment (for example, CGI, JavaScript, or WebObjects).

Launch Page

The Launch Page receives all authenticated PunchOutSetupRequest documents from the
e-commerce hub. It reads the HTTP stream sent from the hub and validates the cXML
request embedded within that stream against the cXML DTD (in the case of ASP,
using method calls to the Internet Explorer 5 XML parser). After validation, the
supplier’s Launch Page extracts elements from the document in order to:

1. Identify the user and determine where to redirect that user.

2. Compose a PunchOutSetupResponse document and return it to the sender.

The supplier’s Launch Page should store the following data for use by the supplier’s
Start Page:

• Identity of the requester (Sender)

• Identity of the language of the user (xml:lang) so the supplier can provide localized
content

• Type of the request (create, edit, or inspect)

• Any extrinsic data that further identifies the user and the user location

Following is a sample Launch Page. This code does not use an XML tool to
dynamically generate the PunchOutSetupResponse, but instead uses a static XML
template into which line item data is filled. This code is intended for illustrative
purposes only.

script language=JScript RUNAT=Server>
function elementValue(xml, elem)
{

var begidx;
var endidx;
var retStr;

begidx = xml.indexOf(elem);
if (begidx > 0) {

endidx = xml.indexOf(’</’,begidx);
if (endidx > 0)

retStr = xml.slice(begidx+elem.length,
endidx);

Modifications to the Supplier’s Web Pages Chapter 4 Implementing PunchOut

80 cXML User’s Guide November, 2001

return retStr;
}
return null;

}

function twoChar(str)
{

var retStr;
str = str.toString();
if (1 == str.length) {

retStr = "0" + str;
} else {
retStr = str;
}
return retStr;
}

function timestamp(dt)
{
var str;
var milli;
str = dt.getFullYear() + "-" + twoChar(1 + dt.getMonth()) + "-";
str += twoChar(dt.getDate()) + "T" + twoChar(dt.getHours()) + ":";
str += twoChar(dt.getMinutes()) + ":" + twoChar(dt.getSeconds()) + ".";
milli = dt.getMilliseconds();
milli = milli.toString();
if (3 == milli.length) {

str += milli;
} else {

str += "0" + twoChar(milli);
}
str += "-08:00";
return str;
}

function genProlog(cXMLvers, randStr)
{
var dt;
var str;
var vers, sysID;
var nowNum, timeStr;
if (1.1 > parseFloat(cXMLvers)) {

vers = "1.0";
sysID = "cXML.dtd";

} else {
vers = "1.2";

sysID = "http://xml.cXML.org/schemas/cXML/" + vers + "/cXML.dtd";
}

cXML User’s Guide 81

4
 Im

p
le

m
en

ti
n

g

P
u

n
ch

O
u

t
4

 Im
p

le
m

en
ti

n
g

P

u
n

ch
O

u
t

4
 Im

p
le

m
en

ti
n

g

P
u

n
ch

O
u

t
4

 Im
p

le
m

en
ti

n
g

P

u
n

ch
O

u
t

4
 Im

p
le

m
en

ti
n

g

P
u

n
ch

O
u

t
4

 Im
p

le
m

en
ti

n
g

P

u
n

ch
O

u
t

Chapter 4 Implementing PunchOut Modifications to the Supplier’s Web Pages

dt = new Date();
nowNum = dt.getTime();
timeStr = timestamp(dt);
str = ’<?xml encoding="UTF-8"?>\n’;
str += ’<!DOCTYPE cXML SYSTEM "’ + sysID + ’">\n’;
str += ’<cXML payloadID="’ + nowNum + ".";
str += randStr + ’@’ + Request.ServerVariables("LOCAL_ADDR");
str += ’" timestamp="’ + timeStr + ’">’;
return str;

}
</script>
REM Create data needed in prolog.
%<
Randomize
randStr = Int(100000001 * Rnd)
prologStr = genProlog("1.0", randStr)
Response.ContentType = "text/xml"
Response.Charset = "UTF-8"
%>
<%
REM This receives the PunchOutSetup request coming from the e-commerce hub.
REM It takes the ORMSURL and buyercookie, attaches them to the Start Page URL,
REM and sends the response back to the requester.
REM punchoutredirect.asp?bc=2133hfefe&url="http://workchairs/com/..&redirect="

Dim ret
Dim punch
Dim statusText
Dim statusCode
Dim cookie
Dim url
Dim xmlstr
Dim fromUser
Dim toUser
cookie = ""
url = ""
xmlstr = ""
dir = ""
path = Request.ServerVariables("PATH_INFO")
dir = Left(path, InstrRev(path, "/"))
if IsEmpty(dir) then

dir = "/"
end if

REM This command reads the incoming HTTP cXML request
xml = Request.BinaryRead(Request.TotalBytes)
for i = 1 to Request.TotalBytes

xmlstr = xmlstr + String(1,AscB(MidB(xml, i, 1)))
Next
cookie = elementValue(xmlstr, "<BuyerCookie>")
url = elementValue(xmlstr, "<URL>")

Modifications to the Supplier’s Web Pages Chapter 4 Implementing PunchOut

82 cXML User’s Guide November, 2001

fromUser = elementValue(xmlstr, "<Identity>")
newXMLStr = Right(xmlstr, Len(xmlstr) - (InStr(xmlstr,"<Identity>") +

Len("<Identity>")))
toUser = elementValue(newXMLStr, "<Identity>")

%>
REM This formats the cXML PunchOutSetupReponse
<% if IsEmpty(cookie) then %>
<%= prologStr %>

<Response>
<Status code="400" Text="Bad Request">Invalid Document. Unable to extract
BuyerCookie.</Status>

</Response>
</cXML>
<% else %>
<%= prologStr %>

<Response>
<Status code="200" text="OK"/>
<PunchOutSetupResponse>

<StartPage>
<URL>http://<%=

Request.ServerVariables("LOCAL_ADDR")%>/<%= dir%>/punchoutredirect.asp?bc=<%=
cookie%>&url="<%= url%>"&from=<%= fromUser%>&to=<%=
toUser%>&redirect=<%= StartPage%></URL>

</StartPage>
</PunchOutSetupResponse>

</Response>
</cXML>
<%end if%>

The supplier’s Launch Page should return a StartPage URL that is unique for that
PunchOut session. In addition, this URL should be valid for only a limited amount of
time. By deactivating this URL, the supplier makes it more difficult for unauthorized
users to access the supplier’s Start Page.

Remember to implement functionality for subsequent edit and inspect sessions. Users
cannot change order details for PunchOut items (such as quantity) within their
procurement application. They must re-PunchOut with an edit session. For the greatest
benefit to users, inspect sessions that occur after the supplier receives the order should
display order status.

Start Page

The supplier’s Start Page logs the requester into an account on the supplier’s Website.
From the supplier’s Start Page, users begin their shopping experience. This page
might already exist at the supplier’s Website, so modify it to query user name and
password information from the PunchOutSetupRequest document.

cXML User’s Guide 83

4
 Im

p
le

m
en

ti
n

g

P
u

n
ch

O
u

t
4

 Im
p

le
m

en
ti

n
g

P

u
n

ch
O

u
t

4
 Im

p
le

m
en

ti
n

g

P
u

n
ch

O
u

t
4

 Im
p

le
m

en
ti

n
g

P

u
n

ch
O

u
t

4
 Im

p
le

m
en

ti
n

g

P
u

n
ch

O
u

t
4

 Im
p

le
m

en
ti

n
g

P

u
n

ch
O

u
t

Chapter 4 Implementing PunchOut Modifications to the Supplier’s Web Pages

Allow only authorized users into the supplier’s Start Page. If the supplier waits until
the check-out step to authenticate them, their confidential pricing or terms are not
protected.

If the supplier uses HTTP browser cookies to track user preferences and sessions,
they should be destroyed after the PunchOutOrderMessage is sent to buyers. Destroying
these cookies prevents the possibility of offering privileged features to unauthorized
users.

Sender Page

The Sender Page sends the contents of the user’s shopping cart to the user. As
described earlier, after users fill their shopping carts, they click the supplier’s “Check
Out” button.

Below is a simple ASP implementation of this feature. This code does not use an
XML tool to dynamically generate the PunchOutOrderMessage, but instead uses a static
XML template into which line item data is filled. This code is intended for
illustrative purposes only.

This is a portion of a supplier’s Website product page:

<!--#include file="punchoutitem.inc"-->
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<!-- saved from
url=(0093)https://secure1.shore.net/wbird/cgi/vsc.cgi/wbird/houses/urban.htm?L+wbird+w
adt4101+928011405 -->

<TABLE border=0>
<TBODY>

<TR>
<TD> </TD>
<TD>Jefferson Memorial- A birdfeeder with a

rotunda! This famous American monument will be a unique addition to any garden or yard.
It attracts small to medium sized birds and its dimensions are 11" x 9 1/2" x 8" H.

</TD>
</TR>

</TBODY>
</TABLE>

-Jefferson Memorial
$139.95

<% AddBuyButton 139.95,101,"Bird Feeder, Jefferson Memorial",5 %>

<HR>

The AddBuyButton function sends the PunchOutOrderMessage back to the user.

Modifications to the Supplier’s Web Pages Chapter 4 Implementing PunchOut

84 cXML User’s Guide November, 2001

The following listing is the include file (punchoutitem.inc) referenced in the previous
example:

<%
REM This asp is included in items.asp, which specifies the item parameters, formats
REM a cXML document, and allows the user to proceed with a checkout of the item.
function CreateCXML(toUser, fromUser, buyerCookie, unitPrice, supPartId, desc)
%>
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE cXML SYSTEM
"http://xml.cxml.org/schemas/cXML/1.2.001/cXML.dtd">
<cXML payloadID="<%= Now &"@"&
Request.ServerVariables("LOCAL_ADDR")%>" timestamp="<%= Now
%>">

<Header>
<From>

<Credential domain="ariba.com">
<Identity><%= toUser%></Identity>

</Credential>
</From>
<To>

<Credential domain="ariba.com">
<Identity><%= fromUser%></Identity>

</Credential>
</To>
<Sender>

<Credential domain="ariba.com">
<Identity><%= toUser%></Identity>

</Credential>
<UserAgent>PunchoutSite</UserAgent>

</Sender>
</Header>
<Message>

<PunchOutOrderMessage>
<BuyerCookie><%= buyerCookie%></BuyerCookie>
<PunchOutOrderMessageHeader
operationAllowed="edit">

<Total>
<Money currency="USD"><%=
unitPrice%></Money>

</Total>
</PunchOutOrderMessageHeader>
<ItemIn quantity="1">

<ItemID>
<SupplierPartID><%= supPartId%></SupplierPartID>
<SupplierPartAuxiliaryID><%= supPartAuxId%>
</SupplierPartAuxiliaryID>

</ItemID>
<ItemDetail>

<UnitPrice>

cXML User’s Guide 85

4
 Im

p
le

m
en

ti
n

g

P
u

n
ch

O
u

t
4

 Im
p

le
m

en
ti

n
g

P

u
n

ch
O

u
t

4
 Im

p
le

m
en

ti
n

g

P
u

n
ch

O
u

t
4

 Im
p

le
m

en
ti

n
g

P

u
n

ch
O

u
t

4
 Im

p
le

m
en

ti
n

g

P
u

n
ch

O
u

t
4

 Im
p

le
m

en
ti

n
g

P

u
n

ch
O

u
t

Chapter 4 Implementing PunchOut Modifications to the Supplier’s Web Pages

<Money currency="USD"><%= unitPrice%>
</Money>

</UnitPrice>
<Description xml:lang="en"><%= desc%>
</Description>
<UnitOfMeasure>EA</UnitOfMeasure>
<Classification

domain="SupplierPartID"><%= supPartId%>
</Classification>

</ItemDetail>
</ItemIn>

</PunchOutOrderMessage>
</Message>

</cXML>
<% end function

function AddBuyButton(unitPrice, supPartId, supPartAuxId, desc)

toUser = Session("toUser")
fromUser = Session("fromUser")

buyerCookie = Session("buyercookie")
url = Session("urlToPost")
if not IsEmpty(buyerCookie) then

%>
<FORM METHOD=POST ACTION=<%= url%>>

<INPUT TYPE=HIDDEN NAME="cxml-urlencoded" VALUE="<% CreateCXML
toUser, fromUser, buyerCookie, unitPrice, supPartId, supPartAuxId, desc%>">

<INPUT TYPE=SUBMIT value=BUY>
</FORM>

<%else%>
</p>
<%

end if
end function
%>

The AddBuyButton function contains the FORM POST that sends the URL-encoded
PunchOutOrderMessage back to the user.

HTTP Form Encoding

To send a PunchOutOrderMessage, the supplier uses HTML form encoding, which is a
different transport model from the traditional HTTP request/response model. This
different transport facilitates easier integration between the supplier’s Website and the
procurement application. It also enables buying organizations to receive XML data
without requiring them to have a Web server available through a firewall.

Modifications to the Supplier’s Web Pages Chapter 4 Implementing PunchOut

86 cXML User’s Guide November, 2001

Instead of sending a PunchOutOrderMessage directly to the procurement application,
the supplier’s Website encodes it as a hidden HTML Form field and the user’s
browser submits it to the URL specified in the BrowserFormPost element of the
PunchOutSetupRequest. The hidden HTML Form field must be named either cxml-
urlencoded or cxml-base64, both case insensitive. Taken from the above example, the
following code fragment inserts a hidden form field named cxml-urlencoded containing
the PunchOutOrderMessage document to be posted:

<FORM METHOD=POST ACTION=<%= url%>>
<INPUT TYPE=HIDDEN NAME="cxml-urlencoded" VALUE="<% CreateCXML

toUser, fromUser, buyerCookie, unitPrice, supPartId, supPartAuxId, desc%>">
<INPUT TYPE=SUBMIT value=BUY>

</FORM>

This encoding permits the supplier to design a checkout Web page that contains the
cXML document. When users click the supplier’s “Check Out” button, the supplier’s
Website presents the data, invisible to users, to the procurement application as an
HTML Form Submit.

Cancelling PunchOut

The supplier might want to add a “Cancel” button to their pages so that users can
cancel their PunchOut session. The “Cancel” button sends an empty
PunchOutOrderMessage that tells the procurement application that no items will be
returned, and to delete existing PunchOut items from the requisition. The supplier can
also use it to perform any housekeeping needed by the supplier’s Website, such as
clearing the shopping cart and closing the user session.

Order Receiver Page

The Order Receiver Page accepts cXML purchase orders sent by buying
organizations. It could be similar to the Launch Page discussed above. For
information about receiving purchase orders, see Chapter 6, “Receiving cXML
Purchase Orders.”

cXML User’s Guide 87

4
 Im

p
le

m
en

ti
n

g

P
u

n
ch

O
u

t
4

 Im
p

le
m

en
ti

n
g

P

u
n

ch
O

u
t

4
 Im

p
le

m
en

ti
n

g

P
u

n
ch

O
u

t
4

 Im
p

le
m

en
ti

n
g

P

u
n

ch
O

u
t

4
 Im

p
le

m
en

ti
n

g

P
u

n
ch

O
u

t
4

 Im
p

le
m

en
ti

n
g

P

u
n

ch
O

u
t

Chapter 4 Implementing PunchOut PunchOut Website Suggestions

PunchOut Website Suggestions

This section provides suggestions and information you should consider when
planning the implementation of a PunchOut Website.

Implementation Guidelines

Follow these guidelines when developing the supplier’s PunchOut Website:

• Study the cXML User’s Guide (this document).

• Use an XML parser and validate documents against the cXML DTD.

• Use the xml:lang= property to identify users’ languages so the supplier can provide
localized content.

• Use the From credential to identify buying organizations.

• Send a unique, temporary URL for the session on redirect.

• Do not persist browser cookies.

• Do not overburden the supplier’s customers with extrinsic data requirements.

• For each line item, use UNUOM (United Nations Units of Measure) and UNSPSC
(Universal Standard Products and Services Classification).

• Provide real value to the supplier’s customers. Display product availability, order
status, and special promotions.

• Checkout should be easy and intuitive. Ideally, users should need to click only three
buttons to buy.

• Code for subsequent edit and inspect sessions. Users cannot change order details
for PunchOut items (such as quantity) within their procurement application. They
must re-PunchOut with an edit session.

• For the greatest benefit to users, inspect sessions should display order status.

• Test the supplier’s PunchOut Website. Allow time for testing with the supplier’s
customers’ procurement applications.

• PunchOut transactions produce quotes, not purchase orders. Implement a cXML
purchase-order receiving page to accept orders.

PunchOut Website Suggestions Chapter 4 Implementing PunchOut

88 cXML User’s Guide November, 2001

Buyer and Supplier Cookies

The buyer and supplier cookies enable both buyers and suppliers to re-instantiate their
own line-item data for their back-end systems.

• The supplier should return the BuyerCookie element they receive. It should not be
changed.

• Make use of the supplier cookie (SupplierPartAuxiliaryID).

The buyer cookie is analogous to a purchase requisition number; it conveys state
information that allows the buying organization’s system to maintain the relationship
between a requisition and a shopping basket.

Likewise, the supplier cookie is analogous to a quote number; it conveys state
information that allows the supplier’s system to maintain a relationship between a
shopping basket and the buyer’s requisition and purchase order. Procurement
applications pass the supplier cookie back to the supplier in subsequent PunchOut edit
or inspect sessions, and in the resulting purchase order. The supplier’s Website should
take advantage of the supplier cookie to eliminate the need to pass visible, supplier-
specific data back to the buyer.

Personalization

The header of the PunchOutSetupRequest always identifies the buying organization, but
the request might also contain Contact and Extrinsic data (such as user’s cost center,
user’s location, or product category) that the supplier can use to determine the
dynamic URL to serve to the user.

Although not all buying organizations send this extrinsic data, it can enable the
supplier to customize the supplier’s Web store beyond the simple organization level.
For example, the supplier could provide a separate Web store for each cost center
within the buying organization (or each product category or each user).

The supplier could also store and display the user’s previous quotes. The supplier
could allow users to reuse quotes, check the status of orders, and create reports on
past activity. To avoid security problems, store quote history only at the per-user
level.

A key consideration during planning is the amount of effort required to implement a
highly dynamic and customized PunchOut Website. The supplier needs to balance
between customization and complexity—a complex Website takes longer to
implement and maintain, but it could offer more value to users. It is recommended
that the supplier start with a simple PunchOut Website and enhance it over time.

cXML User’s Guide 89

4
 Im

p
le

m
en

ti
n

g

P
u

n
ch

O
u

t
4

 Im
p

le
m

en
ti

n
g

P

u
n

ch
O

u
t

4
 Im

p
le

m
en

ti
n

g

P
u

n
ch

O
u

t
4

 Im
p

le
m

en
ti

n
g

P

u
n

ch
O

u
t

4
 Im

p
le

m
en

ti
n

g

P
u

n
ch

O
u

t
4

 Im
p

le
m

en
ti

n
g

P

u
n

ch
O

u
t

Chapter 4 Implementing PunchOut PunchOut Transaction

PunchOut Transaction

The PunchOut message definitions are request/response messages within the Request
and Response elements. All of the following messages must be implemented by
suppliers to support PunchOut.

PunchOutSetupRequest and PunchOutSetupResponse are the request/response pair used to
set up a PunchOut session to a remote system. The client uses them to identify the
procurement application, send setup information, and receive a response indicating
where to go to initiate an HTML browsing session on the remote Website.

The order of cXML message flow in the PunchOut transaction is shown in the
following diagram:

Sourcing

PunchOut can also be used for sourcing. A user can PunchOut from a procurement
application to a sourcing application to initiate a RFQ (Request For Quote) session.
The sourcing application will return a PunchOutSetupResponse with the URL of the
start page of the sourcing application. With the URL, the end user goes to the
sourcing application to provide more configuration information for RFQ.

At the end of each user session, a PunchOutOrderMessage is sent by the sourcing
application to the procurement application and contains either a new RFQ, update
information for an existing RFQ, or a completed RFQ. For information on using this
feature, see “PunchOutOrderMessage” on page 95.

PunchOutSetupRequest

The PunchOutSetupRequest document contains a Header element and a
PunchOutSetupRequest element.

PROCUREMENT

APPLICATION

SUPPLIER

Network

2. PunchOutSetupResponse

1. PunchOutSetupRequest

3. PunchOutOrderMessage

PunchOut Transaction Chapter 4 Implementing PunchOut

90 cXML User’s Guide November, 2001

Header

The Header element contains addressing and authentication information. Following is
a sample Header element in a PunchOutSetupRequest.

<Header>
<From>

<Credential domain="DUNS">
<Identity>65652314</Identity>

</Credential>
</From>
<To>

<Credential domain="DUNS">
<Identity>83528721</Identity>

</Credential>
</To>
<Sender>

<Credential domain="AribaNetworkUserId">
<Identity>sysadmin@ariba.com</Identity>
<SharedSecret>abracadabra</SharedSecret>

</Credential>
<UserAgent>Ariba ORMS 6.1</UserAgent>

</Sender>
</Header>

From

The buying organization originating the PunchOutSetupRequest.

To

The supplier destination of the PunchOutSetupRequest.

Sender

Authentication details of the buying organization including Identity, SharedSecret
(password), and AribaNetworkId, which is specified by Credential domain. The
SharedSecret is the supplier’s password or login to the PunchOut site.

UserAgent

An unique identifier for application sending the PunchOutSetupRequest. Consists of
the software company name, product name, and version. Version details can appear in
parentheses.

cXML User’s Guide 91

4
 Im

p
le

m
en

ti
n

g

P
u

n
ch

O
u

t
4

 Im
p

le
m

en
ti

n
g

P

u
n

ch
O

u
t

4
 Im

p
le

m
en

ti
n

g

P
u

n
ch

O
u

t
4

 Im
p

le
m

en
ti

n
g

P

u
n

ch
O

u
t

4
 Im

p
le

m
en

ti
n

g

P
u

n
ch

O
u

t
4

 Im
p

le
m

en
ti

n
g

P

u
n

ch
O

u
t

Chapter 4 Implementing PunchOut PunchOut Transaction

PunchOutSetupRequest

A PunchOutSetupRequest element is contained within the Request element. The
following diagram shows the structure of the PunchOutSetupRequest element.

A ‘+’ means the element can occur one or more times, a ‘?’ means the element can
occur 0 or once, and a ‘*’ means the element can occur 0 or more times.

The following example shows a PunchOutSetupRequest:

<PunchOutSetupRequest operation="create">
<BuyerCookie>34234234ADFSDF234234</BuyerCookie>
<Extrinsic name="department">Marketing</Extrinsic>
<BrowserFormPost>

<URL>http://orms.acme.com:1616/punchoutexit</URL>
</BrowserFormPost>
<SelectedItem>

<ItemID>
<SupplierPartID>54543</SupplierPartID>

</ItemID>
</SelectedItem>
<SupplierSetup>

<URL>http://workchairs.com/cxml</URL>
</SupplierSetup>

</PunchOutSetupRequest>

PunchOut Transaction Chapter 4 Implementing PunchOut

92 cXML User’s Guide November, 2001

PunchOutSetupRequest has the following attribute:

This element also contains the following elements: BuyerCookie, Extrinsic,
BrowserFormPost, Contact, ShipTo, SelectedItem, SupplierSetup and an ItemOut list. Only the
BuyerCookie element is required. The structure of Extrinsic, Contact, and ShipTo elements
is discussed in more detail in “OrderRequestHeader” on page 113. The ItemOut
element is discussed in “ItemOut” on page 120. In this context (outside of an
OrderRequest), the Distribution and Comments elements and lineNumber, requisitionID, and
requestedDeliveryDate attributes of an ItemOut add little or no value and should not be
included. Because PunchOut sessions take place before ordering, this information is
not relevant within a PunchOutSetupRequest.

An ItemOut list describes an existing shopping cart (items from a previous PunchOut
session). The inspect operation initiates a read-only PunchOut session (enforced by
both the client and the server) to view details about the listed items. The edit operation
also starts from the previous shopping cart (described using the ItemOut list), but
allows changes. Support for the edit operation implies inspect support (see
“PunchOutOrderMessageHeader” on page 96 and “Empty Shopping Carts” on
page 97). This list can also describe items to be sourced. For more information, see
“Sourcing” on page 89.

The Credential of the supplier is used to obtain the PunchOut location from the E-
commerce network hub where suppliers can store the URLs of their PunchOut
Websites. E-commerce network hubs receive the PunchOutSetupRequest document,
read the supplier’s ID, find the URL of the PunchOut Website from the supplier’s
account information, and send the PunchOutSetupRequest document to that URL. The
e-commerce network hub, not the buyer, specifies the URL of the PunchOut Website,
which is more flexible. The URL specified in the SupplierSetup element of the
PunchOutSetupRequest has been deprecated; cXML servers will ignore this element
in the future.

BuyerCookie

This element transmits information that is opaque to the remote Website, but it must
be returned to the originator for all subsequent PunchOut operations. This element
allows the procurement application to match multiple outstanding PunchOut requests.
BuyerCookie is unique per PunchOut session.

operation Specifies the type of PunchOutSetupRequest: “create”, “inspect”,
“edit” or “source”.

cXML User’s Guide 93

4
 Im

p
le

m
en

ti
n

g

P
u

n
ch

O
u

t
4

 Im
p

le
m

en
ti

n
g

P

u
n

ch
O

u
t

4
 Im

p
le

m
en

ti
n

g

P
u

n
ch

O
u

t
4

 Im
p

le
m

en
ti

n
g

P

u
n

ch
O

u
t

4
 Im

p
le

m
en

ti
n

g

P
u

n
ch

O
u

t
4

 Im
p

le
m

en
ti

n
g

P

u
n

ch
O

u
t

Chapter 4 Implementing PunchOut PunchOut Transaction

BrowserFormPost

This element is the destination for the data in the PunchOutOrderMessage. It contains a
URL element whose use will be further explained in the PunchOutOrderMessage
definition. If the URL-Form-Encoded method is not being used, this element does not
have to be included.

Extrinsic

This optional element contains any additional data that the requestor wants to pass to
the external Website. The cXML specification does not define the content of Extrinsic
elements—it is something that each requestor and remote Website must agree on and
implement.

Extrinsic elements are intended to provide additional machine-readable information.
They extend the cXML protocol to support features not required by all
implementations. In the following context, the new data further describes the user
initiating the PunchOut request.

<Extrinsic name="department">Marketing</Extrinsic>

The following example passes the user initiating the PunchOut and their department.

<Extrinsic name=”CostCenter"">450</Extrinsic>
<Extrinsic name=”User”>rlim</Extrinsic>"

With cXML 1.1 and higher, the Contact element obsoletes the “Cost Center” and
“User” extrinsics.

The Extrinsic element can also appear in the OrderRequestHeader, ItemDetail, and
ContractItem elements. These contexts are described further elsewhere in this
document.

SelectedItem

An optional SelectedItem element allows suppliers to specify PunchOut for an entire
store or any subset of product offerings. Suppliers can create their catalogs so that
SelectedItem leads to store-, aisle-, or product-level PunchOut. Procurement
applications can include the SelectedItem element in PunchOutSetupRequest
documents, and PunchOut sites can use it to determine which products to display to
users. The more specific the item is in the catalog, the less searching users have to do
at the supplier’s Website. If there is no SelectedItem, suppliers should present their
entire (store-level) product offerings.

A SelectedItem contains an ItemID, for example:

PunchOut Transaction Chapter 4 Implementing PunchOut

94 cXML User’s Guide November, 2001

<SelectedItem>
<ItemID>

<SupplierPartID>5555</SupplierPartID>
</ItemID>

</SelectedItem>

For the contents of the SelectedItem element, procurement applications use the ItemID
(SupplierPartID and SupplierPartAuxiliaryID) from the PunchOut index catalog. No catalog
changes are required.

Procurement applications should initially send both the new SelectedItem element and
the old PunchOut URL in the PunchOutSetupRequest. E-commerce network hubs use
the old URL only for suppliers that have not yet stored their PunchOut URL
destinations.

This element is usually present in create operations. Procurement applications that
allow users to punch out directly from a supplier listing should leave out SelectedItem
in that case.

For edit and inspect operations, SelectedItem should appear only if the user chose to
return to the supplier’s Website while viewing new information in the local catalog
rather than items in an existing requisition. In either case, the current shopping cart
must appear in the ItemOut list.

SelectedItem should not be used in a source operation.

SupplierSetup

This optional element specifies the URL to which to post the PunchOutSetupRequest.
This element is not needed if the e-commerce network hub knows the supplier’s
PunchOut URL.

PunchOutSetupResponse

After the remote Website has received a PunchOutSetupRequest, it responds with a
PunchOutSetupResponse, as shown below:

<PunchOutSetupResponse>
<StartPage>

<URL>
http://premier.workchairs.com/store?23423SDFSDF23

</URL>
</StartPage>

</PunchOutSetupResponse>

cXML User’s Guide 95

4
 Im

p
le

m
en

ti
n

g

P
u

n
ch

O
u

t
4

 Im
p

le
m

en
ti

n
g

P

u
n

ch
O

u
t

4
 Im

p
le

m
en

ti
n

g

P
u

n
ch

O
u

t
4

 Im
p

le
m

en
ti

n
g

P

u
n

ch
O

u
t

4
 Im

p
le

m
en

ti
n

g

P
u

n
ch

O
u

t
4

 Im
p

le
m

en
ti

n
g

P

u
n

ch
O

u
t

Chapter 4 Implementing PunchOut PunchOut Transaction

StartPage

This element contains a URL element that specifies the URL to pass to the browser to
initiate the PunchOut browsing session requested in the PunchOutSetupRequest. This
URL must contain enough state information to bind to a session context on the remote
Website, such as the requestor identity and the appropriate BuyerCookie element.

At this point, the user who initiated the PunchOutSetupRequest browses the external
Website, and selects items to be transferred back to the procurement application
through a PunchOutOrderMessage.

PunchOutOrderMessage

This element sends the contents of the remote shopping basket or sourcing RFQ to the
originator of a PunchOutSetupRequest. It can contain much more data than the other
messages because it needs to be able to fully express the contents of any conceivable
shopping basket on the external Website. This message does not strictly follow the
Request/Response model.

The remote Website generates a PunchOutOrderMessage when the user checks out.
This message communicates the contents of the remote shopping basket to the
procurement application; for example:

<PunchOutOrderMessage>
<BuyerCookie>34234234ADFSDF234234</BuyerCookie>
<PunchOutOrderMessageHeader operationAllowed="create">

<Total>
<Money currency="USD">100.23</Money>

</Total>
</PunchOutOrderMessageHeader>
<ItemIn quantity="1">

<ItemID>
<SupplierPartID>1234</SupplierPartID>
<SupplierPartAuxiliaryID>

additional data about this item
</SupplierPartAuxiliaryID>

</ItemID>
<ItemDetail>

<UnitPrice>
<Money currency="USD">10.23</Money>

</UnitPrice>
<Description xml:lang="en">

Learn ASP in a Week!
</Description>
<UnitOfMeasure>EA</UnitOfMeasure>
<Classification domain="SPSC">12345</Classification>

</ItemDetail>

PunchOut Transaction Chapter 4 Implementing PunchOut

96 cXML User’s Guide November, 2001

</ItemIn>
</PunchOutOrderMessage>

A PunchOutOrderMessage document can be empty, which allows users to end
PunchOut shopping sessions without selecting any items. Suppliers can implement a
Cancel button that generates an empty PunchOutOrderMessage document. Then,
both the PunchOut site and the procurement application know when a user has
canceled a shopping session, and they can delete the shopping cart, delete items from
the requisition, and perform other housekeeping tasks.

BuyerCookie

This element is the same element that was passed in the original
PunchOutSetupRequest. It must be returned here to allow the procurement
application to match the PunchOutOrderMessage with an earlier
PunchOutSetupRequest.

PunchOutOrderMessageHeader

This element contains information about the entire shopping basket contents being
transferred. The only required element is Total, which is the overall cost of the items
being added to the requisition, excluding tax and shipping charges.

Additional elements that are allowed are Shipping and Tax, which are the amount and
description of any shipping or tax charges computed on the remote Website.

ShipTo is also optional, and it specifies the Ship-To addressing information the user
selected on the remote site or that was passed in the original PunchOutSetupRequest.

All monetary amounts are in a Money element that always specifies currency in a
standardized format.

The SourcingStatus element is optional, and relays updated information about a sourced
RFQ. The content of the element could be a textual description of the update, such as
the actual status update string displayed to the user.

PunchOutOrderMessageHeader has the following attributes:

operationAllowed Specifies the operations allowed in subsequent
PunchOutOrderRequests: create, inspect, or edit.

quoteStatus Optional attribute specifies whether the order is “pending” or
“final”. If quoteStatus is “final”, the transaction is complete.

cXML User’s Guide 97

4
 Im

p
le

m
en

ti
n

g

P
u

n
ch

O
u

t
4

 Im
p

le
m

en
ti

n
g

P

u
n

ch
O

u
t

4
 Im

p
le

m
en

ti
n

g

P
u

n
ch

O
u

t
4

 Im
p

le
m

en
ti

n
g

P

u
n

ch
O

u
t

4
 Im

p
le

m
en

ti
n

g

P
u

n
ch

O
u

t
4

 Im
p

le
m

en
ti

n
g

P

u
n

ch
O

u
t

Chapter 4 Implementing PunchOut PunchOut Transaction

The operationAllowed attribute controls whether the user can initiate later
PunchOutSetupRequest transactions containing data from this
PunchOutOrderMessage. If operationAllowed="create", subsequent
PunchOutSetupRequests cannot edit these items: only a later OrderRequest can
contain these items. In other words, the items cannot be edited and only a new order
can be created.

Otherwise, if operationAllowed is something other than "create", the procurement
application can later inspect or edit the shopping cart by initiating subsequent
PunchOutSetupRequest transactions with the appropriate operation and the ItemOut
elements corresponding to the ItemIn list returned in this PunchOutOrderMessage.
Support for edit implies support for inspect. The procurement application can always
use the items in a subsequent OrderRequest.

The quoteStatus attribute is used for an sourced RFQ or any other long-running
operation. The PunchOutOrderMessage will contain the results of an end user session
in the sourcing application and contains either status update information for a
particular RFQ, a new RFQ, or an update to a completed RFQ.

Empty Shopping Carts

The PunchOutOrderMessage can contain a list of items corresponding to a shopping
cart on the supplier Website. It always indicates the end of the interactive PunchOut
session. The following list describes a few cases when there are no items in the
PunchOutOrderMessage. These messages allow clients to resume immediately when
the user leaves the supplier Website.

• If the operation in the original PunchOutSetupRequest was inspect, the item list of
the PunchOutOrderMessage must be ignored by the procurement application. The
supplier site should return no ItemIn elements in this case.

• If a PunchOutOrderMessage contains no ItemIn elements and the operation was
create, no items should be added to the requisition because the supplier site or the
user has cancelled the PunchOut session without creating a shopping cart.

• If the operation was edit and the PunchOutOrderMessage contains no ItemIn
elements, existing items from this PunchOut session must be deleted from the
requisition in the procurement application.

The Status code “204/No Content” indicates the end of a session without change to
the shopping cart. Again, the PunchOutOrderMessage (which is always needed for
the BuyerCookie) should not contain ItemIn elements. This code would be handled
identically to the other “empty” cases detailed above unless the operation was edit. In
that case, the user cancelled the session without making any change and no change
should be made to the requisition in the procurement application.

PunchOut Transaction Chapter 4 Implementing PunchOut

98 cXML User’s Guide November, 2001

ItemIn

This element adds an item from a shopping basket to a requisition in the procurement
application. It can contain a variety of elements, only two of which are required:
ItemID and ItemDetail.

ItemIn has the following attributes:

The optional elements are ShipTo, Shipping, and Tax, which are the same elements as
those specified in PunchOutOrderMessage, above.

The ItemIn and ItemOut structures match one-to-one, except for the Distribution and
Comments elements and requisitionID and requestedDeliveryDate attributes available in the
ItemOut element. The procurement application can convert directly between ItemIn and
ItemOut lists when initiating an inspect or edit operation. Suppliers can convert one to
the other (dropping the listed extensions available in the ItemOut element) when
executing an edit operation. The procurement application can perform the direct
conversion and add additional shipping and distribution information and comments
when initiating an OrderRequest transaction. ItemDetail data (with the possible exception
of Extrinsic elements) contained within ItemIn elements must not be removed when
converting from ItemIn to ItemOut.

ItemID

This element uniquely identifies the item to the remote Website. It is the only element
required to return to the remote Website to re-identity the item in later PunchOut
sessions.

ItemID contains two elements: SupplierPartID and SupplierPartAuxiliaryID. Only
SupplierPartID is required. SupplierPartAuxiliaryID helps the remote Website transport
complex configuration or bill-of-goods information to re-identify the item when it is
presented to the remote Website in the future.

quantity

The number of items selected by the user on the remote
Website. Because the supplier site can enforce rules for partial
units, the protocol allows fractional quantities. Should never be
negative.

lineNumber
(optional)

The position of this item within an order. Because PunchOut
sessions normally take place prior to ordering and the server
cannot control placement of items within an order in any case,
this attribute is not relevant within a PunchOutOrderMessage.

cXML User’s Guide 99

4
 Im

p
le

m
en

ti
n

g

P
u

n
ch

O
u

t
4

 Im
p

le
m

en
ti

n
g

P

u
n

ch
O

u
t

4
 Im

p
le

m
en

ti
n

g

P
u

n
ch

O
u

t
4

 Im
p

le
m

en
ti

n
g

P

u
n

ch
O

u
t

4
 Im

p
le

m
en

ti
n

g

P
u

n
ch

O
u

t
4

 Im
p

le
m

en
ti

n
g

P

u
n

ch
O

u
t

Chapter 4 Implementing PunchOut PunchOut Transaction

If SupplierPartAuxiliaryID contains special characters (for example, if it contains
additional XML elements not defined in the cXML protocol), they must be escaped
properly. Due to the necessity to pass SupplierPartAuxiliaryID information through
applications and back to the originating supplier, an internal subset containing any
additional XML elements is insufficient.

ItemDetail

This element contains descriptive information about the item that procurement
applications present to users. The contents of an ItemDetail element can be quite
complex, but the minimum requirements are simple: UnitPrice, Description,
UnitOfMeasure, and Classification.

In the context of an ItemIn element, the Extrinsic elements contained within an ItemDetail
function identically to those found within an Index (specifically an IndexItemAdd).

Description

This element describes the item in a textual form. Because this text might exceed the
limits of a short table of line items (or other constrained user interface) and random
truncations could occur, the Description element contains an optional ShortName
element.

ShortName is a short (30-character recommended, 50-character maximum) name for
the item, which fits product lists presented to users. If provided, clients should present
the ShortName instead of a truncation of the Description text in any restricted fields.
Clients must continue to truncate the Description text if no ShortName is provided.

For example:

<Description xml:lang="en-US">
<ShortName>Big Computer</ShortName>
This wonder contains three really big disks, four CD-Rom drives, two Zip drives, an

ethernet card or two, much more memory than you could ever use, four CPUs on two
motherboards. We’ll throw in two monitors, a keyboard and the cheapest mouse we can
find lying around.
</Description>

might appear as “Big Computer” where space is tight, and “Big Computer: This
wonder … lying around.” (or as two separate but complete fields) where there is
space to display more text.

Catalog creators should not use ShortName to duplicate the information in Description.
Instead, they should use ShortName to name the product, and Description to describe
product details.

PunchOut Transaction Chapter 4 Implementing PunchOut

100 cXML User’s Guide November, 2001

CIF 3.0 catalog format also supports ShortName. The CIF field name is Short Name.

SupplierList

In a sourced RFQ PunchOutOrderMessage, the ItemOut and ItemIn elements can
specify a list of suppliers that can be involved in a sourcing process. SupplierList
contains the Name and the list of SupplierIDs for each supplier. The following ItemOut
example shows a SupplierList with two suppliers.

<ItemOut quantity="6" lineNumber="1">
<ItemID>

<SupplierPartID>unknown</SupplierPartID>
</ItemID>
<ItemDetail>

<UnitPrice>
<Money currency="USD">10.23</Money>

</UnitPrice>
<Description xml:lang="en">Learn ASP in a Week!</Description>
<UnitOfMeasure>EA</UnitOfMeasure>
<Classification domain="SPSC">12345</Classification>
<ManufacturerPartID>ISBN-23455634</ManufacturerPartID>
<ManufacturerName>O’Reilly</ManufacturerName>
<URL> URL for more information </URL>

</ItemDetail>
<SupplierList>

<Supplier>
<Name xml:lang="en">Supplier #1 </Name>
<SupplierID domain="duns">0000000</SupplierID>

</Supplier>
<Supplier>

<Name xml:lang="en">Supplier #2 </Name>
<SupplierID domain="duns">1111111</SupplierID>
<SupplierID domain="duns">2222222</SupplierID>

</Supplier>
</SupplierList>

</ItemOut>

cXML User’s Guide 101

5
 P

at
h

 R
o

u
ti

n
g

5
 P

at
h

 R
o

u
ti

n
g

5
 P

at
h

 R
o

u
ti

n
g

5
 P

at
h

 R
o

u
ti

n
g

5
 P

at
h

 R
o

u
ti

n
g

5
 P

at
h

 R
o

u
ti

n
g

Chapter 5
Path Routing

Path Routing enables documents to be routed by and copied to intermediary systems
such as direct and indirect marketplaces, and commerce network hubs. In complex
relationships between buyers and suppliers, a document might be routed through
several intermediary systems before reaching the end supplier.

In direct marketplaces, suppliers bill buyers directly. In indirect marketplaces,
suppliers bill and receive payment from the marketplace host, which in turn bills and
receives payment from member buyers.

Direct marketplaces can be PunchOut sites that enable external buyers to access
suppliers’ PunchOut catalogs. In order for a marketplace to track spending of all the
transactions originating from it, it needs to receive copies of all purchase orders as
they route to the supplier. To do this, the marketplace adds itself as a Copy node to the
Path of all PunchOutOrderMessages sent to the external buyers. This also allows a
marketplace to support edit/inspect PunchOut from a procurement application since it
can distinguish which items in the shopping cart come from an external marketplace
by inspecting the Path element.

Indirect Marketplaces can receive OrderRequests, modify them, split them, and route
them to suppliers. Indirect marketplaces are router nodes that know how to create new
versions and route OrderRequests to suppliers.

To enable path routing in PunchOut:

1. Each system adds itself as a node to the Path element of the
PunchOutOrderMessage sent by the supplier to the procurement application.

2. The procurement application generates OrderRequest documents by splitting
the order based on the Path and SupplierID of each of the ItemIn elements of the
PunchOutOrderMessage. The procurement application puts a Path element at
the cXML header level of each OrderRequest document.

3. Subsequent documents, such as OrderRequests, PunchOutSetupRequests,
ConfirmationRequests, and ShipNoticeRequests are routed and copied by
using the Path element at the Header level.

Nodes Chapter 5 Path Routing

102 cXML User’s Guide November, 2001

Adding a Path element at the item or header level enables copying and routing of
cXML documents for marketplaces and commerce network hubs. The Path element
records the path taken between the buyer and supplier which documents can later use
to find their way back to a supplier. Documents that can use the Path element are:

• PunchOutOrderMessage

• OrderRequest

• PunchOutSetupRequest (edit or inspect)

• ConfirmationRequest

• ShipNoticeRequest

• StatusUpdateRequest

• MasterAgreementRequest

• InvoiceUpdateRequest

Nodes

Nodes appear in the Path element of either the Header section, or ItemIn and ItemOut
elements. Each node in the Path element can be either a router node or a copy node. If
the node is of type “copy”, the system simply wants a copy of each document passing
through. If the node is of type “route”, the system will modify and re-route each
document passing through. Each system in the path must specify which type it is.

Path Element

The Path element contains nodes that are either of type=”copy” or type=”route”. For
example, the following contains a copy node and a router node:

<Path>
<Node type="copy">

<Credential domain="NetworkId">
<Identity>AN01000000111</Identity>

</Credential>
</Node>
<Node type="route">

<Credential domain="NetworkId">
<Identity>AN01000000233</Identity>

</Credential>
</Node>

</Path>

cXML User’s Guide 103

5
 P

at
h

 R
o

u
ti

n
g

5
 P

at
h

 R
o

u
ti

n
g

5
 P

at
h

 R
o

u
ti

n
g

5
 P

at
h

 R
o

u
ti

n
g

5
 P

at
h

 R
o

u
ti

n
g

5
 P

at
h

 R
o

u
ti

n
g

Chapter 5 Path Routing Nodes

Router Nodes

A router node creates a new version of the document it receives and routes it to the
next node in the path. The routed document typically changes unit price, bill-to, or
ship-to address information.

OriginalDocument Element

The new document must reference the document it is modifying by adding an
OriginalDocument element, if it is not already present, at the header level that specifies
the payloadID of the original document. This enables the network hub to keep track of
each hop in the Path and decide which version of the document to display to the
appropriate party.

DocumentReference Element

Each node is responsible for updating any DocumentReference elements in the new
document it generates. For example, when an OrderRequest of type update or delete
is routed to an intermediary node, this node must change the DocumentReference in the
new version of the updated OrderRequest to reference the correct payloadId as
illustrated in the following diagram:

(Router Node)

Create OrderRequest
PayloadID1
OriginalDocument: PayloadID1

Buyer
(Router Node)
Marketplace Supplier

Create OrderRequest
PayloadID2
OriginalDocument: PayloadID1

ConfirmationRequest
PayloadID4
OriginalDocument: PayloadID3

ConfirmationRequest
PayloadID3

OriginalDocument: PayloadID3
DocumentReference: PayloadID2DocumentReference: PayloadID1

Update OrderRequest

OriginalDocument: PayloadID5

Buyer
(Router Node)
Marketplace Supplier

Update OrderRequest
PayloadID6
OriginalDocument: PayloadID2

PayloadID5

DocumentReference: PayloadID1 DocumentReference: PayloadID2

Adding Nodes to the PunchOutOrderMessage Chapter 5 Path Routing

104 cXML User’s Guide November, 2001

Copy Nodes

A copy node wants a copy of the document. For example, the following except
illustrates a copy node:

<Node type="copy">
<Credential domain="NetworkId">

<Identity>AN01000000111</Identity>
</Credential>

</Node>

Adding Nodes to the PunchOutOrderMessage

The PunchOutOrderMessage generated by a PunchOutSetupRequest can go through
intermediary sites on its way back to the buyer. Each intermediary site must add itself
as a node to the Path element of the relevant ItemIn elements of the
PunchOutOrderMessage. Node sequence is top to bottom, with the originating buyer
at the top. The intermediary node closest to the end supplier must add the supplier of
record to the path as well, if the supplier has not already created the path.

The procurement application must include itself as the first router node in the path,
which allows other documents such as Confirmation and Shipment Notice to be
routed back to the originating buyer.

Path Element

The Path element contains nodes that are either of type=”copy” or type=”route”. A Path
element is in each ItemIn element of a PunchOutOrderMessage. Each system visited
by the PunchOutOrderMessage must add itself as a node to the Path element for each
ItemIn element it cares about.

The following PunchOutOrderMessage shows the Path element with two nodes:

<ItemIn quantity="1">
<ItemID>

<SupplierPartID>1234</SupplierPartID>
</ItemID>
<Path>

<Node type="copy">
<Credential domain="NetworkId">

<Identity>AN01000000111</Identity>
</Credential>

</Node>
<Node type="route">

cXML User’s Guide 105

5
 P

at
h

 R
o

u
ti

n
g

5
 P

at
h

 R
o

u
ti

n
g

5
 P

at
h

 R
o

u
ti

n
g

5
 P

at
h

 R
o

u
ti

n
g

5
 P

at
h

 R
o

u
ti

n
g

5
 P

at
h

 R
o

u
ti

n
g

Chapter 5 Path Routing Creating OrderRequests

<Credential domain="NetworkId">
<Identity>AN01000000233</Identity>

</Credential>
</Node>

</Path>
<ItemDetail>

<UnitPrice>
<Money currency="USD">10.23</Money>

</UnitPrice>
<Description xml:lang="en">Learn ASP in a Week!</Description>
<UnitOfMeasure>EA</UnitOfMeasure>
<Classification domain="SPSC">12345</Classification>
<ManufacturerPartID>ISBN-23455634</ManufacturerPartID>
<ManufacturerName>O’Reilly</ManufacturerName>

</ItemDetail>
</ItemIn>

Credentials

The From and To elements of the cXML header in a routed document refer to the buyer
and supplier of record. Neither of these parties is required to appear in the Path since
they might be visible only to one of the Router nodes.

Creating OrderRequests

When the order is finally ready to be generated, the procurement application splits the
order based on the Path and SupplierID of each of the ItemIn elements.

Path Element

The procurement application puts the Path element in the cXML header level of each
of the orders. Do not include the identical Path element in any of the ItemOut elements
of the OrderRequest.

In OrderRequests generated from PunchOut items, you must include nodes for both
the originating buyer and the supplier of record.

Credentials

Because commerce network hubs are responsible for routing OrderRequests to the
next node in the path, the Sender credential is always the network hub credential when
received by the next node. The preceding node (most recent originator) can always be

Creating OrderRequests Chapter 5 Path Routing

106 cXML User’s Guide November, 2001

found by examining the From Credential list or, the Path for the most recent Router node
if the Router node doesn’t modify the From element. In addition, the type="marketplace"
credential must be one of the router nodes in the path. A From credential list with no
type="marketplace" credential implies that the identical node is the originating
procurement application.

The following example is the Header section of an OrderRequest sent from a
procurement application. Since the From credential has no type=“marketplace”, the
node sending this OrderRequest must be the procurement application. The first node
in the path is a marketplace Router node.

<Header>
<From>

<Credential domain="AribaNetworkUserId">
<Identity>admin@acme.com</Identity>

</Credential>
</From>
<To>

<Credential domain="NetworkId" type="marketplace">
<Identity>AN01000000233</Identity>

</Credential>
<Credential domain="DUNS">

<Identity>942888711</Identity>
</Credential>

</To>
<Sender>

<Credential domain="NetworkId">
<Identity>AN01000000001</Identity>
<SharedSecret>abracadabra</SharedSecret>

</Credential>
<UserAgent>ACSN</UserAgent>

</Sender>
<Path>

<Node type="route">
<Credential domain="AribaNetworkUserId">

<Identity>admin@acme.com</Identity>
</Credential>

</Node>
<Node type="copy">

<Credential domain="NetworkId">
<Identity>AN01000000111</Identity>

</Credential>
</Node>
<Node type="route">

<Credential domain="NetworkId">
<Identity>AN01000000233</Identity>

</Credential>
</Node>

</Path>

cXML User’s Guide 107

5
 P

at
h

 R
o

u
ti

n
g

5
 P

at
h

 R
o

u
ti

n
g

5
 P

at
h

 R
o

u
ti

n
g

5
 P

at
h

 R
o

u
ti

n
g

5
 P

at
h

 R
o

u
ti

n
g

5
 P

at
h

 R
o

u
ti

n
g

Chapter 5 Path Routing Creating OrderRequests

<OriginalDocument payloadID="pay1"/>
</Header>

The following example is an OrderRequest from a marketplace Router node:

<Header>
<From>

<Credential domain="AribaNetworkUserId">
<Identity>admin@acme.com</Identity>

</Credential>
<Credential domain="NetworkId" type="marketplace">

<Identity>AN01000000233</Identity>
</Credential>

</From>
<To>

<Credential domain="NetworkId" type="marketplace">
<Identity>AN01000000233</Identity>

</Credential>
<Credential domain="DUNS">

<Identity>942888711</Identity>
</Credential>

</To>
<Sender>

<Credential domain="NetworkId">
<Identity>AN01000000001</Identity>
<SharedSecret>abracadabra</SharedSecret>

</Credential>
<UserAgent>ACSN</UserAgent>

</Sender>
<Path>

<Node type="route">
<Credential domain="AribaNetworkUserId">

<Identity>admin@acme.com</Identity>
</Credential>

</Node>
<Node type="copy">

<Credential domain="NetworkId">
<Identity>AN01000000111</Identity>

</Credential>
</Node>
<Node type="route">

<Credential domain="NetworkId">
<Identity>AN01000000233</Identity>

</Credential>
</Node>

</Path>
<OriginalDocument payloadID="pay1"/>

</Header>

Other Routable Documents Chapter 5 Path Routing

108 cXML User’s Guide November, 2001

Other Routable Documents

Follow-up documents such as PunchOutSetupRequests, ConfirmationRequests, and
ShipNoticeRequests also use the Path element to route and copy documents.

PunchOutSetupRequests

Procurement applications must include the same path information in the ItemOut
elements for any subsequent edit or inspect PunchOutSetupRequests.

Procurement applications must not perform any item grouping according to the Path
element during PunchOut sessions.

ConfirmationRequests and ShipNoticeRequests

Route ConfirmationRequest and ShipNoticeRequest documents by using the Path
element in the cXML header of the OrderRequest. The Path must be reversed to route
the ConfirmationRequest or ShipNoticeRequest to the originating application.

cXML User’s Guide 109

6
 R

ec
ei

vi
n

g
 c

X
M

L

P
u

rc
h

as
e

O
rd

er
s

6
 R

ec
ei

vi
n

g
 c

X
M

L

P
u

rc
h

as
e

O
rd

er
s

6
 R

ec
ei

vi
n

g
 c

X
M

L

P
u

rc
h

as
e

O
rd

er
s

6
 R

ec
ei

vi
n

g
 c

X
M

L

P
u

rc
h

as
e

O
rd

er
s

6
 R

ec
ei

vi
n

g
 c

X
M

L

P
u

rc
h

as
e

O
rd

er
s

6
 R

ec
ei

vi
n

g
 c

X
M

L

P
u

rc
h

as
e

O
rd

er
s

Chapter 6
Receiving cXML Purchase Orders

This chapter describes how to set up a Website to receive cXML-format purchase
orders. It also describes how to send purchase order status messages to buying
organizations or marketplaces.

Purchase Order Process

Procurement applications convert approved purchase requisitions into one or more
purchase orders. A purchase order is a formal request from a buying organization to a
supplier to fulfill a contract.

cXML is just one format for transmitting purchase orders. Other common formats are
e-mail, fax, and EDI (X.12 Electronic Data Interchange). cXML is the best format for
purchase orders because it allows you to easily automate order processing. cXML’s
well-defined structure allows order-processing systems to easily interpret the
elements within a purchase order. With little or no human intervention, the
appropriate data within purchase orders can be routed to your shipping, billing, and
sales departments, as needed.

In addition, the cXML order-routing method allows the transmittal of any supplier
cookies (SupplierPartAuxiliaryID) and purchase order attachments.

When you configure your account on a network commerce hub, you specify a URL to
which all cXML purchase orders will be sent. Upon receiving a purchase order, you
send it to your internal order management system and fulfill it as you normally would.
Your Website must also return an Order Response document to the network
commerce hub, which tells the buyer that you successfully received and parsed the
purchase order.

You do not need a PunchOut Website in order to receive cXML purchase orders;
PunchOut and cXML order-receiving are distinct capabilities. However, the
infrastructure and applications required for supporting PunchOut are the same for
receiving cXML purchase orders.

Receiving Purchase Orders Chapter 6 Receiving cXML Purchase Orders

110 cXML User’s Guide November, 2001

Receiving Purchase Orders

There are two types of cXML documents used in the transaction of purchase orders.
Procurement applications send OrderRequest documents, and you respond with
generic Response documents. These documents pass through the network commerce
hub for authentication and routing.

OrderRequest

The OrderRequest document is analogous to a purchase order. The following diagram
shows the structure of the OrderRequest element:
:

cXML User’s Guide 111

6
 R

ec
ei

vi
n

g
 c

X
M

L

P
u

rc
h

as
e

O
rd

er
s

6
 R

ec
ei

vi
n

g
 c

X
M

L

P
u

rc
h

as
e

O
rd

er
s

6
 R

ec
ei

vi
n

g
 c

X
M

L

P
u

rc
h

as
e

O
rd

er
s

6
 R

ec
ei

vi
n

g
 c

X
M

L

P
u

rc
h

as
e

O
rd

er
s

6
 R

ec
ei

vi
n

g
 c

X
M

L

P
u

rc
h

as
e

O
rd

er
s

6
 R

ec
ei

vi
n

g
 c

X
M

L

P
u

rc
h

as
e

O
rd

er
s

Chapter 6 Receiving cXML Purchase Orders Receiving Purchase Orders

A ‘+’ means the element can occur one or more times, a ‘?’ means the element can
occur 0 or once, and a ‘*’ means the element can occur 0 or more times.

The following example illustrates the structure of the OrderRequest element:

<OrderRequest>
<OrderRequestHeader … >

…
</OrderRequestHeader>
<ItemOut … >

…
</ItemOut>
<ItemOut … >

…
</ItemOut>

</OrderRequest>

The following example shows an OrderRequest for an item:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE cXML SYSTEM "http://xml.cxml.org/schemas/cXML/1.2.001/cXML.dtd">
<cXML xml:lang="en-US" payloadID="93369535150910.10.57.136" timestamp="2000-08-
03T08:49:11+07:00">
<Header>

<From>
<Credential domain="AribaNetworkUserId">

<Identity>admin@acme.com</Identity>
</Credential>

</From>
<To>

<Credential domain="DUNS">
<Identity>114315195</Identity>

</Credential>
</To>
<Sender>

<Credential domain="AribaNetworkUserId">
<Identity>sysadmin@ariba.com</Identity>
<SharedSecret>abracadabra</SharedSecret>

</Credential>
<UserAgent>Ariba Network V1.1</UserAgent>

</Sender>
</Header>
<Request>

<OrderRequest>
<OrderRequestHeader orderID="DO102880"
orderDate="2000-08-03T08:49:09+07:00" type="new">

<Total>
<Money currency="USD">4688.00</Money>

</Total>

Receiving Purchase Orders Chapter 6 Receiving cXML Purchase Orders

112 cXML User’s Guide November, 2001

<ShipTo>
<Address isoCountryCode="US" addressID="1000467">

<Name xml:lang="en">Acme, Inc.</Name>
<PostalAddress name="default">

<DeliverTo>John Q. Smith</DeliverTo>
<DeliverTo>Buyers Headquarters</DeliverTo>
<Street>123 Main Street</Street>
<City>Mountain View</City>
<State>CA</State>
<PostalCode>94089</PostalCode>
<Country isoCountryCode=”US”>United States</Country>

</PostalAddress>
<Email name="default">john_smith@acme.com</Email>
<Phone name="work">

<TelephoneNumber>
<CountryCode isoCountryCode="US">1
</CountryCode>
<AreaOrCityCode>800</AreaOrCityCode>
<Number>5555555</Number>

</TelephoneNumber>
</Phone>

 </Address>
</ShipTo>
<BillTo>

<Address isoCountryCode="US" addressID="12">
<Name xml:lang="en">Acme Accounts Payable</Name>
<PostalAddress name="default">

<Street>124 Union Street</Street>
<City>San Francisco</City>
<State>CA</State>
<PostalCode>94128</PostalCode>
<Country isoCountryCode="US">US</Country>

</PostalAddress>
 <Phone name="work">

<TelephoneNumber>
<CountryCode isoCountryCode="US">1
</CountryCode>
<AreaOrCityCode>415</AreaOrCityCode>
<Number>6666666</Number>

</TelephoneNumber>
</Phone>

</Address>
</BillTo>
<Shipping>

<Money currency="USD">12.34</Money>
<Description xml:lang="en-us">FedEx 2-day</Description>

</Shipping>
<Tax>

<Money currency="USD">10.74</Money>
<Description xml:lang="en">CA State Tax</Description>

cXML User’s Guide 113

6
 R

ec
ei

vi
n

g
 c

X
M

L

P
u

rc
h

as
e

O
rd

er
s

6
 R

ec
ei

vi
n

g
 c

X
M

L

P
u

rc
h

as
e

O
rd

er
s

6
 R

ec
ei

vi
n

g
 c

X
M

L

P
u

rc
h

as
e

O
rd

er
s

6
 R

ec
ei

vi
n

g
 c

X
M

L

P
u

rc
h

as
e

O
rd

er
s

6
 R

ec
ei

vi
n

g
 c

X
M

L

P
u

rc
h

as
e

O
rd

er
s

6
 R

ec
ei

vi
n

g
 c

X
M

L

P
u

rc
h

as
e

O
rd

er
s

Chapter 6 Receiving cXML Purchase Orders Receiving Purchase Orders

</Tax>
<Payment>

<PCard number="1234567890123456" expiration="2002-03-12"/>
</Payment>

</OrderRequestHeader>
<ItemOut quantity="2" >

<ItemID>
<SupplierPartID>220-3165</SupplierPartID>
<SupplierPartAuxiliaryID>E000028901</SupplierPartAuxiliaryID>

</ItemID>
<ItemDetail>

<UnitPrice>
<Money currency="USD">2344.00</Money>

</UnitPrice>
<Description xml:lang="en">Laptop Computer Notebook Pentium® II
processor w/AGP, 300 MHz, with 12.1" TFT XGA Display
</Description>
<UnitOfMeasure>EA</UnitOfMeasure>
<Classification domain="UNSPSC">43171801</Classification>
<URL>http://www.supplier.com/Punchout.asp</URL>
<Extrinsic name="ExtDescription">Enhanced keyboard</Extrinsic>

</ItemDetail>
<Distribution>

<Accounting name="DistributionCharge">
<Segment type="Account" id="7720"

description="Office Supplies"/>
<Segment type="CostCenter" id="610"

description="Engineering Management"/>
</Accounting>
<Charge>

<Money currency="USD">4688.00</Money>
</Charge>

</Distribution>
</ItemOut>

</OrderRequest>
</Request>
</cXML>

OrderRequestHeader

The following example shows an OrderRequestHeader in full detail:

<OrderRequestHeader
orderID="DO1234"
orderDate="1999-03-12T13:30:23+8.00"
type="new"
requisitionID="R1234"
shipComplete="yes">

Receiving Purchase Orders Chapter 6 Receiving cXML Purchase Orders

114 cXML User’s Guide November, 2001

<Total>
<Money currency="USD">12.34</Money>

</Total>
<ShipTo>

<Address>
<Name xml:lang="en">Acme Corporation</Name>
<PostalAddress name="Headquarters">

<DeliverTo>Joe Smith</DeliverTo>
<DeliverTo>Mailstop M-543</DeliverTo>
<Street>123 Anystreet</Street>
<City>Sunnyvale</City>
<State>CA</State>
<PostalCode>90489</PostalCode>
<Country isoCountryCode="US">USA</Country>

</PostalAddress>
</Address>

</ShipTo>
<BillTo>

<Address>
<Name xml:lang="en">Acme Corporation</Name>
<PostalAddress name="Finance Building">

<Street>124 Anystreet</Street>
<City>Sunnyvale</City>
<State>CA</State>
<PostalCode>90489</PostalCode>
<Country isoCountryCode="US">USA</Country>

</PostalAddress>
</Address>

</BillTo>
<Shipping>

<Money currency="USD">12.34</Money>
<Description xml:lang="en-US">FedEx 2-day</Description>

</Shipping>
<Tax>

<Money currency="USD">12.34</Money>
<Description xml:lang="en">CA State Tax</Description>

</Tax>
<Payment>

<PCard number="1234567890123456" expiration="1999-03-12"/>
</Payment>
<Contact role="purchasingAgent">

<Name xml:lang="en-US">Mr. Smart E. Pants</Name>
<Email>sepants@acme.com</Email>
<Phone name="Office">

<TelephoneNumber>
<CountryCode isoCountryCode="US">1</CountryCode>
<AreaOrCityCode>800</AreaOrCityCode>
<Number>555-1212</Number>

</TelephoneNumber>
</Phone>

cXML User’s Guide 115

6
 R

ec
ei

vi
n

g
 c

X
M

L

P
u

rc
h

as
e

O
rd

er
s

6
 R

ec
ei

vi
n

g
 c

X
M

L

P
u

rc
h

as
e

O
rd

er
s

6
 R

ec
ei

vi
n

g
 c

X
M

L

P
u

rc
h

as
e

O
rd

er
s

6
 R

ec
ei

vi
n

g
 c

X
M

L

P
u

rc
h

as
e

O
rd

er
s

6
 R

ec
ei

vi
n

g
 c

X
M

L

P
u

rc
h

as
e

O
rd

er
s

6
 R

ec
ei

vi
n

g
 c

X
M

L

P
u

rc
h

as
e

O
rd

er
s

Chapter 6 Receiving cXML Purchase Orders Receiving Purchase Orders

</Contact>
<Comments xml:lang="en-US">

Anything well formed in XML can go here.
</Comments>
<Followup>

<URL>http://acme.com/cgi/orders.cgi</URL>
</Followup>

</OrderRequestHeader>

OrderRequestHeader has the following attributes:

OrderRequestHeader and ItemOut (when extended with ItemDetail) contain similar
information. Where OrderRequestHeader includes overall billing (BillTo) and payment
(Payment) information, ItemOut instead describes the individual items (in ItemID,
ItemDetail, and Distribution).

Do not use the information in OrderRequestHeader as the default for item-specific
elements. If present, ShipTo, Shipping, Contact, and each named Extrinsic must appear
either with every ItemOut or in the OrderRequestHeader. Comments and Tax elements can
appear simultaneously at both levels. However, the different Comments elements
should not duplicate information, and the header-level Tax element contains a total for
the order, whereas the item-level Tax element contains the tax just for the item.

Total

This element contains the total cost for the items in the order, excluding any tax and
shipping. It is a container for the Money element.

orderID The identifier for this order. Analogous to the purchase order
number.

orderDate The date and time this order was placed, in ISO 8601 format.

type
(optional)

Type of the request: new (default), update, or delete. Update and
delete orders must use the DocumentReference element with the
PayloadId to refer to the original purchase order. See
“DocumentReference Element” on page 131.

requisitionID
(optional)

The buyer’s requisition identifier for this entire order. It might be
the same as orderID, and it might not be included at all. Must
not be included if requisitionID is specified in any ItemOut
elements.

shipComplete
(optional)

A preference against partial shipments. The only allowed value
is “yes”. By default, items are shipped when available.

Because orders might include items with varying ShipTo
elements, only groups of items with common shipping locations
should be held until complete when shipComplete=“yes”.

Receiving Purchase Orders Chapter 6 Receiving cXML Purchase Orders

116 cXML User’s Guide November, 2001

ShipTo/BillTo

These elements contain the addresses of the Ship To and Bill To entities on the
OrderRequest.

All items must be billed to a single entity. Therefore, the BillTo element appears only in
the OrderRequestHeader. Items from an order can be sent to multiple locations. Like the
Shipping element (see next section), the ShipTo element can therefore appear either in
the OrderRequestHeader or in individual ItemOut elements.

The Address element contains an addressID attribute that specifies an ID for the address.
This attribute is used to support address codes for relationships that require ID
references. This value should not be the name of a company or person. It is intended
to deepen application-to-application integration. For example, a ShipTo location
identifier could be:

<Address isoCountryCode="US" addressID="1000487">

The Name element contained within an Address element should always specify the
company name.

The DeliverTo element is listed twice, the first line specifying the name of the person to
receive the goods, and the second specifying their location (building, city, office,
mailstop) where the items should be delivered. The location should always be
complete enough to be used in a mailing label. For example,

<PostalAddress name="Headquarters">
<DeliverTo>Joe Smith</DeliverTo>
<DeliverTo>Mailstop M-543</DeliverTo>
<Street>123 Anystreet</Street>
<City>Sunnyvale</City>
<State>CA</State>
<PostalCode>90489</PostalCode>
<Country isoCountryCode="US">USA</Country>

</PostalAddress>

Country contains a human readable name. The isoCountryCode attribute value is the ISO
country code from the ISO 3166 standard.

Avoid empty or whitespace elements because missing values can affect EDI and
cXML suppliers.

cXML User’s Guide 117

6
 R

ec
ei

vi
n

g
 c

X
M

L

P
u

rc
h

as
e

O
rd

er
s

6
 R

ec
ei

vi
n

g
 c

X
M

L

P
u

rc
h

as
e

O
rd

er
s

6
 R

ec
ei

vi
n

g
 c

X
M

L

P
u

rc
h

as
e

O
rd

er
s

6
 R

ec
ei

vi
n

g
 c

X
M

L

P
u

rc
h

as
e

O
rd

er
s

6
 R

ec
ei

vi
n

g
 c

X
M

L

P
u

rc
h

as
e

O
rd

er
s

6
 R

ec
ei

vi
n

g
 c

X
M

L

P
u

rc
h

as
e

O
rd

er
s

Chapter 6 Receiving cXML Purchase Orders Receiving Purchase Orders

Shipping

This element describes how to ship line items and the shipping cost. If the Shipping
element is present in the OrderRequestHeader, it must not appear in the ItemOut elements.
If it is not present in the OrderRequestHeader, it must appear in the ItemOut elements.

Tax

This element contains the tax associated with the order. This element is present if the
buying organization computes tax. When appearing within the OrderRequestHeader, Tax
describes the total tax for an order. Tax elements at the item level can describe line
item tax amounts.

Payment

This element describes the payment instrument used to pay for the items requested. In
the above example, the Payment element contains a PCard element, which encodes a
standard purchasing card into the cXML document. In the future, other payment
instruments might be defined.

Contact

The supplier uses Contact element information to follow up on an order. This element
identifies a person and provides a list of ways to reach that person or entity. The only
required element is the Name of the contact. Optional and repeating possibilities
include PostalAddress (not recommended for immediate correction of order problems),
Email, Phone, Fax, and URL.

In cXML 1.0, the extrinsics User and CostCenter elements often provided contact
information. With cXML 1.1 and higher, the Contact element provide alternatives to
these extrinsics.

Buying organizations might choose to use this element to identify the original
requestor, the procurement application system administrator, or some other contact
who can take responsibility for correcting problems with orders. Contact can differ
from both BillTo and ShipTo information for an order.

Contact has the following attribute:

role
(optional)

The position of this person within the procurement process.

Receiving Purchase Orders Chapter 6 Receiving cXML Purchase Orders

118 cXML User’s Guide November, 2001

Possible values for the role attribute:

The same Contact role must not appear at both the header and item levels.

There is no default role, due to the disparate contents of the Contact element. So,
cXML applications treat a Contact without a role attribute as an additional role.

TelephoneNumber

The TelephoneNumber element contains the telephone number of the person or
department where the goods are to be shipped or billed. For example, a US telephone
number:

<TelephoneNumber>
<CountryCode isoCountryCode="US">1</CountryCode>
<AreaOrCityCode>800</AreaOrCityCode>
<Number>555-1212</Number>

</TelephoneNumber>

For international dialing, the CountryCode contains the dial code for a country after any
escape codes. England, for example, would be represented as:

<CountryCode isoCountryCode="UK">44</CountryCode>"

The following, therefore, is an example for London:

<TelephoneNumber>
<CountryCode isoCountryCode="UK">44</CountryCode>
<AreaOrCityCode>137</AreaOrCityCode>
<Number>2801007</Number>

</TelephoneNumber>

role value Description

technicalSupport Technical support contact

customerService Customer service contact

sales Sales contact

shipFrom Starting point for shipments related to this order.

payTo Where payment for this order should be sent.

buyerCorporate Contact details the supplier has about the buying organization.

supplierCorporate Contact details about the supplier.

cXML User’s Guide 119

6
 R

ec
ei

vi
n

g
 c

X
M

L

P
u

rc
h

as
e

O
rd

er
s

6
 R

ec
ei

vi
n

g
 c

X
M

L

P
u

rc
h

as
e

O
rd

er
s

6
 R

ec
ei

vi
n

g
 c

X
M

L

P
u

rc
h

as
e

O
rd

er
s

6
 R

ec
ei

vi
n

g
 c

X
M

L

P
u

rc
h

as
e

O
rd

er
s

6
 R

ec
ei

vi
n

g
 c

X
M

L

P
u

rc
h

as
e

O
rd

er
s

6
 R

ec
ei

vi
n

g
 c

X
M

L

P
u

rc
h

as
e

O
rd

er
s

Chapter 6 Receiving cXML Purchase Orders Receiving Purchase Orders

Fax

The Fax element specifies the Fax number of the person or department where goods
are to be shipped or billed. This element contains the TelephoneNumber element
described above.

Comments

Arbitrary human-readable information buyers can send within purchase orders. This
string data is not intended for the automated systems at supplier sites.

The Comments element can contain an Attachment element for including external files.

Attachment

Comments can attach external files to augment purchase orders. The Attachment element
appears within Comments, and it contains only a reference to the external MIME part
of the attachment. All attachments should be sent in a single multipart transmission
with the OrderRequest document. Even if this is not possible, the contentID provided
by the Attachment element must be usable to retrieve the attachment.

For details about the transfer of attached files, see “Attachment Transmission” on
page 29.

Attachment contains a single URL with scheme “cid:”. An attached file in a cXML
document might appear as:

<Comments>
<Attachment>

<URL>cid: uniqueCID@cxml.org</URL>
</Attachment>
Please see attached image for my idea of what this
should look like

</Comments>

The Comments element appears in many places within the cXML protocol, but it can
contain the Attachment element only within OrderRequest documents.

Followup

Specifies the URL to which future StatusUpdateRequest documents should be posted.
This location is the input location for any later documents that reference the current
OrderRequest document.

The Followup element has been deprecated in favor of the Profile Transaction for order
requests. See “ProfileRequest” on page 50 for more information.

Receiving Purchase Orders Chapter 6 Receiving cXML Purchase Orders

120 cXML User’s Guide November, 2001

Extrinsic

This element contains machine-readable information related to the order, but not
defined by the cXML protocol. It can appear anywhere within the OrderRequest
document. In contrast, the Comments element passes information for human use.
Extrinsic elements contain data that is likely to appear in later documents; the Comments
element does not. At this level, Extrinsic extends the description of all items contained
in the purchase order. Some Extrinsic information might also describe the overall
purchase order without affecting the meaning of any contained ItemOut.

Each named Extrinsic can appear only once within the lists associated with the
OrderRequestHeader and individual ItemOut elements (within the contained ItemDetail
elements). The same name must not appear in both the OrderRequestHeader list and any
list associated with the ItemOut elements. If the same Extrinsic name and value is
repeated in all ItemOut lists, it should be moved to the OrderRequestHeader.

The Extrinsic element can also appear in the IndexItem, PunchOutSetupRequest and
ContractItem elements. These contexts are described later in this document. Extrinsic
values are case-insensitive.

ItemOut

The following example shows a minimum valid ItemOut element.

<ItemOut quantity="1">
<ItemID>

<SupplierPartID>5555</SupplierPartID>
</ItemID>

</ItemOut>

ItemOut has the following attributes:

quantity

The number of items desired. Fractions are allowed for
some units of measure. The value might have already
been checked by the supplier during a PunchOut session.
This value should never be negative.

lineNumber
(optional)

Position of the item within an order. This ordinal value
increases once per ItemOut in a “new” OrderRequest.
Clients should always specify this attribute in an
OrderRequest, although it might not be useful in other
ItemOut contexts.

requisitionID
(optional)

The buyer’s requisition identifier for this line item. Must not
be included if requisitionID is specified in the
OrderRequestHeader.

requestedDeliveryDate
(optional)

The date item was requested for delivery, which allows
item-level delivery dates in the OrderRequest. It must be in
ISO 8601 format.

cXML User’s Guide 121

6
 R

ec
ei

vi
n

g
 c

X
M

L

P
u

rc
h

as
e

O
rd

er
s

6
 R

ec
ei

vi
n

g
 c

X
M

L

P
u

rc
h

as
e

O
rd

er
s

6
 R

ec
ei

vi
n

g
 c

X
M

L

P
u

rc
h

as
e

O
rd

er
s

6
 R

ec
ei

vi
n

g
 c

X
M

L

P
u

rc
h

as
e

O
rd

er
s

6
 R

ec
ei

vi
n

g
 c

X
M

L

P
u

rc
h

as
e

O
rd

er
s

6
 R

ec
ei

vi
n

g
 c

X
M

L

P
u

rc
h

as
e

O
rd

er
s

Chapter 6 Receiving cXML Purchase Orders Receiving Purchase Orders

The lineNumber attribute remains constant for any item through updates to the order.
Deletion of items from an order never changes the lineNumber of remaining items. New
items have higher numbers than those previously included in the order. A change to
an existing item (an increased quantity, for example) does not affect the lineNumber of
that item.

The following example shows a more complicated ItemOut.

<ItemOut quantity="2" lineNumber="1"
requestedDeliveryDate="1999-03-12">
<ItemID>

<SupplierPartID>1233244</SupplierPartID>
<SupplierPartAuxiliaryID>ABC</SupplierPartAuxiliaryID>

</ItemID>
<ItemDetail>

<UnitPrice>
<Money currency="USD">1.34</Money>

</UnitPrice>
<Description xml:lang="en">hello</Description>
<UnitOfMeasure>EA</UnitOfMeasure>
<Classification domain="UNSPSC">12345</Classification>
<ManufacturerPartID>234</ManufacturerPartID>
<ManufacturerName xml:lang="en">foobar</ManufacturerName>
<URL>www.bar.com</URL>

</ItemDetail>
<ShipTo>

<Address>
<Name xml:lang="en">Acme Corporation</Name>
<PostalAddress name="Headquarters">

<Street>123 Anystreet</Street>
<City>Sunnyvale</City>
<State>CA</State>
<PostalCode>90489</PostalCode>
<Country isoCountryCode="US">USA</Country>

</PostalAddress>
</Address>

</ShipTo>
<Shipping>

<Money currency="USD">1.34</Money>
<Description xml:lang="en-US">FedEx 2-day</Description>

</Shipping>
<Tax>

<Money currency="USD">1.34</Money>
<Description xml:lang="en">foo</Description>

</Tax>
<Distribution>

<Accounting name="DistributionCharge">
<Segment type="G/L Account" id="23456"

description="Entertainment"/>

Receiving Purchase Orders Chapter 6 Receiving cXML Purchase Orders

122 cXML User’s Guide November, 2001

<Segment type="Cost Center" id="2323"
description="Western Region Sales"/>

</Accounting>
<Charge>

<Money currency="USD">.34</Money>
</Charge>

</Distribution>
<Distribution>

<Accounting name="DistributionCharge">
<Segment type="G/L Account" id="456"

description="Travel"/>
<Segment type="Cost Center" id="23"

description="Europe Implementation"/>
</Accounting>
<Charge>

<Money currency="USD">1</Money>
</Charge>

</Distribution>
<Comments xml:lang="en-US">

Anything valid in XML can go here.
</Comments>

</ItemOut>

The ItemDetail element allows additional data to be sent to suppliers instead of just the
unique identifier for the item represented by the ItemID.

The ShipTo, Shipping, Tax, Contact, Comments, and Extrinsic elements (some nested within
ItemDetail) are identical to the ones that can be in the OrderRequestHeader. These
elements specify per-item data such as shipping, shipping type, and associated cost.
Use these elements either at the OrderRequestHeader level, or at the ItemOut level, but
not at both levels. Tax is the only exception, for more information, see “Tax” on
page 117.

Distribution

Distribution divides the cost of an item among multiple parties. Suppliers return the
Distribution element on invoices to facilitate the buyer’s reconciliation process.

Accounting

The Accounting element groups Segments to identify who is charged.

Accounting has the following attribute:

name The name for this accounting combination. The account from
which this charge will be paid.

cXML User’s Guide 123

6
 R

ec
ei

vi
n

g
 c

X
M

L

P
u

rc
h

as
e

O
rd

er
s

6
 R

ec
ei

vi
n

g
 c

X
M

L

P
u

rc
h

as
e

O
rd

er
s

6
 R

ec
ei

vi
n

g
 c

X
M

L

P
u

rc
h

as
e

O
rd

er
s

6
 R

ec
ei

vi
n

g
 c

X
M

L

P
u

rc
h

as
e

O
rd

er
s

6
 R

ec
ei

vi
n

g
 c

X
M

L

P
u

rc
h

as
e

O
rd

er
s

6
 R

ec
ei

vi
n

g
 c

X
M

L

P
u

rc
h

as
e

O
rd

er
s

Chapter 6 Receiving cXML Purchase Orders Response to an OrderRequest

Segment

The Segment element can contain any relevant accounting code used by a buying
organization. Examples of possible values are asset number, billing code, cost center,
G/L account, and department. For example:

<Segment type="G/L Account" id="456" description="Travel"/>

Segment has the following attributes:

Charge

This element specifies the amount to be charged to the entity represented by the
Accounting element.

Money

Contains the amount of the Charge at the line item level.

Response to an OrderRequest

This document is the response part of the synchronous Request-Response transaction.
The following example shows a Response to an OrderRequest document:

<cXML payloadID="9949494" xml:lang="en"
timestamp="1999-03-12T18:39:09-08:00">

<Response>
<Status code="200" text="OK"/>

</Response>
</cXML>

As shown above, this Response is straightforward. In this case, there is no actual
element named “OrderResponse”, because the only data that needs to be sent back to
the requestor is the Status part of the Response.

type An identifying name for this Segment with respect to the others
in the Accounting element.

id The unique identifier within this Segment type. This value might
be the actual account code if the type were “Cost Center”.

description Describes the id value.

currency The unique ISO standard three-letter currency code. For
example, “USD” = United States Dollar.

Accepting Order Attachments Chapter 6 Receiving cXML Purchase Orders

124 cXML User’s Guide November, 2001

The Response tells the requestor its OrderRequest was successfully parsed and acted on
by the remote part of HTTP connection. It does not communicate order-level
acknowledgement, such as which items can be shipped, or which need to be
backordered.

Accepting Order Attachments

Buyers often need to clarify purchase orders with supporting memos, drawings, or
faxes. They can attach files of any type to cXML purchase orders by using MIME
(Multipurpose Internet Mail Extensions).

cXML contains only references to external MIME parts sent within one multipart
MIME envelope (with the cXML document, in an e-mail or faxed together).

Commerce network hubs receive the attachments, and can forward them to suppliers
or store them for online retrieval.

For more information about purchase order attachments, see “Attachment
Transmission” on page 29.

For more information about the MIME standard, see the following Websites:

www.hunnysoft.com/mime
www.rad.com/networks/1995/mime/mime.htm

http://www.hunnysoft.com/mime
http://www.rad.com/networks/1995/mime/mime.htm

cXML User’s Guide 125

7
 M

as
te

r
A

g
re

em
en

ts
7

 M
as

te
r

A
g

re
em

en
ts

7
 M

as
te

r
A

g
re

em
en

ts
7

 M
as

te
r

A
g

re
em

en
ts

7
 M

as
te

r
A

g
re

em
en

ts
7

 M
as

te
r

A
g

re
em

en
ts

Chapter 7
Master Agreements

This chapter describes the Master Agreement transaction. Master Agreements enable
buyers to establish a commitment for goods and services with suppliers. They
represent a common mechanism for managing supplier and budget commitments, and
they enable buyers to negotiate better discounts by basing the discounts on future
purchases, while enabling suppliers to more accurately forecast demand.

The Master Agreement transaction enables procurement application to facilitate the
negotiation and creation of Master Agreements with suppliers and creation of Release
Orders from those Master Agreements. These Agreement documents can be routed
from the procurement application to the supplier by a network hub. The execution of
an order against a contract is called a release.

MasterAgreementRequest

The MasterAgreementRequest document defines the Master Agreement created by
the buying organization. It specifies beginning and end dates, and the committed
maximum and minimum values of the agreement. It also lists maximum and
minimum values and quantities for individual items.

The following example shows a MasterAgreementRequest document:

<MasterAgreementRequest>
<MasterAgreementRequestHeader

agreementID="MA123"
agreementDate="2001-12-01"
type="value"
effectiveDate="2002-01-01"
expirationDate="2002-12-31"
operation="new">
<MaxAmount>

<Money currency="USD">10000</Money>
</MaxAmount>
<MaxReleaseAmount>

<Money currency="USD">10000</Money>

MasterAgreementRequest Chapter 7 Master Agreements

126 cXML User’s Guide November, 2001

</MaxReleaseAmount>
<Contact role="BuyerLocation">

<Name xml:lang="en">Buyer Company</Name>
<PostalAddress name="default">

<DeliverTo>Joe Smith</DeliverTo>
<DeliverTo>Mailstop M-543</DeliverTo>
<Street>123 Anystreet</Street>
<City>Sunnyvale</City>
<State>CA</State>
 <PostalCode>90489</PostalCode>
<Country isoCountryCode="US">United States</Country>

</PostalAddress>
</Contact>
<Comments xml:lang="en-US">well formed XML can go here.</Comments>

</MasterAgreementRequestHeader>
<AgreementItemOut maxQuantity="100">

<MaxAmount>
<Money currency="USD">1000</Money>

</MaxAmount>
<MaxReleaseAmount>

<Money currency="USD">100</Money>
</MaxReleaseAmount>
<ItemOut quantity="1">

<ItemID>
<SupplierPartID>1233244</SupplierPartID>

</ItemID>
<ItemDetail>

<UnitPrice>
<Money currency="USD">1.34</Money>

</UnitPrice>
<Description xml:lang="en">hello</Description>
<UnitOfMeasure>EA</UnitOfMeasure>
<Classification domain="UNSPSC">12345</Classification>
<ManufacturerPartID>234</ManufacturerPartID>
<ManufacturerName>foobar</ManufacturerName>
<URL>www.foo.com</URL>

</ItemDetail>
<Shipping trackingDomain="FedEx" trackingId="1234567890">

<Money currency="USD">2.5</Money>
<Description xml:lang="en-us">FedEx 2-day</Description>

</Shipping>
<Comments xml:lang="en-US">Any well formed XML</Comments>

</ItemOut>
</AgreementItemOut>

</MasterAgreementRequest>

cXML User’s Guide 127

7
 M

as
te

r
A

g
re

em
en

ts
7

 M
as

te
r

A
g

re
em

en
ts

7
 M

as
te

r
A

g
re

em
en

ts
7

 M
as

te
r

A
g

re
em

en
ts

7
 M

as
te

r
A

g
re

em
en

ts
7

 M
as

te
r

A
g

re
em

en
ts

Chapter 7 Master Agreements MasterAgreementRequest

MasterAgreementRequestHeader Element

The MasterAgreementRequestHeader contains information about the Master Agreement
common to all contained items. The MasterAgreementHeader contains the following
attributes:

The MasterAgreementHeader element can contain the following child elements:

Attribute Value

agreementDate The date and time the agreement request was created. This is
different from the effective and expiration date of the agreement.

type Specifies whether the agreement refers to a value or quantity.

effectiveDate Specifies the date the agreement is available for ordering or
releases.

expirationDate Specifies the date the agreement is no longer available

operation Specifies the type of the agreement request. Can be “new”,
“update” or “delete”. Defaults to "new". The "delete" operation is
used to cancel an existing agreement. The delete request should
be an exact replica of the original request.

parentAgreementPa
yloadID

PayloadID for the corresponding parent document from which this
agreement is derived. Optional.

agreementID The procurement system agreementID for this request.

Element Value

MaxAmount (Optional) Contains the maximum amount for all line items in the
Master Agreement.

MinAmount (Optional) Contains the committed amount for all line items on the
Master Agreement.

MaxReleaseAmount (Optional) The contractual minimum amount per Release of this
Master Agreement.

MinReleaseAmount (Optional) The contractual minimum amount per Release of this
Master Agreement.

Contact (Optional) Use "Contact" element to supply any additional
Address or Location information.

Comments (Optional) Can contain additional information about the status of
the overall Master Agreement.

Extrinsic (Optional) Can be used to insert additional data about the
MasterAgreement for application consumption.

MasterAgreementRequest Chapter 7 Master Agreements

128 cXML User’s Guide November, 2001

AgreementItemOut Element

The AgreementItemOut element specifies the requirements of a particular line item that
is part of the Master Agreement contract. The AgreementItemOut element contains the
following attributes:

The AgreementItemOut element can contain the following child elements:

Attribute Value

maxQuantity (Optional) Specifies the maximum quantity for this particular
line Item.

minQuantity (Optional) Specifies the minimum quantity for this particular
line Item.

maxReleaseQuantity (Optional) Specifies the maximum quantity per release for this
particular line Item.

minReleaseQuantity (Optional) Specifies the minimum quantity per release for this
particular line Item.

Element Value

MaxAmount (Optional) Contains the maximum amount for this particular
line Item.

MinAmount (Optional) Contains the minimum amount for this particular
line Item.

MaxReleaseAmount (Optional) Indicates the item level maximum amount per
release.

MinReleaseAmount (Optional) Indicates the item level minimum amount per
release.

ItemOut A line item that is part of the master agreement. Required.

The lineNumber attribute in the ItemOut specifies the
corresponding lineNumber on the Master Agreement in the
Procurement Application.

The quantity attribute in the ItemOut should be set to “one”
and ignored at the Master Agreement implementation
processing stage.

cXML User’s Guide 129

8
 L

at
er

 S
ta

tu
s

C
h

an
g

es
8

 L
at

er
 S

ta
tu

s
C

h
an

g
es

8
 L

at
er

 S
ta

tu
s

C
h

an
g

es
8

 L
at

er
 S

ta
tu

s
C

h
an

g
es

8
 L

at
er

 S
ta

tu
s

C
h

an
g

es
8

 L
at

er
 S

ta
tu

s
C

h
an

g
es

Chapter 8
Later Status Changes

After the OrderRequest transaction has completed, suppliers and intermediate servers
might need to communicate additional information back to the buying organization.
In addition, after a buying organization receives an invoice, it might need to
communicate back to the supplier about invoice status. The transactions described in
this chapter are used for that purpose. These transactions share some common
semantics and elements.

Like the response to an OrderRequest (see “Response to an OrderRequest” on
page 123), none of these transactions includes a specific Response element. Instead,
the returned document contains a nearly empty Response (only a Status). Each returned
document has the form:

<cXML payloadID="9949494@supplier.com"
timestamp="2000-01-12T18:39:09-08:00" xml:lang="en-US">

<Response>
<Status code="200" text="OK"/>

</Response>
</cXML>

The returned code is “200” only if the operation completed successfully.

There are three types of status change transactions: StatusUpdateRequest,
ConfirmationRequest, and ShipNoticeRequest.

StatusUpdateRequest

This transaction informs an earlier node about changes in the processing status of an
order or an invoice.

One change is of particular significance: when an intermediate hub successfully
transmits an OrderRequest onward, it can inform the original sender or a previous hub
about that success. Transitions through various queues and processing steps at a
supplier or hub might also be significant to the buying organization.

StatusUpdateRequest Chapter 8 Later Status Changes

130 cXML User’s Guide November, 2001

Order-processing partners (such as fax or EDI service providers) send
StatusUpdateRequest transaction messages to network commerce hubs to set purchase
order status. It affects the order status indicator on the hub, which is visible to both
buyers and suppliers. Additionally, suppliers can send this transaction to allow buying
organizations to see the status of document processing within the supplier’s
organization.

Buying organizations use StatusUpdateRequest to update the status of invoices on
network commerce hubs, which can in turn forward them to suppliers.

This request updates the processing status of a single OrderRequest document. For
example:

<cXML xml:lang="en-US"
payloadID="0c30050@supplier.com"
timestamp="2000-01-08T23:00:06-08:00">

<Header>
Routing, identification and authentication information.

</Header>
<Request>

<StatusUpdateRequest>
<DocumentReference

payloadID="0c300508b7863dcclb_14999"/>
<Status code="200" text="OK" xml:lang="en-US">Forwarded

to supplier</Status>
</StatusUpdateRequest>

</Request>
</cXML>

This request contains only an DocumentReference and a Status element. Both are
required. The Status can communicate a later transport error encountered by an
intermediate hub. The semantics of this element are identical to a Status that might
have been returned in the initial HTTP response to an OrderRequest document.

The 200/OK code is especially important when documents are stored and forwarded.
This code indicates that a supplier has begun processing the OrderRequest or a hub has
forwarded the document. The recipient should expect no further StatusUpdateRequest
documents after 200/OK arrives.

Suppliers and hubs utilizing the StatusUpdate transaction must return code 201/
Accepted when an OrderRequest is queued for later processing. After it sends 200/OK
(in the immediate Response to an OrderRequest or a later StatusUpdateRequest), the server
should send no further StatusUpdate transactions for that order. Errors later in
processing might lead to exceptions to this rule.

cXML User’s Guide 131

8
 L

at
er

 S
ta

tu
s

C
h

an
g

es
8

 L
at

er
 S

ta
tu

s
C

h
an

g
es

8
 L

at
er

 S
ta

tu
s

C
h

an
g

es
8

 L
at

er
 S

ta
tu

s
C

h
an

g
es

8
 L

at
er

 S
ta

tu
s

C
h

an
g

es
8

 L
at

er
 S

ta
tu

s
C

h
an

g
es

Chapter 8 Later Status Changes StatusUpdateRequest

DocumentReference Element

The DocumentReference element associates a status update with a particular
OrderRequest document and is used by the StatusUpdateRequest transaction. It contains
enough information to associate the update request with a particular document. It
repeats a required attribute of the earlier document and adds one optional identifier
generated by the supplier. For example:

<DocumentReference
payloadID="0c300508b7863dcclb_14999"/>

DocumentReference contains no elements, but has the following attribute:

PaymentStatus Element

The PaymentStatus element contains the status of a PCard transaction. The status
update includes information such as the success of the transaction, transaction ID,
authorization ID, order ID, total, tax, shipping information, and the time stamp of the
original submission.

A StatusUpdateRequest document is sent to a supplier in response to a
ConfirmationRequest with type=”RequestToPay” to a network hub. This
ConfirmationRequest invokes a payment service where the network hub requests a
payment service provider, such as VeriSign, to perform a point of sale transaction
against the PCard listed in the purchase order and return the status of the transaction.
The network hub then sends the transaction status back to the supplier in a
StatusUpdateRequest document. For example:

<StatusUpdateRequest>
<DocumentReference payloadID="0c300508b7863dcclb_14999"/>
<Status code="0" text="Approved">Approved</Status>
<PaymentStatus orderID="PC100" transactionTimestamp="2000-01-08T10:00:06-

08:00" type="Sale" transactionID="V20000212000" authorizationID="PN123">
<PCard number="1234567890123456" expiration="2003-03-31"/>
<Total>

<Money currency="USD">500.00</Money>
</Total>
<Shipping>

payloadID

A unique number with respect to space and time that is used
for logging purposes to identify documents. This value should
not change in the case of retry attempts.

The recommended implementation is:

datetime.process id.random number@hostname

Taken directly from the cXML element of the OrderRequest
document.

StatusUpdateRequest Chapter 8 Later Status Changes

132 cXML User’s Guide November, 2001

<Money currency="USD">20.00</Money>
<Description xml:lang="en">shipping charge</Description>

</Shipping>
<Tax>

<Money currency="USD">40.00</Money>
<Description xml:lang="en">CA Sales Tax</Description>

</Tax>
</PaymentStatus>

</StatusUpdateRequest>

The PaymentStatus element contains the required PCard and Total element, and
optionally Shipping, Tax, and Extrinsic elements.

The PCard element contains two attributes that specify the number of the PCard and
its expiration date.

The orderID attribute identifies the referenced order. It is copied from the
ConfirmationRequest or the OrderRequest.

The transactionTimeStamp attribute specifies the time when the payment transaction was
submitted.

The type attribute is required and specifies the type of PCard transaction. The value
must be one of the following:

The transactionID attribute is assigned to the transaction by the payment processing
gateway.

The authorizationID attribute is the authorization code for the transaction provided by
the bank.

Value Meaning

Authorization Authorizes the PCard. No charge is made. There is one
authorization per order.

Settlement Transfers the funds secured by a previous authorization
transaction.

Sale Initiates a charge to the PCard.

Credit Initiates a credit against the original charge. Compensates for an
order that did not meet buyer expectations, to make adjustments to
an account that was overcharged, or to credit an account for items
returned by a buyer.

cXML User’s Guide 133

8
 L

at
er

 S
ta

tu
s

C
h

an
g

es
8

 L
at

er
 S

ta
tu

s
C

h
an

g
es

8
 L

at
er

 S
ta

tu
s

C
h

an
g

es
8

 L
at

er
 S

ta
tu

s
C

h
an

g
es

8
 L

at
er

 S
ta

tu
s

C
h

an
g

es
8

 L
at

er
 S

ta
tu

s
C

h
an

g
es

Chapter 8 Later Status Changes ConfirmationRequest

SourcingStatus Element

The SourcingStatus element provides update information for a RFQ sourcing
transaction, PunchOutSetupRequest with operation=”source”.

<StatusUpdateRequest>
<DocumentReference payloadID="123345678.RFQID:1234456787" />
<Status code="200" text="OK">Approve Request</Status>
<SourcingStatus action="approve" xml:lang="en"/>

</StatusUpdateRequest>

The action attribute identifies the update type for the transaction. Can be “approve”,
“cancel”, or “deny”. The body of the SourcingStatus element can contain human-
readable information about the new state of the RFQ.

InvoiceStatus Element

When using StatusUpdateRequest for invoices, include the InvoiceStatus element.

The InvoiceStatus type attribute refers to the action taken by the buying organization on
the invoice. It can have the following values:

reconciled The invoice sucessfully reconciled. The amounts in the invoice
have not yet been paid.

rejected The invoice failed reconciliation. The buying organization is
rejecting the invoice. The Comments element should contain free
text explaing why the invoice was rejected, and the actions the
supplier should take. The supplier can then resubmit a corrected
invoice (a new invoice document with a new invoice number).

paid The invoice amounts have been paid by the buying organization.

The PartialAmount element allows buying organizations to specify different amounts
paid than the amounts specified in invoices. If invoices are paid in full, do not include
PartialAmount. The existence of PartialAmount alerts the supplier to read the Comments
elements which should contain more explanations on the differences.

ConfirmationRequest

This transaction provides detailed status updates on a specific Order Request. It
extends the simple acknowledgment of an order, provided by StatusUpdateRequest, to a
more detailed item level confirmation and ship notification.

ConfirmationRequest Chapter 8 Later Status Changes

134 cXML User’s Guide November, 2001

Note: The DTD for this transaction is contained in Fulfill.dtd rather than
cXML.dtd.

No specific Response document is required for this transaction. Servers must respond
to a ConfirmationRequest with a generic Response document.

A document is one of six types, specified by the type attribute of the ConfirmationHeader
element: “accept”, “allDetail”, “reject”, “except”, “detail”, and “requestToPay”. With a type
of “detail”, you can update portions of an Order Request, such as prices, quantities,
and delivery dates, reject portions, and add tax and shipping information. Only the
line items mentioned are changed. With a type of “allDetail”, you can update all
information of specified line items without rejecting or accepting the order. You can
apply the confirmation to the entire order request using the types “accept”, “reject”, and
“except”. “allDetail” and “detail” update individual lines, they do not accept or reject the
entire order in one stroke.

A ConfirmationRequest with type=”requestToPay” invokes a payment service where the
network hub requests a payment service provider, such as VeriSign, to perform a point
of sale transaction against the PCard listed in the purchase order and return the status
of the transaction. The network hub then sends the transaction status back to the
supplier in a StatusUpdateRequest document.

The following example shows a ConfirmationRequest element that is of type “accept”.

<ConfirmationRequest>
<!-- Without the confirmID, it remains possible to update this
confirmation. An update would refer (in the OrderReference element) to the same
OrderRequest document, would describe the status of the same items, and would
point to this document through its DocumentReference element. However, the
confirmID makes the update much more explicit.-->
<ConfirmationHeader type="accept" noticeDate="2000-10-12"

confirmID="C999-234" invoiceID="I1010-10-12">
<Shipping>

<Money currency="USD">2.5</Money>
<Description xml:lang="en-CA">FedEx 2-day</Description>

</Shipping>
<Tax>

<Money currency="USD">0.19</Money>
<Description xml:lang="en-CA">CA Sales Tax</Description>

</Tax>
<Contact role="shipFrom">

<Name xml:lang="en-CA">Workchairs, Vancouver</Name>
<PostalAddress>

<Street>432 Lake Drive</Street>
<City>Vancouver</City>
<State>BC</State>
<PostalCode>B3C 2G4</PostalCode>

cXML User’s Guide 135

8
 L

at
er

 S
ta

tu
s

C
h

an
g

es
8

 L
at

er
 S

ta
tu

s
C

h
an

g
es

8
 L

at
er

 S
ta

tu
s

C
h

an
g

es
8

 L
at

er
 S

ta
tu

s
C

h
an

g
es

8
 L

at
er

 S
ta

tu
s

C
h

an
g

es
8

 L
at

er
 S

ta
tu

s
C

h
an

g
es

Chapter 8 Later Status Changes ConfirmationRequest

<Country isoCountryCode="CA">Canada</Country>
</PostalAddress>
<Phone>

<TelephoneNumber>
<CountryCode isoCountryCode="CA">1</CountryCode>
<AreaOrCityCode>201</AreaOrCityCode>
<Number>921-1132</Number>

</TelephoneNumber>
</Phone>

</Contact>
<Comments xml:lang="en-CA">Look’s great</Comments>

</ConfirmationHeader>
<!-- The orderID and orderDate attributes are not required in the

OrderReference element. -->
<OrderReference orderID="DO1234">

<DocumentReference payloadID="32232995@ariba.acme.com" />
</OrderReference>

</ConfirmationRequest>

Multiple "detail" type Confirmation Requests can refer to a single Order Request, but
they must not refer to common line items.

To perform a substitution, include a ConfirmationItem element to specify the item to be
replaced, then provide an ItemIn element for the replacement. Only use ItemIn elements
for substitutions. You should then wait for a corresponding change order from the
buyer before shipping.

The ConfirmationRequest element is a request to add confirmation information to the
data known about an order at the receiving server. It can contain three elements:
ConfirmationHeader, OrderReference, and an optional ConfirmationItem. If the Confirmation
Request type specified in the ConfirmationHeader is either "detail" or "except", you can
include ConfirmationItem elements to update specific line items from an Order Request.

While multiple confirmations can be sent for one order, each confirmation must
mention a line item only once. In addition, a line item must not be mentioned in more
than one confirmation request. Multiple confirmations are allowed, and sensible, only
when the Request type specified is “allDetail” or “detail”. Only one confirmation per
order is allowed when the Request type is “accept”, “except”, or “reject”. When a
confirmation with one of these types arrives, the receiving system must discard any
and all previous confirmations for the order.

ConfirmationItem elements can appear in any order within the ConfirmationRequest.
However, listing the lineNumber elements in ascending order is easily readable and
preferred. Again, no line item can appear more than once within a ConfirmationRequest
element.

ConfirmationRequest Chapter 8 Later Status Changes

136 cXML User’s Guide November, 2001

OrderReference Element

The OrderReference element provides a clear reference to a prior OrderRequest
document. While the contained DocumentReference provides an unambiguous
reference, the additional attributes of the OrderReference allow the
ConfirmationRequest and ShipNoticeRequest to be viewed independently. Contains a
DocumentReference element (see page page 150) and two attributes: orderID and
orderDate.

orderID Attribute

Specifies the buyer system orderID for the confirmation, that is, the PO number. When
used, it must be copied directly from the referenced OrderRequest document’s
OrderRequestHeader element.

orderDate Attribute

Specifies the date and time the OrderRequest was created. If present, it must be
copied directly from the referenced OrderRequest document’s OrderRequestHeader.

ConfirmationHeader Element

The ConfirmationHeader element contains information that is common to all items
contained in the Confirmation Request. It has the following attributes:

• type

• noticeDate

• invoiceID

• operation

• ConfirmID

• incoTerms

The ConfirmationHeader element can contain the following elements:

• DocumentReference

• Tax

• Shipping

• Total

• Contact

cXML User’s Guide 137

8
 L

at
er

 S
ta

tu
s

C
h

an
g

es
8

 L
at

er
 S

ta
tu

s
C

h
an

g
es

8
 L

at
er

 S
ta

tu
s

C
h

an
g

es
8

 L
at

er
 S

ta
tu

s
C

h
an

g
es

8
 L

at
er

 S
ta

tu
s

C
h

an
g

es
8

 L
at

er
 S

ta
tu

s
C

h
an

g
es

Chapter 8 Later Status Changes ConfirmationRequest

• Hazard

• Comments

• Extrinsic

If the ConfirmationRequest type specified in the ConfirmationHeader (see page
page 139) is either, “allDetail”, "detail" or "except", you can include ConfirmationItem
elements to update specific line items from an Order Request.

The following example shows a Confirmation Request of type “except”:

<ConfirmationRequest>
<!-- Without the confirmID, it remains possible to update the original confirmation.
This update refers (in the OrderReference element) to the same OrderRequest
document, describes the status of the same items and refers to the original
confirmation document in the DocumentReference element. However, the confirmID
makes the update much more explicit.
Note: The noticeDate changes to match the time of the update and not the original
confirmation time.-->

<ConfirmationHeader type="except" noticeDate="2000-10-13"
confirmID="C999-234" operation="update"
invoiceID="I1102-10-13">

<DocumentReference payloadID="1233444-2001@premier.workchairs.com" />
<Total>

<Money currency="USD">190.60</Money>
</Total>
<Shipping>

<Money currency="USD">2.5</Money>
<Description xml:lang="en-CA">FedEx 2-day</Description>

</Shipping>
<Tax>

<Money currency="USD">0.19</Money>
<Description xml:lang="en-CA">CA Sales Tax</Description>

</Tax>
<Contact role="shipFrom">

<Name xml:lang="en-CA">Workchairs, Vancouver</Name>
<PostalAddress>

<Street>432 Lake Drive</Street>
<City>Vancouver</City>
<State>BC</State>
<PostalCode>B3C 2G4</PostalCode>
<Country isoCountryCode="CA">Canada</Country>

</PostalAddress>
<Phone>

<TelephoneNumber>
<CountryCode isoCountryCode="CA">1</CountryCode>
<AreaOrCityCode>201</AreaOrCityCode>
<Number>921-1132</Number>

ConfirmationRequest Chapter 8 Later Status Changes

138 cXML User’s Guide November, 2001

</TelephoneNumber>
</Phone>

</Contact>
<Comments xml:lang="en-CA">Look’s great, but for the price.</Comments>

</ConfirmationHeader>
<!-- The orderID and orderDate attributes are not required in the OrderReference
element. -->
<OrderReference orderID="DO1234">

<DocumentReference payloadID="32232995@ariba.acme.com" />
</OrderReference>
<ConfirmationItem lineNumber="1" quantity="10">

<UnitOfMeasure>EA</UnitOfMeasure>
<ConfirmationStatus quantity="10" type="detail" shipmentDate="2000-10-14"

deliveryDate="2000-10-19">
<UnitOfMeasure>EA</UnitOfMeasure>
<UnitPrice>

<Money currency="USD">1.64</Money>
</UnitPrice>
<Comments xml:lang="en-CA">Very sorry. There’s been a slight
(30 cents) price increase for that colour and it will be one day late.
</Comments>

</ConfirmationStatus>
</ConfirmationItem>

</ConfirmationRequest>

cXML User’s Guide 139

8
 L

at
er

 S
ta

tu
s

C
h

an
g

es
8

 L
at

er
 S

ta
tu

s
C

h
an

g
es

8
 L

at
er

 S
ta

tu
s

C
h

an
g

es
8

 L
at

er
 S

ta
tu

s
C

h
an

g
es

8
 L

at
er

 S
ta

tu
s

C
h

an
g

es
8

 L
at

er
 S

ta
tu

s
C

h
an

g
es

Chapter 8 Later Status Changes ConfirmationRequest

type Attribute

This required attribute specifies the type of confirmation.

Value Description

accept Accept the entire order as described in the referenced
OrderRequest document

A document of this type can contain ConfirmationItem elements. If
ConfirmationItem elements are present in the ConfirmationRequest
document, they must contain only ConfirmationStatus elements of
type="accept".

allDetail Update only those line items described in the included
ConfirmationItem elements. Line items not mentioned specifically in
this document retain their current status. Unlike the "detail" type,
this type of confirmation includes all information known by the
supplier, whether or not it differs from the data provided in the
original OrderRequest document.

An “allDetail” confirmation is compatible with current EDI and order
entry tools, which commonly send buyers a snapshot of an order in
supplier's systems. Due to the reconciliation issues caused by
confirmations of this type, it is recommended that this type be
considered as a "bridge" strategy for the short term.

An “allDetail” confirmation must contain ConfirmationItem elements.
The contained ConfirmationStatus elements must have types
"allDetail", "reject", or "unknown". "accept" or "detail"
ConfirmationStatus types are not allowed because they conflict with
the requirements of this document type.

ConfirmationRequest Chapter 8 Later Status Changes

140 cXML User’s Guide November, 2001

noticeDate Attribute

Specifies the date and time the confirmation document was created.

invoiceID Attribute

The invoiceID attribute is an optional supplier-generated identifier for an invoice
associated with the items described in this confirmation. It is identical to the Invoice
Number that appears at the top of a physical invoice.

reject Reject the entire order. Specify a reason for the rejection in the
Comments element. A document of this type must not contain
ConfirmationItem elements.

detail Update individual line items as specified within the contained
ConfirmationItem elements. Line items not mentioned specifically
retain their current states. This document type should include only
information that differs from the information in the original
OrderRequest document.

Do not include the variations described in an earlier
ConfirmationRequest in later ConfirmationRequest documents that
restore information provided in the OrderRequest. For example, the
Tax element might appear in the ConfirmationStatus of one
ConfirmationRequest but not in an update to that confirmation. This
signifies that the original OrderRequest actually contained the
correct charge.

This document type must contain ConfirmationItem elements. The
contained ConfirmationStatus elements can have any type except
"allDetail".

except Accept the entire order as described in the referenced
OrderRequest document with exceptions listed within the
ConfirmationItem elements. Accept line items not mentioned without
change.

This document type must contain ConfirmationItem elements. The
contained ConfirmationStatus elements can have any type except
"allDetail".

requestToPay This type of confirmation is for the supplier to request the initiation of
payment transactions for either the whole order or some line items.

If the request contains no ConfirmationItem elements, the intent will
be to initiate payment transaction on the total amount of all line
items in the order, except those being rejected.

If the request contains ConfirmationItem elements, payment
transaction will be initiated against the specified items and
quantities.

A ConfirmationItem in this type of request does not have to describe
the complete line item. It should only contain "requestToPay"
ConfirmationStatus elements for new payment transactions.

Value Description

cXML User’s Guide 141

8
 L

at
er

 S
ta

tu
s

C
h

an
g

es
8

 L
at

er
 S

ta
tu

s
C

h
an

g
es

8
 L

at
er

 S
ta

tu
s

C
h

an
g

es
8

 L
at

er
 S

ta
tu

s
C

h
an

g
es

8
 L

at
er

 S
ta

tu
s

C
h

an
g

es
8

 L
at

er
 S

ta
tu

s
C

h
an

g
es

Chapter 8 Later Status Changes ConfirmationRequest

confirmID Attribute

A supplier-specified optional identifier for the document assigned by the supplier.
The attribute is user-visible and secondary to the document’s PayloadID.

This value does not vary as a particular confirmation is updated. That is, documents
with operation="update" describing the status of the same items in the same order share a
confirmID with the original ConfirmationRequest with operation="new".

When the confirmID does not appear in an operation="new" ConfirmationRequest, it must
not appear in a corresponding operation="update" document. The DocumentReference
element contained in the update’s ConfirmationHeader and the payloadID attribute of the
original or previous update link the two documents.

operation Attribute

This optional attribute specifies whether the confirmation is new, or an update to a
previous confirmation.

An "update" confirmation allows a supplier to correct an error in a confirmation or to
add additional information learned later. In either case, an "update" document must be
complete: all data from the original confirmation or a previous update should be
discarded by the recipient.

The requirement that the confirmation be complete enables ConfirmationRequest
information to expand. There are no restrictions on new items not yet referenced in an
“update” ConfirmationRequest. New items must not have already been mentioned in
another ConfirmationRequest unless all of the items from the other confirmation are
now described in the consolidated document. This protocol does not support splitting
confirmations (sending an "update" ConfirmationRequest document describing a
subset of items in an earlier version), or partial consolidations of confirmations
(sending an "update" ConfirmationRequest document that contains a subset of
information from another confirmation).

An "update" ConfirmationRequest must contain the same confirmID, if any, as the
previous version of the confirmation. This attribute is an unambiguous and a direct
connection between all versions of the confirmation.

Value Description

new Default value. No previous confirmation request has been sent.

update Updates a previous confirmation request. The confirmID must match
a previous request’s confirmID.

ConfirmationRequest Chapter 8 Later Status Changes

142 cXML User’s Guide November, 2001

An "update" ConfirmationRequest must also include a DocumentReference element in the
ConfirmationHeader. See “DocumentReference Element” on page 142 for more
information on this element. This element sequences multiple versions of a
confirmation and is the only link between those versions. See “confirmID Attribute”
on page 141 for more of the implications of leaving out the attribute. Other
confirmations discarded through consolidations as previously described are not
explicitly referenced by the new, larger ConfirmationRequest document.

A confirmation can not be deleted; the protocol does not include a delete option for
this request. Suppliers must replace incorrect or invalid confirmations with correct
information. A type="unknown" ConfirmationStatus will reset such information to its
original state. This covers the case of an error in accepting or rejecting an item that
has not been researched.

incoTerms Attribute

The incoTerms attribute specifies optional shipping terms defined by the International
Chamber of Commerce. These terms inform the buyer which portion of the shipping
charges are their responsibility. Allowed values include:

DocumentReference Element

The DocumentReference element should appear only when operation is “update” (see
page 141). It should reference the most recent ConfirmationRequest document for
this particular confirmation, usually indicated by a common confirmID. For example,
when a confirmation is created, updated, and then updated again, the final document

Term Value

cfr Cost and freight

cif Cost, insurance, and freight

cip Carriage and insurance paid to

cpt Carriage paid to

daf Delivered at frontier

ddp Delivered duty paid

ddu Delivered duty unpaid

deq Delivered ex quay (duty paid)

des Delivered ex ship

exw Ex works

fas Free alongside ship

fca Free carrier

fob Free on board vessel

cXML User’s Guide 143

8
 L

at
er

 S
ta

tu
s

C
h

an
g

es
8

 L
at

er
 S

ta
tu

s
C

h
an

g
es

8
 L

at
er

 S
ta

tu
s

C
h

an
g

es
8

 L
at

er
 S

ta
tu

s
C

h
an

g
es

8
 L

at
er

 S
ta

tu
s

C
h

an
g

es
8

 L
at

er
 S

ta
tu

s
C

h
an

g
es

Chapter 8 Later Status Changes ConfirmationRequest

should contain a DocumentReference referring to the previous ConfirmationRequest
with operation="update". That document, in turn, refers to the original operation="new"
ConfirmationRequest document (see page 141).

Tax and Shipping Elements

Tax and Shipping amounts can be updated and included in the confirmation with new
values without any corresponding line item information.

Total Element

The Total value should match the OrderRequest document value unless a
ConfirmationItem describes a new UnitPrice or quantity. It is not necessary to copy this
information from the OrderRequest document: although permissible, Total, Tax, and
Shipping information should not be included if they match those amounts in the
original order.

Contact Element

The Contact element should be used primarily to add new information about an order.
It is not necessary to copy this information from the OrderRequest document.

Contact role values include:

Elements in the Contact list can appear in any order. A contact role must not appear
more than once within a ConfirmationHeader element.

Hazard Element

Elements in the Hazard list can appear in any order. The same hazard should not be
listed more than once in a ConfirmationHeader element. Each hazard listed at this level
should apply to the entire order or all items mentioned in the confirmation. A

Role Meaning

technicalSupport Technical support

customerService Customer service

sales Sales

shipFrom Starting point for shipments related to this order

shipTo Copies the ShipTo element from the OrderRequest document

payTo Where payment for this order should be sent

billTo Copies the BillTo element from the OrderRequest document

supplierCorporate Supplier at corporate

ConfirmationRequest Chapter 8 Later Status Changes

144 cXML User’s Guide November, 2001

ConfirmationRequest that updates the status of a single line item should not include
Hazard elements in the ConfirmationItem element. See “Hazard Element” on page 159 for
more information.

Comments Element

The Comments element can contain additional information about the status of the
overall order, or the portion described in this confirmation, such as payment terms,
additional details on shipping terms and clarification of the status. For status
information, terms such as “backordered”, “shipped”, and “invalid” might be
appropriate. All such data are intended for human use.

Extrinsic Element

The Extrinsic element list can be used to insert additional data about the order for
application consumption. These elements can include pre-defined keywords and
values affecting workflow in the receiving system.

Elements in the Extrinsic list can appear in any order. An extrinsic type must not appear
more than once within a ConfirmationHeader element. A type must not be mentioned
both in this list and in a particular ConfirmationStatus element. The ConfirmationHeader
must not contain a default extrinsic value overridden at the lower level.

ConfirmationItem Element

The ConfirmationItem element completely describes the status of a specific line item.
The ConfirmationItem element can contain the following elements: UnitOfMeasure,
ConfirmationStatus, Contact, and Hazard. ConfirmationStatus can occur more than once, and
only Contact is optional.

ConfirmationItem has the following attributes:

You can use more than one ConfirmationRequest document to update the status of an
entire order, but only mention a particular line item in one document and in only one
ConfirmationItem within that document.

quantity Specifies how many items were ordered. Expressed in units given in
the UnitOfMeasure element. Matches the quantity value for the line
item’s ItemOut element in the corresponding OrderReference element.
Required.

lineNumber Position, counting from 1, of the item in an order. Matches the
corresponding line item, ItemOut, in the document referenced by the
OrderReference element. Required.

cXML User’s Guide 145

8
 L

at
er

 S
ta

tu
s

C
h

an
g

es
8

 L
at

er
 S

ta
tu

s
C

h
an

g
es

8
 L

at
er

 S
ta

tu
s

C
h

an
g

es
8

 L
at

er
 S

ta
tu

s
C

h
an

g
es

8
 L

at
er

 S
ta

tu
s

C
h

an
g

es
8

 L
at

er
 S

ta
tu

s
C

h
an

g
es

Chapter 8 Later Status Changes ConfirmationRequest

Contact Element

Use Contact elements in the ConfirmationItem to describe contacts specific to the item.
The elements can be in any order. If you specify a particular Contact role, specify it in
the ConfirmationItem or ConfirmationHeader but not both. Do not specify the role more than
once within a ConfirmationItem.

List elements in the Contact list in any order. Do not add a Contact role attribute more
than once within a ConfirmationItem element.

Hazard Element

List elements in the Hazard list in any order. Do not list the same hazard more than
once in a ConfirmationItem. Each hazard listed at this level, in a ConfirmationItem
element, must apply to this specific line item. A ConfirmationRequest that updates
the status of a single line item should not include Hazard elements in the
ConfirmationItem element.

ConfirmationStatus Element

The ConfirmationStatus element provides the status of a specific line item or portion
thereof. Quantities at this level must sum to the quantity in the containing
ConfirmationItem. Use a consistent UnitOfMeasure in the ConfirmationItem element and its
contained ConfirmationStatus element. In a substitution, you can use a different
UnitOfMeasure in the ItemDetail contained within the ItemIn element.

When accepting or rejecting an item, include only a UnitOfMeasure element in the
ConfirmationStatus element.

Use an ItemIn element only to recommend a substitution. With a substitution, you must
match the quantity of the ItemIn element to that of the containing ConfirmationStatus,
unless the UnitOfMeasure has changed. This requires an ItemDetail element within the
ItemIn element.

You can update UnitPrice, Tax and Shipping amounts in the ConfirmationStatus element
without a complete part substitution. It is not necessary to copy this information from
the OrderRequest document. Do not include UnitPrice, Tax, and Shipping if they match
those in the original ItemOut element.

When the type is "accept", "allDetail", or "detail", you can add tax or shipping amounts not
mentioned in the original order. Use the "accept" type when these additions are the only
changes to the order. Use the "detail" type to indicate a substitution if there is an ItemIn

ConfirmationRequest Chapter 8 Later Status Changes

146 cXML User’s Guide November, 2001

element, a price change if there is a UnitPrice element, or a delayed shipment if there is
a deliveryDate attribute. The "allDetail" type requires reconciliation software to determine
what has changed since the original order.

Use the Comments element to add information about the status of this portion of the
item. Terms such as "backordered", "shipped", and "invalid" might be sensible. All such
data is intended for human use.

Alternately, use the Extrinsic element list to insert additional data about this particular
item portion for application consumption. These elements can include pre-defined
keywords and values affecting workflow in the receiving system.

Elements in the Extrinsic list can appear in any order. An extrinsic attribute value must
not appear more than once within a ConfirmationStatus element. A type must not be
mentioned both in this list and in the overall ConfirmationHeader element. The
ConfirmationHeader must not contain a default extrinsic value overridden at this lower
level.

quantity Attribute

Specifies how many items have this status. Expressed in the units specified in the
UnitOfMeasure element.

cXML User’s Guide 147

8
 L

at
er

 S
ta

tu
s

C
h

an
g

es
8

 L
at

er
 S

ta
tu

s
C

h
an

g
es

8
 L

at
er

 S
ta

tu
s

C
h

an
g

es
8

 L
at

er
 S

ta
tu

s
C

h
an

g
es

8
 L

at
er

 S
ta

tu
s

C
h

an
g

es
8

 L
at

er
 S

ta
tu

s
C

h
an

g
es

Chapter 8 Later Status Changes ConfirmationRequest

type Attribute

Specifies the status of this portion of the order.

shipmentDate Attribute

Specifies the date and time this shipment is expected to leave the supplier. Use the
ConfirmationStatus element to include this information if the type is "accept", "allDetail", or
"detail".

deliveryDate Attribute

Specifies the new date and time this shipment is expected to arrive. Do not include if
the value matches the requestedDeliveryDate attribute, if any, in the corresponding
OrderRequest document. Otherwise, use the ConfirmationStatus element to include this
information if its type is "accept", "allDetail", or "detail".

Value Description

accept Accept this portion as described in the referenced ItemOut element.

allDetail Accept this portion of the line item as detailed in the contents of this
ConfirmationStatus element. These contents completely describe
what will be shipped. Unlike the "detail" type, this confirmation type
includes all information known by the supplier, whether or not it
differs from the data provided in the original OrderRequest
document.

This type is provided for compatibility with current EDI and order
entry tools, which commonly send the buyer a snapshot of an order
in the supplier’s systems. Due to the reconciliation issues caused by
confirmations of this type, it is recommended that you use this type
as a "bridge" strategy suitable only for the short term.

Allowed only in documents whose ConfirmationHeader type is
"allDetail".

detail Accept this portion with the changes detailed in the
ConfirmationStatus element. At least one of the UnitPrice, Shipping,
Tax, or ItemIn elements, or the deliveryDate attribute must be
present. This is a substitution if there is an ItemIn element, a price
change if there is a UnitPrice element, or a delayed shipment if
there is a deliveryDate attribute.

reject Reject this portion of the line item.

unknown The status of this portion of the line item is not known at the time of
this confirmation. This line item status provides a placeholder while
the supplier does further research. Update confirmations can also
reset the status of a line item portion to "unknown" when an earlier
confirmation incorrectly accepted or rejected that portion.

Allowed only in documents whose ConfirmationHeader type is
"allDetail", "detail", or "except".

ShipNoticeRequest Chapter 8 Later Status Changes

148 cXML User’s Guide November, 2001

ShipNoticeRequest

Receiving servers use the ShipNoticeRequest transaction to request shipment
information for an order. This transaction describes a single shipment and can contain
portions of multiple orders as well as hazard information for the entire shipment or
individual line items. The ship notice does not provide routing information and
therefore contains information only for the first destination.

Note: The DTD for this transaction is contained in Fulfill.dtd rather than
cXML.dtd.

ShipNoticeRequest can contain the following elements:

• ShipNoticeHeader

• ShipControl

• ShipNoticePortion

The ShipNoticeRequest does not provide updates to tax and shipping amounts. This
information should be transmitted with a ConfirmationRequest document. If
necessary, you can send a ConfirmationRequest with operation="update" with this
information after the shipment has been delivered.

ConfirmationRequest and ShipNoticeRequest documents with operation="update" must
include all relevant information from the original OrderRequest document.

The following example shows a ShipNoticeRequest element:

<ShipNoticeRequest>
<ShipNoticeHeader shipmentID="S89823-123" noticeDate="2000-10-14"

shipmentDate="2000-10-14T08:30:19-08:00"
deliveryDate="2000-10-18T09:00:00-08:00">
<Contact role="shipFrom">

<Name xml:lang="en-CA">Workchairs, Vancouver</Name>
<PostalAddress>

<Street>432 Lake Drive</Street>
<City>Vancouver</City>
<State>BC</State>
<PostalCode>B3C 2G4</PostalCode>
<Country isoCountryCode="CA">Canada</Country>

</PostalAddress>
<Phone>

<TelephoneNumber>
<CountryCode isoCountryCode="CA">1</CountryCode>
<AreaOrCityCode>201</AreaOrCityCode>
<Number>921-1132</Number>

cXML User’s Guide 149

8
 L

at
er

 S
ta

tu
s

C
h

an
g

es
8

 L
at

er
 S

ta
tu

s
C

h
an

g
es

8
 L

at
er

 S
ta

tu
s

C
h

an
g

es
8

 L
at

er
 S

ta
tu

s
C

h
an

g
es

8
 L

at
er

 S
ta

tu
s

C
h

an
g

es
8

 L
at

er
 S

ta
tu

s
C

h
an

g
es

Chapter 8 Later Status Changes ShipNoticeRequest

</TelephoneNumber>
</Phone>

</Contact>
<Comments xml:lang="en-CA">Got it all into one shipment.</Comments>

</ShipNoticeHeader>
<ShipControl>

<CarrierIdentifier domain="SCAC">FDE</CarrierIdentifier>
<CarrierIdentifier domain="companyName">Federal Express</CarrierIdentifier>
<ShipmentIdentifier>8202 8261 1194</ShipmentIdentifier>

</ShipControl>
<ShipNoticePortion>
<!-- The orderID and orderDate attributes are not required in the OrderReference

element. -->
<OrderReference orderID="DO1234">

<DocumentReference payloadID="32232995@ariba.acme.com" />
</OrderReference>

</ShipNoticePortion>
</ShipNoticeRequest>

The ShipNoticeRequest element contains information about a ship notice common to all
contained items. It is not necessary to copy this information from the OrderRequest
document. The Contact element should be used primarily to add new information
about an order.

The ShipNoticeRequest element contains three elements: ShipNoticeHeader, ShipControl,
and ShipNoticePortion. All are required, and both ShipNoticePortion and ShipControl can
occur more than once.

Shipments with multiple responsible carriers are described in one of two ways:

1. A single carrier or third-party logistics provider creates a tracking identifier
that can be used to retrieve information about the entire trip. Suppliers send
such information in a single ShipControl element.

2. Each segment requires a separate tracking number. Suppliers send such
information with one ShipControl element per segment.

ShipControl elements must appear in the order the shipment will travel. The first such
element must not have an explicit starting date, the ShipControl startDate attribute must
not be present, and that carrier’s control must begin at the shipment’s orgination time
specified by the ShipNoticeHeader shipmentDate attribute value. All later ShipControl
elements must have increasing, or later, starting dates specified by the ShipControl
startDate attribute value.

ShipNoticePortion elements can appear in any order. A particular order, with
ShipNoticePortion, OrderReference, or DocumentReference payloadID attribute value, must
not appear more than once in a ShipNoticeRequest element.

ShipNoticeRequest Chapter 8 Later Status Changes

150 cXML User’s Guide November, 2001

Note: Many elements and attributes in the ShipNoticeRequest and
ShipNoticeHeader elements are optional only for the operation="delete" case. For
other operations, one or more ShipControl and ShipNoticePortion elements must
appear in a ShipNoticeHeader element.

ShipNoticeHeader Element

The ShipNoticeHeader element contains information about a ship notice common to all
contained items. The ShipNoticeHeader element can contain the following elements:
ServiceLevel, DocumentReference, Contact, Hazard, Comments, and Extrinsic, all of which are
optional.

ServiceLevel Element

One or more ServiceLevel elements must appear in all ShipNoticeRequest documents,
except when operation="delete" is specified. Each ServiceLevel must contain a single
string corresponding to the level of service, such as "overnight", provided by the carrier
for this shipment. When multiple ServiceLevel elements appear, all must describe the
same level of service in different languages or locales. No two ServiceLevel elements
can have the same xml:lang attribute. Elements in such a list can appear in any order.

DocumentReference Element

The contained DocumentReference element appears only when the operation is "update"
or "delete". In that case, the DocumentReference element references the most recent
ShipNoticeRequest document for this particular ship notice, usually indicated by a
common shipmentID. For example, when a ship notice is created, updated, and then
updated again, the final document should contain a DocumentReference referring to the
previous ShipNoticeRequest with operation="update". That document, in turn, refers to
the original operation="new" ShipNoticeRequest document.

Contact Element

Contact roles can include: technicalSupport, customerService, sales, shipFrom (starting point
for this shipment), shipTo (should echo the ShipTo element from the OrderRequest
documents), buyerCorporate (details the supplier has about the buying organization),
and supplierCorporate. Generally, it is not necessary to copy information from the
various OrderRequest documents: the Contact element should be used primarily to add
information to that known about an order.

Elements in the Contact list can appear in any order. A Contact role attribute value must
not appear more than once within a ShipNoticeHeader element.

cXML User’s Guide 151

8
 L

at
er

 S
ta

tu
s

C
h

an
g

es
8

 L
at

er
 S

ta
tu

s
C

h
an

g
es

8
 L

at
er

 S
ta

tu
s

C
h

an
g

es
8

 L
at

er
 S

ta
tu

s
C

h
an

g
es

8
 L

at
er

 S
ta

tu
s

C
h

an
g

es
8

 L
at

er
 S

ta
tu

s
C

h
an

g
es

Chapter 8 Later Status Changes ShipNoticeRequest

Hazard Element

Elements in the Hazard list can appear in any order. The same hazard should not be
listed more than once in a ShipNoticeHeader. Each hazard listed at this level, in a
ShipNoticeHeader element, should apply to the entire shipment, or to all items contained
in this shipment. A ShipNoticeRequest for a single line item should not include Hazard
elements in the ShipNoticeItem element.

Comments Element

Use the Comments element to include additional information about the shipment. In
the ShipNoticeHeader element, that information must be common to all contained items
and routes. All such data must be intended for human use.

Extrinsic Element

Alternately, use the Extrinsic element list to insert additional data about the shipment
for application consumption. These elements can include pre-defined keywords and
values affecting workflow in the receiving system.

Elements in the Extrinsic list can appear in any order. An extrinsic type, Extrinsic name
attribute value, must not appear more than once within a ShipNoticeHeader element. A
type must not be mentioned both in this list and in a particular ShipControl or
ShipNoticePortion element. The ShipNoticeHeader must not contain a default extrinsic
value overridden at either lower level.

shipmentID Attribute

A supplier-specified optional identifier for the document. The attribute is user-visible
and secondary to the document’s PayloadID. It is required.

This value does not vary as a particular ship notice is updated. That is, "update" or
"delete" documents describing the same shipment share a shipmentID with the original
"new" ShipNoticeRequest.

ShipNoticeRequest Chapter 8 Later Status Changes

152 cXML User’s Guide November, 2001

operation Attribute

This optional attribute specifies whether the ShipNoticeRequest document is new or
an update to a previous ship notice.

If the operation is not "new", explicitly or by default, you must also include in the
ShipNoticeRequest a DocumentReference element in the ShipNoticeHeader element. See
“DocumentReference Element” on page 150 for more information on this element.
This effectively sequences multiple versions of a ship notice.

noticeDate Attribute

Specifies the date and time the ShipNoticeRequest document was created. Required.

shipmentDate Attribute

The date and time the shipment left the supplier. You must specify this attribute in all
ShipNoticeRequest documents except when the operation is "delete".

deliveryDate Attribute

Specifies the date and time this shipment is expected to arrive. While this value can
default to the requestedDeliveryDate of a single order, that attribute is optional in an
OrderRequest document, and the ShipNoticeRequest can refer to multiple OrderRequest
documents. You must include this attribute in all ShipNoticeRequest documents
except when the operation is "delete".

Value Description

new Default value. No previous ship notice has been sent.

update Updates a previous ship notice request. Allows a supplier to correct
an error in a ship notice or to add additional information learned
later. In either case, an "update" document must be complete: all
data from the original should be discarded by the recipient. The
shipmentID must match a previous request’s shipmentID.

delete Removes the changes described in the previous new or updated
ShipNoticeRequest from the state of the shipment. Only use when
the supplier discards a planned shipment or incorrectly sends a
ShipNoticeRequest about an order that will not take place. The
shipmentID must match a previous request’s shipmentID.

cXML User’s Guide 153

8
 L

at
er

 S
ta

tu
s

C
h

an
g

es
8

 L
at

er
 S

ta
tu

s
C

h
an

g
es

8
 L

at
er

 S
ta

tu
s

C
h

an
g

es
8

 L
at

er
 S

ta
tu

s
C

h
an

g
es

8
 L

at
er

 S
ta

tu
s

C
h

an
g

es
8

 L
at

er
 S

ta
tu

s
C

h
an

g
es

Chapter 8 Later Status Changes ShipNoticeRequest

ServiceLevel Element

Specifies a language-specific string for the service level code. Each ServiceLevel must
contain a string in the specified language that corresponds to the level of service, such
as "overnight", provided by the carrier for this shipment. It has the required attribute
xml:lang (see page 79).

ShipControl Element

Specifies the carrier responsible for some portion of the shipment. A ShipControl
element contains the CarrierIdentifier, ShipmentIdentifier, PackageIdentification, Route, Contact,
Comments, and Extrinsic elements.

The shipment is tracked using the identifiers provided at this level. Those identifiers
should be valid from the startDate of one ShipControl element or the shipment’s
shipmentDate until the startDate of the next.

CarrierIdentifier

The CarrierIdentifier list can include multiple identifiers for the same carrier. Elements in
this list can appear in any order. A particular identification domain
(CarrierIdentifier@domain attribute value) must not appear more than once in a ShipControl
element. The identification provided by all elements of the CarrierIdentifier list must
correspond to the same company.

Route Element

If present, Route elements must be in the order the shipment will travel.

Contact Element

The most common Contact roles in this element are:

Do not use a “shipTo“ role in this element because a Contact with role "shipTo" would
always duplicate information in the following ShipControl element or that role in the
ShipNoticeHeader. Control passes from one carrier to another at a particular location and
estimated time.

Role Meaning

carrierCorporate Details the contact information the supplier has about the carrier
organization.

shipFrom A Contact element with role "shipFrom" must appear in all
ShipControl elements after the first. This role must not appear in the
first ShipControl element because it would duplicate that role in the
overall ShipNoticeHeader element.

ShipNoticeRequest Chapter 8 Later Status Changes

154 cXML User’s Guide November, 2001

List the elements in Contact in any order. A Contact role attribute value must not appear
more than once within a ShipControl element.

Comments Element

The Comments element can contain additional information about the shipment while
under the control of this carrier. In the context of the ShipControl element, that
information must be common to all contained routes or made clear which Route is
affected. All such data must be intended for human use.

Extrinsic Element

Alternately, the Extrinsic element list can be used to insert additional data about this
carrier or their period of responsibility for application consumption. These elements
can include pre-defined keywords and values affecting workflow in the receiving
system.

Elements in the Extrinsic list can appear in any order. An Extrinsic name attribute value
must not appear more than once within a ShipControl element. The same type must not
be mentioned both in this list and in the overall ShipNoticeHeader element. The
ShipNoticeHeader must not contain a default extrinsic value overridden at this lower
level.

startDate Attribute

Specifies the date and time this shipment started this part of the route. Required for all
ShipControl elements after the first. This attribute must not appear in the first ShipControl
element because it would duplicate the ShipNoticeHeader’s shipmentDate attribute.

Route Element

Specifies how the shipment will travel on this segment. If two ShipmentIdentifier values
are present, the second defines the end of a contiguous and inclusive range of
numbers that appear on the shipment. Route can contain a Contact element.

The only Contact role should be "carrierCorporate", which details the contact information
the supplier has about the carrier organization, "shipFrom", and "shipTo".

Each carrier within a segment controlled by a third-party logistics provider provides
tracking information to that provider externally. The ShipNoticeRequest includes
tracking information at the ShipControl level only.

cXML User’s Guide 155

8
 L

at
er

 S
ta

tu
s

C
h

an
g

es
8

 L
at

er
 S

ta
tu

s
C

h
an

g
es

8
 L

at
er

 S
ta

tu
s

C
h

an
g

es
8

 L
at

er
 S

ta
tu

s
C

h
an

g
es

8
 L

at
er

 S
ta

tu
s

C
h

an
g

es
8

 L
at

er
 S

ta
tu

s
C

h
an

g
es

Chapter 8 Later Status Changes ShipNoticeRequest

A Route element can describe only a single mode of travel. If described at all, each
mode of a multi-modal route must be described by a separate Route element. It is not
necessary to describe every leg of the journey to the buyer’s ShipTo location.

The "carrierCorporate" role is relevant at this level only when a third party is providing
tracking information across multiple carriers. A Contact element with role "shipFrom"
must appear in all Route elements after the first. Route elements are not required to
describe the entire travel under a specific carrier’s control. They can describe a
discontinuous stream of events, starting and ending at different times and locations.

Elements in the Contact list can appear in any order. A Contact role attribute value must
not appear more than once within a Route element.

method Attribute

Identifies the transportation type code.

Because this shipment might travel a multi-modal route, one with multiple segments,
this attribute has no default.

startDate Attribute

Specifies the date and time this shipment started this part of the trip. Required in all
Route elements after the first.

endDate Attribute

Specifies the date and time this shipment ended this part of the trip. Must come after
startDate. If any Route elements follow, the startDate of that element must not precede
this value.

CarrierIdentitifier Element

Identifies the carrier that will transport this shipment. There is one attribute, called
domain.

Value Description

air Transportation by flight

motor Transportation by land motor craft, common carrier

rail Transportation by rail

ship Transportation by boat; ocean

ShipNoticeRequest Chapter 8 Later Status Changes

156 cXML User’s Guide November, 2001

domain Attribute

Specifies the domain in which CarrierIdentifier value has meaning. For example,
“SCAC” for Standard Carrier Alpha Code, or the legal company name.

Recognized domains include the following:

ShipmentIdentifier Element

An identifier defined by the carrier that appears on the shipment that can be used to
obtain additional detail about the shipment. Has meaning in the domain described by
the CarrierIdentifier values in the containing Route element.

Essentially, this is a tracking number. Different carriers have different names for
shipment identifiers. This is commonly called a way bill number, a pro number, and
also a bill of lading. They all represent tracking numbers.

PackageIdentification Element

Specifies the identifiers that appear on the containers, skids, boxes, or packages that
constitute the shipment. The range of numbers described is inclusive at both
extremes.

rangeBegin Attribute

Specifies the earliest number that appears on the separate elements in this shipment.

Value Meaning

companyName The legal name for this company. In some cases, this can also be
provided in a Contact element with role "carrierCorporate". That option
should be reserved for cases in which additional detail about the carrier
appears in this element.

SCAC Standard Carrier Alpha Code. http://users.erols.com/nmfta/Codes.htm

IATA International Air Transport Association. http://www.iata.org

AAR Association of American Railroads. http://www.aar.org

UIC International Union of Railways. http://www.uic.asso.fr

EAN European Article Numbering. http://www.ean-ucc.org

DUNS Dun and Bradstreet’s Data Universal Numbering System. http://
www.dnb.com/dnbhome.htm

cXML User’s Guide 157

8
 L

at
er

 S
ta

tu
s

C
h

an
g

es
8

 L
at

er
 S

ta
tu

s
C

h
an

g
es

8
 L

at
er

 S
ta

tu
s

C
h

an
g

es
8

 L
at

er
 S

ta
tu

s
C

h
an

g
es

8
 L

at
er

 S
ta

tu
s

C
h

an
g

es
8

 L
at

er
 S

ta
tu

s
C

h
an

g
es

Chapter 8 Later Status Changes ShipNoticeRequest

rangeEnd Attribute

Specifies the highest number that appears on the separate elements in this shipment.
Must be greater than or equal to rangeBegin.

ShipNoticePortion Element

Contains purchase order and item information. Specifies what will be in the shipment.
It contains three elements, OrderReference, ShipNoticeItem, Contact, Comments, and Extrinsic.
All but OrderReference are optional. It contains two attributes: quantity and lineNumber.

OrderReference Element

A particular OrderRequest specified in the OrderReference element must be mentioned in
at most one ShipNoticePortion element. While multiple shipments can be sent for one
order, a ship notice must mention each order only once.

If a ShipNoticePortion element contains no ShipNoticeItem elements, the entire referenced
order is included in the shipment. This simplifying option prevents inclusion of
hazard and packaging information.

Contact Element

Any Contact elements provided at this level describe contacts specific to this portion of
the order. The ShipNoticeHeader description mentions roles appropriate at this level as
well, though shipFrom, shipTo, buyerCorporate, and supplierCorporate information should
not vary at this level. A particular Contact role must not appear in both the
ShipNoticePortion and ShipNoticeHeader elements. Therefore, roles such as
“technicalSupport”, “customerService”, and “sales” are most appropriate within the
ShipNoticePortion.

Elements in the Contact list can appear in any order. A Contact role attribute value must
not appear more than once within a ShipNoticePortion element.

Comments Element

The Comments element can contain additional information about the order in this
shipment. In this context (the ShipNoticePortion element), that information must be
common to all contained items or make it clear which ShipNoticeItem is affected. All
such data must be intended for human use.

ShipNoticeRequest Chapter 8 Later Status Changes

158 cXML User’s Guide November, 2001

Extrinsic Element

Alternately, the Extrinsic element list can be used to insert additional data about this
order for application consumption. These elements can include pre-defined keywords
and values affecting workflow in the receiving system.

Elements in the Extrinsic list can appear in any order. An Extrinsic name attribute value
must not appear more than once within a ShipNoticePortion element. A type must not be
mentioned both in this list and in the overall ShipNoticeHeader element. The
ShipNoticeHeader must not contain a default extrinsic value overridden at this lower
level.

ShipNoticeItem Element

The portion of a specific line item that is part of this shipment. Each line item from an
order must be mentioned in at most one ShipNoticeItem element. ShipNoticeItem contains
three elements: UnitOfMeasure (see page 47), Packaging, and Hazard.

Elements in the Hazard list can appear in any order. The same Hazard should not be
listed more than once in a ShipNoticeItem. Each Hazard listed at this level (in a
ShipNoticeItem element) must apply to this specific line item. A ShipNoticeRequest for
a single line item should not include Hazard elements in the ShipNoticeItem element.

quantity Attribute

Quantity specifies how many items were shipped. Expressed in units given in the
UnitOfMeasure element.

lineNumber Attribute

Position, counting from 1, of the item in an order. Matches the corresponding line
item, ItemOut, in the document referenced by the OrderReference element.

Packaging Element

Details about the packaging of this line item. The dimensions mentioned in the
Dimension element list can appear in any order. The Packaging element contains one or
more PackagingCode elements and optional Dimension element (see page 159). A
particular Dimension type attribute value must not appear more than once in a Packaging
element.

cXML User’s Guide 159

8
 L

at
er

 S
ta

tu
s

C
h

an
g

es
8

 L
at

er
 S

ta
tu

s
C

h
an

g
es

8
 L

at
er

 S
ta

tu
s

C
h

an
g

es
8

 L
at

er
 S

ta
tu

s
C

h
an

g
es

8
 L

at
er

 S
ta

tu
s

C
h

an
g

es
8

 L
at

er
 S

ta
tu

s
C

h
an

g
es

Chapter 8 Later Status Changes ShipNoticeRequest

PackagingCode Element

Specifies one language-specific code for the packaging of the item. Values such as
"pallet", "skid" and "truck load" might be appropriate for an English-based locale. The
xml:lang attribute specifies the language or locale in which the PackagingCode content is
written.

Dimension Element

Specifies a single dimension for the packaging of the item.

• quantity attribute

Specifies the size in this dimension. Expressed in the units given in the
UnitOfMeasure element.

• type attribute

Type of dimension. Supported values include:

Hazard Element

The Hazard element provides a textual description and optional codes about hazards
inherent in both an item and an overall shipment. A hazard for an entire shipment can
be due to either identical hazards for all items or to hazards inherent in shipping the
various products together. It can also include detailed handling requirements. There
are two elements: Description, and Classification. Classification is optional and can occur
more than once.

The Description element list, if provided, should include detailed handling
requirements. Elements in this list can appear in any order. A description locale
specified by the xml:lang attribute must not appear more than once. When more than
one Description element is present, each must contain translations of a common
description.

Classification elements can appear in any order. A Classification domain attribute must not
appear more than once in a Hazard element.

Value Meaning

length The length of the packaging.

width The width of the packaging.

height The height of the packaging.

weight The weight of the packaging.

volume The volume of the packaging

ShipNoticeRequest Chapter 8 Later Status Changes

160 cXML User’s Guide November, 2001

All listed Classification elements and the Description, if provided, must relate to a single
hazard. Additional hazards must use separate Hazard elements.

The following Classification domain values are expected in this context:

OrderReference Element

The OrderReference element refers to a prior OrderRequest document. It contains a
DocumentReference element.

orderID Attribute

Specifies the buyer system orderID for the ship notice, that is, the PO number. When
used, it must be copied directly from the referenced OrderRequest document’s
OrderRequestHeader element.

orderDate Attribute

Specifies the date and time the Order Request was created. The date format is yyyy-
mm-dd per international ISO standard 8601.

Value Meaning

UNDG United Nations Dangerous Goods

IMDG International Marine Organization Dangerous Goods

NAHG North American Hazardous Goods

cXML User’s Guide 161

9
 In

vo
ic

es
9

 In
vo

ic
es

9
 In

vo
ic

es
9

 In
vo

ic
es

9
 In

vo
ic

es
9

 In
vo

ic
es

Chapter 9
Invoices

The cXML InvoiceDetail transaction enables suppliers to send invoices to buying
organizations or marketplaces. This transaction supports invoice details for a wide
variety of business scenarios, including standard invoices, credit memos, debit
memos, and receipts.

This chapter discusses the InvoiceDetail transaction in terms of:

• Overview of Invoicing

• InvoiceDetailRequest

• Example Invoices

• Response

• Invoice Status Update

Overview of Invoicing

Suppliers use cXML invoices to bill buying organizations or marketplaces for
provided products or services. Invoices can be generated against any portion of any
line items from single or multiple purchase orders. The InvoiceDetail transaction
supports cancel invoices, credit memos, debit memos, and receipts.

Invoices describe purchase orders, line items, partners involved, accounting
distribution, payment terms, discounts, shipping and special handling, taxes, deposit
and prepayment, and remittance information.

Suppliers send invoices to commerce network hubs. Commerce network hubs route
invoices to the buying organization by either querying the buying organization’s
ProfileResponse or by looking up routing information in the buying organization’s
network account.

Overview of Invoicing Chapter 9 Invoices

162 cXML User’s Guide November, 2001

The cXML InvoiceDetailRequest document represents an invoice. After a receiving
system accepts an invoice document, it responds with a generic cXML Response.

After buying organizations begin processing invoices, they send StatusUpdateRequest
documents to notify the commerce network hub about their reconciliation progress.
The commerce network hub can forward these documents to suppliers.

Early InvoiceRequest Document

Early cXML support for invoicing was provided by the InvoiceRequest document,
which contained less detail than InvoiceDetailRequest and did not support line item or
summary invoices.

InvoiceRequest will be deprecated in the future; new cXML invoice projects should
implement InvoiceDetailRequest.

Debit and Credit Amounts

In invoices, positive amounts are debits the buying organization owes the supplier;
negative amounts are credits issued by the supplier to the buying organization. For
example, the supplier can specify a SubtotalAmount of -50 USD to issue a credit of fifty
US dollars to the buying organization. Debit can be used in both standard invoices
and debit memos. Credit can be used in both standard invoices and credit memos.

For Pcard-enabled purchase orders, suppliers should request payment by using the
request-to-pay functionality provided by ConfirmationRequest documents (for more
information, see “ConfirmationRequest” on page 133.) Suppliers should not use
invoice documents in this case to request payment, but they can use them as
information-only receipts.

Shipping Information

Invoices can include shipping information such as shipping charges, dates, from/to
addresses, and carrier IDs. Ones of the reasons invoices support shipping information
is because it can affect the final prices and taxes for orders shipped internationally.

The shipping information in invoices is not meant to be a substitute for sending
ShipNoticeRequest documents.

Types of Invoices

InvoiceDetailRequest has the features and flexibility to support most business scenarios.

cXML User’s Guide 163

9
 In

vo
ic

es
9

 In
vo

ic
es

9
 In

vo
ic

es
9

 In
vo

ic
es

9
 In

vo
ic

es
9

 In
vo

ic
es

Chapter 9 Invoices Overview of Invoicing

Individual and Summary Invoices

cXML supports both individual and summary invoices:

Invoice Level

cXML supports both header and detailed invoices:

Invoice Purpose

Use the InvoiceDetailRequestHeader attributes to specify the purpose of the invoice.

Invoice Category Description

Individual Invoice Applies against a single purchase order.

Summary Invoice Applies against multiple purchase orders.

Invoice Level Description

Header Invoice Applies against the entirety of one or more purchase orders,
without describing their line items.

Specify isHeaderInvoice="yes" and use
InvoiceDetailHeaderOrder elements, which do not contain line-
item information.

Detailed Invoice (Line-item level invoice) Applies against specific line items from
one or more purchase orders.

Leave out isHeaderInvoice and use InvoiceDetailOrder elements,
which contain line-item information.

Invoice Purpose Description

Standard Invoice Request for payment after providing products or services.

Specify purpose="standard" and operation="new".

Credit Memo Specifies credit to a buying organization.

Specify purpose="creditMemo" and operation="new". Must be a
header invoice. Amounts must be negative.

Debit Memo Specifies debit to a buying organization.

Specify purpose="debitMemo" and operation="new". Must be a
header invoice. Amounts must be positive.

Information Only Provides a record of charges, similar to a receipt. No action is
expected.

Specify isInformationOnly="yes" and operation="new".

Cancel Invoice Cancels a previously sent invoice.

Specify operation="delete".

InvoiceDetailRequest Chapter 9 Invoices

164 cXML User’s Guide November, 2001

Invoice DTD

The cXML standard uses multiple DTDs to optimize the performance of validating
parsers. The InvoiceDetail transaction is defined in a separate DTD named
InvoiceDetail.dtd, available at:

http://xml.cXML.org/schemas/cXML/<version>/InvoiceDetail.dtd

InvoiceDetailRequest

InvoiceDetailRequest documents represent invoices.

The structure of the InvoiceDetailRequest document is:

<Request>
<InvoiceDetailRequest>

<InvoiceDetailRequestHeader>
header information

</InvoiceDetailRequestHeader>
<InvoiceDetailHeaderOrder>

order-level invoice information
</InvoiceDetailHeaderOrder>
. . .

or
<InvoiceDetailOrder>

detailed line-item information
</InvoiceDetailOrder
. . .
<InvoiceDetailSummary>

invoice summary
</InvoiceDetailSummary>

</InvoiceDetailRequest>
</Request>

InvoiceDetailOrder elements are for detailed (line-item level) invoices and
InvoiceDetailHeaderOrder elements are for header invoices. Invoices must not contain
both types of elements. Both types of elements contain invoice lines.

All invoice line level amounts must add up to the total specified in
InvoiceDetailSummary.

cXML User’s Guide 165

9
 In

vo
ic

es
9

 In
vo

ic
es

9
 In

vo
ic

es
9

 In
vo

ic
es

9
 In

vo
ic

es
9

 In
vo

ic
es

Chapter 9 Invoices InvoiceDetailRequest

InvoiceDetailRequestHeader

Defines header information that applies to the entire invoice.

InvoiceDetailHeader has the following attributes:

invoiceID A supplier-generated identifier for the Invoice. Identical to the
Invoice Number that appears at the top of a physical Invoice.

isInformationOnly Indicates whether the buying organization needs to take action:

yes — Invoice is for the buying organization's information only
(no action needs to be taken by the buying organization).

Not specified — (default) Invoice is functional. The buying
organization needs to take action upon receiving this document
(submit payment or accept credit).

purpose Purpose of the invoice:

standard — (default) A standard billing statement from the
supplier to the buying organization.

creditMemo — A credit memo for issuing credit to the buying
organization. isHeaderInvoice must be yes. Also, the element
InvoiceDetailSummary/DueAmount must be a negative
amount.

debitMemo — A debit memo for billing a balance owed by the
buying organization. isHeaderInvoice must be yes. Also, the
element InvoiceDetailSummary/DueAmount must be a positive
amount.

operation How this document is acting on the invoice:

new — (default) Creates a new invoice.

delete — Cancels an existing invoice. The PayloadID of the
existing invoice must be specified in a DocumentReference.

invoiceDate Date and time Invoice was created (should be earlier than the
cXML timestamp).

InvoiceDetailRequest Chapter 9 Invoices

166 cXML User’s Guide November, 2001

InvoiceDetailHeaderIndicator

Defines indicators that describe overall attributes of the invoice. By default, all
indicators are false.

InvoiceDetailHeaderIndicator has the following attributes:

InvoiceDetailLineIndicator

Indicates the presence of invoicing details at invoice line level (in InvoiceDetailItem or
InvoiceDetailOrderSummary). By default, all indicators are false.

If this element indicates that invoicing details exist at invoice line level, invoice lines
that do not provide such information are assumed to have values of zero, or “not
available” for that information.

InvoiceDetailLineIndicator has the following attributes:

isHeaderInvoice Category of the invoice:

yes — Header invoice. Invoice uses InvoiceDetailHeaderOrder,
which contains header level invoice information without item
details

Not specified — Detail invoice. Invoice uses
InvoiceDetailOrder, which contains item details.

isVatRecoverable yes — The entire invoice is VAT (Value Added Tax)-
recoverable.

isTaxInLine yes — Tax (Tax) is provided at invoice line level.

isSpecialHandlingInLine yes — Special handling
(InvoiceDetailLineSpecialHandling) is provided at
invoice line level.

isShippingInLine yes — Shipping (InvoiceDetailLineShipping) is provided
at invoice line level.

isDiscountInLine yes — Discount (InvoiceDetailDiscount) is provided at
invoice line level.

isAccountingInLine yes — Accounting distribution (Distribution) is provided
at invoice line level. If isHeaderInvoice is true, this
indicator must nor be specified, because Distribution is
available only at item level.

cXML User’s Guide 167

9
 In

vo
ic

es
9

 In
vo

ic
es

9
 In

vo
ic

es
9

 In
vo

ic
es

9
 In

vo
ic

es
9

 In
vo

ic
es

Chapter 9 Invoices InvoiceDetailRequest

InvoicePartner

Defines a party involved in invoicing, including the issuer of the invoice and the
person sold to.

Invoices support InvoicePartner because the Contact element alone does not support the
wide variety of reference identifiers involved in invoicing.

Do not use this element to specify ship from or ship to; instead, use
InvoiceDetailShipping.

Contact

Contact information of the invoice partner. Allowed contact roles are issuerOfInvoice,
soldTo, billTo, remitTo.

The from role has been deprecated.

IdReference

Defines an ID reference. The identifier/domain pair should be unique within each
trading partner relationship (a buying organization and a supplier).

IdReference has the following attributes:

 Creator

The creator of the IdReference (for example, the name of the bank, shipper, or other
organization).

 Description

Textual description of the IdReference for human readability.

identifier The unique identifier of the IdReference within the domain.

domain The domain of the IdReference. One of the following values:

accountID bankRoutingID accountPayableID
federalTaxID stateTaxID accountReceivableID
provincialTaxID vatID gstID
taxExemptionIS

Values can be application-specific, such as 1099ID or
courtRegisterID.

supplierTaxID has been deprecated and is treated as
federalTaxID.

InvoiceDetailRequest Chapter 9 Invoices

168 cXML User’s Guide November, 2001

DocumentReference

Reference to an earlier InvoiceDetailRequest document. If operation="delete",
DocumentReference is required and it must reference the original InvoiceDetailRequest
document (with operation="new"). In all other situations, DocumentReference is optional.

InvoiceDetailOrder

Defines the invoice information of an order with item details, used only when
isHeaderInvoice is false (not specified). In this case, an invoice line is an InvoiceDetailItem
and its invoice line number is specified by the invoiceLineNumber attribute.

InvoiceDetailHeaderOrder

Defines the header invoice information of a purchase order, without item details, used
only when isHeaderInvoice="yes".

In this case, an invoice line is an InvoiceDetailHeaderOrder and its invoice line number is
specified by the invoiceLineNumber attribute.

InvoiceDetailOrderInfo

Defines information related to the corresponding purchase order, including order
reference and related master agreement reference, if any. Applications use this
information to match the invoice with the corresponding purchase order or master
agreement. The more definitive the reference, the more likely applications can
successfully perform document matching.

InvoiceDetailOrderInfo can contain several possible elements for refering to documents.
OrderReference is strongly recommended, but if that information is not available, use
MasterAgreementReference, MasterAgreementIDInfo, OrderIDInfo, or SupplierOrderInfo, in that
order.

OrderReference

The reference to the purchase order being invoiced.

MasterAgreementReference

Defines a reference to an earlier MasterAgreementRequest document. This element
identifies the master agreement of the release order to be invoiced.

cXML User’s Guide 169

9
 In

vo
ic

es
9

 In
vo

ic
es

9
 In

vo
ic

es
9

 In
vo

ic
es

9
 In

vo
ic

es
9

 In
vo

ic
es

Chapter 9 Invoices InvoiceDetailRequest

MasterAgreementReference has the following attributes:

MasterAgreementIDInfo

Defines the buying organization’s ID number of the corresponding master agreement
if the order being invoiced is a release. This element identifies the master agreement
of the contract or release order to be invoiced.

MasterAgreementIDInfo has the following attributes:

OrderIDInfo

Identifies a purchase order known to the buying organization.

OrderIDInfo has the following attributes:

SupplierOrderInfo

Defines supplier sales order information related to a purchase order.

SupplierOrderInfo has the following attribute:

InvoiceDetailPaymentTerm

Defines a payment term offering a discount or a penalty.

agreementID The ID number of a master agreement known to the buying
organization’s system.

agreementDate The date and time the master agreement request was created.

agreementID The ID number of a master agreement known to the buying
organization’s system.

agreementDate The date and time the master agreement request was created.

orderID The ID of a purchase order (purchase order number) known to
the buying organization.

orderDate The date and time the purchase order was created.

orderID Supplier sales order ID of the purchase order.

InvoiceDetailRequest Chapter 9 Invoices

170 cXML User’s Guide November, 2001

InvoiceDetailPaymentTerm has the following attributes:

InvoiceDetailOrderSummary

Defines header level summary info of an order in an invoice line.

InvoiceDetailOrderSummary has the following attribute:

SubtotalAmount

The invoice subtotal of the this order.

Tax

The tax for this order. Ignored if isTaxInLine is false (not specified).

InvoiceDetailLineSpecialHandling

The special handling information for this order. Ignored if isSpecialHandlingInLine is
false (not specified).

InvoiceDetailLineShipping

The shipping information for this order. Ignored if isShippingInLine is false (not
specified).

GrossAmount

The SubtotalAmount plus taxes, shipping, and special handling charges.

InvoiceDetailDiscount

The discount for this order. Ignored if isDiscountInLine is false (not specified).

payInNumberOfDays The number of days after invoice date to pay in full.

percentageRate Discount or penalty percentage that applies if paid within the
time specified by payInNumberOfDays. Positive rates
denote discounts and negative rates denote penalties. Do
not include a percentage sign (%) or divide by 100; for
example “2” means 2%.

invoiceLineNumber Supplier defined ID for the current invoice line. It should be
unique across all invoice lines of the same
InvoiceDetailRequest.

cXML User’s Guide 171

9
 In

vo
ic

es
9

 In
vo

ic
es

9
 In

vo
ic

es
9

 In
vo

ic
es

9
 In

vo
ic

es
9

 In
vo

ic
es

Chapter 9 Invoices InvoiceDetailRequest

NetAmount

The GrossAmount minus discount amount.

Comments

Textual comments for the line item.

Extrinsic

Additional information related to the line item. Should not duplicate anything in
InvoiceDetailOrderSummary or InvoiceDetailHeaderOrder.

InvoiceDetailLineShipping

Defines shipping information of the current invoice line.

InvoiceDetailShipping

The shipping details.

Money

The shipping amount.

InvoiceDetailItem

Defines an invoice line item.

The buying organization might require information provided here to match the
information provided in the purchase order. For example, the buying organization
might require there to be no change in the UnitOfMeasure value.

InvoiceDetailItem has the following attributes:

UnitOfMeasure

The line item’s unit of measure.

invoiceLineNumber Supplier defined ID for the current invoice line. Should be
unique across all invoice lines within an invoice.

quantity The quantity being invoiced for the line item.

InvoiceDetailRequest Chapter 9 Invoices

172 cXML User’s Guide November, 2001

UnitPrice

The unit price.

SubtotalAmount

The invoice subtotal of the current line item: UnitPrice times quantity.

Tax

The tax for the line item. Ignored if isTaxInLine is false (not specified).

InvoiceDetailLineSpecialHandling

The special handling information for the line item. Ignored if isSpecialHandlingInLine is
false (not specified).

InvoiceDetailLineShipping

The shipping information for the line item. Ignored if isShippingInLine is false (not
specified).

GrossAmount

The SubtotalAmount plus taxes, shipping, and special handling charges for the line item.

InvoiceDetailDiscount

The discount for the line item. Ignored if isDiscountInLine is false (not specified).

NetAmount

The GrossAmount minus discounts for the line item.

Distribution

Accounting information generated by the buying organization, such as cost center or
general ledger category. This information should be copied from the OrderRequest.
Ignored if isAccountingInLine is false (not specified).

Comments

Textual comments for the line item.

cXML User’s Guide 173

9
 In

vo
ic

es
9

 In
vo

ic
es

9
 In

vo
ic

es
9

 In
vo

ic
es

9
 In

vo
ic

es
9

 In
vo

ic
es

Chapter 9 Invoices InvoiceDetailRequest

Extrinsic

Additional information related to the line item. Should not duplicate anything in
InvoiceDetailItem or InvoiceDetailOrder.

InvoiceDetailItemReference

Defines all references related to an invoice line item.

InvoiceDetailItemReference has the following attributes:

ItemID

The supplier part number of current line item, from the OrderRequest.

Description

The line item description, from the OrderRequest.

ManufacturerPartID

The manufacturer part number.

ManufacturerName

The name of the manufacturer.

Country

The country of origin of the product listed in the line item.

lineNumber The purchase order line number of current line item, copied
from the OrderRequest.

serialNumber The product serial number for the current line item.

InvoiceDetailRequest Chapter 9 Invoices

174 cXML User’s Guide November, 2001

InvoiceDetailDiscount

Defines discount or penalty applied.

InvoiceDetailDiscount has the following attribute:

InvoiceDetailShipping

The shipping details of the invoice.

InvoiceDetailShipping has the following attribute:

Contact

The ship from and ship to addresses. Both ship from and ship to must be specified.
Allowed Contact roles are shipFrom, shipTo, and carrierCorporate.

CarrierIdentifier

This list can include multiple identifiers for the same carrier. Elements in this list can
appear in any order. An identification domain (CarrierIdentifier domain) must not appear
more than once in an InvoiceDetailShipping element. All identification provided by
elements of one CarrierIdentifier list must correspond to the same company.

ShipmentIdentifier

The tracking number of this shipment.

DocumentReference

The reference to an earlier ShipNoticeRequest document.

percentageRate Discount or penalty rate percentage. Positive rates denote
discounts and negative rates denote penalties. Do not include
a percentage sign (%) or divide by 100; for example “2” means
2%.

shippingDate The date and time this shipment leaves the supplier.

cXML User’s Guide 175

9
 In

vo
ic

es
9

 In
vo

ic
es

9
 In

vo
ic

es
9

 In
vo

ic
es

9
 In

vo
ic

es
9

 In
vo

ic
es

Chapter 9 Invoices InvoiceDetailRequest

InvoiceDetailSummary

Defines the summary information of an invoice.

SubtotalAmount

Sum of line item quantities multiplied by unit price.

Tax

Total tax information.

SpecialHandlingAmount

Total special handling charge.

ShippingAmount

Total shipping charge.

InvoiceDetailDiscount

The total discount applied in the invoice. Its percentageRate attribute will be ignored if
isDiscountInLine="yes".

GrossAmount

Sum of subtotal, taxes, special handling charges, and shipping charges, before
discounts.

NetAmount

Total GrossAmount minus discounts.

DepositAmount

Total deposit or prepayment amount.

DueAmount

Total amount due and payable: NetAmount minus DepositAmount. If purpose="creditMemo",
this amount must be negative. If purpose="debitMemo", this amount must be positive.

Example Invoices Chapter 9 Invoices

176 cXML User’s Guide November, 2001

Example Invoices

The following examples illustrate several types of invoices.

• Standard Header Invoice

• Standard Detail Invoice

• Marketplace Invoice

Standard Header Invoice

This example shows a header invoice against a single purchase order.

<?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE cXML SYSTEM "http://
xml.cXML.org/schemas/cXML/1.2.007/InvoiceDetail.dtd">
<cXML timestamp="2001-10-10T16:23:01-07:00" payloadID="Oct102001_0447pm">

<Header>
<From>

<Credential domain="AribaNetworkUserID">
<Identity>jack@supplierorg.com</Identity>

</Credential>
</From>
<To>

<Credential domain="AribaNetworkUserID">
<Identity>jill@buyerorg.com</Identity>

</Credential>
</To>
<Sender>

<Credential domain="AribaNetworkUserID">
<Identity>jack@supplierorg.com</Identity>
<SharedSecret>abracadabra</SharedSecret>

</Credential>
<UserAgent>Supplier’s Super Invoice Generator</UserAgent>

</Sender>
</Header>
<Request>

<InvoiceDetailRequest>
<InvoiceDetailRequestHeader invoiceDate="2001-10-09T00:00:00-07:00"

invoiceID="Oct102001_0447pm" purpose="standard" operation="new">
<InvoiceDetailHeaderIndicator isHeaderInvoice="yes" />
<InvoiceDetailLineIndicator isTaxInLine="yes" isShippingInLine="yes"

isSpecialHandlingInLine="yes" isDiscountInLine="yes" />
<InvoicePartner>

<Contact role="billTo">
<Name xml:lang="en-US">Buyer Headquarters</Name>
<PostalAddress>

<Street>111 Main Street</Street>

cXML User’s Guide 177

9
 In

vo
ic

es
9

 In
vo

ic
es

9
 In

vo
ic

es
9

 In
vo

ic
es

9
 In

vo
ic

es
9

 In
vo

ic
es

Chapter 9 Invoices Example Invoices

<City>Anytown</City>
<State>CA</State>
<PostalCode>94089</PostalCode>
<Country isoCountryCode="US">United States</Country>

</PostalAddress>
</Contact>

</InvoicePartner>
<InvoicePartner>

<Contact role="remitTo">
<Name xml:lang="en-US">Supplier Accts. Receivable</Name>
<PostalAddress>

<Street>One Bank Avenue</Street>
<City>Any City</City>
<State>CA</State>
<PostalCode>94087</PostalCode>
<Country isoCountryCode="US">United States</Country>

</PostalAddress>
</Contact>
<IdReference identifier="123456789" domain="bankRoutingID" />
<IdReference identifier="3456" domain="accountID" />

</InvoicePartner>
<Comments xml:lang="en-US">This is an invoice for DO789</Comments>

</InvoiceDetailRequestHeader>
<InvoiceDetailHeaderOrder>

<InvoiceDetailOrderInfo>
<OrderReference>

<DocumentReference payloadID="99576652.982.090.136" />
</OrderReference>

</InvoiceDetailOrderInfo>
<InvoiceDetailOrderSummary invoiceLineNumber="1">

<SubtotalAmount>
<Money currency="USD">5000.00</Money>

</SubtotalAmount>
<Tax>

<Money currency="USD">500.00</Money>
<Description xml:lang="en-US">State Tax</Description>

</Tax>
<InvoiceDetailLineSpecialHandling>

<Money currency="USD">110.00</Money>
</InvoiceDetailLineSpecialHandling>
<InvoiceDetailLineShipping>

<InvoiceDetailShipping>
<Contact role="shipFrom" addressID="1000487">

<Name xml:lang="en">Main Shipping Dock</Name>
<PostalAddress name="default">

<Street>15 Oak Road</Street>
<City>Bigtown</City>
<State>CA</State>
<PostalCode>95032</PostalCode>
<Country isoCountryCode="US">United States</Country>

Example Invoices Chapter 9 Invoices

178 cXML User’s Guide November, 2001

</PostalAddress>
<Email name="default">shipper@supplierorg.com</Email>
<Phone name="work">

<TelephoneNumber>
<CountryCode isoCountryCode="US">1</CountryCode>
<AreaOrCityCode>888</AreaOrCityCode>
<Number>1234567</Number>

</TelephoneNumber>
</Phone>

</Contact>
<Contact role="shipTo" addressID="1000487">

<Name xml:lang="en">Main Receiving</Name>
<PostalAddress name="default">

<DeliverTo>Jason Lynch</DeliverTo>
<Street>77 Nowhere Street</Street>
<City>Industrial Town</City>
<State>CA</State>
<PostalCode>95035</PostalCode>
<Country isoCountryCode="US">United States</Country>

</PostalAddress>
<Email name="default">jlynch@buyerorg.com</Email>
<Phone name="work">

<TelephoneNumber>
<CountryCode isoCountryCode="US">1</CountryCode>
<AreaOrCityCode>999</AreaOrCityCode>
<Number>3582000</Number>

</TelephoneNumber>
</Phone>

</Contact>
</InvoiceDetailShipping>
<Money currency="USD">200.00</Money>

</InvoiceDetailLineShipping>
<GrossAmount>

<Money currency="USD">5810.00</Money>
</GrossAmount>
<InvoiceDetailDiscount percentageRate="10">

<Money currency="USD">581.00</Money>
</InvoiceDetailDiscount>
<NetAmount>

<Money currency="USD">5229.00</Money>
</NetAmount>
<Comments>This a Standard Header Level Invoice</Comments>

</InvoiceDetailOrderSummary>
</InvoiceDetailHeaderOrder>
<InvoiceDetailSummary>

<SubtotalAmount>
<Money currency="USD">5000.00</Money>

</SubtotalAmount>
<Tax>

<Money currency="USD">500.00</Money>

cXML User’s Guide 179

9
 In

vo
ic

es
9

 In
vo

ic
es

9
 In

vo
ic

es
9

 In
vo

ic
es

9
 In

vo
ic

es
9

 In
vo

ic
es

Chapter 9 Invoices Example Invoices

<Description xml:lang="en-US">State Tax</Description>
</Tax>
<SpecialHandlingAmount>

<Money currency="USD">110.00</Money>
</SpecialHandlingAmount>
<ShippingAmount>

<Money currency="USD">200.00</Money>
</ShippingAmount>
<GrossAmount>

<Money currency="USD">5810.00</Money>
</GrossAmount>
<InvoiceDetailDiscount percentageRate="10">

<Money currency="USD">581.00</Money>
</InvoiceDetailDiscount>
<NetAmount>

<Money currency="USD">5229.00</Money>
</NetAmount>
<DepositAmount>

<Money currency="USD">1000.00</Money>
</DepositAmount>
<DueAmount>

<Money currency="USD">4229.00</Money>
</DueAmount>

</InvoiceDetailSummary>
</InvoiceDetailRequest>

</Request>
</cXML>

Standard Detail Invoice

This example shows a detail invoice for two line items in a single purchase order. It
contains payment terms that define discounts for early payment and penalties for late
payment. It also contains the buying organization’s accounting information copied
from the purchase order.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE cXML SYSTEM "http://xml.cXML.org/schemas/cXML/1.2.007/
InvoiceDetail.dtd">
<cXML version="1.0" payloadID="Oct102001_1204pm" timestamp="2001-04-
20T23:59:45-07:00">

<Header>
From, To, and Sender credentials

</Header>
<Request>

<InvoiceDetailRequest>
<InvoiceDetailRequestHeader invoiceID="Oct102001_1204pm"

purpose="standard" operation="new"
invoiceDate="2001-04-20T23:59:20-07:00">

<InvoiceDetailHeaderIndicator/>

Example Invoices Chapter 9 Invoices

180 cXML User’s Guide November, 2001

<InvoiceDetailLineIndicator isTaxInLine="yes” isShippingInLine="yes"
isAccountingInLine="yes"/>

<InvoicePartner>
Sell To contact information

</InvoicePartner>
<InvoicePartner>

Remit To contact information
</InvoicePartner>
<InvoiceDetailPaymentTerm payInNumberOfDays="10" percentageRate="10"/>
<InvoiceDetailPaymentTerm payInNumberOfDays="20" percentageRate="5"/>
<InvoiceDetailPaymentTerm payInNumberOfDays="30" percentageRate="0"/>
<InvoiceDetailPaymentTerm payInNumberOfDays="40" percentageRate="-5"/>
<InvoiceDetailPaymentTerm payInNumberOfDays="50" percentageRate="-9"/>

</InvoiceDetailRequestHeader>
<InvoiceDetailOrder>

<InvoiceDetailOrderInfo>
<OrderReference>

<DocumentReference payloadID="99576652.982.090.136"/>
</OrderReference>
<MasterAgreementReference>

<DocumentReference payloadID="99576652.980.000.423"/>
</MasterAgreementReference>
<SupplierOrderInfo orderID="DO1234"></SupplierOrderInfo>

</InvoiceDetailOrderInfo>
<InvoiceDetailItem invoiceLineNumber="1" quantity="1">

 <UnitOfMeasure>EA</UnitOfMeasure>
<UnitPrice><Money currency="USD">15.40</Money></UnitPrice>
<InvoiceDetailItemReference lineNumber="1">

<ItemID>
<SupplierPartID>TEX08134</SupplierPartID>

</ItemID>
<Description xml:lang="en">

Texas Instruments Superview Calculator - 12-Digit Print/Display
</Description>

</InvoiceDetailItemReference>
<SubtotalAmount>

<Money currency="USD">15.40</Money>
</SubtotalAmount>
<Tax>

<Money currency="USD">1.54</Money>
<Description xml:lang="en">total item tax</Description>
<TaxDetail purpose="tax" category="sales" percentageRate="8">

<TaxLocation xml:lang="en">CA</TaxLocation>
<TaxableAmount>

<Money currency="USD">15.40</Money>
</TaxableAmount>
<TaxAmount>

<Money currency="USD">1.23</Money>
</TaxAmount>

</TaxDetail>

cXML User’s Guide 181

9
 In

vo
ic

es
9

 In
vo

ic
es

9
 In

vo
ic

es
9

 In
vo

ic
es

9
 In

vo
ic

es
9

 In
vo

ic
es

Chapter 9 Invoices Example Invoices

<TaxDetail purpose="tax" category="sales" percentageRate="2">
<TaxLocation xml:lang="en">US</TaxLocation>
<TaxableAmount>

<Money currency="USD">15.40</Money>
</TaxableAmount>
<TaxAmount>

<Money currency="USD">0.31</Money>
</TaxAmount>

</TaxDetail>
</Tax>
<InvoiceDetailLineShipping>

<InvoiceDetailShipping>
Ship From and Ship To contact information

</InvoiceDetailShipping>
<Money currency="USD">2.00</Money>

</InvoiceDetailLineShipping>
<GrossAmount>

<Money currency="USD">18.94</Money>
</GrossAmount>
<NetAmount>

<Money currency="USD">18.94</Money>
</NetAmount>
<Distribution>

<Accounting name="Buyer assigned accounting code 15">
<AccountingSegment id="ABC123456789">

<Name xml:lang="en">Purchase</Name>
<Description xml:lang="en">Production Control</Description>

</AccountingSegment>
</Accounting>
<Charge>

<Money currency="USD">18.94</Money>
</Charge>

</Distribution>
<Distribution>

<Accounting name="Buyer assigned accounting code 16">
<AccountingSegment id="ABC000000001">

<Name xml:lang="en">Trade</Name>
<Description xml:lang="en">Misc (Expensed)</Description>

</AccountingSegment>
</Accounting>
<Charge>

<Money currency="USD">18.94</Money>
</Charge>

</Distribution>
</InvoiceDetailItem>
<InvoiceDetailItem invoiceLineNumber="2" quantity="1">

 <UnitOfMeasure>PK</UnitOfMeasure>
<UnitPrice><Money currency="USD">4.95</Money></UnitPrice>
<InvoiceDetailItemReference lineNumber="2">

<ItemID>

Example Invoices Chapter 9 Invoices

182 cXML User’s Guide November, 2001

<SupplierPartID>PENCIL123</SupplierPartID>
</ItemID>
<Description xml:lang="en">

One dozen wood #2 pencils with eraser
</Description>

</InvoiceDetailItemReference>
<SubtotalAmount>

<Money currency="USD">4.95</Money>
</SubtotalAmount>
<Tax>

<Money currency="USD">0.50</Money>
<Description xml:lang="en">total item tax</Description>
<TaxDetail purpose="tax" category="sales" percentageRate="8">

<TaxLocation xml:lang="en">CA</TaxLocation>
<TaxableAmount>

<Money currency="USD">0.40</Money>
</TaxableAmount>
<TaxAmount>

<Money currency="USD">4.95</Money>
</TaxAmount>

</TaxDetail>
<TaxDetail purpose="tax" category="sales" percentageRate="2">

<TaxLocation xml:lang="en">US</TaxLocation>
<TaxableAmount>

<Money currency="USD">4.95</Money>
</TaxableAmount>
<TaxAmount>

<Money currency="USD">0.10</Money>
</TaxAmount>

</TaxDetail>
</Tax>
<InvoiceDetailLineShipping>

<InvoiceDetailShipping>
Ship From and Ship To contact information

</InvoiceDetailShipping>
<Money currency="USD">1.00</Money>

</InvoiceDetailLineShipping>
<GrossAmount>

<Money currency="USD">6.45</Money>
</GrossAmount>
<NetAmount>

<Money currency="USD">6.45</Money>
</NetAmount>

</InvoiceDetailItem>
</InvoiceDetailOrder>
<InvoiceDetailSummary>

<SubtotalAmount>
<Money currency="USD">20.35</Money>

</SubtotalAmount>
<Tax>

cXML User’s Guide 183

9
 In

vo
ic

es
9

 In
vo

ic
es

9
 In

vo
ic

es
9

 In
vo

ic
es

9
 In

vo
ic

es
9

 In
vo

ic
es

Chapter 9 Invoices Example Invoices

<Money currency="USD">2.04</Money>
<Description xml:lang="en">total tax</Description>
<TaxDetail purpose="tax" category="sales" percentageRate="8">

<TaxLocation xml:lang="en">CA</TaxLocation>
<TaxableAmount>

<Money currency="USD">20.35</Money>
</TaxableAmount>
<TaxAmount>

<Money currency="USD">1.63</Money>
</TaxAmount>

</TaxDetail>
<TaxDetail purpose="tax" category="sales" percentageRate="2">

<TaxLocation xml:lang="en">US</TaxLocation>
<TaxableAmount>

<Money currency="USD">20.35</Money>
</TaxableAmount>
<TaxAmount>

<Money currency="USD">0.41</Money>
</TaxAmount>

</TaxDetail>
</Tax>
<ShippingAmount>

<Money currency="USD">3.00</Money>
</ShippingAmount>
<GrossAmount>

<Money currency="USD">25.39</Money>
</GrossAmount>
<NetAmount>

<Money currency="USD">25.39</Money>
</NetAmount>
<DueAmount>

<Money currency="USD">25.39</Money>
</DueAmount>

</InvoiceDetailSummary>
</InvoiceDetailRequest>

</Request>
</cXML>

Example Invoices Chapter 9 Invoices

184 cXML User’s Guide November, 2001

Marketplace Invoice

This example shows the header of an invoice sent to a marketplace. It illustrates how
to generate correct credentials for a marketplace.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE cXML SYSTEM "http://xml.cXML.org/schemas/cXML/1.2.007/
InvoiceDetail.dtd">
<cXML version="1.0" payloadID="123344-2001@foobar.supplierorg.com"

timestamp="2001-04-20T23:59:45-07:00">
<Header>

<From>
<!-- Supplier -->
<Credential domain="AribaNetworkUserId">

<Identity>chef@supplierorg.com</Identity>
</Credential>

</From>
<To>

<!-- Marketplace -->
<Credential domain="AribaNetworkUserId" type="marketplace">

<Identity>bigadmin@marketplace.org</Identity>
</Credential>
<!-- Marketplace Member Organization -->
<Credential domain="AribaNetworkUserId">

<Identity>admin@acme.com</Identity>
</Credential>

</To>
<Sender>

<!-- Supplier -->
<Credential domain="AribaNetworkUserId">

<Identity>chef@supplierorg.com</Identity>
<SharedSecret>abracadabra</SharedSecret>

</Credential>
<UserAgent>Our Nifty Invoice Generator V1.0</UserAgent>

</Sender>
</Header>
<Request>

<InvoiceDetailRequest>
.
.
.

cXML User’s Guide 185

9
 In

vo
ic

es
9

 In
vo

ic
es

9
 In

vo
ic

es
9

 In
vo

ic
es

9
 In

vo
ic

es
9

 In
vo

ic
es

Chapter 9 Invoices Response

Response

Immediately after receiving an invoice, the receiving system should respond with a
generic cXML Response document, for example:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE cXML SYSTEM "http://xml.cXML.org/schemas/cXML/1.2.007/
InvoiceDetail.dtd">
<cXML timestamp="2001-10-31T23:07:22-08:00" payloadID="1004598442900-
8367273815197467070@10.10.13.100">

<Response>
<Status code="201" text="Accepted">Acknowledged</Status>

</Response>
</cXML>

For a list of possible status codes, see “Status” on page 38.

Invoice Status Update

After buying organizations receive invoices, they can perform reconciliation to match
the charges within them to amounts within purchase orders or master agreements.
They can then set invoice status to indicate whether charges reconciled successfully.

Buying organizations update the status of invoices by sending StatusUpdateRequest
documents to commerce network hubs, which can forward them to suppliers.

StatusUpdateRequest documents for invoices contain InvoiceStatus elements. Invoice
status can be reconciled, rejected, or paid, which refers to the action taken by the buying
organization on the invoice:

reconciled The invoice reconciled. The amounts in the invoice have not yet
been paid.

rejected The invoice failed to reconcile. The buying organization is rejecting
the invoice. The Comments element should contain free text
explaining why the invoice was rejected, and the actions the
supplier should take. The supplier can resubmit a corrected invoice
(a new invoice document with a new invoice number).

paid The invoice amounts have been paid by the buying organization.

Invoice Status Update Chapter 9 Invoices

186 cXML User’s Guide November, 2001

The PartialAmount element enables buying organizations to specify different amounts
paid than the amounts specified in invoices. PartialAmount should not appear for
invoices that are paid in full. The existence of PartialAmount alerts the supplier to read
the Comments elements, which should explain the differences.

The DocumentReference within the StatusUpdateRequest must refer to the
InvoiceDetailRequest document. The Status element should have status code 200.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE cXML SYSTEM "http://xml.cXML.org/schemas/cXML/1.2.007/
InvoiceDetail.dtd">
<cXML timestamp="2001-09-05T16:34:28-07:00" payloadID="999732868377--
681956365911302107@10.11.128.161">

<Header>
<From>

<Credential domain="AribaNetworkUserId">
<Identity>jill@buyerorg.com</Identity>

</Credential>
</From>
<To>

<Credential domain="AribaNetworkUserId">
<Identity>jack@supplierorg.com</Identity>

</Credential>
</To>
<Sender>

<Credential domain="AribaNetworkUserId">
<Identity>jill@buyerorg.com</Identity>
<SharedSecret>abracadabra</SharedSecret>

</Credential>
<UserAgent>Procurement Application V1.0</UserAgent>

</Sender>
</Header>
<Request>

<StatusUpdateRequest>
<DocumentReference payloadID="Inv123"></DocumentReference>
<Status code="200" text=""></Status>
<InvoiceStatus type="paid">

<PartialAmount>
<Money currency="USD">10.99</Money>

</PartialAmount>
<Comments>This charge is paid, minus $2.00 due to missing items.</Comments>
</InvoiceStatus>

</StatusUpdateRequest>
</Request>

</cXML>

For more information about the StatusUpdate transaction, see “StatusUpdateRequest”
on page 129.

cXML User’s Guide 187

10
 C

at
al

o
g

s
10

 C
at

al
o

g
s

10
 C

at
al

o
g

s
10

 C
at

al
o

g
s

10
 C

at
al

o
g

s
10

 C
at

al
o

g
s

Chapter 10
Catalogs

Catalogs are files that convey product and service content to buying organizations.
Suppliers use them to describe the products and services they offer and their prices,
and they are the main communication channel from suppliers to their customers.

This chapter describes:

• Catalog Definitions

• Subscription Management Definitions

• Catalog Upload Transaction

Catalog Definitions

The cXML catalog definitions consist of three main elements: Supplier, Index, and
Contract. All three elements describe data intended for persistent or cached use within
a hub or a buying organization’s procurement system.

• Supplier—Contains basic data about the supplier, such as address, contact, and
ordering information.

• Index—Describes data about the supplier’s inventory of goods and services, such as
description, part numbers, and classification codes.

• Contract—Describes data about flexible aspects of the inventory negotiated between
the buyer and supplier, such as price.

Note that Index uses several sub-elements to describe line items in suppliers’
inventories. Suppliers can send either price information for caching within buyers’
systems or PunchOut information to enable buyers to punch-out to remote Websites
for pricing and other information.

Catalog Definitions Chapter 10 Catalogs

188 cXML User’s Guide November, 2001

These elements are unusual in cXML because they commonly appear as the top level
element in a compliant XML document. In fact, Index and Contract rarely appear
elsewhere in a cXML document.

Supplier

The Supplier element encapsulates a named supplier of goods or services. It must have
a Name element and a SupplierID element. Additionally, it describes optional address
and ordering information for the supplier:

Supplier has the following attributes:

The following example shows an outline of the Supplier element:

corporateURL
(optional)

URL for supplier’s Website.

storeFrontURL
(optional)

URL for Website for shopping or browsing.

Name

xml:lang

SupplierID

domain
value

Address

code

Supplier

corporateURL
storeFrontURL

+
*

Contact

SupplierLocation

OrderMethods

OrderMethodOrderTarget

Phone|Email|Fax|URL

OrderProtocol

+ ?

?

cXML User’s Guide 189

10
 C

at
al

o
g

s
10

 C
at

al
o

g
s

10
 C

at
al

o
g

s
10

 C
at

al
o

g
s

10
 C

at
al

o
g

s
10

 C
at

al
o

g
s

Chapter 10 Catalogs Catalog Definitions

<Supplier>
<Name xml:lang="en-US">Workchairs </Name>
<SupplierID domain="InternalSupplierID">29</SupplierID>
<SupplierID domain="DUNS">76554545</SupplierID>
<SupplierLocation>

<Address>
<Name xml:lang="en-US">Main Office</Name>
<PostalAddress>

…
</PostalAddress>

<Email>bobw@workchairs.com</Email>
<Phone name="Office">

…
</Phone>
<Fax name="Order">

…
</Fax>
<URL>http://www.workchairs.com/Support.htm</URL>
</Address>
<OrderMethods>

<OrderMethod>
<OrderTarget>

<URL>http://www.workchairs.com/cxmlorders</URL>
</OrderTarget>

</OrderMethod>
<Contact>

<Name xml:lang="en-US">Mr. Smart E. Pants</Name>
<Email>sepants@workchairs.com</Email>
<Phone name="Office">

 …
</Phone>

</Contact>
</OrderMethods>

</SupplierLocation>
</Supplier>

SupplierLocation

Some suppliers conduct business from more than one location. A SupplierLocation
element can be used for each location. This element also encapsulates how that
location does business or the ways that it can accept orders. A SupplierLocation element
contains an Address and a set of OrderMethods.

Catalog Definitions Chapter 10 Catalogs

190 cXML User’s Guide November, 2001

OrderMethods and OrderMethod

The OrderMethods element is a grouping of one or more OrderMethod elements for the
given SupplierLocation element. The position of OrderMethods in the list is significant—
the first element is the preferred ordering method, the second element is the next
priority, and so on in decreasing order of preference.

OrderMethod encapsulates ordering information in the form of an order target (such as
phone, fax, or URL) and an optional protocol to further clarify the ordering
expectations at the given target; for example, “cxml” for a URL target.

Index

This element is the root element for updating catalogs within buying organizations’
procurement systems.

An Index element is associated with a single supplier. The Index element allows for a
list of supplier IDs, where each ID is considered a synonym for that supplier.

The Index contains one or more IndexItem elements as well as an optional set of
SearchGroup elements for defining parametric search data for items. The IndexItem
element contains elements that add or delete from the buying organization’s cached
catalog. The following example shows an outline of an Index element:

<Index>
<SupplierID> ... </SupplierID>
...
<IndexItem>

<IndexItemAdd>
<ItemID>
...
</ItemID>
<ItemDetail>
...
</ItemDetail>
<IndexItemDetail>
...
</IndexItemDetail>

</IndexItemAdd>
</IndexItem>

<IndexItem>
<IndexItemDelete>

<ItemID>
...
</ItemID>

</IndexItemDelete>

cXML User’s Guide 191

10
 C

at
al

o
g

s
10

 C
at

al
o

g
s

10
 C

at
al

o
g

s
10

 C
at

al
o

g
s

10
 C

at
al

o
g

s
10

 C
at

al
o

g
s

Chapter 10 Catalogs Catalog Definitions

</IndexItem>
<IndexItem>

<IndexItemPunchout>
<ItemID>
...
</ItemID>
<PunchOutDetail>
...
</PunchOutDetail>

</IndexItemPunchout>
</IndexItem>

</Index>

IndexItem, IndexItemAdd, IndexItemDelete, and IndexItemPunchout

The IndexItem element is a container for the list of items in an index. It contains three
types of elements:

• IndexItemAdd—Inserts a new item or updates an existing item in the index. It
contains an ItemID element, an ItemDetail element, and an IndexItemDetail element.

• IndexItemDelete—Removes an item from the index. It contains an ItemID element
identifying the item.

• IndexItemPunchout—Inserts an item for initiating puchout to the supplier's Website. It
contains a PunchoutDetail element and an ItemID element. It is similar to an
IndexItemAdd element except that it does not require price information. Buyers
acquire item details in real-time from the supplier’s Website.

ItemID

The ItemID element uniquely identifies a supplier’s items. It contains a SupplierPartID
element and an optional SupplierPartAuxiliaryID element.

If SupplierPartID does not uniquely identify the item, the supplier should use
SupplierPartAuxiliaryID to specify an “auxiliary” key that identifies the part uniquely
when combined with the SupplierID and SupplierPartID. For example, a supplier might
use the same SupplierPartID for an item, but have a different price for units of “EA” and
“BOX”. In this case, a reasonable SupplierPartAuxiliaryID for the two items might be
“EA” and “BOX.”

SupplierPartAuxiliaryID could also be used as a supplier cookie, enabling the supplier to
refer to complex configuration or part data. It could contain all the data necessary for
the supplier to reconstruct what the item in question is in their computer system (a
basket or cookie of data that makes sense only to the supplier). For more information,
see “Buyer and Supplier Cookies” on page 88.

Catalog Definitions Chapter 10 Catalogs

192 cXML User’s Guide November, 2001

ItemDetail

ItemDetail contains detailed information about an item, or all the data that a user might
want to see about an item beyond the essentials represented in the ItemID. It must
contain a UnitPrice, a UnitOfMeasure, one or more Description elements, and a Classification,
and it can optionally contain a ManufacturerPartID, a ManufacturerName, a URL, and any
number of Extrinsic elements. For more information, see “ItemDetail” on page 99.

In the context of an IndexItemAdd, Extrinsic elements extend information about a
particular item. These extensions should not be transmitted to a supplier within an
OrderRequest, because the supplier can retrieve the same data using the unique ItemID.

IndexItemDetail

The IndexItemDetail element contains index-specific elements that define additional
aspects of an item, such as LeadTime, ExpirationDate, EffectiveDate, SearchGroupData, or
TerritoryAvailable.

PunchoutDetail

PunchoutDetail is similar to ItemDetail, except it requires only one or more Description
elements and a Classification. It can also contain URL, ManufacturerName,
ManufacturerPartID, ExpirationDate, EffectiveDate, SearchGroupData, TerritoryAvailable, and
Extrinsic elements. It does not contain pricing, lead time, or unit of measure
information.

Contract

A Contract element represents a contract between a supplier and buyer for goods or
services described in the supplier’s index. It allows the supplier to “overlay” item
attributes (such as price) in the index with values negotiated with the buyer. It further
allows suppliers and buyers to segment these overlays based on an agreed-upon
“segment key,” meaningful within a buying organization, such as the name of a plant
or a cost center.

Contract has the following attributes:

Contract contains one or more ItemSegment elements, for example:

<Contract effectiveDate="2000-01-03T18:39:09-08:00"
expirationDate="2000-07-03T18:39:09-08:00">

effectiveDate Effective date and time of the contract, in ISO 8601 format.

expirationDate Expiration date and time of the contract, in ISO 8601 format.

cXML User’s Guide 193

10
 C

at
al

o
g

s
10

 C
at

al
o

g
s

10
 C

at
al

o
g

s
10

 C
at

al
o

g
s

10
 C

at
al

o
g

s
10

 C
at

al
o

g
s

Chapter 10 Catalogs Subscription Management Definitions

<SupplierID domain="InternalSupplierID">29</SupplierID>
<ItemSegment segmentKey=Plant12>

<ContractItem>
<ItemID>

 <SupplierPartID>pn12345</SupplierPartID>
</ItemID>
<UnitPrice>

<Money currency=USD>40.00</Money>
</UnitPrice>

</ContractItem>
…

</ItemSegment>
</Contract>

ItemSegment

The ItemSegment element is a container for a list of ContractItem elements for a given
“segment” where a segment represents an arbitrary partitioning of contract items
based on a segment key agreed upon between supplier and buyer.

ItemSegment has the following attribute:

ContractItem

A contract item element is a particular item overlay for an index item. It contains an
ItemID that uniquely identifies the index item within the procurement system to
overlay. It can contain any number of Extrinsic elements containing the overlaid value
for the named index item attribute.

Subscription Management Definitions

Intermediaries, such as network commerce hubs, can manage suppliers and catalogs
used by procurement systems. These intermediaries can provide direct links between
procurement systems and supplier systems. This section contains element definitions
for managing supplier data and catalog contents. These definitions build on many of
the previous definitions for cXML request/responses, one-way messages, and catalog
definitions.

segmentKey
(optional)

Agreed-upon string used to segment custom prices.

Subscription Management Definitions Chapter 10 Catalogs

194 cXML User’s Guide November, 2001

Supplier Data

The definitions for supplier data management consist mainly of the elements
SupplierListRequest, SupplierListResponse, SupplierDataRequest, SupplierDataResponse, and
SupplierChangeMessage. These elements are described below with examples where the
intermediary is Ariba CSN.

SupplierListRequest

SupplierListRequest requests a list of the suppliers with whom the buyer has established
trading relationships.

<Request>
<SupplierListRequest/>

</Request>

SupplierListResponse

SupplierListResponse lists the suppliers with whom the buyer has established trading
relationships.

<Response>
<Status code="200" text="OK"/>
<SupplierListResponse>

<Supplier corporateURL=http://www.workchairs.com
storeFrontURL="http://www.workchairs.com">

<Name xml:lang="en-US">Workchairs, Inc.</Name>
<Comments xml:lang="en-US">this is a cool company</Comments>
<SupplierID domain="DUNS">123456</SupplierID>

</Supplier>
<Supplier corporateURL=http://www.computersRus.com

storeFrontURL="http://www.computersRus.com">
<Name xml:lang="en-US">Computers R us</Name>
<Comments xml:lang="en-US">another cool company</Comments>
<SupplierID domain="DUNS">123456789</SupplierID>

</Supplier>
</SupplierListResponse>

</Response>

SupplierDataRequest

SupplierDataRequest requests data about a supplier.

<Request>
<SupplierDataRequest>

<SupplierID domain="DUNS">123456789</SupplierID>
</SupplierDataRequest>

cXML User’s Guide 195

10
 C

at
al

o
g

s
10

 C
at

al
o

g
s

10
 C

at
al

o
g

s
10

 C
at

al
o

g
s

10
 C

at
al

o
g

s
10

 C
at

al
o

g
s

Chapter 10 Catalogs Subscription Management Definitions

</Request>

SupplierDataResponse

SupplierDataResponse contains data about a supplier.

<Response>
<Status code="200" text="OK"/>
<SupplierDataResponse>

<Supplier corporateURL=http://www.workchairs.com
storeFrontURL="http://www.workchairs.com">

<Name xml:lang="en-US">Workchairs, Inc.</Name>
<Comments xml:lang="en-US">this is a cool company</Comments>
<SupplierID domain="DUNS">123456</SupplierID>
<SupplierLocation>

<Address>
<Name xml:lang="en-US">Main Office</Name>
<PostalAddress>

<DeliverTo>Bob A. Worker</DeliverTo>
<Street>123 Front Street</Street>
<City>Toosunny</City>
<State>CA</State>
<PostalCode>95000</PostalCode>
<Country isoCountryCode="US">USA</Country>

 </PostalAddress>
<Email>bobw@workchairs.com</Email>
<Phone name="Office">

<TelephoneNumber>
<CountryCode

isoCountryCode="US">1</CountryCode>
<AreaOrCityCode>800</AreaOrCityCode>
<Number>5551212</Number>

</TelephoneNumber>
</Phone>
<Fax name="Order">

<TelephoneNumber>
<CountryCode

isoCountryCode="US">1</CountryCode>
<AreaOrCityCode>408</AreaOrCityCode>
<Number>5551234</Number>

</TelephoneNumber>
</Fax>
<URL>http://www.workchairs.com/Support.htm</URL>

</Address>
<OrderMethods>

<OrderMethod>
<OrderTarget>

<URL>http://www.workchairs.com/cxmlorder</URL>
</OrderTarget>

Subscription Management Definitions Chapter 10 Catalogs

196 cXML User’s Guide November, 2001

<OrderProtocol>cXML</OrderProtocol>
</OrderMethod>

</OrderMethods>
</SupplierLocation>

</Supplier>
</SupplierDataResponse>

</Response>

SupplierChangeMessage

This element is for notification of changes to supplier data.

<Message>
<SupplierChangeMessage type="new">

<Supplier corporateURL=http://www.workchairs.com
storeFrontURL="http://www.workchairs.com">

<Name xml:lang="en-US">Workchairs, Inc.</Name>
<Comments xml:lang="en-US">this is a cool company</Comments>
<SupplierID domain="DUNS">123456</SupplierID>
<SupplierLocation>

<Address>
<Name xml:lang="en-US">Main Office</Name>
<PostalAddress>

<DeliverTo>Bob A. Worker</DeliverTo>
<Street>123 Front Street</Street>
<City>Toosunny</City>
<State>CA</State>
<PostalCode>95000</PostalCode>
<Country isoCountryCode="US">USA</Country>

</PostalAddress>
<Email>bobw@workchairs.com</Email>
<Phone name="Office">

<TelephoneNumber>
<CountryCode
isoCountryCode="US">1</CountryCode>
<AreaOrCityCode>800</AreaOrCityCode>
<Number>5551212</Number>

</TelephoneNumber>
</Phone>
<Fax name="Order">

<TelephoneNumber>
<CountryCode
isoCountryCode="US">1</CountryCode>
<AreaOrCityCode>408</AreaOrCityCode>
<Number>5551234</Number>

</TelephoneNumber>
</Fax>
<URL>http://www.workchairs.com/Support.htm</URL>

</Address>

cXML User’s Guide 197

10
 C

at
al

o
g

s
10

 C
at

al
o

g
s

10
 C

at
al

o
g

s
10

 C
at

al
o

g
s

10
 C

at
al

o
g

s
10

 C
at

al
o

g
s

Chapter 10 Catalogs Subscription Management Definitions

<OrderMethods>
<OrderMethod>

<OrderTarget>
<URL>http://www.workchairs.com/cxmlorder</URL>

</OrderTarget>
<OrderProtocol>cXML</OrderProtocol>

</OrderMethod>
</OrderMethods>

</SupplierLocation>
</Supplier>

</SupplierChangeMessage>
</Message>

Catalog Subscriptions

The definitions for catalog-subscription management are described below. The
examples show the intermediary as Ariba CSN.

Subscription

This element captures metadata about a single catalog subscription. Its sub-elements
include:

• InternalID – a unique ID internal to the intermediary. Contains a domain attribute.

• Name – the name of the subscription

• ChangeTime – the date and time when anything about the subscription last changed

• SupplierID – the ID of the supplier who is supplying the catalog

• Format – the format of the catalog

• Description – a description of the catalog

<Subscription>
<InternalID>1234</InternalID>
<Name xml:lang="en-US">Q2 Prices</Name>
<Changetime>1999-03-12T18:39:09-08:00</Changetime>
<SupplierID domain="DUNS">123456789</SupplierID>
<Format version="2.1">CIF</Format>
<Description xml:lang="en-US">The best prices for software</Description>

</Subscription>

SubscriptionListRequest

This element requests the buyer’s current list of catalog subscriptions.

Subscription Management Definitions Chapter 10 Catalogs

198 cXML User’s Guide November, 2001

<Request>
<SubscriptionListRequest/>

</Request>

SubscriptionListResponse

This element lists the buyer’s current list of catalog subscriptions.

<Response>
<Status code="200" text="OK"/>
<SubscriptionListResponse>

<Subscription>
<InternalID>1234</InternalID>
<Name xml:lang="en-US">Q2 Prices</Name>
<Changetime>1999-03-12T18:39:09-08:00</Changetime>
<SupplierID domain="DUNS">123456789</SupplierID>
<Format version="2.1">CIF</Format>
<Description xml:lang="en-US">The best prices for software
</Description>

</Subscription>
<Subscription>

<InternalID>1235</InternalID>
<Name xml:lang="en-US">Q2 Software Prices</Name>
<Changetime>1999-03-12T18:15:00-08:00</Changetime>
<SupplierID domain="DUNS">555555555</SupplierID>
<Format version="2.1">CIF</Format>
<Description xml:lang="en-US">The best prices for software
</Description>

</Subscription>
</SubscriptionListResponse>

</Response>

SubscriptionContentRequest

This element requests the contents of a subscribed catalog. The request includes the
InternalID and SupplierID for the catalog.

<Request>
<SubscriptionContentRequest>

<InternalID>1234</InternalID>
<SupplierID domain="DUNS">123456789</SupplierID>

</SubscriptionContentRequest>
</Request>

cXML User’s Guide 199

10
 C

at
al

o
g

s
10

 C
at

al
o

g
s

10
 C

at
al

o
g

s
10

 C
at

al
o

g
s

10
 C

at
al

o
g

s
10

 C
at

al
o

g
s

Chapter 10 Catalogs Subscription Management Definitions

SubscriptionContentResponse

This element contains the contents of a catalog. The catalog format can be either CIF
(Catalog Interchange Format) or cXML. If it is CIF, it is encoded using base64 and
included as the content of a CIFContent element. If it is cXML, the Index and Contract
elements are directly included.

<Response>
<Status code="200" text="OK"/>
<SubscriptionContentResponse>

<Subscription>
<InternalID>1234</InternalID>
<Name xml:lang="en-US">Q2 Prices</Name>
<Changetime>1999-03-12T18:39:09-08:00</Changetime>
<SupplierID domain="DUNS">123456789</SupplierID>
<Format version="3.0">CIF</Format>
<Description xml:lang="en-US">The best prices for software
</Description>

</Subscription>
<SubscriptionContent filename="foobar.cif">

<CIFContent>
<!-- base64 encoded data -->
ABCDBBDBDBDBDB

</CIFContent>
</SubscriptionContent>

</SubscriptionContentResponse>
</Response>

SubscriptionChangeMessage

This element signals the buying organization’s procurement system that a subscribed
catalog has changed.

<Message>
<SubscriptionChangeMessage type="new">

<Subscription>
<InternalID>1234</InternalID>
<Name xml:lang="en-US">Q2 Prices</Name>
<Changetime>1999-03-12T18:39:09-08:00</Changetime>
<SupplierID domain="DUNS">123456789</SupplierID>
<Format version="2.1">CIF</Format>

</Subscription>
</SubscriptionChangeMessage>

</Message>

SubscriptionChangeMessage has a type attribute which specifies the type of the change:
new, delete, or update.

This attribute

Catalog Upload Transaction Chapter 10 Catalogs

200 cXML User’s Guide November, 2001

Catalog Upload Transaction

The cXML Catalog Upload transaction enables suppliers to programmatically upload
and publish catalogs on a network commerce hub.

Introduction to Catalog Upload

The Catalog Upload transaction gives you an alternative to logging on to a network
hub to interactively upload and publish catalogs. You can use it to automatically
distribute updated catalogs whenever you change pricing or availability of your
products or services.

The Catalog Upload transaction supports both CIF and cXML catalogs.

The Catalog Upload transaction consists of two cXML documents:

CatalogUploadRequest
Sent by suppliers to upload a catalog. It contains the catalog as an
attachment and specifies whether the catalog is new or an update,
and whether to automatically publish it after upload.

Response Sent by Ariba CSN to acknowledge the receipt of a
CatalogUploadRequest.

Sending a CatalogUploadRequest

The following example shows a CatalogUploadRequest:

--kdflkajfdksadjfklasdjfkljdfdsfdkf
Content-type: text/xml; charset=UTF-8
Content-ID: <part0.PCO28.975529413484@saturn.workchairs.com>
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE cXML SYSTEM "http://xml.cxml.org/schemas/cXML/1.2.002/cXML.dtd">
<cXML timestamp="2000-12-28T16:56:03-08:00" payloadID="123456669138--
1234567899555556789@10.10.83.39">

<Header>
<From>

<Credential domain="DUNS">
<Identity>123456789</Identity>

</Credential>
</From>
<To>

<Credential domain="NetworkID">
<Identity>AN01000000001</Identity>

</Credential>

MIME header

ID of network hub

cXML User’s Guide 201

10
 C

at
al

o
g

s
10

 C
at

al
o

g
s

10
 C

at
al

o
g

s
10

 C
at

al
o

g
s

10
 C

at
al

o
g

s
10

 C
at

al
o

g
s

Chapter 10 Catalogs Catalog Upload Transaction

</To>
<Sender>

<Credential domain="DUNS">
<Identity>123456789</Identity>
<SharedSecret>abracadabra</SharedSecret>

</Credential>
<UserAgent>MyHomemadeCatalogManager</UserAgent>

</Sender>
</Header>
<Request>

<CatalogUploadRequest operation="update">
<CatalogName xml:lang="en">Winter Prices</CatalogName>
<Description xml:lang="en">This catalog contains our premiere-level prices for

office chairs and other durable furniture.</Description>
<Attachment>

<URL>cid: part2.PCO28.975529413154@saturn.workchairs.com</URL>
</Attachment>
<Commodities>

<CommodityCode>52</CommodityCode>
</Commodities>
<AutoPublish enabled="true"/>
<Notification>

<Email>judy@workchairs.com</Email>
<URLPost enabled="true"/>

</Notification>
</CatalogUploadRequest>

</Request>
</cXML>
--kdflkajfdksadjfklasdjfkljdfdsfdkf
Content-type: text/plain; charset=US-ASCII
Content-Disposition: attachment; filename=PremiereCatalog.cif
Content-ID: <part2.PCO28.975529413154@saturn.workchairs.com>
Content-length: 364
CIF_I_V3.0
LOADMODE: F
CODEFORMAT: UNSPSC
CURRENCY: USD
SUPPLIERID_DOMAIN: DUNS
ITEMCOUNT: 3
TIMESTAMP: 2001-01-15 15:25:04
DATA
942888710,34A11,C11,"Eames Chair, Black Leather",11116767,400.00,EA,3,"Fast
MFG",,,400.00
942888710,56A12,C12,"Eames Ottoman, Black Leather",11116767,100.00,EA,3,"Fast
MFG",,,100.00
942888710,78A13,C13,"Folding Chair, Grey Stackable",11116767,25.95,EA,3,"Fast
MFG",,,25.95
ENDOFDATA
--kdflkajfdksadjfklasdjfkljdfdsfdkf--

ID of MIME attachment

MIME attachment
header

MIME trailer

Catalog Upload Transaction Chapter 10 Catalogs

202 cXML User’s Guide November, 2001

CatalogUploadRequest Element

CatalogUploadRequest has the following attribute:

CatalogUploadRequest contains the following elements.

CatalogName

CatalogName specifies the name of the uploaded catalog. This value is the user-visible
name, not the file name of the catalog.

CatalogName has the following attribute:

Description

Description briefly describes the catalog contents. Buying organizations can search and
view this information.

Description has the following attribute:

Attachment

Attachment specifies the URL of the attached catalog.

Operation Specifies the type of upload to perform:

“new” Uploads a new catalog. A catalog with the same
name must not exist.

“update” Overwrites an exiting catalog. A catalog with the
same name must exist.

xml:lang Specifies the language used for the catalog name.

Language codes are defined in the XML 1.0 Specification (at
www.w3.org/TR/1998/REC-xml-19980210.html). In the most
common case, this includes an ISO 639 Language Code and,
optionally, an ISO 3166 Country Code separated by a hyphen.

The recommended cXML language code format is xx[-YY[-zzz]*]
where xx is an ISO 639 Language code, YY is an ISO 3166
Country Code, and zzz is an IANA or private subcode for the
language in question. Again, use of the Country Code is always
recommended. By convention, the language code is lowercase
and the country code is uppercase. This is not required for correct
matching of the codes.

xml:lang Specifies the language used for the catalog name.

For more information, see the description of xml:lang for
CatalogName, above.

http://www.w3.org/TR/1998/REC-xml-19980210.html

cXML User’s Guide 203

10
 C

at
al

o
g

s
10

 C
at

al
o

g
s

10
 C

at
al

o
g

s
10

 C
at

al
o

g
s

10
 C

at
al

o
g

s
10

 C
at

al
o

g
s

Chapter 10 Catalogs Catalog Upload Transaction

The Attachment element contains one URL element with the scheme “cid:”.

For more information about attachments, see “Attaching Your Catalog” on page 204.

Commodities

Commodities specifies the top-level commodity codes for the items in your catalog.
Buying organizations use these codes to search for new catalogs.

The Commodities element contains one or more CommodityCode elements.

Use two-digit UNSPSC (Universal Standard Products and Services Classification)
segment codes.

For a list of UNSPSC segment codes, log on to your Ariba CSN account and perform
the first two steps to manually upload a catalog. The second step displays the list of
segment codes. Alternatively, you can look up segment codes on the UNSPSC
Website at www.unspsc.org.

AutoPublish

AutoPublish automatically publishes the catalog to buyers after upload.

You can automatically publish only if both of the following requirements are met:

1. A previous version of the catalog exists in your account and you are
performing an update operation.

2. The previous version is in the “published” state. It must have been published
private (with a list of buyers) or public.

AutoPublish has the following attribute:

Notification

Notification sends catalog-status notifications through e-mail or cXML POST. For
examples of these messages, see “Receiving Later Catalog Status” on page 206.

Notification contains either one Email element or one URLPost element, or both elements.

Enabled Specifies whether to automatically publish the catalog:

“true” Publishes the catalog. It must be an update to a
previously published catalog.

“false” Does not publish the catalog. You can log on to your
account and manually publish the catalog.

http://www.unspsc.org

Catalog Upload Transaction Chapter 10 Catalogs

204 cXML User’s Guide November, 2001

Email specifies the mailbox to the newtork commerce hub e-mails status messages.
You can use only one Email element, and it can contain only one e-mail address.

URLPost specifies whether the newtork commerce hub sends catalog status messages
as cXML StatusUpdateRequest documents.

The URL destination of the StatusUpdateRequest is determined by your Website’s
response to the ProfileRequest transaction. For more information see Chapter 3,
“Profile Transaction.”

URLPost has the following attribute

Attaching Your Catalog

Send your catalog attached to the CatalogUploadRequest document. Large catalogs must
be zipped to compress them before uploading.

Using a MIME envelope

Include the catalog file in the CatalogUpdateRequest as a MIME (Multipurpose Internet
Mail Extensions) attachment. cXML contains only references to external MIME parts
sent within one multipart MIME envelope.

The referenced catalog file must reside within a multipart MIME envelope with the
cXML document. A cXML requirement for this envelope (over the basics described
in RFC 2046 “Multipurpose Internet Mail Extensions (MIME) Part Two: Media
Types”) is the inclusion of Content-ID headers with the attached file.

Note: The cXML specification allows attachments to reside outside of the
MIME envelope, but the Catalog Upload transaction does not support that
attachment method.

The Attachment element contains only a reference to the external MIME part of the
attachment. Attachment contains a single URL with the scheme “cid:”.

For more information about attachments in cXML, see the discussion of the
“Attachment” on page 119.

Catalog files can be zipped to compress them.

Enabled Specifies whether the network sends catalog-status notifications
through StatusUpdateRequest:

“true” Enables this feature.

“false” Disables this feature.

cXML User’s Guide 205

10
 C

at
al

o
g

s
10

 C
at

al
o

g
s

10
 C

at
al

o
g

s
10

 C
at

al
o

g
s

10
 C

at
al

o
g

s
10

 C
at

al
o

g
s

Chapter 10 Catalogs Catalog Upload Transaction

Receiving the Response

After you send a CatalogUploadRequest, the network commerce hub replies with a
standard cXML Response document:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE cXML SYSTEM "http://xml.cxml.org/schemas/cXML/1.2.002/cXML.dtd">
<cXML payloadID="980306507433-6714998277961341012@10.10.83.39"
timestamp="2001-01-23T19:21:47-08:00">

<Response>
<Status code="201" text="Accepted">The catalog upload request is

processing</Status>
</Response>

</cXML>

The following table lists possible status codes:

For other possible status codes, see “Status” on page 38.

Status Code Meaning

200 Success The catalog-upload request succeeded.

201 Accepted The catalog-upload request is processing.

461 Bad Commodity Code The commodity code you assigned to the catalog is
invalid.

462 Notification Error No notification method (e-mail or URL) provided.

463 Bad Catalog Format The zip file is invalid.

464 Bad Catalog No catalog is attached, or more than one is attached.

465 Duplicate Catalog Name The name of the catalog exists.

466 No Catalog to Update The catalog to be updated does not exist.

467 Publish Not Allowed You attempted to publish a catalog that was not
previously published.

468 Catalog Too Large The size of the uploaded file exceeds the 4-MB limit. Zip
the catalog to compress it before uploading it.

469 Bad Catalog Extension The file name of the catalog must have .cif, .xml, or .zip
extensions.

470 Catalog Has Errors The message is the status of the catalog. (HasErrors)

499 Document Size Error The cXML document is too large.

561 Too Many Catalogs You cannot upload more than a specific number of
catalogs per hour.

562 Publish Disabled Catalog publishing is temporarily unavailable due to
scheduled maintenance. It will be back online by the
specified date and time.

563 Catalog Validating You attempted to update a catalog before validation
finished on a previous version of the catalog.

Catalog Upload Transaction Chapter 10 Catalogs

206 cXML User’s Guide November, 2001

Receiving Later Catalog Status

If you include the Notification element to request later catalog-status notification, the
network sends a message when the catalog reaches its final status. The possible final
catalog states are:

Validated The catalog contains no syntax errors.
BadZipFormat The zip format is incorrect.
HasErrors The catalog contains syntax errors, and it cannot be published.
Published The catalog has been published (private or public).

URLPost

The following example shows a StatusUpdateRequest notification sent by a network
commerce hub:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE cXML SYSTEM "http://xml.cxml.org/schemas/cXML/1.2.002/cXML.dtd">

<cXML timestamp="2001-01-23T18:39:44-08:00" payloadID="980303984882--
3544419350291593786@10.10.83.39">

<Header>
<From>

<Credential domain="NetworkID">
<Identity>AN01000000001</Identity>

</Credential>
</From>
<To>

<Credential domain="DUNS">
<Identity>123456789</Identity>

</Credential>
</To>
<Sender>

<Credential domain="NetworkID">
<Identity>AN01000000001</Identity>
<SharedSecret>abracadabra</SharedSecret>

</Credential>
<UserAgent>ANValidator</UserAgent>

</Sender>
</Header>
<Request>

<StatusUpdateRequest>
<DocumentReference payloadID="123456669131--

1234567899555556789@10.10.83.39"></DocumentReference>
<Status text="Success" code="200">

Validated
</Status>

</StatusUpdateRequest>

cXML User’s Guide 207

10
 C

at
al

o
g

s
10

 C
at

al
o

g
s

10
 C

at
al

o
g

s
10

 C
at

al
o

g
s

10
 C

at
al

o
g

s
10

 C
at

al
o

g
s

Chapter 10 Catalogs Catalog Upload Transaction

</Request>
</cXML>

The possible status codes are:

Status Code Meaning

200 Success The catalog-upload request succeeded.

463 Bad Catalog Format The zip file is invalid.

470 Catalog Has Errors The message is the status of the catalog. (HasErrors)

Catalog Upload Transaction Chapter 10 Catalogs

208 cXML User’s Guide November, 2001

cXML User’s Guide 209

11
 G

et
P

en
d

in
g

T

ra
n

sa
ct

io
n

11
 G

et
P

en
d

in
g

Tr

an
sa

ct
io

n
11

 G
et

P
en

d
in

g

Tr
an

sa
ct

io
n

11
 G

et
P

en
d

in
g

Tr

an
sa

ct
io

n
11

 G
et

P
en

d
in

g

Tr
an

sa
ct

io
n

11
 G

et
P

en
d

in
g

Tr

an
sa

ct
io

n

Chapter 11
GetPending Transaction

Some buying organizations do not have HTTP entry points for receiving cXML
messages from outside their corporate firewalls. The cXML specification allows for
these environments.

This section introduces definitions that allow source systems to queue messages when
targets are unable to directly accept HTTP posts. Targets instead pull messages at
their convenience.

GetPendingRequest

This element pulls a set of messages waiting for the requester. The MessageType
element and the lastReceivedTimestamp and maxMessages attributes control the type and
count of the fetched messages.

Upon receiving the request, the receiver returns the oldest messages, of the specified
types, with timestamps equal to or later than the specified timestamp. If there are
multiple messages meeting this criterion, multiple messages can be returned, subject
to the maxMessages attribute. The queuing system discards all pending messages of the
specified message types with timestamps earlier than the specified timestamp.

<Request>
<GetPendingRequest lastReceivedTimestamp="1999-03-12T18:39:09-08:00"

maxMessages="5">
<MessageType>SubscriptionChangedMessage</MessageType>

</GetPendingRequest>
</Request>

lastReceivedTimestamp
(optional)

The timestamp of the most recent message received.

maxMessages
(optional)

Maximum number of messages in a single response
that the requester can handle.

GetPendingResponse Chapter 11 GetPending Transaction

210 cXML User’s Guide November, 2001

GetPendingResponse

This element contains one or more messages waiting for the requester.

<Response>
<Status code="200" text="OK"/>
<GetPendingResponse>

<cXML xml:lang="en-US"
payloadID="456778@ariba.com"
timestamp="1999-03-12T18:39:09-08:00">

<Header>
<From>

<Credential domain="AribaNetworkUserId">
<Identity>admin@ariba.com</Identity>

</Credential>
</From>
<To>

<Credential domain="AribaNetworkUserId">
<Identity>admin@acme.com</Identity>

</Credential>
</To>
<Sender>

<Credential domain="AribaNetworkUserId">
<Identity>admin@ariba.com</Identity>

</Credential>
<UserAgent>Ariba.com</UserAgent>
</Sender>

</Header>
<Message>

<SubscriptionChangeMessage type="new">
<Subscription>

<InternalID>1234</InternalID>
<Name xml:lang="en-US">Q2 Prices</Name>
<Changetime>1999-03-12T18:39:09-08:00
</Changetime>
<SupplierID domain="DUNS">123456789
</SupplierID>
<Format version="2.1">CIF</Format>

</Subscription>
</SubscriptionChangeMessage>

</Message>
</cXML>

</GetPendingResponse>
</Response>

cXML User’s Guide 211

12
 P

ro
vi

d
er

 P
u

n
ch

O
u

t
T

ra
n

sa
ct

io
n

12
 P

ro
vi

d
er

 P
u

n
ch

O
u

t
Tr

an
sa

ct
io

n
12

 P
ro

vi
d

er
 P

u
n

ch
O

u
t

Tr
an

sa
ct

io
n

12
 P

ro
vi

d
er

 P
u

n
ch

O
u

t
Tr

an
sa

ct
io

n
12

 P
ro

vi
d

er
 P

u
n

ch
O

u
t

Tr
an

sa
ct

io
n

12
 P

ro
vi

d
er

 P
u

n
ch

O
u

t
Tr

an
sa

ct
io

n

Chapter 12
Provider PunchOut Transaction

Provider PunchOut enables applications to punch out to a remote application that
supplies some service to the originating application, such as credit card validation,
single login, or self registration. cXML messages provide a means for the originator
and the provider to communicate during this transaction. These cXML documents are
ProviderSetupRequest, ProviderSetupResponse, and ProviderDoneMessage and are
tailored specifically to handle the interaction between an originating application and a
service provider. They pass details such as what service is to be provided, session
information, the return URL of the originator, and status or followup information.

Message Flow

The order of cXML message flow in the Provider PunchOut transaction is shown in
the following diagram.

To initiate a Provider PunchOut, the originating application sends a
ProviderSetupRequest document to the provider. This document includes credential
information for the user and the user’s organization, the return URL, and the service
requested from the provider. To acknowledge the request, the provider sends a
ProviderSetupResponse document to the originating application and includes a URL
for the start page indicating where the user should be redirected. When the user has

ORIGINATING
APPLICATION

PROVIDER

�������

�	
����
���
�����
��������

�	
����
���
�����
�������

�	
����
���
����
�������

ProviderSetupRequest Document Chapter 12 Provider PunchOut Transaction

212 cXML User’s Guide November, 2001

finished, the provider sends a ProviderDoneMessage document back to the
originating application, indicating that the user has completed their session at the
provider’s site.

ProviderSetupRequest Document

The ProviderSetupRequest document initiates a Provider PunchOut transaction and
passes several items of information to the provider, including information about the
member organization and user, the return URL, and which service is being requested.

The document contains two sections, one specified by a Header element, the other by a
Request element. The Header contains credential information about the user and the
requesting organization and the Request contains the actual ProviderSetupRequest
element that contains information needed to initiate the Provider PunchOut.

Header

The Header portion of the document contains addressing and authentication
information. The following sample is the header portion taken from a Provider Setup
Request cXML document. The UserAgent element contains the digital signature of the
provider; a string that corresponds to the application and the version making the
request. For example, “www.triton.com” or “Ariba Buyer 7.0 EA.” The two parties
must agree on a common certificate format and authority.

<Header>
<From>
<!-- Triton bank -->

<Credential domain="NetworkId" type="marketplace">
<Identity>AN01000001709</Identity>

</Credential>
<Credential domain="triton.com">

<Identity>9999</Identity>
</Credential>

</From>

<To>
<!-- AM-NE -->

<Credential domain="NetworkId">
<Identity>AN01000000003</Identity>

</Credential>
</To>
<Sender>
<!-- Triton bank -->

<Credential domain="NetworkId">

cXML User’s Guide 213

12
 P

ro
vi

d
er

 P
u

n
ch

O
u

t
T

ra
n

sa
ct

io
n

12
 P

ro
vi

d
er

 P
u

n
ch

O
u

t
Tr

an
sa

ct
io

n
12

 P
ro

vi
d

er
 P

u
n

ch
O

u
t

Tr
an

sa
ct

io
n

12
 P

ro
vi

d
er

 P
u

n
ch

O
u

t
Tr

an
sa

ct
io

n
12

 P
ro

vi
d

er
 P

u
n

ch
O

u
t

Tr
an

sa
ct

io
n

12
 P

ro
vi

d
er

 P
u

n
ch

O
u

t
Tr

an
sa

ct
io

n

Chapter 12 Provider PunchOut Transaction ProviderSetupRequest Document

<Identity>AN01000001709</Identity>
<SharedSecret>abracadabra</SharedSecret>

</Credential>
<UserAgent>www.triton.com</UserAgent>

</Sender>
</Header>

Because the Header element is similar for each message type, see “Header” on page 35
for specifics on how to construct this portion of the message.

Request

The Request portion of the document contains a ProviderSetupRequest, which has
several items of information about the transaction from the originator, including a
cookie to track the session for the originator, a return URL, what service is being
requested from the provider, and other information contingent upon the type of
service and the provider.

<Request>
<ProviderSetupRequest>

<OriginatorCookie>iTRk9bG49EJOGhJC</OriginatorCookie>
<BrowserFormPost>

<URL>https://www.triton.com/providerdone.asp</URL>
</BrowserFormPost>
<SelectedService>AMNE.signin</SelectedService>
<Extrinsic name="Brand">Triton</Extrinsic>
<Extrinsic name="User">

<Identity>0001</Identity>
</Extrinsic>
<Extrinsic name="QueryString">req=R532&login=gtou&</Extrinsic>

</ProviderSetupRequest>
</Request>

The following table provides guidelines for the structure of the request section of the
Provider PunchOut message.

Element Instances Parent Elements Child Elements Attributes

ProviderSetupRequest 1 Request OriginatorCookie,
BrowserFormPost,
SelectedService,
Extrinsic

None

OriginatorCookie 1 ProviderSetupRequest,
ProviderDoneMessage

None None

ProviderSetupRequest Document Chapter 12 Provider PunchOut Transaction

214 cXML User’s Guide November, 2001

The elements in the header section are:

Request

Contains a request to initiate a Provider PunchOut transaction, and in this case
contains a ProviderSetupRequest element.

ProviderSetupRequest

A request from an originating application to a provider to initiate a transaction.

OriginatorCookie

OriginatorCookie is tied to the user’s session on the requestor’s site and is returned to the
requestor later with the ProviderDoneMessage. This implements a one-time key allowing
the user to return to the same session on the originating application.

BrowserFormPost URL

The originating application provides the BrowserFormPost location so that the provider
can display a “Done” button, and provide information, such as a Status, at the end of
the interactive session. Inclusion should lead to a ProviderDoneMessage document
being sent from the provider at the end of each session. URL contains the location on
the requestor’s site to return the user when they have finished at the provider site.

SelectedService

Identifies the service requested by the originating application and offered by the
provider.

Extrinsic

The extrinsics for the Provider PunchOut depend upon what service the provider
supplies. Please see specific documentation for your specific ProviderSetupRequest.

BrowserFormPost 0 or 1 ProviderSetupRequest URL None

URL 0 or 1 BrowserFormPost,
Followup

None None

SelectedService 1 ProviderSetupRequest None None

Extrinsic Any ProviderSetupRequest Varies Name

Element Instances Parent Elements Child Elements Attributes

cXML User’s Guide 215

12
 P

ro
vi

d
er

 P
u

n
ch

O
u

t
T

ra
n

sa
ct

io
n

12
 P

ro
vi

d
er

 P
u

n
ch

O
u

t
Tr

an
sa

ct
io

n
12

 P
ro

vi
d

er
 P

u
n

ch
O

u
t

Tr
an

sa
ct

io
n

12
 P

ro
vi

d
er

 P
u

n
ch

O
u

t
Tr

an
sa

ct
io

n
12

 P
ro

vi
d

er
 P

u
n

ch
O

u
t

Tr
an

sa
ct

io
n

12
 P

ro
vi

d
er

 P
u

n
ch

O
u

t
Tr

an
sa

ct
io

n

Chapter 12 Provider PunchOut Transaction ProviderSetupRequest Document

Note: XML content, elements, and their attributes must be defined in the
cXML DTD or XML escaped.

Sample

To demonstrate a typical ProviderSetupRequest document, the following is a request
from a marketplace host, called Triton bank, to AM-NE.

<cXML timestamp="2000-07-11T15:03:14-07:00" payloadID="963352994214--
8721789825238347285@10.10.83.151”>

<Header>
<From>

<Credential domain="NetworkId" type="marketplace">
<Identity>AN01000001709</Identity>

</Credential>

<Credential domain="triton.com">
<Identity>9999</Identity>

</Credential>
</From>

<To>
<Credential domain="NetworkId">

<Identity>AN01000000003</Identity>
</Credential>

</To>
<Sender>

<Credential domain="NetworkId">
<Identity>AN01000001709</Identity>
<SharedSecret>abracadabra</SharedSecret>

</Credential>
<UserAgent>www.triton.com</UserAgent>

</Sender>
</Header>

<Request>
<ProviderSetupRequest>

<OriginatorCookie>iTRk9bG49EJOGhJC</OriginatorCookie>
<BrowserFormPost>

<URL>https://www.triton.com/providerdone.asp</URL>
</BrowserFormPost>
<SelectedService>AMNE.signin</SelectedService>
<Extrinsic name="Brand">Triton</Extrinsic>
<Extrinsic name="User>

<Identity>0001</Identity>
</Extrinsic>
<Extrinsic name="QueryString">req=R532&login=gtou&</Extrinsic>

</ProviderSetupRequest>

ProviderSetupResponse Document Chapter 12 Provider PunchOut Transaction

216 cXML User’s Guide November, 2001

</Request>
</cXML>

ProviderSetupResponse Document

The ProviderSetupResponse document notifies the originating application of the
results of the request. Status and start page information is included.

<cXML payloadID="456789@amne.ariba.com"
xml:lang="en-US" timestamp="2000-03-12T18:40:15-08:00">
<Response>

<Status code="200" text="OK"/>
<ProviderSetupResponse>

<StartPage>
<URL>http://amne@ariba.com/enter?23423SDFSDF23</URL>

</StartPage>
</ProviderSetupResponse>

</Response>
</cXML>

The following table provides guidelines for the structure of the
ProviderSetupResponse document of the Provider PunchOut transaction.

Response

Contains the Status and ProviderSetupResponse elements.

Element Instances Parent Elements Child Elements Attributes

Response 1 cXML Status,
ProviderSetupResponse

None

Status 1 Response None code, text

ProviderSetupReponse 1 Response StartPage None

StartPage 1 ProviderSetupRepons
e

URL None

URL 1 StartPage None None

cXML User’s Guide 217

12
 P

ro
vi

d
er

 P
u

n
ch

O
u

t
T

ra
n

sa
ct

io
n

12
 P

ro
vi

d
er

 P
u

n
ch

O
u

t
Tr

an
sa

ct
io

n
12

 P
ro

vi
d

er
 P

u
n

ch
O

u
t

Tr
an

sa
ct

io
n

12
 P

ro
vi

d
er

 P
u

n
ch

O
u

t
Tr

an
sa

ct
io

n
12

 P
ro

vi
d

er
 P

u
n

ch
O

u
t

Tr
an

sa
ct

io
n

12
 P

ro
vi

d
er

 P
u

n
ch

O
u

t
Tr

an
sa

ct
io

n

Chapter 12 Provider PunchOut Transaction ProviderSetupResponse Document

Status

Provides information on the success or failure of the provider request. The content of
the Status element can be any data needed by the requestor and can describe the error
in more detail. Status has the following attributes:

For a 200/OK status code, there might be no data. However, for a 500/Internal Server
Error status code, it is strongly recommended that the actual XML parse error or
application error be presented. This error allows better one-sided debugging and inter-
operability testing.

The provider should not include the ProviderSetupResponse element unless the status
code is in the 200 range. See “Status” on page 38 for a list of all possible status code
values.

ProviderSetupResponse

If the request was successful, the ProviderSetupResponse element is included in the
response document and contains the StartPage and URL elements which indicate where
the user should be redirected.

StartPage URL

This element contains a URL element that specifies the URL to pass to the browser to
initiate the Provider PunchOut browsing session requested in the ProviderSetupRequest
element. This URL must contain enough state information to bind to a session context
on the provider Website.

Sample

The following ProviderSetupResponse document is in reply to Triton Bank from a
provider from the previous ProviderSetupRequest section.

<cXML payloadID="456789@amne.ariba.com"
xml:lang="en-US" timestamp="2000-03-12T18:40:15-08:00">
<Response>

<Status code="200" text="OK"/>
<ProviderSetupResponse>

<StartPage>
<URL>http://amne@ariba.com/enter?23423SDFSDF23</URL>

code The status code of the request. This follows the HTTP status code model.
For example, 200 represents a successful request.

text The text of the status message. This text aids user readability in logs, and
it consists of canonical strings in English.

ProviderDoneMessage Document Chapter 12 Provider PunchOut Transaction

218 cXML User’s Guide November, 2001

</StartPage>
</ProviderSetupResponse>

</Response>
</cXML>

ProviderDoneMessage Document

The ProviderDoneMessage document contains any information the originating
application must know about the completed operation at the provider site.

Header

The ProviderDoneMessage Header section is similar to the header sections in the
Request and Response messages; however, because this message is sent with a Form
Post, you should not include a SharedSecret in the Sender element. The UserAgent
element contains the digital signature of the provider. The two parties must agree on a
common certificate format and authority.

<Header>
<From>
<!-- AM-NE -->

<Credential domain="NetworkId">
<Identity>AN01000000003</Identity>

</Credential>
</From>

<To>
<!-- Triton bank -->
<Credential domain="NetworkId">

<Identity>AN01000001709</Identity>
</Credential>

</To>

<Sender>
<!-- AM-NE -->
<Credential domain="NetworkId">

<Identity>AN01000000003</Identity>
</Credential>
<UserAgent>Purchase</UserAgent>
</Sender>

</Header>

Because the Header element is similar for each message type, see “Header” on page 35
for the specifics on how to construct this portion of the message.

cXML User’s Guide 219

12
 P

ro
vi

d
er

 P
u

n
ch

O
u

t
T

ra
n

sa
ct

io
n

12
 P

ro
vi

d
er

 P
u

n
ch

O
u

t
Tr

an
sa

ct
io

n
12

 P
ro

vi
d

er
 P

u
n

ch
O

u
t

Tr
an

sa
ct

io
n

12
 P

ro
vi

d
er

 P
u

n
ch

O
u

t
Tr

an
sa

ct
io

n
12

 P
ro

vi
d

er
 P

u
n

ch
O

u
t

Tr
an

sa
ct

io
n

12
 P

ro
vi

d
er

 P
u

n
ch

O
u

t
Tr

an
sa

ct
io

n

Chapter 12 Provider PunchOut Transaction ProviderDoneMessage Document

Message

The Message portion of the document contains the ProviderDoneMessage element,
which contains any information requested by the originating application, and
information to return to the user to their session at the originating application’s site.

<Message>
<Status code="200" text="OK"/>
<ProviderDoneMessage>

<OriginatorCookie>c546794949</OriginatorCookie>
<ReturnData name="method">

<ReturnValue>Triton.transact</ReturnValue>
<Name xml:lang="en-US">Triton OM transact</Name>

</ReturnData>
</ProviderDoneMessage>

</Message>

The following table details guidelines for the structure of the message section of the
ProviderDoneMessage document.

The elements in the message section are:

OriginatorCookie

The same element that was passed in the original ProviderSetupRequest document. It
must be returned here to allow the requesting application to match the
ProviderDoneMessage document with an earlier ProviderSetupRequest document
and return the user to the correct session.

Element Instances Parent Elements Child Elements Attributes

Message 1 None Status,
ProviderDoneMessage

None

Status 1 Message None text, code

ProviderDoneMessage 1 Message OriginatorCookie,
ReturnData,
ReturnValue,
Name

None

OriginatorCookie 1 ProviderDoneMessage None None

ReturnData Any ProviderDoneMessage ReturnValue,
Name

name

ReturnValue 1 ProviderSetupRequest None None

Name 1 BrowserFormPost,
Followup

None xml:lang

ProviderDoneMessage Document Chapter 12 Provider PunchOut Transaction

220 cXML User’s Guide November, 2001

ReturnData

Contains any information the originator must know about the completed operation at
the provider site. The name attribute identifies the type (domain) of the ReturnData to
the requestor.

ReturnValue

A value that is used by the originating application. This value depends on what
service the provider supplies.

Name

An identifier for the data returned. Provides a description for the contents of the
ReturnData element.

When displaying values, keep in mind that Name and ReturnValue have similar
semantics, but different uses in the originating application.

Sample

The provider sends the following ProviderDoneMessage document, which notifies
the originating application, Triton Bank, that the user has finished with their session
on the provider site.

<cXML timestamp="2000-07-11T15:13:28-07:00" payloadID="963353608827--
3642656259900210849@10.10.83.151">

<Header>
<From>
<!-- AM-NE market cluster -->

<Credential domain="NetworkId">
<Identity>AN01000000003</Identity>

</Credential>
</From>

<To>
<!-- Triton bank -->
<Credential domain="NetworkId">

<Identity>AN01000001709</Identity>
</Credential>

</To>

<Sender>
<!-- AM-NE market cluster -->
<Credential domain="NetworkId">

cXML User’s Guide 221

12
 P

ro
vi

d
er

 P
u

n
ch

O
u

t
T

ra
n

sa
ct

io
n

12
 P

ro
vi

d
er

 P
u

n
ch

O
u

t
Tr

an
sa

ct
io

n
12

 P
ro

vi
d

er
 P

u
n

ch
O

u
t

Tr
an

sa
ct

io
n

12
 P

ro
vi

d
er

 P
u

n
ch

O
u

t
Tr

an
sa

ct
io

n
12

 P
ro

vi
d

er
 P

u
n

ch
O

u
t

Tr
an

sa
ct

io
n

12
 P

ro
vi

d
er

 P
u

n
ch

O
u

t
Tr

an
sa

ct
io

n

Chapter 12 Provider PunchOut Transaction ProviderDoneMessage Document

<Identity>AN01000000003</Identity>
</Credential>
<UserAgent>Purchase</UserAgent>

</Sender>
</Header>

<Message>
<Status code="200" text="OK"/>
<ProviderDoneMessage>

<OriginatorCookie>c546794949</OriginatorCookie>
<ReturnData name="method">

<ReturnValue>Triton.transact</ReturnValue>
<Name xml:lang="en-US">Triton OM transact</Name>

</ReturnData>
</ProviderDoneMessage>

</Message>
</cXML>

ProviderDoneMessage Document Chapter 12 Provider PunchOut Transaction

222 cXML User’s Guide November, 2001

cXML User’s Guide 223

A
 N

ew
 F

ea
tu

re
s

in

cX
M

L
1.

2.
00

7
A

 N
ew

 F
ea

tu
re

s
in

cX

M
L

1.
2.

00
7

A
 N

ew
 F

ea
tu

re
s

in

cX
M

L
1.

2.
00

7
A

 N
ew

 F
ea

tu
re

s
in

cX

M
L

1.
2.

00
7

A
 N

ew
 F

ea
tu

re
s

in

cX
M

L
1.

2.
00

7
A

 N
ew

 F
ea

tu
re

s
in

cX

M
L

1.
2.

00
7

Appendix A
New Features in cXML 1.2.007

cXML 1.2.007 contains the following new features:

• InvoiceDetail Documentation

• version Attribute Deprecated

• InvoiceStatus Added to StatusUpdateRequest

• Multiple Provider URLs Returned by ProfileRequest

• Contact Role Enhancements for Compatibility with EDI

InvoiceDetail Documentation

The InvoiceDetail transaction is now fully described in Chapter 9, “Invoices.”

version Attribute Deprecated

The version attribute of the cXML wrapper element has been deprecated. This attribute
is not needed, because applications can detect the cXML version from the system
identifier in the DOCTYPE declaration.

For more information:
Chapter 9, “Invoices.”

InvoiceStatus Added to StatusUpdateRequest Appendix A New Features in cXML 1.2.007

224 cXML User’s Guide November, 2001

InvoiceStatus Added to StatusUpdateRequest

StatusUpdateRequest documents can contain a new element named InvoiceStatus. Buying
organizations can now use these documents to update the status of invoices on
network commerce hubs, which can in turn forward them to suppliers.

After procurement applications process invoices, they generate StatusUpdateRequest
documents to set invoice status to reconciled, rejected, or paid. If a buying organization
cannot reconcile charges in invoices, they generate StatusUpdateRequest documents that
fail the invoices, provide error codes and comments at the line level for the disputed
charges, and indicate any action requested of the Supplier. Suppliers can then
resubmit corrected invoices (new invoice documents with new invoice numbers).

The new InvoiceStatus element can contain a new PartialAmount element, which specifies
the amount paid against the InvoiceDetailRequest. If this element exists, the buying
organization does not pay the full amount specified within the InvoiceDetailRequest.

Multiple Provider URLs Returned by ProfileRequest

The Profile transaction can now return multiple variations of a single transaction type.

Previously, if a cXML server supported multiple implementations of a particular
transaction, there was no standard for distinguishing them. For example, a
marketplace might provide two services within the ProviderSetupRequest transaction:
marketplace.signin and marketplace.console. Previously, the ProfileReponse could
list the transaction twice, but without differentiating them:

<Transaction requestName=”ProviderSetupRequest”>
<URL>http://service.hub.com/signin</URL>
</Transaction>

<Transaction requestName=”ProviderSetupRequest”>
<URL>http://service.hub.com/console</URL>
</Transaction>

The consumer of the ProfileResponse could not determine which location is signin
and which is console.

Now, ProfileResponse can uniquely identify a specific location for each variation of a
transaction. In the case of ProviderSetupRequest, the variation is the service name.
ProfileResponse now uses the Option element to include the service name and value:

For more information:

“Invoice Status
Update” on page 185

cXML User’s Guide 225

A
 N

ew
 F

ea
tu

re
s

in

cX
M

L
1.

2.
00

7
A

 N
ew

 F
ea

tu
re

s
in

cX

M
L

1.
2.

00
7

A
 N

ew
 F

ea
tu

re
s

in

cX
M

L
1.

2.
00

7
A

 N
ew

 F
ea

tu
re

s
in

cX

M
L

1.
2.

00
7

A
 N

ew
 F

ea
tu

re
s

in

cX
M

L
1.

2.
00

7
A

 N
ew

 F
ea

tu
re

s
in

cX

M
L

1.
2.

00
7

Appendix A New Features in cXML 1.2.007 Contact Role Enhancements for Compatibility with EDI

<Transaction requestName=”ProviderSetupRequest”>
<URL>http://service.hub.com/signin</URL>
<Option name="service">marketplace.signin</Option>
</Transaction>

<Transaction requestName=”ProviderSetupRequest”>
<URL>http://service.hub.com/console</URL>
<Option name="service">marketplace.console</Option>
</Transaction>

Each variation of a transaction needs to uniquely identify its particular location. In the
case of ProviderSetupRequest, the unique identifier is “service”. These unique
identifiers use the Option element in the Transaction element. The Option element
contains the unique identifier’s name. The value for the Option element is the unique
identifier’s value.

If there is only one location for a particular type of transaction, then the Option
element is not needed.

When looking for a particular transaction type, if the option name and value are
given, then the transaction that matches this option name and value should be used. If
there is no such option name and option value match, then the first transaction with no
option name and value specified should be used (like a default). Otherwise, the
transaction should be identified as nonexistent.

Contact Role Enhancements for Compatibility with EDI

To enable easier data translation between EDI and cXML documents, there are new
values for the Contact role attribute and the IdReference domain attribute.

New Contact Role in IdReference

IdReference within InvoicePartner has a new Contact role: issuerOfInvoice. This role refers to
the issuer of the invoice.

The from role has been deprecated.

New Contact Role in InvoiceDetailShipping

InvoiceDetailShipping has a new Contact role: carrierCorporate. This role refers to the
corporate headquarters of the carrier service.

For more information:

“Option Element” on
page 51

Contact Role Enhancements for Compatibility with EDI Appendix A New Features in cXML 1.2.007

226 cXML User’s Guide November, 2001

New General Contact role

The general Contact element has new roles: supplierCorporate and buyerCorporate. These
roles refer to the corporate headquarters of the buying organization and the supplier.

In addition, the general Contact roles from and to have been reserved for possible use in
the future.

cXML User’s Guide 227

 I
n

d
ex

 I
n

d
ex

 I
n

d
ex

 I
n

d
ex

 I
n

d
ex

 I
n

d
ex

Symbols
< through &apos entities 32

A
Accounting element 122
Address element 116
addressID attribute 116
agreementDate attribute 127
agreementID attribute 127
AgreementItemOut element 128
alternateAmount attribute 47
alternateCurrency attribute 47
Attachment element 119
attachments to purchase orders 124

B
BillTo element 116
booking orders 69
BrowserFormPost element 93, 214
buyer and supplier cookies 78, 88
BuyerCookie element 92, 96

C
CarrierIdentitifier element 155
character encoding 28
character entities 32
Charge element 123
Classification element 71
code attribute 38, 217
Comments element 119

ConfirmationHeader 144
ShipNoticePortion element 157

ConfirmationHeader element 136
ConfirmationItem element 135, 144
ConfirmationRequest element 133, 135
ConfirmationStatus element 145
confirmID attribute 141
Contact element 48, 117

ShipNoticePortion element 157
Contract element 192
cookies

buyer and supplier 78, 88
copy node 104
corporateURL attribute 188
Credential element 36
currency attribute 47
cXML element 30
cxml.org Website 20
cXML-base64 hidden field 44, 86
cXML-urlencoded hidden field 43, 86

D
date and time format 32
DeliverTo element 116
deliveryDate attribute 152
deploymentMode attribute 37, 42
Description element 71, 99
Dimension element 159
direct marketplace 101
Distribution element 122
Document Type Definitions (DTDs) 20
DocumentReference element 103, 131
domain attribute

CarrierIdentifier element 156
Credential element 36

DTDs (Document Type Definitions) 20

Index

228 cXML User’s Guide November, 2001

 Index

E
EDI (X.12 Electronic Data Interchange) 17
editors for XML 22
effectiveDate attribute 51, 127, 192
encoding

character 28
entities 32
expirationDate attribute 127, 192
Extrinsic element 75, 88, 93, 120, 214

ConfirmationHeader element 144
ShipNoticePortion element 158

F
Fax element 119
Followup element 49, 119
form encoding 43, 85
From element 73
From, To, and Sender elements 36

G
GetPendingRequest element 209
GetPendingResponse element 210

H
Hazard element 159

ConfirmationHeader 143
Header element 35

PunchOutSetupRequest 90
HTML form encoding 43, 85

I
id attribute 123
Index element 190
IndexItemAdd element 191
IndexItemDelete element 191
IndexItemDetail element 192
IndexItemPunchout element 191
indirect marketplace 101
inReplyTo attribute 42
InvoiceDetailRequest 161–186
IsoCountryCode element 47

IsoLanguageCode element 46
ItemDetail element 99, 192
ItemID element 98
ItemIn element 98
ItemOut element 120
ItemSegment element 193

L
language

in cXML header 79
lastReceivedTimestamp attribute 209
lastRefresh attribute 51
Launch Page 79
lineNumber attribute 98, 120

ShipNoticeItem element 158
locale

in cXML header 79

M
marketplace credential 36
MasterAgreementRequest 125
MaxAmount element 127
maxMessages attribute 209
maxQuantity element 128
MaxReleaseAmount element 127
maxReleaseQuantity element 128
Message element 42
method attribute 155
MIME attachments 28, 124
MinAmount element 127
minQuantity element 128
MinReleaseAmount element 127
minReleaseQuantity element 128
Money element 47

N
Name element 116
noticeDate attribute 140, 152

cXML User’s Guide 229

 I
n

d
ex

 I
n

d
ex

 I
n

d
ex

 I
n

d
ex

 I
n

d
ex

 I
n

d
ex

 Index

O
operation attribute 73, 92, 127

ConfirmationHeader element 141
ShipNoticeHeader element 152

operationAllowed attribute 96
Order Receiver Page 86
orderDate attribute

OrderReference element 136, 160
OrderRequestHeader element 115

orderID attribute 136
OrderReference element 136, 160
OrderRequestHeader element 115

OrderMethods element 190
OrderReference element 136, 160

ShipNoticePortion element 157
OrderRequest element 111
OrderRequestHeader element 113
OriginalDocument element 103
OriginatorCookie element 213, 214

P
PackageIdentification element 156
Packaging element 158
PackagingCode element 159
parentAgreementPayloadID attribute 127
Path element 102
path routing 101
payloadID 103
payloadID attribute 31, 72, 131
Payment element 117
Profile transaction 21
ProfileRequest element 50
ProfileResponse element 50
Provider PunchOut 211
ProviderDoneMessage 218
ProviderSetupRequest 212
ProviderSetupRequest element 213
ProviderSetupResponse 216
PunchOut index catalog 70, 94
PunchoutDetail element 192
PunchOutOrderMessage document 76
PunchOutOrderMessage element 95
PunchOutOrderMessageHeader element 96
PunchOutSetupRequest document 71

PunchOutSetupRequest element 91
PunchOutSetupResponse document 76
PunchOutSetupResponse element 94
purchase orders 109–124

attachments 124

Q
quantity attribute 98, 120

ConfirmationStatus element 146
Dimension element 159
ShipNoticeItem element 158

quoteStatus attribute 96
quoting orders 68

R
rangeBegin attribute

PackageIdentification element 156
rangeEnd attribute

PackageIdentification element 157
Request element 37
requestedDeliveryDate attribute 120
requestName attribute 53
requisitionID attribute 115, 120
Response element 37
ReturnData element 220
ReturnValue element 220
role attribute 117
Route element 154
router node 103

S
Segment element 123
segmentKey attribute 193
SelectedItem element 75, 93
SelectedService element 214
Sender element 73
Sender Page 83
Sender, To, and From elements 36
shipComplete attribute 115
shipmentDate attribute 152
shipmentID attribute 151
ShipmentIdentifier element 156

230 cXML User’s Guide November, 2001

 Index

ShipNoticeHeader element 150
ShipNoticeItem element 158
ShipNoticePortion element 157
ShipNoticeRequest element 149
Shipping element 117
ShipTo element 116
ShortName element 99
SourcingStatus element 96
Start Page 82
StartPage element 95, 216, 217
Status element 38, 216, 217
StatusUpdateRequest element 129
storeFrontURL attribute 188
Subscription element 197
SubscriptionContentRequest element 198
SubscriptionContentResponse element 199
SubscriptionListRequest element 197
SubscriptionListResponse element 198
supplier and buyer cookies 78, 88
Supplier element 188
SupplierChangeMessage element 196
SupplierDataRequest element 194
SupplierDataResponse element 195
SupplierID element 70
SupplierListRequest element 194
SupplierListResponse element 194
SupplierLocation element 189
SupplierPartAuxiliaryID element (Supplier

Cookie) 78, 88, 191
SupplierSetup element 94
SupplierSetup URL 75

T
Tax element 117
TelephoneNumber element 118
text attribute 217
time and date format 32
timestamp attribute 31, 72
To element 73
To, From, and Sender elements 36
tools for working with XML 22
Total element

OrderRequestHeader element 115
Transaction element 53

type attribute
ConfirmationHeader element 139
ConfirmationStatus element 147
Credential element 36
Dimenstion element 159
OrderRequestHeader element 115

U
Unit of Measure 47, 78
URL element 47, 214
UserAgent element 36
utilities for use with XML 22

V
validating cXML 20
version attribute 31

X
xml:lang 79
xmllanguageCode element 47

www.cxml.org

	Preface
	Audience and Prerequisites
	Which Chapters to Read
	Typography

	Chapter 1 Introduction to cXML
	cXML, an XML Implementation
	cXML Capabilities
	Catalogs
	PunchOut
	Purchase Orders

	Types of Applications That Use cXML
	Procurement Applications
	Commerce Network Hubs
	PunchOut Catalogs
	Order-Receiving Systems

	Content Delivery Strategy
	Validation Against DTDs
	Getting cXML DTDs
	Performing Validation

	Profile Transaction
	ProfileRequest
	ProfileResponse

	Service Status Response
	XML Utilities

	Chapter 2 cXML Basics
	Protocol Specification
	Request-Response Model
	cXML Conventions
	cXML Document
	Wrapping Layers
	cXML Envelope
	Special Characters
	Header
	Request
	Response
	One-Way (Asynchronous) Model
	Message
	Transport Options
	Service Status Response

	Basic Elements
	Type Entities
	Base Elements

	Chapter 3 Profile Transaction
	ProfileRequest
	ProfileResponse
	Option Element
	Transaction

	Scenarios
	From Buyer to Supplier
	From Buyer to the Network
	From a Network to Supplier
	From the Network to Service Provider
	From a Network to Buyer
	From Service Provider to Buyer

	Chapter 4 Implementing PunchOut
	PunchOut Requirements
	Buying Organizations
	Suppliers

	PunchOut Event Sequence
	Steps 1 & 2: PunchOut Request
	Step 3: Product Selection
	Step 4: Check Out
	Step 5: Transmittal of Purchase Order

	PunchOut Documents
	PunchOut Index Catalog
	PunchOutSetupRequest
	PunchOutSetupResponse
	PunchOutOrderMessage

	Modifications to the Supplier’s Web Pages
	Launch Page
	Start Page
	Sender Page
	Order Receiver Page

	PunchOut Website Suggestions
	Implementation Guidelines
	Buyer and Supplier Cookies
	Personalization

	PunchOut Transaction
	Sourcing
	PunchOutSetupRequest
	PunchOutSetupResponse
	PunchOutOrderMessage

	Chapter 5 Path Routing
	Nodes
	Path Element
	Router Nodes
	Copy Nodes

	Adding Nodes to the PunchOutOrderMessage
	Path Element
	Credentials

	Creating OrderRequests
	Path Element
	Credentials

	Other Routable Documents
	PunchOutSetupRequests
	ConfirmationRequests and ShipNoticeRequests

	Chapter 6 Receiving cXML Purchase Orders
	Purchase Order Process
	Receiving Purchase Orders
	OrderRequest

	Response to an OrderRequest
	Accepting Order Attachments

	Chapter 7 Master Agreements
	MasterAgreementRequest
	MasterAgreementRequestHeader Element
	AgreementItemOut Element

	Chapter 8 Later Status Changes
	StatusUpdateRequest
	DocumentReference Element
	PaymentStatus Element
	SourcingStatus Element
	InvoiceStatus Element

	ConfirmationRequest
	OrderReference Element
	ConfirmationHeader Element
	ConfirmationItem Element

	ShipNoticeRequest
	ShipNoticeHeader Element
	ServiceLevel Element
	Route Element
	CarrierIdentitifier Element
	ShipmentIdentifier Element
	PackageIdentification Element
	ShipNoticePortion Element
	ShipNoticeItem Element
	OrderReference Element

	Chapter 9 Invoices
	Overview of Invoicing
	Early InvoiceRequest Document
	Debit and Credit Amounts
	Shipping Information
	Types of Invoices
	Invoice DTD

	InvoiceDetailRequest
	InvoiceDetailRequestHeader
	InvoiceDetailHeaderIndicator
	InvoiceDetailLineIndicator
	InvoicePartner
	DocumentReference
	InvoiceDetailOrder
	InvoiceDetailHeaderOrder
	InvoiceDetailOrderInfo
	InvoiceDetailPaymentTerm
	InvoiceDetailOrderSummary
	InvoiceDetailLineShipping
	InvoiceDetailItem
	InvoiceDetailItemReference
	InvoiceDetailDiscount
	InvoiceDetailShipping
	InvoiceDetailSummary

	Example Invoices
	Standard Header Invoice
	Standard Detail Invoice
	Marketplace Invoice

	Response
	Invoice Status Update

	Chapter 10 Catalogs
	Catalog Definitions
	Supplier
	Index
	Contract

	Subscription Management Definitions
	Supplier Data
	Catalog Subscriptions

	Catalog Upload Transaction
	Introduction to Catalog Upload
	Sending a CatalogUploadRequest
	Receiving the Response

	Chapter 11 GetPending Transaction
	GetPendingRequest
	GetPendingResponse

	Chapter 12 Provider PunchOut Transaction
	Message Flow
	ProviderSetupRequest Document
	Header
	Request
	Sample

	ProviderSetupResponse Document
	Sample

	ProviderDoneMessage Document
	Header
	Message
	OriginatorCookie
	ReturnData
	ReturnValue
	Sample

	Appendix A New Features in cXML�1.2.007
	InvoiceDetail Documentation
	version Attribute Deprecated
	InvoiceStatus Added to StatusUpdateRequest
	Multiple Provider URLs Returned by ProfileRequest
	Contact Role Enhancements for Compatibility with EDI
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	X

	Index

