
Representing Product Family Architectures in an
Extensible Architecture Description Language

Eric M. Dashofy and André van der Hoek

Institute for Software Research
University of California, Irvine
Irvine, CA 92612–3425 USA

{edashofy,andre}@ics.uci.edu

Abstract. Product family architectures need to be captured much like “regu-
lar” software architectures. Unfortunately, representations for product family
architectures are scarce and a deep understanding of all of the necessary fea-
tures of such representations is still lacking. In this paper, we introduce an ex-
tensible XML-based representation that is suitable as a basis for rapidly defin-
ing new representations for product family architectures. We describe some of
the details of this representation and present how Koala and Mae, two early
representations for product family architectures, can be mapped onto our
XML-based representation with relatively little effort.

1 Introduction

Product family architecture [1] research is following a path similar to that of soft-
ware architecture research. Specifically, whereas early efforts have focused on under-
standing the role of product family architectures in the broader software development
process and defining its dimensions of relevance, we are now in a stage where accu-
rately capturing and representing product family architectures is becoming more
important. Thus, we need a way to represent product family architectures. Because
the canonical set of features of such a representation is unknown and because its
identification requires a significant amount of research, we can expect a proliferation
of product family architecture representations much like the proliferation of tradi-
tional software architecture description languages (ADLs).

The proliferation of architecture description languages carried with it a number of
undesirable effects. While most languages contribute at least one unique feature, all
share many concepts that are essentially the same [8]. Since each language (and its
associated support tools) was created in a standalone fashion, significant duplication
of effort resulted. This duplication not only occurred during the initial creation of
each language; as new features were introduced in one language, other languages
followed suit and provided similar functionality. An interchange language, Acme
[6], was designed to partially remedy this situation, but its growth into an all-



encompassing mediating service never has taken place (in fact, Acme should proba-
bly be considered as a separate architecture description language altogether).

To avoid this kind of problem in the domain of product family architectures, we
offer the following observations.
1. We can expect a significant amount of commonality among representations for

product family architectures, as evidenced by the set of features shared by Ko-
ala [11] and Mae [10], two of the first such representations.

2. Representations for product family architectures can be viewed as representations
for software architectures that are extended with some features designed specifi-
cally for capturing product family aspects of those architectures.

3. XML [2] schemas provide a useful platform upon which to build extensible,
modular representations.
In this paper, we describe our efforts in building an extensible, XML-based repre-

sentation for product family architectures, xADL 2.0 [4]. Key contributions of
xADL 2.0 are its set of modular XML schemas that provide a basic framework for
modeling product family architectures, its extensibility to allow future additions to
(and modifications of) elements in the representation, and its associated tool support
to automatically generate APIs for manipulating specific instances of product family
architectures. xADL 2.0, thus, can serve as a basis for future research in product
family architecture representations while avoiding the duplication of effort problem.

It is important to note that our work is not an attempt to unify representations for
product family architectures. Rather, it provides a common, extensible representation
onto which new modeling constructs can be efficiently added. This greatly reduces
the duplication of effort that would result from building an entirely new product
family architecture representation from scratch.

2 Existing Representations

Koala [11] and Mae [10] are two of the first representations for product family archi-
tectures. Both have adopted the philosophy that a product family architecture is con-
sidered a “normal” software architecture that contains several well-defined variation
points. To capture these variation points, both have created special language features
(Koala as additions to Darwin [7]; Mae as additions to an abstract language that
encapsulates a mix of best practices in architecture description languages). Three
specific differences exist between the two representations: (1) whereas Mae uses a
new type of component (a variant component) to handle structural variations, Koala
uses a design pattern (a switch); (2) whereas Mae strictly enforces identical sets of
interfaces among variant components, Koala allows the set of interfaces to differ as
long as a new variant subsumes the interfaces of the older one; and (3) whereas Mae
tightly integrates version management in the representation, Koala relies on the use
of an external configuration management system to capture the evolution of a prod-
uct family architecture. As more representations for product family architectures are
created, we can expect to see more differences, fueled by different needs and trade-
offs.



3 XML Schemas

XML schemas [5], recently ratified as a recommendation by the World Wide Web
consortium (W3C), provide a rich and extensible meta-language with which to create
new representation formats. The original meta-language provided by XML was the
Document Type Definition (DTD). DTDs allow authors to specify what elements and
attributes may be present in a conforming document. XML schemas are more ex-
pressive than DTDs, primarily because they provide a much richer type system that
offers significantly better support for developing modularly-extensible languages.
XML schema authors can define base types in one schema and extend those types in
other schemas, adding, changing, and, in some cases, removing elements or attrib-
utes in the extended types. Unlike DTDs, this does not require modifications to the
base schema.

4 Approach

Leveraging XML schemas, we developed xADL 2.0 specifically to be an extensible
and modular representation for product family architectures. xADL 2.0 consists of a
set of core XML schemas that capture the basic elements of a product family archi-
tecture, such as components, connectors, versions, variants, and options. Designers
leverage these elements in creating their own representations, thereby avoiding du-
plication and minimizing their effort. This practice of modularity and extensibility is
even reflected in the core set of xADL 2.0 schemas. The three key elements of a
product family representation, namely versions, options, and variants, are provided
as independent extensions to a set of schemas that define a “normal” software archi-
tecture. Product family architects can choose any combination of these features as
needed.

In xADL 2.0, optional elements are perhaps the simplest to understand. Optional-
ity is a property of a system’s structure. An optional element (component, connector,
or link) in the architecture may or may not get instantiated when the system is exe-
cuted. Whether or not the element is instantiated depends on whether an associated
guard condition is satisfied. In keeping with the modularly extensible nature of
xADL 2.0, the definition of “optional” does not restrict the format of the guard con-
dition. We have provided a Boolean guard extension to xADL 2.0 that allows de-
signers to specify Boolean conditions in XML.

Variants in xADL 2.0 are represented as union types. Recall that in a program-
ming language, a variable of a union type may take on one of many actual types
when it is instantiated. Similarly, in xADL 2.0, a structural component or connector
of a variant type may take on one of many actual types depending on the satisfaction
of guard conditions. Each possible variant is associated with a guard. All guards for
a set of variants must be mutually exclusive. When the system is executed, guards are
evaluated and concrete types are chosen for any component or connector of a variant
type.



In xADL 2.0, types are the versioned entities. It is possible, in xADL 2.0, to rep-
resent a full version graph for any component, connector, or interface type. These
graphs are represented as a collection of linked nodes, placing little restriction on
what nodes can be linked to what other nodes. This provides maximal flexibility
when choosing a version graph representation, and the highest chance for success-
fully integrating such a representation with an existing, off-the-shelf CM system.
Because we chose to version types, it is possible to have multiple versions of the
same component or connector running in a single system. For instance, a system
might contain a component of type T version 1.1 as well as a separate component of
type T version 2.0. While technically types T version 1.1 and T version 2.0 are con-
sidered different types, it is useful to understand how they are related in terms of
their evolution. Furthermore, designers using xADL 2.0 can elect to put more strict
restrictions on how types may evolve. For instance, a designer might institute a pol-
icy that all later versions of a type must expose at least the same interface signatures
as their predecessors, guaranteeing backward compatibility at the interface level.
Such complex restrictions cannot be enforced solely by XML syntax; as such, exter-
nal tools must enforce them. Furthermore, it is important to note that the versioning
schema does not inherently restrict what kind of metadata can be included in the
version graph. We fully expect designers working with xADL 2.0 to write small
extensions to the versions schema that allow many different kinds of metadata to
reside there.

As noted above, designers can select any number of these extensions and use them
as they are needed. A designer working on the initial stages of a product family ar-
chitecture may want to avoid including versioning information until the basic points
of variation and optionality are worked out. In xADL 2.0, this is entirely possible—
the designer would simply avoid using the versions schema until it was needed. On
the other hand, advanced designers who want to encode a lot of information in their
product line representation can create extensions to the xADL 2.0 core schemas,
adding new modeling constructs that fit their particular domain of interest.

5 Two Examples

To illustrate how our representation can be used in creating specific product family
architecture representations, we have taken Koala and Mae’s unique representation
characteristics and mapped them onto XML schemas that extend, in minor ways, our
existing xADL 2.0 schemas. This shows how using xADL 2.0 as a baseline can
significantly reduce duplication of effort. Below is a brief discussion of each map-
ping.

5.1 Koala

Four issues need to be resolved in mapping Koala onto xADL 2.0. The first is
straightforward: since Koala relies on an external configuration management system



to provide version management for an evolving product family architecture, we ex-
clude the versioning schema from the base set of schemas upon which we built the
Koala representation. Because of the independence and modularity of the schemas,
this is a trivial operation.

The second issue regards component variability. Each component in Koala that
exhibits variability has an associated special kind of interface through which selec-
tions are performed to choose which variant appears in an actual system incarnation.
These special kinds of interfaces are called diversity interfaces. To model these inter-
faces, an extra XML schema was written. The following captures the canonical func-
tionality of this schema (some tags are omitted for clarity; full schemas are shown in
Appendix A):

<xsd:schema xmlns="diversity.xsd">
<xsd:complexType name="DiversityInterface">
<xsd:complexContent>
<xsd:restriction base="types:Interface">
<xsd:sequence>

...
<!--This is the only element that changes-->
<xsd:element name="direction"

type="archinstance:Direction"
minOccurs="0" maxOccurs="1"
fixed="out"/>
...

</xsd:sequence>

<xsd:attribute name="id"
type="archinstance:Identifier"/>

</xsd:restriction>
</xsd:complexContent>
</xsd:complexType>

<xsd:complexType name="DiversityComponentType">
<xsd:complexContent>
<xsd:extension base="types:ComponentType">
<xsd:sequence>
<xsd:element name="diversity"

type="DiversityInterface"
minOccurs="1" maxOccurs="1"/>

</xsd:sequence>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>

</xsd:schema>

This schema first defines a diversity interface to be just like any other interface,
except that it enforces the Koala rule that diversity interfaces always be required
(“out”) interfaces. Then, the schema defines an extended version of a component



type to include a single diversity interface. Whenever a component with variability
needs to be modeled, an XML element of this new component type should be used.

The third issue regards mapping switches onto the XML schemas. In Koala,
switches are used to support a pattern of components in which one component can
use one of two other components depending on the desired configuration as defined
by a diversity interface. As such, a switch can be defined as a connector that connects
three components and has one diversity interface to determine which of two compo-
nents is used by the main component of the switch construction. Once again, we
drafted an XML schema. Shown below, it is of note that this schema is of a similarly
simple nature as the schema above—demonstrating the ease of extensibility in xADL
2.0.

<xsd:schema xmlns="switch.xsd">
<xsd:complexType name="SwitchConnector">
<xsd:complexContent>
<xsd:extension base="types:Connector">
<xsd:sequence>
<xsd:element name="selector"

type="diversity:DiversityInterface"
minOccurs="1" maxOccurs="1"/>

<xsd:element name="inPort"
type="archInstance:Interface"
minOccurs="1" maxOccurs="1"/>

<xsd:element name="outPort"
type=archInstance:Interface"
minOccurs="2" maxOccurs="2"/>

</xsd:sequence>
</xsd:restriction>
</xsd:complexContent>

</xsd:complexType>
</xsd:schema>

The final issue is that Koala does not have connectors; however, they are part of
our most basic XML schemas. As demonstrated by the remedies to the previous two
issues, our schemas are extensible and modular at the macro level (i.e. individual
types in a schema). However, they also exhibit flexibility at the micro level: certain
critical elements in the XML schemas may or may not be used depending on the
particular need. In this case, simply not putting any connectors in an instance of the
representation and establishing links among interfaces on components rather than
among components and connectors solves the problem. The representation is general
enough to allow this.

5.2 Mae

Since xADL 2.0 was partially inspired by the predecessor to Mae (Ménage [9]), the
mapping of Mae onto xADL 2.0 is not as complicated as Koala’s mapping. Two
additional items need to be modeled: subtype relations and styles. Although one
could write a single extension that adds both at once, each should be added in its



own extension—staying with the modular philosophy of xADL 2.0. To add style
designations, the following simplified XML schema was written:



<xsd:schema xmlns="style.xsd">
<xsd:complexType name="StyleComponentType">
<xsd:complexContent>
<xsd:extension base="types:ComponentType">
<xsd:sequence>
<xsd:element name="style" type="xsd:string"

minOccurs="0" maxOccurs="1"/>
</xsd:sequence>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>
</xsd:schema>

Similarly, the following schema adds subtype relations by adding two fields to the
definition of a component type: a link to the base type and a designation of the kind
of subtype relation (see [10]).

<xsd:schema xmlns="subtype.xsd">
<xsd:complexType name="SubtypeComponentType">
<xsd:complexContent>
<xsd:extension base="types:ComponentType">
<xsd:sequence>
<xsd:element name="baseType"

type="archInstance:XMLLink"
minOccurs="0" maxOccurs="1"/>

<xsd:element name="subTypeRelation"
type="xsd:string"
minOccurs="0" maxOccurs="1"/>

</xsd:sequence>
</xsd:extension>
</xsd:complexContent>

</xsd:complexType>
</xsd:schema>

Interoperability is a concern given these two schemas. Since XML does not pro-
vide multiple inheritance, these two schemas can only co-exist if the sets of compo-
nent types covered by the extensions are mutually exclusive. This means that a com-
ponent type cannot have both a subtype and style, weakening our extensibility
through modularity argument. We, thus, have introduced artificial dependencies as a
solution (see [4]). For instance, in the above case, we could make the subtype exten-
sion an extension of the style extension, or vice-versa. Because both the style and
subtype tags are optional, it is possible to have a component type with a subtype, a
style, or both. Nonetheless, this is not an ideal solution and we await the advent of
multiple inheritance in the XML standard—something that is being discussed in the
XML schema W3C committee.



6 Tool Support

Extensibility of the XML schemas, by itself, is not sufficient to provide an adequate
solution to our problem; we need associated tool support to make it easy for develop-
ers of product family representations to leverage and extend the schemas without
having to implement advanced XML capabilities. Moreover, it is important that the
tools provide access to the schemas in the same modular and extensible fashion that
underlies the schemas themselves.

We have developed a code generator that takes a set of xADL 2.0 XML schemas
as input and generates a Java library for each of the schemas as output. The libraries
hide all XML details from their users and provide access to the elements in the
schema in a natural fashion (e.g., methods such as addInterface and setDe-
scription that directly reflect the entities in the schemas). Additionally, the li-
braries that are generated interoperate: they provide an object hierarchy that maps
one-to-one to the hierarchy of elements in the XML schemas. Furthermore, the li-
braries’ ability to ignore unknown XML tags allows seamless interoperation of ap-
plications that use the libraries to manage a xADL 2.0 document. An application that
manipulates component types does not need to be aware of the fact that the compo-
nent type actually has subtype and style elements used by some other application.
Further details on these and other important considerations are provided in another
paper [3].

7 Conclusions

Research in the area of product family architecture is still maturing at a rapid pace.
It would be imprudent at this early stage in the development of product family archi-
tecture representations to attempt to define a universal or all-encompassing represen-
tation format. Simply put, we do not know all the aspects of a product family that we
may want to capture. Yet, we want to leverage early representations as much as pos-
sible in our future explorations. In this paper we have presented aspects of xADL
2.0, a modular and extensible representation for product family architectures that
makes this possible. Leveraging XML schemas and a flexible code generator,
xADL 2.0 provides developers with the ability to quickly and easily create new rep-
resentations that explore new directions in product family architecture research. We
have demonstrated this ability through our mappings of two existing representations
for product family architectures. Our future work includes the development of addi-
tional XML schemas to provide an increasing set of “standard” product family archi-
tecture features, experimentation with new features for product family architectures,
and further dissemination of the schemas and toolset to allow an increasing set of
other parties to develop XML schemas for xADL 2.0.



8 URL

More information about xADL 2.0 can be found here:

http://www.isr.uci.edu/projects/xarchuci/

9 Acknowledgements

The authors would like to thank Richard N. Taylor for supporting the authors in this
work.

Effort sponsored by the Defense Advanced Research Projects Agency (DARPA) and
Air Force Research Laboratory, Air Force Materiel Command, USAF, under agree-
ment number F30602-00-2-0599. The U.S. Government is authorized to reproduce
and distribute reprints for Governmental purposes notwithstanding any copyright
annotation thereon. The views and conclusions contained herein are those of the
authors and should not be interpreted as necessarily representing the official policies
or endorsements, either expressed or implied, of the Defense Advanced Research
Projects Agency (DARPA), the Air Force Laboratory, or the U.S. Government.

10 References

[1] Batory, D., Product-Line Architectures, in Invited Presentation: Smalltalk
and Java in Industry and Practical Training. 1998.

[2] Bray, T., et al., Extensible Markup Language (XML).
[3] Dashofy, E.M., Issues in Generating Data Bindings for an XML Schema-

Based Language, in Proceedings of XML Technologies and Software Engi-
neering. 2001.

[4] Dashofy, E.M., van der Hoek, A., and Taylor, R.N., A Highly-Extensible,
XML-Based Architecture Description Language, in Working IEEE/IFIP
Conference on Software Architecture. 2001 (to appear).

[5] Fallside, D.C., XML Schema Part 0: Primer. 2000.
[6] Garlan, D., Monroe, R.T., and Wile, D., ACME: An Architectural Intercon-

nection Language. 1995, Carnegie Mellon University: Pittsburgh, PA.
[7] Magee, J., et al., Specifying Distributed Software Architectures, in Proceed-

ings of the Fifth European Software Engineering Conference. 1995.
[8] Medvidovic, N. and Taylor, R.N., A Classification and Comparison Frame-

work for Software Architecture Description Languages. IEEE Transactions
on Software Engineering, 2000. 26(1): p. 70-93.

[9] van der Hoek, A., Capturing Product Line Architectures, in Proceedings of
the Fourth International Software Architecture Workshop. 2000. p. 95-99.



[10] van der Hoek, A., et al., Taming Architectural Evolution, in Proceedings of
the Joint 8th European Software Engineering Conference and 9th ACM
SIGSOFT International Symposium on the Foundations of Software Engi-
neering. 2001 (to appear).

[11] van Ommering, R., et al., The Koala Component Model for Product Families
in Consumer Electronics Software. IEEE Computer, 2000. 33(2): p. 78-85.

Appendix A

This appendix lists the XML Schemas defined above in full, with no omitted tags or
declarations.

A.1 diversity.xsd

<xsd:schema xmlns="http://www.ics.uci.edu/pub/arch/xArch/diversity.xsd"
xmlns:xsd="http://www.w3.org/2000/10/XMLSchema"
xmlns:xlink="http://www.w3.org/1999/xlink"
xmlns:archinstance="http://www.ics.uci.edu/pub/arch/xArch/instance.xsd"
xmlns:types="http://www.ics.uci.edu/pub/arch/xArch/types.xsd"
targetNamespace="http://www.ics.uci.edu/pub/arch/xArch/diversity.xsd"
elementFormDefault="qualified"
attributeFormDefault="qualified">

<xsd:import namespace="http://www.ics.uci.edu/pub/arch/xArch/instance.xsd"
schemaLocation="http://www.ics.uci.edu/pub/arch/xarch/schemas/instance.xsd"/>

<xsd:import namespace="http://www.ics.uci.edu/pub/arch/xArch/types.xsd"
schemaLocation="http://www.isr.uci.edu/projects/xarchuci/ext/types.xsd"/>

<xsd:complexType name="DiversityInterface">
<xsd:complexContent>

<xsd:restriction base="types:Interface">
<xsd:sequence>

<xsd:element name="description"
type="archinstance:Description"/>

<!-- This is the only element that changes -->
<xsd:element name="direction"

type="archinstance:Direction"
minOccurs="0" maxOccurs="1"
fixed="out"/>

<xsd:element name="type"
type="archinstance:XMLLink"
minOccurs="0" maxOccurs="1"/>



</xsd:sequence>
<xsd:attribute name="id" type="archinstance:Identifier"/>

</xsd:restriction>
</xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="DiversityComponentType">
<xsd:complexContent>

<xsd:extension base="types:ComponentType">
<xsd:sequence>

<xsd:element name="diversity"
type="DiversityInterface"
minOccurs="1" maxOccurs="1"/>

</xsd:sequence>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>

</xsd:schema>

A.2 switch.xsd

<xsd:schema xmlns="http://www.ics.uci.edu/pub/arch/xArch/switch.xsd"
xmlns:xsd="http://www.w3.org/2000/10/XMLSchema"
xmlns:xlink="http://www.w3.org/1999/xlink"
xmlns:archinstance="http://www.ics.uci.edu/pub/arch/xArch/instance.xsd"
xmlns:types="http://www.ics.uci.edu/pub/arch/xArch/types.xsd"
xmlns:diversity="http://www.ics.uci.edu/pub/arch/xArch/diversity.xsd"
targetNamespace="http://www.ics.uci.edu/pub/arch/xArch/switch.xsd"
elementFormDefault="qualified"
attributeFormDefault="qualified">

<xsd:import namespace="http://www.ics.uci.edu/pub/arch/xArch/instance.xsd"
schemaLocation="http://www.ics.uci.edu/pub/arch/xarch/schemas/instance.xsd"/>

<xsd:import namespace="http://www.ics.uci.edu/pub/arch/xArch/types.xsd"
schemaLocation="http://www.isr.uci.edu/projects/xarchuci/ext/types.xsd"/>

<xsd:import namespace="http://www.ics.uci.edu/pub/arch/xArch/diversity.xsd"
schemaLocation="http://www.isr.uci.edu/projects/xarchuci/ext/diversity.xsd"/>

<xsd:complexType name="SwitchConnector">
<xsd:complexContent>
<xsd:extension base="types:Connector">
<xsd:sequence>
<xsd:element name="selector"

type="diversity:DiversityInterface"



minOccurs="1" maxOccurs="1"/>
<xsd:element name="inPort"

type="archInstance:Interface"
minOccurs="1" maxOccurs="1"/>

<xsd:element name="outPort"
type=archInstance:Interface"
minOccurs="2" maxOccurs="2"/>

</xsd:sequence>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>

</xsd:schema>

A.3 style.xsd

<xsd:schema xmlns="http://www.ics.uci.edu/pub/arch/xArch/style.xsd"
xmlns:xsd="http://www.w3.org/2000/10/XMLSchema"
xmlns:xlink="http://www.w3.org/1999/xlink"
xmlns:archinstance="http://www.ics.uci.edu/pub/arch/xArch/instance.xsd"
xmlns:types="http://www.ics.uci.edu/pub/arch/xArch/types.xsd"
targetNamespace="http://www.ics.uci.edu/pub/arch/xArch/style.xsd"
elementFormDefault="qualified"
attributeFormDefault="qualified">

<xsd:import namespace="http://www.ics.uci.edu/pub/arch/xArch/instance.xsd"
schemaLocation="http://www.ics.uci.edu/pub/arch/xarch/schemas/instance.xsd"/>

<xsd:import namespace="http://www.ics.uci.edu/pub/arch/xArch/types.xsd"
schemaLocation="http://www.isr.uci.edu/projects/xarchuci/ext/types.xsd"/>

<xsd:complexType name="StyleComponentType">
<xsd:complexContent>

<xsd:extension base="types:ComponentType">
<xsd:sequence>

<xsd:element name="style" type="xsd:string"
minOccurs="0" maxOccurs="1"/>

</xsd:sequence>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>

</xsd:schema>



A.4 subtype.xsd

<xsd:schema xmlns="http://www.ics.uci.edu/pub/arch/xArch/subtype.xsd"
xmlns:xsd="http://www.w3.org/2000/10/XMLSchema"
xmlns:xlink="http://www.w3.org/1999/xlink"
xmlns:archinstance="http://www.ics.uci.edu/pub/arch/xArch/instance.xsd"
xmlns:types="http://www.ics.uci.edu/pub/arch/xArch/types.xsd"
targetNamespace="http://www.ics.uci.edu/pub/arch/xArch/subtype.xsd"
elementFormDefault="qualified"
attributeFormDefault="qualified">

<xsd:import namespace="http://www.ics.uci.edu/pub/arch/xArch/instance.xsd"
schemaLocation="http://www.ics.uci.edu/pub/arch/xarch/schemas/instance.xsd"/>

<xsd:import namespace="http://www.ics.uci.edu/pub/arch/xArch/types.xsd"
schemaLocation="http://www.isr.uci.edu/projects/xarchuci/ext/types.xsd"/>

<xsd:complexType name="SubtypeComponentType">
<xsd:complexContent>

<xsd:extension base="types:ComponentType">
<xsd:sequence>

<xsd:element name="baseType"
type="archinstance:XMLLink"
minOccurs="0" maxOccurs="1"/>

<xsd:element name="subTypeRelation"
type="xsd:string"
minOccurs="0" maxOccurs="1"/>

</xsd:sequence>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>

</xsd:schema>


