An Aggressive Aggregation of XML Documents for
Summary Data Generation

Jong P. YOON
The Center for Advanced Computer Studies
University of Louisiana, Lafayette, LA 70504-4330

Larry KERSCHBERG
Department of Information and Software Systems Engineering
George Mason University, Fairfax, VA 22030-4444

ABSTRACT

Aggregate functions are critically important and
widely used to build summary data in WWW. Ag-
gregation queries, that are used to summarize source
data, may often result in incorrect answers due to
the irregularity of XML data: an XML-element ap-
pears with irregular content structure and contains
non-atomic or empty content although it follows a
DTD or XML Schema. To cope with this problem,
we propose an aggressive aggregation method for sum-
marizing XML data. The contribution of this paper
includes sound and complete collection of information
from irregular XML data, and construction of sum-
mary data for XML documents in WWW. The method
proposed in this paper can also be used for many other
Web-based applications involving semistructured doc-
uments for electronic commerce and for OLAP data
cubes.

Keywords: XML Summary Data, XML Aggre-
gate Functions, XML Concept Hierarchy

1 INTRODUCTION

Extensible Markup Language (XML) is a new stan-
dard for representing and exchanging data in a variety
of applications, each with its own special needs. Web
information is increasingly represented in XML. As
such XML web information increases, the generation
of summary data about massive XML documents is
needed.

Typical summary data generation methods in-
clude a technique of On-Line Analytical Processing
(OLAP). OLAP in relational databases allows users
to view aggregate XML data along a set of dimensions
and hierarchies. Summary data can be organized in a
data cube, which is simply a multidimensional hierar-
chy of aggregate values.

However, aggregation queries, or simply “aggre-
gates,” that are used to summarize source data, may
often result in incorrect answers. That is, generating
summary data for XML documents in World Wide
Web (WWW) is unsatisfactory. It is partly because
XML-element appears irregularly and has various con-
tent types. XML data is tagged by an XML-element.
XML-elements are properly nested. The content of
XML-elements may be characters, elements, a mix of
characters and elements, or empty. An XML-element
can be classified according to how its content is bound
to the element:

e Text-content element. This element contains
character data only or text only content.

o Element-content element. This element contains
sub-element only content.

o Mized-content element. This element contains
both characters and sub-elements together.

o Empty-content element. This element does not
contain any value of above.

For example, in Figure 1, <p_name> in line (2) is
a text-content element, while <part> in line (5) is
an element-content element. Note that XML-elements
can contain whitespaces which can be parsed by an
XML parser. <product>in line (1) is a mixed-content
element, and <cost> in line (28) is an empty-content
element. In addition to these four types of XML-
elements together, with one more element type called
the “wvirtual-content element” which will be described
in the later section, comprise a new method of per-
forming aggregate functions for XML data. In addi-
tion, we investigated that there needs one more type
called “virtual-content element” which will be defined
in Section 3.

(0) <prodlist>

(1) <product> Equipment

(2) <p_name> Computer </p_name>
(3) <p_id> cp4 </p_id>

(4) <price> 800 </price>

(5) <part> <c_name>Monitor </c_name>
(6) <cost> 100 </cost></part>
9] <part> <c_name> Body </c_name>
(8) <cost> 300 </cost>

<part> <c_name>Processor </c_name>
<cost> 70 </cost></part>
<part><c_name>Board</c_name></part></part>

9) <part> <c_name>Keyboard </c_name>

(10) <cost> 50 </cost></part></product>
(11) <product> Equipment

(12) <p_name> Computer </p_name>

(13) <p_id> pc5
(14) <price> 500 </price>

(15) <part> <!-- the value "body" omitted. -->

(16) <part> <c_name>Processor </c_name>

17) <cost> 70 </cost></part>

(18) <part> <c_name>Board </c_name></part></part>
(19) <part>

(20) <c_name>Monitor </c_name></part>

(21) <part>

(22) <c_name>Keyboard </c_name><cost>80</cost></part>

(23) </product>
(24) <product> Equipment

(25) <p_name> PC </p_name>

(26) <p_1id>pc6<price>700</price><part>Monitor</part>
27) <part>Body</part><part><c_name>Keyboard</c_name>
(28) <cost /> </part>

(29) </product></prodlist>

Figure 1: Example of XML Data (in XDB2)

1.1 Motivating Examples

Consider an XML data as shown in Figure 1.

EXAMPLE 1.1 Consider that a query is posed
to compute the number of computer “body” from
WWW. Suppose that XML data in Figure 1 is avail-
able on the WWW. Computer “body” cannot be
matched in line (15) because the element part is
an element-content element, meaning that it does not
have the value “body” bound to itself. Instead, it
contains sub-elements only. Although there may ex-
ist unassembled bodies, there is no computers without
having a body. In this case, one may want to count
the sub-parts as a computer body if all the necessary
sub-parts are available separately from the body.

EXAMPLE 1.2 What if one wants to count the
micro “processors” again. In the same XML data,
part in line (7) is a text-content element, meaning
that there is no sub-elements. However, assume that
the body is specified and so implicitly are its compo-
nents. If one wants to count a processor for such a
computer, we need to take that into account.

To cope with the problems illustrated in the

motivating examples above, we propose a novel
method of aggregating XML data to build summary
data. We use DTD (Document Type Definition) or
XML Schema that contains information about XML-
elements of XML document instances. In addition,
the concept tree will be constructed to specify the syn-
onyms and component hierarchies among those terms
that are useful to generate summary data.

1.2 Related Work

OLAP is a technology that supports applications
requiring multidimensional analysis of data [5], which
may be not only relational but also semistructured.
OLAP allows users to have aggregate-results from
both relational and semistructured data (e.g., number
of parts for assembly) along a set of dimensions (e.g.,
inventory, production order and shipment, time) and
dimension hierarchies (e.g., day, month, and year) [9].

Summary or fact tables are important in conven-
tional data warehousing [16]. OLAP data cubes are
generated by using the group-by operator in SQL and
the size of those data cubes can be estimated [9]. Op-
erations are developed [4], and interactive issues of
aggregation[12], and incompleteness issues [11] have
been investigated.

With the recent emergence of XML [6], a proposed
standard for exchanging information on the Web [13],
and the remarkable similarity of XML to typical mod-
els for semistructured data, support for query lan-
guages for semistructured data — and the performance
of such queries over large semistructured databases —
is of increasing importance.

Views are actively generated in the application of
electronic commerce [2]. View generation in general
can be used to build summary data [8] although these
XML based views were not exploited in that way.

Queries or views initially expressed to build XML
summary data need to be rewritten to produce sound
and complete results. Literature on query rewrit-
ing falls into three general approaches. (1) The first
approach is syntactic query rewriting [7, 15]. User-
provided queries can be rewritten using structure hi-
erarchy information if syntactically exact matching
is not the only one available in a database schema.
(2) The second approach is semantic query rewriting
[17, 18]. User-provided queries can be rewritten us-
ing semantic information such as view, integrity con-
straints, and rules. The above two approaches are
handled internally by a system. In contrast, (3) the
third approach is user-interactive query rewriting [19].
User-provided queries are rewritten directly by users
or at least by using user inputs.

2 PRELIMINARIES
2.1 XML Document and DTD

XML provides a simple and general markup facil-
ity as shown in the document of Figure 1. Consider a
DTD for XML documents Figure 1 that is essentially
a context-free grammar with several restrictions. For
example, one may define the well-formed DTD decla-

ration to constrain the XML documents as follows:
<!ELEMENT prodlist (product)x*>

<!ELEMENT product (#PCDATA|(p_name,p_id,price?,part*))*>

<!ELEMENT part (#PCDATA|(c_name,cost?)|part*)*>
By defining an element as #PCDATA with other sub-

elements, the element can be a mixed-content element.
Notice that all elements are of #PCDATA type unless
further specified.

Of the recently proposed standardization specifi-
cations, XML Schema is considered in this paper.
XML Schema [1] expresses shared vocabularies, and
the structure, content and semantics of XML docu-
ments. One XML Schema example for the element

part in the DTD is as follows:
<xsd:element name="part" type="xsd:partType" />
<xsd:complexType name="partType" mixed="true"
minOccurs="0" maxQOccurs="2" />
The element part is recursively defined as a mixed-

content element in both DTD and XML Schema. In
the XML Schema above, a part consists of at most
two sub-parts. This information is very useful in that
although a part information may be missing, if three
sub-parts are matched, so are the super parts “by def-
inition” (of XML Schema). In the later section, we
will explain this in more detail.

2.2 Querying XML Documents

Research on semistructured data has addressed
query-language design [3, 7, 10], and query process-
ing and optimization [14]. In this section, we use the
XML-QL language [10], as an example language to
query XML documents and further to expand a user
query to generate summary data.

The query examples below are specified with re-
spect to the examples in Section 1, respectively. XML-
QL queries consists of a WHERE clause, specifying what
to select, and a CONSTRUCT clause, specifying what to
return.

EXAMPLE 2.1: (XML-QL for EXAMPLE 1.1)

Count all (computer) bodies from the XML docu-

ments in www.a.b.e/XDB2.
WHERE <product> <part> $t </>
</> IN "www.a.b.e/XDB2",
(CONTAINS ’body’, $t)
CONSTRUCT <result> <#bodies> COUNT ($t) </>
</>

EXAMPLE 2.2: (XML-QL for EXAMPLE 1.2)
Count all (micro-) processors from the XML docu-
ments in www.a.b.e/XDB2.

(0) <concept>

(1) <synonym>

(2) <term> Computer </term>

(3) <term> PC </term> </synonym>

(4) <synonym>

(6) <term>Body</term><term>Unit</term></synonym>

(6) <component>Computer <!-- Component Hierarchy -->

(7) <term> Momitor </term>

(8) <term> Keyboard </term>

(9) <term>Body<term>Processor</term>

(10) <term> Board </term> </term> </component>
(11) </concept>

Figure 2: Concept Tree Example in XML

WHERE <product> <part><part> $t </></>
</> IN "www.a.b.e/XDB2",
(CONTAINS ’processor’, $t)
CONSTRUCT <result> <#processors> COUNT($t) </>
</>
The expression <product> ... </product> in

the WHERE clause is called a condition pattern, where
the one in the CONSTRUCT clause is called a display
pattern. Notice that the predicate CONTAINS is a
user-defined function that takes a word and data, and
returns true if the word is contained in the data.
COUNT is an aggregate function. All aggregate func-
tions (SUM, MAX, MIN, AVG, etc) can be considered.
In the later section, the condition pattern will be
rewritten to retrieve sound and complete aggregations
from XML data.
2.3 XML Concept Tree

The terms or values used in XML documents are
called concepts if they are essential for query matching.
That is, the content of XML-elements can refer to the
concepts. Such concepts are also represented in XML.
The concept tree represents (Hierarchy-type, Term)
pairs. There are two types of hierarchies: synonyms
and components. For example, assume that the term
“Computer” has its components such as ”Monitor,”
“Keyboard,” and “Body,” and the term “Body” has,
in turn, its components like “Processor,” and “Board.”
Also, one may assume that the terms “Computer” and
“PC” are synonymous, then the XML concept tree is
constructed as in Figure 2.

3 XML AGGREGATE FUNCTIONS

In this section, we describe a novel method of ag-
gregating XML data. Summary data require one or
more aggregate functions like SUM, MAX, MIN, AVG,
COUNT, etc. When aggregating XML data, broadly
speaking, there may be the two approaches with re-
spect to the following assumptions:

e Naive Approach (Optimistic Assumption):
Assume that the structure of XML data models
adequately the real-world enterprise. With this

optimistic assumption, whatever results returned
from the XML data are acceptable.

e Aggressive Approach (Pessimistic Assumption):
Assume that the structure of XML data is usually
irregular and initially partially unknown. With
this pessimistic assumption, results returned from
the XML data may not be satisfactory. One may
want to expand the result to some extent. This
aggressive approach makes use of schematic or se-
mantic information. In this paper, we exploit two
types of information: DTD (or XML Schema) of
the schematic information, and a concept tree of
the semantic information. Of course, for this, we
may use other types of information, e.g., rules
extracted by using data mining techniques. The
aggregation operation in this approach is called
expanded aggregation.

We will take one aggregate function COUNT as an
example. The “counting” method we propose in this
section can be modified to any other aggregate func-
tion without difficulty. We first construct a concept
tree that represents synonyms and component hierar-

chies among terms used in XML data.
3.1 Expanded Aggregation Using XML
Schema

We first assume for simplicity that COUNT (p; =’
A") denotes « for an XML-QL query, WHERE p; =’
A" CONSTRUCT <result> <#p;> COUNT(p1) </></>.
The aggressive approach is by nature applied to
element-content elements and mixed-content elements
when XML schemas are used to compute expanded
aggregation of XML data. Notice that text-content
elements or empty-content elements can be retrieved
simply by the naive approach.

Consider the XML Schema as follows.

<xsd:element name="$e" type="xsd:$t" />
<xsd:complexType name="$t" minOccurs="$n$"
max0ccurs="m" />

The XML-element $e is defined as an element-
content element in the schema, and it consists at least
n and at most m of the type $t. Consider an aggre-
gation query, COUNT(p; =' A’). Suppose that p; is
either an element- or mixed-content element, and it
does no value bound to itself. Then, we need to ex-
pand the given query for the aggregation of element-
/mixed-content element.

1. Aggressive Approach for Super Elements.

(a) Verify which element value contains the re-
quested value.

(b) If an element-content element does not con-
tain the same requested value, then that

element implicitly has the same requested
value.

2. Aggressive Approach for Sub-Elements.

(a) First, count the number of sub-elements of
the same type. If the outcome of the count-
ing is out of the range [r, m], then no answer
is provided.

(b) If the outcome of the counting is the maxi-
mum occurrence m, then we know that the
XML document describes all required sub-
elements for p;, the element p; exists im-
plicitly. Therefore, the total count increases
by one.

(c) Otherwise, the expansion aggregation is de-
pendent on the application domain, which
can be represented in a concept tree that will
be used as well in the following subsection.

Examples
Recall the XML schema that we considered in Sec-

tion 2.1:
<xsd:element name="part" type="xsd:partType" />

<xsd:complexType name="partType" mixed="true"
minOccurs="0" maxOccurs="2" />

A full expansion of the queries in EXAMPLE 2.1
and 2.2 can be as follows:

EXAMPLE 3.1: (XML-QL for EXAMPLE 2.1)
WHERE (<product> <part> $t </>
</> IN "www.a.b.e/XDB2",
(CONTAINS $t, ’body’)) or
(<product> <part> $s <part> $x </></>
</> IN "www.a.b.e/XDB2.xml",
COUNT($x)=2)
CONSTRUCT <result> <i#bodies> COUNT($t) + COUNT($s) </>
</>

The requested “body” can be matched and counted
by a traditional method. If a product has no body
content for the part element, as shown in the second
part of the WHERE part, sub-elements is counted. If
the outcome of the counting reaches the maximum
requirement, then it can be assumed to exist. For
example, in lines (15) - (18) of Figure 1, there is
no value ”body” but two values of the sub-elements.
Finally, those two outcomes are added.

EXAMPLE 3.2: (XML-QL for EXAMPLE 2.2)
WHERE <product> <part> $y <part> $t </></>
</> IN "www.a.b.e/XDB2",
(CONTAINS $t, ’processor’) or

((NOT (CONTAINS $t, ’processor’)) and (EXISTS ($y)))
CONSTRUCT <result> <#processors> COUNT($t) + COUNT($y) </>

</>

Suppose that there are XML documents which

do not have the value processor for the super ele-
ment part. For example, in line (27) of Figure 1,
“body” has implicitly its component value. Because
the super element is specified, its component elements
processor should exist implicitly.
3.2 Expanded Aggregation Using Con-
cept Tree

We again consider an aggregate function, a. As il-
lustrated in the motivating examples, we need to take
a few types of XML-elements into account. We do not
consider mixed-content elements and empty-content
elements because such elements have values explic-
itly bound to themselves and so they can be clearly
evaluated by the conventional method. Instead, we
consider in this paper text-content element types and
element-content element types in addition to the new
type which will be defined below, the Virtual-content
element.

Definition 3.1: An XML-element may have one or
more sub-elements if the value (term) bound to that
element has one or more component terms according
to a concept tree. A wvirtual-content element is defined
as a sub-element such that it does not exist and its
parent element is a text-content element.

Although a current XML-element is a text-content
element, we may assume that that element is regarded
as a mixed-content element if it contains virtual-
content elements. The virtual-content element is also
one of the element types we need to consider because
it may be specified as the value to be aggregated. One
example has been illustrated in EXAMPLE 1.2.

A concept tree represents synonyms and compo-
nent hierarchies among the terms used in XML data.
This subsection describes a method of making use of
a concept tree. Consider an aggregation function «, is
required for summary data. For each element type, we
describe the naive and aggressive approaches. In the
aggressive approach, there are two ways of expanding
aggregation queries: (1) by using synonyms, and (2)
by using component hierarchies.

o Aggregation of Text-content Element Types.

1. Naive Approach. A conventional aggrega-
tion (counting in this case) method can be
applied. For example, suppose that a query
is expressed to build XML summary data:
COUNT(< p-name > =" Computer’). In
Figure 1, if the element <p_name> as in lines
(2), (12), and (25) is a text-content type,
a simple method of aggregation can be per-
formed.

2. Aggressive Approach using Synonyms.

One may still want to expand the aggre-
gation using synonyms. For a synonym B
of the given term A, the expanded aggrega-
tion is: COUNT(p; =" A")+ COUNT (p2 =’
B'). Notice that “Computer” is synonymous
with “PC.” The expanded query can then
be COUNT(< p_name > =" Computer’)+
COUNT(< p-name > =" PC").

3. Aggressive Approach using Component Hi-
erarchies. It does not apply.

e Aggregation of Element-content Element can be
modified easily from the above

o Aggregation of Virtual-content Element.

1. Naive Approach. None is retrieved to be ag-
gregated.

2. Aggressive Approach using Synonym. The
expanded query is as follows if a synonym B
is found in the concept tree: COUNT(p; =’
B').

3. Aggressive Approach using Component Hi-
erarchies. Check the parent element to see if
A is a component of the content of the par-

ent element. The expanded query is simply
1.

Depth/Degree of Aggregation Expansion

The degree or the depth of the aggregation query ex-
pansion becomes an important issue. There are two
degrees of the expansion in addition to non-expansion:

e Partial Expansion: Depending upon user pref-
erence or input, the expansion process termi-
nates. If one time expansion is allowed, then
the aggregation query using a synonym B can
be COUNT(p; =" A")+ COUNT(p; =" B’'), and
the query using a component hierarchy can be n,
where n is the number of those elements which
are of element content type and also have all the
terms in the sub-elements.

e Full Expansion: All possible synonyms and all
component hierarchies are taken into account for
query expansion.

1. Expansion using Synonyms. For given term
A, if there are the n number of terms, B’s,
that are synonymous, the counting aggrega-
tion query can be COUNT(p; =" A’) + X",

2. Expansion using Component Hierarchies. If
an element is an element-content element,
then components are examined. However,
if not all components are available, and if
there exists an element-content element, we
need to check its sub-elements with compo-
nent hierarchies. The aggregation query in
full expansion is COUNT(p; =" B] Ap; =’
Bé A...\Np =]’9_1) if (p1 =/ C{ Apr =
CyA...Apr =" C]_;) holds and if in turn
(p1 =" DiApy =" DLA.Apy =" D}, _;) holds
and so on, where the term A, B,C, D, ... has
the k, [, m,n number of components, respec-
tively.

Examples

Using the concept tree in Figure 2, a full expansion
of the queries in EXAMPLE 2.1 and 2.2 can be as
follows:

EXAMPLE 3.3: (XML-QL for EXAMPLE 2.1)
WHERE <product> <part> $t <part> $x </></>
</> IN "www.a.b.e/XDB2",
(CONTAINS $t, ’body’) or (CONTAINS $t,

</>

In Figure 2, lines (4) - (6) represent that “body”
and “unit” are synonymous. The term “body” con-
sists of “processor” and “board.”

EXAMPLE 3.4: (XML-QL for EXAMPLE 2.2)
WHERE <product> <part> $y <part> $t </></>
</> IN "www.a.b.e/XDB2",
(CONTAINS $t, ’processor’) or
((NOT (CONTAINS $t, ’processor’)) and

((CONTAINS $y, ’body’) or (CONTAINS $y, ’unit’)))
CONSTRUCT <result> <#processors> COUNT($t)+COUNT($y)</>

</>

4 CONCLUSION

This paper has described the “aggressive” approach
to generate summary data for XML documents in
WWW. The summary data contains aggregation in-
formation of XML documents. In this paper, we con-
sidered only a counting method by using XML Schema
and the concept hierarchy. We constructed a con-
cept tree in XML which can be easily integrated with
user-provided queries. The proposed approach can
be easily applied to other aggregation operations such
as SUM, MAX, MIN, AVG. The contribution of this
paper includes a new method of generating complete
summary data about XML documents. Our extended
work includes approximate aggregation of XML doc-
uments in WWW.

’unit?’)
or ((CONTAINS $x, ’processor’) and (CONTAINS $x, ’board’))
CONSTRUCT <result> <#bodies> COUNT($t) + COUNT($s) </>

References

(1]
2]

[9]

(10]

[11]
[12]
(13]

[14]

[17]

18]

[19]

XML Schema specification. Technical

www.c3.org/TR/xmlschema/, 2000.

S. Abiteboul, B. Amann, S. Cluet, A. Eyal, L.. Mignet, and
T. Milo. Active views for electronic commerce. In Proc.
Intl. Conf. on Very Large Data Bases, 1999.

S. Abiteboul, D. Quass, J. McHugh, J. Widom, and
J. Wiener. The Lorel query language for semistructured
data. International Journal of Digital Libraries, 1(1):68—
88, 1997.

R. Agrawal, A. Gupta, and S. Sarawagi. Modeling multidi-
mensional databases. In Intl. Conf. on Data Engineering,
1997.

report,

D. Barbara. Special issue on supporting on-line analytical
processing. IEEE Data Engineering, 20:2-44, 1997.

T. Bray, J. Paoli, and C. Sperberg-McQueen. Extensible
markup language (XML) 1.0.
World Wide Web Consortium Recommendation. Available
at http://www.w3.org/TR/REC-xml, 2 1998.

P. Buneman, S. Davidson, G. Hillebrand, and D. Suciu. A
query language and optimization techniques for unstruc-
tured data. In Proc. of the ACM SIGMOD Conf. on Man-
agement of Data, pages 505-516, 1996.

Y. Cui and J. Widom. Practical lineage tracing in data
warehouses. In Intl. Conf. on Data Engineering, 2000.

P. Deshpande, J. Naughton, K. Ramasamy, A. Shukla,
K. Tufte, and Y. Zhao. Cubing algorithms, storage esti-
mation, and storage and processing alternatives for OLAP.
IEEE Data Engineering, 20:3—-11, 1997.

A. Deutsch, M. Fernandez, D. Florescu, A. Levy, D. Maier,
and D. Suciu. Querying XML data. IEEE Data Engineer-
ing, 22:10-18, 1999.

C. Dyreson. Using an incomplete data cube as a summary
data sieve. IEEE Data Engineering, (20):19-26, 1997.

V. Harinarayan. Issues in interactive aggregation. IEEE
Data Engineering, (20):12-18, 1997.

R. Light and T. Bray. Presenting XML. Sams, Indianapo-
lis, Indiana, 1997.

J. McHugh and J. Widom. Query optimization for XML.
In Proc. Intl. Conf. on Very Large Data Bases, pages 93—
100, 1999.

Ami Motro. FLEX: A tolerant and cooperative user inter-
face to database. IEFE Transactions on Knowledge and
Data Engineering, 2, 1990.

I. Mumick, D. Quases, and B. Mumick. Maintenance of
data cubes and summary tables in a warehouse. In Proc. of
the ACM SIGMOD Conf. on Management of Data, pages
100-111. 1997.

Y. Papakonstantinou and V. Vassalos. Query rewriting for
semistructured data. In Proc. of the ACM SIGMOD Conf.
on Management of Data, pages 455-466, 1999.

J. Yoon, A. Hafez, and V. Raghavan. Query rewriting for
multimedia XML data retrieval. In the 6th Int’l Workshop
on Multimedia Information Systems, Chicago, IL, 2000.

J. Yoon and S. Kim. A three-level user interface to multi-
media digital libraries with relaxation and restriction,. In
IEEE Int’l Conference on Advance Digital Libraries, pages
206—215, Santa Barbara, CA, 1998.

