A Normal Form for XML Documents

■ Overview of Relational Database Design Process

- Functional Dependencies and Normalization
-* functional dependencies (FDs)
-* redundancy and update anomalies
n- third normal form (3NF) and Boyce-Codd normal form (BCNF)
** design algorithms for 3NF and BCNF
- Nested Normal Form for nested relations

■ Normal Form for XML docuemnts

- redundancy and update anomalies for XML docuemnts
- functional dependencies
- XNF: a normal form for XML documents
- a design algorithm for XNF

This section is based on the paper A Normal Form for XML Documents by M. Arenas
L. Libkin in Proceedings of ACM PODS02.

A motivation Example for Normal Form Relations

course	title	student_id	Name	Major	Grade
391	Database	1234	Sarah	CS	9
391	Database	4321	Tom	CS	8
391	Database	2345	Bill	CS	7
201	Program	1234	Sarah	CS	6
201	Program	2345	Bill	CS	5

Motivation Example

```
StudentCourse \(=(\) course, title, student_id, name, major, grade \()\)
Student \(=(\) student_id, name, major \()\)
Course \(=(\) Course, title \()\)
Registration \(=(\) course, student_id, grade \()\)
```


Functional Dependencies

- Functional dependencies (FDs)

Let R be a relation scheme, and $\mathrm{X} \subseteq \mathrm{R}$ and $\mathrm{Y} \subseteq \mathrm{R}$ be sets of attributes. Then the functional dependency

$$
\mathrm{X} \rightarrow \mathrm{Y}
$$

holds on R if in any legal relation r, for all pairs of tuples $t 1$ and $t 2$ in r

$$
t_{1}[X]=t_{2}[X] \quad \Rightarrow \quad t_{1}[\mathrm{Y}]=\mathrm{t}_{2}[\mathrm{Y}] .
$$

Example: student_id \rightarrow name course, student_id --> grade

Desirable Properties of Decomposition

■ Minimizing redundancy

- Boyce-Codd normal form
- third normal form

Boyce-Codd Normal Form

- A relation scheme R is said to be in Boyce-Codd normal form (BCNF) if for any non-trivial FD $\mathrm{X} \rightarrow \mathrm{A}$ which holds in R, X is a key of R , that is, $\mathrm{X} \rightarrow \mathrm{A}$ holds in R .
- no partial redundancy
- no transitive redundancy

■ Let U be a set of attributes, F be a set of $F D s$, and $D=\{R 1$, ..., Rn$\}$ be a decomposition of U . Then D is said to be a BCNF decomposition of U with respect to F if

- R is a join loss-less decomposition of U wrt F , and
- every relation scheme Ri in D is in BCNF wrt F.
- Example

Regist (Course\#, Student\#, Grade, Address, Phone)
is not in BCNF since
Student\# \rightarrow Address holds but Student \# is not a key
Course (Course\#, Prof, Office, Phone)
is not in BCNF because Prof \rightarrow Office holds but Prof is not a key
But
\{ (Course\#, Student\#, Grade), (Student\#, Adress, Phone) \} is a BCNF decomposition of Regist.
\{ (Course\#, Porf), (Prof, Office, Phone) $\}$ is a BCNF decomposition of Course.

Algorithm for BCNF decomposition

```
Input U: a set of attributes
    F: a set of FDs
Output D: a BCNF decomposition of U wrt F
Method
    (1) }\textrm{D}={\textrm{U}}
    (2) while there exists a relation scheme Q in D that is not in BCNF do
        begin
            find a nontrivial FD X }->\textrm{W}\mathrm{ that violates BCNF, i.e.,
                X }->\textrm{W}\mathrm{ in }\mp@subsup{\textrm{F}}{}{+}\mathrm{ and }\textrm{XW}\subseteq\textrm{Q}\mathrm{ and }\textrm{X}-/->\textrm{Q}
            X*:= {A|A is in (Q - X) and F | X }->\textrm{A}}\mathrm{ ;
            replace Q in D by two schemes ( }\textrm{X}\cup\mp@subsup{\textrm{X}}{}{*})\mathrm{ and (Q - X*)
            end;
```

Note that it is NP-complete to determine whether a relation scheme is in BCNF wrt F.

NNF: A Normal Form for Nested Relations

■ Functional dependency and multi-valued dependencies
■ Path Attributes
■ Minimizing redundancy and update anormalies

Motivation Example for XML

<!DOCTYPE courses [
\(<!\) ELEMENT courses (course*) >
<!ELEMENT course(title, taken_by) >
<!ATTLIST course cno CDATA \#REQUIRED>
<!ELEMENT title (\#PCDATA)>
<!ELEMENT take_by(student*)>
<!ELEMENT student (name, grade)>
<!ATTLIST student sid CDATA \#REQUIRED>
<!ELEMENT name (\#PCDATA)>
$<!$ ELEMENT grade (\#PCDATA) >
] $>$

692 Normal Form for XML

692 Normal Form for XML

Motivation Example for XML

```
<!DOCTYPE courses [
    <!ELEMENT courses ( course*, student_info*) >
    <!ELEMENT course( title, taken_by) >
    <!ATTLIST course cno CDATA #REQUIRED>
    <!ELEMENT title (#PCDATA)>
    <!ELEMENT take_by( student*)>
    <!ELEMENT student(grade) >
    <!ELEMENT grade (#PCDATA) >
    <!ATTLIST student sid CDATA #REQUIRED>
    <!ELEMENT student_info( sid*, name) >
    <!ELEMENT numberEMPTY>
    <!ATTLIST number sid CDATA #REQUIRED>
    <!ELEMENT name ( #PCDATA)>
] >
```


Notations

■ Assume the following disjoint sets

- EL: the set of all element names
- Att: the set of all attribute names, starting with @
- Str: the set of all possible string valued attributes
- Vert: the set of node identifies
- A DTD (Document Type Definition) is defined to be
- $D=(E, A, P, R, r)$, where
$\cdots+E$ is a finite subset of $E L$
- A is a finite subset of Att
- $\times \mathrm{P}$ is a mapping from E to element type definitions, defined as follows
- $\mathrm{P}(\mathrm{t})=$ EMPTY or
- $\mathrm{P}(\mathrm{t})::=$ empty sequence $\mid \mathrm{t}^{\prime}$ in $\mathrm{E} \mid \mathrm{P}(\mathrm{t})$ union $\mathrm{P}(\mathrm{t})|\mathrm{P}(\mathrm{t}) \mathrm{P}(\mathrm{t})| \mathrm{P}(\mathrm{t})^{*}$
$\cdots R$ is a mapping from E to the power set of A
- r is in E as the root element

■ Given a DTD $\mathrm{D}=(\mathrm{E}, \mathrm{A}, \mathrm{P}, \mathrm{R}, \mathrm{t})$, a string $\mathrm{w}=\mathrm{w} 1, \ldots, \mathrm{wn}$ is a PATH in D if

- $\mathrm{w} 1=\mathrm{r}$,
- wi is in the alphabet of $\mathrm{P}($ wi-1), for each i in [2, $\mathrm{n}-1]$, and
- wn is in the alphabet of $\mathrm{P}(\mathrm{wn}-1)$ or $\mathrm{wn}=@ 1$ for some $@ 1 \mathrm{in} \mathrm{R}(\mathrm{wn}-1)$
- Assume w is a path in D, length (w) is defined as n, and last(w) as wn.
■ Given a DTD D,
- Paths(D) stands for the set of all paths in D,
- Epaths(D) stands for the set of all paths that ends with an element type
■ DTD is recursive if Paths(D) is infinite.

Example

```
<!DOCTYPE courses [
    <!ELEMENT courses ( course*) >
    <!ELEMENT course( title, taken_by) >
    <!ATTLIST course cno CDATA #REQUIRED>
    <!ELEMENT title (#PCDATA)>
    <!ELEMENT take_by( student*)>
    <!ATTLIST student sid CDATA #REQUIRED>
    <!ELEMENT name ( #PCDATA)>
    <!ELEMENT grade (#PCDATA) >
] >
```

The followings are paths in D
courses, courses.course courses.course.@cno courses.course.title courses.course.title.S courses.course.taken_by courses.course.taken_by.student
courses.course.taken_by.student.@sid courses.course.taken_by.student.name courses.course.taken_by.student.name.S courses.course.taken_by.student.grade courses.course.taken_by.student.grade.S

- An XML tree T is defined to be a tree (V , lab, ele, att, root), where
- V is a finite subset of Vert (nodes)
- lab: V => EL
- ele: V $=>\operatorname{Str} U^{*} *$
- att is a partial function $\mathrm{V} \times \mathrm{Att}=>\operatorname{Str}$
- root in V is called the root of T

■ Given an XML tree T, a string w1 ... wn, where with wi, $\mathrm{I}<$ $\mathrm{n}-1$, in EL, and wn is in the union of $\mathrm{El}, \mathrm{Att}$, and $\{\mathrm{S}\}$.

- The string is a path in T if tehre are vertices $\mathrm{v} 1, \ldots, \mathrm{vn}-1$ in V such that
n+ v1 = root, vi+1 is a child of vi for $\mathrm{I}<=\mathrm{n}-1, \mathrm{lab}(\mathrm{vi})=$ wi for $\mathrm{I}<=\mathrm{n}-1$
\cdots if wn in $E l$, then there is a child vn ofv $n-1$ such that $\operatorname{lab}(v n)=w n$.
(m If $\mathrm{wn}=$ @1 then $\operatorname{att}(\mathrm{vn}-1, @ 1)$ is defined
** if $w n=S$ (\#PCDATA) then vn-1 has a child in Str.

■ T is compatible with D if and only if

- paths(T) is a subset of paths(D)

Tree Tuples

■ XML trees are defined as sets of tree tuples

- Given a DTD $\mathrm{D}=(\mathrm{E}, \mathrm{A}, \mathrm{P}, \mathrm{R}, \mathrm{r})$, a tree tuple t in D is defined as a function from paths(D) to Vert $\mathrm{U} \operatorname{Str} \mathrm{U}$ \{null\} such that
- For p in EPaths(D), $t(p)$ is in Vert $+\{$ null $\}$, and $t(r)=/=\{$ null $\}$
- For p in paths $(D)=E P a h t h s(D), t(p)$ is in $\operatorname{Str}+\{$ null $\}$.
- If $\mathrm{t}(\mathrm{p} 1)=\mathrm{t}(\mathrm{p} 2)$ and $\mathrm{t}(\mathrm{p} 1)$ is in Vert, then $\mathrm{p} 1=\mathrm{p} 2$
- If $\mathrm{t}(\mathrm{p} 1)=$ null, and p 1 is a prefeix of p 1 , then $\mathrm{t}(\mathrm{p} 2)=$ null.
- $\{p$ in paths $(D) \mid t(p)=/=$ null $\}$ is finite.
- $\mathrm{T}(\mathrm{D})$ is defined to be the set of all tree tuples in D .

Example

```
<!DOCTYPE courses [
    <!ELEMENT courses ( course*) >
    <!ELEMENT course( title, taken_by) >
    <!ATTLIST course cno CDATA #REQUIRED>
    <!ELEMENT title (#PCDATA)>
    <!ELEMENT take_by( student*)>
    <!ATTLIST student sid CDATA #REQUIRED>
    <!ELEMENT name ( #PCDATA)>
    <!ELEMENT grade (#PCDATA) >
]>
```

The followings are paths in D
t (courses) $=\mathrm{v} 0$
$\mathrm{t}($ courses.course $)=\mathrm{v} 1$
$\mathrm{t}($ courses.course.@cno $)=391$
$\mathrm{t}($ courses.course.title $)=\mathrm{v} 2$
t (courses.course.title. $\mathrm{S}=$ database
t (courses.course.taken_by= v3
$\mathrm{t}($ courses.course.take_by.student $)=\mathrm{v} 4$
$\mathrm{t}($ courses.course.taken_by.student.@sid) $=1234$
$\mathrm{t}($ courses.course.taken_by.student.name $)=\mathrm{v} 5$
t (courses.course.taken_by.student.name.S $)=$ Sarah
$\mathrm{t}($ courses.course.taken_by.student.grade $)=\mathrm{v} 6$
$\mathrm{t}($ courses.course.taken_by.student.grade.S $)=9$

The XML tree for this one tree tuple

■ Important Results:

- Given a DTD D and an XML tree T such that T conforms with D . Then T can be represented by a set of tree tuples, if we consider it as an unordered tree.

Functional Dependencies

■ Let D be a DTD, S1 and S2 are finite non-empty subsets of paths(D).

- A functional dependency FD over D is an expression of the form

S1 --> S2

- An XML tree T satisfies S1 --> S2 if for every pair of tree tuples t 1 , t 2 in tuples(T$)$,
. $\mathrm{t} 1 . \mathrm{S} 1=\mathrm{t} 2 . \mathrm{S} 2$ and $\mathrm{t} . \mathrm{S} 1=/=$ null implies $\mathrm{t} 1 . \mathrm{S} 2=\mathrm{t} 2 . \mathrm{S} 2$.

Example

The followings are paths in D

```
<!DOCTYPE courses [
    <!ELEMENT courses ( course*) >
    <!ELEMENT course( title, taken_by) >
    <!ATTLIST course cno CDATA #REQUIRED>
    <!ELEMENT title (#PCDATA)>
    <!ELEMENT take_by( student*)>
    <!ATTLIST student sid CDATA #REQUIRED>
    <!ELEMENT name ( #PCDATA)>
    <!ELEMENT grade (#PCDATA) >
```

 courses,
 courses.course
 courses.course.@cno
 courses.course.title
 courses.course.title.S
 courses.course.taken_by
 courses.course.taken_by.student
 courses.course.taken_by.student.@sid
courses.course.taken_by.student.name
courses.course.taken_by.student.name.S
courses.course.taken_by.student.grade
courses.course.taken_by.student.grade.S

Example: Paths(D)

courses,
courses.course
courses.course.@cno courses.course.title courses.course.title.S courses.course.taken_by courses.course.taken_by.student courses.course.taken_by.student.@sid courses.course.taken_by.student.name courses.course.taken_by.student.name.S courses.course.taken_by.student.grade courses.course.taken_by.student.grade.S

Example

Constraint:
cno is a key of course
FD1:
courses.course.@cno --> courses.course

Consider a sample XML Tree T1

The corresponding flat table for T1

Cno	Title	SID	Name	Grade
391	database	1234	Sarah	9
391	database	4321	Bill	8
291	file	1234	Sarah	7
291	file	1234	Bill	6

The following are the only two tree typles with $\mathrm{cno}=\mathrm{c} 391$ in T 1

692 Normal Form for XML

Consider another XML Tree T2

The corresponding flat table for T2

Cno	Title	SID	Name	Grade
391	database	1234	Sarah	9
391	database	4321	Bill	8
391	file	1234	Sarah	7
391	file	1234	Bill	6

The following are two tree typles with $\mathrm{cno}=\mathrm{c} 391$ in T2

692 Normal Form for XML

■ Observation

- Both T1 and T2 conform to the DTD
- T1 satisfies the FD
n- courses.course.@cno --> courses.course
- T2 does not satisfy the above FD

Example

Constraint:

FD2:

\{ courses.course, courses.course.taken_by.student.@sid \} --> courses.course.taken_by.student

Example

Constraint:

two students with the same sid must have the same name

FD3:

courses.course.taken_by.student.@sid --> courses.course.taken_by.student.name.S

XNF: An XML Normal Form

■ Given a DTD, and a set F of FDs, (D, F) is in XML normal form (XNF) if and only if for every nontrivial FD of the form S --> p.@1 or S --> p.S, it is the case that $S-->p$ is implied by F.

■ Intuition

- For every set values of the elements in S, we can find only one value of p.@1. Thus, we need to store the value only one.

Consider the following example again

We have FD3:

courses.course.taken_by.student.@sid --> courses.course.taken_by.student.name.S

But the following does not held: courses.course.taken_by.student.@sid --> courses.course.taken_by.student.name

This implies that the student name for a given sid, the document may have multiple copies of student name.

Relationships with other normal forms

- Assume a standard coding between tables and XML documents
- A relation schema in in BCNF if and only if its XML counter part is in XNF
- Assume a standard nesting operations and coding
- A nested relation is in NNF if and only if its XML representation is in XNF.

Normalization Algorithm

- Two basic operations
- Moving attributes
- Creating new element types

■ Given a DTD D and a set F of FDs

- If (D, F) is in XNF, return
- Otherwise find an anomalous FD and use the two basic operations to modify D to eliminate the anomalous FD,
- Continue the above steps until (D, F) is in XNF.

■ The normalization algorithm is efficient and join-lossless

